Matematikhistoriske originalkilder, ræsonnementskompetence og GeoGebra på mellemtrinnet
Nøgleord:
Matematikhistoriske originalkilder, GeoGebra, ræsonnementskompetenceSynopsis
Ph.d.-afhandlingen præsenterer forskellige didaktiske principper, der kan understøtte, at elever får mulighed for at udvikle deres ræsonnementskompetence, når de arbejder med samspillet mellem originalkilder og GeoGebra. Ph.d.-afhandlingen tager afsæt i Design Based Research og placerer sig mellem tre forskningsområder: 1) Matematikkens historie, herunder brug af originalkilder, 2) Digitale teknologier i matematikundervisningen og 3) Matematiske ræsonnementer. Den består af tre delundersøgelser: 1) Et review, 2) en analyse af udvalgte kapitler fra et lærebogssystem og 3) planlægning og analyse af tre afprøvninger. Det teoretiske omdrejningspunkt er distinktionerne mellem den undersøgende og produktive side af ræsonnementskompetencen (Niss & Jensen, 2002), epistemisk, pragmatisk og retfærdiggørende medieringer (fx Misfeldt og Jankvist, 2018), regel- og strukturopfattelse samt statisk og dynamisk læsning (Mellin-Olsen, 1984). Derudover inddrages Jensens (2011) beskrivelse af historisk bevidsthed.
Referencer
Aguilar, M. S., & Zavaleta, J. G. M. (2015). The difference as an analysis tool of the change of geometric magnitudes: the case of the cirkle. I E. Barbin, U. T. Jankvist, & T. H. Kjeldsen (red.), History and Epistemology in Mathematics Education. Proceedings of the Seventh European Summer University (pp. 391–399). Copenhagen: Danish School of Education.
Alibert, D. (1988). Towards new customs in the classroom. For the Learning of Mathematics, 8(2), 31–35.
Andersen, K. (1986). Tredjegradsligninger i 1500-tallet. I K. Andersen (red.), Kilder og kommentarer til ligningernes historie, Forlaget Trip.
Andersen, M.W., Dalsgaard, R.S., Hessing, S., & Lindhardt, B. (2015). KonteXt+ 5, Matematik kernebog/web. Alinea.
Andersen, M.W., Dalsgaard, R.S., & Lindhardt, B. (2016). KonteXt+ 6, Matematik kernebog/web. Alinea.
Arcavi, A., & Isoda, M. (2007). Learning to listen: From historical sources to classroom practice. Educational Studies in Mathematics, 66, 111–129. https://doi.org/10.1007/s10649-006-9075-8
Arcavi, A., Bruckheimer, B., & Ben-Zvi, R. (1982). Maybe a mathematics teacher can profit from the study of the history of mathematics. For the Learning of Mathematics, 3(1), 30–37. https://www.jstor.org/stable/40247760
Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274. https://doi.org/10.1023/A:1022103903080
Artigue, M. (2010). The Future of Teaching and Learning Mathematics with Digital Technologies. I C. Hoyles & J.-B. Lagrange (red.), Mathematics Education and Technology-Rethinking the Terrain. New ICMI Study Series (vol 13, pp. 463–475). Springer US. https://doi.org/10.1007/978-1-4419-0146-0_23
Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998). A model for analysing the transition to formal proofs in geometry. I A. Olivier & K. Newstead (red.). Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 24 –31). Stellenbosch, South Africa: PME.
Arzarello, F., Olivero, F., Paola, D., & Robutti. O. (2002). A cognitive analysis of dragging practices in Cabri environments. Zentralblatt für Didaktik der Mathematik 34, 66–72. https://doi.org/10.1007/BF02655708
Arzarello F., Olivero F., Paola D., Robutti O. (2007). The transition to formal proof in geometry. I P. Boero (red.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 305–323). Sense Publishers. https://doi.org/10.1163/9789087901691_018
Baccaglini-Frank, A., & Mariotti, M.A. (2010). Generating conjectures in dynamic geometry:
the maintaining dragging model. International Journal of Computers for Mathematical
Learning, 15, 225–253. https://doi.org/10.1007/s10758-010-9169-3
Baki, A., & Guven, B. (2009). Khayyam with Cabri: Experiences of Pre-Service Mathematics Teachers with Khayyam's Solution of Cubic Equations in Dynamic Geometry Environment. Teaching Mathematics and Its Applications: An International Journal of the IMA, 28(1), 1–9. https://doi.org/10.1093/teamat/hrp001
Bakker, A. (2019). Design Research in Education. A Practical Guide for Early Career Researchers. Routledge, Taylor And Francis.
Bakker, A., & Gravemeijer, K. P. E. (2006). An historical phenomenology of mean and median. Educational Studies in Mathematics, 62, 149–168. https://doi.org/10.1007/s10649-006-7099-8.
Bakker, A., & van Eerde, D. (2015). An introduction to design based research with an example from statistics education. I A. Bikner-Ahsbahs, C. Knipping, & N. C. Presmeg (red.), Approaches to qualitative research in mathematics education: Examples ofmethodology and methods (pp. 429–466). Springer. https://doi.org/10.1007/978-94-017-9181-6_16
Baldsløv, C. U. (2018). Den gensidige komplementaritet af Cas og originalkilder i matematikundervisningen. Master’s thesis. Danish school of Education, Aarhus University.
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554
Barab, S., & Squire, K. (2004). Design-Based Research: Putting a Stake in the Ground. The Journal of the Learning Sciences, 13(1), 1–14. https://doi.org/10.1207/s15327809jls1301_1
Barbé, J., Bosch, M., Espinoza, L., & Gascón, J. (2005). Didactic restrictions on teachers practice – the case of limits of functions in Spanish high schools. Educational Studies in Math, 59, 235–268. https://doi.org/10.1007/s10649-005-5889-z
Barnett, J. H., Lodder, J., & Pengelley, D. (2014). The pedagogy of primary historical Sources in mathematics: classroom practice Meets theoretical frameworks. Science & Education, 23(1), 7–28. https://doi.org/10.1007/s11191-013-9618-1
Barnett, J. H., & Kjeldsen, T. H. (2016). Original Sources in the Mathematical Classroom. I L. Radford, F. Furinghetti, & T. Hausberger (red.), Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics (pp. 205–207). IREM de Montpellier
Bartolini-Bussi, M. G. (2000). Ancient instruments in the mathematics classroom. I J. Fauvel, & J. van Maanen (red.), History in mathematics education: The ICMI Study, New ICMI Study Series, (vol. 6, pp. 343–351). Dordrecht: Kluwer.
Bartolini-Bussi M. G., & Mariotti MA. (1999). Semiotic mediation: from history to mathematics classroom. For the Learning of Mathematics, 19(2), 27–35. https://www.jstor.org/stable/40248296
Bartolinni-Bussi, M. G., & Mariotti, M.A. (2008). Semiotic mediation in the mathematics classroom: artifacts and signs after a Vygotskian perspective. I L. D. English , M. Bartolini Bussi , G. A. Jones , R. A. Lesh , B. Sriraman , & D. Tirosh (red.), Handbook of International Research in Mathematics Education, second revised edition (pp. 746–783). Routledge / Taylor & Francis Group. https://doi.org/10.4324/9780203930236.ch28
Bloch, I. (2003). Teaching functions in a graphic milieu: what forms of knowledge enable students to conjecture and prove? Educational Studies in Mathematics, 52, 3–28.
Blomhoj, M. (2001). Hvorfor matematikundervisning? – matematik og almendannelse i et
hojteknologisk samfund. I M. Niss (red.), Matematikken og Verden (pp. 218–246). Fremad.
Bloor, D. (1983).Wittgenstein: A social theory of knowledge. Macmillan and Columbia University Press.
Bloor, D. (2002). Wittgenstein, rules and institutions. Routledge.
Boell, S. K., & Cecez-Kecmanovic, D. (2010) Literature reviews and the hermeneutic circle. Australian Academic & Research Libraries, 41(2), 129–144. https://doi.org/10.1080/00048623.2010.10721450
Boell, S. K., & Cecez-Kecmanovic, D. (2014). A hermeneutic approach for conducting literature reviews and literature searches. Communications of the Association for Information Systems, 34(1), 257–286. https://doi.org/10.17705/1CAIS.03412
Borwein, J. M. (2005). The experimental mathematician: the pleasure of discovery and the role of proof. International Journal of Computers for Mathematical Learning, 10, 75–108. https://doi.org/10.1007/s10758-005-5216-x
Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Recherches en Didactique des Mathématiques, 19(1), 77–124. https://revue-rdm.com/1999/la-sensibilite-de-l-activite/
Brown, A. L. (1982). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom setting. Journal of the Learning Sciences, 2(2), 141–178. https://doi.org/10.1207/s15327809jls0202_2
Buchberger, B. (2002). Computer algebra: The end of mathematics? ACM SIGSAM Bulletin, 36(1), 3–9. https://doi.org/10.1145/565145.565147
Burke, M. J., & Burroughs, E. A. (2009). Using CAS to Solve Classical Mathematics Problems. Mathematics Teacher, 102(9), 672–679. https://doi.org/10.5951/MT.102.9.0672
Butterfield, H. (1931). The whig interpretation of history. G. Bell.
Børne- og undervisningsministeriet (2019a). Matematik – Fælles Mål. https://emu.dk/sites/default/files/202009/GSK_F%C3%A6llesM%C3%A5l_Matematik.pdf
Børne- og Undervisningsministeriet (2019b). Matematik – Læseplan. https://emu.dk/sites/default/files/2020-09/GSK_L%C3%A6seplan_Matematik.pdf
Caballero-Gonzalez, C., & Bernal-Rodriguez, J. (2011). New Technologies and Education: Constructive, Geometric and Dynamic Introduction of the Derivative Concept. International Journal for Technology in Mathematics Education, 18(4), 203–208. https://www.learntechlib.org/p/110976/
Caglayan, G. (2016). Exploring the lunes of Hippocrates in a dynamic geometry environment. BSHM Bulletin, 31(2), 144–153. https://doi.org/10.1080/17498430.2015.1122301
Can, C., Barnett, J. H. & Clark, K. (2018). Investigating Students’ Meta-Level Object-Reflections and Discourse-Reflections: The Provocative Power of Primary Historical Sources. I A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, & S. Brown (red.), 21st Annual Conference on Research in Undergraduate Mathematics Education (pp. 1432 –1437). San Diego, CA.
Capone, R., Del Sorbo, M. R., & Ninni, V. (2919). Using artifacts and dynamic geometry software in primary school inspired by Montessori method. I E. Barbin, U. T. Jankvist, T. H. Kjeldsen, B. Smestad, & C. Tzanakis (red.), Proceedings of the Eight European Summer University on the History and Epistemology in Mathematics Education (pp. 81–90). METU.
Cèbe, S., & Goigoux, R. (2009). Lector & Lectrix. Apprendre à comprendre les textes narratifs. CM1-CM2-6e-Segpa. Retz. https://hal.archives-ouvertes.fr/hal-00974777
Chevallard, Y. (2002). Organiser l’étude. In J. L. Dorier, M. Artaud, M. Artigue, R. Berthelot, & R. Floris (Eds.), Actes de la Xème Ecole d’été de didactique des mathématiques (pp. 3–22, 41–56). La Pensée Sauvage.
Chevallard Y. (2015) Teaching Mathematics in Tomorrow’s Society: A Case for an Oncoming Counter Paradigm. I S. Cho (red.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 173–187). Springer, Cham. https://doi.org/10.1007/978-3-319-12688-3_13
Chorlay, R. (2015). Making (more) sense of the derivate by combining historical sources and ICT. I E. Barbin, U. T. Jankvist, & T. H. Kjeldsen (red.), History and Epistemology in Mathematics Education. Proceedings of the Seventh European Summer University. (pp. 485–498). Danish School of Education.
Chorlay, R. (2016). Historical sources in the classroom and their educational effects. I L. Radford, F. Furinghetti, & T. Hausberger (red.), Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics (pp. 5–23). IREM de Montpellier.
Chorlay, R. (2019). Why bother with original sources. I E. Barbin, U. T. Jankvist, T. H. Kjeldsen, B. Smestad, and C. Tzanakis (red.), Proceedings of the Eight European Summer University on the History and Epistemology in Mathematics Education, (pp. 403–416). METU.
Clark, K. (2015). The comtribution of history of mathematics on students’ mathematical thinking competency. I K, Krainer, & N. Vondrová (red.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 1804–1810). Charles University in Prague, Faculty of Education and ERME.
Clark, K., Kjeldsen, T. H., Schorcht, S., Tzanakis, C., & Wang, X. (2016). History of Mathematics in Mathematics Education: Recent devlopments. I L. Radford, F. Furinghetti, & T. Hausberger (red.), Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics (pp. 135–179). IREM de Montpellier.
Cobb, P., Jackson, K., & Sharpe, C. D. (2017). Conducting design studies to investigate and support mathematics students’ and teachers’ learning. I J. Cai (red.), First compendium for research in mathematics education (pp. 208–233). National Council of Teachers of Mathematics. https://doi.org/10.1080/10508400902797933
Cobb, P., McClain, K., Lamberg, T., & Dean, C. (2003). Situating teachers' instructional practices in the institutional setting of the school and district. Educational Researcher, 32(6), 13–24. https://doi.org/10.3102/0013189X032006013
Collins, A. (1992). Toward a design science of education. I T. Scanlon, & T. O'Shea (red.), New directions in educational technology (pp. 15–22). Springer. https://doi.org/10.1007/978-3-642-77750-9_2
Davis. P. J. (2004). A Letter to Christina of Denmark. EMS, 21–24.
Deligianidis, T, & Nikolantonakis, K. (2019). Developing geometric proportional thinking to 6th grade students with the use of a historical instrument of Erbard De Bar Le Duc. I E. Barbin, U. T. Jankvist, T. H. Kjeldsen, B. Smestad, and C. Tzanakis (red.), Proceedings of the Eight European Summer University on the History and Epistemology in Mathematics Education, (pp. 303–314). METU.
Dennis, D., & Confrey, J. (1997). Drawing logarithmic curves with Geometer’s SketchPad: A method inspired by historical sources. I J. King & D. Schattschneider (red.), Geometry turned on: Dynamic software in learning, teaching and research (pp.147–156). The Mathematical Association of America.
Descartes, R. (1637/1954). The geometry of René Descartes. Translated by D.E. Smith & M. L. Latham. Dover Publications.
Design-Based Research Collaborative. (2003). Design-based research: An emerging paradigm for educational enquiry. Educational Researcher, 32(1), 5–8. https://doi.org/10.3102/0013189X032001005
diSessa A.A. (1992) Images of Learning. I E. De Corte, M. C. Linn, H. Mandl., L. Verschaffel (red.), Computer-Based Learning Environments and Problem Solving (pp. 19–40). NATO ASI Series (Series F: Computer and Systems Sciences), vol 84. Springer. https://doi.org/10.1007/978-3-642-77228-3_2
diSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. Educational Researcher, 32(1), 77–103. https://doi.org/10.1207/s15327809jls1301_4
Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234. https://doi.org/10.1007/s10649-010-9254-5
Drijvers, P., & Gravemeijer, K. (2005). Computer algebra as an instrument: Examples of algebraic schemes. I D. Guin, K. Ruthven, & L. Trouche (red.), The didactical challenge of symbolic calculators turning a computational device into a mathematical instrument (pp. 174–196). Springer. https://doi.org/10.1007/0-387-23435-7_8
Dreyfus, T. (1999). Why Johnny can’t prove. Educational Studies in Mathematics, 38, 85–109. https://doi.org/10.1023/A:1003660018579
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131. https://doi.org/10.1007/s10649-006-0400-z
Duval, R. (2007). Cognitive functioning and the understanding of mathematical processes of proof. I P. Boero (red.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 135–161). Sense Publishers. https://doi.org/10.1163/9789087901691_009
Ebert, J., Flusser, P., Kaplan, G., Kessler, R., & Sandifer, E. (2004). Geometric Proof. I V. Katz, & K. Dee Michalowicz, (red.), Historical Modules for the Teaching and Learning of Mathematics. Mathematical Association of America
Edelson, D. C. (2002). Design research: What we learn when we engage in design. Journal of the Learning Sciences, 11(1), 105–121. https.//doi.org/10.1207/S15327809JLS1101_4
Eibe, T. (1897a). Euklids Elementer I-II. [En dansk oversætte af Euklids Elementer, bog I og II]. Gyldendal.
Eibe, T. (1897b). Euklids Elementer III-IV. [En dansk oversætte af Euklids Elementer, bog III og IV]. Gyldendal.
Errard, J. (1594). La géométrie et practiqve generalle d'icelle. Auvray.
Fauvel, J. (1991). Using history in mathematics education. For the Learning of Mathematics, 11(2), 3–6. https://www.jstor.org/stable/40248010
Flyvbjerg, B. (2015). Fem misforståelser om casestudiet. I S. Brinkmann, & L. Tanggaard (red.), Kvalitative metoder (pp. 463–487). Hans Reitzels Forlag.
Freudenthal, H. (1983), Didactical Phenomenology of Mathematical Structures. Springer. https://doi.org/10.1007/0-306-47235-X
Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47202-3
Fried, M. N. (2001). Can mathematics education and history of mahtematics coexist? Science & Education, 10, 391–408. https://doi.org/10.1023/A:1011205014608
Fried, M.N. (2004). The problem of mathematics education and history of mathematics from
a Saussurean point of view, talk given at PME28, Bergen University College, Norway.
Fried, M. N. (2007). Didactics and history of mathematics: Knowledge and self-knowledge. Educational Studies in Mathematics, 66, 203–223. https://doi.org/10.1007/s10649-006-9025-5
Fried, M. N. (2011). History of mathematics in mathematics education: Problems and Prospects. I E. Barbin, M. Kronfellner, & C. Tzanakis (red.), History and Epistemology in Mathematics Education – Proceedings of the 6th European Summer University (pp. 13–26). Verlag Holzhausen GmbH.
Fried, M.N., & Unguru, S. (2001). Apollonius of Perga’s Conica: Text, Context, Subtext. Brill, Leiden. https://doi.org.10.1163/9789004350991
Fried, M. N, Guillemette, D, Jahnke, H. N. (2016). Panel 1: Theoretical and/or conceptual frameworks for integrating history in mathematics education. . I L. Radford, F. Furinghetti, & T. Hausberger (red.), Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics (pp. 211–230). IREM de Montpellier.
Fujita, T., Jones, K., & Miyazaki, M. (2011). Supporting students to overcome circular arguments in secondary school mathematics. I B. Ubuz (red.), Proceedings of the 35th Conference of the International group for the Psychology of Mathematics Education (Vol. 2, pp. 353–60). PME.
Furinghetti, F. (2002). On the role of the history of mathematics in mathematics education. [Conference presentation] 2nd international conference on the teaching of mathematics at the undergraduate level. Crete, Greece.
Furinghetti, F., & Radford, L. (2008). Contrasts and oblique connections between historical conceptual developments and classroom learning in mathematics. I L. English (red.), Handbook of International Research in Mathematics Education (2nd Edition, pp. 626 – 655). Routledge, Taylor and Francis
Gissel, S. T., Kristensen, B. T., Hjemlmborg, M., & Larsen, D. M. (2019). Kompetencedækning i analoge matematiksystemer til mellemtrinnet. Mona, 3, 7–27. https://tidsskrift.dk/mona/article/view/115580
Glaubitz, M. R. (2010). The use of original sources in the classroom. Emperical Research Findings. I E. Barbin, M. Kronfellner, & C. Tzanakis (red.), History and Epistemology in Mathematics Education: Proceedings of the Sixth European Summer University (ESU 6) (pp. 351–361). Verlag Holzhausen GmbH Vienna, Austria.
Gravemeijer, K. (1994). Educational development and developmental research in mathematics education. Journal for Research inMathematics Education, 25(5), 443–471. https://doi.org/10.2307/749485
Gulikers, I, & Blom. K (2001). A historical angle, a survey of recent literature on the use and value of history in geometrical education. Educational Studies in Mathematics, 47(2), pp. 223-258. https://doi.org/10.1023/A:1014539212782
Hanna, G. (1989). Proofs that prove and proofs that explain. I G. Vergnaud, J. Rogalski, &
M. Artigue (red.), Proceedings of the 13th Conference of the International Group for the
Psychology of Mathematics Education (Vol. 2, pp. 45–51). CNRS.
Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6–13. https://doi.org/10.1007/BF01809605
Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. I F.K. Lester Jr, (red.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 805–842). Information Age Publishing.
Hašek, R., & Zahradník, J. (2015). Study of Historical Geometric Problems by Means of CAS and DGS. International Journal for Technology in Mathematics Education, 22(2), 53–58. https://www.learntechlib.org/p/175079/
Haspekian, M. (2005). An “Instrument Approach” to study the integration of a computer tool into mathematics teaching: The case of spreadsheets. International Journal of Computers for Mathematical Learning, 10(2), 109–141.
Haspekian, M. (2014). Teachers’ instrumental geneses when integrating spreadsheet software. I A. Clark-Wilson, O. Robutti, & N. Sinclair (red.), The mathematics teacher in the digital area. Mathematics education in the digital era (Vol. 2, pp. 241–275). Springer. https://doi.org/10.1007/978-94-007-4638-1_11
Hoadley, C. P. (2002). Creating context: Design based research in creating and understanding CSCL. I G. Stahl (red.), Proceedings of the conference on computer support for collaborative learning: Foundations for a CSCL community (pp. 453–462). ISLS. https://doi.org/10.3115/1658616.1658679
Hong, Y., & Wang, X. (2015). Teaching the area of a circle from the perspective of HPM. I E. Barbin, U. T. Jankvist, & T. H. Kjeldsen (red.), History and Epistemology in Mathematics Education. Proceedings of the Seventh European Summer University (pp. 403-415). Danish School of Education.
Højsted, I. H. (2020). Guidelines for utilizing affordances of dynamic geometry environments to support development of reasoning competency. Nordic Studies in Mathematics Education, 25(2), 71–98.
Isoda, M. (1998). Developing the curriculum for curves using history and technology. I W.-C. Yang, K. Shirayanagi, S.-C. Chu, & G. Fitz-Gerald (red.), Electronic Proceedings of the 3rd Asian Technology Conference in Mathematics. https://atcm.mathandtech.org/EP/1998/ATCMP047/paper.pdf
Isoda, M. (2000a). Inquiring mathematics with history and software. I J. Fauvel, & J. van Maanen (red.), History in Mathematics Education (pp. 351–358). Kluver Academic Publishers
Isoda, M. (2000b). The Use of Technology in Teaching Mathematics with History - Teaching with modern techonology inspired by the history of mathematics. I W.-S. Horn & F.-L. Lin (red.), Proceedings of the HPM 2000 Conference History in Mathematics Education Challenges for a new millennium (pp. 27-34). Department of Mathematics National Taiwan Normal University.
Isoda, M. (2004). Why we use historical tools and computer software in mathematics education: mathematics activity as a human endeavor project for secondary school. I F. Furinghetti, S. Kaijser, & C. Tzanakis (red.), Proceedings HPM2004 & ESU4 (pp. 229-236). Uppsala University.
Jahnke, H. N., Arcavi, A., Barbin, E., Bekken, O., Furinghetti, F., Idrissi, A., da Silva, C. M. S., & Weeks, C. (2000). The use of original sources in the mathematics classroom. I J. Fauvel, & J. van Maanen (red.), History in mathematics education: the ICMI study (pp. 291-328). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47220-1_9
Jankvist, U. T. (2007). Den matematikhistoriske dimension i undervisning – generelt set. MONA - Matematik- Og Naturfagsdidaktik, (3).
Jankvist, U. T. (2008). Matematikopfattelser hos 2g’ere: fokus på de ‘tre aspekter’. Nordic Studies in Mathematics Education, 13(2), 7–47.
Jankvist, U. T. (2009). A categorization of the ‘whys’ and ‘hows’ of using history in Mathematics education. Educational Studies in Mathematics, 1(3), 235–261. https://doi.org/10.1007/s10649-008-9174-9
Jankvist, U. T. (2010). An empirical study of using history as a ‘goal’. Educational Studies in Mathematics, 74(1), 53–74. https://doi.org/10.1007/s10649-009-9227-8
Jankvist, U. T. (2011). Anchoring students’ meta-perspective discussions of history in mathematics. Journal of Research in Mathematics Education, 42(4), 346–385. https://doi.org/10.5951/jresematheduc.42.4.0346
Jankvist, U. T. (2013). History, Applications, and Philosophy in Mathematics Education: HAPh-A Use of Primary Sources. Science & Education, 22(3), 635–656. https://doi.org/10.1007/s11191-012-9470-8
Jankvist, U. T. (2014). On the Use of Primary Sources in the Teaching and Learning of Mathematics. I M. R. Matthews (red.), International Handbook of Research in History, Philosophy and Science Teaching (pp. 873–908). Springer Dordrecht. https://doi.org/10.1007/978-94-007-7654-8_27
Jankvist, U. T., & Geraniou, E. (2019). ICT as a way of making original sources more accessible to students. I E. Barbin, U. T. Jankvist, T. H. Kjeldsen, B. Smestad, & C. Tzanakis (red.), Proceedings of the Eight European Summer University on the History and Epistemology in Mathematics Education (pp. 107-130). METU.
Jankvist, U. T., & Geraniou, E. (2021). “Whiteboxing” the content of a formal mathematical text in a dynamic geometry environment. Digital Experiences in Mathematics Education, 7(3), 222–246. https://doi.org/10.1007/s40751-021-00088-6
Jankvist, U. T., & Iversen, S. M. (2014). ‘Whys’ and ‘hows’ of using philosophy in mathematics education. Science & Education, 23(1), 205–222. https://doi.org/10.1007/s11191-013-9616-3
Jankvist, U. T., & Kjeldsen, T. H. (2011). New avenues for history in mathematics education – mathematical competencies and anchoring. Science & Education, 20(9), 831–862. https://doi.org/10.1007/s11191-010-9315-2
Jankvist, U.T., & Misfeldt, M. (2019). CAS assisted proofs in upper secondary school mathematics textbooks. REDIMAT – Journal of Research in Mathematics Education, 8(3), 232–266. https://doi.org/10.17583/redimat.2019.3315
Jankvist, U. T., & Toldbod, B. (2007). The Hidden Mathematics of the Mars Exploration Rover Mission. The mathematical intelligencer, 29, 8–15. https://doi.org/10.1007/BF02984753
Jankvist, U. T., Clark, K. M., & Mosvold, R. (2019a). Developing mathematical knowledge for teaching teachers: Potentials of history of mathematics in teacher educator training. Journal of Mathematics Teacher Education, 23, 311–332 https://doi.org/10.1007/s10857-018-09424-x
Jankvist, U. T., Misfeldt, M., & Aguilar, M. S. (2019b). Tschirnhaus’ transformation: mathematical proof, history and CAS. I E. Barbin, U. T. Jankvist, T. H. Kjeldsen, B. Smestad, and C. Tzanakis (red.), Proceedings of the Eight European Summer University on the History and Epistemology in Mathematics Education, (pp. 319–330). METU.
Jankvist, U. T, Mosvold, R., & Clark, K. (2016). Mathematical knowledge for teaching teachers: The case of history in mathematics education. I L. Radford, F. Furinghetti, & T. Hausberger (red.), Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics (pp. 441–452). IREM.
Jensen, B. E, (2011). At handle i tid og rum. Et socialkonstruktivistisk historiebegreb. Historisk Tidsskrift, 111(1). https://tidsskrift.dk/historisktidsskrift/article/view/56499
Johansen, M. W., & Sørensen, H. K. (2014). Invitation til matematikkens videnskabsteori. Samfundslitteratur.
Jones, K. (2005). Research on the Use of Dynamic Geometry Software: implications for the classroom. I J. Edwards & D. Wright (red.), Integrating ICT into the Mathematics Classroom (pp. 27-29). Association of Teachers of Mathematics.
Kántor, T, & Tóth, A. (2016). Teaching of old historical mathematics problems with ICT tools. Teaching Mathematics and Computer Science 14(1), 13–24 https://doi.org/10.5485/TMCS.2016.0400
Kidron, I. (2004). Polynomial approximation of functions: Historical perspective and new tools. International Journal of Computers for Mathematical Learning, 8(3), 299–331. https://doi.org/10.1023/B:IJCO.0000021793.71677.cd
Kidron, I. (2018). Polynomial interpolation of functions: Introducing Chebyshev polynomials in a CAS laboratory. The International Journal for Technology in Mathematics Education, 25(1), 27–34. http://dx.doi.org/10.1564/tme_v25.1.03
Kidron, I. (2001). Teaching Euler’s algebraic methods in a calculus laboratory. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th ICMI Conference: The future of the teaching and learning of algebra (Vol. 2, pp. 368–375). University of Melbourne.
Kidron, I., & Tall, D. (2015). The Roles of Visualization and Symbolism in the Potential and Actual Infinity of the Limit Process. Educational Studies in Mathematics, 88(2), 183–199. https://doi.org/10.1007/s10649-014-9567-x
Kidron, I., & Zehavi, N. (2002). The role of animation in teaching the limit concept. The International journal of computer algebra in mathematics education, 9(3), 205–227.
Kidron, I., Zehavi, N., & Openhaim, E. (2001). Teaching the limit concept in a CAS environment: Students’ dynamic perception and reasoning. I M. van den Heuvel-Panhuizen (red.), Proceedings of the 25th International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 241–248). Freudenthal Institute.
Kjeldsen, T. (2012). Uses of history for the learning of and about mathematics – Towards a general framework for integrating history of mathematics in mathematics education [Invited plenary paper]. Proceedings of the 12th conference on History and Pedagogy of Mathematics, 1, 1–21.
Kjeldsen, T. H., & Blomhøj, M. (2012). Beyond motivation: history as a method for learning meta-discursive rules in mathematics. Educational Studies in Mathematics, 80(3), 327–349. https://doi.org/10.1007/s10649-011-9352-z
Kjeldsen, T. H., Clark, K. M., & Jankvist, U. T. (in press). Developing historical awareness through the use of primary sources in the teaching and learning of mathematics. I: C. Michelsen, A. Beckmann, V. Freiman, U. T. Jankvist & A. Savard (red.), 15 Years of Mathematics Education and its Connections to the Arts and Sciences. (pp. ….). Springer Nature Switzerland AG.
Kristensen, B. T. (2017). Nytårstanker i GeoGebra institutet. Blog, Folkeskolen.dk
Lijnse, P. L. (1995). “Developmental Research” as a way to an empirically based “didactical structure” of science. Science Education, 29(2), 189–199. https://doi.org/10.1002/sce.3730790205
Lijnse, P. L., & Klaassen, K. (2004). Didactical structures as an outcome of research on teaching-learning sequences? International Journal of Science Education, 26(5), 537–554. https://doi.org/10.1080/09500690310001614753
Lim, S. Y., & Chapman, E. (2015). Effects of using history as a tool to teach mathematics on students’ attitudes, anxiety, motivation and achievement in grade 11 classrooms. Educational Studies in Mathematics, 90(2), 189–212. https://doi.org/10.1007/s10649-015-9620-4.
Lindhardt, B., Dalsgaard, R.S., Poulsen, M., & Andersen, M.W. (2014). KonteXt+ 4, Matematik kernebog/web. Alinea.
Maffia, A. (2018). Exploiting the potential of primary historical sources in primary school: a focus on teacher’s actions. International Journal of Mathematical Education in Science and Technology, 50(30), 354 –368. https://doi.org/10.1080/0020739X.2018.1506172
Mariotti, M. A. (2012). Proof and proving in the classroom: Dynamic Geometry Systems as tools of semiotic mediation. Research in Mathematics Education, 14(2), 163–185, https://doi.org/10.1080/14794802.2012.694282
Mariotti, M. A. (2002). Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6(3), 257–281, Kluwer Academic Publishers. https://doi.org/10.1023/A:1013357611987
Mason, J. (1991). Questions about geometry. I D. Pimm & E. Love (red.), Teaching and learning school mathematics: A reader (pp. 77–90). Hodder and Stoughton.
Mason, J., & Waywood, A. (1996). The role of theory in mathematics education and research. I A. J. Bishop, Clements K., Keitel C., Kilpatrick J., Laborde C. (red.), International Handbook of Mathematics Education. Kluwer International Handbooks of Education (vol 4, pp. 1055–1089). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1465-0_29
Mason, J., Burton, L., & Stacey, K. (1982). Thinking Mathematically. (2nd ed.).
Pearson Education Limited
Mellin-Olsen, S. (1984). Eleven, matematikken og samfunnet. En undervisningslære. NKI-forlaget
Misfeldt, M. (2014). Trekantsberegninger og teknologi – et eksempel på hvordan teknologi har (eller bør have) indflydelse på udvikling af Matematikcurriculum. MONA - Matematik- Og Naturfagsdidaktik, (1). https://tidsskrift.dk/mona/article/view/36192
Misfeldt, M., & Jankvist, U. T. (2018). Instrumental genesis and proof: Understanding the use of computer algebra systems in proofs in textbooks. I M. Tabach, H-S. Siller, L. Ball, P. Drijvers, S. Ladel, & C. Vale (red.), Uses of technology in primary and secondary mathematics education: Tools, topics and trends (pp. 375–385). Springer. ICME-13 Monographs. https://doi.org/10.1007/978-3-319-76575-4
Miyakawa, T., & Winsløw, C. (2009). Didactical designs for students’ proportional reasoning: an “open approach” lesson and a “fundamental situation”. Educ Stud Math 72, 199–218. https://doi.org/10.1007/s10649-009-9188-y
Mogensen, A., Hesselholt, H. H., & Bull, A. (2016). CAS i folkeskolens matematikunder-visning med øget læringsudbytte for drenge på mellemtrinnet. Mona 1, 9–20. https://tidsskrift.dk/mona/article/view/36366
Monaghan, J. (2007). Computer Algebra, Instrumentation and the Anthropological Approach. The International Journal for Technology in Mathematics Education. 14(2), 63–71.
Nabb, K. (2010). CAS as a restructuring tool in mathematics education. I P. Bogacki (red.), Electronic proceedings of the 22nd international conference on technology in collegiate mathematics (pp. 247–259). http://archives.math.utk.edu/ICTCM/i/22/R007.html
Nagaoka, R., Barrow-Green, J., Bartolini Bussi, M. G., Isoda, M., van maanen, J., Dee Michalowich, K., & Van Brummelen, G. (2000). Non-standard media and other resources. I J. Fauvel, & J. v. Maanen (red.), History in Mathematics Education (pp. 329–370). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47220-1_10
Niss, M., Bruder, R., Planas, N., Turner, R., & Villa-Ochoa, J. A. (2016). Survey team on: conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM, 48, 611–632. https://doi.org/10.1007/s11858-016-0799-3
Niss, M. A. (2007). Reflections on the State of and Trends in Research on Mathematics Teaching and Learning: From Here to Utopia. I F. K. Lester, Jr. (red.), Second Handbook of Research on Mathematics Teaching and Learning (Vol 2, pp. 1293-1312). Information Age Publishing.
Niss, M., & Jensen, T. H. (red.). (2002). Kompetencer og matematiklæring - Ideer og inspiration til udvikling af matematikundervisning i Danmark. Undervisningsministeriet. Uddannelsesstyrelsens temahæfteserie nr. 18.
Miyazaki, M., Fujita, T., & Jones, K. (2017). Students’ understanding of the structure of deductive proof. Educational Studies in Mathematics, 94(2), 223–239. https://doi.org/10.1007/s10649-016-9720-9
Olivero, F. 2002. Proving within dynamic geometry environments, PhD. diss. Graduate School of Education, Bristol University.
Olsen, I., & Thomsen, M. (2017). Matematikhistorie og it i matematikundervisningen i grundskolen. [Upubliceret speciale]. Danish school of Education, Aarhus University.
Olsen, I. M., & Thomsen, M. (2018). Matematisk literacy og IT. I K. Friis, & D. Østergren-Olsen (red.), Literacydidaktik i fagene – på mellemtrinnet (pp. 71–82). Dafolo.
Papadopoulos, I. (2014): How Archimedes Helped Student to Unravel the Mystery of the Magical Number Pi. Science & Education, 23(1), 61–77. https://doi.org/10.1007/s11191-013-9643-0
Peters, R.S. (1980). Uddannelsens filosofi – Udvalgte artikler. Nyt Nordisk Forlag Arnold Busck.
Plomp, T. (2007). Educational design research: An introduction. I N. Nieveen & T. Plomp (red.), An introduction to educational design research (pp. 9–35). SLO.
Poulsen, M. & Lindhart, B. (2018). KonteXt+ – Træningshæfte/web 4. Alinea
Radford, L. (2014). History of mathematics and mathematics education. I M. N. Fried, & T. Dreyfus (red.), Mathematics & Mathematics Education: Searching for Common Ground. Advances in Mathematics Education (pp. 89 –109). Springer. https://doi.org/10.1007/978-94-007-7473-5_7
Radford, L., Furinghetti, F., & Katz, V. (2007). Introduction The topos of meaning or the encounter between past and present. Educational Studies in Mathematics, 66(2), 107–110. https://doi.org/10.1007/s10649-006-9076-7
Rabardel, P. (1995). Les hommes et les technologies: approche cognitive des instruments contemporains. Armand Colin.
Rabardel, P. & Bourmaud, G. (2003). From computer to instrument system: a developmental perspective. Interacting with Computers, 15(5), 665–691.
Rangel-Nielsen, G. (oversætter) (1906). Platons Menon. Det philologisk-historiske samfund.
Retsinformation. Børne- og Undervisningsministeriet. LBK nr 1887 af 01/10/2021. Bekendtgørelse af lov om folkeskolen. https://www.retsinformation.dk/eli/lta/2021/1887
Saussure, F. (1974). Cours de Linguistique G´en´erale. I C. Bally and A. Sechehaye (red.) with the collaboration of A. Riedlinger, Payot, Paris.
Sfard, A. (1991). On the dual nature of mathematical conceptions. Educational Studies in Mathematics, 22(1), 1–36. https://doi.org/10.1007/BF00302715
Sfard, A. (2008). Thinking as communicating. Cambridge University Press.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.2307/1175860
Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivistic perspective. Journal for Research in Mathematics Education, 26 (2), 114–145. https://doi.org.10.2307/749205
Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2017). Geometry Education, Including the Use of New Technologies: A Survey of Recent Research. I G. Kaiser (red.), Proceedings of the 13th International Congress on Mathematical Education (pp 277-287). Springer, Cham. https://doi.org/10.1007/978-3-319-62597-3_18
Siu, M.-K. (2000). The ABCD of Using History of Mathematics in the (Undergraduate) Classroom. I V. Katz (red.), Using History to Teach Mathematics – An International Perspective (pp. 3–9), No. 51 in MAA Notes. The Mathematical Association of America.
Siu, M.-K. (2006). No, I don’t use history of mathematics in my class: Why?. I F. Furinghetti, S. Kaijser, & C. Tzanakis (red.), Proceedings HPM 2004 & ESU 4 – Revised edition (pp. 268–277). University of Crete.
Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Kluwer Academic Publishers. https://doi.org/10.1007/978-94-017-3556-8
Skovsmose, O. (2006). Kritisk matematikundervisning – for fremtiden. I O. Skovsmose og M. Blomhøj (red.), Kunne det tænkes? – om matematiklæring (pp. 273–295). Malling Beck.
Skovsmose O., & Nielsen L. (1996). Critical Mathematics Education. I A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (red.), International Handbook of Mathematics Education. Kluwer International Handbooks of Education (vol 4, pp. 1257–1288). Springer. https://doi.org/10.1007/978-94-009-1465-0_36
Skovsmose, O., & Ravn, O. (2011). Matematikfilosofi. Systime Academic.
Smestad, B. (2011a). History of mathematics in Norwegian for "grunnskolen". A literature review. . I E. Barbin, M. Kronfellner and C. Tzanakis (red.), History and Epistemology in Mathematics Education – Proceedings of the 6th European Summer University. Verlag Holzhausen GmbH Vienna, Austria.
Smestad, B. (2011b). Teachers' Conceptions of History of Mathematics. I V. Katz, & C. Tzanakis Constantinos (red.), Recent Developments on Introducing a Historical Dimension in Mathematics Education (pp. 231–240). The Mathematical Association of America.
Tall, D. (2000). Technology and versatile thinking in mathematical development. I M. O. J. Thomas (red.), Proceedings of TIME 2000, an International Conference on the Technology in Mathematics Education (pp. 33–50). The University of Auckland.
Tzanakis C., & Arcavi A. (2002). Integrating history of mathematics in the classroom: An analytic survey. I J. Fauvel, & J. van Maanen (red.), History in mathematics education: An ICMI study (pp. 201 – 240). Springer. https://doi.org/10.1007/0-306-47220-1_7
Thomsen, M. (2021a). Working with Euclid’s geometry in GeoGebra. I Nortvedt, G.A., Buchholtz, N.F., Fauskanger, J., Hreinsdóttir, F., Hähkiöniemi, M., Jesse, B.E., Kurvits, J., Liljekvist, Y., Misfeldt, M., Naalsund, M., Nilsen, H.K., Pálsdóttir, G., Portaankorva-Koivisto, P., Radišić, J., and Werneberg, A. (red.), Bringing Nordic mathematics education into the future. Papers from NORMA 20. Preceedings of the Ninth Nordic Conference on Mathematics Education (pp. 257–264). SMDF.
Thomsen, M. (2021b, 18.-20. maj). Using dynamic reading to support students’ development of mathematical reasoning competency [Abstract til konference]. NOFA8 – The 8th Nordic Conference on Subject Education (abstract, 20). https://www.hvl.no/globalassets/hvl-internett/arrangement/2021/nofa-8/abstractr-book---nofa8---acceptance-type-abstract-book-14.05.pdf
Thomsen, M., & Jankvist, U. T. (2020). Reasoning with digital technologies - counteracting students’ techno-authoritarian proof Schemes. I A. Donevska-Todorova, E. Faggiano, J. Trgalova, Z. Lavicza, R. Weinhandl, A. Clark-Wilson, and H.-G. Weigand. (red.), PROCEEDINGS of the Tenth ERME TOPIC CONFERENCE (ETC 10) on Mathematics Education in the Digital Age (MEDA) 16-18 September 2020. (pp. 483-490). Johannes Kepler University.
Thomsen, M., & Jankvist, U. T. (In press). Mathematical thinking in the interplay between historical original sources and GeoGebra. I U. T. Jankvist, A. Clark-Wilson, H.-G. Weigand, R. Elicer, & M. Thomsen (red.). ICTMT-15 Book of accepted contributions: 15th International Conference on Technology in Mathematics Teaching – Making and Strengthening “Connections and Connectivity" (C&C) for Teaching Mathematics with Technology (pp. …). Danish School of Education.
Thomsen, M., & Olsen, I. M. (2019). Original sources, ICT and mathemacy. I U.T. Jankvist, M. Van den Heuvel-Panhuizen, & M. Veldhuis (red.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME11, February 6-10, 2019) (pp. 2060–2061). Freudenthal Group & Freudenthal Institute, Utrecht university and ERME.
Trouche, L. (2004). Managing the Complexity of Human/Machine Interactions in Computerized Learning Environments: Guiding Students’ Command Process through Instrumental Orchestrations. Int J Comput Math Learning, 9, 281. https://doi.org/10.1007/s10758-004-3468-5
Trouche, L. (2005). Instrumental genesis, individual and social aspects. I D. Guin, K. Ruthven, & L. Trouche (red.), The Didactical Challenge of Symbolic Calculators: Turning a Computational Device into a Mathematical Instrument (pp. 197–230). Springer. https://doi.org/10.1007/0-387-23435-7_9
Trouche, L., Drijvers, P., Gueudet, G., & Sacristán, A. I. (2013). Technology driven developments and policy implications for mathematics education. I M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (red.), Third International Handbook of Mathematics Education (pp. 753–789). Springer. https://doi.org/10.1007/978-1-4614-4684-2_24
Tzanakis C. & Arcavi A. (2000). Integrating history of mathematics in the classroom: An analytic survey. I J. Fauvel, & J. van Maanen (red.), History in mathematics education: An ICMI study. (pp. 201 – 240). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47220-1_7
Van den Akker, J. Gravemeijer, K. McKenney, S., & Nieven, N. (red.) (2006). Educational design research. Routledge.
Vérillon, P. & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology ofEducation 10(1), 77–101. https://doi.org/10.1007/BF03172796
Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
Wittmann, E. (1998). Mathematics education as a design science. I A. Sierpinska & J. Kilpatrick (red.), Mathematics education as a research domain: A search for identity (pp. 87–103). Kluwer.
Yackel, E. & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477. https://doi.org/10.5951/jresematheduc.27.4.0458
Zengin, Y. (2018): Incorporating the dynamic mathematics software GeoGebra into a history of mathematics course. International Journal of Mathematical Education in Science and Technology, 49(7), 1–16. https://doi.org/10.1080/0020739X.2018.1431850
Zopf, D. (2010). Mathematical knowledge for teaching teachers: The mathematical work of and knowledge entailed by teacher education. [Unpublished doctoral dissertation], University of Michigan, Ann Arbor.
Alineas onlineportal (gældende d. 04.01.22):
Alinea onlineportal: https://kontextplus.alinea.dk/course/QRAE-kontext-4
Hessing, S., Dalsgaard, R. S., Andersen, M. W., Poulsen, M., & Lindhart, B. Alinea onlineportal (+5): https://kontextplus.alinea.dk/course/QSSp-kontext-5
Hessing, S., Dalsgaard, R. S., Andersen, M. W., Poulsen, M., & Lindhart, B. Alinea onlineportal (+6): https://kontextplus.alinea.dk/course/QRAv-kontext-6
Poulsen, M., &Lindhart, B. Alinea onlineportal: https://kontextplus.alinea.dk/course/Q7Rg-kontext-4-traeningshaefte