Towards realization of Digital Twins for systems with coupled behavior

Authors

Santiago Gil
Aarhus University
https://orcid.org/0000-0002-1789-531X

Keywords:

Digital Twin, Robotics, Co-simulation

Synopsis

Manufacturing has undergone a number of revolutions, and automation including robotics and digital transformation are the core of these revolutions. Digital Twin (DT) is one of the enabling technologies to achieve digitalized optimizations. Although DT is a promising technology, it poses several challenges for its theory-to-practice transition and settlement. To this end, this PhD thesis addresses some of these existing challenges in four major areas with the aim of advancing this field and providing methods and insights for its easier adoption by practitioners.
To do so, this PhD thesis combines different research methods, including descriptive, exploratory, conceptual, and applied research. It explores current challenges and proposes methods that conceptualize those challenges; as a result, it brings solutions that address existing needs. To face such needs, applied research and case study research are used to ground the conceptualizations in close-to-real-life settings.
This PhD thesis focuses on four major areas. In the first area, related to tooling and considerations for realizing DTs, a systematic survey on open-source frameworks is conducted and a systematic reporting framework for DT case studies is proposed. In the second area, related to integrating simulation as a fundamental aspect of DTs, an architectural approach that bridges existing frameworks and black-box simulation is proposed. In the third area, regarding the realization of DTs for complex heterogeneous systems, a modeling approach for composed systems and an architectural approach to implement hierarchical DTs with coupled behavior are proposed. In the fourth area, regarding the application of DTs for robotics, two approaches to combine robot-specific methods with DTs are proposed.
The outcomes of this PhD project improve the ease of transfer to other case studies, especially in regards to the applicability in the robotics domain, while enhancing the reusability of existing assets/components and reducing the implementation effort. Moreover, this research can increase the adoption of DT technology, especially in Small and Medium Enterprises and individuals.

References

S. Gil, P. H. Mikkelsen, C. Gomes, and P. G. Larsen, “Survey on open-source digital twin frameworks–A case study approach”, Software: Practice and Experience, vol. 54, no. 6, pp. 929–960, 2024, ISSN: 1097024X. DOI : 10.1002/spe.3305.

D. Lehner, S. Gil, P. H. Mikkelsen, P. G. Larsen, and M. Wimmer, “An architectural extension for digital twin platforms to leverage behavioral models”, in 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), IEEE, 2023, pp. 1–8. DOI: 10.1109/CASE56687.2023.10260417.

S. Gil, P. H. Mikkelsen, D. Tola, C. Schou, and P. G. Larsen, “A Modeling Approach for Composed Digital Twins in Cooperative Systems”, in 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2023, pp. 1–8. DOI: 10.1109/ETFA54631.2023.10275601.

S. Gil, C. Schou, P. H. Mikkelsen, and P. G. Larsen, “Integrating Skills into Digital Twins in Cooperative Systems”, in 2024 IEEE/SICE 16th International Symposium on System Integration (SII), IEEE, 2024, pp. 1124–1131, ISBN: 9798350312072. DOI: 10.1109/SII58957.2024.10417610.

S. Gil, E. Kamburjan, P. Talasila, and P. G. Larsen, An architecture for coupled digital twins with semantic lifting, under review, 2023.

S. Gil, B. J. Oakes, C. Gómes, M. Frasheri, and P. G. Larsen, “Towards a systematic reporting framework for digital twins: A cooperative robotics case study”, Simulation: Transactions of the Society for Modeling and Simulation, pp. to appear, 2024, in press.

S. Gil, A. Miyazawa, A. Badyal, P. G. Larsen, and A. Cavalcanti, A model-based approach for co-simulation-driven digital twins in robotics, in progress, 2024.

H. Feng et al., “Integration Of The Mape-K Loop In Digital Twins”, in 2022 Annual Modeling and Simulation Conference (ANNSIM), IEEE, 2022. DOI: 10.23919/annsim55834.2022.9859489.

F. Naseri et al., “Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms”, Renewable and Sustainable Energy Reviews, vol. 179, p. 113 280, 2023, ISSN : 1364-0321. DOI : 10.1016/j.rser.2023.113280.

P. Talasila, C. Gomes, P. H. Mikkelsen, S. Gil Arboleda, E. Kamburjan, and P. G. Larsen, “Digital twin as a service (dtaas): A platform for digital twin developers and users”, in IEEE Smart World Congress (SWC), Portsmouth, UK: IEEE, 2023, pp. 1–8. DOI: 10.1109/SWC57546.2023.10448890.

P. Talasila, P. H. Mikkelsen, S. Gil, and P. G. Larsen, “Realising digital twins”, in The Engineering of Digital Twins, J. Fitzgerald, C. Gomes, and P. G. Larsen, Eds. Springer, 2024, pp. 225–256, in press.

B. J. Oakes et al., “Case studies in digital twins”, in The Engineering of Digital Twins, J. Fitzgerald, C. Gomes, and P. G. Larsen, Eds. Springer, 2024, pp. 257–310, in press.

L. A. C. Salazar, S. Gil, G. D. R. Carvajal, G. J. Sánchez-Zuluaga, and G. D. Zapata-Madrigal, “AI in assessing Industry 4.0 adoption in Colombia: a case study approach”, in 2024 6th IFAC International Workshop on Advanced Maintenance Engineering, Services and Technology (AMEST), accepted for publication, Elsevier, 2024, to appear.

M. Grieves, “Digital Twin: Manufacturing Excellence through Virtual Factory Replication”, 2014.

E. Ribeiro da Silva, A. Assad Neto, and C. P. Nielsen, “Digital twins: Making it feasible for smes”, in The Future of Smart Production for SMEs: A Methodological and Practical Approach Towards Digitalization in SMEs, O. Madsen, U. Berger, C. Møller, A. Heidemann Lassen, B. Vejrum Waehrens, and C. Schou, Eds. Cham: Springer International Publishing, 2023, pp. 343–348, ISBN: 978-3-031-15428-7. DOI: 10.1007/978-3-031-15428-7_30.

G. Barbieri et al., “A virtual commissioning based methodology to integrate digital twins into manufacturing systems”, Production Engineering, vol. 15, no. 3-4, pp. 397–412, 2021, ISSN: 18637353. DOI: 10.1007/s11740-021-01037-3.

M. Dalibor et al., “A Cross-Domain Systematic Mapping Study on Software Engineering for Digital Twins”, Journal of Systems and Software, vol. 193, p. 111 361, 2022, ISSN: 01641212. DOI: 10.1016/j.jss.2022.111361.

M. Schluse, M. Priggemeyer, L. Atorf, and J. Rossmann, “Experimentable Digital Twins-Streamlining Simulation-Based Systems Engineering for Industry 4.0”, IEEE TII, vol. 14, pp. 1722–1731, 2018.

R. Stark and T. Damerau, “Digital twin”, in CIRP Encyclopedia of Production Engineering, S. Chatti and T. Tolio, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 1–8, ISBN: 978-3-642-35950-7. DOI: 10.1007/978-3-642-35950-7_16870-1.

M. Heithoff, M. Konersmann, J. Michael, B. Rumpe, and F. Steinfurth, “Challenges of Integrating Model-Based Digital Twins for Vehicle Diagnosis”, in 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), IEEE, 2023, pp. 470–478, ISBN: 9798350324983. DOI: 10.1109/MODELS-C59198.2023.00082.

J. Michael, J. Pfeiffer, B. Rumpe, and A. Wortmann, “Integration Challenges for Digital Twin Systems-of-Systems”, in SESoS, ser. SESoS, IEEE/ACM, 2022, pp. 9–12. DOI: 10.1145/3528229.3529384.

B. J. Oakes et al., “Improving digital twin experience reports”, in MODELSWARD 2021 - Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development, 2021, pp. 179–190, ISBN : 9789897584879. DOI : 10.5220/0010236101790190.

E. W. Tsang, “Generalizing from research findings: The merits of case studies”, International Journal of Management Reviews, vol. 16, no. 4, pp. 369–383, 2014, ISSN: 14682370. DOI: 10.1111/ijmr.12024.

C. Schou, “Introduction to part 4”, in The Future of Smart Production for SMEs: A Methodological and Practical Approach Towards Digitalization in SMEs, O. Madsen, U. Berger, C. Møller, A. Heidemann Lassen, B. Vejrum Waehrens, and C. Schou, Eds. Springer, 2023, pp. 299–308, ISBN: 978-3-031-15428-7. DOI : 10.1007/978-3-031-15428-7_24.

P. K. R. Maddikunta et al., “Industry 5.0: A survey on enabling technologies and potential applications”, Journal of Industrial Information Integration, vol. 26, no. June 2021, p. 100 257, 2022, ISSN: 2452414X. DOI: 10.1016/j.jii.2021.100257.

A. Rasheed, O. San, and T. Kvamsdal, “Digital twin: Values, challenges and enablers from a modeling perspective”, IEEE Access, vol. 8, pp. 21 980–22 012, 2020, ISSN: 21693536. DOI: 10.1109/ACCESS.2020.2970143.

E. VanDerHorn and S. Mahadevan, “Digital Twin: Generalization, characterization and implementation”, Decision Support Systems, vol. 145, no. February, p. 113 524, 2021, ISSN: 01679236. DOI: 10.1016/j.dss.2021.113524.

R. Wieringa and M. Daneva, “Six strategies for generalizing software engineering theories”, Science of Computer Programming, vol. 101, pp. 136–152, 2015, ISSN: 01676423. DOI: 10.1016/j.scico.2014.11.013.

C. R. Kothari, Research Methodology: Methods and Techniques. NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS, 2004, vol. 2, ISBN: 978-81-224-2488-1.

R. K. Yin, Case study research: Design and methods. sage, 2018, vol. 6.

P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in software engineering”, Empirical Software Engineering, vol. 14, no. 2, pp. 131–164, 2009, ISSN: 13823256. DOI: 10.1007/s10664-008-9102-8.

G. Muller, “Systems engineering research methods”, Procedia Computer Science, vol. 16, pp. 1092–1101, 2013, ISSN: 18770509. DOI: 10.1016/j.procs.2013.01.115.

A. T. Jebb, V. Ng, and L. Tay, “A Review of Key Likert Scale Development Advances: 1995–2019”, Frontiers in Psychology, vol. 12, no. May, pp. 1–14, 2021, ISSN: 16641078. DOI: 10.3389/fpsyg.2021.637547.

D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks, “Characterising the Digital Twin: A systematic literature review”, CIRP Journal of Manufacturing Science and Technology, vol. 29, pp. 36–52, 2020, ISSN: 17555817. DOI: 10.1016/j.cirpj.2020.02.002.

E. A. Lee, “Cyber physical systems: Design challenges”, in 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), 2008, pp. 363–369. DOI: 10.1109/ISORC.2008.25.

M. Liu, S. Fang, H. Dong, and C. Xu, “Review of digital twin about concepts, technologies, and industrial applications”, Journal of Manufacturing Systems, vol. 58, no. PB, pp. 346–361, 2021, ISSN: 02786125. DOI: 10.1016/j.jmsy.2020.06.017.

C. Semeraro, M. Lezoche, H. Panetto, and M. Dassisti, “Digital twin paradigm: A systematic literature review”, Computers in Industry, vol. 130, 2021, ISSN: 01663615. DOI: 10.1016/j.compind.2021.103469.

W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital Twin in manufacturing: A categorical literature review and classification”, in IFAC, ser. IFAC, vol. 51, Elsevier, 2018, pp. 1016–1022. DOI: 10. 1016/j.ifacol.2018.08.474.

T. Ji, H. Huang, and X. Xu, “Digital Twin Technology — A bibliometric study of top research articles based on Local Citation Score”, Journal of Manufacturing Systems, vol. 64, no. April, pp. 390–408, 2022, ISSN: 02786125. DOI: 10.1016/j.jmsy.2022.06.016.

F. Tao, B. Xiao, Q. Qi, J. Cheng, and P. Ji, “Digital twin modeling”, Journal of Manufacturing Systems, vol. 64, no. July, pp. 372–389, 2022, ISSN: 02786125. DOI: 10.1016/j.jmsy.2022.06.015.

M. M. Rathore, S. A. Shah, D. Shukla, E. Bentafat, and S. Bakiras, “The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities”, IEEE Access, vol. 9, pp. 32 030–32 052, 2021, ISSN: 21693536. DOI: 10.1109/ACCESS.2021.3060863.

R. Paredis, C. Gomes, and H. Vangheluwe, “A family of digital t workflows and architectures: Exploring two cases”, in Innovative Intelligent Industrial Production and Logistics, A. Smirnov, H. Panetto, and K. Madani, Eds., Springer, 2023, pp. 93–109, ISBN: 978-3-031-37228-5.

C. K. Lo, C. H. Chen, and R. Y. Zhong, “A review of digital twin in product design and development”, Advanced Engineering Informatics, vol. 48, no. March, 2021, ISSN: 14740346. DOI: 10.1016/j.aei.2021.101297.

A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital Twin: Enabling Technologies, Challenges and Open Research”, IEEE Access, vol. 8, pp. 108 952–108 971, 2020, ISSN: 21693536. DOI: 10.1109/ACCESS.2020.2998358. arXiv: 1911.01276.

Q. Qi et al., “Enabling technologies and tools for digital twin”, Journal of Manufacturing Systems, vol. 58, no. PB, pp. 3–21, 2021, ISSN: 02786125. DOI: 10.1016/j.jmsy.2019.10.001.

F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital Twin in Industry: State-of-the-Art”, IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2405–2415, 2019, ISSN: 15513203. DOI: 10.1109/TII.2018.2873186.

D. Lehner et al., “Digital Twin Platforms: Requirements, Capabilities, and Future Prospects”, IEEE Software, vol. 39, no. 2, pp. 53–61, 2022, ISSN: 19374194. DOI: 10.1109/MS.2021.3133795.

Plattform Industrie 4.0, “Reference Architectural Model Industrie 4.0 (RAMI 4.0) - An Introduction”, ZVEI - German Electrical and Electronic Manufacturers Association, Tech. Rep., 2016. [Online]. Available: https://web.archive.org/web/20210615073607/https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.pdf?{_}{_}blob=publicationFile{&}v=7.

IEC, Asset Administration Shell for industrial applications - Part 1: Asset Administration Shell structure, IEC 63278-1:2023. Geneva, Switzerland: International Electrotechnical Commission, 2023. [Online]. Available: https://webstore.iec.ch/publication/65628.

S. B. Trickett and J. G. Trafton, “"What if...": The use of conceptual simulations in scientific reasoning”, Cognitive Science, vol. 31, no. 5, pp. 843–875, 2007, ISSN: 03640213. DOI: 10.1080/03640210701530771.

J. Fritzsch et al., “Adopting microservices and DevOps in the cyber-physical systems domain: A rapid review and case study”, Software - Practice and Experience, vol. 53, no. 3, pp. 790–810, 2023, ISSN: 1097024X. DOI: 10.1002/spe.3169. arXiv: 2210.06858.

S. Geman, D. F. Potter, and Z. Chi, “Composition systems”, Quarterly of Applied Mathematics, vol. 60, no. 4, pp. 707–736, 2002.

R. K. Keller and R. Schauer, “Design components: Towards software composition at the design level”, in Proceedings - International Conference on Software Engineering, 1998, pp. 302–311, ISBN: 0818683686. DOI : 10.1109/icse.1998.671356.

W. Jia, W. Wang, and Z. Zhang, “From simple digital twin to complex digital twin Part I: A novel modeling method for multi-scale and multi-scenario digital twin”, Advanced Engineering Informatics, vol. 53, no. July, p. 101 706, 2022, ISSN: 14740346. DOI: 10.1016/j.aei.2022.101706.

D. Preuveneers, W. Joosen, and E. Ilie-Zudor, “Robust Digital Twin Compositions for Industry 4.0 Smart Manufacturing Systems”, in Proceedings - IEEE International Enterprise Distributed Object Computing Workshop, EDOCW, vol. 2018-Octob, IEEE, 2018, pp. 69–78, ISBN: 9781538641415. DOI: 10.1109/EDOCW.2018.00021.

C. Human, A. H. Basson, and K. Kruger, “A design framework for a system of digital twins and services”, Computers in Industry, vol. 144, no. June 2022, p. 103 796, 2023, ISSN: 01663615. DOI: 10.1016/j.compind.2022.103796.

G. N. Schroeder, C. Steinmetz, R. N. Rodrigues, R. V. B. Henriques, A. Rettberg, and C. E. Pereira, “A Methodology for Digital Twin Modeling and Deployment for Industry 4.0”, in Proceedings of the IEEE, vol. 109, 2021, pp. 556–567. DOI: 10.1109/JPROC.2020.3032444.

D. Tola et al., “Towards Easy Robot System Integration: Challenges and Future Directions”, in 2022 IEEE/SICE International Symposium on System Integration, SII 2022, 2022, pp. 77–82, ISBN: 9781665445405. DOI : 10.1109/SII52469.2022.9708846.

J. Banks, Handbook of Simulation. Wiley, 1998, p. 849, ISBN: 0471 - 13403 - 1.

A. Maria, “Introduction to modeling and simulation”, in Winter Simulation Conference Proceedings, 1997, pp. 7–13. DOI: 10.1145/268437.268440.

C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, “Co-simulation: A survey”, ACM Computing Surveys, vol. 51, no. 3, 2018, ISSN: 15577341. DOI: 10.1145/3179993.

S. T. Hansen et al., “The fmi 3.0 standard interface for clocked and scheduled simulations”, Electronics, vol. 11, no. 21, 2022, ISSN: 2079-9292. DOI: 10.3390/electronics11213635. [Online]. Available: https://www.mdpi.com/2079-9292/11/21/3635.

V. Havard, B. Jeanne, M. Lacomblez, and D. Baudry, “Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations”, Production and Manufacturing Research, vol. 7, no. 1, pp. 472–489, 2019, ISSN: 21693277. DOI: 10.1080/21693277.2019.1660283.

J. Fitzgerald, P. G. Larsen, and K. Pierce, Multi-modelling and Co-simulation in the Engineering of Cyber-Physical Systems: Towards the Digital Twin. Springer International Publishing, 2019, vol. 11865 LNCS, pp. 40–55, ISBN: 9783030309855. DOI: 10.1007/978-3-030-30985-5_4.

C. Thule, K. Lausdahl, C. Gomes, G. Meisl, and P. G. Larsen, “Maestro: The INTO-CPS co-simulation framework”, Simulation Modelling Practice and Theory, vol. 92, no. August 2018, pp. 45–61, 2019, ISSN: 1569190X. DOI: 10.1016/j.simpat.2018.12.005.

C. M. Legaard, D. Tola, T. Schranz, H. D. Macedo, and P. G. Larsen, “A universal mechanism for implementing functional mock-up units”, in 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, ser. SIMULTECH, Virtual Event, 2021, pp. 121–129.

M. Frasheri, H. Ejersbo, C. Thule, and L. Esterle, “Rmqfmu: Bridging the real world with co-simulation for practitioners”, in Proceedings of the 19th International Overture Workshop, H. D. Macedo, C. Thule, and K. Pierce, Eds., Overture, Oct. 2021.

V. Devedžic, “Understanding Ontological Engineering”, Communications of the ACM, vol. 45, no. 4, pp. 136–144, 2002, ISSN: 15577317. DOI: 10.1145/505248.506002.

A. Gómez-Pérez, “Ontological engineering: A state of the art”, Expert Update: Knowledge Based Systems and Applied Artificial Intelligence, vol. 2, no. 3, pp. 33–43, 1999, ISSN: 1465-4091. [Online]. Available: http://oa.upm.es/6493/1/Ontological{_}Engineering{_}A{_}st.pdf.

H.-j. Happel and S. Seedorf, “Applications of Ontologies in Software Engineering”, in Workshop on Sematic Web Enabled Software Engineering"(SWESE) on the ISWC, Citeseer, 2006, pp. 5–9. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.5733{&}rep=rep1{&}type=pdf.

M. Sabou, “An Introduction to Semantic Web Technologies”, in Semantic Web Technologies for Intelligent Engineering Applications, 2016, pp. 53–81. DOI: 10.1007/978-3-319-41490-4_3.

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, et al., “Swrl: A semantic web rule language combining owl and ruleml”, W3C Member submission, vol. 21, no. 79, pp. 1–31, 2004.

M. J. O’Connor and A. K. Das, “Sqwrl: A query language for owl.”, in OWLED, vol. 529, 2009, pp. 1–8.

B. Siciliano and O. Khatib, Springer handbook of robotics. 2016, pp. 1–2227, ISBN: 9783319325521. DOI: 10.1007/978-3-319-32552-1.

E. Garcia, M. A. Jimenez, P. G. De Santos, and M. Armada, “The evolution of robotics research”, IEEE Robotics & Automation Magazine, vol. 14, no. 1, pp. 90–103, 2007. DOI: 10.1109/MRA.2007.339608.

K. H. Tantawi, A. Sokolov, and O. Tantawi, “Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration”, in TIMES-iCON 2019 - 2019 4th Technology Innovation Management and Engineering Science International Conference, IEEE, 2019, pp. 1–4, ISBN: 9781728137551. DOI: 10.1109/TIMES-iCON47539.2019.9024658.

X. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, “Industry 4.0 and Industry 5.0—Inception, conception and perception”, Journal of Manufacturing Systems, vol. 61, no. October, pp. 530–535, 2021, ISSN: 02786125. DOI : 10.1016/j.jmsy.2021.10.006.

C. S. Franklin, E. G. Dominguez, J. D. Fryman, and M. L. Lewandowski, “Collaborative robotics: New era of human–robot cooperation in the workplace”, Journal of Safety Research, vol. 74, pp. 153–160, 2020, ISSN : 00224375. DOI : 10.1016/j.jsr.2020.06.013.

V. Satya Durga Manohar Sahu, P. Samal, and C. Kumar Panigrahi, “Modelling, and control techniques of robotic manipulators: A review”, in Materials Today: Proceedings, vol. 56, Elsevier Ltd, 2022, pp. 2758–2766. DOI: 10.1016/j.matpr.2021.10.009.

E. Madsen, D. Tola, C. Hansen, C. Gomes, and P. G. Larsen, “AURT: A Tool for Dynamics Calibration of Robot Manipulators*”, in Proc. of SII, IEEE/SISE, 2022, pp. 190–195, ISBN: 9781665445405. DOI: 10.1109/SII52469.2022.9708769.

A. Mazumder et al., “Towards next generation digital twin in robotics: Trends, scopes, challenges, and future”, Heliyon, vol. 9, no. 2, e13359, 2023, ISSN: 24058440. DOI: 10.1016/j.heliyon.2023.e13359.

M. R. Pedersen et al., “Robot skills for manufacturing: From concept to industrial deployment”, Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 282–291, 2016, ISSN: 07365845. DOI: 10.1016/j.rcim.2015.04.002.

C. Schou, R. S. Andersen, D. Chrysostomou, S. Bøgh, and O. Madsen, “Skill-based instruction of collaborative robots in industrial settings”, Robotics and Computer-Integrated Manufacturing, vol. 53, no. June 2016, pp. 72–80, 2018, ISSN: 07365845. DOI: 10.1016/j.rcim.2018.03.008.

L. Gualtieri, E. Rauch, and R. Vidoni, “Methodology for the definition of the optimal assembly cycle and calculation of the optimized assembly cycle time in human-robot collaborative assembly”, The International Journal of Advanced Manufacturing Technology, vol. 113, no. 7, pp. 2369–2384, 2021, ISSN: 1433-3015. DOI: 10.1007/s00170-021-06653-y.

A. Bilberg and A. A. Malik, “Digital twin driven human-robot collaborative assembly”, CIRP Annals, vol. 68, no. 1, pp. 499–502, 2019, ISSN: 0007-8506. DOI: https://doi.org/10.1016/j.cirp.2019.04.011.

N. Kousi, C. Gkournelos, S. Aivaliotis, C. Giannoulis, G. Michalos, and S. Makris, “Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines”, in Procedia Manufacturing - CARV, vol. 28, Elsevier, 2019, pp. 121–126. DOI: https://doi.org/10.1016/j.promfg.2018.12.020.

P. Corke and J. Haviland, “Not your grandmother’s toolbox-the robotics toolbox reinvented for python”, in ICRA, IEEE, 2021, pp. 11 357-11 363.

A. Cavalcanti et al., “Verified simulation for robotics”, Science of Computer Programming, vol. 174, pp. 1–37, 2019, ISSN: 0167-6423. DOI: https://doi.org/10.1016/j.scico.2019.01.004. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167642318301655.

H. Feng, C. Gomes, C. Thule, K. Lausdahl, M. Sandberg, and P. G. Larsen, “The Incubator Case Study for Digital Twin Engineering”, journal=arXiv preprint arXiv:2102.10390,, pp. 1–18, 2021. arXiv: 2102.10390.

Available: http://arxiv.org/abs/2102.10390.

K. H. Steinkraus, Y. B. Hwa, J. Van Buren, M. Provvidenti, D. Hand, et al., “Studies on tempeh. an indonesian fermented soybean food.”, Food Research, vol. 25, pp. 777–788, 1960.

H. Feng, C. Gomes, C. Thule, K. Lausdahl, A. Iosifidis, and P. G. Larsen, “Introduction to digital twin engineering”, in 2021 Annual Modeling and Simulation Conference (ANNSIM), IEEE, 2021. DOI: 10.23919/annsim52504.2021.9552135.

H. Feng et al., “Integration Of The Mape-K Loop In Digital Twins”, in Annual Modeling and Simulation Conference (ANNSIM 2022), IEEE, 2022, pp. 102–113. DOI: 10.23919/annsim55834.2022.9859489.

H. Ahuett-Garza and T. Kurfess, “A brief discussion on the trends of habilitating technologies for industry 4.0 and smart manufacturing”, Manufacturing Letters, vol. 15, pp. 60–63, 2018, ISSN: 22138463. DOI: 10.1016/j.mfglet.2018.02.011.

G. S. Day and P. J. Schoemaker, “Adapting to fast-changing markets and technologies”, California Management Review, vol. 58, no. 4, pp. 59–77, 2016, ISSN: 21628564. DOI: 10.1525/cmr.2016.58.4.59.

ISO, Automation systems and integration - Digital twin framework for manufacturing, ISO 23247:2021(E). Geneva, Switzerland: International Organization for Standardization, 2021. [Online]. Available: https://www.iso.org/standard/78743.html.

A. Wortmann, Digital Twin definitions, https://awortmann.github.io/research/digital_twin_definitions/, Accessed on March 8, 2024, 2024.

D. Kundisch et al., “An update for taxonomy designers: Methodological guidance from information systems research”, Business and Information Systems Engineering, vol. 64, no. 4, pp. 421–439, 2022, ISSN: 18670202. DOI: 10.1007/s12599-021-00723-x.

F. Foldager, O. Balling, C. Gamble, P. G. Larsen, M. Boel, and O. Green, “Design Space Exploration in the Development of Agricultural Robots”, in AgEng conference, Wageningen, The Netherlands, 2018.

G. Lumer-Klabbers, J. O. Hausted, J. L. Kvistgaard, H. D. Macedo, M. Frasheri, and P. G. Larsen, “Towards a digital twin framework for autonomous robots”, in Proceedings - 2021 IEEE 45th Annual Computers, Software, and Applications Conference, COMPSAC 2021, IEEE, 2021, pp. 1254–1259, ISBN: 9781665424639. DOI : 10.1109/COMPSAC51774.2021.00174.

E. Gamma, R. Johnson, R. Helm, R. E. Johnson, and J. Vlissides, Design patterns: elements of reusable object-oriented software. Addison-Wesley, 1995.

Frontpage of the dissertation

Downloads

Published

January 10, 2025

Details about this monograph

ISBN-13 (15)

978-87-7507-569-0