Joint Dynamics and Adaptive Feedforward Control of Lightweight Industrial Robots

Forfattere

Emil Madsen
Ansat

Synopsis

The use of lightweight strain-wave transmissions in collaborative industrial robots leads to structural compliance and a complex nonlinear behavior of the robot joints. Furthermore, wear and temperature changes lead to variations in the joint dynamics behavior over time. The immediate negative consequences are related to the performance of motion and force control, safety, and lead-through programming.

This thesis introduces and investigates new methods to further increase the performance of collaborative industrial robots subject to complex nonlinear and time-varying joint dynamics behavior. Within this context, the techniques of mathematical modeling, system identification, and adaptive estimation and control are applied. The methods are experimentally validated using the collaborative industrial robots by Universal Robots.

Mathematically, the robot and joint dynamics are considered as two coupled subsystems. The robot dynamics are derived and linearly parametrized to facilitate identification of the inertial parameters. Calibrating these parameters leads to improvements in torque prediction accuracy of 16.5 %-28.5 % depending on the motion.

The joint dynamics are thoroughly analyzed and characterized. Based on a series of experiments, a comprehensive model of the robot joint is established taking into account the complex nonlinear dynamics of the strain-wave transmission, that is the nonlinear compliance, hysteresis, kinematic error, and friction. The steady-state friction is considered to depend on angular velocity, load torque, and temperature. The dynamic friction characteristics are described by an Extended Generalized Maxwell-Slip (E-GMS) model which describes in a combined framework; hysteresis characteristics that depend on angular position and Coulomb friction that depend on load torque. E-GMS model-based feedforward control improves the torque prediction accuracy by a factor 2.1 and improve the tracking error by a factor 1.5.

An E-GMS model-based adaptive feedforward controller is developed to address the issue of friction changing with wear and temperature. The adaptive control strategy leads to improvements in torque prediction of 84 % and tracking error of 20 %.

Referencer

[1] LarsWesterlund. The Extended Arm of Man—A History of the Industrial Robot. Informationsförlaget, Stockholm, 2000. ISBN 9789177364672.
[2] IFR. World Robotics 2019 Industrial Robots. Report, International Federation of Robotics, October 2019.
[3] ISO 10218-1:2011 - Robots and robotic devices – Safety requirements for industrial robots – Part 1: Robots, 2011.
[4] ISO 10218-2:2011 - Robots and robotic devices – Safety requirements for industrial robots – Part 2: Robot systems and integration, 2011.
[5] ISO 13849-1:2015 - Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design, 2015.
[6] ISO 13849-2:2015 - Safety of machinery – Safety-related parts of control systems – Part 2: Validation, 2015.
[7] Alessandro Luca, Alin Albu-Schaffer, Sami Haddadin, and Gerd Hirzinger. Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, oct 2006. doi: 10.1109/iros.2006.282053.
[8] Sami Haddadin, Alin Albu-Schaffer, Alessandro De Luca, and Gerd Hirzinger. Collision Detection and Reaction: A Contribution to Safe Physical Human-Robot Interaction. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, sep 2008. doi: 10.1109/iros.2008.4650764.
[9] Bitao Yao, Zude Zhou, LihuiWang,Wenjun Xu, and Quan Liu. Sensor-less external force detection for industrial manipulators to facilitate physical human-robot interaction. Journal of Mechanical Science and Technology, 32(10):4909–4923, oct 2018. doi: 10.1007/s12206-018-0939-5.
[10] H. Olsson, K. J. A° stro¨m, C. Canudas deWit, M. Ga¨fvert, and P. Lischinsky. Friction Models and Friction Compensation. European Journal of Control, 4(3):176–195, jan 1998. doi: 10.1016/s0947-3580(98)70113-x.
[11] B. Bona and M. Indri. Friction Compensation in Robotics: an Overview. In Proceedings of the 44th IEEE Conference on Decision and Control, pages 4360–4367, Seville, Spain, December 2005. IEEE. doi: 10.1109/cdc.2005.1582848.
[12] Andreas Stolt, Fredrik Bagge Carlson, M. Mahdi Ghazaei Ardakani, Ivan Lundberg, Anders Robertsson, and Rolf Johansson. Sensorless friction-compensated passive leadthrough programming for industrial robots. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, sep 2015. doi: 10.1109/iros.2015.7353870.
[13] Matteo Ragaglia, Andrea Maria Zanchettin, Luca Bascetta, and Paolo Rocco. Accurate sensorless lead-through programming for lightweight robots in structured environments. Robotics and Computer-Integrated Manufacturing, 39:9–21, jun 2016. doi: 10.1016/j.rcim.2015.11.002.
[14] Emil Madsen, Oluf Skov Rosenlund, David Brandt, and Xuping Zhang. Model-Based On-line Estimation of Time-Varying Nonlinear Joint Stiffness on an e-Series Universal Robots Manipulator. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, may 2019. doi: 10.1109/icra.2019.8793935.
[15] A. Jubien, M. Gautier, and A. Janot. Dynamic identification of the Kuka LWR robot using motor torques and joint torque sensors data. IFAC Proceedings Volumes, 47(3): 8391–8396, 2014. doi: 10.3182/20140824-6-za-1003.01079.
[16] Le Ma, Patrick Bazzoli, Patrick M. Sammons, Robert G. Landers, and Douglas A. Bristow. Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Robotics and Computer-Integrated Manufacturing, 50:153–167, April 2018. doi: 10.1016/j.rcim.2017.09.006.
[17] Masayoshi Iwatani and Ryo Kikuuwe. An identification procedure for rate dependency of friction in robotic joints with limited motion ranges. Mechatronics, 36: 36–44, jun 2016. doi: 10.1016/j.mechatronics.2016.04.002.
[18] A. Albu-Schäffer and G. Hirzinger. Parameter identification and passivity based joint control for a 7 DOF torque controlled light weight robot. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), pages 2852–2858, Seoul, South Korea, May 2001. IEEE. doi: 10.1109/robot.2001.933054.
[19] C. W. Kennedy and J. P. Desai. Modeling and Control of the Mitsubishi PA-10 Robot Arm Harmonic Drive System. IEEE/ASME Transactions on Mechatronics, 10(3):263–274, jun 2005. doi: 10.1109/tmech.2005.848290.
[20] Timothy D. Tuttle. Understanding and Modeling the Behavior of a Harmonic Drive Gear Transmission. Technical Report AI-TR 1365, MIT Artificial Intelligence Labratory, 1992.
[21] H. D. Taghirad and P. R. B´elanger. An Experimental Study on Modelling and Identification of Harmonic Drive Systems. In Proceedings of 35th IEEE Conference on Decision and Control, pages 4725–4730, Kobe, Japan, December 1996. IEEE. doi: 10.1109/CDC.1996.577625.
[22] A. R. Lansdown, A. L. Price, and Jorn Larsen-Basse. Materials to Resist Wear—A Guide to their Selection and Use. Journal of Tribology, 109(2):379–380, apr 1987. doi: 10.1115/1.3261375.
[23] T.W. Nye. Harmonic Drives: Determining Wear Life Based on Stiffness Considerations. In Proc. of the International Power Transmission and Gearing Conference, volume 2, pages 867–877, Chicago, USA, April 1989. American Society of Mechanical Engineers.
[24] Michael R. Johnson, Russ Gehling, and Ray Head. Failure of Harmonic Gears in a Two-Axis Gimbal for the Mars Reconnaissance Orbiter Spacecraft. In Proceedings of the 38th Aerospace Mechanisms Symposium, Langley Research Center, May 2006. URL https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060028245.pdf.
[25] J. Mobley and J. Parker. Harmonic Drive™Gear Material Selection and Life Testing. In Proceedings of the 41th Aerospace Mechanisms Symposium, Jet Propulsion Labratory, May 2012. URL http://esmats.eu/amspapers/pastpapers/pdfs/2012/mobley.pdf.
[26] Emyr W. Roberts, Paul Bridgeman, Markus Jansson, Matthias Schulke, and Adam Tvaruzka. The Performance and Life of Fluid-Lubricated Harmonic Drive Gears. In 16th European Space Mechanisms and Tribology Symposium, volume 737, Bilbao, Spain, September 2015. 16th European Space Mechanisms and Tribology Symposium. ISBN 9789292213022.
[27] Caixia Zhang, Zhiqiong Song, Zhifeng Liu, Qiang Cheng, Yongsheng Zhao, Congbin Yang, and Mengmeng Liu. Wear mechanism of flexspline materials regulated by novel amorphous/crystalline oxide form evolution at frictional interface. Tribology International, 135:335–343, jul 2019. doi: 10.1016/j.triboint.2019.03.023.
[28] Christopher J. Seeton. Viscosity–temperature correlation for liquids. Tribology Letters, 22(1):67–78, apr 2006. doi: 10.1007/s11249-006-9071-2.
[29] Liming Gao, Jianjun Yuan, Zhedong Han, Shuai Wang, and Ning Wang. A friction model with velocity, temperature and load torque effects for collaborative industrial robot joints. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3027–3032, Vancouver, BC, Canada, September 2017. IEEE. doi: 10.1109/iros.2017.8206141.
[30] Maged Iskandar and Sebastian Wolf. Dynamic friction model with thermal and load dependency: modeling, compensation, and external force estimation. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, may 2019. doi: 10.1109/icra.2019.8794406.
[31] Maksim N. Nevmerzhitskiy, Boris S. Notkin, Andrey V. Vara, and Konstantin V. Zmeu. Friction Model of Industrial Robot Joint with Temperature Correction by Example of KUKA KR10. Journal of Robotics, 2019:1–11, January 2019. doi: 10.1155/2019/6931563.
[32] Mark W. Spong. Modelling and Control of Elastic Joint Robots. Journal of Dynamic Systems, Measurement, and Control, 109(4):310–319, December 1987.
[33] Mark Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modeling and Control. John Wiley & Sons Inc, 2005. ISBN 0471649902. URL https://www.ebook.de/de/product/5124811/mark_spong_seth_hutchinson_mathukumalli_vidyasagar_robot_modeling_and_control.html.
[34] Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics, 2nd Edition. Springer-Verlag GmbH, 2016. ISBN 3319325523. URL https://www.ebook.de/de/product/27988962/springer_handbook_of_robotics.html.
[35] Christopher G. Atkeson, Chae H. An, and John M. Hollerbach. Estimation of Inertial Parameters of Manipulator Loads and Links. The International Journal of Robotics Research, 5(3):101–119, sep 1986. doi: 10.1177/027836498600500306.
[36] M. Gautier and W. Khalil. A direct determination of minimum inertial parameters of robots. In Proceedings. 1988 IEEE International Conference on Robotics and Automation, pages 1682–1687, Philadelphia, PA, USA, April 1988. IEEE Comput. Soc. Press. doi: 10.1109/robot.1988.12308.
[37] M. Gautier andW. Khalil. On the identification of the inertial parameters of robots. In Proceedings of the 27th IEEE Conference on Decision and Control. IEEE, 1988. doi: 10.1109/cdc.1988.194738.
[38] M. Gautier and W. Khalil. Direct calculation of minimum set of inertial parameters of serial robots. IEEE Transactions on Robotics and Automation, 6(3):368–373, June 1990. doi: 10.1109/70.56655.
[39] M. Gautier. Numerical calculation of the base inertial parameters of robots. In Proceedings., IEEE International Conference on Robotics and Automation, pages 1020–1025, Cincinnati, OH, USA, May 1990. IEEE Comput. Soc. Press. doi: 10.1109/robot.1990.126126.
[40] C. M. Pham and M. Gautier. Essential parameters of robots. In [1991] Proceedings of the 30th IEEE Conference on Decision and Control. IEEE, 1991. doi: 10.1109/cdc.1991.261862.
[41] Krzysztof Kozlowski. Modelling and Identification in Robotics. Springer London, 1998. doi: 10.1007/978-1-4471-0429-2.
[42] P. Poignet and M. Gautier. Comparison of weighted least squares and extended Kalman filtering methods for dynamic identification of robots. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). IEEE, 2000. doi: 10.1109/robot.2000.845296.
[43] M. Gautier and Ph. Poignet. Extended Kalman filtering and weighted least squares dynamic identification of robot. Control Engineering Practice, 9(12):1361–1372, December 2001. doi: 10.1016/s0967-0661(01)00105-8.
[44] G. Calafiore and M. Indri. Robust calibration and control of robotic manipulators. In Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334). IEEE, 2000. doi: 10.1109/acc.2000.879552.
[45] Martin M. Olsen, Jan Swevers, andWalter Verdonck. Maximum Likelihood Identification of a Dynamic Robot Model: Implementation Issues. The International Journal of Robotics Research, 21(2):89–96, feb 2002. doi: 10.1177/027836402760475379.
[46] N. Ramdani and P. Poignet. Robust Dynamic Experimental Identification of Robots With Set Membership Uncertainty. IEEE/ASME Transactions on Mechatronics, 10(2): 253–256, apr 2005. doi: 10.1109/tmech.2005.844703.
[47] A. Janot, P. O. Vandanjon, and M. Gautier. Using robust regressions and residual analysis to verify the reliability of LS estimation: Application in robotics. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, oct 2009. doi: 10.1109/iros.2009.5354469.
[48] M. Gautier, A. Janot, and P. O. Vandanjon. DIDIM: A new method for the dynamic identification of robots from only torque data. In 2008 IEEE International Conference on Robotics and Automation. IEEE, may 2008. doi: 10.1109/robot.2008.4543520.
[49] Maxime Gautier, Alexandre Janot, and Pierre-Olivier Vandanjon. A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics. IEEE Transactions on Control Systems Technology, 21(2):428–444, mar 2013. doi: 10.1109/tcst.2012.2185697.
[50] Alexandre Janot, Maxime Gautier, Anthony Jubien, and Pierre Olivier Vandanjon. Comparison Between the CLOE Method and the DIDIM Method for Robots Identification. IEEE Transactions on Control Systems Technology, 22(5):1935–1941, sep 2014. doi: 10.1109/tcst.2014.2299544.
[51] Alexandre Janot, Pierre Olivier Vandanjon, and Maxime Gautier. An instrumental variable approach for rigid industrial robots identification. Control Engineering Practice, 25:85–101, April 2014. doi: 10.1016/j.conengprac.2013.12.009.
[52] Alexandre Janot, Pierre-Olivier Vandanjon, and Maxime Gautier. A Generic Instrumental Variable Approach for Industrial Robot Identification. IEEE Transactions on Control Systems Technology, 22(1):132–145, jan 2014. doi: 10.1109/tcst.2013.2246163.
[53] B. Bona and A. Curatella. Identification of Industrial Robot Parameters for Advanced Model-Based Controllers Design. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, 2005. doi: 10.1109/robot.2005.1570355.
[54] Jan Swevers,Walter Verdonck, and Joris De Schutter. Dynamic Model Identification for Industrial Robots. IEEE Control Systems, 27(5):58–71, October 2007. doi: 10.1109/mcs.2007.904659.
[55] Nikolaos A. Bompos, Panagiotis K. Artemiadis, Apollon S. Oikonomopoulos, and Kostas J. Kyriakopoulos. Modeling, full identification and control of the mitsubishi PA-10 robot arm. In 2007 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, 2007. doi: 10.1109/aim.2007.4412421.
[56] Zafer Bingül and Oguzhan Karahan. Dynamic identification of Staubli RX-60 robot using PSO and LS methods. Expert Systems with Applications, 38(4):4136–4149, apr 2011. doi: 10.1016/j.eswa.2010.09.076.
[57] A. Janot, P. O. Vandanjon, and M. Gautier. Identification of 6 DOF Rigid Industrial Robots with the Instrumental Variable Method. IFAC Proceedings Volumes, 45(16):1659–1664, July 2012. doi: 10.3182/20120711-3-be-2027.00058.
[58] Li Ding, HongtaoWu, Yu Yao, and Yuxuan Yang. Dynamic Model Identification for 6-DOF Industrial Robots. Journal of Robotics, 2015:1–9, 2015. doi: 10.1155/2015/471478.
[59] Amirhossein H. Memar and Ehsan T. Esfahani. Modeling and Dynamic Parameter Identification of the SCHUNK Powerball Robotic Arm. In Volume 5C: 39th Mechanisms and Robotics Conference. American Society of Mechanical Engineers, aug 2015. doi:10.1115/detc2015-47703.
[60] Peter Stueckelmaier, Martin Grotjahn, and Carsten Fraeger. Identification of the Inverse Dynamics of a Serial Robot for Robot Drive Control. In 10. ETG/GMM-Symposium Innovative Small Drives and Micro-Motor Systems, Cologne, Germany, September 2015. VDE-Verlag. ISBN 9783800740727.
[61] Yvonne R. Stürz, Lukas M. Affolter, and Roy S. Smith. Parameter Identification of the KUKA LBR iiwa Robot Including Constraints on Physical Feasibility. IFACPapersOnLine, 50(1):6863–6868, jul 2017. doi: 10.1016/j.ifacol.2017.08.1208.
[62] Abdelkrim Bahloul, Sami Tliba, and Yacine Chitour. Dynamic Parameters Identification of an Industrial Robot: A Constrained Nonlinear WLS Approach. In 2018 26th Mediterranean Conference on Control and Automation (MED). IEEE, jun 2018. doi: 10.1109/med.2018.8442630.
[63] Claudio Roberto Gaz, Marco Cognetti, Alexander Antonio Oliva, Paolo Robuffo Giordano, and Alessandro De Luca. Dynamic Identification of the Franka Emika Panda Robot with Retrieval of Feasible Parameters Using Penalty-based Optimization. IEEE Robotics and Automation Letters, 4(4):4147–4154, July 2019. doi: 10.1109/lra.2019.2931248.
[64] Meryem Taghbalout, Jean Franc¸ois Antoine, and Gabriel Abba. Experimental Dynamic Identification of a YuMi Collaborative Robot. IFAC-PapersOnLine, 52(13):1168–1173, 2019. doi: 10.1016/j.ifacol.2019.11.354.
[65] Sergey A. Kolyubin, Anton S. Shiriaev, and Anthony Jubien. Refining Dynamics Identification for Co-Bots: Case Study on KUKA LWR4+. IFAC-PapersOnLine, 50(1):14626–14631, jul 2017. doi: 10.1016/j.ifacol.2017.08.1741.
[66] Zeeshan Shareef, Pouya Mohammadi, and Jochen Steil. Improving the Inverse Dynamics Model of the KUKA LWR IV+ using Independent Joint Learning. IFACPapersOnLine, 49(21):507–512, 2016. doi: 10.1016/j.ifacol.2016.10.653.
[67] Claudio Gaz and Alessandro De Luca. Payload estimation based on identified coefficients of robot dynamics — With an application to collision detection. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3033–3040, Vancouver, BC, Canada, September 2017. IEEE. doi: 10.1109/iros.2017.8206142.
[68] Stig Moberg and Sven Hanssen. On Feedback Linearization for Robust Tracking Control of Flexible Joint Robots. IFAC Proceedings Volumes, 41(2):12218–12223, July 2008. doi: 10.3182/20080706-5-kr-1001.02069.
[69] André Carvalho Bittencourt and Svante Gunnarsson. Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects. Journal of Dynamic Systems, Measurement, and Control, 134(5), July 2012. doi: 10.1115/1.4006589.
[70] Luca Simoni, Manuel Beschi, Giovanni Legnani, and Antonio Visioli. Friction modeling with temperature effects for industrial robot manipulators. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3524–3529, Hamburg, Germany, September 2015. IEEE. doi: 10.1109/iros.2015.7353869.
[71] Fredrik Bagge Carlson, Anders Robertsson, and Rolf Johansson. Modeling and Identification of Position and Temperature Dependent Friction Phenomena without Temperature Sensing. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3045–3051, Hamburg, Germany, September 2015. IEEE. doi: 10.1109/IROS.2015.7353797.
[72] Sebastian Wolf and Maged Iskandar. Extending a Dynamic Friction Model with Nonlinear Viscous and Thermal Dependency for a Motor and Harmonic Drive Gear. In 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, may 2018. doi: 10.1109/icra.2018.8460613.
[73] Sebastian Wolf, Oliver Eiberger, and Gerd Hirzinger. The DLR FSJ: Energy based design of a variable stiffness joint. In 2011 IEEE International Conference on Robotics and Automation. IEEE, may 2011. doi: 10.1109/icra.2011.5980303.
[74] V. Lampaert, F. Al-Bender, and J. Swevers. A generalized Maxwell-slip friction model appropriate for control purposes. In 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775). IEEE, 2003. doi: 10.1109/phycon.2003.1237071.
[75] F. Al-Bender, V. Lampaert, and J. Swevers. The Generalized Maxwell-Slip Model: A Novel Model for Friction Simulation and Compensation. IEEE Transactions on Automatic Control, 50(11):1883–1887, November 2005. doi: 10.1109/TAC.2005.858676.
[76] Curt Preissner, Thomas J. Royston, and Deming Shu. A High-Fidelity Harmonic Drive Model. Journal of Dynamic Systems, Measurement, and Control, 134(1):011002, January 2012. doi: 10.1115/1.4005041.
[77] T. Tjahjowidodo, F. Al-Bender, and H. Van Brussel. Theoretical Modelling and Experimental Identification of Nonlinear Torsional Behaviour in Harmonic Drives. Mechatronics, 23(5):497–504, aug 2013. doi: 10.1016/j.mechatronics.2013.04.002.
[78] C. Canudas de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky. A new model for control of systems with friction. IEEE Transactions on Automatic Control, 40(3):419–425, mar 1995. doi: 10.1109/9.376053.
[79] V. Lampaert, J. Swevers, and F. Al-Bender. Comparison of model and non-model based friction compensation techniques in the neighbourhood of pre-sliding friction. In Proceedings of the 2004 American Control Conference, pages 1121–1126, Boston, MA, USA, June 2004. IEEE. doi: 10.23919/acc.2004.1386722.
[80] W. Seyfferth, A. J. Maghzal, and J. Angeles. Nonlinear modeling and parameter identification of harmonic drive robotic transmissions. In Proceedings of 1995 IEEE International Conference on Robotics and Automation. IEEE, 1995. doi: 10.1109/robot. 1995.525714.
[81] T. D. Tuttle andW. P. Seering. A Nonlinear Model of a Harmonic Drive Gear Transmission. IEEE Transactions on Robotics and Automation, 12(3):368–374, June 1996. doi: 10.1109/70.499819.
[82] Nenad M. Kircanski and Andrew A. Goldenberg. An Experimental Study of Nonlinear Stiffness, Hysteresis, and Friction Effects in Robot Joints with Harmonic Drives and Torque Sensors. The International Journal of Robotics Research, 16(2):214–239, April 1997. doi: 10.1177/027836499701600207.
[83] R. Dhaouadi, F. H. Ghorbel, and P. S. Gandhi. A new dynamic model of hysteresis in harmonic drives. IEEE Transactions on Industrial Electronics, 50(6):1165–1171, dec 2003. doi: 10.1109/tie.2003.819661.
[84] Michael Ruderman and Torsten Bertram. Feed-forward compensation of hysteresis compliance using inverse Preisach model. IFAC Proceedings Volumes, 42(6):243–248, 2009. doi: 10.3182/20090616-3-il-2002.00042.
[85] Michael Ruderman and Torsten Bertram. Modeling and observation of hysteresis lost motion in elastic robot joints. IFAC Proceedings Volumes, 45(22):13–18, 2012. doi: 10.3182/20120905-3-hr-2030.00061.
[86] Michael Ruderman, Torsten Bertram, and Makoto Iwasaki. Modeling, observation, and control of hysteresis torsion in elastic robot joints. Mechatronics, 24(5):407–415, aug 2014. doi: 10.1016/j.mechatronics.2014.02.009.
[87] Michael Ruderman and Makoto Iwasaki. On identification and sensorless control of nonlinear torsion in elastic robotic joints. In IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2014. doi: 10.1109/iecon.2014.7048909.
[88] Michael Ruderman and Makoto Iwasaki. Sensorless Torsion Control of Elastic-Joint Robots With Hysteresis and Friction. IEEE Transactions on Industrial Electronics, 63(3):1889–1899, mar 2016. doi: 10.1109/tie.2015.2453415.
[89] Michael Ruderman. On Stability of Virtual Torsion Sensor for Control of Flexible Robotic Joints with Hysteresis. Robotica, pages 1–14, sep 2019. doi: 10.1017/s0263574719001358.
[90] P. S. Gandhi and F. Ghorbel. High-speed precision tracking with harmonic drive systems using integral manifold control design. International Journal of Control, 78(2):112–121, jan 2005. doi: 10.1080/00207170500036225.
[91] Makoto Iwasaki and Hiroyuki Nakamura. Vibration Suppression for Angular Transmission Errors in Harmonic Drive Gearings and Application to Industrial Robots. IFAC Proceedings Volumes, 47(3):6831–6836, 2014. doi: 10.3182/20140824-6-za-1003.00659.
[92] Makoto Iwasaki, Masafumi Yamamoto, Hiromu Hirai, Yoshifumi Okitsu, Kozo Sasaki, and Toshio Yajima. Modeling and compensation for angular transmission error of harmonic drive gearings in high precision positioning. In 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, jul 2009. doi: 10.1109/aim.2009.5229935.
[93] Federico Gravagno, Victor Hugo Mucino, and Ettore Pennestr`ı. Influence of wave generator profile on the pure kinematic error and centrodes of harmonic drive. Mechanism and Machine Theory, 104:100–117, oct 2016. doi: 10.1016/j.mechmachtheory.2016.05.005.
[94] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, Inc., Upper Saddle River, NJ, third edition, 2001.
[95] Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control. Pearson Education, Upper Saddle River, New Jersey, 1991. ISBN 978-0130408907. URL https://www.ebook.de/de/product/3659352/jean_jacques_slotine_applied_nonlinear_control.html.
[96] C. Canudas de Wit and P. Lischinsky. Adaptive friction compensation with partially known dynamic friction model. International Journal of Adaptive Control and Signal Processing, 11(1):65–80, December 1998.
[97] L. Le Tien, A. Albu-Sch¨affer, A. De Luca, and G. Hirzinger. Friction observer and compensation for control of robots with joint torque measurement. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3789–3795, Nice, France, September 2008. IEEE. doi: 10.1109/iros.2008.4651049.
[98] Luc Le-Tien and Alin Albu-Schaffer. Adaptive friction compensation in trajectory tracking control of DLR medical robots with elastic joints. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, oct 2012. doi: 10.1109/iros.2012.6385609.
[99] Zhaopeng Chen, Neal Y. Lii, Thomas Wimb¨ock, Shaowei Fan, and Hong Liu. Experimental Evaluation of Cartesian and Joint Impedance Control with Adaptive Friction Compensation for the Dexterous Robot Hand DLR-Hit II. International Journal of Humanoid Robotics, 08(04):649–671, dec 2011. doi: 10.1142/s0219843611002605.
[100] P. Tomei. Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Transactions on Automatic Control, 45(11):2164–2169, 2000. doi: 10.1109/9.887661.
[101] Itthisek Nilkhamhang and Akira Sano. Adaptive Compensation of a Linearly-Parameterized GMS Friction Model with Parameter Projection. In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. doi: 10.1109/cdc.2006.377695.
[102] Itthisek Nilkhamhang and Akira Sano. Model-based adaptive friction compensation for accurate position control. In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. doi: 10.1109/cdc.2008.4739109.
[103] Said Grami and Pascal Bigras. Identification of the GMS friction model based on a robust adaptive observer. International Journal of Modelling, Identification and Control, 5(4):297, 2008. doi: 10.1504/ijmic.2008.023514.
[104] R. Marine, G. L. Santosuosso, and P. Tomei. Robust adaptive observers for nonlinear systems with bounded disturbances. IEEE Transactions on Automatic Control, 45(6):967–972, jun 2001. doi: 10.1109/9.928609.
[105] S. Grami and H. Aissaoui. Filtering approaches for online identification of GMS friction model. In 2011 IEEE EUROCON - International Conference on Computer as a Tool, Lisbon, Portugal, April 2011. IEEE. doi: 10.1109/eurocon.2011.5929150.
[106] A. Amthor, S. Zschaeck, and C. Ament. High Precision Position Control Using an Adaptive Friction Compensation Approach. IEEE Transactions on Automatic Control, 55(1):274–278, jan 2010. doi: 10.1109/tac.2009.2036307.
[107] Stephan Zschack, Steffen Buchner, Arvid Amthor, and Christoph Ament. Maxwell Slip based adaptive friction compensation in high precision applications. In IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society. IEEE, oct 2012. doi: 10.1109/iecon.2012.6388877.
[108] Wen-Hong Zhu, Erick Dupuis, and Michel Doyon. Adaptive Control of Harmonic Drives. Journal of Dynamic Systems, Measurement, and Control, 129(2):182–193, August 2007. doi: 10.1115/1.2431813.
[109] David Freedman. SSH/SFTP/SCP For Matlab (v2) (https://www.mathworks.com/matlabcentral/fileexchange/35409-ssh-sftpscp-for-matlab-v2). MATLAB Central File Exchange, June 2020.
[110] John J. Craig. Introduction to Robotics: Pearson New International Edition. Pearson Education Limited, 2013.
[111] Ahmed Shabana. Dynamics of multibody systems. Cambridge University Press, New York, 2014. ISBN 9781107337213.
[112] Thomas R. Kane and David A. Levinson. Dynamics: Theory and Applications. McGraw-Hill College, 1985.
[113] Carlos Canudas de Wit, Bruno Siciliano, and Georges Bastin. Theory of Robot Control. Springer London, 1996. ISBN 978-1-4471-1501-4. doi: 10.1007/978-1-4471-1501-4. URL https://www.ebook.de/de/product/25251233/theory_of_robot_control.html.
[114] Anton Niglis and Per O¨ berg. Modelling High-Fidelity Robot Dynamics. Master’s thesis, Linköping University, Automatic Control, 2015.
[115] C.Walton Musser. Strain wave gearing, September 1959.
[116] Harmonic Drive AG. Engineering Data – HFUS-2UH/2SO/2SH, December 2018.
[117] Zhiguo Shi, Yuankai Li, and Guangjun Liu. Adaptive torque estimation of robot joint with harmonic drive transmission. Mechanical Systems and Signal Processing, 96:1–15, November 2017. doi: 10.1016/j.ymssp.2017.03.041.
[118] P. S. Gandhi and F. H. Ghorbel. Control of hysteresis and kinematic error nonlinearities in harmonic drives for high speed precision control applications. In Proceedings of the 2004 American Control Conference, pages 1141–1146, Boston, MA, USA, June 2004. IEEE.
[119] Giorgio Bertotti. Hysteresis in Magnetism. Elsevier, 1998. doi: 10.1016/b978-0-12-093270-2.x5048-x.
[120] Christiano C. Casanova, Edson R. De Pieri, Ubirajara F. Moreno, and Eugenio B. Castelan. Friction Compensation in Flexible Joints Robot with GMS Model: Identification, Control and Experimental Results. IFAC Proceedings Volumes, 41(2):11793–11798, July 2008. doi: 10.3182/20080706-5-KR-1001.01997.
[121] M. Ruderman, F. Hoffmann, and T. Bertram. Modeling and Identification of Elastic Robot Joints With Hysteresis and Backlash. IEEE Transactions on Industrial Electronics, 56(10):3840–3847, October 2009. doi: 10.1109/tie.2009.2015752.
[122] Emil Madsen, Oluf Skov Rosenlund, David Brandt, and Xuping Zhang. Comprehensive Modeling and Identification of Nonlinear Joint Dynamics for Collaborative Industrial Robot Manipulators. Control Engineering Practice, 101:104462, April 2020. doi: 10.1016/j.conengprac.2020.104462.
[123] Fathi H. Ghorbel, Prasanna S. Gandhi, and Friedhelm Alpeter. On the Kinematic Error in Harmonic Drive Gears. Journal of Mechanical Design, 123(1):90–97, October 1998. doi: 10.1115/1.1334379.
[124] Chuang Zou, Tao Tao, Gedong Jiang, Pengfei Zeng, and Hongyang Du. Measurement and modeling of kinematic error and clearance in harmonic drives. In Proceedings of the 2015 Joint International Mechanical, Electronic and Information Technology Conference, pages 102–109, Chongqing, China, 2015. Atlantis Press. doi: 10.2991/jimet-15.2015.20.
[125] Chuang Zou, Tao Tao, Gedong Jiang, Xuesong Mei, and JunhuiWu. A harmonic drive model considering geometry and internal interaction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(4):728–743, aug 2016. doi: 10.1177/0954406215621097.
[126] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control, 45(4):675–686, apr 2000. doi: 10.1109/9.847103.
[127] V. Lampaert, J. Swevers, and F. Al-Bender. Modification of the Leuven integrated friction model structure. IEEE Transactions on Automatic Control, 47(4):683–687, April 2002. doi: 10.1109/9.995050.
[128] Max Boegli, Tinne De Laet, Joris De Schutter, and Jan Swevers. A Smoothed GMS Friction Model Suited for Gradient-Based Friction State and Parameter Estimation. IEEE/ASME Transactions on Mechatronics, 19(5):1593–1602, October 2014. doi: 10.1109/tmech.2013.2288944.
[129] Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven Pekarek. Analysis of Electric Machinery and Drive Systems. John Wiley & Sons, 2013. ISBN 978-1118024294. URL https://www.ebook.de/de/product/19579645/krause_steven_pekarek_sudhoff_analysis_electric_machinery_3e.html.
[130] Andrzej Ruszczynski. Nonlinear Optimization. Princeton University Press, 2006. ISBN 0691119155. URL https://www.ebook.de/de/product/5256800/andrzej_ruszczynski_nonlinear_optimization.html.
[131] Karl Johan A° stro¨m and Bjo¨ rn Wittenmark. Adaptive Control (2nd Edition). Prentice Hall, 1994. ISBN 0201558661.
[132] Rolf Johansson. System modeling and identification. Prentice Hall, Englewood Cliffs, NJ, 1993. ISBN 9780134823089.
[133] T. R. Fortescue, L. S. Kershenbaum, and B. E. Ydstie. Implementation of self-tuning regulators with variable forgetting factors. Automatica, 17(6):831–835, nov 1981. doi: 10.1016/0005-1098(81)90070-4.
[134] N. Rao Sripada and D. Grant Fisher. Improved least squares identification. International Journal of Control, 46(6):1889–1913, dec 1987. doi: 10.1080/00207178708934023.
[135] Mario Salgado, Graham Goodwin, and Richard Middleton. Modified least squares algorithm incorporating exponential resetting and forgetting. International Journal of Control, 47(2):477–491, feb 1988. doi: 10.1080/00207178808906026.
[136] R. Kulhavý and M. B. Zarrop. On a general concept of forgetting. International Journal of Control, 58(4):905–924, oct 1993. doi: 10.1080/00207179308923034.
[137] T. Hägglund. Recursive Estimation of Slowly Time-Varying Parameters. IFAC Proceedings Volumes, 18(5):1137–1142, jul 1985. doi: 10.1016/s1474-6670(17)60715-8.
[138] R. Kulhavý. Restricted Exponential Forgetting in Real-Time Identification. IFAC Proceedings Volumes, 18(5):1143–1148, jul 1985. doi: 10.1016/s1474-6670(17)60716-x.
[139] S. Bittanti, P. Bolzern, and M. Campi. Recursive least-squares identification algorithms with incomplete excitation: convergence analysis and application to adaptive control. IEEE Transactions on Automatic Control, 35(12):1371–1373, 1990. doi: 10.1109/9.61020.
[140] S. Bittanti, P. Bolzern, and M. Campi. Convergence and Exponential Convergence of Identification Algorithms with Directional Forgetting Factor. Automatica, 26(5):929–932, September 1990. doi: 10.1016/0005-1098(90)90012-7.
[141] P. Rouchon, M. Fliess, J. Levine, and P. Martin. Flatness, motion planning and trailer systems. In Proceedings of 32nd IEEE Conference on Decision and Control. IEEE, 1993. doi: 10.1109/cdc.1993.325686.
[142] Michiel J. Van Nieuwstadt and Richard M. Murray. Real-time trajectory generation for differentially flat systems. International Journal of Robust and Nonlinear Control, 8(11):995–1020, sep 1998. doi: 10.1002/(sici)1099-1239(199809)8:11h995::aid-rnc373i3.0.co;2-w.
[143] A. De Luca and P. Lucibello. A general algorithm for dynamic feedback linearization of robots with elastic joints. In Proceedings of the IEEE International Conference on Robotics & Automation, pages 504–510, Leuven, Belgium, May 1998. IEEE. doi: 10.1109/robot.1998.677024.
[144] Gabriele Buondonno and Alessandro De Luca. A recursive Newton-Euler algorithm for robots with elastic joints and its application to control. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, sep 2015. doi:10.1109/iros.2015.7354160.
[145] A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimb¨ock, and G. Hirzinger. The DLR lightweight robot: design and control concepts for robots in human environments. Industrial Robot: An International Journal, 34(5):376–385, August 2007. doi:10.1108/01439910710774386.
[146] M. Hashimoto. Robot motion control based on joint torque sensing. In International Conference on Robotics and Automation, pages 256–261, Scottsdale, AZ, USA, May 1989. IEEE Comput. Soc. Press. doi: 10.1109/robot.1989.99998.
[147] F. Aghili, M. Buehler, and J. M. Hollerbach. Motion control systems with H-infinity positive joint torque feedback. IEEE Transactions on Control Systems Technology, 9(5):685–695, September 2001. doi: 10.1109/87.944464.
[148] D. Vischer and O. Khatib. Design and development of high-performance torque controlled joints. IEEE Transactions on Robotics and Automation, 11(4):537–544, 1995. doi: 10.1109/70.406938.
[149] D. Tsetserukou, R. Tadakuma, H. Kajimoto, and S. Tachi. Optical torque sensors for implementation of local impedance control of the arm of humanoid robot. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. pages 1674–1679, Orlando, FL, USA, May 2006. IEEE. doi: 10.1109/robot.2006.1641947.
[150] M. Hashimoto, Y. Kiyosawa, and R. P. Paul. A torque sensing technique for robots with harmonic drives. IEEE Transactions on Robotics and Automation, 9(1):108–116, February 1993. doi: 10.1109/70.210802.
[151] H. D. Taghirad and P. R. B´elanger. Torque ripple and misalignment torque compensation for the built-in torque sensor of harmonic drive systems. IEEE Transactions on Instrumentation and Measurement, 47(1):309–315, 1998. doi: 10.1109/19.728840.
[152] I. Godler, M. Horiuchi, M. Hashimoto, and T. Ninomiya. Accuracy improvement of built-in torque sensing for Harmonic Drives. IEEE/ASME Transactions on Mechatronics, 5(4):360–366, December 2000. doi: 10.1109/3516.891047.
[153] J. W. Sensinger and R. F. ff. Weir. Improved torque fidelity in harmonic drive sensors through the union of two existing strategies. IEEE/ASME Transactions on Mechatronics, 11(4):457–461, aug 2006. doi: 10.1109/tmech.2006.878540.
[154] Tomohiro Kawakami, Ko Ayusawa, Hiroshi Kaminaga, and Yoshihiko Nakamura. High-fidelity joint drive system by torque feedback control using high precision linear encoder. In 2010 IEEE International Conference on Robotics and Automation, pages 3904–3909, Anchorage, AK, USA, May 2010. IEEE. doi: 10.1109/robot.2010.5509625.
[155] Hongwei Zhang, Saleh Ahmad, and Guangjun Liu. Torque Estimation Technique of Robotic Joint with Harmonic Drive Transmission. In 2013 IEEE International Conference on Robotics and Automation, pages 3034–3039, Karlsruhe, Germany, May 2013. IEEE. doi: 10.1109/icra.2013.6630998.
[156] Hongwei Zhang, Saleh Ahmad, and Guangjun Liu. Torque Estimation for Robotic Joint With Harmonic Drive Transmission Based on Position Measurements. IEEE Transactions on Robotics, 31(2):322–330, apr 2015. doi: 10.1109/tro.2015.2402511.
[157] A. C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, and T. Brog°ardh. An Extended Friction Model to Capture Load and Temperature Effects in Robot Joints. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 6161–6167, Taipei, Taiwan, October 2010. IEEE. doi: 10.1109/IROS.2010.5650358.
[158] André Carvalho Bittencourt and Patrik Axelsson. Modeling and Experiment Design for Identification of Wear in a Robot Joint Under Load and Temperature Uncertainties Based on Friction Data. IEEE/ASME Transactions on Mechatronics, 19(5):1694–1706, October 2014. doi: 10.1109/tmech.2013.2293001.
[159] Claire Dumas, St´ephane Caro, S´ebastien Garnier, and Benoˆıt Furet. Joint stiffness identification of six-revolute industrial serial robots. Robotics and Computer-Integrated Manufacturing, 27(4):881–888, aug 2011. doi: 10.1016/j.rcim.2011.02.003.
[160] A. Jubien, G. Abba, and M. Gautier. Joint Stiffness Identification of a Heavy Kuka Robot with a Low-cost Clamped End-effector Procedure. In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS- Science and and Technology Publications, 2014. doi: 10.5220/0005115805850591.
[161] M. T. Pham, M. Gautier, and P. Poignet. Identification of joint stiffness with bandpass filtering. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164). IEEE, 2001. doi: 10.1109/robot.2001.933056.
[162] Måns Östring, Svante Gunnarsson, and Mikael Norrlöf. Closed-loop identification of an industrial robot containing flexibilities. Control Engineering Practice, 11(3):291–300, mar 2003. doi: 10.1016/s0967-0661(02)00114-4.
[163] M. Gautier, A. Jubien, A. Janot, and P. Ph. Robet. Dynamic identification of flexible joint manipulators with an efficient closed loop output error method based on motor torque output data. In 2013 IEEE International Conference on Robotics and Automation. IEEE, may 2013. doi: 10.1109/icra.2013.6630986.
[164] R. Dhaouadi and F. H. Ghorbel. Modelling and Analysis of Nonlinear Stiffness, Hysteresis and Friction in Harmonic Drive Gears. International Journal of Modelling and Simulation, 28(3):329–336, jan 2008. doi: 10.1080/02286203.2008.11442485.
[165] Xiaoli Shi, Yong Han, Jianhua Wu, and Zhenhua Xiong. An FFT-based Method for Analysis, Modeling and Identification of Kinematic Error in Harmonic Drives. In Intelligent Robotics and Applications, pages 191–202. Springer International Publishing, 2019. doi: 10.1007/978-3-030-27541-9 17.
[166] Patrick M. Sammons, Le Ma, Kyle Embry, Levi H. Armstrong, Douglas A. Bristow, and Robert G. Landers. Modeling and Compensation of Backlash and Harmonic Drive-Induced Errors in Robotic Manipulators. In Volume 2: Processing. American Society of Mechanical Engineers, June 2014. doi: 10.1115/msec2014-4123.
[167] Huimin Dong, Tianhang Chen, Delun Wang, and Bo Dong. Kinematic Model of Harmonic Drive in Robot Joints with Input Eccentricity Error. In Vigen Arakelian and Philippe Wenger, editors, ROMANSY 22 – Robot Design, Dynamics and Control, pages 134–140, Cham, 2019. Springer International Publishing. ISBN 978-3-319-78963-7.
[168] E. Madsen, S. A. Timm, N. A. Ujfalusi, O. S. Rosenlund, D. Brandt, and X. Zhang. Dynamics Parametrization and Calibration of Flexible-Joint Collaborative Industrial Robot Manipulators. Mathematical Problems in Engineering, 2020:1–13, sep 2020. doi: 10.1155/2020/8709870.
[169] E. Madsen, O. S. Rosenlund, D. Brandt, and X. Zhang. Adaptive Feedforward Control for a Collaborative Industrial Robot Manipulator Using a Novel Extension of the Generalized Maxwell-Slip Friction Model. Mechanism and Machine Theory, 2020.
[170] P. Hamon, M. Gautier, and P. Garrec. Dynamic Identification of Robots with a Dry Friction Model Depending on Load and Velocity. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 6187–6193, Taipei, Taiwan, October 2010. IEEE. doi: 10.1109/IROS.2010.5649189.
[171] André Carvalho Bittencourt, Patrik Axelsson, Ylva Jung, and Torgny Brogårdh. Modeling and Identification of Wear in a Robot Joint under Temperature Uncertainties. IFAC Proceedings Volumes, 44(1):10293–10299, jan 2011. doi: 10.3182/20110828-6-it-1002.01078.
[172] Benjamin Navarro, Andrea Cherubini, Aicha Fonte, Robin Passama, Gerard Poisson, and Philippe Fraisse. An ISO10218-compliant adaptive damping controller for safe physical human-robot interaction. In 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, may 2016. doi: 10.1109/icra.2016.7487468.

Downloads

Publiceret

29 september 2020

Detaljer om denne monografi

ISBN-13 (15)

978-87-7507-485-3