Environmental Life Cycle Assessment and Food Systems: The Case Study of Agroforestry

Forfattere

Mónica Quevedo-Cascante
Aarhus University
https://orcid.org/0000-0003-4316-2096

Nøgleord:

Value-chain, carbon sequestration, multifunctionality

Synopsis

In this PhD thesis, the potential environmental and net climate impacts of food from agroforestry systems (AFS) are explored using an attributional Life Cycle Assessment (LCA) framework and a pragmatic mixed-method case study approach. The methodological complexities are addressed by systematically reviewing the literature and testing diverse modeling approaches for handling multifunctionality and estimating the carbon sequestration potential at farm gate. Overall, this thesis provides insights into how the LCA framework captures environmental interactions in AFS from a supply-side and product-level perspective, contributing to a more comprehensive understanding of agroforestry’s environmental role in the global food system.

Referencer

Abín, R. et al. (2018) ‘Environmental assesment of intensive egg production: A Spanish case study’, Journal of Cleaner Production, 179, pp. 160–168. Available at: https://doi.org/10.1016/j.jclepro.2018.01.067.

Ahmed, J. et al. (2020) Agriculture and climate change: reducing emissions through improved farming practices, Agriculture and climate change.

Alaphilippe, A. et al. (2013) ‘Life cycle analysis reveals higher agroecological benefits of organic and low-input apple production’, Agronomy for Sustainable Development, 33(3), pp. 581–592. Available at: https://doi.org/10.1007/s13593-012-0124-7.

Alaphilippe, A. et al. (2016) ‘Environmental impact of intensive versus semi-extensive apple orchards: use of a specific methodological framework for Life Cycle Assessments (LCA) in perennial crops’, Journal of Cleaner Production, 127, pp. 555–561. Available at: https://doi.org/10.1016/j.jclepro.2016.04.031.

Alemu, B. (2014) ‘The Role of Forest and Soil Carbon Sequestrations on Climate Change Mitigation’, Res. J. Agric. Environ. Manage, 3(10), pp. 492–505. Available at: http://www.iiste.org/Journals/index.php/JEES/article/view/14233 (Accessed: 19 January 2023).

Anderson, L.S. and Sinclair, F.L. (1993) ‘Ecological interactions in agroforestry systems’, Agroforestry Abstracts, pp. 57–91. Available at: http://r4d.dfid.gov.uk/Output/11654/Default.aspx.

Arosa, M.L. et al. (2017) ‘Long-term sustainability of cork oak agro-forests in the Iberian Peninsula : A model-based approach aimed at supporting the best management options for the montado conservation’, Ecological Modelling, 343, pp. 68–79. Available at: https://doi.org/10.1016/j.ecolmodel.2016.10.008.

Arvanitoyannis, I.S. (2008) ‘ISO 14040: Life Cycle Assessment (LCA)-Principles and Guidelines The concept of LCA’. Available at: http://www.tc207.org/articles/ (Accessed: 21 October 2021).

Atangana, A. et al. (2014a) ‘Definitions and Classification of Agroforestry Systems’, Tropical Agroforestry, pp. 35–47. Available at: https://doi.org/10.1007/978-94-007-7723-1_3.

Atangana, A. et al. (2014b) ‘Ecological Interactions and Productivity in Agroforestry Systems’, Tropical Agroforestry, pp. 151–172. Available at: https://doi.org/10.1007/978-94-007-7723-1_7.

Bar-On, Y.M., Phillips, R. and Milo, R. (2018) ‘The biomass distribution on Earth’, Proceedings of the National Academy of Sciences of the United States of America, 115(25), pp. 6506–6511. Available at: https://doi.org/10.1073/pnas.1711842115.

Baumann, H. and Tillman, A.-M. (2004) The Hitch Hiker’s Guide to LCA: an orientation in life cycle assessment methodology and application. Lund: Studentlitteratur.

Berger, M. and Finkbeiner, M. (2010) ‘Water footprinting: How to address water use in life cycle assessment?’, Sustainability, 2(4), pp. 919–944. Available at: https://doi.org/10.3390/su2040919.

Bestman, M. (2017) ‘Lessons learnt - Agroforestry for organic and free-range egg production in the Netherlands’, AGFORWARD Report Work-package 5: Agroforestry for Livestock Farmers, pp. 1–15. Available at: www.agforward.eu (Accessed: 27 February 2024).

Bettles, J. et al. (2021) ‘Agroforestry and non-state actors: A review’, Forest Policy and Economics, 130, p. 102538. Available at: https://doi.org/10.1016/j.forpol.2021.102538.

Bianchi, F.R. et al. (2021) ‘Environmental analysis along the supply chain of dark, milk and white chocolate: a life cycle comparison’, International Journal of Life Cycle Assessment, 26(4), pp. 807–821. Available at: https://doi.org/10.1007/s11367-020-01817-6.

Boldrin, A. et al. (2009) ‘Composting and compost utilization: Accounting of greenhouse gases and global warming contributions’, Waste Management and Research, 27(8), pp. 800–812. Available at: https://doi.org/10.1177/0734242X09345275.

Borges, W.L.B. et al. (2020) ‘Soybean and maize in agrosilvipastoral system after thinning of eucalyptus at seven years of implantation’, International Journal of Advanced Engineering Research and Science, 7(6), pp. 73–80. Available at: https://doi.org/10.22161/ijaers.76.9.

Bosshardt, S. et al. (2022) ‘Changing perspectives on chicken-pastured orchards for action: A review based on a heuristic model’, Agricultural Systems, 196, p. 103335. Available at: https://doi.org/10.1016/j.agsy.2021.103335.

Brandão, M. et al. (2013) ‘Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting’, International Journal of Life Cycle Assessment, 18(1), pp. 230–240. Available at: https://doi.org/10.1007/s11367-012-0451-6.

Brentrup, F. et al. (2000) ‘Methods to Estimate On-Field Nitrogen Emissions from Crop Production as an Input to LCA Studies in the Agricultural Sector’, 5(6), pp. 349–357. Available at: https://doi.org/https://doi.org/10.1007/BF02978670.

Bretas, I.L. et al. (2020) ‘Nitrous oxide, methane, and ammonia emissions from cattle excreta on Brachiaria decumbens growing in monoculture or silvopasture with Acacia mangium and Eucalyptus grandis’, Agriculture, Ecosystems and Environment, 295(February), p. 106896. Available at: https://doi.org/10.1016/j.agee.2020.106896.

Brinken, J., Trojahn, S. and Behrendt, F. (2022) ‘Sufficiency, Consistency, and Efficiency as a Base for Systemizing Sustainability Measures in Food Supply Chains’, Sustainability (Switzerland), 14(11), p. 6742. Available at: https://doi.org/10.3390/su14116742.

Brook, R. et al. (2022) ‘Silvopastoral systems for offsetting livestock emissions in the tropics: a case study of a dairy farm in Costa Rica’, Agronomy for Sustainable Development, 42(5). Available at: https://doi.org/10.1007/s13593-022-00834-z.

Burgess, P.J. and Rosati, A. (2018) ‘Advances in European agroforestry: results from the AGFORWARD project’, Agroforestry Systems, 92(4), pp. 801–810. Available at: https://doi.org/10.1007/s10457-018-0261-3.

Cardinael, R. et al. (2018) ‘High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system - Combining experimental and modeling approaches’, Biogeosciences, 15(1), pp. 297–317. Available at: https://doi.org/10.5194/bg-15-297-2018.

Ciroth, A., Recanati, F. and Arvidsson, R. (2021) ‘Principles of Life Cycle Inventory Modeling: The Basic Model, Extensions, and Conventions’, pp. 15–51. Available at: https://doi.org/10.1007/978-3-030-62270-1_2.

Clift, R. and Brandao, M. (2008) Carbon storage and timing of emissions, Centre for Environmental Strategy Working. Available at: www.surrey.ac.uk/ces (Accessed: 17 June 2024).

Clune, S., Crossin, E. and Verghese, K. (2017) ‘Systematic review of greenhouse gas emissions for different fresh food categories’, Journal of Cleaner Production, 140, pp. 766–783. Available at: https://doi.org/10.1016/J.JCLEPRO.2016.04.082.

Concostrina-Zubiri, L. et al. (2017) ‘Grazing or Not Grazing: Implications for Ecosystem Services Provided by Biocrusts in Mediterranean Cork Oak Woodlands’, Land Degradation and Development, 28(4), pp. 1345–1353. Available at: https://doi.org/10.1002/LDR.2573.

Costantini, M. et al. (2020) ‘Investigating on the environmental sustainability of animal products: The case of organic eggs’, Journal of Cleaner Production, 274, p. 123046. Available at: https://doi.org/10.1016/j.jclepro.2020.123046.

Creswell, J.W. (2009) Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 3rd edn. Los Angeles: SAGE Publications Ltd.

Dekker, S.E.M. et al. (2011) ‘Ecological and economic evaluation of Dutch egg production systems’, Livestock Science, 139(1–2), pp. 109–121. Available at: https://doi.org/10.1016/j.livsci.2011.03.011.

Dixon, R.K. (1995) ‘Agroforestry systems: sources of sinks of greenhouse gases?’, Agroforestry Systems, 31(2), pp. 99–116. Available at: https://doi.org/10.1007/BF00711719.

Dodds, B., In, S. and Science, A. (2019) Agroforestry for sustainable agriculture, Agroforestry for sustainable agriculture. Available at: https://doi.org/10.1201/9780429275500.

Eldesouky, A. et al. (2018) ‘Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems’, Journal of Cleaner Production, 200, pp. 28–38. Available at: https://doi.org/10.1016/j.jclepro.2018.07.279.

Estrada-González, I.E. et al. (2020) ‘Decreasing the environmental impact in an egg-producing farm through the application of LCA and lean tools’, Applied Sciences (Switzerland), 10(4). Available at: https://doi.org/10.3390/app10041352.

European Commission, Joint Research Centre and Institute for Environment and Sustainability (2010) International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. EUR 24708. Luxembourg: Luxembourg. Publications Office of the European Union. Available at: https://doi.org/10.2788/38479.

Eusufzai, M.K. et al. (2013) ‘Mass Loss and C and N Release from Decomposing Fresh and Composted Residues as Affected by Cold Climate Conditions’, Environment and Natural Resources Research, 3(2). Available at: https://doi.org/10.5539/enrr.v3n2p116.

Fagerholm, N. et al. (2016) ‘A systematic map of ecosystem services assessments around European agroforestry’, Ecological Indicators, 62, pp. 47–65. Available at: https://doi.org/10.1016/j.ecolind.2015.11.016.

FAO (2009) How to Feed the World in 2050. Available at: http://www.fao.org/wsfs/forum2050/wsfs-forum/en/ (Accessed: 3 November 2024).

FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London: FAO. Available at: https://doi.org/10.4060/cb7654en.

FAO (2017a) Developing sustainable food systems and value chains for CSA, Climate Smart Agriculture Sourcebook. Available at: https://www.fao.org/climate-smart-agriculture-sourcebook/production-resources/module-b10-value-chains/b10-overview/en/?type=111 (Accessed: 18 January 2023).

FAO (2017b) The Future of Food and Agriculture – Trends and challenges. Rome. Available at: https://www.fao.org/3/i6583e/i6583e.pdf (Accessed: 13 October 2021).

FAO (2020) Environmental performance of feed additives in livestock supply chains. Guidelines for assessment, Environmental performance of feed additives in livestock supply chains. Guidelines for assessment. Rome: Livestock Environmental Assessment and Performance Partnership (FAO LEAP). Available at: https://doi.org/10.4060/ca9744en.

Feliciano, D. et al. (2018) ‘Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions?’, Agriculture, Ecosystems and Environment, 254(November 2017), pp. 117–129. Available at: https://doi.org/10.1016/j.agee.2017.11.032.

García de Jalón, S. et al. (2018) ‘How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders’, Agroforestry Systems, 92(4), pp. 829–848. Available at: https://doi.org/10.1007/s10457-017-0116-3.

Garnett, T. (2014) ‘Three perspectives on sustainable food security: Efficiency, demand restraint, food system transformation. What role for life cycle assessment?’, Journal of Cleaner Production, 73, pp. 10–18. Available at: https://doi.org/10.1016/j.jclepro.2013.07.045.

Gerbens-Leenes, W., Berger, M. and Allan, J.A. (2021) ‘Water footprint and life cycle assessment: The complementary strengths of analyzing global freshwater appropriation and resulting local impacts’, Water (Switzerland), 13(6), p. 803. Available at: https://doi.org/10.3390/w13060803.

Gerten, D. and Kummu, M. (2021) ‘Feeding the world in a narrowing safe operating space’, One Earth, 4(9), pp. 1193–1196. Available at: https://doi.org/10.1016/J.ONEEAR.2021.08.020.

Ghasempour, A. and Ahmadi, E. (2016) ‘Assessment of environment impacts of egg production chain using life cycle assessment’, Journal of Environmental Management, 183, pp. 980–987. Available at: https://doi.org/10.1016/j.jenvman.2016.09.054.

Gislason, S., Birkved, M. and Maresca, A. (2023) ‘A systematic literature review of Life Cycle Assessments on primary pig production: Impacts, comparisons, and mitigation areas’, Sustainable Production and Consumption, 42, pp. 44–62. Available at: https://doi.org/10.1016/j.spc.2023.09.005.

Gliessman, S.R. (2014) Agroecology. CRC Press. Available at: https://doi.org/10.1201/b17881.

Goglio, P. et al. (2015) ‘Accounting for soil carbon changes in agricultural life cycle assessment (LCA): A review’, Journal of Cleaner Production, 104, pp. 23–39. Available at: https://doi.org/10.1016/j.jclepro.2015.05.040.

Goossens, Y. et al. (2017) ‘Life cycle assessment (LCA) for apple orchard production systems including low and high productive years in conventional, integrated and organic farms’, Agricultural Systems, 153, pp. 81–93. Available at: https://doi.org/10.1016/j.agsy.2017.01.007.

Guillaume, A., Hubatová-Vacková, A. and Kočí, V. (2022) ‘Environmental Impacts of Egg Production from a Life Cycle Perspective’, Agriculture (Switzerland), 12(3), p. 355. Available at: https://doi.org/10.3390/agriculture12030355.

van Hal, O. et al. (2019) ‘Accounting for feed-food competition in environmental impact assessment: Towards a resource efficient food-system’, Journal of Cleaner Production, 240, p. 118241. Available at: https://doi.org/10.1016/j.jclepro.2019.118241.

Hauschild, M.Z. (2015) ‘Better - but is it good enough? On the need to consider both eco-efficiency and eco-effectiveness to gauge industrial sustainability’, Procedia CIRP, 29, pp. 1–7. Available at: https://doi.org/10.1016/j.procir.2015.02.126.

Hauschild, M.Z., Rosenbaum, R.K. and Olsen, S.I. (2017) ‘Life Cycle Assessment: Theory and Practice’, in Life Cycle Assessment: Theory and Practice, pp. 1–1216. Available at: https://doi.org/10.1007/978-3-319-56475-3.

Hauschild, M.Z., Rosenbaum, R.K. and Olsen, S.I. (2018) Life Cycle Assessment Theory and Practice. Edited by M.Z. Hauschild, R.K. Rosenbaum, and S.I. Olsen. Cham: Springer International Publishing. Available at: https://doi.org/10.1007/978-3-319-56475-3.

Heijungs, R. (1995) ‘Harmonization of methods for impact assessment’, Environmental Science and Pollution Research, 2(4), pp. 217–224. Available at: https://doi.org/10.1007/BF02986769.

Hennink, M., Hutter, I. and Bailey, A. (2020) Qualitative Research Methods. SAGE Publications Ltd.

den Herder, M. et al. (2017) ‘Current extent and stratification of agroforestry in the European Union’, Agriculture, Ecosystems and Environment, 241, pp. 121–132. Available at: https://doi.org/10.1016/j.agee.2017.03.005.

Horizonte de Projecto (2017) Exploração agropecuária Manhente - Resumo técnico.

Horrillo, A., Gaspar, P. and Escribano, M. (2020) ‘Organic farming as a strategy to reduce carbon footprint in dehesa agroecosystems: A case study comparing different livestock products’, Animals, 10(1), p. 162. Available at: https://doi.org/10.3390/ani10010162.

IDF (2015) A common carbon footprint approach for the dairy sector. Available at: www.fil-idf.org (Accessed: 4 January 2023).

IPCC (2019) ‘Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application’, in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

IPCC (2021) ‘Assessment Report 6 Climate Change 2021: The Physical Science Basis’. Available at: https://www.ipcc.ch/report/ar6/wg1/.

ISO (2006a) ISO 14040:2006 - Environmental management — Life cycle assessment — Principles and framework. Available at: https://www.iso.org/standard/37456.html (Accessed: 1 May 2023).

ISO (2006b) ISO 14044:2006 - Environmental Management — Life Cycle Assessment — Requirements and guidelines. Available at: https://www.iso.org/standard/38498.html (Accessed: 21 October 2021).

Itsubo, N. (2015) ‘Weighting’, pp. 301–330. Available at: https://doi.org/10.1007/978-94-017-9744-3_15.

Jakobsen, M. et al. (2019) ‘Elimination behavior and soil mineral nitrogen load in an organic system with lactating sows–comparing pasture-based systems with and without access to poplar (Populus sp.) trees’, Agroecology and Sustainable Food Systems, 43(6), pp. 639–661. Available at: https://doi.org/10.1080/21683565.2018.1541039.

Jolliet, O. et al. (2017) Environmental life-cycle assessment. Available at: https://doi.org/10.1038/nmat4923.

Jose, S. (2009) ‘Agroforestry for ecosystem services and environmental benefits: An overview’, Agroforestry Systems, 76(1), pp. 1–10. Available at: https://doi.org/10.1007/s10457-009-9229-7.

Jose, S. and Udawatta, R.P. (2021) Agroforestry and ecosystem services, Agroforestry and Ecosystem Services. Edited by R.P. Udawatta and S. Jose. Cham: Springer International Publishing. Available at: https://doi.org/10.1007/978-3-030-80060-4.

Kim, D.G. and Isaac, M.E. (2022) ‘Nitrogen dynamics in agroforestry systems. A review’, Agronomy for Sustainable Development, 42(4), p. 60. Available at: https://doi.org/10.1007/s13593-022-00791-7.

Knudsen, M.T. et al. (2017) ‘Characterization factors for land use impacts on biodiversity in life cycle assessment based on direct measures of plant species richness in European farmland in the “Temperate Broadleaf and Mixed Forest” biome’, Science of the Total Environment, 580(December 2016), pp. 358–366. Available at: https://doi.org/10.1016/j.scitotenv.2016.11.172.

Köthke, M., Ahimbisibwe, V. and Lippe, M. (2022) ‘The evidence base on the environmental, economic and social outcomes of agroforestry is patchy—An evidence review map’, Frontiers in Environmental Science, 10(August), pp. 1–20. Available at: https://doi.org/10.3389/fenvs.2022.925477.

Kwak, J.H. et al. (2019) ‘Introducing trees to agricultural lands increases greenhouse gas emission during spring thaw in Canadian agroforestry systems’, Science of the Total Environment, 652, pp. 800–809. Available at: https://doi.org/10.1016/j.scitotenv.2018.10.241.

Lamnatou, C. et al. (2022) ‘Life Cycle Assessment (LCA) of a food-production system in Spain: Iberian ham based on an extensive system’, Science of the Total Environment, 808, p. 151900. Available at: https://doi.org/10.1016/j.scitotenv.2021.151900.

Lantinga, E.A., Oomen, G.J.M. and Schiere, J.B. (2004) ‘Nitrogen efficiency in mixed farming systems’, Journal of Crop Improvement, 12(1–2), pp. 437–455. Available at: https://doi.org/10.1300/J411v12n01_07.

Laurent, A. and Hauschild, M.Z. (2015) ‘Normalisation’, pp. 271–300. Available at: https://doi.org/10.1007/978-94-017-9744-3_14.

De Laurentiis, V. et al. (2019) ‘Soil quality index: Exploring options for a comprehensive assessment of land use impacts in LCA’, Journal of Cleaner Production, 215, pp. 63–74. Available at: https://doi.org/10.1016/j.jclepro.2018.12.238.

Leakey, R.R.B. (2017) ‘Definition of Agroforestry Revisited’, in Multifunctional Agriculture. Academic Press, pp. 5–6. Available at: https://doi.org/10.1016/b978-0-12-805356-0.00001-5.

Leinonen, I. et al. (2012a) ‘Predicting the environmental impacts of chicken systems in the united kingdom through a life cycle assessment: Egg production systems’, Poultry Science, 91(1), pp. 26–40. Available at: https://doi.org/10.3382/ps.2011-01635.

Leinonen, I. et al. (2012b) ‘Predicting the environmental impacts of chicken systems in the united kingdom through a life cycle assessment: Egg production systems’, Poultry Science, 91(1), pp. 26–40. Available at: https://doi.org/10.3382/ps.2011-01635.

Leinonen, I., Williams, A.G. and Kyriazakis, I. (2014) ‘The effects of welfare-enhancing system changes on the environmental impacts of broiler and egg production’, Poultry Science, 93(2), pp. 256–266. Available at: https://doi.org/10.3382/ps.2013-03252.

Leip, A. et al. (2019) ‘The value of manure - Manure as co-product in life cycle assessment’, Journal of Environmental Management, 241, pp. 293–304. Available at: https://doi.org/10.1016/J.JENVMAN.2019.03.059.

Longo, S. et al. (2017) ‘Life Cycle Assessment of organic and conventional apple supply chains in the North of Italy’, Journal of Cleaner Production, 140, pp. 654–663. Available at: https://doi.org/10.1016/j.jclepro.2016.02.049.

Mancilla-Leytón, J.M. et al. (2023) ‘A Comparative Analysis of Carbon Footprint in the Andalusian Autochthonous Dairy Goat Production Systems’, Animals, 13(18). Available at: https://doi.org/10.3390/ani13182864.

Manevski, K. et al. (2019) ‘Effect of poplar trees on nitrogen and water balance in outdoor pig production – A case study in Denmark’, Science of the Total Environment, 646, pp. 1448–1458. Available at: https://doi.org/10.1016/j.scitotenv.2018.07.376.

Matthews, H.S., Hendrickson, C.T. and Matthews, D. (2014) Life Cycle Assessment: Quantitative Approaches for Decisions that Matter. Open access textbook. Available at: https://www.lcatextbook.com/.

Mazzetto, A., Falconer, S. and Ledgard, S. (2021) ‘Review of the carbon footprint of beef and sheep meat’. Available at: https://beeflambnz.com/sites/default/files/levies/files/LCA_Lit_review.pdf (Accessed: 28 October 2024).

Mazzetto, A.M., Falconer, S. and Ledgard, S. (2022) ‘Mapping the carbon footprint of milk production from cattle: A systematic review’, Journal of Dairy Science, 105(12), pp. 9713–9725. Available at: https://doi.org/10.3168/jds.2022-22117.

Milne, E. et al. (2013) ‘Methods for the quantification of GHG emissions at the landscape level for developing countries in smallholder contexts’, Environmental Research Letters, 8(1). Available at: https://doi.org/10.1088/1748-9326/8/1/015019.

Moura Costa, P. and Wilson, C. (2000) ‘An equivalence factor between CO2 avoided emissions and sequestration - Description and application in forestry’, Mitigation and Adaptation Strategies for Global Change, 5(1), pp. 51–60. Available at: https://doi.org/10.1023/A:1009697625521.

Mugure, A., Oino, P.G. and and Benard Mwori Sorre (2013) ‘Land Ownership and its Impact on Adoption of Agroforestry Practices among Rural Households in Kenya: A Case of Busia County’, International Journal of Innovation and Applied Studies, 4(3), pp. 552–559. Available at: http://www.issr-journals.org/ijias/abstract.php?article=IJIAS-13-215-08.

Mupepele, A.C., Keller, M. and Dormann, C.F. (2021) ‘European agroforestry has no unequivocal effect on biodiversity: a time-cumulative meta-analysis’, BMC Ecology and Evolution, 21(1), pp. 1–12. Available at: https://doi.org/10.1186/s12862-021-01911-9.

Nab, C. and Maslin, M. (2020) ‘Life cycle assessment synthesis of the carbon footprint of Arabica coffee: Case study of Brazil and Vietnam conventional and sustainable coffee production and export to the United Kingdom’, Geo: Geography and Environment, 7(2), p. e00096. Available at: https://doi.org/10.1002/geo2.96.

Nair, P.K.R. (1985) ‘Classification of agroforestry systems’, Agroforestry Systems, 3(2), pp. 97–128. Available at: https://doi.org/10.1007/BF00122638/METRICS.

Neven, D. (2014) Developing sustainable food value chains : guiding principles, Food and Agriculture Organization of the United Nations. Rome. Available at: www.fao.org/publications (Accessed: 18 January 2023).

Notarnicola, B. et al. (2017) ‘The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges’, Journal of Cleaner Production, 140, pp. 399–409. Available at: https://doi.org/10.1016/j.jclepro.2016.06.071.

Ollinaho, O.I. and Kröger, M. (2021) ‘Agroforestry transitions: The good, the bad and the ugly’, Journal of Rural Studies, 82, pp. 210–221. Available at: https://doi.org/10.1016/j.jrurstud.2021.01.016.

Onat, N.C. et al. (2017) ‘Systems thinking for life cycle sustainability assessment: A review of recent developments, applications, and future perspectives’, Sustainability (Switzerland), 9(5), p. 706. Available at: https://doi.org/10.3390/su9050706.

Oomen, G.J.M. et al. (1998) ‘Mixed farming systems as a way towards a more efficient use of nitrogen in European Union agriculture’, Environmental Pollution, 102(SUPPL. 1), pp. 697–704. Available at: https://doi.org/10.1016/S0269-7491(98)80101-2.

Paolotti, L. et al. (2016) ‘Combining livestock and tree crops to improve sustainability in agriculture: A case study using the Life Cycle Assessment (LCA) approach’, Journal of Cleaner Production, 131, pp. 351–363. Available at: https://doi.org/10.1016/j.jclepro.2016.05.024.

Pelenc, J. (2015) Weak Sustainability versus Strong Sustainability.

Pelletier, N. (2017) ‘Life cycle assessment of Canadian egg products, with differentiation by hen housing system type’, Journal of Cleaner Production, 152, pp. 167–180. Available at: https://doi.org/10.1016/j.jclepro.2017.03.050.

Pérez-Neira, D. et al. (2020) ‘Transportation can cancel out the ecological advantages of producing organic cacao: The carbon footprint of the globalized agrifood system of ecuadorian chocolate’, Journal of Environmental Management, 276(July), p. 111306. Available at: https://doi.org/10.1016/j.jenvman.2020.111306.

Persha, L., Stickler, M.M. and Huntington, H. (2015) ‘Does stronger Tenure Security incentivize smallholder climate-smart agriculture? case Zambia’, in 2015 world Bank Conference on Land and Poverty, pp. 0–28.

Petersen, B.M. et al. (2013) ‘An approach to include soil carbon changes in life cycle assessments’, Journal of Cleaner Production, 52, pp. 217–224. Available at: https://doi.org/10.1016/j.jclepro.2013.03.007.

Phelan, S. (2011) Case study research: design and methods. 4th ed., Evaluation & Research in Education. 4th ed. London: SAGE Publications Ltd,. Available at: https://doi.org/10.1080/09500790.2011.582317.

Pishgar-Komleh, S.H. and Beldman, A. (2022) Literature review of beef production systems in Europe. Available at: https://doi.org/10.18174/567148.

Poore, J. and Nemecek, T. (2018) ‘Reducing food’s environmental impacts through producers and consumers’, Science, 360(6392), pp. 987–992. Available at: https://doi.org/10.1126/science.aaq0216.

Prox, M. and Curran, M.A. (2017) ‘Consequential Life Cycle Assessment’, pp. 145–160. Available at: https://doi.org/10.1007/978-94-024-0855-3_4.

Pumariño, L. et al. (2015) ‘Effects of agroforestry on pest, disease and weed control: A meta-analysis’, Basic and Applied Ecology, 16(7), pp. 573–582. Available at: https://doi.org/10.1016/j.baae.2015.08.006.

Quevedo-Cascante, M. et al. (2023) ‘How does Life Cycle Assessment capture the environmental impacts of agroforestry? A systematic review’, Science of the Total Environment, 890, p. 164094. Available at: https://doi.org/10.1016/j.scitotenv.2023.164094.

Quevedo-Cascante, M. (2023) Progress report: Life Cycle Assessment of Agroforestry Systems. Aarhus, Denmark.

Raj, A., Jhariya, M.K. and Bargali, S.S. (2016) ‘Bund Based Agroforestry Using Eucalyptus Species: A Review’, Current Agriculture Research Journal, 4(2), pp. 148–158. Available at: https://doi.org/10.12944/carj.4.2.04.

Ramachandran Nair, P.K. and Toth, G.G. (2016) ‘Measuring agricultural sustainability in agroforestry systems’, Climate Change and Multi-Dimensional Sustainability in African Agriculture: Climate Change and Sustainability in Agriculture, pp. 365–394. Available at: https://doi.org/10.1007/978-3-319-41238-2_20.

Rao, M.R., Nair, P.K.R. and Ong, C.K. (1997) ‘Biophysical interactions in tropical agroforestry systems’, Agroforestry Systems 1997 38:1, 38(1), pp. 3–50. Available at: https://doi.org/10.1023/A:1005971525590.

Recanati, F., Marveggio, D. and Dotelli, G. (2018) ‘From beans to bar: A life cycle assessment towards sustainable chocolate supply chain’, Science of The Total Environment, 613–614, pp. 1013–1023. Available at: https://doi.org/10.1016/J.SCITOTENV.2017.09.187.

Reed, J. et al. (2017) ‘Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics’, Forest Policy and Economics, 84, pp. 62–71. Available at: https://doi.org/10.1016/J.FORPOL.2017.01.012.

Ritchie, H. and Roser, M. (2019) Half of the world’s habitable land is used for agriculture - Our World in Data, Our World in Data. Available at: https://ourworldindata.org/global-land-for-agriculture (Accessed: 20 April 2022).

Ritchie, H. and Roser, M. (2022) Environmental Impacts of Food Production - Our World in Data, Our World in Data. Available at: https://ourworldindata.org/environmental-impacts-of-food (Accessed: 4 October 2024).

Rockström, J. et al. (2020) ‘Planet-proofing the global food system’, Nature Food 2020 1:1, 1(1), pp. 3–5. Available at: https://doi.org/10.1038/s43016-019-0010-4.

Rolim, S.G. and Chiarello, A.G. (2004) ‘Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil’, Biodiversity and Conservation, 13(14), pp. 2679–2694. Available at: https://doi.org/10.1007/S10531-004-2142-5/METRICS.

Romero-Gámez, M., Castro-Rodríguez, J. and Suárez-Rey, E.M. (2017) ‘Optimization of olive growing practices in Spain from a life cycle assessment perspective’, Journal of Cleaner Production, 149, pp. 25–37. Available at: https://doi.org/10.1016/j.jclepro.2017.02.071.

De Rosa, M. (2018) ‘Land Use and Land-use Changes in Life Cycle Assessment: Green Modelling or Black Boxing?’, Ecological Economics, 144, pp. 73–81. Available at: https://doi.org/10.1016/j.ecolecon.2017.07.017.

Rosenbaum, R. et al. (2018) ‘Life Cycle Impact Assessment (Chapter 10)’, Life Cycle Assessment: Theory and Practice, 2, pp. 167–270.

Rosenbaum, R.K. et al. (2017) ‘Life cycle impact assessment’, in Life Cycle Assessment: Theory and Practice. Springer International Publishing, pp. 167–270. Available at: https://doi.org/10.1007/978-3-319-56475-3_10/FIGURES/27.

Rosenbaum, R.K. (2017) ‘Selection of Impact Categories, Category Indicators and Characterization Models in Goal and Scope Definition’, pp. 63–122. Available at: https://doi.org/10.1007/978-94-024-0855-3_2.

Rowntree, J.E. et al. (2020) ‘Ecosystem Impacts and Productive Capacity of a Multi-Species Pastured Livestock System’, Frontiers in Sustainable Food Systems, 4, p. 232. Available at: https://doi.org/10.3389/fsufs.2020.544984.

Ruiz-Llontop, D. et al. (2022) ‘Milk carbon footprint of silvopastoral dairy systems in the Northern Peruvian Amazon’, Tropical Animal Health and Production, 54(4), pp. 1–8. Available at: https://doi.org/10.1007/s11250-022-03224-5.

Ryberg, M.W. et al. (2018) ‘Development of a life-cycle impact assessment methodology linked to the Planetary Boundaries framework’, Ecological Indicators, 88, pp. 250–262. Available at: https://doi.org/10.1016/j.ecolind.2017.12.065.

Sainju, U.M. (2017) ‘Determination of nitrogen balance in agroecosystems’, MethodsX, 4, pp. 199–208. Available at: https://doi.org/10.1016/j.mex.2017.06.001.

Sales-Baptista, E., d’Abreu, M.C. and Ferraz-de-Oliveira, M.I. (2016) ‘Overgrazing in the Montado? The need for monitoring grazing pressure at paddock scale’, Agroforestry Systems, 90(1), pp. 57–68. Available at: https://doi.org/10.1007/S10457-014-9785-3.

Sandin, G., Peters, G.M. and Svanström, M. (2016) ‘LCA Methodology’, 6(3), pp. 15–23. Available at: https://doi.org/10.1007/978-3-319-44027-9_3.

Santiago-Freijanes, J.J. et al. (2018) ‘Agroforestry development in Europe: Policy issues’, Land Use Policy, 76, pp. 144–156. Available at: https://doi.org/10.1016/j.landusepol.2018.03.014.

Schmidt, J.H. (2008) ‘System delimitation in agricultural consequential LCA: Outline of methodology and illustrative case study of wheat in Denmark’, International Journal of Life Cycle Assessment, 13(4), pp. 350–364. Available at: https://doi.org/10.1007/s11367-008-0016-x.

Schroth, G. et al. (2016) ‘Climate friendliness of cocoa agroforests is compatible with productivity increase’, Mitigation and Adaptation Strategies for Global Change, 21(1), pp. 67–80. Available at: https://doi.org/10.1007/s11027-014-9570-7.

Schuler, H.R. et al. (2022) ‘Ecosystem Services from Ecological Agroforestry in Brazil: A Systematic Map of Scientific Evidence’, Land, 11(1), p. 83. Available at: https://doi.org/10.3390/land11010083.

Sessa, F. et al. (2014) ‘Life Cycle Assessment of apples at a country level: the case study of Italy’, Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food sector, (July 2017), pp. 1244–1248. Available at: https://www.researchgate.net/publication/318725325.

Shackleton, C.M. et al. (2016) ‘Unpacking Pandora’s Box: Understanding and Categorising Ecosystem Disservices for Environmental Management and Human Wellbeing’, Ecosystems, 19(4), pp. 587–600. Available at: https://doi.org/10.1007/s10021-015-9952-z.

Simonson, W.D. et al. (2018) ‘Modelling biodiversity trends in the montado (wood pasture) landscapes of the Alentejo, Portugal’, Landscape Ecology, 33(5), pp. 811–827. Available at: https://doi.org/10.1007/s10980-018-0627-y.

Sollen-Norrlin, M., Ghaley, B.B. and Rintoul, N.L.J. (2020) ‘Agroforestry benefits and challenges for adoption in Europe and beyond’, Sustainability (Switzerland), 12(17), p. 7001. Available at: https://doi.org/10.3390/su12177001.

De Stefano, A. and Jacobson, M.G. (2018) ‘Soil carbon sequestration in agroforestry systems: a meta-analysis’, Agroforestry Systems, 92(2), pp. 285–299. Available at: https://doi.org/10.1007/s10457-017-0147-9.

Stranddorf, H.K., Hoffmann, L. and Schmidt, A. (2005) ‘LCA technical report: impact categories, normalization and weighting in LCA.’, Update on selected EDIP97-data., (xxx), pp. 1–292. Available at: https://lca-center.dk/wp-content/uploads/2015/08/LCA-technical-report-impact-categories-normalisation-and-weighting-in-LCA.pdf.

Sun, Z. et al. (2022) ‘Dietary change in high-income nations alone can lead to substantial double climate dividend’, Nature Food 2022 3:1, 3(1), pp. 29–37. Available at: https://doi.org/10.1038/s43016-021-00431-5.

Teixeira, F.Z. et al. (2019) ‘Perceived ecosystem services (ES) and ecosystem disservices (EDS) from trees: insights from three case studies in Brazil and France’, Landscape Ecology, 34(7), pp. 1583–1600. Available at: https://doi.org/10.1007/s10980-019-00778-y.

Theofel, C.G. et al. (2020) ‘Microorganisms move a short distance into an almond orchard from an adjacent upwind poultry operation’, Applied and Environmental Microbiology, 86(15). Available at: https://doi.org/10.1128/AEM.00573-20.

Thiesmeier, A. and Zander, P. (2023) ‘Can agroforestry compete? A scoping review of the economic performance of agroforestry practices in Europe and North America’, Forest Policy and Economics, 150(February), p. 102939. Available at: https://doi.org/10.1016/j.forpol.2023.102939.

Torralba, M. et al. (2016) ‘Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis’, Agriculture, Ecosystems and Environment, 230, pp.

150–161. Available at: https://doi.org/10.1016/j.agee.2016.06.002.

Torres, M.G. et al. (2020) ‘Challenges of livestock: climate change, animal welfare and agroforestry’, Large Animal Review, 26(1), pp. 39–45.

Tsonkova, P. et al. (2018) ‘Addressing farmer-perceptions and legal constraints to promote agroforestry in Germany’, Agroforestry Systems, 92(4), pp. 1091–1103. Available at: https://doi.org/10.1007/s10457-018-0228-4.

Turner, I., Heidari, D. and Pelletier, N. (2022a) ‘Life cycle assessment of contemporary Canadian egg production systems during the transition from conventional cage to alternative housing systems: Update and analysis of trends and conditions’, Resources, Conservation and Recycling, 176, p. 105907. Available at: https://doi.org/10.1016/j.resconrec.2021.105907.

Turner, I., Heidari, D. and Pelletier, N. (2022b) ‘Life cycle assessment of contemporary Canadian egg production systems during the transition from conventional cage to alternative housing systems: Update and analysis of trends and conditions’, Resources, Conservation and Recycling, 176, p. 105907. Available at: https://doi.org/10.1016/J.RESCONREC.2021.105907.

Turner, P.A.M.M. et al. (2019) ‘Accounting for biodiversity in life cycle impact assessments of forestry and agricultural systems—the BioImpact metric’, International Journal of Life Cycle Assessment, 24(11), pp. 1985–2007. Available at: https://doi.org/10.1007/s11367-019-01627-5.

Ušča, M. and Aļeksējeva, L. (2023) ‘Environmental Sustainability Aspects in Short Food Supply Chains: the Views of Organic Farmers and Consumers’, Rural Sustainability Research, 50(345), pp. 85–93. Available at: https://doi.org/10.2478/plua-2023-0018.

Utomo, B. et al. (2016) ‘Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia’, Journal of Cleaner Production, 134(Part B), pp. 583–591. Available at: https://doi.org/10.1016/j.jclepro.2015.08.102.

Veysset, P., Lherm, M. and Bébin, D. (2010) ‘Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: Model-based analysis and forecasts’, Agricultural Systems, 103(1), pp. 41–50. Available at: https://doi.org/10.1016/j.agsy.2009.08.005.

Vinyes, E. et al. (2017) ‘Life Cycle Assessment of apple and peach production, distribution and consumption in Mediterranean fruit sector’, Journal of Cleaner Production, 149, pp. 313–320. Available at: https://doi.org/10.1016/j.jclepro.2017.02.102.

De Vries, M., Kwakkel, R.P. and Kijlstra, A. (2006) ‘Dioxins in organic eggs: A review’, NJAS - Wageningen Journal of Life Sciences, 54(2), pp. 207–221. Available at: https://doi.org/10.1016/S1573-5214(06)80023-0.

Wander, L.B.B. et al. (2022) ‘Maize intercropped between Eucalyptus urophylla in agroforestry systems in Brazil’, African Journal of Agricultural Research, 18(6), pp. 407–413. Available at: https://doi.org/10.5897/ajar2020.15229.

Wang, S. and Dong, Y. (2024) ‘Applications of Life Cycle Assessment in the Chocolate Industry: A State-of-the-Art Analysis Based on Systematic Review’, Foods, 13(6), p. 915. Available at: https://doi.org/10.3390/foods13060915.

Weidema, B.P. et al. (2018) ‘Attributional or consequential Life Cycle Assessment: A matter of social responsibility’, Journal of Cleaner Production, 174, pp. 305–314. Available at: https://doi.org/10.1016/J.JCLEPRO.2017.10.340.

Yin, R.K. (2009) Case Study Research: Design and Methods. 4th ed. London: SAGE Publications Ltd.

Zhang, L. et al. (2024) ‘A systematic review of life-cycle GHG emissions from intensive pig farming: Accounting and mitigation’, Science of the Total Environment, 907(July 2023), p. 168112. Available at: https://doi.org/10.1016/j.scitotenv.2023.168112.

Zhu, Z. et al. (2018) ‘Life cycle assessment of conventional and organic apple production systems in China’, Journal of Cleaner Production, 201, pp. 156–168. Available at: https://doi.org/10.1016/j.jclepro.2018.08.032.

Frontpage of the dissertation: Environmental life cycle assessment and food systems: The case study of agroforestry by Monica Mónica Quevedo-Cascante, Phd thesis – graduate school of technical sciences, Aarhus University – November 2024

Downloads

Publiceret

2 maj 2025

Detaljer om denne monografi

ISBN-13 (15)

978-87-7507-575-1