Conceptual Design Tool for Structural Layout Optimization in the Early Design Phase


Lasse Weyergang Rahbek
Tidligere ph.d.-studerende


Conceptual design, performance based generative design, computational design, parametric design, optimization, prefabricated reinforced concrete, surrogate modeling, action research, hierarchical surrogate modeling, machine learning, generative design, structural optimization, genetic algorithm, neural network, concrete


This thesis develops a conceptual design tool capable of generating optimized structural layout suggestions for building design in the early design phase. The structural layout of a building is the arrangement and design of the load-bearing elements that support the weight of the building and resist external forces. The structural layout in this project solely consists of prefabricated reinforced (RC) elements. The use of prefabricated RC elements is embedded in the Danish construction industry and will likely remain so in the foreseeable future. Therefore, there is great potential for more effective use of concrete in terms of sustainability and decreasing cost. The proposed design tool can help fulfill this potential. Action Research (AR) is used to create the conceptual framework of the design tool. The AR analysis consists of semi-structured interviews and a co-creation workshop where architects, engineers, and contractors contribute to the development of the design tool to ensure that the final tool conforms to real-world practice. The final design tool is based on this framework and developed using four core principles: optimization, interactivity, dissemination, and automation. A novel parametric modeling method is developed in the design tool called Adjacent Polygon (APoly) representation. The APoly method creates a dynamic parametric representation of a given building plan to generate diverse yet feasible structural layout suggestions. The evaluation modules of different structural typologies are constructed using surrogate models in the form of Neural Networks. The surrogate models are combined in a hierarchical structure to create an algorithm capable of predicting the optimized geometry and corresponding cost for a structural element based on the external conditions inputted into the algorithm. The entire network of prediction models is then combined with a meta-heuristic optimization algorithm in the form of a Genetic Algorithm (GA) to create a surrogate-assisted optimization framework. A repair algorithm is incorporated into the GA to increase the number of valid solutions generated during each optimization iteration to decrease the convergence time. The performance and reliability of the design tool are validated through two groups of local and global case studies. The first group consists of parameter sensitivity studies on the local approximation modules for each structural typology. The second group of validation studies examines the design tool’s effectiveness across relevant building plans and scenarios. The corresponding results demonstrate that the tool can effectively adapt to these different settings and produce optimized structural layout suggestions. It is also demonstrated that the design tool can conduct multi-objective optimization and produce a front of Pareto optimal solutions.


P. Debney, Computational Engineering, London: The Institution of Structural Engineers, 2020.

C. Ionescu, T. Baracu, G.-E. Vlad og H. Necula, »The historical evolution of the energy efficient buildings,« Renewable and Sustainable Energy Reviews, 2015.

UCL Engineering, »,« 2014. [Online]. Available:

NG ZINK, »,« 2022. [Online]. Available:

»danish housing and planning authority,« 19 October 2022. [Online]. Available:

N. Nain, R. Surabhi, N. Yathish, V. Krishnamaurthy, T. Deppa og S. Tharannum, »Enhancement in strength parameters of concrete by application of,« Construction and building materials, nr. 202, pp. 904-908, 2019.

N. Z. Muhammad, A. Shafaghat, A. Keyvanfar, M. Z. A. Majid, S. Ghishal, S. E. M. Yasouj, A. A. Ganiyu, M. S. Kouchaksaraei, H. Kamyab, M. M. Taheri og Shirdar, »Tests and methods of evaluating the self-healing efficiency of concrete: A,« Construction and Building Materials, nr. 112, pp. 1123-1132, 2016.

Betonelement-foreningen , »betonportal,« 2003 . [Online]. Available:

J. F. Jensen, Beton element byggeriers statik, 1. red., Polyteknisk forlag, 2010.

F. Belaïd, »How does concrete and cement industry transformation contribute to mitigating climate change challenges?,« Resources, Conservation and Recycling Advances, november 2022.

D. Mathiesen og J. S. Hansen, »Branchevejledning - Designoptimering af betonkonstruktioner,« Bæredygtig Beton initiativet, 2022.

T. Hamidavi, S. Abrishami og R. M. Hosseini, »Towards intelligent structural design of buildings: A BIM-based solution,« Journal af building engineering, årg. 32, 2020.

C. T. Mueller, »Computational Exploration of the Structural Design Space,« Boston, 2014.

L. Wang, W. Shen, H. Xie, J. Neelamkavil, Pardasani og Ajit, »Collaborative coneptual design - state of the art and future trends,« Computer-Aided Design, årg. 34, nr. 13, pp. 981-996, 2002.

A. J. MacDonald, Structure and Architecture, 3. red., Routledge, 2019.

I. J. Palormar, J. L. G. Valldecabres, P. Tzortzopoulos og E. Pellicer, »An online platform to unify and synchronise heritage architecture information,« Automation in Construction, årg. 110, February 2020.

R. Deutch, BIM and Integrated Design: Strategies for Architectural Practice, Wiley, 2011.

B. C. Paulson, »Designing to reduce Construction Cost,« Journal of the Construction Division, December 1976.

D. Davis, »Modelled on Software Engineering: Flexible Parametric Models in,« 2013.

Y. Reich, »Machine Learning Techniques for Civil Engineering Problems,« Microcomputers in Civil Engineering, pp. 295-310, 1997.

M. Ball, »informed infrastructure,« 7 June 2015. [Online]. Available:

I. Caetano, L. Santos og A. Leitao, »Computational Design in architecture: Defining parametric, generative, and algorithmic design,« Frontiers of Architectural Research, 2019.

A. Beim, L. B. Jensen, P. A. Sattrup og K. Negendahl, Informing sustainable architecture: Introduction, Copenhagen: Polyteknisk forlag, 2018.

M. Ramage, »Trimble,« 21 April 2022. [Online]. Available:

M. Dimcic, »Artificial intelligence in architecture,« Frontiers of Science and Technology, 2017.

D. Davis, »danieldavis,« 20 february 2020. [Online]. Available:

R. Tara, »engineering,« 11 january 2022. [Online]. Available:

L. W. Rahbek, P. H. Kirkegaard og U. Alibrandi, »Parametric grid mapping design tool for freeform surfaces using a,« Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures Inspiring the Next Generation, 2021.

L. W. Rahbek, C. R. Terp, U. Alibrandi og P. H. Kirkegaard, »Stock optimization of naturally curved wood logs on freeform,« Proceedings of the IASS 2022 Symposium affiliated with APCS 2022 conference, September 2022.

P. B. Purub og S. Petersen, »Research framework for development of building performance simulation tools for early design stages,« Automation in Construction, årg. 109, 2020.

A. Retik og A. Warszawski, »Automated Design of Prefabricated Building,« Building and Environment, årg. 29, nr. 4, 1994.

M. Jinjie, S. Qingxuan og H. Zhijian, »Optimal Design of Tall Residential Building with RC Shear Wall and with rectangular Layout,« International Journal of High-Rise Buildings, årg. 3, nr. 4, 2014.

P. Zhao, W. Liao og X. Lu, »Intelligent design method for beam and slab of shear wall structure based on deep learning,« Journal of Building Engineering, årg. 57, 17 June 2022.

S. Talatahari og M. Rabiei, »Shear wall layout optimization of tall buildings using,« Frontiers of Civil and Structural Engineering, pp. 1131-1151, 2020.

T. Takada, Y. Kohama og A. Miyamura, »Optimization of shear wall allocation in 3D frames by branch-and-bound method,« Transactions on the Built Environment, årg. 52, 2001.

Y. Zhang og C. Mueller, »Shear wall layout optimization for conceptual design of tall buildings,« Engineering Structures, pp. 225-240, 22 February 2017.

H. Lou, B. Gao, F. Jin, Y. Wan og Y. Wang, »Shear wall layout optimization strategy for high-rise buildings based on conceptual design and data-driven tabu search,« Computers and Structures, 2021.

L. Wessel, »,« 2018. [Online]. Available:

B. C. Jensen og S. O. Hansen, Bygningsberegninger, 1. red., Valby: Nyt Teknisk Forlag, 2010.

P. McCullag og J. Nelder, Generalized Linear Models, 2. red., New York: Routledge, 1983, p. 532.

J. E. Harding og P. Shepard, »Meta-Parametric Design,« Design Studies, pp. 73-95, 2017.

techtipnow, »techtipnow,« 2023. [Online]. Available:

Robert McNeel & associates, »Rhino3d,« 2023. [Online]. Available:

Autodesk, »,« 2023. [Online]. Available:

SolidWorks, »,« 2023. [Online]. Available:

S. Sivanandam og S. Deepa, Introduction to Genetic Algorithms, 2008.

A. Dutta, »,« 2023. [Online]. Available:

A. I. J. S. A. K. A. J. Forrester, Engineering Design via Surrogate Modelling A Practical Guide, 1. red., Chichester, West Sussex: John Wiley and Sons Ltd., 2008, p. 238.

A. I. Forrester og A. J. Keane, »Recent advances in surrogate-based optimizaiton,« Progress in Aerospace Sciences 45, pp. 50-79, 10 January 2009.

F. A. C. Viana, C. Gogu og R. T. Haftka, »Making the most out of surrogate models: tricks of the trade,« Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDET/CIE 2010, august 2010.

J. Brownlee, Clever Algorithms - Natur-Inspired Programming Recipes, 1. red., 2011.

S. S. Rao, Enginering Optimization - Theory and Practice, 5. red., Hoboken, New Jersey: John Wiley and Sons, Inc., 2019.

N. Gu og P. a. Behbahani, »Shape Grammars: A key Generative Design Algorithm,« i Handbook of the Mathematics of the Arts and Sciences, Springer Nature Switzerland AG 2021, 2021.

H. Salehi og R. Burgueno, »Emerging artificial intelligence methods instructural engineering,« Engineering Structures, pp. 170-189, May 2018.

K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Chichester: John Wiley and Sons, Ltd, 2001.

C. Blum og A. Roli, »Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison,« ACM Computing Surveys, pp. 268-308, January 2001.

K. Sørensen, »Metaheuristics - the metaphor exposed,« International Transactions in Operational Research, årg. 1, pp. 3-18, 2013.

E. Zitzler, M. Laumanns og L. Thiele, »SPEA2: Improving the Strength Pareto Evolutionary Algorithm,« Computer Engineering and Networks Laboratory (TIK), Zurich, 2001.

K. Deb, A. Pratap, S. Agarwal og T. Meyarivan, »A fast and elitist multiobjective genetic algorithm: NSGA-II,« IEEE Transactions on Evolutionary Computation, årg. 6, nr. 2, pp. 182-197, April 2002.

J. Bader og E. Zitzler, »HypE: An algorithm for Fast Hypervolume-Based Many-Objective Optimization,« Evolutionary Computation, årg. 1, pp. 45-76, 2011.

C. Darwin, On the Origin of Species, Dover Publication, 2006.

J. H. Holland, Adaptation in Natural and Artificial Systems, Michigan Press, 1975.

A. E. Eiben og J. Smith, Introduction to Evolutionary Computing, 2. red., Leiden: Leiden Center for Natural Computing, 2017.

S. Adriasenssen, P. Block, D. Veenedaal og C. Williams, Shell Structures for Architecture - Form Finding and Optimization, Taylor and Francis Ltd, 2014.

L. W. Rahbek og M. K. Feld, »Parametric Grid Mapping Design Tool for Freeform Surfaces,« 2015.

Y. Kaya, M. Uyar og R. Tekin, »A Novel Crossover Operator for Genetic Algorithms: Ring Crossover,« DBLP, January 2011.

K. Deb og R. B. Agrawal, »Simulated Binary Crossover for Continous Search Space,« Complex Systems, pp. 115-148, 1995.

L. D. Whitley, T. Starkweather og D. Fuquay, »Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator,« Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 133-144, June 1989.

C. Wang, Q. Duan, W. Gong, A. Ye, Z. Di og C. Miao, »An evaluation of adaptive surrogate modeling based optimization with two benchmark problems,« Environmental Modelling and Software, årg. 60, pp. 167-179, 2014.

D. R. Jones, »A Taxonomy of GLobal Optimization Methods Based on Response Surfaces,« Journal of Global Optimization, nr. 21, pp. 345-383, 2001.

J. N. Fugh, A. Fau og U. Nackenhorst, »State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging,« Archives of Computational Methods in Engineering, 25 July 2020.

K. Crombecq, L. De Tommasi, D. Gorissen og T. Dhaene, »A novel sequential design strategy for global surrogate modeling,« Proceedings of the 2009 Winter Simulation Conference (WSC), 2009.

J. N. Fuhg, »Adaptive surrogate models for parametric studies,« Hannover, 2019.

P. Singh, D. Deschrijver og T. Dhaene, »A balanced Sequential deisgn strategy for global surrogate modeling,« Proceedings of the 2013 Winter Simulation Conference, 2013 .

K. Crombecq, E. Laermans og D. T., »Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling,« European Journal of Operational Research, pp. 683-696, 30 May 2011.

S. Tseranidis, N. C. Brown og C. T. Mueller, »Data-driven approximation algorithms for rapid performance evaluation and optimization of civil structures,« Automation in Construction, 6 February 2016.

S. Tseranidis, »Approximation Algorithms for Rapid Evaluation and Optimization of Architectural and Civil Structures,« Thessaloniki, 2015.

A. Botchkarev, »Performance Metrics (Error Measure) in Machine Learning Regression, Forecasting and Prognostic: Properties and Typology,« Interdisciplinary Journal of Information, Knowledge, and Management, årg. 14, pp. 45-76, 2018.

D. Krige, »A Statistical Approaches to Some Basic Mine Valuation Problems on the Witwatersrand,« Journal of the Chemical, Metallurgical and Mining Society of South Africa, årg. 52, pp. 119-139, 1951.

J. P. Kleijnen, »Kriging metamodeling in simulation: A review,« European Journal of Operational Research, pp. 707-716, 17 October 2009.

G. Dreyfus, Neural Networks - Methodology and Applications, 2005.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, Ozair, Sherjil, A. Courville og Y. Bengio, »Generative Adversarial Networks,« arXiv e-prints, June 2014.

I. Goodfellow, Y. Bengio og A. Courville, Deep Learning, MIT Press, 2016.

I. Goodfellow, Y. Bengio og A. Courville, Deep Learning, MIT Press, 2016.

J. Feng og S. Lu, »Performance Analysis of Various Activation Functions in Artificial Neural Networks,« Journal of Physics: Conference Series, 2019.

MathWorks, »,« 2023. [Online]. Available:

G. Sanderson, »3blue1brown,« October 2017. [Online]. Available:

D. Coghlan og R. Holian, »Editorial: insider action research,« Action Research, årg. 5, pp. 5-10, 1 March 2007.

S. Brinkmann og L. Tanggaard, Kvalitative metoder: en grundbog, Hans Reitzel, 2013.

D. Greenwood, »Pragmatic Action Research,« International Journal of Action Research, årg. 3, nr. 1+2, pp. 131-148, 2007.

P. C. S. Taylor og M. N. Medina, »Educational research paradigms: From positivism to pluralism.,« Colleage Research Journal, årg. 1, nr. 1, pp. 1-16, 2011.

V. Sonne-Ragans, Anvendt videnskabsteori - reflekteret teoribrug i videnskabelige opgaver, 2. red., 2019, p. 300.

S. Kemmis og R. Mctaggart, »Participatory Action Research: Communicative Action and the Public Sphere,« i Handbook of qualitative research , Sage Publishing, 2017.

S. Kvale, Doing Interviews, London: Sage: Publications, 2007.

S. Chen, »Chapter 16: Interviews and focus groups,« i Research Methods in Physical Education and Youth Sport, K. Armour og D. Macdonald, Red., Routledge, 2012, p. 376.

V. Braun og V. Clarke, »Using thematic analysis in psychology,« Qualitative Research in Psychology, årg. 3, nr. 2, pp. 77-101, 2008.

L. Crispin og J. Gregory, Agile Testing - A Practical Guide for Testers and Agile Teams, 1. red., Boston: Pearson Education, Inc, 2009, p. 577.

wired, »wired,« 1997. [Online]. Available:

DiKon, »DiKon - Digital Konvergens,« 2021. [Online]. Available:

Microsoft, »ML.NET,« 2023. [Online]. Available:

Microsoft, »NimbusML,« [Online]. Available:

Google, »Google Maps Platform,« [Online]. Available:

MathWorks, »Matlab,« 2023. [Online]. Available:

A. Torabi, »parametriczoo,« 16 May 2021. [Online]. Available:

B. C. Jensen, Betonkonstruktioner, 1. red., København: Nyt Teknisk Forlag, 2008.

European Committee for Standardization, »Eurocode 1: Last på bærende konstruktioner - Del 1-4: Generelle laster – Vindlast,« 2007.

Energi styrelsen, »DS/EN 1991-1-4 DK NA:2015 - Eurocode 1-4,« 2015.

D. Arditi, A. Elhassan og Y. C. Toklu, »Constructability Analysis in the Design Firm,« Journal of Construction Engineering and Management, årg. 128, nr. 2, April 2002.

European Committee for Standardization, »Eurocode 0: Projekteringsgrundlag for bærende konstruktioner,« 2007.

D. W. Thompson, On Growth and Form, Cambridge University Press, 1917.

J. Tusa, On Creativity: Interviews Exploring the Process, London: Methuen Publishing Ltd, 2004.

J. S. Knudsen, N. Grathwol og S. O. Hansen, »Vibrational Response of Structures Exposed to Human-induced Loads,« Dynamics of Civil Structures, årg. 2, pp. 151-158, 2017.

European Committee for Standardization, »EN 1991-1-1 DK NA:2013, Nationalt anneks til Eurocode 1: Last på bygværker - Del 1 - 1: Generelle laster - Densiteter, egenlast og nyttelast for bygninger«.

Rahbek, Bare en test, Aarhus: Egmont , 2014.

P. Foraboschi, M. Mercanzin og D. Trabucco, »Sustainable structural design of tall buildings based on,« Energy and Buildings, pp. 254-269, 2 September 2013.

M. Imbabi, C. Carrigan og S. McKenna, »Trends and developments in green cement and concrete technology,« International Journal of Sustainable Built Environment, årg. 1., pp. 194-216, 2012.

A. D. Eslamlou og S. Huang, »Artificial-Neural-Network-Based Surrogate Models for Structural Health Monitoring of Civil Structures: A Literature Review,« Buildings, November 2022.

Front page of the PhD dissertation entitled: Conceptual Design Tool for Structural Layout Optimization in the Early Design Phase



10 august 2023

Detaljer om denne monografi

ISBN-13 (15)