# Mechanics and Failure of Structured Interfaces

### Synopsis

This dissertation concerns heterogeneous, structured interfaces' mechanics and failure, in particular the load response, critical fracture energy and crack kinetics. During the project eight manuscripts have been prepared and submitted to scientific journals. Five of these are included here forming the main body of the dissertation. The topics of these include development and test of a new nano-adhesive based on polymer brushes to bond rubber and metal, a novel peel test specimen comprising a heterogeneous geometry, consequences of zones of weak adhesion, bridging of a support carrier in the bondline, and, macro- and micromechanical behavior of pillar-structured interfaces. Analytical modeling and numerical simulations backed up by experimental testing were used to study these, among others.

### Referencer

[2] K. Autumn, “Gecko Adhesion: Structure, Function, and Applications,” MRS Bull., vol. 32, no. 6, pp. 473–478, 2007.

[3] P. P. A. Mazza, F. Martini, B. Sala, M. Magi, M. P. Colombini, G. Giachi, F. Landucci, C. Lemorini, F. Modugno, and E. Ribechini, “A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed,” J. Archaeol. Sci., vol. 33, no. 9, pp. 1310–1318, 2006.

[4] H. Lowood and I. McNeil, “An Encyclopaedia of the History of Technology,” Technol. Cult., vol. 33, no. 1, p. 183, 2006.

[5] R. D. Adams, Adhesive bonding: Science, technology and applications. 2005.

[6] S. P. Skovsgaard and H. M. Jensen, “Constitutive model for imperfectly bonded fibre-reinforced composites,” Compos. Struct., vol. 192, pp. 82–92, 2018.

[7] S. P. Skovsgaard and H. M. Jensen, “Three-dimensional constitutive model for elastic-plastic behaviour of fibre-reinforced composites,” Int. J. Solids Struct., vol. 139-140, pp. 150–162, 2018.

[8] S. P. Skovsgaard and H. M. Jensen, “A general approach for the study of kink band broadening in fibre composites and layered materials,” Eur. J. Mech. A/Solids, vol. 74, pp. 394–402, 2019.

[9] S. Peters, Handbook of Composites. 2012.

[10] R. Zhou, P. Zhu, and Z. Li, “The shielding effect of the plastic zone at mode-II crack tip,” Int. J. Fract., vol. 171, no. 2, pp. 195–200, 2011.

[11] O. Volkersen, “Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten,” Luftfahrtforschung, vol. 15, no. 1/2, pp. 41–47, 1938.

[12] R. Quispe Rodr´ıguez, W. P. De Paiva, P. Sollero, M. R. Bertoni Rodrigues, and ´ E. L. De Albuquerque, “Failure criteria for adhesively bonded joints,” in Int. J. Adhes. Adhes., vol. 37, pp. 26–36, 2012.

[13] M. Goland and E. Reissner, “The Stresses in Cemented Joints.,” J. Appl. Mech., vol. 11, no. 1, pp. A17–A27, 1944.

[14] L. J. Hart-Smith, Adhesive-bonded single-lap joints. Citeseer, 1973.

[15] J. J. Benbow and F. C. Roesler, “Experiments on controlled fractures,” Proc. Phys. Soc. Sect. B, vol. 70, no. 2, pp. 201–211, 1957.

[16] L. Fryba, “History of Winkler foundation,” Veh. Syst. Dyn., vol. 24, no. sup1, p. 7, 1995.

[17] D. A. Dillard, B. Mukherjee, P. Karnal, R. C. Batra, and J. Frechette, “A review of Winkler’s foundation and its profound influence on adhesion and soft matter applications,” 2018.

[18] N. B. Salem, M. K. Budzik, J. Jumel, M. E. Shanahan, and F. Lavelle, “Investigation of the crack front process zone in the double cantilever beam test with backface strain monitoring technique,” Eng. Fract. Mech., vol. 98, no. 1, pp. 272–283, 2013.

[19] J. Cognard, “The mechanics of the wedge test,” J. Adhes., vol. 20, no. 1, pp. 1–13, 1986.

[20] F. E. Penado, “A Closed Form Solution for the Energy Release Rate of the Double Cantilever Beam Specimen with an Adhesive Layer,” J. Compos. Mater., vol. 27, no. 4, pp. 383–407, 1993.

[21] R. S. Rivlin, “The Effective Work of Adhesion,” in Collect. Pap. R.S. Rivlin, pp. 2611–2614, Springer, 2013.

[22] K. Kendall, “The adhesion and surface energy of elastic solids,” J. Phys. D. Appl. Phys., vol. 4, no. 8, pp. 1186–1195, 1971.

[23] J. W. Cook, S. Edge, and D. E. Packham, “The adhesion of natural rubber to steel and the use of the peel test to study its nature,” Int. J. Adhes. Adhes., vol. 17, no. 4, pp. 333–337, 1997.

[24] M. Barquins and M. Ciccotti, “On the kinetics of peeling of an adhesive tape under a constant imposed load,” Int. J. Adhes. Adhes., vol. 17, no. 1, pp. 65–68, 1997.

[25] J. M. Piau, C. Ravilly, and C. Verdier, “Peeling of polydimethylsiloxane adhesives at low velocities: Cohesive failure,” J. Polym. Sci. Part B Polym. Phys., vol. 43, no. 2, pp. 146–157, 2005.

[26] K. Kendall, M. Kendall, and F. Rehfeldt, Adhesion of cells, viruses and nanoparticles. 2011.

[27] Z. Gu, S. Li, F. Zhang, and S.Wang, “Understanding surface adhesion in nature: A peeling model,” 2016.

[28] L. F. da Silva and R. D. Campilho, “Advances in numerical modelling of adhesive joints,” in SpringerBriefs Appl. Sci. Technol., no. 9783642236075, pp. 1–93, 2012.

[29] N. A. Adams, R. D., Peppiatt, “Stress analysis of adhesively-bonded lap joints,” Compos. Struct., vol. 47, no. 1-4, pp. 673–678, 1999.

[30] B. N. Legarth, “Debonding of particles in anisotropic materials,” Int. J. Mech. Sci., 2003.

[31] K. N. Shivakumar, P. W. Tan, and J. C. Newman, “A virtual crack closure technique for calculating stress intensity factors for cracked three dimensional bodies,” Int. J. Fract., 1988.

[32] C. V. Nielsen, B. N. Legarth, and C. F. Niordson, “Extended FEM modeling of crack paths near inclusions,” Int. J. Numer. Methods Eng., 2012.

[33] G. Fajdiga, Z. Ren, and J. Kramar, “Comparison of virtual crack extension and strain energy density methods applied to contact surface crack growth,” Eng. Fract. Mech., 2007.

[34] L. F. M. Da Silva and A. O¨ chsner, Modeling of adhesively bonded joints. 2008.

[35] S. G. Hong and F. J. Boerio, “Adhesive Bonding of Oil-Contaminated Steel Substrates,” J. Adhes., vol. 32, no. 2-3, pp. 67–88, 1990.

[36] M. Olia and J. N. Rossettos, “Analysis of adhesively bonded joints with gaps subjected to bending,” Int. J. Solids Struct., vol. 33, no. 18, pp. 2681–2693, 1996.

[37] S. Heide-Jørgensen, S. Teixeira de Freitas, and M. K. Budzik, “On the fracture behaviour of CFRP bonded joints under mode I loading: Effect of supporting carrier and interface contamination,” Compos. Sci. Technol., vol. 160, pp. 97–110, 2018.

[38] K. Kendall, “Control of Cracks by Interfaces in Composites,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 341, no. 1627, pp. 409–428, 2006.

[39] P. J. Das Neves, L. F. Da Silva, and R. D. Adams, “Analysis of mixed adhesive bonded joints part II: Parametric study,” J. Adhes. Sci. Technol., vol. 23, no. 1, pp. 35–61, 2009.

[40] M. K. Budzik, J. Jumel, and M. E. Shanahan, “Impact of interface heterogeneity on joint fracture,” J. Adhes., vol. 88, no. 11-12, pp. 885–902, 2012.

[41] S. M. Xia, L. Ponson, G. Ravichandran, and K. Bhattacharya, “Adhesion of heterogeneous thin films - I: Elastic heterogeneity,” J. Mech. Phys. Solids, vol. 61, no. 3, pp. 838–851, 2013.

[42] S. M. Xia, L. Ponson, G. Ravichandran, and K. Bhattacharya, “Adhesion of heterogeneous thin films II: Adhesive heterogeneity,” J. Mech. Phys. Solids, vol. 83, pp. 88–103, 2015.

[43] C. Cuminatto, G. Parry, and M. Braccini, “A model for patterned interfaces debonding - Application to adhesion tests,” Int. J. Solids Struct., vol. 75-76, no. august, pp. 122–133, 2015.

[44] F. A. Cordisco, P. D. Zavattieri, L. G. Hector, and B. E. Carlson, “Mode i fracture along adhesively bonded sinusoidal interfaces,” Int. J. Solids Struct., vol. 83, pp. 45–64, 2016.

[45] H. K. Minsky and K. T. Turner, “Composite Microposts with High Dry Adhesion Strength,” ACS Appl. Mater. Interfaces, vol. 9, no. 21, pp. 18322–18327, 2017.

[46] S. R. Ranade, Y. Guan, R. B. Moore, J. G. Dillard, R. C. Batra, and D. A. Dillard, “Characterizing fracture performance and the interaction of propagating cracks with locally weakened interfaces in adhesive joints,” Int. J. Adhes. Adhes., vol. 82, pp. 196–205, 2018.

[47] M. A. Dias, L. H. Dudte, L. Mahadevan, and C. D. Santangelo, “Geometric mechanics of curved crease origami,” Phys. Rev. Lett., vol. 109, no. 11, 2012.

[48] Y. Yang, M. A. Dias, and D. P. Holmes, “Multistable kirigami for tunable architected materials,” Phys. Rev. Mater., vol. 2, no. 11, pp. 1–6, 2018.

[49] D. G. Hwang, K. Trent, and M. D. Bartlett, “Kirigami-Inspired Structures for Smart Adhesion,” ACS Appl. Mater. Interfaces, vol. 10, no. 7, pp. 6747–6754, 2018.

[50] A. T. Nguyen, M. Brandt, A. C. Orifici, and S. Feih, “Hierarchical surface features for improved bonding and fracture toughness of metal-metal and metal-composite bonded joints,” Int. J. Adhes. Adhes., vol. 66, pp. 81–92, 2016.

[51] S. Heide-Jørgensen, R. K. Møller, K. B. Buhl, S. U. Pedersen, K. Daasbjerg, M. Hinge, and M. K. Budzik, “Efficient bonding of ethylenepropylene-diene M-class rubber to stainless steel using polymer brushes as a nanoscale adhesive,” Int. J. Adhes. Adhes., vol. 87, b´no. September, pp. 31–41, 2018.

[52] C. M. Landis, T. Pardoen, and J. W. Hutchinson, “Crack velocity dependent toughness in rate dependent materials,” Mech. Mater., vol. 32, no. 11, pp. 663–678, 2000.

[53] B. Mukherjee, D. A. Dillard, R. B. Moore, and R. C. Batra, “Debonding of confined elastomeric layer using cohesive zone model,” Int. J. Adhes. Adhes., vol. 66, pp. 114–127, 2016.

[54] M. K. Budzik and S. Heide-Jørgensen, “Branching and softening of loading path during onset of crack at elastic-brittle interface,” Mech. Mater., vol. 127, pp. 1–13, aug 2018.

[55] S. Heide-Jørgensen and M. K. Budzik, “Crack growth along heterogeneous interface during the DCB experiment,” Int. J. Solids Struct., vol. 120, pp. 278–291, 2017.

[56] M. Taleb Ali, J. Jumel, and M. E. Shanahan, “Effect of adhesion defects on crack propagation in double cantilever beam test,” Int. J. Adhes. Adhes., vol. 84, pp. 420–430, 2018.

[57] S. Heide-Jørgensen and M. K. Budzik, “Effects of bondline discontinuity during growth of interface cracks including stability and kinetic considerations,” J. Mech. Phys. Solids, vol. 117, pp. 1–21, 2018.

[58] T. Pardoen, T. Ferracin, C. M. Landis, and F. Delannay, “Constraint effects in adhesive joint fracture,” J. Mech. Phys. Solids, vol. 53, no. 9, pp. 1951–1983, 2005.