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Abstract

This thesis concerns the development of tools that are useful for designing
machine systems and components in an virtual environment using flexi-
ble multibody dynamics. Initially, flexible multibody dynamics is briefly
reviewed to explain available formalisms and possible applications of this
method. Subsequently, attention is turned towards the analysis of structures
that undergo large deformations and rotations using shell finite elements
based on the absolute nodal coordinate formulation, ANCF. This topic is the
focus for the remainder of the thesis.

The thesis is divided into three main parts. The first part acts as a gen-
eral introduction to ANCF based shell finite elements and sums up available
elements found in the research literature. In the end, a new ANCF element
developed during this PhD project is presented which gives enhanced mod-
eling capabilities of problems including e.g. moving boundary conditions.

The second part concerns the performance and behavior of a certain class
of ANCF shell elements that are developed for analysis of thin shell struc-
tures. This includes discussions on differences concerning their kinematic de-
scriptions and disclosure of certain issues regarding their performance. Those
being sensitivity to irregular mesh, pour representation of curved structures
and load dependent convergence when analyzing curved structures.

The final part concerns the development of a new versatile ANCF shell el-
ement. This element is distinguished by being able to describe both thin and
thick curved structures. This part contains a thorough derivation of its kine-
matics and stiffness description, as well as numerical examples to demon-
strate its performance. However, this part of the study is not yet complete.

Finally, the findings of this PhD project are summed up in a conclusion
and possibilities for further studies and perspectives are outlined.
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Resumé

Denne afhandling omhandler udviklingen af værktøjer, som er nyttige til at
designe maskiner og maskindele i et virtuelt miljø vha. fleksibel flerlegeme-
dynamik. Indledningsvist gives der en kort gennemgang af den fleksible
flerlegeme-dynamik, for at give et overblik over metoden og dens mulige
anvendelser. Dernæst flyttes opmærksomheden over på analyse af struk-
turer som udsættes for store deformationer og rotationer vha. endelige skal-
elementer (eng: shell finite elements) baseret på absolutte knude koordinater
(eng: absolute nodal coordinate formulation, ANCF). Dette emne vil være
fokus i resten af afhandlingen.

Afhandlingen er inddelt i 3 dele. Den første del giver en general in-
troduktion til ANCF skal-elementer, og opsummerer de forskellige element-
klasser som kan findes i litteraturen. Mod slutningen introduceres der et nyt
ANCF skal-element, som er udviklet under dette ph.d.-projekt. Dette element
muliggør forbedret modellering af problemer med mobile randbetingelser.

Anden del omhandler effektiviteten og egenskaberne hos en særlig klasse
af ANCF skal-elementer, som er udviklet specielt til analyse af tynde skal-
strukturer. Heri diskuteres der forskelle i deres kinematiske beskrivelser og
der fremhæves nogle uheldige egenskaber vedrørende deres adfærd. Det
være sig følsomhed overfor uensartede elementstørrelser, ringe beskrivelse af
kurvede strukturer og lastafhængig konvergens i forbindelse med analyse af
kurvede strukturer.

Den sidste del omhandler udviklingen af et nyt alsidigt ANCF skal-ele-
ment. Dette element udmærker sig ved at være anvendeligt til at beskrive
både tynde og tykke skalstrukturer. Denne del indeholder en grundig udled-
ning af elementets kinematik og stivhed, samt numeriske eksempler som
demonstrerer dets effektivitet. Denne del af studiet er dog ikke færdiggjort
endnu.

Slutteligt opsummeres resultaterne af ph.d.-studiet og der nævnes mu-
ligheder for fremtidige arbejder og perspektiver.
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Abbreviations

ALE Arbitrary Lagrange-Euler

ANCF Absolute nodal coordinate formulation

ANS Assumed natural strain

CID Curve induced distortion

CM Continuum mechanics

d.o.f. Degrees of freedom
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FFRF Floating frame of reference formulation

LD Large deflection

Q8 Eight noded quadratic shell finite element

RI Reduced integration

SD Small deflection

SM Structural mechanics

Matrix and vector variables
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E Green-Lagrange strain tensor

G Matrix of EAS polynomials

KT Tangent stiffness matrix

M Mass matrix
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Nomenclature

N Matrix of shape functions

n Normal vector

q Vector of generalized coordinates for an element

qi Vector of generalized coordinates for node i

r Position vector of an arbitrary point

ri Position vector of node i

Qe Vector of generalized elastic forces

Q f Vector of generalized external forces

S Second Piola-Kirchhoff stress tensor

α Vector of EAS parameters

ε Vector of in-plane normal and shear strains

γ Vector of transverse shear strains

κ Vector of midplane curvatures

λ Vector of Lagrange multipliers

Φ Vector of algebraic constraint equations

Latin variables

A Area

E Young’s modulus

h Thickness

L Element length

t Time

V Volume

W Element width

X, Y, Z Global coordinates

x, y, z Local element coordinates
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Greek variables

ξ, η Isoparametric mapping parameters

ν Poisson’s ratio

ρ Material density
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Mathematical operators

δ [·] Virtual operator

∂ [·] Partial derivative operator

[·]T Matrix transpose

[·]−1 Matrix inverse

˙[·] First order time derivative

¨[·] Second order time derivative

: Double dot product

⊗ Kronecker product

Sub and superscripts

[·]p Quantity associated to point p

[·]i Quantity associated to node i

[·]0 Quantity defined in the initial configuration i

[·](n) Quantity defined at iteration n
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Introduction

The design engineers of today are facing remarkable challenges when
designing new products and machines. The requirements demanded
by both consumers and legislators seem to be ever increasing and
products must be larger, lighter, faster, and more reliable to main-
tain a market leading position. Additionally, the major challenge in
applying for financial support for new product investments calls for
higher focus on reliable risk analysis. To comply with these demands,
design engineers are turning towards new and advanced methods in
the design process. Exotic materials such as lightweight metal alloys
and fiber reinforced polymer composites are chosen to obtain prod-
ucts with high stiffness to weight ratio, good aesthetic characteristics
and/or low energy consumption. The latter being both in the produc-
tion, the service and the decomposition phase. Advanced manufac-
turing processes such as rapid prototyping and robotics are used for
low production cycles and customer specific products. Sophisticated
simulation software is used throughout the entire design process for
enhanced product insight and optimized product behavior. During
the recent years, the combination of advanced simulation tools and
increasing computational power has made it possible to simulate ex-
treme events and perform numerous what-if scenarios in a virtual en-
vironment. The use of computer-aided engineering tools makes it pos-
sible to investigate the potential of any plausible design by including
e.g. non-linear material descriptions, fluid-structural interaction (FSI)
and large displacement formulations in numerical models. This has
reduced the need for physical testing, leading to reduced time to mar-
ket and safer and more reliable products.

When designing complex mechanical systems, design engineers
must choose an appropriate analysis tool for the problem at hand. If
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Introduction

the mechanical system is governed by large rigid-body motion rather
than deformations, multibody dynamics would be an excellent choice
[31, 75, 67]. Multibody dynamics is developed specifically to model the
interaction between interconnected spatial bodies in the time domain.
During simulation, the bodies can be subjected to complicated load-
ing while taking into account inertia forces due to large rigid body
motion. This makes it possible to efficiently analyze and optimize
e.g. dynamic behavior of systems for improved load carrying capac-
ity or performance behavior. Multibody dynamics has a proven track
record of successful applications in several engineering fields includ-
ing robotics, aerospace engineering, energy industry, vehicle dynam-
ics, bio-mechanics, and rotor dynamics.

When analyzing a mechanical system, the modeling of the kine-
matic coupling of bodies is an essential part. The kinematic coupling of
bodies is modeled using algebraic constraint equations [31, 60]. These
constraints are used to model idealized joints that allow for some rela-
tive motion between bodies while eliminating others. These constraint
equations are, in the general, case highly non-linear equations that are
functions of both the system configuration and time. The constraint
equations can be coupled with the Newton-Euler equations leading to
a set of constrained equations of motion for the entire system. These
sets of equations contain both algebraic and differential terms. Due
to the non-linearity of both the constraint equations and the overall
motion of the system, in general, there exists no analytical closed form
solution to the constrained equations of motion. This calls for efficient
numerical solution techniques in order to simulate system behavior
over time.

1 Flexible multibody dynamics

Traditionally, when using multibody dynamics, the bodies have been
considered rigid [31]. During the last decades, though, the multibody
approach has been expanded with capabilities to include deformable
bodies in order to obtain more realistic simulation models. Further-
more, the use of flexible bodies can help the designer gain detailed
insight into the performance of systems where deflections of the phys-
ical components will affect the overall dynamic behavior. The incor-
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1. Flexible multibody dynamics

(a) (b)

(c) (d)

Fig. 1: Possible applications of flexible multibody dynamics. Two axis delta robot,
Codian Robotics D2-1000 (a), schematics of front suspension of an 2010 Alfa Romeo
Giulietta (b), Palfinger telescopic boom crane (c), and Vestas V-90 3 MW offshore wind
turbine (d).

poration of flexible bodies in the multibody dynamics framework has
proven useful in many practical applications. A few examples of these
are shown in Fig. 1 and described below.

High speed flexible manipulators (see Fig. 1a) are now a common
part of the production line of e.g. electronic devices where they are
used to position electronic components on printed circuit boards be-
fore soldering. This task requires both very high precision and speed
to ensure a high throughput. Due to the fast work cycle speed, there
is a risk that the mechanism will start to resonate at a certain work
pace. Using flexible multibody dynamics [47], a robot can be designed
such that the resonance frequencies do not coincide with the work fre-
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quency and hereby reduce the risk of resonance in the mechanism.
Furthermore, a flexible multibody dynamics model can be coupled
with a controller model to tune the controller parameters to obtain
the most precise and efficient movement of the end effecter mounted
on the robot. Such a procedure can help to reduce the changeover
time between different products since programming of the robot can
be done offline.

In the area of vehicle design, multibody dynamics is one of the key
tools used to design and optimize suspension components (see Fig.
1b) to ensure vehicle stability and ride comfort [11]. Flexible multi-
body dynamics modeling of certain suspension components can be
used to represent the components that can be difficult to character-
ize using e.g. simple linear springs [63, 89, 37]. Correct modeling of
these components is crucial in order to create models that can predict
the physical behavior of the vehicle to a high order of accuracy. This
is important since the models can be used to determine the vehicles
capability to handle sudden or hazardous maneuvers in a safe man-
ner. Furthermore, the models can be used to extract the peak loads on
key components for further analysis and design in order to produce
components that do not fail unexpectedly.

In the transport and handling industry, a wide selection of cranes
are used to pick up payload and carefully place it in a specific loca-
tion. In the case of heavy payloads or cranes with a long reach (see
Fig. 1c) the crane may deform as the load is moved, which means that
flexibility must be taken into account for accurate modeling. A good
multibody dynamics model of such cranes can be a valuable tool to e.g.
determine the safe working envelope of the crane or simulate a diffi-
cult lift to determine and remedy possible problems before the actual
lift. For optimal design of a crane’s hydraulic system, coupled models
of the hydraulics and the crane can be used to design hydraulic valves
and control algorithms for smooth and safe operation [4]. In the case
of telescopic cranes (see Fig. 1 (c)), special care must be taken in the
modeling phase to correctly model the interaction between the tele-
scopic sections which is a complex moving boundary problem. Here,
beam elements and kinematic sliding joint constraints can be applied
to obtain a sound model of the telescopic boom [25].

Multibody dynamics has also proven useful for the design of wind
turbines (see Fig. 1d). Here, several purpose built design tools exist
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1. Flexible multibody dynamics

for determining the loads acting on a wind turbine e.g. when they
are subjected to time series of different varying wind speeds or during
a start-up or shut-down sequence. Some of them take advantage of
the multibody dynamics framework (e.g. HAWC2 [45]) in order to
make coupled models of the wind turbine components, such as the
tower, blades and gearbox, and the different control systems. Here,
for instance, the incorporation of blade flexibility is crucial to capture
the blade deformation as the wind makes the blades deflect and twist.
This is important in order to calculate the angle of attack of each blade
to calculate the correct lift and drag forces. Multibody dynamics is also
used to conduct more detailed studies e.g. on the components in the
drive train. One area of interest has been the influence of misalignment
between the main shaft and the planetary gearbox on fatigue loads
[30]. Here it was concluded that it was necessary to model the bodies
as flexible for better comparison with measured data.

The examples listed above all rely on sound and valid multibody
dynamics models where flexibility is accounted for in an appropriate
manner. The chosen method for modeling the flexibility must be able
to accurately represent the deformation that the body undergoes with-
out over-complicating the problem. This could lead to cumbersome
modeling or an unnecessarily high number of degrees of freedom (d.o.f.)
which will increase the overall analysis time. Depending on the na-
ture of the deformations, several techniques can be applied to describe
the flexibility [74, 97]. The most widely used method is known as the
floating frame of reference formulation (FFRF) [93, 13, 85]. In the FFRF,
the displacement of a deformable body is divided into large overall
motions of a local reference frame fixed to the body, and deformations
expressed with respect to this frame. Depending on the shape of the
body, the local body deformations can be calculated in several ways
[75, 74, 70].

One group of methods for describing the local body deformations
that, in particular, has gained much popularity is the wide selection of
component mode synthesis (CMS) based methods. Here, especially, the
Craig-Bampton method [15] is one of the most widely used [14]. Over-
all, when using a CMS-method, it is assumed that the deformation of
a body is described as a superposition of a set of pre-calculated mode
shapes. The deformation of the body is then calculated as the prod-
uct of the mode shapes and a set of modal coordinates where each
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mode shape will have a corresponding modal coordinate. The modal
coordinates can be interpreted as a set of scale factors, and these are
the unknowns that will be calculated during simulation. When using
the Craig-Bampton method, the collection of mode shapes consists of
both dynamic and static modes. This makes the modal basis capable
of describing deformations both due to static as well as dynamic loads.

The use of the FFRF for describing flexible bodies in the multibody
dynamics framework has both advantages and disadvantages. The
main advantage is that, in general, the stiffness description is simple
and linear, which means that stiffness matrices and other necessary
data structures associated to calculating the deformations can be de-
fined and calculated in a pre-processing step before simulation. This
reduces the computational effort during simulation, but it applies only
when small strains and linear material behavior is assumed. The in-
ertia description, on the other hand, becomes cumbersome and highly
non-linear due to the fact that deformations are described with respect
to a local reference frame that undergoes large rotations. Overall, the
FFRF is widely recognized as the standard method for incorporating
flexibility in multibody dynamics models due to its good performance,
and it has proven its worth in numerous applications.

In some applications, assumptions regarding small strains and lin-
ear material behavior can become invalid e.g. due to the loading or
the characteristics of the deformable body. For such applications, the
FFRF cannot be applied directly. However, studies have been con-
ducted where the FFRF has been applied in large deformation prob-
lems, either by using sub-structuring of the flexible body into several
interconnected flexible bodies [37] or by including higher order strain
terms such that large deformations can be accounted for [57]. Such
use of the FFRF complicates the modeling of the flexible body consid-
erably, and makes the stiffness description dependent on the deformed
state of the flexible body.

In order to handle problems with large deformations in a more el-
egant manner, other approaches that are inherently capable of treating
combined large deformation and rotation problems have been devel-
oped. One is the large rotation vector formulation (LRVF) [83, 84, 97] that
is based in the finite element community and has been under develop-
ment since the middle of the 1980s. In this approach, all state variables
are expressed in a global inertial reference frame and the kinematics
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2. Absolute nodal coordinate formulation

are expressed using both finite displacements and rotations as well
as a large strain description. This leads to a finite element formula-
tion capable of describing both large rotations and large deformations.
However, the use of both position and rotation d.o.f. in the kinematic
description leads to a separate interpolation of these. Besides a more
cumbersome implementation due to the separate position and rotation
field, the LRVF has also been reported to have a redundant description
due to the use of two separate meshes [16], one for the positions and
one for the rotations, respectively, which could lead to some challenges
when analyzing large deformation problems.

As an alternative to the large rotation vector formulation, the abso-
lute nodal coordinate formulation (ANCF) has been introduced [72]. The
ANCF is based in the multibody dynamics community and uses a
more consistent kinematic description based on nodal positions and
slope vectors defined with respect to a fixed global reference frame.
The ANCF has certain advantages when it comes to implementation
in the multibody dynamics framework [29]. Due to this, the method
has gained much attention in the multibody dynamics research com-
munity. However, the ANCF is not perfect and suffers from certain
drawbacks, e.g. slow convergence compared to similar methods [6].
The remainder of this thesis is devoted to further investigate some of
these drawbacks and their possible remedies.

2 Absolute nodal coordinate formulation

The Absolute Nodal Coordinate Formulation (ANCF) was introduced
by Shabana [72, 73] and since, many researchers have joined to further
develop and enhance the method. The ANCF is a non-incremental fi-
nite element formulation capable of describing large overall displace-
ments in a straight forward manner. This is accomplished by applying
two concepts that, when combined, are unique for the ANCF:

• Nodal positions are described using position vectors expressed
in the global inertial reference frame.

• Nodal orientations are described using slope vectors of the posi-
tion field.

9



Introduction

Using these concepts, a set of element generalized coordinates con-
sisting of nodal positions and slope vectors is chosen. The position
field spanned by the nodes is described by interpolation of the nodal
positions and slopes 1 by appropriate interpolation functions. There
are several benefits associated to the use of global positions and slope
vectors when describing the element kinematics. The most significant
being the use of slope vectors to define nodal orientations. Since a
vector can be oriented arbitrarily, no assumptions are made regarding
the magnitude of nodal rotations. This means that ANCF elements
can exhibit arbitrary large rotations. Furthermore, these slope vec-
tors do not have to be perpendicular to each other or be unit vectors.
This means that the slope vectors can be used to describe deformation
and rotation of the cross section, which increases the modeling fidelity
[86]. Additionally, the use of global parameters as generalized coordi-
nates leads to a constant mass matrix and zero centrifugal and Coriolis
forces [79]. This simple inertia description makes ANCF attractive for
implementation in the multibody dynamics framework.

The use of global position and slope vectors as generalized coor-
dinates is not without problems. Because the element kinematics is
based on positions, element strains must be calculated in a way such
that rigid body motion produces zero strain. Furthermore, elements
that have initial curvature or are skew in their reference configura-
tion must be modeled with care to remove any initial strain energy
that could influence simulation results. In general, the stiffness de-
scription of ANCF elements is quite cumbersome and several differ-
ent techniques have been applied to derive the internal elastic forces.
Techniques ranging from simple structural mechanics [28] to advanced
beam theories [55] or full continuum mechanics [86].

So far several types of different ANCF based finite elements of both
beam and shell types have been proposed. The most extensive re-
search has been done within beam type elements. Here several differ-
ent combinations of generalized coordinates and stiffness descriptions
have been investigated. These extensive studies have led to reports
and treatment of severe problems with different locking mechanisms
[26]. Because of the intensive work of enhancing the ANCF beam el-

1Throughout this thesis, a slope refers to the gradient of the position field with
respect to a local element coordinate
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ements, these have been applied in various real life problems such as
tire modeling [89], leaf spring modeling [63], catenary systems [46, 71],
belt drives [42], and, underground cable installation [99].

Despite the numerous studies within beam elements, ANCF shell
elements seems to be lacking the same interest. To this date, only
a few different ANCF shell elements can be found in the literature.
They are thick fully parameterized rectangular elements [78, 53, 50],
thin rectangular elements [19, 21], and triangular elements [18, 54]. In
order to take the ANCF shell elements to the same level as the ANCF
beam elements, it is evident that the ANCF shell elements need more
research attention. Emphasis in this thesis is on rectangular ANCF
shell elements. It should be noted, though, that a wide selection of
triangular shell elements exist, but these are not treated here.

3 Scope of work

The remainder of this thesis is divided into three main parts. The
first two parts are primarily the contents of already published work.
However, further findings and discussions that are not included in the
original papers are presented here. This is done to further empha-
size and demonstrate findings and to support conclusions. Part III
describes some ongoing and pending work. Thus this part contains
some initial thoughts and findings.

Part I is devoted to review and discuss available ANCF shell for-
mulations. Initially, a review of the current state of the art rectangular
ANCF shells is given. This includes a novel ANCF shell finite element
with dynamic mesh properties introduced during this PhD project and
published in a journal paper [38].

In Part II, the overall behavior of thin rectangular ANCF shell el-
ements is investigated. This includes thorough studies on sensitivity
of thin ANCF shell elements with respect to irregular and arbitrary
mesh as well as their ability to analyze curved structures. This in-
vestigation is motivated by own findings that indicate that results are
affected when non-rectangular elements and arbitrary shaped meshes
are used. These findings are also published in a journal paper [40].
Towards the end of part II, a modified kinematic description of the
thin ANCF shell elements is presented. This modification is intended
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to remedy some of the problems noted in the first sections in Part II.
This method is published in a conference paper [39]

In part III, the attention is turned to a new class of ANCF shell ele-
ments that has been introduced recently. This element class applies to
a wider range of applications since it can express shear and thickness
deformations. This means that these elements can be applied for ana-
lyzing thick shell structures. Initially, current status with this element
class is summarized, and then a new quadratic shear and thickness
deformable ANCF shell element is introduced. Here, emphasis is on
the description of the internal elastic forces and remedies for alleviat-
ing problems regarding locking. The work on the quadratic element is
initiated during this PhD project, but is still in progress.

Finally, the work carried out during the PhD project is discussed
and summed up in the closing. Here, possibilities for further work are
also mentioned.
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Shell elements based on the
ANCF

A shell structure is a three dimensional solid structure where one of
the dimensions is significantly smaller than the other two. This shorter
dimension is referred to as the thickness. When analyzing such a struc-
ture using any given finite element method, the overall structure is dis-
cretized into smaller shell-like elements for which a set of equilibrium
equations can be derived in a systematic manner. Then, the equations
for each element are assembled into an overall system of equations
that governs the behavior of the structure when subjected to loads and
boundary conditions. In this study, the reviewed ANCF elements for
analyzing shell and plate structures are all referred to as ANCF shell
finite elements even though, they may not be fully generalized to or
capable of analyzing arbitrary curved structures. However, it is be-
lieved that they can be categorized as shell elements as they can carry
both membrane, bending and, for some, transverse shear deformation.

A general three dimensional rectangular ANCF shell finite element
is shown in Fig. 2. The position of an arbitrary point p located in the
element volume is described by the position vector rp expressed with
respect to the global inertial reference frame XYZ. The position of an
arbitrary point in the element volume can be expressed by interpola-
tion of the nodal generalized coordinates using a set of interpolation
shape functions.

r = Nq (3.1)

where N is a matrix containing the interpolation shape functions and
q is the vector of element generalized coordinates. q contains infor-
mation regarding the element configuration such as the nodal posi-
tions and orientations. The generalized coordinates are all expressed
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Fig. 2: An ANCF shell element shown with its local element coordinate system. The
dashed lines symbolize the element midplane.

with respect to the global reference frame. The interpolation shape
functions N are functions of the local element coordinates x, y, and z
and can be derived using different approaches depending on the el-
ement application and choice of generalized coordinates. The shape
functions are constant in time while the generalized coordinates are
changing over time.

Using the relationship in Equation (3.1), the position vector rp (see
Fig. 2) is obtained by evaluating N at the local coordinates

(
xp, yp, zp

)

and multiplying it by the vector of generalized nodal coordinates at the
time instance tp corresponding to the element configuration shown in
Fig. 2:

rp = N
(
xp, yp, zp

)
q
(
tp
)

(3.2)

The simple kinematic relation between the nodal coordinates and an
arbitrary point in the element volume makes it straightforward to cal-
culate the velocity ṙ and acceleration r̈ of an arbitrary point as:

ṙ = Nq̇

r̈ = Nq̈
(3.3)

In the following chapters, two classes of ANCF shell elements will
be reviewed. Here the choice of element generalized coordinates will
be discussed in depth to clarify which impact the choice of nodal de-
grees of freedom has on the element application. Furthermore, equi-
librium equations for the reviewed ANCF shell elements are derived.
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4 Fully parameterized shell elements
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Fig. 3: A fully parameterized ANCF shell element shown with its nodal slope vectors.
The dashed lines symbolize the element midplane.

The original ANCF shell element [53, 78] is a four noded element that
accommodates first order slope vectors with respect to all three local
coordinates x, y and z for describing the element kinematics (See Fig.
3). Such an element is often referred to as a fully parameterized element.
Together with the position d.o.f., each node, i, has twelve d.o.f.:

qi =

[
rT

i

(
∂ri

∂x

)T (∂ri

∂y

)T (∂ri

∂z

)T
]T

(4.4)

Here, qi is the generalized coordinates for node i, ri is the position
vector of node i, and x, y and z are the local element coordinates. This
leads to a total of 48 d.o.f. for the entire element.

The use of slope coordinates with respect to all three coordinate
axes has certain benefits. First of all, full first order continuity at the
nodal points is enforced. This results in a smooth geometrical transi-
tion between adjacent elements for both the mid-plane and the cross
section. Furthermore, the resulting kinematic description allows for
advanced deformation modes. In-plane rotations, i.e. drilling d.o.f.,
are obtained by the rotation of the in-plane slope vectors, and shear
and thickness deformation is available as the transverse slope vector
does not need to be perpendicular to the in-plane slope vectors or
have a fixed length. Additionally, the large number of d.o.f. leads to
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a high order interpolation which means that a complex shape can be
described using a low number of elements.

For this type of element, the stiffness description has been based
both on the Kirchhoff theory [78] and a full continuum mechanics ap-
proach [53], the latter being the most widely used. The use of the
continuum based stiffness description in its pure form is unfavorable
as it leads to an overly stiff representation due to locking [50, 51, 69].
Here, it is reported that when the stiffness description is based purely
on the interpolated displacement field, the element will suffer from
transverse shear, Poisson thickness and curvature locking. The curva-
ture and shear locking can be treated by applying linear interpolation
of the shear angles. The Poisson thickness locking is addressed by
adding a second order slope vector in the transverse direction which
leads to a correct linear description of the transverse normal strain.
The extra slope vectors, however, bring the total number of d.o.f. up
to 60 d.o.f for the element.

5 Gradient deficient shell elements

Soon after the introduction of the fully parameterized shell element,
new elements developed specifically for handling thin shell and plate
problems were introduced [19, 21]. Here, two different element param-
eterizations have been proposed. Common to both of them, however,
is that they omit the transverse slope vectors, ∂ri/∂z, as generalized
nodal coordinates (See Fig. 4). This leads to a kinematic description
where the shell structure is expressed entirely by the motion and de-
formation of the shell mid-plane, and, as a consequence, transverse
shear and thickness deformation cannot be described. As this element
type does not employ a full set of slope coordinates, the element is of-
ten referred to as a gradient deficient element. In this study, the gradient
deficient shell element is referred to as a thin ANCF shell element.

The original thin ANCF shell element [19] uses nodal positions,
two first order, and one second order slope vector as generalized nodal
coordinates:

qi =

[
rT

i

(
∂ri

∂x

)T (∂ri

∂y

)T ( ∂2ri

∂x∂y

)T]T

(5.5)
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Fig. 4: A gradient deficient thin ANCF shell element shown with its nodal slope
vectors.

This leads to an element with 48 d.o.f. The two first order slope vec-
tors are used to describe in-plane deformation and nodal orientation
while the second order slope vector is associated with the curvature of
the element. The element kinematics is described using a set of shape
functions based products of Hermite beam shape functions [101]. Us-
ing this approach, C1 continuous interpolation is ensured. The stiff-
ness description is based on the Kirchoff plate theory, and numerous
comparisons between numerical examples and corresponding analyti-
cal results are presented with good agreement.

The authors of the original thin ANCF shell element [19] also men-
tion the possibility of constructing a simplified element with only 36
d.o.f. This should be done by omitting the second order slope vector
from the generalized coordinates as follows:

qi =

[
rT

i

(
∂ri

∂x

)T (∂ri

∂y

)T
]T

(5.6)

Such an element has been implemented and studied in detail [21]. In
this study, the kinematic description utilizes shape functions derived
using an incomplete quartic polynomial. Using this polynomial expan-
sion, only C0 continuity between adjacent elements can be ensured.
The stiffness description is also based on the Kirchhoff shell theory,
and numerical results for thin plate problems are compared to results
obtained using the fully parameterized element [53]. The compari-
son shows that the thin ANCF shell element shows significantly better
convergence and faster computational speed when compared to the
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fully parameterized element when thin shell structures are analyzed.
This observation also supports the observations regarding locking in
the fully parameterized ANCF shell element.

6 Equations of motion

In this section, the governing equations for ANCF shell elements are
derived. That being the equations of motion, since the ANCF for-
mulation is intended for implementation in the multibody dynam-
ics framework. The equations are derived in a general manner and
two approaches for calculating the internal elastic forces are described.
At the end, a numerical procedure for obtaining static equilibrium is
given.

The equations of motion for an ANCF element can be derived using
several techniques, e.g. using the D’Alembert-Lagrange equations or
Hamilton’s principle [75]. Another way is to calculate the virtual work
δW for a system in dynamic equilibrium:

δW = δWi + δWe − δW f = 0 (6.7)

Here δWi, δWe, and δW f denote the virtual work done by inertia, in-
ternal elastic, and external forces, respectively. The virtual work done
by the inertia and external forces can be calculated as follows.

δWi =
∫

V0

δrT r̈ρdV

δW f =
∫

V0

δrTFdV
(6.8)

where F is the total externally applied force vector and ρ is the mate-
rial density. Note that the integration is done over the volume at the
reference configuration V0. The virtual displacement δr is expressed
as:

δr = Nδq (6.9)

By combination of Equations (3.3), (6.8), and (6.9), expressions for the
element mass matrix and the generalized external forces are obtained:

δWi = δqTρ
∫

V0

NTNdV r̈ = δqTM q̈

δW f = δqT
∫

V0

NTFdV = δqTQ f

(6.10)

20



6. Equations of motion

where M is the element mass matrix and Q f is the generalized external
forces. The virtual work done by the internal elastic forces is calculated
as [77]:

δWe = δqT ∂We

∂q
= δqT Qe (6.11)

where We is an expression for the internal elastic energy and Qe is
the vector of internal elastic forces. This expression is general and
the elastic energy can be calculated in various ways depending on the
element type and application. Examples of this is given in Section 6.1.

By combining Equations (6.10) and (6.11) and utilizing that the re-
sulting equation must hold true for any arbitrary virtual displacement
[31], the equations of motion take the form:

Mq̈ = Q f −Qe (6.12)

where M and Q f are given by:

M = ρ
∫

V0

NTNdV

Q f =
∫

V0

NTFdV
(6.13)

As seen, the resulting equations are very straightforward, which is
mainly due to the simple kinematic description that is based on inter-
polation of global position and slope vectors (see Equation (3.1)). The
constant mass matrix and absence of centrifugal and Coriolis forces
are other consequences of this.

The equations of motion for ANCF elements, as stated in Equa-
tion (6.12), has a form that makes it very suitable for combining with
the Newton-Euler equations that govern rigid multibody systems [31].
When combined, the full equation set takes the form:




M(R) 0 0
(

∂Φ
∂R

)T

0 J′ 0
(

∂Φ
∂θ

)T

0 0 M(q)
(

∂Φ
∂q

)T

(
∂Φ
∂R

) (
∂Φ
∂θ

) (
∂Φ
∂q

)
0








R̈

ω̇′

q̈

λ





=





Q(R)
f

m′ − ω̃′J′ω′

Q(q)
f −Qe

Qd





(6.14)
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Here, R is the vector of rigid body translational coordinates and θ is
the vector of the rigid body rotational parameters. ω′ is the vector of
the local angular velocities, m′ is the vector of applied moments and J′

is the inertia matrix, all associated with the rigid bodies. In Equation
(6.14), the Lagrange multiplier theorem has been applied to enforce
constraints with Φ being the vector of constraint equations and λ are
the Lagrange multipliers associated with the acting constraint equa-
tions. The superscripts associated with M and Q f refer to their associ-
ated coordinates. Qd is an additional force term arising due to the fact
that the constraints are enforced on acceleration level [76]. Using this
equation set, coupled rigid body and ANCF multibody systems can be
analyzed.

6.1 Calculation of internal elastic forces

The calculation of the internal elastic forces arising in the ANCF ele-
ments due to deformation is a challenging aspect of the ANCF and has
been subject to much research. In general, two different approaches
can be applied. The first approach is based on treating the ANCF
element as a solid volume and using continuum mechanics for cal-
culating the internal stresses and strains. This approach was used in
the original fully parameterized element [53]. The second approach
is based on structural mechanics, where the ANCF element is treated
like a structural element and the internal elastic energy is calculated
using appropriate shell theories.

Continuum mechanics approach

When using the continuum mechanics (CM) approach, special care
must be taken when selecting the procedure for calculating the strains.
Because the ANCF elements are defined using absolute positions, the
calculation of strains must be based on the position gradients. Meth-
ods based on displacement gradients can be applied, but that would
require the displacements to have to been extracted separately, which
would further complicate the calculation of the elastic forces. Further-
more, it is crucial that the strain measure produces zero strain in the
case of pure rigid body motion.

The strains in an ANCF element are calculated using the Green-
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Lagrange strain tensor E given by [43]:

E =
1
2

(
FTF− I

)
(6.15)

where F is the deformation gradient tensor and I is the identity matrix.
The deformation gradient tensor is defined as:

F =
∂r
∂r0

=

(
∂r
∂x

)(
∂r0

∂x

)−1

= J (J0)
−1 (6.16)

Here, r0 is the position vector field of the element in the initial refer-
ence configuration and x is the full set of local element coordinates,
hence x = [x y z]T. This is very convenient since the J matrix is sim-
ply constructed by ordering the three slope vectors in the current state
∂r/∂x, ∂r/∂y and ∂r/∂z together in a 3 × 3 matrix. The same goes
for the J0 matrix. However here the slope vectors are evaluated at the
initial reference state. In the case where an initially straight element is
analyzed, J0 will be the identity matrix. If the element is curved, skew
or ’deformed’ in other ways initially, J0 will ensure that the calculated
strains are calculated with respect to the reference state and that the
element is strain-free in the initial state.

Based on the Green-Lagrange strain tensor, as defined in Equation
(6.15), the internal elastic energy is calculated as:

We =
∫

V0

E : S dV (6.17)

which can be inserted into Equation (6.11) to obtain an expression
for the internal elastic force vector. In Equation (6.17), : denotes the
double dot product and S is the second Piola-Kirchhoff stress tensor.
Here, the second Piola-Kirchhoff stress tensor is used as it is work
conjugated with the Green-Lagrange strain tensor [43].

Structural mechanics approach

As an alternative to the CM approach, the internal elastic forces can
be calculated using a structural mechanics (SM) approach. Here, the
internal elastic energy is calculated used well-known shell theory. In
this study, the SM approach is used to calculate the elastic force vector
for the gradient deficient thin ANCF shell elements. As the element is
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not capable of describing transverse shear deformation, the Kirchhoff
shell theory is utilized [91]. Here, the elastic energy is segregated into
two parts. One part consists of the energy arising due to membrane
stretch and shear while the second part accounts for the energy arising
due to bending and twisting of the midplane. The internal elastic
energy is expressed as:

We =
h
2

∫

A0

εTDm ε dA +
1
2

∫

A0

κTDκ κ dA, (6.18)

where h is the element thickness, A0 is the element area in the initial
configuration, ε is a vector containing the in-plane normal and shear
strains and κ is a vector containing midplane curvatures. The matrices
Dm and Dκ couple the membrane and curvature strains with their
respective stresses and are given by:

Dm =
E

1− ν2




1 ν 0

ν 1 0

0 0 1−ν
2




Dκ =
h3

12
Dm

(6.19)

Here, E is the Young’s modulus and ν is the Poisson’s ratio. The
matrix Dm is the two dimensional constitutive relation for plane stress
condition [14]. Here, it is assumed that the material is linear elastic and
isotropic. The matrix Dκ arises as the integration over the thickness in
the last term in Equation (6.18), containing the energy associated to
the element curvatures, can be carried out analytically.

The in-plane strains for an initially straight and rectangular ele-
ment with the local element coordinate system aligned with the global
inertial reference frame are calculated using the general Green-Lagrange
strain tensor in Voigt notation:

ε =
[
εxx εyy γxy

]T

εxx =

(
∂r
∂x

)T (
∂r
∂x

)
− 1

2
, εyy =

(
∂r
∂y

)T (
∂r
∂y

)
− 1

2
,

γxy =

(
∂r
∂x

)T ( ∂r
∂y

)
(6.20)
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The calculation of the curvatures κ of ANCF elements has been
subject to much discussion and several approaches have been sug-
gested [19, 27, 29]. In this study, the curvature of the thin ANCF shell
elements is calculated as suggested in the original papers regarding
thin ANCF shell elements [19, 21]:

κ =
[
κxx κyy 2κxy

]T

κxx =

(
∂2r
∂x2

)T
n

||n||3 , κyy =

(
∂2r
∂y2

)T
n

||n||3 ,

κxy =

(
∂2r

∂x∂y

)T
n

||n||3

(6.21)

The mid-surface normal vector n is defined as n = ∂r
∂x × ∂r

∂y .

6.2 Static equilibrium

Static solutions are obtained by calculating a set of nodal coordinates
q yielding static equilibrium between the externally applied force Q f
and the internal elastic forces Qe. The set of nodal coordinates is cal-
culated using an iterative solution technique [86]:

q(n+1) = q(n) −
(

K(n)
T

)−1 (
Q(n)

e −Q(n)
f

)
. (6.22)

In Equation (6.22), q(n+1) is the updated solution, q(n) is the current so-
lution, K(n)

T is the tangent stiffness matrix at the current iteration step
and Q(n)

e and Q(n)
f are the elastic and external force vectors, respec-

tively, at the current iteration step. The iteration loop is terminated
when the norm of the residual between Q(n)

e and Q(n)
f is below prede-

fined tolerance. The tangent stiffness matrix K(n)
T is a highly nonlinear

function of the nodal coordinates and is calculated as:

K(n)
T =

∂Q(n)
e

∂q(n)
. (6.23)

In this investigation, the tangent stiffness matrix is evaluated numer-
ically using positive perturbation of the nodal coordinates and finite
differences.
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6.3 Discussion

The derivation of the equations of motion has clarified some of the
advantages and drawbacks associated with the ANCF. First and fore-
most, the constant mass matrix and the absence of centrifugal and
Coriolis forces are highly notable. This is a consequence of using gen-
eralized coordinates expressed in a global reference frame. Because
the mass matrix remains constant over time, it can be evaluated in
a pre-processing step before the actual simulation forward in time is
performed. Furthermore, the integral in the expression for the mass
matrix can, in general, be solved analytically. The same goes for the
expression of the external forces. This ensures fast numerical evalua-
tion. The simple expressions for the mass matrix and external forces,
together with the simple kinematic description, are the key benefits
that make the ANCF attractive for implementation in the multibody
dynamics framework.

Two different approaches for calculating the internal elastic forces
have been reviewed. The CM based approach for calculating the in-
ternal elastic forces leads to a general and very versatile description.
Here, any given constitutive relation can be applied since no assump-
tions are introduced regarding the calculation of the stresses S. This
means that a wide variety of material behavior including plasticity
and yielding [87, 88] can be described. However, in order to apply the
CM approach for deriving the elastic forces, a full set of local element
coordinates must be present. This means that it only applies to fully
parameterized elements or similar. As a consequence, the approach
does not apply for the thin ANCF shell element. Furthermore, the use
of the CM approach increases the computational effort since the nu-
merical integration of Equation (6.17) must be carried out as a volume
integration. When using the SM approach, the numerical integration
of the internal elastic energy (Equation (6.18)) is modified such that in-
tegration over the element area is sufficient. This reduces the number
of necessary sampling points, which leads to reduced computational
effort.

As mentioned in the introduction, the ANCF is not without diffi-
culties. These difficulties are mainly tied to the vector of elastic forces.
In general, the elastic forces are highly non-linear functions of the gen-
eralized coordinates. Even when the elastic forces are based on simple
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expressions from structural mechanics. In this case where the Kirch-
hoff plate theory is applied it is the expressions for the element cur-
vature in particular that are highly non-linear (see Equation (6.21)).
The calculation of the element curvature is also a point of concern.
Many approaches have been suggested and some even state that the
approach which has been adopted here (see Equation (6.21)) is incor-
rect and should be avoided [27]. However, in this thesis, the thin ANCF
shell elements will only be subjected to comparative studies where the
different formulations are compared. In these investigations, the dif-
ferent formulations will all use the same procedure for calculation of
the elastic forces, hence the comparison will be made on common con-
ditions. However, it could be interesting to do a thorough investigation
on how the calculation of the element curvature affects simulation re-
sults. Such an investigation could help future users in choosing the
best method for their specific application and act as a guideline in the
use of ANCF shell elements that applies the Kirchhoff shell theory in
calculation of the elastic forces.

7 A combined ALE-ANCF shell element

This chapter contains a review of the shell element introduced by Hyl-
dahl et al. [38]. In this paper, a novel shell finite element based on the
combined arbitrary Lagrange-Euler and absolute nodal coordinate for-
mulations (ALE-ANCF) is introduced. This element is distinguished
by applying extra nodal d.o.f. to describe the relative nodal positions
in the mesh. This allow the nodes to travel in the modeled specimen,
making the element particularly suited for modeling varying bound-
ary conditions such as sliding joints and traveling forces. Finally, fur-
ther discussion regarding the obtained results and possible applica-
tions that have not been included in the original journal paper is given
at the end of the section.

7.1 Kinematics of ALE-ANCF based shell elements

The combination of the arbitrary Lagrange-Euler and the absolute
nodal coordinate formulation was introduced to analyze large dis-
placements in very elastic specimens with internal mass flow and slid-
ing joints [35, 34]. In these studies, focus is on specimens that can
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be treated as one-dimensional. This leads to a structural description
based on well-known beam theory. The innovation associated with the
study is the kinematic description. Here, the authors are inspired by
the mobile element kinematics known from the Arbitrary Lagrange-
Euler (ALE) description [20]. In the ALE description, the nodal po-
sitions are not fixed either to the modeled specimen or to the global
reference frame. Instead, the nodes are allowed to move arbitrarily,
which can be of great advantage in cases where either the domain or
the specimen undergo large deformation. Therefore, the ALE mesh de-
scription is widely used e.g. in computational fluid dynamics (CFD)
or non-linear solid mechanics. A good example where the ALE de-
scription is advantageous is in the simulation of forming processes of
metals. Here, significant re-meshing can be avoided when applying
the ALE method [68].

Headpoint

η

ξ
L

W

−1

−1 1

1

ni
ni+1

m i

m i+
1

Fig. 5: Plate element in two-dimensional mesh mapped into isoparametric coordi-
nates.

The idea of the moving nodes is transfered to the ANCF to for-
mulate the kinematics of an ANCF shell element with non-stationary
nodes. The ALE-ANCF shell element is based on a 36 d.o.f. thin
ANCF shell element (See Fig. 4 and Equation (5.6)). An additional set
of generalized coordinates ni and mi that describes the nodal position
in the modeled specimen is introduced (see Fig. 5). The position of
the nodes is measured with respect to a fixed reference point called the
head point. For convenience, the head point is located at a corner of the
modeled specimen. Combining the extra set of local material coordi-
nates with the general ANCF coordinates, see Equation (5.6), results in
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an expression for the total vector of element generalized coordinates.

qe =

[
rT

1

(
∂r1

∂x

)T (∂r1

∂y

)T

. . . rT
4

(
∂r4

∂x

)T (∂r4

∂y

)T
]T

ql = [n1 m1 n2 m2]
T

q =
[
qT

e qT
l

]T

(7.24)

where qe is the vector of ANCF coordinates, ql contains the local mate-
rial coordinates, and q is the full vector of generalized coordinates. By
the introduction of the coordinates ni and mi, each element is allowed
to change its size dynamically over time. This means that the isopara-
metric mapping of each element becomes unique and time dependent.

The varying isoparametric mapping is accounted for by expressing
the isoparametric mapping parameters ξ and η in terms of the local
material coordinates ni and mi.

ξ =
2n− n1 − n2

n2 − n1
, n1 ≤ n ≤ n2

η =
2m−m1 −m2

m2 −m1
, m1 ≤ m ≤ m2

(7.25)

Furthermore, the element side lengths can be expressed in terms of ni
and mi.

L = n2 − n1

W = m2 −m1
(7.26)

The position vector of an arbitrary point on an element r is obtained
in the normal manner by interpolation of the nodal position and slope
vectors.

r = Neqe (7.27)

where Ne is the 3× 36 interpolation shape function matrix and qe is the
vector of generalized ANCF nodal coordinates. The shape functions
for a 36 d.o.f. thin ANCF shell element can be derived using either the
crossed beam technique [19] or based on an incomplete quartic poly-
nomial [21]. In this study, shape functions based on the crossed beam
technique are chosen. The shape functions are given in the original
research paper [38].
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Because of the time varying isoparametric mapping, the shape
functions are functions of the local material coordinates ni and mi. This
means that the shape functions are time dependent. As a consequence,
the chain rule of differentiation must be applied when calculating the
velocity and acceleration of an arbitrary point in the element.

ṙ = Neq̇e + Ṅeqe

r̈ = Neq̈e + 2Ṅeq̇e + N̈eqe
(7.28)

It can be shown that by rearranging and collecting terms the velocity
and acceleration vectors can be written in simpler form:

ṙ = N̂q̇

r̈ = N̂q̈ + r̈p
(7.29)

The quantities N̂ and r̈p take a cumbersome form, and especially r̈p

is a highly non-linear function of both the nodal coordinates and the
nodal velocities. N̂ and r̈p are given by:

N̂ =
[
Ne Nq

]

Nq =

[
∂Ne

∂n1
qe

∂Ne

∂m1
qe

∂Ne

∂n2
qe

∂Ne

∂m2
qe

] (7.30)

and
r̈p = 2Nqtq̇l + Nqqq̇2

l + 2Nttqe (7.31)

where

Nqt =

[
∂Ne

∂n1
q̇e

∂Ne

∂m1
q̇e

∂Ne

∂n2
q̇e

∂Ne

∂m2
q̇e

]

Nqq =

[
∂2Ne

∂n2
1

qe
∂2Ne

∂m2
1

qe
∂2Ne

∂n2
2

qe
∂2Ne

∂m2
2

qe

]

Ntt =
∂2Ne

∂n1∂m1
ṅ1ṁ1 +

∂2Ne

∂n1∂n2
ṅ1ṅ2 +

∂2Ne

∂n1∂m2
ṅ1ṁ2+

∂2Ne

∂m1∂n2
ṁ1ṅ2 +

∂2Ne

∂m1∂m2
ṁ1ṁ2 +

∂2Ne

∂n2∂m2
ṅ2ṁ2

(7.32)
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7.2 Equations of motion

The equations of motion for the ALE-ANCF shell element are derived
as in the traditional ANCF by employing the principle of virtual work
for a system in dynamic equilibrium (see Equation (6.7)). In the calcu-
lation of the virtual work, the virtual displacement, δr, is needed. In
the general ANCF, δr can be rewritten in terms of the generalized coor-
dinates in a straightforward manner as δr = Nδq. In the ALE-ANCF,
however, the chain rule of differentiation must be applied due to the
time varying shape functions. The virtual displacement is expressed
as:

δr = Neδqe + δNeqe = N̂δq (7.33)

The virtual work done by the applied and elastic forces is calcu-
lated in a straightforward manner as in the general ANCF which is
given in Section 6. The virtual work done by the inertia forces δWi,
however, takes a more extensive form due to the extra terms in the
acceleration vector (see Equation (7.29)). The virtual work done by the
inertia forces is calculated as:

δWi = ρ
∫

V
δrT (N̂q̈ + r̈p

)
dV ⇔

δWi = δqT
(

ρ
∫

V
N̂TN̂dVq̈ + ρ

∫

V
N̂T r̈pdV

) (7.34)

This shows that, in addition to a traditional mass matrix, an additional
inertia force vector arises.

The equations of motion are assembled by combining Equation
(7.34) with the expressions for the virtual work done by the external
and elastic forces. The constraint reaction forces are accounted for by
using Lagrange multipliers [31]. Hereby, the equations of motion for
an ALE-ANCF shell element take the form:

Mq̈ = Q f −Qe −Qp −
(

∂Φ

∂q

)T

λ (7.35)
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with

M = ρh
∫ n2

n1

∫ m2

m1

ÑTÑ dmdn

Q f =
∫ n2

n1

∫ m2

m1

ÑTF dmdn

Qe = h
∫ n2

n1

∫ m2

m1

(
∂ε

∂q

)T

Dm ε dmdn +
∫ n2

n1

∫ m2

m1

(
∂κ

∂q

)T

Dκ κ dmdn

Qp = ρh
∫ n2

n1

∫ m2

m1

ÑT r̈p dmdn

(7.36)

Here, M is the element mass matrix, Q f is the generalized applied
force vector, Qe is the vector of elastic forces, and Qp is an inertia force
vector that depends quadratically on velocities. The constraint reaction
forces are calculated as the product of the constraint Jacobian ∂Φ

∂q and
the vector of Lagrange multipliers λ.

Qp is unique for the ALE-ANCF and arises because the accelera-
tion, as defined in Equation (7.29), is a function of both the generalized
coordinates, qe, and generalized velocities, q̇e. The element mass ma-
trix will also vary with time due to shape function time dependency.
However, according to Equations (7.31) and (7.32), if the local mate-
rial coordinates mi and n1 are kept fixed, then ṅi = ṁi = 0, and Qp

will vanish. The mass matrix, on the other hand, will continue to vary
with time because the four last terms in Ñ are functions of the nodal
coordinates qe (see Equation (7.30)).

In general, this means that the elements in the mass matrix associ-
ated with the material coordinates ni and mi will retain their time de-
pendency even if the material coordinates are kept fixed. In this way,
the ALE-ANCF method differs from the conventional ANCF method
in which the element mass matrix is constant for all element config-
urations. However, in some special cases, it is possible to modify the
equations of motion such that the ALE-ANCF mass matrix remains
constant. For instance, the mass matrix can be forced to remain con-
stant in a case where all local material coordinates are intentionally
kept fixed throughout the entire simulation. In these cases, it is pos-
sible to leave out the equations used to obtain solutions for the local
material coordinates, and the time dependent terms of the mass matrix
vanish. Then the system of equations reduces to a set that is consistent
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with the conventional ANCF method.

7.3 Numerical example

To demonstrate the ALE-ANCF method’s ability to move a node pro-
gressively during a simulation, a simple model has been constructed.
The model consists of four ALE-ANCF shell elements arranged in a
2× 2 mesh to form a square plate with a side length of 1 m placed in
the global XY-plane. The plate is assumed to have a thickness of 0.01
m. In the start configuration, the center node is shifted toward one of
the plate corners as seen Fig. 6.

Start configuration

End configuration

n2 = 0.4 m n2 = 0.6 m

m2 = 0.4 m

m2 = 0.6 m

n

m

Fig. 6: ALE-ANCF model with moving node seen from the top.

A constant force acting in the negative z-direction acts on the cen-
ter node, and the node moves diagonally at a constant velocity toward
the opposite corner during simulation. The translational d.o.f. for the
four corner nodes are fixed to ground and coincident nodes are con-
nected using constraints that ensure both nodal connectivity and slope
continuity between adjacent elements. It is important to note that this
constraint based assembly technique is essential for making it possible
to move the nodes in the mesh during a simulation. The center node
is moved from n, m = 0.4 m to 0.6 m by imposing a displacement con-
straint on the n and m coordinates of the second row of nodes, that is
n2 and m2. The constraint for the n2-coordinate, Φn, can be expressed
as follows:

Φn = n2 − v · t, (7.37)
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where v is the velocity of the moving node. The constraint for the
m2-coordinate is expressed in a similar manner by replacing n2 with
m2.

The ALE-ANCF model is validated by comparing its center node
displacements with displacements obtained using corresponding thin
ANCF shell elements with 36 d.o.f [19]. The displacements for com-
parison are obtained through static analyses where the center node is
placed on the diagonal of the plate in a range from n, m = 0.4 m to 0.6
m. Static solutions are obtained for five intermediate points. The plate
is assumed to be made of linear elastic and isotropic material with a
Young’s modulus of 1× 107 Pa, a Poisson’s ratio of 0.3, and a density
of 1000 kg/m3. The applied force is 1 × 10−3 N. The simulation of
the ALE-ANCF model begins from static equilibrium, and the node
moves with a velocity of 0.01 m

s . The low velocity is chosen to ensure
near-static conditions in the ALE-ANCF model for valid comparison
with the results from static ANCF solutions. Both sets of results are
shown in Fig. 7. The plot shows that displacements obtained from the
continuous simulation based on ALE-ANCF shell elements are com-
parable with the displacements from static solutions modeled with
conventional ANCF elements.
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Fig. 7: Out of plane displacement of the moved node compared with static displace-
ments.
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Another important physical quantity to validate is the strain level
in the plate. To get an overall measure of the strain level in the model,
the elastic energy from the dynamic simulation is compared to the
elastic energy level resulting from the static ANCF analysis. These
elastic energies are shown in Fig. 8 as a function of the position of the
moving node. The elastic energy level from the model based on the
ALE-ANCF method is consistent with the results obtained using the
conventional ANCF method. This means that no additional strains are
introduced by altering the node position in the mesh.
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Fig. 8: The elastic energy in the model compared to energy levels obtained from static
analysis.

7.4 Discussion

This study has shown that it is possible to formulate an ALE-ANCF
shell element description that allows interior nodes to move progres-
sively during simulation. The derivation of the ALE-ANCF shell de-
scription has revealed one major aspect where it differs from conven-
tional ANCF element descriptions, namely the non-constant inertia
description. Besides this difference, the derivation of elastic forces for
the ALE-ANCF description follows the same procedure as in the con-
ventional ANCF description.

The proposed ALE-ANCF method has been validated with two
numerical studies where only one is presented here in this thesis.
The first study, which is not shown here, demonstrates that the pro-
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posed ALE-ANCF method is consistent with the conventional ANCF
method when ALE-ANCF elements are tied together using algebraic
constraints, and relative node positions inside the specimen are kept
fixed. This property is important if the method is to be applied in
cases where movable nodes are only needed during some intervals of
a simulation. For further explanation see the original research arti-
cle [38] for the details regarding this first example. The second study
presented here demonstrates the ability of the proposed ALE-ANCF
method to move a node during simulation. In this simple study, a
node was moved across the diagonal of a square plate with a constant
velocity. The displacement in the direction normal to the plate and the
elastic energy in the model were compared to results obtained using
conventional ANCF elements with good agreement.

The scope of this study was to illustrate the method’s ability to
move a node progressively during transient simulation. This was ac-
complished using a simple academic example, but more advanced ap-
plications are easily imaginable. As mentioned in the introduction of
the chapter, the method could be useful when modeling structures
with moving boundary conditions such as traveling forces or sliding
joints. Especially in the case of very thin structures with low bend-
ing stiffness, where a slope discontinuity will arise locally at the point
where the force or sliding joint is acting. This discontinuity can easily
be modeled using the constraint based assembly technique by omitting
the constraint on the slope vectors.

It is also believed that the ALE-ANCF method could be used as ex-
tension to mesh refinement techniques. Using the ALE-ANCF, nodes
could travel to areas where large deformation occurs to capture the
deformation state more accurately. Such a technique could also be use-
ful in contact problems. Here, the contact detection algorithm could
trigger mechanisms that would force nodes to concentrate in the area
where contact is expected.

Another application could be analysis of crack propagation in plate
and shell structures. Taking, for instance, the model shown in Fig. 6,
a crack could be initiated by omitting the node assembly constraint in
one of the nodes on the boundary. This leaves an open gap between
two of the elements with a node placed at the end, thus forming a
crack. The node at the end of the crack could then be moved to resem-
ble the crack propagating in the plate.
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A large number of enhancements is required before the ALE-ANCF
method can be applied in any of these practical applications. In gen-
eral, a sophisticated algorithm that makes is possible for a node to
move all the way through the modeled specimen is needed. This al-
gorithm must be formed in a way such that no numerical singularities
are encountered when one node is approaching a neighboring node.
In the numerical example shown here, the mesh was simple and con-
sisted of only four elements. Further investigations must be made to
clarify whether the ALE-ANCF method will work in a mesh with arbi-
trarily shaped elements. Specifically, it must be investigated whether
the approach of only assigning each row and column of nodes a local
material coordinate is sufficient. Alternatively, each node should be
assigned its own local material coordinate, but this would increase the
total number of d.o.f. drastically.

If the ALE-ANCF method is to be applied as a mesh refinement
technique, some criteria are needed for determining when and which
nodes should be moved and to which positions they should move.
Furthermore, the criteria must be formulated in a way such that the
solution is not compromised in other areas of the model. This could
happen if, for instance, to many nodes travel to the area of interest,
which would deteriorate the mesh quality in other areas.

The application of the ALE-ANCF in crack propagation analysis is
maybe the most interesting. This would allow for simulating realistic
component failure in the multibody dynamics framework. However,
it would require a large research effort to derive and set up conditions
on how and when the node at the crack tip should move, depending
e.g. on the stress and strain state locally around this node or simply
the forces acting at the node. Based on these state variables, the en-
ergy release rate can be calculated and used in evaluating a fracture
criterion. Additionally, these criteria must be made in a way such that
the crack does not close again.

Besides the needed enhancements tied to the ALE-ANCF method,
some more basic problems were noticed. Numerical difficulties were
observed when the aspect ratio of the ALE-ANCF elements varied
significantly from 1. These difficulties were noted at the beginning
and the end of the simulation, where the numerical integrator used a
smaller time step. Furthermore, it was problematic to find an appro-
priate model to use for validation of the ALE-ANCF method. Both re-
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sults from traditional commercial finite element codes and thin ANCF
shell formulations were compared to the results from the dynamic sim-
ulation using the ALE-ANCF elements. The only successful validation
was when the 36 d.o.f. element by [19] was used. This is remarkable
since this element uses both the same kinematic and elastic description
as the ALE-ANCF element presented here while the other elements
differ in some way. This could indicate that a general difference can
be expected when comparing results obtained using the different thin
ANCF shell element formulations. This will be investigated further in
the next chapter.
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The numerical validation of the ALE-ANCF shell element described
previously in Section 7.4 shed light over some possible numerical prob-
lems which can be encountered when using thin ANCF shell elements.
Here, it was noted how the numerical integrator was struggling when
the elements had significant difference in size and non-optimal aspect
ratios. Furthermore, it was difficult to compare results obtained using
the ALE-ANCF shell element with other methods. The only success-
ful validation was done by comparison with the 36 d.o.f. ANCF shell
element by Dmitrochenko and Pogorelov [19] that uses the exact same
kinematics and stiffness description. It is noticeable that significantly
different results can be obtained when using different thin ANCF shell
elements that use the same nodal d.o.f. and stiffness description but
different interpolation shape functions. Such behavior clearly calls for
further investigation.

Besides the observed behavior regarding numerical difficulties, oth-
er topics regarding the performance of thin ANCF shell elements need
attention. So far, studies related to initially curved and distorted mesh-
es of thin ANCF shell elements have been short of research focus. In
general, most studies on ANCF shell elements have been based on
purely academic models that, usually, are rectangular. One practical
application of initially curved ANCF shell elements has been large de-
flection analysis of wind turbine blades [7, 56, 8]. The authors note
some high frequency oscillations when the dynamic response from an
ANCF model of a blade based on thin ANCF shell elements is com-
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pared to that obtained from a commercial finite element code. Es-
pecially in the case of a tapered blade profile, both high-frequency
oscillations and a difference in the fundamental vibration frequency
are noticed. The authors conclude that this behavior can be explained
by the curved nature of the wind turbine blade and further investiga-
tion is needed to develop a good numerical model of a blade based on
ANCF finite elements.

In this section, it is investigated how thin rectangular ANCF shell
elements behave when used in different mesh configurations. Initially,
a thorough comparison of the difference between available thin ANCF
shell elements is carried out. Here, focus is on the difference in the
used interpolation shape functions. Subsequently, a series of simple
models is used to test the ability of current formulations to describe
and analyze curved structures and how they perform when used in an
irregular mesh. It is shown that current formulations are not capable
of describing curved geometry without loss of inter-element connec-
tivity at adjacent curved element edges. Numerical calculations also
show that the accuracy of the results is reduced when a distorted finite
element mesh is built using thin ANCF shell elements when compared
to conventional finite element models. The findings in this part have
been published in a journal paper [40] and a conference paper [39]
authored by the author of this thesis and co-authors.

8 Discussion on the kinematics of thin ANCF shell
elements

In this section, the kinematics of three thin ANCF shell elements is
discussed. The discussion given here is more thorough than the one
given previously in Section 5. This in-depth discussion is necessary
since understanding of their individual characteristics is needed to in-
terpret the differences in the results which will be presented later.

Traditional shell finite elements usually accommodate nodal dis-
placements and two out-of-plane rotational d.o.f. [14]. For improved
modeling of the element displacement field, additional d.o.f. based on
a second order derivative can be added [101]. With this in mind, Dmi-
trochenko and Pogorelov formulated a 48 d.o.f. ANCF shell element
[19]. This element uses the nodal positions, the two in-plane slope
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vectors, and a second order slope vector at each node as generalized
coordinates as follows:

q =

[
rT

1

(
∂r1
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)T (∂r1

∂y

)T ( ∂2r1
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)T

. . .

rT
4

(
∂r4

∂x

)T (∂r4
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)T ( ∂2r4

∂x∂y

)T]T

(8.38)

In their study, the interpolation shape functions are calculated using
products of orthogonal Hermite beam shape functions [101]. The or-
thogonality of the shape functions implies that one set is a function of
the local coordinate x and the other set is a function of y. The four
interpolation shape functions N associated with the nodal values at
node i are calculated as:

Ni =
[

H(0)
i (x) · H(0)

i (y) H(1)
i (x) · H(0)

i (y) . . .

H(0)
i (x) · H(1)

i (y) H(1)
i (x) · H(1)

i (y)
]

(8.39)

where H is the Hermite beam interpolation function. The superscript
refers to the derivative order of the function and x and y are the local
element coordinates. This approach is sometimes referred to as the
crossed beam technique. An example of the practical calculation is
given in [36].

As an alternative to the 48 d.o.f. element, Dmitrochenko and Pogo-
relov suggested that a reduced order element could be obtained by
omitting the second order slope vectors from the generalized coordi-
nates. Such an element was addressed by Dufva and Shabana [21].
By omitting the second order slope vector, the generalized coordinates
reduce to:

q =

[
rT

1

(
∂r1

∂x

)T (∂r1

∂y

)T

. . . rT
4

(
∂r4
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)T (∂r4

∂y

)T
]T

.

(8.40)

The exclusion of the second order slope from the generalized coordi-
nates has some advantages. First and foremost, the number of d.o.f. is
reduced from 48 to 36. Furthermore, the ∂2r

∂x∂y slope vector has no clear
geometrical meaning, which makes it difficult to interpret.
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The shape functions for the element presented by Dufva and Sha-
bana are based on the following incomplete quartic polynomial:

r = a1 + a2x + a3y + a4x2 + a5xy + a6y2 + . . .

a7x3 + a8x2y + a9xy2 + a10y3 + a11x3y + a12xy3 (8.41)

where ai are vectors of polynomial constants which will vary in time
in the case of transient simulations. A set of interpolation shape func-
tions, N, that depends on the local element coordinates x and y and
the element length L and width W can be obtained using matrix oper-
ations. An example of this can be found in [36].

In addition to the two elements mentioned above, an additional
36 d.o.f. element is considered in this study. It uses the nodal d.o.f.
as stated in Equation (8.40) and shape functions based on the crossed
beam technique. However, to match the fewer number of d.o.f., the
last term in Equation (8.39) is omitted from the shape function matrix.
This leads to a slightly different 36 d.o.f. element than the one treated
by Dufva and Shabana due to the different approach for deriving the
shape functions.

The three elements described above fall into two categories. The
first category contains the elements described in the work of Dmi-
trochenko and Pogorelov [19] that use the crossed beam technique for
deriving the element shape functions. The last is the element by Dufva
and Shabana [21] that bases the element kinematics on a polynomial
expansion. These two methods for deriving the element shape func-
tions are fundamentally different and this affects the resulting kine-
matic description.

As mentioned, Dmitrochenko and Pogorelov based their element
kinematics on the crossed beam technique and Hermite beam shape
functions which have a certain characteristic. Using a Hermite polyno-
mial of order 2n + 1 leads to Cn continuity between adjacent elements.
Based on the chosen generalized coordinates, a third order Hermitian
interpolation is applied. This leads to shape functions that will en-
sure a C1 continuous displacement field. Since these C1 continuous
beam shape functions form the basis of the ANCF shell element, the
resulting shell shape functions will also be C1 continuous [101].

The shape functions used in the 36 d.o.f. element by Dufva and
Shabana are based on an incomplete quartic polynomial (see Equa-
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tion (8.41)). This polynomial is incomplete since the terms x4, y4, and
x2y2 are missing. As a result, the displacement along any edge of the
element will vary as a cubic polynomial which can be uniquely de-
fined when using both the position and slope vectors as nodal d.o.f.
The slopes at any element edge will vary as a second order polyno-
mial, but since only two slope vectors normal to any element edge are
utilized, one at each node, this polynomial is not unique. These two
characteristics mean that inter-element displacement continuity is en-
sured, but inter-element slope continuity, in general, is not [101]. This
means that the displacement field is C0 continuous.

This difference in the order of ensured displacement continuity is
important for the behavior of the thin ANCF shell elements. In the
literature, C1 continuity is mentioned as a theoretically indispensable
requirement when the element stiffness properties are calculated based
on element curvature [101, 29]. This is due to the fact that the curva-
ture of the overall displacement field will be infinite at the boundary
between two adjacent elements if there is a discontinuity in the slope.
This can be an issue for the thin ANCF shell elements where the Kirch-
hoff theory is utilized, which requires calculation of the curvature of
the displacement field (See Equation (6.21)). This could lead to differ-
ences when comparing the C1 continuous element with the C0 continu-
ous element. Whether such a difference is present will be investigated
further in the next sections.

9 Convergence study on model with optimal mesh

To initiate the investigation on the behavior of different thin rectan-
gular ANCF shell elements, a convergence study is performed on a
simple rectangular plate modeled by a uniform mesh. This study will
both highlight any differences between the compared elements and
act as a benchmark for the following studies. The different element
formulations that will be treated throughout this and the subsequent
investigations are the 48 d.o.f. C1 continuous element, the 36 d.o.f.
C1 continuous element, and the 36 d.o.f. C0 continuous element. The
formulations are implemented directly as described in Section 6 with-
out taking into account known defects such as membrane locking (see
[66]). This is done intentionally for the sake of simplicity.
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Fig. 9: Simply supported square plate divided into a uniform mesh with a point force
acting at the center of the plate.

For the convergence study, the deflection of a plate subjected to a
transverse force acting in the center of the plate is investigated. This is
shown in Fig. 9. A simply supported boundary condition is applied by
fixing all displacements and slope vectors parallel to the plate edges
at the boundary nodes while the slope vectors perpendicular to the
free edges are kept free allowing the edges to rotate. The structural
properties of the plate are given in Table 1 The center point deflection
is calculated for several mesh sizes using all three formulations for
three load cases: F = 0.1 N, 1.0 N, and 10 N.

Before discussing the convergence study, the difference in continu-
ity order ensured by the applied interpolation, C0 versus C1, is demon-
strated. This is done by comparing the calculated deflections. The
deformed square plate is shown in Fig. 10 for the two models ana-
lyzed with 36 d.o.f. elements. The deformed mesh for the 48 d.o.f.
C1 continuous element is not shown here because it is identical to the
one obtained using the 36 d.o.f. C1 continuous element. The models
shown have a mesh size of 2× 2 elements. By inspecting Fig. 10a, it is

Property Value

Side lengths 1 m

Thickness 0.01 m

Young’s Modulus 1× 107 Pa

Poisson’s ratio 0.3

Table 1: Parameters for the simply supported square plate to convergence study.
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Fig. 10: Sideviews of the deformed meshes for the square model with 2× 2 elements
subjected to a center load with F = 0.1 N. Note the discontinuity of the trend lines at
x = 0.5 m for the model analyzed with the 36 d.o.f. C0 continuous elements.

seen how the trend lines of the model using C0 continuous elements
are discontinuous at x = 0.5 m, which is at the interface of the two
visible elements. When studying the figure with the C1 continuous
elements (Fig. 10b), the observation is different. Here, the transition
from one element to the other is nice and smooth. Furthermore, just by
qualitative comparison of the maximum deflection, it is seen that there
is a large difference in the predicted displacement. This is remarkable
since the models use the same material parameters, boundary condi-
tions, generalized nodal coordinates, and stiffness description. This
clearly demonstrates the difference between using C1 versus C0 con-
tinuous interpolation shape functions.

For the convergence study, results from the ANCF models are com-
pared to corresponding results obtained using the commercial finite
element solver MSC Nastran. Using MSC Nastran, a similar model is
analyzed using their eight noded CQUAD8 elements and solved using
the implicit nonlinear SOL400 solution sequence [58]. The results from
all three ANCF models are shown in Fig. 11 together with the results
from MSC Nastran. The results clearly show that there is a general
difference between the formulations since both of the C1 continuous
elements converge to a lower deflection than the C0 continuous ele-
ment. Furthermore, in all three load cases, the C0 continuous element
converges to a result comparable to that obtained by the conventional
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Fig. 11: Deflections measured at the center point of the simply supported square plate
for varying loads.

CQUAD8 elements. It is also noticeable that in the load case where
F = 0.1 N, the C0 continuous element heavily over-predicts the deflec-
tion for a coarse mesh (see Fig. 11a). This trend seems to wane as the
load increases, finally converging in the same pattern as the C1 contin-
uous elements at F = 10 N (see Fig. 11c). Another interesting tendency
is that the 48 d.o.f. C1 continuous element performs significantly bet-
ter than the corresponding 36 d.o.f. element, especially in the two load
cases with F = 0.1 N and F = 1.0 N. Here, the 48 d.o.f. element
converges to a result closer to the results from both MSC Nastran and
the 36 d.o.f. C0 continuous element. This better performance over the
36 d.o.f. C1 continuous element suggests that important polynomial
terms are excluded from the shape functions when omitting the sec-
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10. Influence of non-uniform element sizes on
model stiffness

ond order slope vectors from the generalized coordinates. In general,
the ANCF models converge much more slowly than the conventional
CQUAD8 element models, meaning that a significantly higher num-
ber of elements are needed to obtain a converged solution. This can be
explained by the fact that membrane locking has not been alleviated in
the analyzed models, but no studies to support this explanation have
been made.

10 Influence of non-uniform element sizes on
model stiffness

In the discussion about the ALE-ANCF shell element (see Section 7.4),
it was mentioned that the numerical integrator was struggling when
the element aspect ratios, that is Lmax/Lmin, in the model were differ-
ent from one. This behavior indicates that the analyzed ANCF shell el-
ements perform bad when they have large aspect ratio. This can cause
problems if the thin ANCF shell elements are to be applied in the de-
sign of real life structures. Here, it is inevitable to create models made
of only optimal elements with aspect ratios close to one. An example
of this could be models where a fine mesh is created in areas of high
interest and a coarser mesh in other regions of low interest. This will
lead to elements with high aspect ratios in the transition zone from the
fine to the coarse mesh. It is widely known that finite element models
containing elements with large aspect ratios will affect the simulation
result. Furthermore, abrupt changes in element size will lead to dis-
turbances in the position gradient field [14]. In this section, it will be
studied how the thin ANCF shell elements behave when applied in
models with non-optimal mesh configurations, and how they perform
compared to conventional shell finite elements.

The sensitivity of the ANCF shell elements to varying aspect ratios
and abruptly changing element sizes is investigated by studying the
deflection of a simple structural model subjected to static loading. The
model used in this study is a simple cantilever rectangular plate (see
Fig. 12). The plate is subdivided into four areas, and the shape of the
areas is altered by shifting the common point towards point a along
the plate diagonal. This changes the aspect ratio of each area (see Fig.
12b). When each of the areas are discretized with finite elements, the
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Fig. 12: Cantilever plate with transverse loading at corner points. The transverse
deflection of point a is monitored as the aspect ratio of the elements in area A varies.
The dashed line indicates the diagonal of the plate and the grey lines indicate the
finite element discretization. The plate is shown with a 4× 4 element discretization.

finite elements will have the same aspect ratio as the area in which
they are located, respectively.

The cantilever plate is assumed to be L ×W × h = 6m × 2m ×
0.01m and made of a linear elastic isotropic material with a Young’s
modulus of 1× 107 Pa and a Poisson’s ratio of 0.3. This means that
when each of the areas are of equal size, their aspect ratios will be
Lmax/Lmin = 3. A fixed boundary condition is applied by constraining
the positions and slope vectors of the nodes at the leftmost edge of the
plate, and a transverse load, F, is applied at each of the two free corners
(see Fig. 12). The transverse deflection is monitored at point a for each
mesh configuration. Furthermore, deflections for the cantilever model
are calculated with the commercial finite element solver MSC.Nastran
using both CQUAD4 and CQUAD8 elements [58].

As the purpose of this investigation is to illustrate how the mesh
configuration affects the simulation results and not to evaluate the nu-
merical precision of each formulation, the results have been normal-
ized with respect to the deflection calculated with the uniform mesh.
This means that the plot will show how rapidly the results will de-
grade as a function of the element aspect ratio. The sensitiveness is
studied for models consisting of 2× 2, 4× 4, and 6× 6 elements dis-
tributed equally in the four areas. A mesh composed of 4× 4 elements
is shown in Fig. 12. The normalized deflections are shown in Fig. 13
as a function of the aspect ratio of elements in area A (see Fig. 12).

In the first case where a mesh consisting of 2× 2 elements has been
used, the simple four-noded element CQUAD4 seems unaffected and
the deflections calculated using the CQUAD8 elements decrease only
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shell elements.

Fig. 13: Normalized deflection of the corner of a cantilever plate as a function of the
element aspect ratio.

slightly when compared to the reference based on the uniform mesh
configuration. The deflections of the ANCF based models, on the other
hand, diverge rapidly from their calculated reference deflection when
the mesh turns irregular. This indicates that the overall stiffness of
the ANCF models increases rapidly for an increasingly irregular mesh
configuration, leading to an under-prediction of the actual deflection.
It is also noticeable that the C0 continuous element seems more sensi-
tive to the change in aspect ratio than the two C1 continuous elements.
In addition to the increased stiffness, increased computational time is
noticed for all of the ANCF formulations with an increasing irregular
mesh. Specifically, an increased number of iterations was needed in
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Behavior of thin ANCF shell elements in various mesh configurations

the solution process to acquire a converged solution.
When additional elements are introduced in the finite element dis-

cretization, the results improve significantly. In the case of a mesh con-
sisting of 4× 4 elements, the results from the two 36 d.o.f. elements
are only degraded less than 1.5% in the worst case and approximately
0.5% in the case where 6 × 6 elements have been used. A more in-
teresting tendency is that the 48 d.o.f. ANCF element is improving
relative to the conventional finite elements, and in the case with the
6× 6 elements, it is performing as good as the CQUAD8 element in
Nastran. It should be noticed, though, that it was not possible to ob-
tain a converged solution for an aspect ratio of 21 with the 48 d.o.f.
C1 continuous element. Furthermore, it took several tries to select a
proper perturbation parameter for calculation of the finite differences
used to derive the tangent stiffness matrix (see Equation (6.22)) before
it was possible to obtain the results successfully.

Overall, this simple study indicates that ANCF-based models ap-
pear more sensitive to irregular mesh configurations than conventional
finite elements when an insufficient number of elements is used. This
tendency seems to decrease, though, when more elements are used.
In this simple example, all formulations converged rapidly which may
explain why simulation results are satisfactory after only one mesh
refinement. In other more complex models, the tendency may not
decrease a fast as in this simple case. Therefore, it is suggested that
ANCF-based meshes containing irregular elements and/or elements
with a large aspect ratio should be used with caution. Thorough con-
vergence studies must be performed in order to obtain a numerical
model of good quality.

11 Representation of initially curved structures

Two different approaches have been used to create a set of interpola-
tion shape functions for thin ANCF shell elements. Both of these meth-
ods and the choice of base functions are consistent with those used to
develop Kirchhoff shell elements. The kinematics of this element is
thoroughly discussed in the literature (see for instance [48]). In the
discussion, several problems are mentioned regarding the kinematics
of this element type. Shape functions based on the crossed beam tech-
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11. Representation of initially curved structures

nique lack the ability to describe constant twist. Furthermore, the ele-
ment shape functions derived from the incomplete quartic polynomial
are known to have compatibility problems. A more concerning fact is
that this type of element cannot be used to describe non-rectangular
shapes [14]. This is a problem since engineering problems, in general,
cannot be discretized entirely into rectangular shapes.

The lack of ability to describe non-rectangular shapes can be illus-
trated by discretizing a plane hollow disc by thin ANCF shell elements.
This is depicted in Fig. 14. The elements applied for the discretization
shown in Fig. 14 are 36 d.o.f. C1 continuous elements. However,
similar figures can be obtained by using the 48 d.o.f. C1 continuous
element or the 36 d.o.f. C0 continuous element which will lead to the
same observations and conclusions drawn in this section.

It is clear that the elements do not cover the entire physical disc as
there are gaps between adjacent curved element sides. This leads to a
non-continuous description of the displacement field. It is noticeable
that it is only between curved faces that inter-element connectivity is
lost while the connectivity between straight sides is maintained. For
qualitative comparison, a discretization of the disc obtained using con-
ventional eight noded shell elements (Q8 elements) [14] is shown in
Fig 15. Here, it is seen that a much more accurate representation of
the actual geometry is obtained. This is remarkable since the shape
functions used by the Q8 elements are based on the same incomplete
quartic polynomial as used to derive the shape functions for the C0

continuous element (see Equation (8.41)). The difference between the
two discretizations lies in that the ANCF elements rely on the slopes
at the nodes to describe the circle segment lying between the nodes
whereas the Q8 elements have nodes on the middle of the sides for
better description of curved structures.

Further conclusions can be drawn by closer inspection of the gap
between elements 3 and 4 in the ANCF discretization. Comparing the
element edges between nodes 5 and 8 to the segment of the circle they
are meant to describe, it is seen that the edges lie on either side of
the circular segment (see Fig. 16a). Furthermore, by comparing the
distances measured perpendicular from the true circle to the element
edges (see Fig. 16b), it is seen that the gap is the largest at the middle
of the element span and is nearly the same for the two elements but
with an opposite sign. The negative distance means that the edge lies
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Fig. 14: A hollow disc with an inner radius of 3.5 m and an outer radius of 8 m
discretized by six thin rectangular ANCF shell elements. The nodes are shown with
their corresponding slope vectors, where the tangent vectors of the circle are the ∂r

∂x
and the radial vectors represent the ∂r

∂y . Node numbers are given in italic and element
numbers are given in bold. Note the gap between curved element sides.
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Fig. 15: A hollow disc with an inner radius of 3.5 m and an outer radius of 8 m
discretized by six conventional eight noded shell elements (Q8 elements). The element
numbers are given in bold while the node numbers are omitted for brevity.
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11. Representation of initially curved structures

on the inside of the true circle. The trend with the symmetric gap may
not be the same in the case of arbitrarily curved geometries.

The Q8 element discretization has been subjected to the same in-
spection and the results are shown in Fig. 17. Here, it is noted that
the two element edges are coincident along the entire element span,
meaning that there is no gap between the elements, and the displace-
ment field is continuous. Furthermore, by comparing Fig 16b and Fig.
17b, it is noted that the maximum distance from the elements to the
true circle is roughly 8× 10−4 m in the model using Q8 elements while
it is 4× 10−2 m when the ANCF elements are used.

Another interesting tendency can be identified by closer inspection
of the evaluation points used to plot the element edges in the ANCF
discretization (see Fig. 16a). Here, the ticks on the curves, representing
the edges of the elements, mark the position of the evenly distributed
evaluation points obtained by interpolation of the nodal coordinates.
The thin lines perpendicular to the true circle mark equally spaced
evaluation points on the circle. It is seen that the positions of the
evaluation points on the edges of the elements differ from the equally
spaced points on the true circle. Furthermore, the spacing between
the evaluation points on the elements is non-uniform. This stands in
contrast to the distribution of the evaluation points obtained using the
Q8 elements (see Fig. 17a) where the evaluation points on both edges
coincide with the equally spaced lines on the true circle.

This characteristic regarding non-uniform spacing of interpolated
evaluation points in the thin ANCF shell elements has been noted pre-
viously [66]. Here, this phenomenon was labeled curve induced distor-
tion (CID) and it was concluded that it causes membrane locking in
thin ANCF shell elements. CID occurs in curved elements because the
use of polynomial-based shape functions leads to a uneven distribu-
tion of interpolated points. As a consequence, slopes of a non-straight
position field are not unit vectors and the norms of the slope vectors
vary even though the slopes defined at the nodes are unit vectors. A
mathematical discussion of the topic is given in [23, 24].

For the particular model used in this study, the l2-norms of the
slope vectors evaluated at the edges of element 3 and 4 between nodes
5 and 8 are shown in Fig. 18. The norm of the slopes are related to
the strains in the element as seen in Equation (6.20). According to the
equation, a slope norm larger than 1 corresponds to a state of tension
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Fig. 16: Analysis of gap between elements 3 and 4 in the ANCF discretization.
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56



11. Representation of initially curved structures

 

 

Angle [deg]

∣ ∣ ∣∂
r

∂
x

∣ ∣ ∣

Element 3
Element 4

0.8

1.0

1.2

1.4

30 35 40 45 50 55 60

(a) l2-norm of the slope vector ∂r
∂x .

 

 

Angle [deg]

∣ ∣ ∣∂
r

∂
y

∣ ∣ ∣

Element 3
Element 4

0.97

0.98

0.99

1.00

1.01

30 35 40 45 50 55 60

(b) l2-norm of the slope vector ∂r
∂y .

Fig. 18: Norms of slope vectors at the element edges on the interface between elements
3 and 4 for the ANCF discretization. ∂r

∂x is the vector in tangential direction and ∂r
∂y is

the radial vector as shown in Fig. 14

and a norm less than 1 corresponds to compression. Hence, at the in-
terface between elements 3 and 4, element 3 is stretched and element 4
is compressed (see Fig. 18a). Furthermore, by inspection of the norm
of the slopes perpendicular to the element interface

∣∣∣ ∂r
∂y

∣∣∣, it is seen that
both elements are contracted to the same level and the contraction is
largest at the middle of the element edges. This corresponds well to
the elements depicted in Fig. 14 where the elements are bent into
curved shapes and contracting in the radial direction, thus creating a
gap between the elements. This bending behavior is partly due to the
fact that the shape functions of the elements are derived for a shell in
a rectangular configuration. In this case, the shell element is assumed
to have a constant length and width at all evaluation points. When the
element is used in a non-straight initial configuration, the elements
will have non-constant lengths and widths in their undeformed states.
It can be shown that if the correct element lengths and widths cor-
responding to the actual geometry are used in the evaluation of the
element shape functions, the element will resemble a curved geome-
try without any gaps between adjacent elements, and the slopes of the
position field are constant unit vectors. This will be demonstrated in
Section 13.
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12 Convergence study on initially in-plane curved
structures

The reasons for the ANCF shell element’s lacking ability to describe
a curved geometry were discussed in the previous section. The com-
plications of the discontinuous displacement field are the focus of this
section. An inherently derived flaw from the discontinuous kinematic
description of an initially curved geometry is poor modeling of the
mass and inertia properties of such curved structures. This is due to
the fact that the material left in the gaps will not contribute to the mass
and inertia of the discretized model. It can be shown, however, that
the error in the inertia modeling will diminish when the mesh is re-
fined sufficiently because the gaps will become smaller as the size of
the elements is reduced.

A second and more important concern is that the loss of inter-
element displacement continuity may affect the stiffness description of
the discretized structure. The problem regarding gaps and displace-
ment discontinuities between finite elements is not new and elements
that show this characteristic are known as non-conforming or incom-
patible elements [14]. In many cases, this characteristic is unproblem-
atic as the gaps between elements reduce as the mesh is refined. In
matter of fact, in some particular cases, a non-conforming element can
have significantly better performance than a similar conforming one
[101]. Furthermore, incompatible modes can be added to an element
displacement field to remedy locking [14]. However, incompatibility
can also result in convergence problems, lacking ability to pass the
patch test, and shape sensitive performance [48, 101].

To test whether the gaps have any influence on solutions obtained
using the three thin ANCF shell elements, a convergence study is per-
formed on the hollow disc discussed in the previous section. A sketch
of the model is shown in Fig. 19. Due to symmetry with respect to
both the XZ and YZ planes, the model is reduced to only one quarter
of the full disc. A simply supported boundary condition is applied
at the outer edge by fixing the translational d.o.f. of the nodes. At
the symmetry planes, the z-components of the ∂r

∂x and the translational
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Fig. 19: Schematics of the quarter hollow disc model.

d.o.f. perpendicular to the symmetry plane2 are fixed to enforce the
symmetry conditions to the model. An evenly distributed load acting
in the z-direction is applied to the inner edge. The model parameters
are shown in Table 2.

The convergence study is performed for four load cases with an
increasing magnitude. For all load cases, the transverse deflection of
the loaded edge is monitored and compared to solutions obtained by
the implicit non-linear SOL400 in MSC Nastran using CQUAD8 ele-
ments. In all cases, the computational mesh is made such that there
are twice as many elements in the circumferential direction as in the
radial direction. The results from the convergence study are shown in
Fig. 20.

Property Value

Outer radius 8 m

Inner radius 3.5 m

Thickness 0.025 m

Young’s Modulus 1× 109 Pa

Poisson’s ratio 0.3

Table 2: Parameters for the circular model subjected to convergence study.

2Displacements in the y-direction are restrained for the nodes along the edge
parallel to the x-axis, and displacements in the x-direction are restrained for the nodes
along the edge parallel to the y-axis
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Fig. 20: Convergence study on a simply supported hollow disc for four different load
cases.

By inspection of the convergence plots, some interesting phenom-
ena can be observed. For the first load case, a linear analytical solution
for an axisymmetrical circular plate in pure bending [61] gives an exact
result of −2.896× 10−5 m. The ANCF models predict displacements
that are slightly lower than the analytical solution, and the results from
MSC Nastran converge to the exact result. As the load on the circu-
lar disc model is increased, the ANCF appears to converge to an in-
creasingly larger deflection than the corresponding results from the
conventional finite element models. This stands in contrast to the pre-
vious observations. In the convergence study on the rectangular model
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12. Convergence study on initially in-plane curved structures

conducted in Section 9, the ANCF models continued to under-predict
the magnitude of the deflections when the loads were increased (see
Fig. 11). This tendency is unexpected as the thin ANCF shell ele-
ments are known to exhibit membrane locking [66] which should lead
to an underprediction of the deflection as membrane deformations are
increased. In general, the convergence characteristics of the model
based on the initially curved ANCF shell elements are different from
those seen in the case of a purely rectangular and uniform mesh. This
indicates that the convergence of models containing thin ANCF shell
elements depends on the initial shape of the elements.

During the preparation of the results for the convergence analy-
sis on the hollow disc model, some numerical problems were noted.
As explained previously, the static solutions are obtained using an it-
erative solution technique as described in Equation (6.22), where the
tangent stiffness matrix is calculated numerically using finite differ-
ences. When switching from the model containing only rectangular
elements to the model with initially curved elements, it was consider-
ably more difficult to choose a perturbation parameter that would give
stable and converged solutions. Especially for the models subjected to
larger loads, it was necessary to choose the perturbation parameter
individually for each mesh configuration. This further supports the
previous findings in Section 10 where the same tendency regarding
difficulties in selecting proper solution parameters for the static equi-
librium solution algorithm was noted.

Additionally, it was observed that the models with the larger ap-
plied loads produced uneven deformations at the loaded edge. Clearly,
these results were not in agreement with the applied uniform load. It
was found that by increasing the number of sampling points used in
the Gaussian quadrature to obtain the vector of elastic forces from
3× 3 to 5× 5, the deflection of the loaded edge became more even.
The increase in sampling points had another beneficial effect since the
analysis converged at a significantly lower number of iterations. This
suggests that the ANCF shell elements are sensitive to the order of the
quadrature rule.

Based on the results shown in Fig. 20, it is concluded that ANCF-
based elements converge in a non-monotonic way in the studied cases.
The features of the used shape functions are assumed to be respon-
sible for this tendency. As Equation (6.21) shows, the shape func-
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tions are differentiated twice in the calculation of the element cur-
vature which is used in the definition of the elastic forces. The C0

continuous shape functions meet the C1 continuity requirement only
at the nodal points while compatibility conditions at the inter-element
edges are not fulfilled. This problem can be rectified by introducing
the crossed beam technique which guarantees C1 continuity at inter-
element edges. However, as shown in Fig. 14, C1 continuous shape
functions do not meet compatibility conditions when used to discretize
a curved structure. This means that the kinematics of these thin ANCF
shell elements must be improved in order for them to be useful in real
life engineering applications.

13 Improved kinematics of 36 d.o.f. ANCF shell
elements using element specific parameters

In this section, a possible modification of the kinematics of the 36 d.o.f.
ANCF shell elements is presented. This is done in order to remedy the
problems that have been highlighted in the previous sections. The
suggested improvements can also be applied to the 48 d.o.f. element,
but the impact of the modification on this element is not studied here.
The findings in this section have been published in a conference paper
[39] by the author of this thesis and co-authors.

The studied 36 d.o.f. thin ANCF shell elements employ the same
order of interpolation as the conventional Q8 element. Therefore, it
is believed that improvements can be made to the ANCF elements
such that a more accurate representation of curved structures can be
obtained. It can be shown that the element configuration and inter-
element connectivity are sensitive with respect to the element param-
eters. For instance, changing the length of the slope vectors in the
nodes will contribute to the contraction of the element. In the case of
the hollow quarter circle, increasing the length of the tangential slope
vector, ∂r

∂x , in nodes 5 and 8 will decrease the contraction of element 3
in the y-direction. This will shift the upper edge of this element out-
ward and, at some point, it will match the actual circle it is trying to
describe. The increase of the slope vector lengths at nodes 5 and 8 will
also affect element 4. Here, it will increase the contraction of element 4
in the y-direction such that the gap between elements 3 and 4 is main-
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tained. Hereby, it is concluded that as long as the nodes are shared
between curved elements, inter-element connectivity and correct geo-
metrical description cannot be obtained by adjusting the length of the
slope vectors at the nodes. Therefore, it is concluded that the kinemat-
ics of the thin ANCF shell elements cannot be improved by modifying
the nodal coordinates.

Other adjustable element parameters are the physical length and
width of the elements. Normally, these are considered constant for an
entire element - also in the case of curved elements. As previously
mentioned, this assumption is considered to be partly responsible for
the loss of inter-element connectivity when elements are used in a
curved configuration. In this study, the assumption is relaxed by us-
ing the correct lengths and widths of the material strips where the
evaluation points on the element are located. This introduces a set of
element specific properties that corresponds to the actual initial shape
of the element. The number of element specific lengths and widths
will depend on the number of desired evaluation points in the element.
These element specific lengths and widths will be used whenever the
nodal coordinates are interpolated. That being both directly when
the shape functions are evaluated (see Equation (3.1)) and in-directly
e.g. when calculating the element strains and curvature (see Equations
(6.20) and (6.21)). This approach will lead to the problems regarding
gaps between curved element sides and the non-constant initial slopes
present in the reference configuration being reduced significantly.

The methodology behind the improved kinematics is described in
the shell element shown in Fig. 21. The element is shown with sam-
pling points for a three point quadrature rule in both the x and y
direction. For each row of sampling points i and j, a set of unique

x

y
L1

L2

L3

W1

W2
W3

(1, 1) (1, 2)

(1, 3)

(2, 1)
(2, 2)

(2, 3)

(3, 1)
(3, 2)

(3, 3)

Fig. 21: An ANCF shell element shown with it’s respective unique lengths and widths
at the sampling points for a third order quadrature rule over the element surface.
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lengths and widths, Li and Wj, respectively, is introduced. The val-
ues of the lengths Li and widths Wj correspond to the actual physical
lengths and widths of the material strips. These can be calculated in a
pre-processing step using e.g. CAD software.

The coordinates of the sampling points x(i, j) and y(i, j) are calcu-
lated using the unique lengths and widths. In this case where three
coordinates in both the x and y direction are needed, these values lie
in the intervals:

0 ≤ x(i, 1..3) ≤ Li

0 ≤ y(1..3, j) ≤Wj
(13.42)

This leads to nine unique values for both the x and y coordinates of
the sampling points for arbitrarily shaped elements.

To demonstrate the effect of the improved kinematics, the quarter
hollow disc addressed in Section 11 is discretized using ANCF shell
elements with the improved kinematic description. This is shown in
Fig. 22 together with the same disc discretized by elements using
the standard kinematics. Here, modified shape functions based on
the crossed beam technique are used, but the same discretization can
be obtained using modified shape functions based on the incomplete
quartic polynomial. Upon inspection of Fig. 22b, it is clear that the
gaps between adjacent curved element sides have vanished and the
discretization appears as sound as the one obtained previously using
the conventional Q8 elements (see Fig. 15).

Furthermore, by qualitative comparison, it appears as if the outer
and inner edges of the disc are more circular in Fig. 22b where the
improved kinematics is used than in Fig. 22a. This is even more ev-
ident if the edges of elements 3 and 4 between nodes 5 and 8 are
compared to the actual circle they are attempting to describe (see Fig.
23a). This comparison shows that the element edges lie on the circle
section they are meant to describe. Additionally, it is seen that the
evaluation points are equally spaced, which stands in sharp contrast
to the results shown in Fig. 16a. Again, the ANCF shell elements us-
ing the improved kinematics produce similar figures to those obtained
using the Q8 elements (see Fig. 17). The improvement in the ANCF
discretization becomes even more clear if the norm of the slopes at the
edges between node 5 and 8 obtained using the improved kinematics
is compared to the slopes obtained using the standard description (see
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(a) Discretization using standard kinematics.
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(b) Discretization using improved kinematics.

Fig. 22: A hollow disc with an inner radius of 3.5 m and an outer radius of 8 m
discretized by 6 thin rectangular ANCF shell elements using two different kinematic
descriptions. The nodes are shown with their corresponding slope vectors. Node
numbers are given in italic and element numbers are given in bold.
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Fig. 23: Figures demonstrating the influence of applying the improved kinematics.

Fig. 23b). Here, it is seen that there is no variation of the norm of the
slope vector along the edge, which is desirable since the slopes at both
of the nodes are defined as unit vectors.

The improved kinematics of the thin ANCF shell element have
shown that it can lead to a discretization similar to the one produced
using Q8 elements. Now, the hope is that the thin ANCF shell ele-
ments with the improved kinematics will show better convergence be-
havior than the ANCF element with standard kinematics. To test this
hypothesis, the hollow disc structure as described in Sections 11 and
12 is analyzed again. Results are obtained for both C1 and C0 contin-
uous shape functions using the improved kinematics, and the results
are compared to those obtained using the standard description. These
results are shown in Fig. 24.

Based on Fig. 24, it is concluded that the ANCF elements using
the improved kinematics still converge in a non-monotonic way in the
studied cases. The models using the improved kinematics only show
little or practically no difference when compared to the ANCF ele-
ments that use the standard description. This is unexpected since it
was assumed that if the problems regarding the gaps between the el-
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ements in the initial configuration were treated, a better convergence
behavior could be obtained. This suggests that the problems regard-
ing the discontinuous displacement field are not fully treated. The
improved kinematic description proposed in this study was intended
to remedy problems related to compatibility conditions and, conse-
quently, to make the studied ANCF-based elements converge mono-
tonically. That being a convergence tendency as noted in the bench-
mark study (see Section 9). Unfortunately, this more desirable behav-
ior was not demonstrated. 36 d.o.f. ANCF elements based on either
C0 or C1 continuous shape functions, regardless of the introduced im-
provements, do not satisfy the compatibility requirement. As a result,
36 d.o.f. ANCF elements do not converge monotonically; a conclu-
sion clearly demonstrating that particular attention must be paid to
the convergence of the studied ANCF elements.
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Fig. 24: Convergence study on a simply supported hollow disc for four different
load cases using 36 d.o.f. ANCF shell elements. Both C0 and C1 continuous shape
functions with the standard and improved kinematics are used.
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14 Interim conclusion

This comprehensive and thorough investigation has discussed the be-
havior and performance of gradient deficient thin ANCF shell ele-
ments in various scenarios. Initially, the kinematic description of the
elements was reviewed (Section 9). Here, the differences in the ob-
tained interpolation shape functions were pointed out. An initial con-
vergence study on a simply supported rectangular plate modeled with
an optimal mesh demonstrated the difference in using C0 and C1 con-
tinuous shape functions. Additionally, the simulation results showed
that the analyzed ANCF elements obtained converged solutions that
were consistently stiffer than reference solutions obtained using a com-
mercial software. This trend prevailed for both the small and the
large deflection problems. Furthermore, a significantly higher number
of ANCF elements were needed to obtain converged solutions when
compared to the reference solution. This indicates problems regarding
locking, which has not been alleviated in this study.

The performance of thin ANCF shell elements for analyzing mod-
els with non-uniform mesh was studied in Section 10. The study
concluded that when an inadequate number of elements is used, the
ANCF elements are more sensitive to abrupt changes in element sizes
than conventional four and eight node finite elements. However, as
the mesh was refined, the ANCF elements showed better performance.
A tendency that persisted, though, was that it was difficult to obtain
static equilibrium when the models with high element aspect ratio
were analyzed. Overall, this small study concluded that thorough con-
vergence studies are necessary when using thin ANCF shell elements
in non-uniform meshes.

In Section 11, the ability of the thin ANCF elements to discretize
curved structures was discussed. Here, it was noted that the studied
quarter hollow disc could not be represented accurately as the dis-
cretized model had gaps between adjacent curved element sides. Fur-
thermore, it was noted that the interpolated evaluation points were
unevenly spaced, which was linked to a previously noted phenomena
called CID. The quarter hollow disc was discretized with conventional
eight noded shell elements and compared qualitatively with the ANCF
discretization. Here, it was observed how the curved structure was
represented more accurately using the Q8 elements and without gaps
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between elements. This is remarkable since both the ANCF and the Q8
elements use the same order of polynomials in the interpolation of the
generalized nodal coordinates. This indicates that it is more favorable
to use position d.o.f. than slopes for describing curved structures.

The convergence study in Section 12 was conducted in order to
asses whether the discontinuous displacement field had any influence
on simulation results. In the initial discussion, consequences such as
shape sensitive behavior and abnormal convergence were mentioned,
which further manifested the need for such a study. Indeed, the results
from the convergence showed that as the applied load on the model
was increased, the ANCF models predicted an increasingly large de-
formation when compared to the reference solution. This stood in
contrast to a previously noted behavior based on models using opti-
mal and rectangular ANCF elements. Furthermore, it was noted that
increasing the order of quadrature rule for evaluating the internal elas-
tic forces reduced the number of necessary iterations needed in the
static solution procedure and gave improved results.

In Section 13, an attempt was made to improve the behavior of the
thin ANCF shell elements. In the previous sections, the poor kine-
matics leading to the incompatible displacement field was assumed to
be the source of the inconsistent convergence behavior. To remedy the
problems and improve the convergence behavior, a modified kinematic
description was introduced. Using this, it was demonstrated that the
hollow quarter disc could be discretized to the same accuracy as when
using the conventional Q8 element, and that the evaluation points were
evenly spaced. However, the desired improvement on the convergence
behavior did not appear. The convergence study on the ANCF ele-
ments using the improved kinematics indicates that it is some more
fundamental issues of the studied elements that are responsible for
the undesirable tendencies. That being the non-monotonic conver-
gence behavior when analyzing curved structures and the difficulties
in finding static equilibrium.

Overall, the investigation carried out and presented in this part has
highlighted problems and issues regarding thin ANCF shell elements.
Although these findings can make the ANCF appear erroneous and
ineffective, it has not been the intention, whatsoever. In contrast, the
goal has been to discuss and emphasize these difficulties such that
they can be treated in future studies, leading to a more robust and
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versatile ANCF. In the investigation, the studied cases have been as
simple as possible to support the proven points in the best possible
manner. These examples have been static analyses of simple structures
where both ANCF shell formulations and conventional finite elements
are compared. It can be argued that since the ANCF is intended for
analysis of large rotation and deformation problems in the multibody
dynamics framework, the investigation should also have included such
examples. However, it is not believed that the mentioned problems
and conclusions will stand out more clearly or be supported in a better
way by adding additional studies where large rotation problems in a
dynamic time domain simulation are considered. It is believed that
ANCF should perform well in both static, small deflection problems
as well as in dynamic problems with large rotations and deformations.
Such characteristics are necessary to ensure robust and versatile ANCF
elements.
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Shear and thickness
deformable ANCF shell
elements

To this point, two different types of ANCF shell elements has been
treated in this thesis. That being the fully parameterized and the thin
gradient deficient element. The thin ANCF shell element is only ap-
plicable for thin structures where transverse shear deformation can
be neglected. Furthermore, as it lacks a local element coordinate in
the transverse direction, general constitutive relations cannot be used
directly in conjunction with this element. This means that the thin
ANCF shell element has restricted usage in fully non-linear structural
problems.

The fully parameterized element, on the other hand, is capable
of describing both transverse shear and thickness deformation, and
general constitutive relations can be included in the calculation of the
internal elastic forces when using a continuum mechanics approach
(see Equation (6.17)). This widens the area of application significantly.
Furthermore, as methods for treating problems regarding locking has
been introduced, the fully parameterized element performs well for
both thin and thick shell structures [51]. However, fully parameterized
elements often have a large number of d.o.f. due to that they employ
a full set of slope coordinates (see Fig. 3 and Equation (4.4)), and in
some cases also a second order transverse slope vector [51].

Recently, simpler elements with a reduced set of generalized co-
ordinates have been introduced [17]. Here, the inplane slope vectors
are omitted from the generalized coordinates, leading to a kinematic
description based on the nodal positions and transverse slope vectors.
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This choice of parameterization has also been used for modeling of
shear deformable beam elements with success [26]. Using this, the
element is still capable of describing transverse shear and thickness
deformation, but the total number of element d.o.f. is reduced signifi-
cantly when compared to fully parameterized elements.

The simpler version of the fully parameterized element is a four
noded quadrilateral element with 24 d.o.f using bilinear interpolation.
In the originally proposed form [17], selective reduced integration and
modified Gaussian integration of the elastic forces were utilized to alle-
viate inplane shear locking and transverse shear locking, respectively.
More recently, the element has been further improved by the use of en-
hanced assumed strain [81] and assumed natural strain [22, 10]. These
means have proved effective for alleviating problems associated in-
plane shear, transverse shear and thickness locking when using both
the elastic midplane approach [92] and the full continuum mechanics
approach [98] for deriving the internal elastic forces.

As the four noded shear deformable ANCF shell element is lacking
inplane slope vectors, the element utilizes bilinear interpolation of the
nodal positions. Due to this, the element will have straight sides, but it
is, in general, not restricted to pure square or rectangular shapes and
the element can be applied for modeling curved structures. However,
a curved edge will be discretized using piecewise linear segments and
several elements are necessary for satisfactory representation of curved
and arbitrary shaped structures.

In this part, a quadratic shear and thickness deformable element
is introduced. Such an element will be an supplement to the bilinear
element for enhanced modeling curved structures. The aim is to build
upon the experience gained during the development of the bilinear
shear deformable element and formulate an efficient and locking-free
quadratic element. Here, already tested and verified methods for alle-
viating locking mechanisms in conventional quadratic shell elements
will be applied. The stiffness description is based on an elastic mid-
plane approach where the internal elastic energy of the element is cal-
culated as the sum of four characteristic strain energy states. This ap-
proach reduces coupling between the different strain states, and thus
removes some undesirable locking mechanisms in an early stage.

Conclusively, this part is ended with a discussion on similarities
between the shear deformable ANCF shell elements and similar tradi-
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tional finite elements. This is included in order to further predict the
performance of the developed quadratic ANCF shell element.

The development of the quadratic element is done in collaboration
with Professor Sugiyama, University of Iowa, and has been initiated
during a visit at his research group.

15 Parameterization of quadratic shear and thick-
ness deformable ANCF shell element

Prior to the actual formulation of the quadratic element some very
basic but important decisions must be made. These choices concern
the parameterization of the element. As in the case of the bilinear shear
deformable element, the quadratic element will be formulated without
using inplane slope vectors. Thus, in order for the quadratic element to
have curved element sides additional nodes are placed on the midsides
of the element. This gives some benefits when compared to using
inplane slope vectors for describing curved shapes. To demonstrate
this, two circular line segments are shown in Fig. 25.
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(a) Representation using slopes.
X

Y
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r3
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(b) Representation using midpoint node.

Fig. 25: Representation of circle segment by quadratic interpolation using two differ-
ent parameterizations.

In Fig. 25a the circle segment is represented using two nodes and
two slope vectors at the end points of the line. In Fig. 25b, the same
segment is discretized, but here one additional node located at the
middle of the segment is used instead of the two slope vectors. The
two parameterizations will both use the same quadratic interpolation,
but the one using position d.o.f. (Fig. 25b) will only use three vectors
as generalized coordinates, whereas the other (Fig. 25a) will use four.
This demonstrates that a curved line segment can be represented using
three less d.o.f. when using a node on the element midside instead
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of slope vectors at the endpoint nodes. Additionally, as discussed in
Sections 11 and 13, the use of slope vectors may not be optimal for
representation of curved structures.

One downside of not using inplane slope vectors as generalized co-
ordinates is that inter-element slope continuity at the midplane is not
ensured. However, similar elements missing this feature are widely
used in the conventional finite element method. As long as the lack of
inter-element slope continuity is kept in mind when formulating the
element this is not considered to be a problem.

The last decision concerns the number of nodes used in the element
formulation. Two different families of quadratic shell elements exist in
the finite element literature. Those being the eight noded serendipity
elements and the nine noded Lagrange elements [14]. The two differ-
ent elements are shown in Fig. 26 where it is seen how the nodes are
located in the elements. The benefits and drawbacks of both elements
have been discussed thoroughly in the literature, e.g. [48, 49, 101]. The
9 noded Lagrange element has the advantage of being less sensitive to
the position of the midside nodes, and it passes the out-of-plane bend-
ing patch test when the sides are curved. The 8 noded serendipity
element can loose accuracy when the midside node is located far away
from the center of the midside and the element must have straight
sides in order to pass the out-of-plane bending patch test. This, of
course, favors the nine noded topology. On the other hand, both ele-
ment types are known to suffer from extensive locking problems, and
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ity element.
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(b) Nine noded Lagrange
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Fig. 26: Two quadratic shell finite elements with different number of nodes.
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the most simple methods to address these locking mechanisms exists
for the eight noded element. Furthermore, the extra node in the nine
node element leads to a higher number of degrees of freedom. Due to
the simpler topology and the prospect of less complicated methods for
alleviating locking, it is chosen to base the quadratic shear deformable
ANCF shell element on the eight noded serendipity element topology.

16 Kinematics of a quadratic shear and thickness
deformable ANCF shell element

The eight noded shear and thickness deformable element is shown
in Fig. 27 3. The midplane of the element is defined entirely by the
area spanned by the nodes and the orientation and deformation of the
cross section is described by the transverse slope vectors. This leads
to a kinematic description where the element is described as a vol-
ume. Additionally, as the transverse slope vector is not kinematically
linked to the element midplane, the element is capable of describing
transverse shear deformation.
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Fig. 27: Eight noded quadratic shear and thickness deformable ANCF shell element
shown with nodal numbers. Position and slope vectors are not shown for brevity.

A point p in the volume is described by a position vector rp ex-
pressed with respect to the global reference frame OXYZ which can
be calculated as follows:

rp = rm
p + rc

p. (16.43)

3Note that a similar element has been mentioned recently [62], but not studied in
detail.
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Shear and thickness deformable ANCF shell elements

Here, rm
p is a vector describing the projection of point p along the cross

section on the element midplane and rc
p is a vector oriented along the

cross section from the midplane to point p. The vectors rm
p and rc

p
are expressed by interpolation of the nodal position and slope vectors,
which leads to the following expression for the vector rp:

rp = N(xp, yp) · qr + zp ·N(xp, yp) · qs. (16.44)

Here, xp, yp, zp are the local element coordinates of point p and qr and
qs are vectors containing the position and slope vector coordinates, re-
spectively. The nodal d.o.f. are assembled in the vector of generalized
coordinates q:

q =
[
(qr)

T (qs)
T
]T

qr =
[
rT

1 rT
2 . . . rT

7 rT
8

]T

qs =

[(
∂r1

∂z

)T (∂r2

∂z

)T

. . .
(

∂r7

∂z

)T (∂r8

∂z

)T
]T

(16.45)

which gives the element a total of 48 d.o.f. It should be noted in Equa-
tion (16.44) how the position and the slope coordinates are interpolated
using the same shape function matrix, N. Furthermore, the last term
is multiplied by the local transverse coordinate z to give the variation
in the transverse direction. The coordinate z is defined in the range
−h/2 ≤ z ≤ h/2, where h is the element thickness.

Following the derivation of the classical serendipity element [14],
it is assumed that an arbitrary point in the element volume can be
described using a complete quadratic polynomial in x and y and the
additional cubic terms x2y and xy2. This combined polynomial will
be used for interpolation of both the position and slope coordinates as
stated in Equation (16.44). This leads to that an arbitrary point in the
element volume is described by:

r =a1 + a2x + a3y + a4x2 + a5xy + a6y2 + a7x2y + a8xy2+

z ·
(

a9 + a10x + a11y + a12x2 + a13xy + a14y2 + a15x2y + a16xy2
) (16.46)

For both polynomials, ai are 3× 1 vectors of polynomial coefficients
that depend on the generalized nodal coordinates. Using the poly-
nomial in Equation (16.46), eight individual shape functions can be
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17. Elastic forces

derived and the shape function matrix N takes the form:

N(ξ, η) = [N1(ξ, η) N2(ξ, η) . . . N7(ξ, η) N8(ξ, η)]⊗ I (16.47)

where the eight individual shape functions Ni are given by:

N1 = −1
4
(ξ − 1)(η − 1)(η + ξ + 1)

N2 =
1
4
(ξ + 1)(η − 1)(η − ξ + 1)

N3 =
1
4
(ξ + 1)(η + 1)(η + ξ − 1)

N4 = −1
4
(ξ − 1)(η + 1)(η − ξ − 1)

N5 =
1
2
(ξ − 1)(ξ + 1)(η − 1)

N6 = −1
2
(η − 1)(η + 1)(ξ + 1)

N7 = −1
2
(ξ − 1)(ξ + 1)(η + 1)

N8 =
1
2
(η − 1)(η + 1)(ξ − 1)

(16.48)

Here, normalized element coordinates ξ and η given by ξ = x
2L and

η = y
2W have been used in which L and W are the length and width of

the element, respectively. The coordinates ξ and η take values in the
range −1 ≤ ξ, η ≤ 1.

It should be emphasized that the cross section is described en-
tirely by the transverse gradient vector and the midplane by the nodal
positions. This means that no kinematic assumptions are introduced
regarding the cross section orientation and deformation with respect
to the element midplane, which allows for both transverse shear and
thickness deformation.

17 Elastic forces

The equations of motion for the quadratic ANCF shell element can be
derived by following the procedure given in Section 6. The calculation
of the vector of internal elastic forces, however, takes a different form
as the shear and thickness deformation must be taken into account.
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Shear and thickness deformable ANCF shell elements

In this study, the internal elastic forces are evaluated using the elastic
midplane approach where the internal elastic energy is divided into
parts based on the possible deformations of the element. In this case,
the elastic energy is divided into:

• Inplane normal and shear deformation of the midplane.

• Transverse shear deformation.

• Thickness deformation.

• Bending and twisting of the midplane.

By summing op the energy carried in each of these deformation modes,
the total internal energy is expressed as:

We =
h
2

∫

A0

εT
mDmεmdA +

h
2

∫

A0

γT
t DγγtdA+

h
2

∫

A0

εzzEεzzdA +
1
2

∫

A0

κTDκκdA (17.49)

Inserting Equation (17.49) into Equation (6.11), the vector of internal
elastic forces is calculated as:

Qe = h
∫

A0

(
∂εm

∂q

)T

Dm εm dA + h
∫

A0

(
∂γt
∂q

)T

Dγ γt dA+

h
∫

A0

(
∂εzz

∂q

)T

E εzz dA +
∫

A0

δ

(
∂κ

∂q

)T

Dκ κ dA (17.50)

Here, εm is a vector containing the in-plane normal and shear strains,
γt is a vector containing the transverse shear strains, εzz is the trans-
verse normal strain, and κ is a vector containing the midplane curva-
ture components. Dm, Dγ and Dκ are constitutive matrices and E is
the Young’s modulus. h is the thickness of the element and A0 is the
element area in the initial state.

The inplane, the transverse shear and the transverse normal strains
are all calculated using the Green-Lagrange strain tensor (see Equation
(6.15)). In addition, the strain and curvature components are evaluated
at the element midplane, hence z = 0. Using this, the inplane strains,
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εm, are given by:

εm =
[
εxx εyy 2εxy

]T

εxx(x, y, 0) =
1
2

((
∂r
∂x

)T ( ∂r
∂x

)
− 1

)

εyy(x, y, 0) =
1
2

((
∂r
∂y

)T ( ∂r
∂y

)
− 1

)

εxy(x, y, 0) =
1
2

((
∂r
∂x

)T ( ∂r
∂y

))
,

(17.51)

the transverse shear strains are given by:

γt =
[
γxz γyz

]T

γxz(x, y, 0) =
(

∂r
∂x

)T ( ∂r
∂z

)

γyz(x, y, 0) =
(

∂r
∂y

)T ( ∂r
∂z

)
,

(17.52)

and the transverse normal strain is given by:

εzz(x, y, 0) =
1
2

((
∂r
∂z

)T ( ∂r
∂z

)
− 1

)
(17.53)

The curvatures of the element are given by [17]:

κ =
[
κxx κyy 2κxy

]T

κxx(x, y, 0) = −
(

∂

∂x
∂r
∂z

)T ∂r
∂x

κyy(x, y, 0) = −
(

∂

∂y
∂r
∂z

)T ∂r
∂y

κxy(x, y, 0) = −
(

∂

∂x
∂r
∂z

)T ∂r
∂y
−
(

∂

∂y
∂r
∂z

)T ∂r
∂x

(17.54)

In the calculation of the curvature it is assumed that the midplane
normal vector, n, is approximately equal to the transverse slope vector:
n ∼= ∂r

∂z , which is acceptable for moderately stiff materials.
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It should be noted that the calculation of the curvature for the shear
and thickness deformable element takes a different approach than the
one used for the thin ANCF shell element (see Equation (6.21)). For
that element, the curvature is calculated using second order deriva-
tives of the position field. As mentioned earlier, C1 continuous in-
terpolation is recommended when the element curvature is calculated
using higher order derivatives [101, 29]. However, the interpolation
used for the quadratic shear and thickness deformable elements en-
sures only C0 continuous interpolation, which is the reason that this
different approach is chosen. Here, the curvature is calculated using
the first order derivatives of the transverse slope vector instead. Ad-
ditionally, the expression for the curvature is simplified significantly
compared to the one used for the thin ANCF shell element. Further-
more, by avoiding the use of second order derivatives in the calculation
of the element curvature, the curvature may be predicted to a higher
level of accuracy [6], but the influence of this will not be treated in this
study.

The constitutive matrices used in Equations (17.51)-(17.54) are given
by:

Dm =
E

1− ν2




1 ν 0

ν 1 0

0 0 1−ν
2




Dγ =
E

2(1 + ν)


 cxz 0

0 cyz




Dκ =
h3

12
Dm

(17.55)

where ν is Poisson’s ratio and cxz and cyz are shear correction factors.
The shear correction factors are introduced to account for parabolic
variation of the transverse shear deformation across the element thick-
ness. The shear factors take the values cxz = cyz = 5/6 for rectangular
cross sections [14].
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18 Remedies for alleviating locking

The shear and thickness deformable ANCF shell element will suffer
from severe locking mechanisms if the elastic force vector is imple-
mented directly as described in the previous section. Because the prob-
lems regarding locking in traditional finite elements are well-known,
a substantial amount of research have been done to develop and test
methods that can be used to efficiently alleviate or circumvent lock-
ing problems [44, 100, 90]. The choice of using the elastic midplane
approach solves some locking problems directly, since locking aris-
ing due to coupling of the different deformation modes, e.g. Pois-
son’s thickness locking, is avoided. However, the use of the elastic
midplane approach does not address all locking problems, hence ad-
ditional means must be applied to have a locking free element. The
following subsections contain a brief review of the methods used to
address locking problems in the quadratic shear deformable ANCF
shell element.

18.1 Reduced integration

One of the earliest methods applied to address locking in quadratic
shell elements is the concept of reduced integration (RI). RI have been
applied with great success to circumvent poor numerical performance
associated to membrane and transverse shear locking in e.g. eight and
nine noded shell elements [102, 64, 48]. The use of RI is made possible
since practically all finite elements utilize numerical integration for the
evaluation of element matrices and vectors. It can be shown that a sig-
nificant improvement in accuracy and reduction in computational cost
can be obtained by modification of the numerical integration. Here,
the theoretically necessary order of integration is reduced by one when
evaluating terms in the stiffness matrix and elastic force vector associ-
ated to the inplane and transverse shear deformation. Thus the term
reduced integration. This means that for a quadratic shell element, the
theoretically exact 3× 3 sampling points should be substituted with a
2× 2 integration scheme. The explanation for this is that the compat-
ible strain field derived from the interpolation of the nodal displace-
ments predicts the most accurate strains at certain locations. These
locations happen to be the 2× 2 sampling points for a Gaussian nu-
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merical integration scheme [5]. Besides the improvement in accuracy,
a significant reduction in computational time can be expected since
fewer evaluations of the integrands are needed due to the fewer sam-
pling points.

A disadvantage of using reduced integration is that it can lead to
spurious mechanisms in certain cases [101]. This applies e.g. for el-
ements with the eight noded topology and interpolation as chosen
for the quadratic ANCF element treated here. For this particular ele-
ment type, a spurious mechanism show up as a seventh zero energy
mode. This mode is, however, non-communicating and is suppressed
when more than one element is assembled in a finite element mesh
and is in general not an issue [101, 48]. Elements with other topology
and interpolation, on the other hand, may suffer from these spurious
mechanisms, which in some cases can lead to models that does not
give convergent results. An example of such is the nine noded La-
grange element which is one of the reasons why this element topology
was not chosen for the quadratic shear deformable ANCF shell ele-
ment. However, methods to suppress these spurious mechanisms in
nine noded elements have been developed [9], but this will further
complicate the use of reduced integration. This makes the use of the
nine noded topology unfavorable compared to the eight noded where
reduced integration is applicable without further modification.

18.2 Assumed natural strain

When using RI, advantage is taken of that that finite elements are ca-
pable of predicting theoretically correct strain or stress states at certain
locations. This ability is the basis of another widely applied method
for addressing locking problems in finite elements, namely the con-
cept of assumed natural strain (ANS). When using the ANS approach,
components of the Green-Lagrange strain tensor (see Equations (17.51)
- (17.53)) are evaluated at certain points where the strains are assumed
to be correct. These strains are then used to span an assumed strain
field by interpolation of the sampled strains. Depending on the specific
ANS approach, the number of strain sampling points and the interpo-
lation scheme can vary for each of the strain components. When the
redistributed strain fields have been calculated, these new strain fields
are used in the evaluation the elastic force vector.

86



18. Remedies for alleviating locking

The ANS method have been applied with success in the bi-linear
shear deformable ANCF shell element [98, 92]. Here, methods devel-
oped for similar traditional shell finite elements are applied to alleviate
two different locking mechanisms. Transverse shear locking is treated
using a 2 point sampling method with linear interpolation [22], and
thickness locking is addressed using 4 point sampling with bilinear
interpolation [10]. For the quadratic ANCF element, ANS methods
developed for other quadratic shell elements has been sought.

Two ANS methods for addressing transverse shear locking in eight
noded shell elements have been studied. The first method was devel-
oped for use in the MITC8 element [22]. Here, each of the transverse
shear strain components is sampled at six points and redistributed
using quadratic interpolation functions. The six sampling points are
shown in Fig. 28a. Note that different points are used for the sampling
of γxz and γyz and that the value for γ5 is obtained as the mean value
of the strains sampled at point 5a and 5b.

The second method [65] uses similar sampling points, but it evalu-
ates the transverse shear strains directly in the middle of the element
instead of using the mean value of two points as shown in Fig. 28b.
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(a) Sampling points for ANS method I.
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(b) Sampling points for ANS method I I.

Fig. 28: Eight noded shell elements shown with sampling points for the ANS methods
applied to address transverse shear locking. × sampling points for γxz. ◦ sampling
points for γyz. The distance a = 1 /

√
3.
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The sampled values are interpolated using functions that are quadratic
in the η-direction and linear in the ξ-direction for γxz and vice versa
for γyz. Both methods have been implemented and tested and nu-
merical studies have shown that the six point sampling method [22]
(see Fig. 28a) showed better performance. Due to this, the six point
ANS method will be used in the following studies. Here, the ANS
method will be compared to the reduced integration in order to de-
termine which method is the most effective for addressing transverse
shear locking.

Using the sampling points as shown in Fig 28a, the redistributed
strain fields are calculated as [22]:

γANS
xz =

4

∑
i=1

hi
xzγi

xz + h5
xz ·

1
2

(
γ5a

xz + γ5b
xz

)

γANS
yz =

4

∑
i=1

hi
yzγi

yz + h5
yz ·

1
2

(
γ5a

yz + γ5b
yz

) (18.56)

with the quadratic interpolation functions hi
xz given by:

h1
xz =

1
4

(
1− ξ

a

)
(1− η)− 1

4
h5

xz

h2
xz =

1
4

(
1 +

ξ

a

)
(1− η)− 1

4
h5

xz

h3
xz =

1
4

(
1 +

ξ

a

)
(1 + η)− 1

4
h5

xz

h4
xz =

1
4

(
1− ξ

a

)
(1 + η)− 1

4
h5

xz

h5
xz =

(
1−

(
ξ

a

)2
)
(
1− η2)

(18.57)

The interpolation functions hi
yz are obtained by substituting ξ with η

and vice versa in Equation (18.57).

18.3 Enhanced assumed strain

The third and last method reviewed in this study to address locking
is the enhanced assumed strain (EAS) approach [81]. At first, the EAS
method is briefly reviewed in general terms. After this, the specific
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implementation that is suggested for the quadratic ANCF shell ele-
ment is introduced.

When using the EAS an additional term is added to a strain com-
ponent to enhance the elements capability to represent that strain. The
enhanced strain is added as follows:

ε̃ = εGL + εEAS (18.58)

where εGL is the Green-Lagrange strain derived from the displacement
field and εEAS is the enhanced strain. The enhanced strain component
εEAS is calculated as a product of a set of assumed strain polynomials
G and a unknown vector of polynomial coefficients α:

εEAS = G · α (18.59)

where G is defined in terms of the local element coordinates x and
y. A coordinate transformation must be applied in cases where an
element is not initially flat and aligned with the global reference frame
[81]. The polynomials used to define the matrix G cannot be chosen
arbitrarily if the element should pass the patch test which is necessary
to ensure convergent results. It can be shown that if the following
equation is fulfilled, the patch test will be passed [81]:

∫

V
G dV = 0 (18.60)

The EAS parameter vector α is a state variable that will vary de-
pending on the strain state in the element and must be updated at
each iteration during the solution process. The calculation of the EAS
parameters are done separately from the calculation of the nodal co-
ordinates using a static condensation. The vector of EAS parameters α

at iteration n + 1 is given by:

α(n+1) = α(n) −
(

H(n)
)−1 (

Γ(n)∆q(n) − h(n)
)

(18.61)

where ∆q(n) is the vector used to update the nodal coordinates:

q(n+1) = q(n) + ∆q(n) (18.62)
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H, Γ, and h are element specific matrices given by:

H =
∫

V0

GTD G dV

Γ =
∫

V0

GTD
∂ε

∂q
dV

h =
∫

V0

GTD ε̃ dV

(18.63)

Here, D is the constitutive relation associated to the particular Green-
Lagrange strain which is enhanced. Note that the ∂ε

∂q in the calculation
of Γ is just the partial derivative of the normal Green-Lagrange strains
with respect to the element nodal coordinates. This is due to the fact
that the enhanced strain εEAS vanishes in the differentiation since it
has no explicit dependency of the nodal coordinates.

Beside the contribution to the strain tensor, additional contribu-
tions must be added to the vector of elastic forces Qe and the tangent
stiffness matrix Ke due to the static condensation of the EAS parame-
ters. The enhanced components Q̃e and K̃e are given by:

Q̃e = Qe − ΓT (H−1h
)

K̃T = KT − ΓT (H−1Γ
) (18.64)

After these updated matrices are calculated for each element, the total
elastic force vector and tangent stiffness matrix for the entire structure
is assembled such that an updated set of nodal coordinates, q(i+1), and
EAS parameters, α(i+1), can be calculated and the next iteration step is
performed. It is important to note that matrices H, Γ, and h for each
element must be stored for the next iteration, since they are needed to
update the EAS parameters α (see Equation (18.61)).

The EAS has previously been used to address problems of inplane
shear and thickness locking in several bi-linear elements, e.g. [3, 10, 95,
98, 92], and is an essential part of their respective stiffness description.
In the case of quadratic elements, however, the use of EAS have not
been as widespread. One application has been to use EAS to address
thickness locking in a quadratic solid-shell element with nine nodes
[32]. Here the transverse normal strain, εzz, is enhanced using a nine
parameter EAS polynomial as follows:

ε̃zz = εzz + G · α (18.65)
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where εzz is defined in Equation (17.53) and the matrix of EAS poly-
nomials, G, is given by:

G = z ·
[

1 x y xy x2 y2 x2y xy2 x2y2
]

(18.66)

Here z is the local transverse coordinate. By applying this strain en-
hancement, εzz will be able to vary over the cross section, and its contri-
bution to the vector of elastic forces must be evaluated using a volume
integral.

In this study, it is not expected that the EAS will enhance the per-
formance of the quadratic ANCF shell element. This is due to the
fact that the elastic midplane approach is applied to derive the vec-
tor of elastic forces. Here, the inplane and transverse normal strains
are decoupled which will alleviate the Poisson’s thickness locking [92].
However, in the case where the continuum mechanics approach is ap-
plied for deriving the vector of elastic forces, the use of EAS could
prove to be crucial to ensure a well performing element.

19 Numerical examples

This section contains some preliminary numerical results to give indi-
cations of the performance of the novel quadratic shear and thickness
deformable ANCF element. The element will be tested using static and
eigenfrequency analyses which will be compared to results obtained
using both analytical models and commercial software. In addition
to testing the overall performance of the new element, the numerical
studies will be used to assess which combinations of locking remedies
that are the most effective.

The locking remedies will be applied and analyzed in stages to
asses the influence and performance of the different locking remedies
individually. The different combinations will be referred to using the
notation described in Table 3. For all the models, the calculation of the
curvature is implemented directly as in Equation (17.54) without mod-
ifications. As default the terms in the elastic force vector is integrated
using full 3 × 3 Gaussian integration. However, when the reduced
integration is applied, the order of integration is reduced to a 2× 2
scheme for the affected terms.
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Name Description

ANCF Unmodified The quadratic element implemented di-
rectly using the calculation of the elastic
force vector as described in Section 17.

ANCF RI εm The term in the elastic force vector (see
Equation (17.50)) associated to the inplane
strains (see Equation (17.51)) is evaluated
using 2× 2 Gaussian quadrature.

ANCF RI εm + γt The term in the elastic force vector (see
Equation (17.50)) associated to the inplane
strains, εm, (see Equation (17.51)) and the
transverse shear strains, γt, (see Equa-
tion(17.52)) are evaluated using 2× 2 Gaus-
sian quadrature.

ANCF RI εm + ANS γt The term in the elastic force vector (see
Equation (17.50)) associated to the inplane
strains, εm, (see Equation (17.51)) is evalu-
ated using 2× 2 Gaussian quadrature. The
expression for the transverse shear strains,
γt, is substituted with the expression for
γANS given in Equation (18.56).

Table 3: Overview of notation used to describe the different combinations of locking
remedies.

In order to obtain the numerical results, the element and the dif-
ferent locking remedies have been implemented in Matlab [52]. The
static results are calculated using the iterative procedure described in
Section 6.2. Here the l2-norm of the residual vector is chosen as the
convergence criteria and the equilibrium iterations are stopped when
the norm is below 1× 10−4. When calculating the static equilibrium
solutions, a value of 1 × 10−8 is added to the perturbed coordinate
when calculating the finite differences used to derive the tangent stiff-
ness matrix. This value has been chosen empirically through numer-
ical experiments where it has proven to give the fastest convergence

92



19. Numerical examples

for the studied models. For other models and loading conditions, this
value may not be optimal. The eigenfrequencies are obtained using
the built-in Matlab function eig.

19.1 Convergence study

The quadratic element is subjected to a convergence study based on
static analyzes of a cantilever plate with varying model parameters. A
sketch of the cantilever plate with its applied load is shown in Fig. 29.

L

W
F

Fig. 29: Cantilever square plate with applied point load.

The plate is loaded in the transverse direction and the load, F,
Young’s modulus, E, and plate thickness, h, is varied. This is done
in order to test the performance of the new element in both a small
deflection, SD, and a large deflection, LD, problem and when applied
in both thin and thick plate models. The plate is assumed to have a
side length of L = W = 1m. The remaining parameters are load case
specific and these are listed in Table 4.

For the convergence studies, results obtained using the quadratic
ANCF shell element are compared to results obtained using the com-
mercial static finite element solver Abaqus/Standard 6.14 [1] account-
ing for large deformations and using default solver settings. The can-
tilever plate is modeled using the eight noded S8R element which is
a doubly curved thick shell element using reduced integration. This
element has been chosen since it has several features in common with
the developed quadratic shear and thickness deformable ANCF shell
element. That being the eight noded topology, the capability of de-
scribing transverse shear strain and the use of reduced integration for
alleviating locking.

The basis of the convergence study is the transverse deflection of
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the node where the point load is applied. Here, solutions are obtained
for varying mesh sizes, ranging from 2× 2 to 24× 24 elements, and for
each solution the absolute error with respect to a reference solution is
calculated. The reference solutions are obtained using Abaqus models
where the cantilever plate is modeled using 50× 50, elements and the
reference for each load case is shown in Table 4. The convergence rates
for the analyzed load cases are calculated as the absolute error with
respect to their respective reference solution. For better comparison of
the convergence rates, the absolute error is plotted versus the number
of used elements on double logarithmic scales. Using this, the order
of convergence can be read from the slope of the curves shown in the
plots.

In the first convergence study, the effect of applying the reduced
integration for the inplane strains, εm, is investigated. Here, the con-
vergence rates of the ANCF RI εm implementation is compared to
the ANCF Unmodified and the Abaqus S8R element. The results are
shown in Fig 30. In overall, both the ANCF Unmodified and the ANCF
RI εm has inferior performance when compared to the results obtained
using Abaqus S8R elements. In particular for the thin plate problems
(see Fig. 30a and Fig. 30c) where the Abaqus S8R elements has a sec-
ond order convergence rate, the ANCF element gives only first order
convergence.

In the case of the small deflection problems (Fig. 30a and Fig.
30b), the results appear unaffected by the use of RI on the inplane

Load case

Property Thin SD Thick SD Thin LD Thick LD

E [Pa] 2.1× 1011 2.1× 1011 2.1× 1011 2.1× 108

ν 0.3 0.3 0.3 0.3

h [m] 0.01 0.1 0.01 0.1

F [N] 100 100.000 10.000 15.000

Reference [m] −2.5637× 10−3 −2.7154× 10−3 −2.2917× 10−1 −3.5155× 10−1

Table 4: Parameters and reference solutions for the convergence study using the bi-
quadratic shear and thickness deformable ANCF shell element. The reference solu-
tions are obtained using Abaqus with a mesh size of 50× 50 elements.
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(a) Thin plate, small deflection.
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(b) Thick plate, small deflection.
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(d) Thick plate, large deflection.

Fig. 30: Convergence study on a square cantilever plate with a single point load in one
corner using the quadratic ANCF shell element. The plots show the absolute error
versus the number of elements when applying reduced integration to alleviate mem-
brane locking. The absolute error is calculated with respect to a reference solution
obtained using Abaqus.

strains. For the large deflection problems, however, the ANCF RI εm

gives slightly better results when a low number of elements is used.
This is assumed to be due the fact that the RI on εm alleviates mem-
brane locking, which is present when the elements have noticeable
curvature. As the element size reduces, the bending of each single
element is reduced and the effect of membrane locking vanes.

This first convergence study has demonstrated that the quadratic
ANCF shell element is suffering from severe locking problems. This
is evident from the poor order of convergence which can be read from
the convergence plots (see Fig. 30). Furthermore, the use of RI on εm is
necessary, as it improves the accuracy of the element when describing
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Fig. 31: Convergence study on a square cantilever plate with a single point load in one
corner using the quadratic ANCF shell element. The plots show the absolute error
versus the number of elements when applying means to alleviate transverse shear
locking. The absolute error is calculated with respect to a reference solution obtained
using Abaqus.

problems with large curvature, but additional means are necessary to
further enhance the performance of the element.

The next convergence study will present the results obtained using
the ANCF RI εm + γt and ANCF RI εm + ANS γt where means to
address transverse shear locking have been introduced. The results
obtained using these combinations are shown in Fig. 31 together with
the results from the ANCF Unmodified and the Abaqus S8R.

When studying the convergence plots, two prominent observations
can be made. First of all, the improved performance of the quadratic
ANCF element when applying RI on the transverse shear strains, γt,
is highly noticeable. Here it is seen that the ANCF RI εm + γt gives

96



19. Numerical examples

identical results when compared to the Abaqus S8R for the small de-
flection problems (see Fig. 31a and Fig. 31b). For the large deflection
problems (see Fig. 31c and Fig. 31d) the ANCF RI εm + γt gives ac-
ceptable results, but with a slight deviation from those obtained using
Abaqus S8R when a higher number of elements is used.

The second prominent observation is the performance of the ANCF
RI εm + ANS γt. This combination of locking remedies show a medio-
cre performance when compared to both the ANCF RI εm + γt and
Abaqus S8R, but also the ANCF Unmodified. Especially for the thin
plate load cases (see Fig. 31a and Fig. 31c), where the ANCF RI εm +
ANS γt converge to solutions that under-predict the magnitude of the
deflection when compared to the Abaqus reference.

This second convergence study has compared the two investigated
methods for treating transverse shear locking. The convergence study
indicates that the use of RI is the most efficient method to treat the
transverse shear locking. The ANCF RI εm + γt has given results that
are consistently more accurate than those obtained using ANCF RI εm

+ ANS γt for the four studied load cases. However, further analysis
are needed to render the ANCF RI εm +γt combination fully validated.
For instance, the analyzed models have consisted of optimal elements
of square shape with the midside nodes placed exactly on the element
midsides. In the literature it is reported that the use of reduced in-
tegration in skew quadratic shell elements and elements where the
midside node is not located in the middle can deteriorate simulation
results [48]. Due to this, further studies on models of arbitrary shape
and with distorted mesh is needed.

The small deviation between the ANCF RI εm + γt and the Abaqus
S8R noted in the large deflection load cases (see Fig. 31c and Fig.
31d) could indicate that the quadratic ANCF shell element still suffers
from locking. This could prove to be thickness locking. During the
convergence study, a combination of EAS and the ANCF RI εm + γt

was tested. Here, the simulations showed no change when compared
to the results obtained using the pure ANCF RI εm + γt. Additionally,
it was observed that the EAS parameters, α, was equal to zero during
all equilibrium iterations and when static equilibrium was obtained.
This shows that the EAS did not become active. A locking mechanism
that has not been treated yet is curvature thickness locking and an
assessment of the presence this locking phenomena is given in Section
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19.3.
A last observation during the convergence study was the compu-

tational performance of the quadratic ANCF shell element. For all the
load cases and mesh sizes, the load was applied in a single load step,
which is possible due to the non-incremental form of the ANCF. When
calculating the static equilibrium solutions for the small deflection load
cases, between two and four equilibrium iterations was needed to ob-
tain a converged results. In the large deflection load cases, the num-
ber of necessary iterations were between eight and twelve. Especially
the later, is considered being a relatively low number in view of the
magnitude of the resulting deflections and the very simple approach
used to solve the equilibrium equations. For comparison, Abaqus took
between eight and twelve load steps with up to three equilibrium iter-
ations in each load step 4. This testifies the robustness of the quadratic
ANCF shell element and suggests that it could also be considered as a
tool for general non-linear structural analysis.

19.2 Eigenfrequency analysis

When modeling structural dynamics using any finite element, it is
important that the chosen element can describe the vibrating frequen-
cies and associated mode shapes for the structure accurately. This is
to ensure that the response due to time varying and/or oscillating
loads is predicted correctly. The quadratic shear deformable element
is tested in this discipline by applying it in a eigenfrequency analy-
sis of a square plate with free boundary conditions on all edges. The
model parameters are given in Table 5.

In the convergence study it was shown that the ANCF RI εm + γt

appeared to be the most effective combination of the locking remedies
that have been tested here. Due to this, only results using this com-
bination will be shown and discussed. Additionally, results obtained
using the ANCF Unmodified is listed in order to demonstrate the im-
provement when applying means to address locking. The obtained re-
sults are compared to analytical solutions based on the Rayleigh-Ritz
method using polynomials as trial functions [69]. Furthermore, results
from Abaqus will be used for comparison with a conventional finite

4These numbers are when using the default solver settings and can undoubtedly
be lowered using of proper solver settings

98



19. Numerical examples

element solver. The results from Abaqus are obtained using the eight
noded S8R element and the eigenfrequencies are calculated using the
Lanczos solver with default settings [1].

The first ten non-zero eigenfrequencies calculated for the square
plate are given in the Tables 6 - 8, where they are listed for three differ-
ent mesh sizes: 2× 2, 4× 4, and 8× 8, respectively. The results show
that the estimation of the eigenfrequencies is improved significantly
when applying the reduced integration on the inplane and transverse
shear strains. Especially for the higher order modes, the difference be-
tween the ANCF Unmodified and the ANCF RI εm + γt is significant
for all mesh sizes. However, as the mesh is refined the ANCF Un-
modified is capable of predicting the eigenfrequencies to a satisfactory
level.

When comparing the results obtained using the ANCF RI εm +

γt to those obtained using Abaqus, it is highly noticeable how well
they correlate. For every mode and mesh size, the results for the two
elements are only deviating slightly in the decimal points. The only
exception is the eighth mode calculated using a 2× 2 mesh (see Table
6) where a slightly larger deviation is seen. In overall, the resemblance
between ANCF RI εm + γt and the Abaqus S8R is highly notable, and
the small deviations might as well come from the different algorithms
used to calculate the eigenfrequencies.

The mode shapes for the associated eigenfrequencies calculated us-
ing the ANCF RI εm + γt have also been studied and compared quali-
tatively to those obtained using Abaqus with good agreement. How-
ever, these results are not shown here. In the future, the ability of the
quadratic ANCF element to estimate correct mode shapes of vibrat-
ing plates should be documented properly. This could be done e.g.

Property Value

Side lengths 1 m

Thickness 0.01 m

Young’s Modulus 2.1× 1011 Pa

Poisson’s ratio 0.3

Table 5: Parameters for the square plate subjected to an eigenfrequency analysis.
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Mode Reference [69] ANCF Unmodified ANCF RI εm + γt Abaqus S8R

1 35.0314 35.4369 35.4199 35.4194

2 50.9709 58.3303 52.9955 52.9840

3 63.1289 79.4337 67.1298 67.1225

4 90.5204 105.6134 92.9102 92.8437

5 90.5204 105.6134 92.9102 92.8437

6 158.9068 187.1687 184.9904 184.9539

7 158.9068 187.1687 184.9904 184.9539

8 165.6533 197.1301 168.0171 167.4429

9 180.1654 242.9386 195.5332 195.5005

10 200.7284 579.1054 241.8092 241.7870

Table 6: Ten first non-zero natural frequencies in [Hz] for a square plate with free
boundary conditions obtained using a 2× 2 mesh.

by drawing the so-called Chladni figures [96]. These figures show the
nodal lines of the vibrating plates and has previously been used for
validating other ANCF elements [69].
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Mode Reference [69] ANCF Unmodified ANCF RI εm + γt Abaqus S8R

1 35.03139 35.3735 35.0590 35.0572

2 50.97085 52.2516 51.1259 51.1249

3 63.12889 65.6350 63.3909 63.3897

4 90.52042 93.1212 90.1701 90.1541

5 90.52042 93.1212 90.1701 90.1541

6 158.9068 180.0979 163.0633 163.0512

7 158.9068 180.0979 163.0633 163.0512

8 165.6533 189.3308 170.3540 170.2097

9 180.1654 195.3062 183.6735 183.6036

10 200.7284 226.0742 207.2303 207.1484

Table 7: Ten first non-zero natural frequencies in [Hz] for a square plate with free
boundary conditions obtained using a 4× 4 mesh.

Mode Reference [69] ANCF Unmodified ANCF RI εm + γt Abaqus S8R

1 35.03139 35.0783 34.9128 34.9126

2 50.97085 51.2525 50.9599 50.9597

3 63.12889 63.6873 63.1134 63.1131

4 90.52042 90.9773 90.1403 90.1383

5 90.52042 90.9773 90.1403 90.1383

6 158.9068 163.2497 159.0071 159.0054

7 158.9068 163.2497 159.0071 159.0054

8 165.6533 167.0145 164.7070 164.6933

9 180.1654 183.2945 179.7501 179.7423

10 200.7284 205.6709 200.6514 200.6404

Table 8: Ten first non-zero natural frequencies in [Hz] for a square plate with free
boundary conditions obtained using a 8× 8 mesh.
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19.3 Assessment of curvature thickness locking

In the convergence study presented in Section 19.1, it was mentioned
that the quadratic shear deformable ANCF shell element may suffer
from curvature thickness locking. The presence of curvature locking
in shear deformable ANCF elements has previously been discussed in
the context of beam elements [26]. Here it was concluded that two
noded shear deformable ANCF beam elements will suffer from cur-
vature locking when they have non-parallel transverse slope vectors,
as shown in Fig. 32. The same behavior is mentioned in the bilinear
shear deformable ANCF shell element [98, 92].

∂r1

∂z

∂r2

∂z
∂rm
∂z

1 2
x

z

Fig. 32: Side view of two noded ANCF element with non-parallel transverse slope
vectors.

The cause of curvature locking in linear shear deformable ANCF
elements, is that the transverse slope vector is interpolated linearly.
In the case where these elements have non-parallel transverse slope
vectors, e.g. in the case where they exhibit pure bending (see Fig. 32),
the z-coordinate of the slope vector will be constant along the span
of the beam element. The x-coordinate, however, will vary linearly
from a negative value at node 1 to a positive value at node 2. This
will lead to change in length along the beam span of the slope vector,
having a minimum value at the center represented by ∂rm/∂z in Fig.
32. This corresponds to a strain state where the element is contracting
in the thickness direction along the span of the element. This is an
artificial strain state which is caused purely by the interpolation of the
transverse slope vectors.

To alleviate this artificial thickness straining, it was proposed to
introduce an extra node in the middle of the shear deformable beam
element. Using this, the element is capable of describing curvature cor-
rectly and an significant improvement in accuracy was demonstrated
[26].
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The concept of introducing the midside node was adopted when
formulating the eight noded quadratic shear deformable ANCF shell
element which gives the ability to describe curved shapes. However,
since the eight noded element topology was chosen, the element does
only have midside nodes at the edges of the element meaning that a
node in the center is lacking. This could mean that curved and espe-
cially doubly curved shapes cannot be described in an optimal manner.
As a consequence, it is possible that the lacking node in the center of
the element can cause curvature thickness locking when describing
curved shapes.

To test this hypothesis, the transverse normal strain will be cal-
culated for the quadratic ANCF shell element for out-of-plane curved
configurations. The curved configurations are constructed by position-
ing a square quadratic ANCF shell element with side lengths equal to
1 m and a thickness of 0.2 m symmetrically around the origin of a
coordinate system O (see Fig. 33). Then the element is bent out of
plane with a radius, r, chosen to be 1.5 m. Using these parameters,
the nodal coordinates and slope vectors for the out-of-plane curved
element is calculated. The slope vectors are calculated as normalized
vectors originating at point Q pointing towards each node. In the first
case, the element is singly curved with respect to the y-axis (see Fig.

X

Z

−0.5 m 0.5 m

r

O

Q

Element midplane

Fig. 33: Side view of a quadratic ANCF shell element in a singly curved configurations
with radius r. The element is shown without the transverse slope vectors for brevity.
However, these are unit vectors in the radial direction.
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34), and a set of nodal coordinates representing this shape is calcu-
lated directly using the mentioned parameters. In the second case, the
element is curved along both the x and the y-axis leading to a dou-
bly curved shape (see Fig. 35). The coordinates for this configuration
can be found by superimposing a set of nodal coordinates describ-
ing a curved element with respect to the x-axis on the configuration
shown in Fig. 34 and re-calculating the slope vectors to fit the doubly
curved shape. It should be noted that these configurations are not ac-
tual physical configurations, as aspects such as the anticlastic effect is
neglected. They are entirely meant for demonstration purpose of the
artificial thickness strain arising due to the curved configuration.

The transverse normal strains for the two curved configurations
are calculated using Equation (17.53) and the results are shown in the
contour plots in Fig. 36. In the figures, the colors represent the mag-
nitude of the transverse normal strain with the darkest areas having
the largest numerical value. By inspection of the contour plots, it is
immediately seen that the thickness strain is non-zero in large areas of
the elements and the magnitude varies over the elements.

When studying the strain state in the single curved element (see
Fig. 36a), it is seen that the non-zero strains are located in two parallel
bands which lie parallel with the x-axis. Along both of the element
edges parallel to the x-axis and in a band across the element center,
where y = 0, the thickness strain is zero. This tendency with the con-
traction between the nodes has been observed previously in Fig. 17b
when the conventional Q8 element was used to discretize a a hollow
circular plate.

In the case of the doubly curved element (see Fig. 35 and Fig. 36b),
it is seen that the thickness strain is concentrated in the center of the
element and fades towards the element edges. Again, it is noted that
the thickness strain is zero at along the edges where the nodes are
located.

When comparing the magnitudes of the thickness strains in the
two studied cases, it is seen that the maximum strain is approxi-
mately 22 times larger in the doubly curved configuration than in the
singly curved configuration. This indicates that the curvature lock-
ing in the quadratic ANCF shell element is most prominent when de-
scribing doubly curved shapes. Another interesting fact can be found
when comparing the thickness strain to the magnitude of the bend-
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Fig. 34: Quadratic ANCF shell element in a curved configuration.
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Fig. 35: Quadratic ANCF shell element in a doubly curved configuration.
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Fig. 36: Contour plots showing the transverse normal strain, εzz, arising in a quadratic
shear and thickness deformable ANCF shell element.
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Maximum strain Singly curved Doubly curved

εb
xx 7.169× 10−2 6.723× 10−2

εzz 4.083× 10−4 8.764× 10−3

Table 9: Absoulute values of the maximum bending normal strain, εb
xx, and transverse

normal strains, εzz, for the two studied curved configurations.

ing normal strains in the elements arising to the element curvature.
The maximum bending strain is calculated by multiplying the curva-
ture, as calculated in Equation (17.54), by half of the plate thickness,
i.e. εb

xx = h
2 κxx. The maximum bending strain in the x-direction, εb

xx,
and the maximum transverse normal strain for both configurations are
shown in Table 9. Here, it is seen that the maximum bending strain,
for both configurations, is approximately 7× 10−2. By comparison of
the strain magnitudes, it is seen that the thickness strain is 175 times
smaller than the bending strain in the singly curved configuration, ren-
dering it practically insignificant compared to the dominating bending
strain. In the doubly curved configuration, however, the thickness
strain is only approximately 8 times smaller than the bending strain.
This means that the artificial thickness strains can have considerable
magnitude compared to the bending strains in doubly curved con-
figurations which could affect the performance of the element. Such
behavior was noted previously in the large deflection load cases in the
convergence study (see Section 19.1).

This small investigation on the presence of curvature thickness
locking in the quadratic ANCF shell element has showed that this lock-
ing mechanism may arise, especially when describing doubly curved
shapes. Due to this, a suitable method to alleviate this locking phe-
nomena must be chosen. In previous studies, Lobatto quadrature has
been applied for addressing the curvature locking in ANCF beam ele-
ments (e.g. [55]). Here, the term in the elastic force vector associated
to thickness straining is evaluated using Lobatto quadrature instead of
Gaussian quadrature. The argument of using this different quadrature
rule, is that the limits of the integral is included in the sampling points.
This means that the integrand will be evaluated at the nodal locations
when the Lobatto quadrature is applied for finite elements. However,
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other sampling points are located in between the nodal points, e.g. in
the element center for a third order rule which is where the largest ar-
tificial thickness strain is located for the doubly curved configuration.
Due to this, it is uncertain that Lobatto quadrature can be applied to
alleviate curvature thickness locking in the proposed element.

A obvious choice for addressing curvature thickness locking would
be an ANS method as it has been applied in the linear shell element
[98, 92]. Here, the transverse normal strain is sampled at the nodal
locations and redistributed using bi-linear interpolation functions. A
similar approach can be adopted in the case of the quadratic element
and an indication of the effect can be obtained by inspection of the con-
tour plots in Fig. 36. Here, it is seen that the artificial thickness strains
are zero at the nodal locations, which is due to the fact the the slope
vectors here are defined as unit vectors. It is assumed that the ANS
approach could be a candidate of alleviating the curvature locking in
the quadratic ANCF shell element. The specific approach could be a
combination of sampling the transverse normal strains at the nodal lo-
cations and redistribution them using the same interpolation functions
as used in the kinematic description (see Equation (16.48)). However,
it must be left for future studies to investigate this hypothesis, as it has
not been possible within this project.

20 Discussion on shear deformable shell finite el-
ements for non-linear analysis

During the numerical studies (see Sections 19.1 and 19.2), a good cor-
relation between the quadratic shear deformable ANCF shell element
and the Abaqus S8R element was observed. This has raised a natural
question on whether the shear deformable ANCF shell elements share
any similarities with existing traditional shell finite elements. In this
section, available shell finite elements for non-linear structural analysis
will be briefly reviewed and similarities between those and the shear
and thickness deformable ANCF shell element will be pointed out.

Shell finite elements for non-linear analysis of shell structures have
been under development for nearly half a decade. These shell finite
elements have a proven track record in the analysis of problems in-
cluding large deformations and non-linear material behavior. This
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means that their kinematic and elastic formulations are considered
well-tested and robust. The degenerated shell element by Ahmad,
Irons, and Zienkiewicz [2], also commonly referred to as the AIZ-shell
element, was a first attempt to formulate a curved shell element capa-
ble of describing shear deformation. In the AIZ element, an inexten-
sible director vector is utilized to describe the orientation of the cross
section. The orientation of the director vector is updated using rota-
tion parameters along the element sides. The director vector remains
straight at all times which enforces a commonly applied assumption,
namely that the cross section remains straight during deformation. It
does not, however, limit the cross section to remain perpendicular to
the midplane by which the capability to describe transverse shear de-
formation arises. The director vector is chosen to be an inextensible
unit vector since it solves some numerical issues associated to thick-
ness deformation in the case of thin elements [2]. Other examples of
shear deformable shell elements based on director vector kinematics
are the MITC elements [22] and the geometrically exact shell element
[80].

In order to enhance modeling in problems where thickness defor-
mation may have a significant effect, such as problems including con-
tact, surface loads, and composite shells, a geometrically exact shell el-
ement with an extensible director field has been introduced [82]. This,
of course, reinstates the problems that led to the use of an inextensible
director in the AIZ element. These problems are handled by decom-
posing the extensible director field into a unit vector that defines the
orientation and a non-constant scalar value that defines the magni-
tude of the director vector. Another benefit that arises by introducing
the extensible director field, is that the need of rotational parameters
vanishes since the director vector field can be updated using simple
vector additions to determine the new tip point position of the direc-
tor vector. Furthermore, since the extensible director vector makes it
possible to describe thickness deformation, it is easier to implement
general constitutive relations for accurate modeling of non-linear ma-
terial behavior. Shell elements with extensible director kinematics has
been further improved in order to address locking problems [10, 12].

A significantly different element for analysis of shell structures, is
the so-called solid-shell element [33]. Instead of discretizing the mid-
plane of the structure and use a vector to define the cross section,
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the solid-shell element discretizes the top and bottom surfaces of the
structure and then spans the cross section between these using linear
interpolation. This leads to a kinematic description that does not rely
on rotational parameters, since it is based entirely on the positions of
the nodes on the top and bottom surfaces. Furthermore, this kinematic
description leads to an element that can describe thickness deforma-
tion since the relative distance between the nodes on the top and bot-
tom surfaces is not fixed. Moreover, the two nodes in the thickness
direction, makes capable to act as a transition element between solid
finite elements and shell elements. Like the elements based on the di-
rector vector kinematics, the solid-shell element suffers from locking
mechanisms which have been treated using various combinations of
ANS and EAS [32, 95, 94].

The shear and thickness deformable ANCF shell elements share
many characteristics with the director based shell elements and the
solid-shell element that have been briefly reviewed here. The ANCF
elements are clearly closest to the degenerated and geometrically exact
shell formulations since these element families uses vector kinematics
to describe the cross section orientation and deformation. The solid-
shell elements uses only nodal positions in the kinematic description,
but the linear interpolation in the thickness direction makes it similar
to the vector based kinematics. Many of the same techniques, such
as ANS, EAS and reduced integration, used in the director based and
solid-shell elements to address locking problems have been applied
in the shear deformable ANCF shell elements. That being for both
the bilinear element and the proposed quadratic element. In overall,
the similar kinematic description and the use of well tested methods
for alleviating locking should give the shear and thickness deformable
ANCF shell elements similar performance compared to the director
based and solid-shell elements. However, a thorough study based on
both analytical discussions and numerical experiments must be carried
out, though, to substantiate this hypothesis.

21 Interim conclusion

This third part of the thesis have concerned the development of a new
quadratic ANCF shell element. Initially, the shortcomings of existing
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ANCF shell elements was briefly highlighted. This was done in order
to justify the development of yet another ANCF element to be added
to the increasing number of elements in the ANCF library. It was con-
cluded that a versatile element family that performs well in both thin
and thick plate problems was lacking, which had led to the develop-
ment of the bilinear shear and thickness deformable element. This el-
ement, however, is not optimal for describing curved structures which
explains the need for a quadratic shear and thickness deformable ele-
ment.

The choice of parameterization and, especially, the chosen number
of nodes for the quadratic element was discussed thoroughly. First
of all, the omission of the inplane slopes was discussed. The absence
of midplane slopes is fundamentally different than both the fully pa-
rameterized and the thin gradient deficient elements discussed earlier
where slope vectors associated to element midplane are used. How-
ever, it was concluded that improved modeling of curved structures
could be obtained by using additional midside nodes instead of in-
plane slope vectors. It was chosen to base the quadratic ANCF shell
element on the eight noded serendipity topology due to the prospect
of simple and straightforward methods for addressing problems re-
garding locking. After deciding on the element topology, the kinemat-
ics of the proposed element was discussed in detail. Here the vector
of nodal coordinates and associated interpolation shape functions was
introduced and the element’s ability to describe transverse shear and
thickness was highlighted.

The vector of elastic forces for the proposed element was derived
in detail based on an elastic midplane approach. It was emphasized
that the calculation of the element curvature takes a different approach
than the one used for the thin plate element. The approach chosen for
the quadratic ANCF element relies purely on first order derivatives of
the position field, and an assumption based on the transverse slope
vector being approximately normal to the element midplane. The use
of only first order derivatives in the calculation of the curvature was
mentioned to improve the accuracy of the curvature. This hypothe-
sis and the validity on the assumption regarding the transverse slope
vector must be investigated in future studies.

Three different methods for alleviating locking in the quadratic
ANCF shell element was reviewed. Here, focus was on methods that
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have a proven track record in similar quadratic shell elements. The
benefits and drawbacks for each method were discussed and their
specific procedure for addressing locking problems in the proposed
element was reviewed.

The performance of the proposed element was assessed using nu-
merical examples. The first was a convergence study on the deflection
of a cantilever plate. Here, the element was tested in both small and
large deflection problems and for both thin and thick plate structures.
The convergence study showed that the quadratic element suffers from
extensive locking problems that impair its performance. However,
the quadratic element showed good performance when appropriate
means for addressing these locking problems were applied. Here, es-
pecially the reduced integration gave significant improvements. Fur-
thermore, the convergence study indicated that the proposed ANCF
shell element could be a valuable tool in general static non-linear prob-
lems, as it showed good performance in terms of the number of itera-
tions used to obtain static equilibrium. Eigenfrequency analyses were
conducted in order the test whether the proposed element can estimate
the natural vibration frequencies of shell structures. Here, the results
obtained using the quadratic ANCF shell element was compared with
analytical results with good correlation.

A slight deviation in the convergence behavior was found for the
large deflection load cases, and this raised a question on whether
the quadratic ANCF shell element suffers from curvature thickness
locking. The presence of curvature thickness locking was analyzed
by studying the transverse normal strain in both singly and doubly
curved elements. Here, it was noticed that significant thickness strain-
ing occurred when the element was placed in a doubly curved con-
figuration which demonstrated that the element will suffer from cur-
vature thickness locking. A possible method to alleviate this locking
phenomena is briefly mentioned but has not been tested.

During the convergence and eigenfrequency studies, a noticeable
resemblance between the ANCF RI εm + γt and the Abaqus S8R was
observed. This led to a review on similar shell elements for non-linear
structural analysis and similarities between the reviewed elements and
the shear and thickness deformable ANCF shell element were pointed
out. The similarities lie in the vector based kinematic description and
the applied means to alleviate locking. It was concluded that the sim-
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ilarities with the already proven and validated traditional shell finite
element should give the shear and thickness deformable ANCF shell
elements similar performance, but further studies are needed to con-
firm this.

In overall, this study have introduced a new quadratic shear and
thickness deformable ANCF shell element. During the development,
it has been chosen to glance at the formulation and applied techniques
in other successful non-linear shell finite elements. This is an inten-
tional choice in order not to reinvent the wheel, so to speak. However,
the results and conclusions given here are in no terms final, as the de-
velopment is still in an early state and further verification is needed.
The proposed element is still to be tested in configurations with non-
rectangular elements and transient dynamic studies must be carried
out. The element should also be benchmarked against other methods
such as analytical solutions or preferably accurate physical tests. Addi-
tionally, the benchmark test should not only be limited to comparison
of displacements, but also include calculation of stresses, forces and
moments for a wider picture of the performance.

Another aspect that may need to be reconsidered, is the choice
of the eight noded topology used in the formulation of the quadratic
element. Early in the process the eight noded topology was chosen
over the nine noded, due to a simpler and more straightforward im-
plementation. However, as the development of the eight noded el-
ement progressed, several places in the literature were noted where
the nine noded topology is recommended over the eight noded. That
being especially for cases where elements will have curved sides. Of
course, in order to investigate which topology is best suited as base
for a quadratic ANCF shell element, a nine noded variant must be
implemented for comparison with the eight noded version.

One specific area where the nine noded topology is expected to
improve the performance is when modeling doubly curved structures.
This is due to the introduction of the node in the element center and
the additional polynomial term in the kinematic description. The in-
troduction of a transverse slope vector at the element center could also
prove to be beneficial in terms of locking where it is assumed to re-
duce the artificial thickness straining when describing doubly curved
structures.

Whether or not the eight noded shear and thickness deformable
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element proves to be preferred choice, much valuable and informative
experience have been gained in the context of developing a quadratic
ANCF shell element. This experience will be used in future investiga-
tions such that, in time, a robust and versatile quadratic ANCF shell
element is developed.
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22 Discussion and conclusion

This PhD project has covered the modeling of flexible structural com-
ponents that undergo large deformations and rotations. Here, focus
has been on the analysis of shell structures using rectangular shell
finite elements based on the absolute nodal coordinate formulation,
ANCF. In order to initiate the study and obtain a general knowledge
on the topic, available rectangular ANCF shell elements were reviewed
in an early stage. During this process, a new shell element based on
the combined arbitrary Lagrange-Euler, ALE, and ANCF methods was
developed. It is believed that the ALE-ANCF formulation could prove
useful e.g. in terms of enhanced modeling of sliding forces and joints,
as a mesh refinement technique and for analysis of crack propagation.

The review of the existing ANCF shell elements and, in particu-
lar, the development of the ALE-ANCF shell element shed light over
some possible issues regarding three thin ANCF shell elements. A
thorough discussion of their kinematic descriptions highlighted dif-
ferences regarding the inter-element continuity, namely whether C0 or
C1 continuous displacement fields were ensured. Subsequently, com-
plications regarding sensitivities to abrupt changes in element sizes,
discontinuous representation of curved structures, and non-monotonic
convergence when analyzing curved structures were addressed. These
studies concluded that thorough convergence analyses and compari-
son with reference models are needed when applying the thin ANCF
shell elements in real life design tasks. As a remedy to the poor per-
formance of the thin ANCF shell elements, a modified kinematic de-
scription was suggested. However, this turned out to be unsuccessful
as it did not improve their performance.
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In the last part of this PhD thesis, a new eight noded quadratic
ANCF shell element was introduced. The kinematics of this element
was based on an approach giving it capabilities of describing both
transverse shear and thickness deformation along with the usual mem-
brane and bending deformations. The calculation of the internal elas-
tic forces was based on an elastic midplane approach and possible
remedies to alleviate locking mechanisms were reviewed. Those be-
ing methods that have been developed for use in similar traditional
finite elements. In order to test the performance of the proposed ele-
ment, numerical studies were conducted. Apparently, the results look
promising but additional work is needed to fully validate the element
and to treat problems regarding curvature locking. Conclusively it is
noted that the eight noded topology may not be the optimal choice for
the quadratic ANCF shell element, but further studies are needed to
investigate this.

In addition to the theoretical work presented here in this thesis
and in the published papers (see [38, 40, 39, 41]), the author have been
involved in two studies where the ANCF is applied in real life engi-
neering problems (see [59, 37]5). Despite not being included directly in
the thesis, these studies have helped to keep the practical application
of the ANCF in mind.

The project started out with the intention of extending the tradi-
tional flexible multibody dynamics approach, based on the floating
frame of reference formulation, to be able to describe large deforma-
tions. In its early stage, however, the project took a turn towards un-
derstanding and development of ANCF based finite elements with the
focus on multibody dynamics kept intact.

In all, this study has discussed available rectangular ANCF shell el-
ements and added two new shell elements to the ANCF library. Hope-
fully, other researchers and engineering professionals can find use in
reading the published papers and this thesis to gain further insight
in rectangular ANCF shell elements. It is believed, that in time, the
ANCF can prove to be a valuable engineering design tool that can sup-
plement already existing methods for modeling flexible components in
the multibody dynamics framework.

5These studies were conducted by students enrolled at the master’s programme
in mechanical engineering at Aarhus University. Here the author of this thesis was
involved as a co-supervisor along with the supervisor of this PhD project.
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23 Perspectives

Even though this project has covered many aspects concerning the
ANCF, it leaves a notion that it has raised more questions than it has
answered. That being both questions and hypotheses written explic-
itly, but also more general thoughts and perspectives regarding the
ANCF that have not been mentioned in the main body of the thesis.
This last section aims to collect some previously mentioned aspects
that must be explored, but also make suggestions, in a wider sense,
for possible research areas within the ANCF.

A recurring question, throughout the entire thesis, concerns the
calculation of the element curvature. This is a very important quantity
when the internal elastic forces are derived using a structural mechan-
ics approach. It could be interesting to compare results from identical
element formulations where different ways of calculating the element
curvature is used. Such an investigation could aim to give a mathe-
matical discussion of different applied methods and include numerical
examples where the methods are compared. The outcome of such a
study could be a recommendation on which approach should be pre-
ferred over others for specific elements and applications.

The conclusive discussion regarding the ALE-ANCF shell element
(see Section 7.4) mentions several aspects that calls for attention and
further investigations. In general, what has been shown in this thesis
is merely a proof of concept. A more sophisticated implementation
is needed, such that the mesh is updated when a moving node ap-
proaches another node. If such an algorithm is not present, it will
obviously lead to numerical problems in the limit where element sizes
are approaching zero. Additionally, it must be tested whether it is nec-
essary for an entire mesh to be made of ALE-ANCF elements or if they
can be placed in a special area of interest only. This could drastically
reduce the modeling complexity. An attempt should be made to im-
plement the ALE-ANCF approach in a different element formulation,
e.g. the shear and thickness deformable ANCF shell element. This is
necessary in order to make the method applicable in situations where
the thin plate assumption is invalid.

A variety of possible applications of the ALE-ANCF method is also
mentioned in Section 7.4. That being applications such as modeling of
moving boundary conditions, mesh refinement technique, and simu-
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lation of crack propagation. Especially the latter is a very interesting
application. Using the ALE-ANCF, a crack could be modeled by plac-
ing a moving node at the crack tip to simulate the propagation of the
crack through the modeled specimen. It is expected that a combination
of describing plasticity in flexible components and crack propagation
using the ALE-ANCF method could have huge impact in the future
use of multibody dynamics.

In Part II, the performance and behavior of thin ANCF shell ele-
ments was discussed. This discussion highlighted several issues and
problems regarding this element, and, in general, made this element
type appear erroneous. It could be interesting to apply the element
in a real life design problem, in order to find out whether these high-
lighted issues have any practical consequences.

The quadratic shear and thickness deformable ANCF shell ele-
ment, which was introduced in Part III, is probably one of the subjects
considered in this thesis, that still needs the most work. The basic
formulation appears to be sound, but the element needs to be general-
ized into a form where initially non-rectangular and curved elements
can be described. This involves that the initial shape of the element is
taken into account when formulating the vector of elastic forces. The
calculation of the elastic forces should also be expanded to include a
description based on a continuum mechanics approach. Only then, the
element would be able to describe arbitrary materials using non-linear
constitutive relations. Additional means to alleviate locking are also
necessary to ensure that the element is locking-free when using both
the structural mechanics and the continuum mechanics approach. It
should also be considered to explore the possibility using a nine noded
element topology for the quadratic ANCF shell element instead of the
eight noded topology which has been used in this study. This should
be done with the intension of ensuring the most accurate, efficient and
robust quadratic ANCF shell element as possible.

In terms of validation and benchmarking of the quadratic ANCF
shell element, the test series should be expanded beyond static ana-
lyses of simple square plates. Here it is especially important that
the numerical studies include analyses of complex structures in or-
der to ensure that the element does not fail when applied in real life
engineering problems. This concerns especially that the chosen lock-
ing remedies should maintain their effectiveness when elements have
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a non-optimal shape. Additionally, it could be interesting to com-
pare the shear and thickness deformable ANCF shell element to the
thin ANCF shell elements. This should be done to investigate if the
shear and thickness deformable element can match the thin element in
terms of computational performance when the shell thickness becomes
small.

Seen in wider perspective, it is believed that the ANCF provides
new and interesting opportunities for the modeling of problems that
have earlier been very cumbersome or, in some cases, impossible. Pre-
viously, when modeling flexible components that undergo large de-
flections, the most practical and commonly used approach was to
use sub-structuring techniques. Here the component of interest is
segregated into several linear elastic flexible bodies that are fixed to-
gether using constraints. Now, by the use of ANCF, such components
can be modeled directly. This reduces the modeling effort as normal
mesh refinement can be carried out in straightforward manner in the
ANCF, whereas updating and determining the number of necessary
sub-structures can be a time consuming and tedious task. This will
make it easier to model parts that have a nonlinear nature such as
vehicle suspension components, wind turbine blades or leaf springs.

With the prospect of being able to incorporate nonlinear material
models, it will be possible to enhance the modeling of machine parts
made of e.g. rubber or composite materials. This would lead to in-
creased modeling fidelity of e.g. belt drive systems, tires or, again,
wind turbine blades. It could also be feasible to include plastic de-
formations and yielding of machine components. This could make
it possible to simulate a critical overload of crucial machine compo-
nents, leading to permanent deformations, and then capture its effect
on the overall system performance in the moments after the overload.
In the extreme case, it would be possible simulate complete failure of
components, e.g. in combination with the aforementioned crack prop-
agation technique. Using such a technique, design engineers could
gain valuable insight in possible failure modes and their impact on
the remaining system.

The use of ANCF will bring nonlinear finite element modeling and
multibody dynamics closer together, which can prove to take virtual
prototyping to the next level. The nonlinear finite element modeling
will benefit from always having accurate loads from the overall system
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that they are part of. The multibody dynamics model, on the other
hand, will benefit from being able to capture the response of nonlin-
ear flexible components that will affect the overall performance of the
modeled system. This combination will lead to a more integrated and
versatile analysis tool.

Despite the high expectations and the improved opportunities to
reduce the use of physical prototypes, the promises stated here should
be taken with caution. The ANCF still needs a lot of research and
development before it can be realized in the terms described here.
Furthermore, it should be adopted in commercially available software
packages, such that it can be used as a daily engineering tool. The
ANCF is well suited for problems such as rubber belts, cables, and
flexible wings. However, for other applications where components un-
dergo limited or no deformations, more efficient modeling is obtained
by using already existing methods such as the floating frame of refer-
ence formulation. Hence, the ANCF should not be seen as ’the wonder
of analysis tools’ but as a promising supplement to the already existing
suite of engineering tools. The ANCF is still young, but it is believed
that it can prove to be useful in the development of the products of
tomorrow.

24 Afterword

Seen in a wider perspective, it has been a very educational experience
doing research in the intersection between multibody dynamics and
the finite element method. Personally, this has given much valuable
experience and insight that will prove to be beneficial in a future ca-
reer, whether that being in the industry or in academia. It has been
liberating to be allowed and able to take the project in the direction
which felt right, and not being limited by a fixed project description.
If not possible, this would undoubtedly have made the project more
burdensome. It has been exciting to be at the forefront of the develop-
ment of the ANCF and contribute to this highly active research field
and it will be, if possible, even more exciting to follow and participate
in it, in the future.
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