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Resumé på dansk 
Denne ph.d.-afhandling udforsker de matematik-specifikke vanskeligheder, studerende står over for, når de 
arbejder med lineære ligninger i et online læringsmiljø kaldet MatematikFessor. Miljøet har eksisteret i mere 
end 12 år og giver elever mulighed for at arbejde med matematiske opgaver i en webbrowser. Lærere kan 
tildele deres elever arbejde i miljøet, og miljøet præsenterer lærerne for statistiske overblik baseret på, hvor 
mange rigtige svar eleverne afgiver. 

Mit formål med at udforske data fra MatematikFessor er at give lærere nye muligheder for at hjælpe deres 
elever med at overvinde de matematiske specifikke vanskeligheder der opleves i arbejdet med lineære 
ligninger. Rammerne for at arbejde med elever, der oplever vanskeligheder, udspringer af 
Matematikvejlederuddannelsens ramme (Jankvist & Niss, 2015) for at detektere elever, der oplever 
vanskeligheder og diagnosticere oprindelsen eller årsagerne til disse vanskeligheder, inden der etableres 
interventioner, der skal hjælpe eleverne med at komme forbi disse vanskeligheder. 

Afhandlingen består af en samling af seks artikler og dette dokument, der fungerer som en metodisk struktur 
for det samlede ph.d.-projekt. 

Artikel A er skrevet i samarbejde med med-ph.d.-studerende Christian Hansen og havde til formål at verificere 
det diagnostiske potentiale af opgaver fokuseret på ligningsløsning, der allerede var implementeret i 
MatematikFessor. Vi fandt ud af, at disse opgaver ikke er tilstrækkelige til at muliggøre identifikation af 
elevernes vanskeligheder med at fortolke og løse lineære ligninger. 

Artikel B fungerer som rygraden i denne afhandling og er skrevet i samarbejde med min hovedvejleder prof. 
Uffe Thomas Jankvist. Denne artikel præsenterer en forskningslitteraturgennemgang om elevers 
vanskeligheder med at arbejde med begreber tilknyttede lineære ligninger. Endvidere præsenterer artiklen et 
sæt designprincipper baseret på litteraturgennemgangen til at designe opgaver, der sigter mod at afdække 
elevernes vanskeligheder med at løse lineære ligninger, egnet til implementering i MatematikFessor. 

Artikel C er skrevet i samarbejde med min medvejleder Prof. Jeremy Hodgen og præsenterer designprincipper 
for design af alternative opgaver til online læringsmiljøer, der sigter mod at sætte lærere i stand til at stille 
hypoteser om deres elevers skemaer (Vergnaud, 2009) som et udtryk for deres handlinger når der arbejdes med 
elementer af ligningsløsning, mere præcist fortolkningerne af lighedstegnet. 

Artikel D er også skrevet i samarbejde med med-vejleder prof. Jeremy Hodgen og giver indsigt i, hvor vigtig 
opgavedesign er, når opgaver designes til diagnostiske formål. Artiklen præsenterer et replikationsstudie med 
den berømte opgave 8 + 4 = ___ + 7 (Falkner et al., 1999), inklusiv variationer implementeret i 
MatematikFessor. Resultaterne fra den oprindelige undersøgelse blev sammenlignet med resultaterne fra Paper 
D og giver anledning til interessante forskelle og ligheder. 

Artikel E er skrevet i samarbejde med professor Morten Mørup (Danmarks Tekniske Universitet) og 
præsenterer en storstilet dataanalyse af 892 unikke ligninger designet efter principperne i Paper B. Analysen 
benyttede et omfattende kodesystem baseret på fortolkningen af de fem mest populære svar som svar på hver 
af de 892 ligninger. Undersøgelsen brugte co-clustering til at observere grupperinger af både elever og opgaver, 
der udviser lignende adfærd. Dataene består af 2.135.968 unikke svar leveret af 94.368 elever i 
MatematikFessor. Artiklen giver indsigt, der muliggør etablering af midler til at diagnosticere elever, der har 
problemer med at arbejde i matematikfessor, ved at generere omfattende feedback til lærere om deres elevers 
fejl og årsagerne til dem. Artiklen afslørede grupper af opgaver, der er særligt velegnede til at afsløre en 
bestemt fejltype. 

Artikel F er skrevet i samarbejde med med-ph.d.-studerende Lui A. Thomsen og er et forsøg på at designe og 
udvikle et virtuelt miljø, der giver lærere og studerende mulighed for at arbejde med at løse ligninger sammen. 
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Miljøets specifikationer gør det muligt for brugere at arbejde med negative tal på den klassiske balancemodel, 
da tyngdekraften, der påføres af negative mængder på vægten, kan arbejde efter hensigten til at trække op på 
balanceskålen i stedet for at skubbe ned, som normale vægte ville. 

Overordnet præsenterer afhandlingen viden om, hvad litteraturen og udforskningen af data fra 
MatematikFessor kan afsløre om de vanskeligheder, eleverne møder, når de arbejder med lineære ligninger. 
Indførelsen af terminologien for en opgaves 'diagnostiske værdi' bidrager til ideen om at undersøge kvaliteten 
af opgavedesign til diagnostiske formål. Derudover præsenterer afhandlingen forskningsbaserede forslag til, 
hvordan lærere kan lære af deres elevers fejl og deres vanskeligheder med at løse ligninger via forbedret 
feedback fra online læringsmiljøer. Denne afhandling foreslår, at udviklere af online læringsmiljøer deler 
ansvaret for at fortolke elevernes svar for at gøre det muligt for lærere bedre at hjælpe deres elever med at lære 
om lineære ligninger. Endvidere præsenterer afhandlingen ideer til, hvordan lærere kan arbejde sammen med 
deres elever om at overvinde elevens matematikspecifikke vanskeligheder relateret til negative tal, når der 
løses ligninger i et virtuelt miljø. 

Didactical Engineering fungerer som en metodisk struktur for dette denne del af afhandlingen, der præsenterer 
og diskuterer resultaterne i de seks inkluderede artikler. Opbygningen af Didactical Engineering fører læseren 
gennem dokumentet i fire overordnede faser. Efter introduktionen og præsentationen af 
forskningsproblematikken er ph.d.-projekt skriftlige bidrag struktureret i de fire faser af Didactical 
Engineering.   
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Summary in English 
This PhD dissertation explores the mathematics-specific difficulties students face when working with linear 
equations in an online learning environment called MatematikFessor. The environment has existed for more 
than 12 years and allows students to work on mathematical tasks in a web browser. Teachers can assign their 
students work in the environment, and the environment in turn presents teachers with statistical overviews 
based on how many correct answers students provide. 

My purpose for exploring the data from MatematikFessor was to provide teachers with new opportunities to 
help their students overcome their mathematic specific difficulties working with linear equations. The 
framework for working with students experiencing difficulties stems from the Maths Counsellor Programme’s 
framework (Jankvist & Niss, 2015) for detecting students experiencing difficulties and diagnosing the origin 
or causes of these difficulties before establishing interventions to help students move past these difficulties.  

The dissertation consists of a collection of six papers and this document, which serves as a methodological 
structure for the overall PhD project. 

Paper A was written in collaboration with fellow PhD student Christian Hansen and set out to verify the 
diagnostic potential of tasks focused on solving linear equations already implemented in matematikfessor. We 
found that these tasks are not sufficient in enabling the identification of students’ difficulties in interpreting 
and solving linear equations. 

Paper B serves as the backbone of this dissertation and was written in collaboration with my principal 
supervisor Prof. Uffe Thomas Jankvist. This paper presents a literature review on students’ difficulties working 
with the concept of linear equations. Furthermore, the paper presents a set of design principles based on the 
literature review for designing tasks aimed at exposing students’ difficulties in solving linear equations suited 
for implementation in MatematikFessor. 

Paper C was written in collaboration with my co-supervisor Prof. Jeremy Hodgen and presents design 
principles for designing alternative tasks for online learning environments aimed at enabling teachers to 
hypothesise about their learners’ schemes (Vergnaud, 2009) as an expression of their actions working with 
elements of equation solving, more precisely the interpretations of the equals sign. 

Paper D was also written in collaboration with co-supervisor Prof. Jeremy Hodgen and provides insight into 
how important task design is when designing tasks for diagnostic purposes. The paper is a replication study of 
the famous task 8 + 4 = ___ + 7 (Falkner et al., 1999), with variations implemented in matematikfessor. 
Findings from the original study were compared with those of Paper D and presents important differences and 
similarities. 

Paper E was written in collaboration with Professor Morten Mørup (Technical University of Denmark) and 
presents a large-scale data analysis of 892 unique equations designed using the principles in Paper B. The 
analysis utilised an extensive coding system based on the interpretation of the five most popular answers in 
response to each of the 892 equations. The study used co-clustering to observe groupings of both students and 
tasks displaying similar behaviours. The data consist of 2,135,968 unique answers provided by 94,368 students 
in matematikfessor. The paper provides insight enabling the establishment of means for diagnosing students 
facing difficulty working in matematikfessor by generating extensive feedback for teachers about their 
learners’ errors and reasons for them. The paper unveiled groups of tasks that are particularly suited to 
revealing a particular error type. 

Paper F was written in collaboration with fellow PhD student Lui A. Thomsen and is a novel attempt at 
designing and developing a virtual environment that allows teachers and students to work on solving equations 
together. The specifics of the environment allow users to work with negative quantities on the classical balance 
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model, since the gravitational force applied by negative quantities to the balance can work as intended to pull 
up on the balance pan instead pushing down as normal weights would. 

Overall, the dissertation presents knowledge on what the literature and exploration of data from 
matematikfessor can reveal about the difficulties students face when working with linear equations. The 
introduction of the terminology of the ‘diagnostic value’ of a task contributes to the idea of investigating the 
quality of task design for diagnostic purposes. Additionally, the dissertation presents research-based 
suggestions on how teachers can learn from their students’ errors and their difficulties solving equations via 
improved feedback from online learning environments. This dissertation suggests that developer of online 
learning environments share responsibility in interpreting students’ answers in order to enable teachers to better 
help their students learning about linear equations. Furthermore, the dissertation presents ideas on how teachers 
can work together with their students to overcome mathematics specific difficulties related to negative numbers 
when solving equations in a virtual environment. 

Didactical engineering serves as a methodological structure for this document presenting and discussing the 
findings in the six paper contributions included. The structure of didactical engineering leads the reader 
through the document in four overall phases. After the introduction and the presentation of the research 
problématique, the research is structured in the four phases of didactical engineering.    
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Chapter 1  Introduction and research problématique 
Students experience difficulties when introduced to the components of algebra in the transition to generalised 
arithmetic (Rhine et al., 2018). In particular, the introduction of the concept of linear equations and the shift in 
the meanings of accompanying concepts, such as the equals sign and presence of letters as mathematical 
objects, create confusion (Kieran, 1981; Küchemann, 1981; MacGregor & Stacey, 1993; Matthews et al., 2012; 
Rhine et al., 2018; Vlassis, 2002).  

In the recent decade, the transition to the inclusion of digital environments and resources in the classroom has 
been swift and continues to remain a prevalent phenomenon. Such learning environments (digital textbooks 
and/or resources) promise to better enable teachers to monitor their students’ performance, to improve their 
teaching and ultimately to enhance student learning. Mathematics education was one of the first fields to 
recognise the potential of digital technologies and explore how these can improve teaching and learning, as 
well as how these could be embedded in mathematics curricula (Trouche et al., 2013). Digital learning 
environments and digital resources present a number of potential data-driven benefits (Dawson et al., 2018; 
Spitzer & Musslick, 2021). The content in the environments can be tailored to the learning needs of students 
by their teachers, by students themselves or ‘intelligently’ in that the environment can dynamically provide 
tasks based on students’ previous responses, introducing what is known as individualised or personalised 
learning (Steenbergen-Hu & Cooper, 2013). Moreover, these learning environments can score students’ 
responses almost immediately, thus providing automated feedback for students and teachers (Cavalcanti et al., 
2021; Dawson et al., 2018; Rezat, 2021).  

In recent years, we in the field mathematics education research have become familiarised with the fact that 
teachers struggle to engage with or make use of the formative values or possibilities generated by digital 
learning environments and digital resources in terms of the feedback teachers get on their students (Utterberg 
Modén, 2021). Additionally, teachers find that the dashboards of various digital learning environments only 
provide information about their students’ performance and not their understanding of mathematical concepts 
and general mathematical abilities, and creating teaching plans with a digital mathematics textbooks was found 
to increase teachers’ workloads (Utterberg Modén, 2021). Furthermore, teachers need additional competencies 
and time for teaching when initially implementing such resources. Teaching based on data from digital 
resources and adaptive functions, such as adaptive task selection for students, builds on a personalised learning 
approach. Utterberg Modén (2021) emphasised that this contradicts established teaching norms of building on 
collective classroom activities, situations where most activities are organised by the teacher to develop not 
only mathematics knowledge and abilities but also more general skills. 

In a recent review of teachers’ use of student data in the classroom, Sun et al. (2016) concluded that even 
though teachers generally have a positive attitude towards the functionalities enabled by data, they often 
expressed that a lack of time, difficulties with data and data tools, relevance and usefulness and other factors 
hindered their engagement in data use. Furthermore, a review of the use of formative feedback found that 
feedback lacking specificity can cause confusion instead of offering the intended help to teachers (Shute, 
2008).  

Prior studies have revealed that modern teachers, utilising the affordances enabled by digital resources and 
learning environments, do not find the automated feedback they are presented with appropriate. Thus, the 
question becomes how should developers of digital learning environments and other digital resources for 
mathematics learning engage in the development of this feedback to exploit the potential within these powerful 
online learning environments? Furthermore, the appropriateness of feedback could also be related to the 
domain dependency issue raised in a critical review of formative assessment and its use in the classroom 
(Bennett, 2011):  
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To be maximally effective, formative assessment requires the interaction of general 
principles, strategies, and techniques with reasonably deep cognitive-domain 
understanding. That deep cognitive-domain understanding includes the processes, 
strategies and knowledge important for proficiency in a domain, the habits of mind that 
characterise the community of practice in that domain, and the features of tasks that engage 
those elements. (Bennett, 2011, p. 15) 

In fact, here is where this discussion regarding the two approaches of offering feedback to teachers and the 
idea of formative assessment coincide. When discussing automated feedback provided by digital environments 
or resources on the mathematics-specific learning difficulties resulting in student errors, the feedback might 
not have been instigated by the teachers themselves in the same way formative assessment might initially be 
planned and performed. Could one assume that teachers initiating work in digital learning environments or 
digital resources expect the automated assessment of the students’ work? Wiliam and Thompson (2007) 
advocated for a ‘big idea’ in formative assessment: ‘The “big idea” is that evidence about student learning is 
used to adjust instruction to better meet student needs—in other words that teaching is adaptive to the student’s 
learning needs’ (p. 15). Wiliam and Thompson (2007) further summarised formative assessment as comprising 
the following five key strategies (p. 15): 

1. Clarifying, understanding and sharing learning intentions 
2. Engineering diagnostic tasks that elicit evidence of learning 
3. Providing feedback that moves teaching forward 
4. Activating students as learning resources for one another 
5. Activating students as owners of their own learning  

I realise that there is an important part of formative assessment that revolves around how evidence about 
student learning is transformed into feedback for students. However, it is equally important for teachers to 
access this evidence. Additionally, Bennet (2011) advocated for several other issues, including the 
measurement issue; he argues that assessment is not simply the process of observing students’ responses and 
noting errors or difficulties. Rather, it is an inferential process that requires teachers or researchers to have 
substantial knowledge and expertise that enables them to make productive ‘formative hypotheses’ and then to 
act on these. Bennett (2011) argued that this may involve engaging with a student to probe why they gave a 
particular answer. Additionally, the teacher could assign more tasks in an attempt to determine a pattern in the 
answers consistent with the hypothesis. This idea leads well to the introduction of the Maths Counsellor 
Programme developed in Denmark by Prof. Jankvist and Prof. Niss (Jankvist & Niss, 2015). This programme 
is not necessarily a revolutionary way of working to overcome students’ difficulties in mathematics education; 
however, they proposed a sensible framework for addressing and counteracting students’ mathematics-specific 
difficulties (Jankvist & Niss, 2015). The framework, if you will, uses diagnostic items to detect students 
experiencing difficulties before establishing a diagnostic session (Jankvist & Niss, 2017). Based on the 
diagnostic process, an intervention is designed to counteract some of the more or less rigid understanding 
causing the concrete difficulties. 

Providing high-quality feedback about students’ understanding or general abilities through digital learning 
environments does not seem at all straightforward. However, as digital learning environments become more 
ubiquitous, it is crucial to develop an explicit understanding of the process of designing tasks for 
implementation in digital learning environments to enable and support teachers in applying the ‘big idea’ in 
preparing better teaching (Wiliam & Thompson, 2007). 
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 Personal motivation building up to the problématique 
While writing my master’s thesis on mathematics education, I worked towards achieving quantitative insight 
into the mathematics-specific difficulties experienced by upper secondary school students working with linear 
equations. In 2017, I was asked if I wanted to pursue the academic experience of writing a PhD dissertation 
with similar opportunities to investigate data. The PhD project was proposed to me as an industrial PhD project, 
where I would work with my supervisor Prof. Uffe Thomas Jankvist and Edulab, the company that built and 
maintains an online learning environment for mathematics accessible through a webpage 
(www.matematikfessor.dk). I had worked with Prof. Jankvist during and after my master’s thesis, and I was 
familiar with this online learning environment that Edulab had developed.  

During my master’s studies, I worked with data from the Maths Counsellor Programme that was developed by 
Prof. Niss and Prof. Jankvist (2015). This programme was designed to give upper secondary mathematics 
teachers insight into how the research field of math education could benefit their work by helping students at 
their respective educational institutions overcome mathematics-specific difficulties. The programme would 
result in teachers being educated as maths counsellors. Later, I return to the reasoning for why I am primarily 
using the term ‘difficulties’ when discussing students’ problematic experiences with or problematic 
conceptions of the elements of mathematics. The programme’s framework for working with students with 
difficulties in mathematics is broken down into three overarching parts: detect, diagnose and intervene 
(Jankvist & Niss, 2015). The focus of the teachers in the programme is to detect students experiencing 
difficulties and then diagnose the origin or the cause of these particular difficulties before carrying out 
interventions to hopefully help students progress in their learning and move on from the particular difficulties. 

My work with the data from the Maths Counsellor Programme led to some interesting findings because of the 
shift from the intended qualitative perspective to a quantitative perspective. Prof. Jankvist and Prof. Niss, who 
are authors of the so-called ‘detection test’ that are utilised in the Maths Counsellor Programme, were 
interested in the added insight into what the tasks were capable of illuminating based on the quantitative 
analyses of the data. Therefore, my master’s project inspired my interest in task design with a detection or a 
diagnostic (or formative) purpose. Several years after finishing my master’s, I was asked if I wanted to apply 
for an industrial PhD position offering the opportunity to generate and analyse large amounts of data, thus 
reigniting my interest. The knowledge gathered from my master’s project confirmed what we might have 
already known or suspected—that upper secondary school students in Denmark experience learning difficulties 
related to algebraic expressions and equations. 

I have always had a passion for working with or teaching the concept of linear equations. After realising 
through my master’s project that so many Danish students struggle with learning the concept and that these 
struggles persist into upper secondary school, I wanted to explore ways I could help students learn the concept 
through data investigation. I was excited to work with lower secondary school students as one of the 
stakeholders, since their difficulties learning the concept could be addressed, possibly smoothening the 
transition from lower secondary to upper secondary school. 

 

 Employer’s motivation building up to the problématique 
For many years, Edulab had been the lead distributor of online learning environments for mathematics in 
Denmark, despite being a small independent company. Within the first one and a half years of my employment 
as an industrial PhD student, the company faced a situation that led to major organisational rearrangements, 
and the staff was approximately reduced by half. This, among other things, led to the company being sold to a 
large publisher of both online and analogue teaching materials for Danish schools, called ALINEA. Edulab is 
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still the provider of MatematikFessor (slang for mathematics professor), the largest online learning 
environment for mathematics in Denmark. 

Through my employment with Edulab, I became familiar with unique ways to extract data and the generous 
opportunities for generating new means to collect data that I could investigate to learn about the students and 
teachers using the online learning environment. The potential was there; I just needed to establish myself as a 
PhD student to learn what kind of data I would actually need and how I could manage this learning process in 
a fruitful way. Edulab was excited to have a research-focused person explore the possibilities of learning from 
or utilising the data they produce. At the time of my employment, Edulab was already managing and further 
developing an adaptive algorithm to help students engage with content that fits their level of performance and 
adapts to their skills in mathematics. The idea that I would be able to establish additional insights to refine this 
algorithm was also among the initial interests of the company. Additionally, they were interested in 
establishing a connection to the math education research field and to develop their content based on findings 
and trends from the field. 

 

 Research problématique 
The aim of the present industrial PhD research project naturally became a constellation based on the 
motivations of the different stakeholders in the project. As a host and co-founder of the project, Edulab gave 
me free reign on how to establish a sound research project based on the possibilities and data that they were 
able to provide through their online learning environment. The plan from the beginning was that the 
mathematical topic should be centred on the concept of linear equations. However, instead of upper secondary 
school students, like those observed in my master’s research, this PhD project focused on lower secondary 
school students and linear equations appropriate to the lower secondary level in Denmark. This sounded very 
interesting to me, since I had learned that many of the difficulties faced by upper secondary school students 
originated in primary and lower secondary school. 

The Maths Counsellor Programme inspired my approach when conceptualising this PhD project and framing 
the ideas of my investigation into students’ learning in online learning environments. In the Maths Counsellor 
Programme, teachers are inspired to follow the established framework for addressing students’ difficulties in 
their mathematics classroom. Specifically, they are asked to engage in the detection of students experiencing 
difficulties or obstacles in learning mathematics, in the diagnosis of the origin or cause of these observed 
difficulties and finally in designing an intervention directed towards the diagnosed difficulties (Jankvist & 
Niss, 2015). I note here that this procedure of detection, diagnosis and intervention is mainly possible when 
personal and face-to-face interaction is possible. Via students’ engagement with or in online learning 
environments, developers, teachers and researchers do not have access to this same interaction. 

Earlier, I established that research into the feedback offered by online learning environments and digital 
resources to teachers is insufficient. Because of the way online learning environments are typically structured, 
with limited input types in many cases restricted to an input field and multiple-choice answers, I wanted to 
explore the potential for improved feedback for teachers using online learning environments in their 
classrooms. When I say improved feedback, I specifically mean that online learning environments traditionally 
do not provide teachers with detailed descriptions, assumptions or means to hypothesise about their students’ 
mathematics-specific difficulties; rather, they provide statistical insights into how the score distributions of the 
class are based on the tasks students have completed. I return to this during the institutional analysis (section 
2.1). 

Additionally, I wanted to find evidence to support how important task design is when the task is supposed to 
generate data for unveiling students’ difficulties related to solving linear equations and ultimately provide 
feedback about these difficulties that is more effective than a performance measure. I imagined that because 
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the input types offered by online learning environments are restricted, a heavy focus on high-quality task design 
should be the focus of designers.  

Finally, I wanted to explore how an intervention could be designed to counteract students’ known difficulties 
with the concept of linear equations. I wanted to create/design an opportunity for teachers to join their students 
in a guided intervention. When I joined Edulab as an industrial PhD student, I was introduced to two fellow 
PhD students already employed by Edulab. They were Christian Hansen (computer science) who was working 
with machine learning algorithms and Lui A. Thomsen (human–computer interaction) who was working with 
learning utilising virtual reality (VR). It became a goal for me to explore opportunities for collaboration with 
my then newfound colleagues. I expected that if I wanted to explore the possibilities of data-driven feedback 
generated for teachers, collaboration with skilled computer scientists might be necessary. Additionally, I 
wanted to establish grounds for different fields of research to merge in an attempt to create better or more 
interesting results regarding interventions to help students improve their linear equation and equation-solving 
abilities.  

In the following I present the research questions I formulated in the endeavour to explore the problématique 
presented here. Hereafter, I present the reader with the methodological framework that serves as the structure 
for this kappa (I use the Swedish word ‘kappa’ for linking text) constitute my PhD dissertation. 

 

 Research questions 
Based on the introduced motivations for the project valued by the respective stakeholders and the established 
problématique, I formulated the research aim into specific research questions. In posing these research 
questions, I remind the reader that they were heavily inspired by the framework for working with mathematics-
specific difficulties established by the Maths Counsellor Programme (Jankvist & Niss, 2015). The procedure, 
as mentioned, involves detection, diagnosis and intervention and should not necessarily be converted one to 
one to fit the situation of working with online learning environments. Rather, I hope for the reader to become 
familiar with the origin of the procedure and the inspiration for the present study’s framework.  

1. What design principles are appropriate when structuring and designing tasks capable of detecting 
students facing mathematics-specific difficulties related to learning the concept of linear equations 
and equation solving? 

a. What principles are appropriate when exploring one specific difficulty (the equals sign)?  
b. What principles are appropriate when exploring difficulties related to the more general 

topic of equation solving found in the literature? 
2. What possibilities for the general diagnosis of students’ difficulties related to equation solving can 

be established? 
a. What possibilities can be established based on a task found in the relevant literature? 
b. What possibilities can be established based on the analysis of an exhaustive set of tasks 

involving equation solving? 
3. What possibilities for general interventions in relation to the concept of linear equations and 

equation solving can be established?  
a. What possibilities can be established based on a specific difficulty from the literature? 
b. What possibilities can be established based on difficulties measured in an exhaustive set 

of tasks involving equation solving? 

The proposed research questions are explored retrospectively through this kappa and qualified through the 
included papers using DE. A commonality linking all the included papers is that digital task design as a 
qualifier for teaching design plays a significant role. In the following, I go through the phases in the DE process 
and establish a place for and the relevance of the included papers in each phase. 
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 Methodological considerations  
In the following sections, I establish the methodological foundation for the present research project. The project 
mainly sought to design various initiatives to answer the research questions that emerged from the 
problématique. Didactical engineering (DE) (Artigue, 2009, 2014, 2015) became the structural research 
methodology I ultimately chose. DE emerged from French didactical culture of the early 1980s. DE has been 
developed in close relation to the theory of didactical situations (TDS) (Brousseau, 2006).  

DE is structured into four different phases: preliminary analyses; conception and a priori analysis; realisation, 
observation and data collection; and a posteriori analysis and validation (Artigue, 2015). The respective 
phases include specific prescribed dimensions that demand attention. An overview of DE as a research method 
is depicted in Figure 1. 

 

Figure 1: Overview of the phases of didactical engineering. 

Each of the dimensional aspects of the four phases of DE are described in the following. The preliminary 
analyses should include an epistemological analysis, an institutional analysis and a didactical analysis. In the 
field of mathematics education research, epistemological analysis should focus on the mathematical content 
and concepts that are the subject of DE. The epistemological analysis helps the researcher establish precise 
goals of DE and identify epistemological obstacles that could be faced during DE. Importantly, this analysis 
helps the researcher in the search for mathematical situations that feature the knowledge aimed at. These 
situations are referred to as ‘fundamental situations’ in TDS (Artigue, 2015). Institutional analysis aims to 
identify beneficial, problematic or somehow noteworthy characteristics in the environment where DE takes 
place. These characteristics can be connected to students, teachers or other relevant stakeholders. The 
didactical analysis aims to clarify what earlier research projects have to offer DE to help guide the design. 
These three dimensions of preliminary analyses reflect the systematic foundation for DE as a research method. 
Artigue (2015) argued that institutional and epistemological analyses could benefit from a historical 
dimension, which can help clarify some connected constraints in DE. The didactical dimension primarily 
provides cognitive insight into what the research reveals about the mathematical content at stake. 

The conception/design and a priori analysis phase aims to establish the research hypotheses that arise as a part 
of the design of didactical situations, concepts or constructs that rely on the preliminary analyses. Artigue 
(2015) referred to didactic variables as the macro and micro choices that are necessarily included in the design 
process. The macro choices are concerned with the overall didactical design, while the micro choices deal with 
the situational level. The a priori analysis relates the didactic variables to the research hypotheses and the 
preliminary analyses. These variables can, for example, be related to the characteristics of tasks, environments 
or resources that are presented to students as part of the DE methodology. Artigue (2015) argued that the 
identification of these variables leads to conjectures regarding the development of didactical situations. She 
further emphasised that such conjectures do not relate to individual students but “a generic and epistemic 



   
 

22 
 

student who enters the situation with some supposed knowledge background and is ready to play the role that 
the situation proposes her to play” (Artigue, 2015, p. 473). This conception and a priori analysis phase creates 
a reference to which the realisations and data can be contrasted. 

In the realisation, observation and data collection phase, the researcher should pay attention to whether the 
data are able to inform the goals of DE set in the a priori analysis. Artigue (2015) emphasised the importance 
of realisations made during this phase, as they often lead to some adaptation of the design, especially when the 
DE project is of significant size. 

The a posteriori analysis and validation phase should be set up to contrast the a priori analysis phase. During 
this phase, the data collected, as well as realisations and observations made are analysed to identify 
convergences and divergences in relation to the preliminary analyses. The hypotheses made during the 
conception phase are put to the test during the validation process, which typically involves multiple data 
sources. Artigue (2015) mentioned that the validation process does not impose a perfect match between the 
two analyses and that the methods and tools for comparing the preliminary analyses and the a posteriori 
analyses are constantly evolving. 

Additionally, I want to address the choice of DE as a research method and structure in this kappa. Therefore, 
I pose the following working question for this retrospective use of a research method. One might conclude that 
DE is mainly about carefully designing didactical situations from which students can learn about specific 
concepts. In this use of DE, I seek to frame the project through the structure provided by DE. However, I 
wanted to explore in what sense DE could serve as a reasonable framework for digital task design and what 
this view could possibly add to the existing method of DE. Therefore, I want to remind the reader to remember 
while reading this kappa to have the following question in mind: 

In what sense can DE serve as an umbrella for structuring a kappa as part of a PhD dissertation? 

After the concluding remarks at the end of this kappa, I offer reflections on the above working question. 

 

 List of paper summaries and collaborations 
As mentioned in the formulation of the research problématique, collaboration with experts within and outside 
the field of mathematics education was a goal of the project. As seen in the list of papers, half of the 
contributions (B, C and D) were written in collaboration with established researchers within the field of 
mathematics education, and the other half (A, E and F) were written in collaboration with researchers outside 
the field of mathematics education. 

I would like to briefly discuss these fortunate opportunities for collaboration. In my first change of research 
environment, I visited Prof. Jeremy Hodgen and Prof. Dietmar Küchemann at University College London 
(UCL). I learned about Prof. Küchemann’s work with the CSMS1 project and the associated tests while 
gathering information on ways to build proper tests for detecting lower secondary school students’ 
mathematics-related difficulties. When assessing these CSMS tests, I found Prof. Hodgen’s information, and 
he was kind enough to invite me to UCL to learn about task design and students’ difficulties related to algebra 
with him and the retired Prof. Küchemann. After the change in research environment Prof. Hodgen became 
co-supervisor in the project. 

My second change of environment was to the Technical University of Denmark (DTU), where I visited 
Professor at the Section for Cognitive Systems Morten Mørup. Prof. Mørup teaches a course on machine 

                                                      
1 ’Concepts in Secondary Mathematics and Science’ (1974–1979) was a research programme based in Chelsea College, 
UCL, founded by the Social Science Research Council  
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learning algorithms at DTU, and I contacted him to learn about the possibilities of analysing the data I had 
collected via MatematikFessor using machine learning. Prof. Mørup was kind enough to show interest in the 
project and in the data I had collected and invited me and my company supervisor Klaus Pedersen to participate 
in his machine learning course. Furthermore, he collaborated with me in establishing solid grounds for 
analysing the data using advanced statistical models.  

Finally, as mentioned in the research aim, I was fortunate enough to collaborate with my fellow industrial PhD 
students at Edulab. Christian Hansen collaborated with me in analysing the data in the form of answers to 
linear equations already implemented in the online environment MatematikFessor. Lui A. Thomsen 
collaborated with me in designing and developing a possible intervention in the form of a teaching sequence 
using VR. The collaboration consisted of both the design and development of a VR application that can be 
used by lower secondary school students struggling to understand equation solving. 

 
This paper provides an in-depth description of the research design involving clustering students’ performance 
solving different types of linear equations. Students’ performance was clustered using data from 457,185 
answers given by 37,585 students to equation tasks. Answers were distributed across 3,438 unique linear 
equations in a digital learning environment. The tasks consisted of different categories of linear equations. The 
clustering analysis contributes to the development of an online tool to provide teachers with easily accessible 
formative feedback. At this point, attempts to cluster students’ performance have not yet been successful, 
meaning that no clusters have been found. Instead, a description of how the pursuit of these clusters will 
continue is presented alongside the research design. 

 
Despite almost half a century of research into students’ difficulties in solving linear equations, these difficulties 
persist in mathematics classes around the world. Furthermore, the difficulties reported decades ago are the 
same ones that persist today. Given the immense number of dynamic online environments for mathematics 
teaching and learning that have emerged, we are presented with a unique opportunity to do something about 
this issue. This study sets out to apply the research on lower secondary school students’ difficulties with 
equation solving to inform students’ personalised learning through a specific task design in a particular 
dynamic online environment (matematikfessor.dk). In doing so, task design theory is applied, particularly 
variation theory. The final design we present consists of 11 general equation types—10 types of arithmetical 
equations and one type of algebraic equation—and a broad range of variations of these embedded in a potential 
learning-trajectory-tree structure. Aside from establishing this tree structure, the main theoretical contribution 
of the study and the task design we present is the detailed treatment of the category of arithmetical equations, 
which also involves a new distinction between simplified and non-simplified arithmetical equations. 

 
This paper presents an implementation process model for designing and implementing tasks that provide 
formative feedback through online learning environments used in mathematics classroom. Specifically, the 
model operationalises components of Vergnaud’s notion of scheme. The implementation process model 
features a task sequence guided by controlled variation and a ‘dual scheme idea’. Using such a sequence of 
tasks, this work illustrates how Vergnaud’s notion of scheme can be used to aid teachers in hypothesising about 
their learners’ understanding of problems involving linear equations, ultimately providing improved feedback 
for teachers and improved opportunities for student learning in online environments. In Denmark, the online 
environment matematikfessor.dk is used by approximately 80% of Danish K–9 students. 
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This paper presents a case study of a conceptual replication study. We replicated the famous and widely cited 
task presented in Falkner et al. (1999): 8 + 4 = __ + 5. In contrast to the original study, we administered the 
task to the same age group (Grade 6) in a different system (Denmark) via a large-scale online learning 
environment, with a larger sample and two decades later. Our results indicated that the Danish students 
performed significantly better than the students in the original study. We discuss why this is the case and argue 
that online learning environments, such as the one we used, provide an important opportunity to replicate, and 
thus better understand, similar results. 

 
This study is concerned with establishing a means to generate better methods for analysing and learning about 
task design for digital learning environments. Specifically, we utilise data consisting of over 2 million unique 
answers from, MatematikFessor, to solve 892 unique tasks involving solving linear equations. Utilising the 
Multinomial Infinite Relational Model (MIRM), which could account for extensive didactical coding of the 
five most popular answers to each of the 892 tasks, we successfully co-clustered students and tasks into groups 
for further analysis. The results showed that the analysis of these clusters of tasks can provide access to 
valuable information on the difficulties students in the four respective groups face and what kinds of specific 
tasks and knowledge pertinent to what types of tasks actually cause students problems or difficulties to be 
anticipated by the task designer. 

 
This article presents the theoretical considerations leading to the design and development of a digital 
experience for teaching linear equations using a modified balance model for equation solving. We modified 
the balance to alter physical behaviour in a VR experience, to strengthen students’ schemes for solving linear 
equations and to help students adapt their schemes to situations where negative numbers and mathematical 
negativity make equations abstract. We used the VR application in a small teaching experience with 10 students 
and their mathematics teacher from a Danish Grade 7 class (13–14 years of age). This exploratory study aimed 
to analyse and evaluate the effects of teaching with the modified balance in the VR application, which 
constitutes a novel teaching experience. The findings showed positive prospects for the use of VR in teaching 
linear equation solving, including a new equation-solving strategy enabled by the virtual environment. A 
majority of students gave a positive affective response to the experience, referred to and were able to apply 
ideas from the VR experience to linear equation-solving exercises on post-experience pen-and-paper exercises. 
Moreover, a particular student showed interesting behaviour and reasoning, for which we provide in-depth 
analysis to understand future possibilities of teaching equation solving with VR. 
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Chapter 2  Preliminary analyses 
In this chapter, I address the first phase of DE: the preliminary analyses. I engaged in preliminary analyses 
appropriate to the aims and the overall research questions of the research project and in relation to the 
professional circumstances the project should adapt to (i.e., the difficulties the DE will encounter) (Artigue, 
2015). In addition, I lay out the theoretical considerations that were chosen as a prerequisite or that helped 
enable and carry out the respective analyses. In the preliminary analyses, I wanted to include the three 
mentioned main dimensions that involve institutional analysis, including an analysis of the institutional 
circumstances and constraints DE will encounter, an epistemological analysis of the mathematical content at 
stake and a didactical analysis, including an analysis of what educational research has to offer to support the 
design. I attempt to address these three dimensions and relate them to the overall aim before engaging in how 
the included papers support these analyses and the research hypotheses. 

As mentioned in the introduction, this project aimed to explore possibilities in utilising data from an online 
environment to improve feedback for teachers about their learners’ difficulties. Before embarking on the three 
analyses, I want to emphasise that the didactical analysis serves as the primary analysis informing the later 
design process, while the institutional and the epistemological analyses primarily serve to frame the overall 
DE methodology used. 

 

Figure 2: Structure and included papers’ contributions and relation to preliminary analyses. 

The preliminary analyses were structured in the order presented in Figure 2. First, I present the institutional 
analysis, framing the idea of working with and analysing work done in MatematikFessor. The epistemological 
analysis is supported by the findings from the literature regarding students’ difficulties in solving linear 
equations. Finally, I present the didactical analysis, where I analyse what is meant by working with difficulties 
related to the teaching and learning of the concept of linear equations. 

 

 Institutional analysis 
In this section, I explore and identify important and simultaneously problematic and beneficial characteristics 
of MatematikFessor. These important characteristics are, at all times, related to the overall research aim and 
the posed research questions to explore digital task design in the teaching and learning of linear equations in 
MatematikFessor. Artigue (2015) argued that institutional analysis could also benefit from a historical 
dimension, which can help clarify some connected constraints in DE. Based on this consideration, I attempt to 
provide the reader with extended insight into MatematikFessor. My reasoning is that the reader would benefit 
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from more knowledge of MatematikFessor because, when referring to information from general digital 
mathematics sources gathered from research, my assumption is that the reader would then be able to 
contextualise the relevance of these sources to MatematikFessor and its user base. 

Matematikfessor is an online learning environment (a digital learning environment presented through a 
website) developed by Edulab, and it is aimed at providing Grades K–12 students in Danish schools with a 
variety of mathematical content, both for students to explore on their own and for teachers to use in their 
teaching in the classroom and for assigned homework. Access to the environment is provided through 
subscriptions that schools purchase from Edulab. The online environment has existed since 2010, and in three 
years, MatematikFessor became the most used digital resource in the Danish school system. 

Initially, MatematikFessor subscriptions were sold to schools based on the premise that teachers could save 
time from not having to correct students’ assignments involving typical training exercises because the 
environment itself would be able to correct assignments for them. Additionally, teachers are able to access 
some feedback on students in the form of simple statistics based on their class performance both live and in 
the dashboard format. The ‘dashboard’ refers to the idea of a tight overview based on simple statistical 
summaries of students’ completion of tasks and engagement with the environment. Furthermore, 
MatematikFessor was and is still independent from any analogue teaching materials. The initial product also 
featured gamified experiences, such as point systems for handing in assignments on time and for correct 
answers. In 2010, computers and digital devices were present in Danish schools, but not in the way they are 
today. The first iPad was released in Denmark in 2010 and was therefore also brand new to Danish schools. 
During the early years of MatematikFessor’s development, in 2013, Edulab hired two teachers as a first attempt 
to include more of the teachers’ perspective into the development of the content for the platform. Up until then, 
the development of the educational content had been done solely by the founder of the company Kasper Holst 
Hansen. This gave rise to the platform’s many facets that it brings its users today. These two teachers served 
both as didactic support for the founder in his development of new video lectures and as a creative resource in 
the development of new design features. These features included the introduction of GeoGebra2 applet-based 
tasks, class activity proposals, year plans and a so-called ‘book case’ that held what could be considered topic-
specific learning trajectories. 

In the short span of a couple of years, the Danish school system changed from digital sources having basically 
no share of the market to MatematikFessor being used by 25% of Danish schools. In 2016, the digital vs. 
analogue resource market for education in Denmark featured a roughly 50–50 split. Today, about 80% of 
schools in Denmark have a subscription to MatematikFessor. 

Edulab and MatematikFessor have received plenty of criticism from higher education institutions, such as 
teacher education and research institutions. They have claimed that the approach inspired by online learning 
environments, such as MatematikFessor, have led to skill-based teaching and thereby a poor understanding of 
mathematics. 

The input types offered by MatematikFessor, as in many other online learning environments, are limited, and 
in the case of MatematikFessor, only two types are available: input fields (the user can input a number in an 
empty space) and multiple choice (the number of options vary from 4 to 6). Therefore, the room for gathering 
information on students becomes rather limited in this way. Users have been able to access tasks made with 
an embedded GeoGebra applet for several years; however, the possibilities for data collection are not as 
straightforward as with the other input types. 

As promised, MatematikFessor can score the answers students input immediately. However, teachers do not 
have easy access to students’ reasoning or thinking to interpret students’ answers to a degree where they are 
                                                      
2 GeoGebra (https://www.geogebra.org/) is a dynamic geometry environment and a computer algebra system that is free 
to use.  
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able to provide sufficient feedback on behalf of MatematikFessor other than ‘correct’ or ‘incorrect’. The 
primary feedback students receive is whether the answer they have provided is correct. If the answer is 
incorrect, students receive additional feedback explaining how a possible path to a correct answer could look.  

As a result, most tasks in online learning environments are more or less closed. Inferring students’ 
mathematical understanding from such tasks is therefore difficult because the environment only presents an 
answer, correct or incorrect, and a correct answer may be the result of incorrect, or only partially correct, 
reasoning, and vice versa. This becomes a significant constraint in task design, particularly when working with 
algebraic expressions, since it is not possible to prompt students to answer algebraic expressions without 
presenting multiple-choice options. Distractors as viable options among the possible multiple-choice answers 
are preferably chosen based on scientific or experimental findings that qualify the option as a good distractor 
because it indicates a particular difficulty or well-known misunderstanding. However, even good distractors 
have limitations, since it is usually not possible to probe student thinking and thus infer a student’s reasoning 
behind a particular response. Having limited options as answers to tasks might also create different solution 
models for students, since the answer they wanted is not present among the options. Similarly, a set of options 
might cause students to apply a multiple-choice solution strategy, such as ruling out options or testing the 
options in looking for the right answer. 

In a more traditional classroom setting where students solve math tasks copied from textbooks and present the 
teacher with the processes they used to derive solutions through written assignments, teachers can set 
themselves up to acquire important assessment information about their students’ knowledge or understanding 
of certain mathematical concepts. This issue is related to the problématique and the possibilities of establishing 
means for fruitful formative assessments through online learning environments. Online learning environments 
do not immediately present teachers with similar opportunities, since teachers and the system can mostly only 
assess students based on the answers they provide and not the processes they used. 

In the following section, I dive deeper into the possibilities for MatematikFessor to provide teachers with 
feedback that they can access as users. 

 

 
As part of the institutional analysis, I analyse and discuss the various forms of feedback the teachers and 
students can access when working with MatematikFessor. In the environment, teachers assign tasks for 
students to engage with in the classroom or at home. These tasks can be more or less handpicked by the teacher. 
This means that teachers can assign tasks to students in the form of an activity in which the environment itself 
chooses the tasks. 

When students provide answers to the tasks they are assigned, teachers can receive four main types of feedback 
made available by MatematikFessor. The forms of feedback are centred on a statistical approach based on the 
correctness of the answers the students provide and are as follows: 

• Live statistics 
• Student/task statistics 
• Topic statistics 
• Complete/school-to-home statistics 

Live statistics is a tool where teachers can observe their students’ engagement with the proposed tasks live. 
The idea behind this tool is that teachers can catch students who are either working at an unnatural pace or are 
continuously providing answers indicating that the tasks are either too easy or too difficult. Student/task 
statistics is a tool for teachers to review their students’ performance on their homework. Teachers can either 
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get an overview of students’ performance from a student or task perspective. From the task perspective, 
teachers can review a bar indicating how many correct and incorrect answers their class provided collectively. 
With a few button presses, teachers can review the actual answers their class or group provided. The topic 
statistics tool is intended to provide an overview of the performance of the class or group across the variety of 
mathematical topics the group or class has engaged with through tasks. Within a series of tasks assigned as 
homework, some tasks belong to a variety of mathematical topics. This tool is intended to provide a broader 
overview of the performance of the class or another self-defined group over longer periods of time. The topic 
statistics tool presents a statistical overview divided into mathematical topics, such as area, multiplication or 
fractions and calculating with fractions. These topics are not grade specific. The collected or school-to-home 
statistics tool aims to provide teachers with a comprehensive statistical overview of the performance of a single 
student over longer periods of time. This tool provides information on a student’s performance within the 
variety of topics that the student has engaged with through tasks. Additionally, the tool provides information 
on how many tasks students have engaged with voluntarily and how many points, trophies or medals (digital 
valuables in the environment) the student has collected over the time period. 

Teachers in Denmark with access to the content in MatematikFessor use these statistical overviews in various 
ways, not necessarily in line with the intentions behind their design. However, this does not mean that the 
teachers do not find the statistical overviews helpful. In the following, I present a small survey study about 
teachers’ use of statistical overviews in MatematikFessor. The survey was conducted using Google forms, and 
the questions were only meant to provide an idea of the extent to which the statistical overviews are used and 
what they are used for.  

At the end of the survey, I added an opportunity for the participants to add a comment in one or both of two 
sections with the prompts, ‘Please add a comment about your experience if you use one or more of the statistical 
tools’ and ‘Please add a comment about your experience if you do not use one or more of the statistical tools’. 

Table 1: Scores from the survey on teachers’ use of statistical tools in in MatematikFessor, N = 29. 

 Often  Sometimes  Never or almost never 
Use of MatematikFessor 
in teaching 

62% 35% 3% 

 

Statistical tool Yes No Did not know the tool 
existed 

Live 72% 24% 3% 
Student/task  66% 20% 14% 
Topic 48% 38% 14% 
Complete/school-to-home 48% 42% 10% 

 

Unfortunately, I was not able to engage with a particularly large population of teachers for this survey. Due to 
circumstances within the host company, we had to cut the survey short, concluding with only 29 responses. 
However, I did manage to get some additional comments from teachers on the use of the statistical tools in 
MatematikFessor. Table 1 presents the scores from the survey distributed by the host company to what is 
referred to as ‘the fessor panel’ (‘fessor’ is short for professor and is often used as an abbreviation for 
MatematikFessor). More than 95% of the participants used MatematikFessor in their teaching, and more than 
50% used it often. The live statistics and student/task statistics were more frequently used, but the remainder 
of the statistical tools were also used as well. Another important thing to notice is the number of participants 
who did not know the tools existed. 

Only 77% of the teachers who declared that they often use MatematikFessor also used the live statistics tool, 
and the remaining 23% did not use it. Only 3 of 18 teachers did not use the student/task statistics tool. 
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Interestingly, 2 of 18 teachers that often used MatematikFessor did not know about the student/task statistics 
tool. Regarding the topic statistics and the collected or school-to-home statistics, I observed that only 10 of 18 
teachers who used MatematikFessor often used these tools. 

Through the survey, I identified some generalities in the comments from the participants. Most of the 
participants who offered comments about not using the statistical tools struggled with accessing the tools via 
the interface. Some participants found the tools to useless or struggled to make sense of them in relation to 
their teaching. A teacher who answered ‘yes’ to using all the statistical tools offered a different perspective: 

I use them [the tools] to keep up with what the students are doing. I also use them as an 
outset for our school/home conversations. At our school, we exclusively use 
MatematikFessor as a system, as we teach theme-based. I also use the tools to keep an eye 
on whether the students did their homework. 

From this rather extreme case, we can perhaps see the power of using digital learning resources as a 
surveillance method. My fear is that propositions such as ‘Student X is not good at solving equations’ or 
‘Student Y was 50% correct when solving tasks about finding the area’ emerge from interpretations based on 
the use of statistical tools as they are operating at the time of writing. Another teacher who also answered ‘yes’ 
to using all the statistical tools offered the following comment: 

I think the school/home statistics are not very helpful. But I use the live statistics and 
student or task statistics every time I assign ‘homework’ to my students. It’s a manageable 
way to catch uniform errors, or see if students are working, etc. 

Here, we see a teacher who supposedly manages to interpret something about the errors their students make. 
Another teacher who often uses MatematikFessor and most of the feedback tools it provides gave a different 
perspective: 

Unfortunately, it takes a long time and many clicks to get around the various statistical 
tools. It is a pity that the topic statistics are not more precise about which grade level/topic 
the students can or cannot do. There is a VERY big difference between [measuring or 
calculating] volume in 4th grade and in 7th grade, and since the difference is huge in each 
grade, it would be a GREAT help to have more precise topic distinctions. 

Interestingly, this teacher commented on the fact that correct answers are not tied to a specific ‘level’ of content 
or tasks. If a correct answer always counts as the same or represents the same value, the overall score related 
to topic statistics can mislead teachers if the statistics are interpreted in categories that are too broad. Lastly, I 
received comments such as, “They [the statistical tools] are useful but can be complex to navigate and 
interpret”. 

These statements reinforce the research findings on feedback presented to teachers in the form of dashboards 
with statistical overviews (Utterberg Modén, 2021). Teachers are presented with statistics that are easily 
automatised in digital environments. This last statement tells me that teachers are confused about the 
application of these statistical overviews. If the tools are in fact useful, what are they useful for and what makes 
them difficult to interpret? Additional statements included the following: “I think it gives a good overview of 
gaps in the students’ skill” and “It helps students to ‘get moving’ and helps me to find student gaps”. 

These teachers claimed that the tools provide a useful overview of where students have gaps in their 
knowledge. If the teachers are in fact referring to the overview and not their own interpretations of their 
students’ answers to tasks, learning could be reduced to the idea of what tasks students can or cannot do. One 
teacher said, “I tell children and parents that the target is 90% correct when working on MatematikFessor”. 
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The use of the statistical tools on MatematikFessor could result in the philosophy that understanding and 
correct answers go hand in hand to the point where a certain proportion of correct answers means that students 
are not experiencing relevant difficulties related to the topic they are engaged with. Some teachers found that 
these statistical tools on MatematikFessor benefit their classrooms, and others confirmed that they are difficult 
to interpret and integrate in their teaching. MatematikFessor has not yet explored the design space beyond the 
presentation of simple statistics based solely on correct/incorrect answers within topic areas of the offered 
material. 

 

 
In this section, I analyse the curricular goals set by the Danish Ministry of Children and Education in relation 
to the teaching of the concept of linear equations in lower secondary schools. In Denmark, mathematics 
education is built on a set of common goals for each subject in the mandatory school system. These common 
goals are reference points for what students should know or have been familiarised with after the 3rd, 6th and 
9th grades, respectively. The common goals are set within four major subject fields: Danish mathematical 
competencies, numbers and algebra, geometry and measurement and finally probability and statistics. The 
Danish competencies are a set of mathematical proficiencies concerned with engagement in various 
mathematical situations and contexts (Niss & Højgaard, 2019). Originally, there were eight competencies; 
however, the Ministry of Children and Education decided to merge a couple of them into one, resulting in a 
new total of six competencies. The notion of competency and its relation to curricula is not the focus of this 
project. 

The student group studied in the present project was primarily lower secondary school students (7th–9th grade 
in Denmark). Therefore, I mainly focus on the guidelines for this age group. In the common goals, specific 
sections are dedicated to equations a student should be able to comprehend after 9th grade. The following are 
my translations of the common goals for knowledge about equations after 9th grade (Ministry of Children and 
Education, 2019a, p. 8, my own translation). 

• The student is capable of developing methods for solving equations. 
• The student possesses knowledge about strategies for solving equations. 
• The student can pose and solve equations and simple inequalities. 
• The student possesses knowledge about equation solving with and without digital tools. 
• The student can pose and solve simple systems of equations. 
• The student possesses knowledge about providing graphical solutions for simple systems of equations. 

There are no guidelines specific to the concept of equations in the set of goals related to students’ knowledge 
after the 6th grade. However, there are a couple of points where the word ‘equation’ is mentioned (Ministry of 
Children and Education, 2019a): 

• The student can come up with solutions for simple equations using informal strategies. 
• The student possesses knowledge about the meaning of the equals sign and about informal strategies 

for solving simple equations. 

To find out more about what the prescribed common goals specifically mean when stating that the students 
should acquire knowledge about the ‘meaning of the equals sign’, we have to dig further into the lesson plans 
for Danish primary and lower secondary schools. In the lesson plan, we are provided the following description. 

Teaching takes place on the basis of the students’ intuition, which is based on the use of 
concrete materials, drawings and own notes, ‘guess and try’, as well as explanations in 
everyday language. Teaching can include, among other things, problems and calculations 
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from everyday life that can be described with equations. Students must develop an 
understanding that the equals sign means that the expressions on the left and right sides of 
it have (or must have) the same value (as opposed to an understanding that the equals sign 
is a signal that calculations must take place), a concept that is central to working with 
equations. (Ministry of Children and Education, 2019a, p. 23, my own translation) 

This text reveals that in the prescribed lesson plan and common goals for mathematics in Denmark, the concept 
of equations is well represented, and a focus is on strategies for solving equations and the interpretation of the 
equals sign. The wording connected to the interpretation of the equals sign is not far from that found in 
international literature (Kieran, 1981; Matthews et al., 2012; Prediger, 2010).  

From the prescribed lesson plan, we get a small but important distinction between the terms ‘unknown’ and 
‘variable’. Even though the terms could be confused when working with equations as opposed to functions, 
the explanation of how students should learn to replace generalised numbers with letters is present. Learning 
about different number sets is loosely mentioned throughout the legal texts. Knowledge about negative 
numbers is, however, referenced as a focus point from the 4th through 6th grades (Ministry of Children and 
Education, 2019b).  

The idea of including the prescribed curricula is to help inform the design in the next phase of the DE. From 
an institutional perspective, on the curricular side, there is a focus on learning about strategies for solving 
equations, and there is a focus on the shift in meaning of the equals sign coming from an operational view of 
the equals sign as relational. The comparison of the opportunities for feedback for teachers in MatematikFessor 
with the idea of learning about equations from a ministerial point of view in Denmark shows that these ideas 
do not seem to coincide. Feedback based on the presentation of correct answers might require that the tasks 
are of a certain quality to specify something about the strategy used or knowledge applied. In the following 
sections, I present the epistemological analysis, covering the idea of what it means to know about linear 
equations and equation solving from a lower secondary school perspective. 

 

 Epistemological analysis 
In this section, I want to dive into the epistemological and historical perspective on what linear equations are 
and have been. Equations, and especially linear equations, have been a part of mathematical problem solving 
since the Babylonians (Høyrup, 1998). The mathematical field of algebra has been the domain for introducing 
generality to mathematical expressions through the introduction of letters as placeholders for mathematical 
structures (not always numbers), satisfying appropriate conditions. Several research studies summarised 
students’ difficulties in learning the elements of algebra (e.g., Kieran, 2007; Rhine et al., 2018), which testify 
to the relevance of an epistemological analysis of the concept of linear equations. What does it mean to know 
about linear equations, and how are algebraic notation and the algebraic thought process relevant to learning 
about linear equations? As a part of the epistemological analysis, I refer to the findings from Paper B, which 
presents a review of the literature concerning students’ difficulties learning the concept of linear equations and 
equation solving. 

Through the following sections, I aim to confine the concept of (linear) equations to accommodate the elements 
of the institutional analysis and the overall aim of the project. To conduct an appropriate epistemological 
analysis of students in lower secondary school, I make some simplifications to the concept of (linear) equations 
that I return to in the discussion and implications of the preliminary analyses after the didactical analysis.  
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An equation is a mathematical proposition that two expressions are related to each other via the equivalence 
relation called ‘equality’. Equivalence relations are not specified or defined in great detail here, since it is not 
important for the present study. In general, we refer to the two expressions separated by the equality symbol 
(the equals sign) as the left side and the right side. It should be noted that it does not affect the proposition if 
the two expressions are switched as per the definition of the equals sign as an equivalence relation. This 
proposition, when we discuss equations, can therefore be logically true or false, since equivalence can be 
considered met or not met. The proposition is considered false in situations where equivalence cannot be met. 
However, in modern textbook problem solving (tasks), there will usually exist one or more conditions that 
ensure that equivalence can be met. In particular, when talking about equations in the simpler sense of the 
term, a set of unknown values in one or both of the two expressions allows the proposition to become true. 
Sticking with this simpler definition of an equation, we can define general simple linear equations, which are 
relevant to this project and suited for this epistemological analysis as propositions of the structure: 
 

 𝑎𝑎1𝑥𝑥 ± ⋯± 𝑎𝑎𝑛𝑛𝑥𝑥 ± 𝑏𝑏1 ± ⋯± 𝑏𝑏𝑛𝑛 = 𝑐𝑐1𝑥𝑥 ± ⋯± 𝑐𝑐𝑛𝑛𝑥𝑥 ± 𝑑𝑑1 ± ⋯± 𝑑𝑑𝑛𝑛 

𝑎𝑎1 …𝑎𝑎𝑛𝑛,𝑏𝑏1 …𝑏𝑏𝑛𝑛, 𝑐𝑐1 … 𝑐𝑐𝑛𝑛,𝑑𝑑1 …𝑑𝑑𝑛𝑛,𝑥𝑥 ∈ 𝑄𝑄,𝑛𝑛 ∈ 𝑁𝑁. 
 

Historically, equations were not written using the symbols (both operator and letters as unknown, known or 
general numbers) but were written in plain text. Diophantus (born around 200 AD) was the first person known 
to use algebraic symbolism when solving equations (Katz, 2009). Herscovics and Kieran (1980) provide a 
perhaps more precise or relevant definition of what an equation is in this context: “an equation as an arithmetic 
identity with a hidden number” (p. 575). 

 

 
To satisfy the equivalence relation, we talk about an equation as having a set of solutions. The cardinality of 
this set is either 0, 1 or infinity for linear equations equations with a single unknown. In this context, we 
consider equations with only a single unknown value, x, following the general formula from Section 1.1.1. 
This unknown value belongs to a set of solutions. Equivalence will be satisfied if and only if the unknown 
value belongs to the set of solutions. There may be a given starting condition that the set of solutions must 
satisfy. However, this idea belongs to situations in which the equation is considered part of a context or a 
system of equations. In the context of this study, we only consider equations with a single solution, and this 
solution belongs to the set of rational numbers. The solution to the generalised linear equations is as follows: 
 

𝑥𝑥 =  
𝑑𝑑1 ± ⋯± 𝑑𝑑𝑛𝑛 − (𝑏𝑏1 ± ⋯± 𝑏𝑏𝑛𝑛)
𝑎𝑎1 ± ⋯± 𝑎𝑎𝑛𝑛 − (𝑐𝑐1 ± ⋯± 𝑐𝑐𝑛𝑛) 

 
In the simplified version, the solution would be expressed as, 
 

𝑥𝑥 =  
𝑑𝑑 − 𝑏𝑏
𝑎𝑎 − 𝑐𝑐

 

 
Historically, different methods have been used to solve equations. For example, the Babylonians would solve 
systems of linear equations by false position, beginning with an assumption that is soon altered into the solution 
(Katz, 2009). In recent history, we began solving equations by using several equation-solving strategies that 
can each be valuable in different situations (Linsell, 2009a). Such strategies might, for example, include the 
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‘trial and error’ strategy where the solver can make deductions by replacing the unknown with a number and 
determining whether the number is too large or too small before attempting with a better number. In some 
cases, one could simply ‘know’ the solution based on perhaps more basic knowledge about multiplication 
tables or additive structures. In Archimedes’ work from more than 2000 years ago, we see the strategies of the 
construction of the idea or working backwards when solving equations to unwind the problem to come to a 
solution (Katz, 2009).  

 

 
When we talk about an equation in its mathematical sense, I need to emphasise what is meant by the term 
‘unknown’ or ‘an unknown’. One could easily be confused by the terminology when discussing the unknown 
magnitude or value of an equation. The words ‘unknown’ and ‘variable’ are occasionally interchangeable for 
the same elements in mathematics, since equations can been viewed as functions evaluated at a certain point. 
I have also not been able to acquire any other evidence that constitutes a written definition of the correct use 
of the terms ‘unknown’ and ‘variable’. An unknown size or number in an equation is not necessarily the value 
that is searched for or in any other way constitutes the solution, since other values (such as a or b, serving as 
independent terms or coefficients) might also not be known. For that reason, it becomes of utmost importance 
that in the mathematical context that what constitutes the unknown value is well defined and uncovered to 
establish a set of solutions. In other words, the word ‘unknown’ can cover all sizes that are not known elements 
in an equation of equivalence. The word ‘unknown’ is here used as Prof. Niss (personal conversation) would 
refer to it for its unknown value that we are ‘in search of’ in order to satisfy the proposition of upholding 
equality between two expressions. 

 

 
In this section, I attempt to concretise important (relevant) concepts that serve as prerequisites for knowing 
about linear equations. This should not be considered an exhaustive list; rather, it should be seen as a healthy 
analysis. Kieran (2007) argued that our ability to successfully manipulate the symbols of algebra requires that 
we are familiar with the properties of mathematical operations and relations. Furthermore, recognising the 
abstract ideas hidden behind the symbols allows for knowing which transformations are legal. Drawing on 
Bachelard (1938), Brousseau defined epistemological obstacles as:  

Forms of knowledge that have been relevant and successful in particular context, including 
often school contexts, but that at some moment became false or simply inadequate, and 
whose traces can be found in the historical development of the domain itself. (Artigue et 
al., 2014, p. 49) 

Dissecting the concept of linear equations in terms of epistemological obstacles, I wish to analyse what an 
equation is and what is meant by a solution to an equation and ultimately what could be meant by knowing the 
concept of linear equations. In the didactical analysis, I attempt to establish what is meant by experiencing 
difficulties related to not knowing about equations and their solutions. 

I wanted to establish what an equation is and what is meant by a solution to it from both a mathematical and a 
historical perspective. I begin with the historical perspective, since we can acquire a lot of meaning from 
history when discussing the aspect of epistemological obstacles. Brousseau (1997) tied the meaning of 
epistemological obstacles to the development of mathematics through its history. Epistemological obstacles 
are not to be avoided when learning mathematics, and learning is very tightly coupled with overcoming 
epistemological obstacles for oneself. What ties epistemological obstacles to the history of mathematics is that 
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these obstacles can often be found in the history of the concepts themselves (Brousseau, 1997). I am not 
emphasising that students and teachers should delve into replicas of the situations from the history of 
mathematics but that they should respect the epistemological value in overcoming the obstacles in these 
situations. 

Many researchers agree that embarking on a journey to solve problems in algebra requires a more mature 
understanding of the concept of equality compared to what is expected from an understanding necessary for 
the signalling that a directional transformation has taken place (Kieran, 1981; Prediger, 2010). By directional 
transformation, I mean when the equals sign is used to separate what, for instance, is added and what the 
addition sums to. Something about the directional aspect of equality stemming from reading a text results in a 
convention that the ‘answer’ is on the right and whatever is on the left accumulates to or generates this answer. 
Additionally, we encounter situations where the equals sign is already present in a situation signalling that 
some calculations should take place.  

In a review of the literature, I found that a significant source of difficulties related to learning the concept of 
linear equations is related to negative numbers. For many years, these numbers have been disregarded because 
they intuitively and historically did not make sense. In the history of mathematics, we are familiarised with the 
fact that negative numbers were first accepted for incorporation in calculation and manipulation in the 
beginning but not as results or solutions (Katz, 2009).  

In his work from 1557, Robert Recorde invented the equality symbol or the equals sign depicting two parallel 
lines as we know it today. As Recorde wrote, “no two things can be more equal” (Katz, 2009). Before the year 
1557, mathematicians would simply write out the phrase “is equal to” instead of using the symbol. The 
difference between the symbol and the phrase might not be what is causing students difficulties; rather, the 
shift in meaning as students advance through middle and lower secondary school is the source of confusion 
(Kieran, 1981). Reading the phrase “a is equal to b” does not immediately give rise to the symmetrical idea of 
“b is equal to a” which is otherwise part of the definition of an equivalence relation. Without reflecting too 
much about this notion, I think it is important to realise that in large parts of the world children are taught to 
read from left to right and therefore, reading mathematical expressions containing an equals sign symmetrically 
might not be obvious. 

In the literature review in Paper B, which contributes significantly to the epistemological analysis, and in these 
sections about the epistemology of linear equations, I have discussed what an equations is and what is meant 
by a solution to it. In the following sections, I continue the preliminary analyses with the didactical analysis 
covering the teaching and learning of the concept of linear equations before summarising and discussing the 
implications of the preliminary analyses.  

 

 Didactical analysis 
In this section, I aim to establish what prior research projects have to offer to help guide the research design in 
a didactical analysis. This analysis provides cognitive insight into what prior research discovered about the 
teaching and learning of linear equations. First, I present the different parts covering this didactical analysis. 
In the literature review, we established an analysis in the form of a review of the difficulties related to the 
learning of and to working with linear equations. Additionally, I want to establish an analysis that enables the 
emergence of possible fundamental situations (Brousseau, 1997) in online learning environments through this 
DE and this project: 

A situation is itself a system, ‘the set of circumstances in which the student finds herself, 
the relationships that unify her with her milieu, the set of “givens” that characterize an 
action or an evolution’. (Brousseau 1997, p. 214) 
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According to TDS, didactical situations are when a teacher arranges the devolution of an appropriate 
adidactical to students. The adidactical situation is one or more situations that characterise the intended target 
knowledge (Brousseau, 1997): “Each item of knowledge can be characterized by a (or some) adidactical 
situation(s) which preserve(s) meaning; we shall call this a fundamental situation” (p. 30). 

In TDS, a didactical situation is therefore a situation designed to facilitate teaching and most of all learning 
(Brousseau, 1997). According to the overall aim of the project and DE, I attempt to enable myself to analyse 
and design opportunities (i.e., didactical situations) for the teaching and learning of linear equations in online 
learning environments relevant to lower secondary school students. In other words, I am specifically interested 
in the tasks and task design in online learning environments in relation to the teaching and learning of linear 
equations. The didactical design and mathematical problems (situations) should be appropriate for students in 
lower secondary school (in Denmark). Furthermore, these situations (tasks) should, according to the overall 
research aim, address epistemological obstacles mentioned in the epistemological analysis.  

Furthermore, Brousseau claimed that the identification of such epistemological obstacles is essential to 
establishing and analysing didactical situations. Brousseau (1997) argued that to do mathematics, students 
should be asking themselves questions and solving problems. Through this section, I thus also attempt to 
analyse what it means to be solving problems with linear equations. 

To enable a research-based foundation to create and identify epistemological obstacles related to the teaching 
and learning of linear equations in lower secondary school, I reviewed the literature to find out what research 
studies have to offer in the identification of general epistemological obstacles. Initially, I imagined that such a 
literature study would and should result in a comprehensive list or a categorisation of misconceptions students 
had or errors students made when solving linear equations. I soon came to realise that the terminology referring 
to phenomena leading to students’ epistemological obstacles in working with linear equations was not, in my 
opinion, comprehensive enough. One might exemplify this issue via the distinction between what errors 
students make while working with or solving linear equations and the reason for or the origin of behaviours 
resulting in these errors. I conducted a hermeneutic literature review (Boell & Cecez-Kecmanovic, 2014), 
presented in Paper B, of the difficulties related to the learning and solving of linear equations. However, I did 
not explicitly search the literature for epistemological obstacles related to the teaching and learning of linear 
equations because of the terminological inconsistency related to research on students’ difficulties in learning 
the concept of linear equations. Therefore, I came to expect something a little different from the literature 
review I conducted in comparison to the initial aim. 

Instead of a comprehensive list of misconceptions or categorisations of such, I imagined that knowledge about 
situations where students might find themselves lacking sufficient knowledge (situations touching upon 
epistemological obstacles) to identify how to interpret or proceed to solve linear equations could be beneficial. 
In addition, I wanted to come closer to understanding why these situations were causing students to experience 
difficulties. In other words, what had the students not learned or what knowledge had been applied incorrectly, 
hindering their accomplishment of what was expected from them in the situation? Discovering this knowledge 
should enable the design of didactical situations that record students’ epistemological obstacles.  

In the following, I dive a bit further into some important terminology that naturally became a part of my work 
addressing students’ knowledge or proof of absent knowledge. The term ‘misconception’ refers to a faulty 
conception, a piece of knowledge or understanding that is, in this context, mathematically incorrect. To some 
extent, this view of students’ understanding quickly becomes insufficient from a didactical design perspective. 
Here, I shall draw on the idea of the concept image and concept definition (Tall & Vinner, 1981). Throughout 
a student’s time in school, the idea of their concept image might change due to instruction and experiences in 
mathematics-related situations. However, the concept definition should also be considered dynamic. This can 
be exemplified when introducing the extension of number sets to the meaning or definition of a concept. For 
example, we might look at subtraction. When working with only the natural numbers, subtraction is not a well-
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defined operation, since the natural numbers are not closed under subtraction. A student might be quite familiar 
with subtraction but hold a conflicted or situated understanding of the numbers and qualities of different 
numbers sets. All this is to establish that a concept definition is also a dynamic phenomenon. This is why I 
avoid the use of the term ‘misconception’, since I do not expect students to hold a conception or a concept 
image that is either specifically true or false in every situation but rather true or false depending on the situation. 
What is much more interesting to observe is the situated reason for erroneous answers or mathematical actions. 
Prof. Küchemann wrote in his dissertation the following: 

A second objective of the CSMS research was to identify the difficulties that students 
encountered in mathematics and to indicate reasons for these difficulties. Of particular 
interest were systematic errors or misconceptions that had some logical, if flawed, basis, 
often the result of an overgeneralization of a ‘correct’ mathematical idea. A deliberate 
effort was made to develop items that provoked common wrong responses of a sort that 
could be interpreted in terms of an underlying strategy. (Küchemann, 1981, p. 30) 

I realise that this might come down to semantics and that the terms ‘misconception’, ‘understanding’ and 
‘knowledge’ hold different meanings for researchers (Smith III et al., 1994). What I want to clarify is that in 
this project inspired by the Maths Counsellor Programme, I am concerned with equations with possible 
diagnostic value. Therefore, I am very much interested in the reason behind a wrong answer given to a task in 
an online environment, especially the concept of students experiencing situated difficulties. I made the decision 
to use the term ‘difficulty’ in reference to Jankvist and Niss (2015). Drawing on Kieran (2007), they 
specifically presented two categories of difficulties related to understanding the concept of equations: 

 The first kind of difficulty ... is to do with goal-oriented transformation of equations (and, 
more fundamentally, algebraic expressions) into equivalent ones by way of permissible 
operations. [...] The second kind of difficulty, which appears to be of a more fundamental 
nature, is to do with what an equation actually is, and with what is meant by a solution to 
it. (Jankvist & Niss, 2015, p. 276) 

With this adaptation, I imagined that I would be able to establish to a higher degree a clear reference to what I 
mean by students’ situational behaviour resulting in an erroneous answer to a linear equation. In a later section 
(3.1), I shall dive deeper into a more nuanced perspective on situated difficulties and actions.  

 

 Discussion and implications of the preliminary analyses 
In this section, I explain the implications of the preliminary analysis and how they feed into the following 
phases of the DE and the publications that serve as the contributions of this PhD dissertation. In addition, I 
want to establish how these analyses will affect the hypotheses and the design in the following sections. I 
wanted to conduct a literature review that would enable me to analyse, design and develop tasks and teaching 
strategies related to the learning of linear equations among lower secondary school students, preferably with a 
link to online learning environments. Additionally, I wanted to establish a state of the art of known difficulties 
experienced by lower secondary school students related to working with linear equations. 

An important point that I want the reader to remember is that I am working with a specific online learning 
environment (MatematikFessor) in mathematics education through an industrial PhD project. This is important 
because when drawing upon the claims and findings found in research publications from a variety of research 
environments and also discussing (digital) resources or tasks, one must keep in mind that these international 
publications are not related to the specific learning environment I am working with. Because MatematikFessor 
is a purely Danish digital learning environment, some of the findings made by other research projects regarding 
digital resources might not fit perfectly into this particular framing; instead, they might serve as different 
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perspectives or general insight. Furthermore, I am working with an established institution and therefore did 
not have full control or say in what and how ideas could be implemented or taken into consideration. 

The main focus of the project on its epistemological side is on linear equations and establishing an idea of 
fundamental situations regarding equations in online learning environments. Even though an overall aim is to 
establish new grounds for a new idea or approach to the provision of feedback in online learning environments, 
an initial focus is on epistemological obstacles or difficulties related to learning the concept of linear equations 
and linear equation solving. Through Paper B, I established an idea of what fundamental situations in learning 
the concept of linear equations and equation solving should encapsulate. This similarly informs the 
understanding of the difficulties related to linear equation solving experienced by lower secondary school 
students. 

Reflecting on the terminological discrepancies regarding difficulties, I decided to change my plan regarding 
how I was going to move forward in discussing difficulties related to understanding the concept of linear 
equations. When discussing my project and the scope, since I set out to explore students’ footprint through 
data from an online learning environment, I changed my perspective towards analysing and hypothesising 
about the behaviours or the actions that led to such footprints. Theorising about students’ conceptions is 
perceptively much more difficult than hypothesising about their actions. My initial understanding of how a 
data footprint would be analysed led me to think about how a conception or understanding should be considered 
situational.  

I draw on the theory of conceptual fields (TCF) (Vergnaud, 2009). Much of the reason for doing so is based 
on the idea of analysing the actions (and thereby the schemes driving the actions) of the students when both 
designing tasks for generating a basis for a digital footprint and when reviewing their digital footprints. Gerárd 
Vergnaud offered an extensive description of mathematical action as action guided by, to the enactor, an 
appropriate scheme. I found it very meaningful to conceptually replace the concept of understanding or 
knowledge with that of an action or the scheme. TCF serves a dual purpose: 

The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe 
and analyse the progressive complexity, on a long- and medium-term basis, of the 
mathematical competences that students develop inside and outside school, and (2) to 
establish better connections between the operational form of knowledge, which consists in 
action in the physical and social world, and the predicative form of knowledge, which 
consists in the linguistic and symbolic expressions of this knowledge. As it deals with the 
progressive complexity of knowledge, the conceptual field framework is also useful to help 
teachers organize didactic situations and interventions, depending on both the 
epistemology of mathematics and a better understanding of the conceptualizing process of 
students. (Vergnaud, 2009, p. 83) 

Through the publications included in this kappa, I propose that TCF is a valuable theory for both working with 
task design aimed at addressing epistemological obstacles (difficulties) and as a theory for assessment with 
diagnostic purposes. Working with the scheme as an organiser of activity, my reasoning is that the 
epistemological obstacles presented to students in an online learning environment when working with linear 
equations constitute a meaningful conceptual field related to meaning (2) given by Vergnaud. 

The idea of providing feedback through MatematikFessor is not directed at allowing teachers to hypothesise 
about their learners’ erroneous actions or about giving them the ability to improve instruction based on such 
hypotheses. Based on the institutional analysis, I gather that the Danish Ministry of Children and Education 
has several foci related to Danish students’ learning about linear equations. Included among these foci are 
strategies for solving linear equations. With the idea of improving feedback for teachers using online 
learning environments in their teaching, I hope to enable teachers to hypothesise about their learners’ 
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conceptual fields in relation to linear equations, as well as their learner schemes for solving linear equations 
appropriate for lower secondary school.   
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Chapter 3  Conception and a priori analysis 
The research design process following the DE principles incorporates the determination of didactic variables, 
which condition the interactions between students and knowledge, between students, between students and 
teachers and thus the opportunities that students have to learn (Artigue, 2014). In the case of this project, the 
main aim of the project was to investigate the improvements in the assessment and feedback generated through 
the analysis of students’ mathematical difficulties learning the concept of linear equations and equation solving 
through tasks in an online learning environment. This has some implications for how hypotheses and didactic 
variables might be viewed and discussed. Additionally, fundamental situations might require a different 
interpretation, since the idea is not to learn about linear equations; rather, it is about the measurement of this 
learning.  

In this second phase of DE, conception and a priori analysis, the research hypotheses are established. Design 
requires a number of choices from global to local. These choices determine the didactic variables that condition 
the interactions between students and between students and teachers, ultimately implicating the opportunities 
that students have to learn. In line with TDS, in design, particular importance is attached to the following: 

• The search for fundamental situations (i.e., mathematical situations encapsulating the epistemological 
essence of the concepts). 

• The characteristics of the milieu (the learning environments) with which the students will interact to 
maximise the potential it offers for autonomous action and productive feedback. 

• The organisation of devolution and institutionalisation processes through which the teacher makes 
students accept the mathematical responsibility of solving the task and connects the knowledge they 
produce to the scholarly knowledge aimed at. 

Inspired by the Maths Counsellor Programme’s framework of detecting, diagnosing and intervening, the 
research hypotheses were derived from this idea. All of the papers presented through this kappa establishes or 
enables the design of didactical situations in different forms. During this phase of the DE, I lay out my a priori 
analyses relevant to the respective designs of the different areas, which I have touched upon in exploring the 
established research questions and the preliminary analyses. 

Before establishing the research hypotheses that serve as catalysts for answering the posed research questions 
through DE, I wish to present a theoretical perspective that has helped me come to terms with the idea of 
measuring knowledge or difficulties in didactic situations. 

 

 My view of difficulties, knowledge and the measuring of such in relation to linear 
equations from a task design theory perspective 

In this section, I extend the discussion that was started in the preliminary analysis with theoretical constructions 
to establish a theoretical standpoint for addressing difficulties related to making sense of and solving linear 
equations in an online learning environment. I realise that to establish such a standpoint, I need to clarify not 
only how the chosen theoretical construct benefits this standpoint but also provide a general view on why these 
theoretical constructs benefit the standpoint from a design perspective. I wish for the reader to follow me in 
the theoretical process of establishing didactical situations suited for online learning environments and for 
working with or measuring mathematics-specific difficulties related to linear equations.  

Task design has a very strong link to assessment, both formatively and in a summative way, in measuring 
knowledge or capabilities. I take this perspective through the lens of the notion of scheme as a part of TCF 
(Vergnaud, 2009). Based on the idea that engaging in a (mathematical) situation triggers an action, we can 
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gather that a didactical situation is set up to trigger specific actions. These specific actions could be seen as 
actions that potentially drive individuals to acquire new knowledge or to refine their knowledge according to 
TDS. Similarly, we can view the didactical situation as set up both in the attempt to measure knowledge (an 
assessment situation) and to establish new knowledge (a learning situation). Essentially, we utilise tasks or 
problems in both learning and assessment situations. I advocate that in the design of mathematical tasks, we 
could justify the presence of both intentions: tasks designed for learning situations and tasks designed for 
assessment situations. In many cases, tasks would be able to serve both purposes. This is followed by a 
discussion of how some tasks might be better suited for either learning or assessment. 

From an assessment perspective, I propose the idea that knowledge of students experiencing mathematics-
specific difficulties related to some mathematical concepts can be conceptualised through their mathematical 
actions and thereby possibly related to their scheme for engaging in that particular mathematical situation. In 
the following, I go into detail about the theoretical constructs that provide the framework for this view. 

 

 
In this section, I explain my reasoning for highlighting the diagnostic task, or rather the diagnostic value, the 
diagnostic potential and diagnostic relevance of a task. This is, of course, a matter of defining that within a 
situation, we can identify different roles or stakeholders in the assessment of knowledge. Therefore, within the 
diagnostic situation, I propose that three entities can be defined: the task, the enactor and the observer (see 
Figure 3).  

 

Figure 3: Structure of the diagnostic situation. 

When I mention the concept of situation and, in particular, the notion of the diagnostic situation, I am again 
referring to the TDS. Diagnostic situations can be thought of as didactical situations in which the observer (the 
teacher) seeks to observe some interaction between the enactor (the student) and a task. On the notion of value, 
I would like to refer to philosopher DeWitt H. Parker: 

To common sense the inevitable starting point in philosophy, the universe, is divided like 
Gaul into three parts,-an inner world, an outer world, and a world between; and if we look 
for instances of value, we seem to find them in all the three parts of the universe. In the 
outer world they seem to reside in articles of use and consumption, like railroads and bread; 
in the inner world, within needs and desires; in the world between, among objects which 
we call beautiful. (Parker, 1929, pp. 303–304) 

Additionally, Parker (1929) emphasised that value cannot exist in absolute separation from the mind, meaning 
that value is in fact a subjective notion. I realise that beauty might not be relevant in a discussion about 
diagnostic value; however, the idea about the value bearing meaning, and only to some, is important in this 
context. Following this idea, I argue that diagnostic value only bears meaning to the observer and only when 
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the observer desires this piece of information. This meaning is what drives the main idea of formative 
assessment. 

The three entities fulfil different roles. The role of the task is to enable the observer to hypothesise about the 
desired piece of knowledge of the enactor. The role of the observer is, in an efficient and as deterministic as 
possible manner, to gather information about a piece of knowledge of the enactor. The enactor is less invested 
in the situation by design. However, if the diagnostic situation is to be considered valuable to the observer, the 
enactor should easily, willingly and, to some extent, precisely display certain characteristics about the piece of 
knowledge the observer seeks to acquire information about. 

For example, one could imagine the medical procedure of getting a diagnosis. In medicine, the term ‘diagnosis’ 
refers to the identification of the nature of an illness or other problem by examination of the symptoms. 
Therefore, when we are discussing the more abstract term of ‘concept of knowledge’, we can perhaps rely a 
bit on the medical term when observing a problem and attempting to identify its nature. When we adopt the 
term ‘problem’ from medicine, we are referring to a piece of problematic knowledge. This ties in well with the 
idea of experiencing difficulties, when students seek to apply some piece of problematic knowledge or 
knowledge inappropriate for the situation. To clarify, the enactor could be applying a piece of knowledge that 
the observer could view as problematic simply because the action of applying the piece of knowledge could 
be a display of incorrect mathematics. It is important that this piece of knowledge only really makes sense in 
its consideration as problematic from the observer’s perspective, since I assume that it would be inappropriate 
for the enactor itself to make the diagnosis. In other cases, the action of applying the piece of knowledge might 
be insufficient for similar situations and therefore deemed problematic by the observer. For example, a strategy 
for solving a simple linear equation (such as guess and check) could be inappropriate when solving algebraic 
equations with the unknown present in multiple terms and therefore be considered problematic. 

With this more philosophical aspect of diagnostics out of the way, we can move on to discussing the diagnostic 
value and potential of a task, since the task is the entity that is particularly constructed or designed in the 
situation.  

I would like to introduce the idea of the diagnostic value of a task as a continuous value ranging from low to 
high. Some tasks can hold a higher diagnostic value, and some tasks might hold a lower value. Some tasks 
might even be considered as having a negative diagnostic value, in the sense that the task might present the 
observer with wrong or misleading information about certain characteristics of the enactor’s piece of 
knowledge. The diagnostic value of a task is not always relevant to a discussion. In complex situations with 
no predominant purpose for the observer to gather data for assessment, the meaning of the diagnostic situation 
becomes irrelevant to discuss, as does the meaning of the diagnostic value of a task. However, it might be 
relevant to discuss the diagnostic value in smaller or isolated parts of the same situation. 

It is possible to discuss determining both an a priori diagnostic value and an a posteriori diagnostic value. 
When establishing situations with tasks meant for diagnostic purposes, I imagine that this process includes 
some design principles or considerations in an attempt to secure success in the endeavour. A task can receive 
either a correct or an incorrect answer. In this terminology a task has one correct answer and many incorrect 
answers. Imagine the set of incorrect answers divided into two subsets; answers that are interpretable, i.e. 
corresponding to a recognised (mathematical) erroneous action, or answers that are uninterpretable, meaning 
that no reasonable erroneous action seems to have led to the answer. Furthermore, we need to evaluate what 
proportion of the empirically collected answers fall within each of the three possibilities, correct, interpretable 
and uninterpretable. Lastly the set of interpretable answers could be either small or large depending on the 
number of didactically different mathematical actions connected to the answers. I exemplify high diagnostic 
value in the following criteria: 
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1. The subset of interpretable answer should be small, meaning that some diagnostic value is lost when 
the set of recognised (mathematical) erroneous actions grow in size. 

2. The distribution of the answers among the three possibilities must not favour the uninterpretable 
answers, meaning that the proportion of answers that are considered uninterpretable should be low. 

When the number of didactically different interpretable answers grow, the diagnostic value drops. However, 
the value significantly drops when the distribution of answers starts to favour the group of uninterpretable 
answers. In addition, should we encounter a situation, where several recognised (mathematical) erroneous 
actions correspond to the same single answer, then the task is unreliable, and the diagnostic value is considered 
negative. 

When discussing the a priori diagnostic value of a task, I refer to the term diagnostic potential. Hereafter, we 
can empirically verify the diagnostic potential culminating in the diagnostic value of the task. This is where 
the argument of how the complexity in the formulation of the task is important to recognise when establishing 
the diagnostic potential. Diagnostic value relates in its definition to diagnostic potential in that the reasons that 
should correspond to the answers the enactors provide are what was a priori determined in the design of tasks 
for diagnostic purposes. When designing tasks, a designer most likely wants to determine the diagnostic 
potential of a task. I argue that in most cases, task designers do this automatically. When working specifically 
to design tasks meant for diagnosing some particular difficulty or the nature of some particular problematic 
characteristics about a piece of knowledge, I argue that the more closed or to the point a task is, the easier it 
becomes to establish diagnostic potential. The probability of the task accidentally achieving a negative 
diagnostic value could increase with the level of complexity in the formulation of the task. When a task comes 
to complex, I refer to the idea of concepts or entities (measurable or non-measurable) that could influence what 
answers a task receives, the number of analytically different answers could rise and therefore also the number 
of uninterpretable answers. The goal of designing a task meant for holding a high diagnostic potential and 
ultimately value, should preferably be of a nature in which the probability that the enactor displays 
characteristics irrelevant to the observer (uninterpretable answers) is minimised.  

When discussing the idea of diagnostic relevance, that is, the relevance of assessing the characteristics of the 
piece of mathematical knowledge, I imagine that for a diagnostic task to fulfil its potential, the task needs to 
be relevant to the relationship between the enactor and the observer. In this sense, we can discuss how fitting 
a diagnostic task is in the desired diagnostic situation. Discussing such relevance can be tricky, as relevance 
can exist on different levels, given the purpose of the diagnostic situation(s) and the different stakeholders 
involved. Relevance can be discussed in terms of purpose, in which case the diagnostic situations should be 
fair to the enactor. If the task is not relevant to the enactor’s current educational level, the purpose of the 
diagnostic situations is skewed and becomes irrelevant as assessments. In a similar fashion, the diagnostic task 
should be appropriate for what the observer wishes to learn about the enactor.  

When discussing the idea of diagnostic relevance in online learning environments, such as MatematikFessor, 
I want to discuss the relationship with the specific input types. In a best case scenario, a task with a high 
diagnostic value is paired with the entire set of related answers or an input field with the opportunity to input 
the right answer. However, if a task is not paired with the entire set of related answers, one might suspect that 
an important answer could be left out, hence lowering the diagnostic value. Likewise, if the answer to an 
equation was 1/3 and the input field did not allow for fractions or infinitely long decimal numbers, the task 
could lose its ability to measure what might be expected of it. 

In this context, I argue that a sound preliminary analysis with the aim of securing relevance in terms of making 
a fair assessment of the students’ ability to solve linear equations or manage different concepts when doing so 
is very meaningful. Working towards achieving probabilities of diagnostic relevance and diagnostic potential, 
I argue, is necessary when measuring the diagnostic value of tasks. 
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The TCF and the notion of scheme is a significant theory in establishing my theoretical standpoint for designing 
didactical situations for online learning environments. Vergnaud (2009) introduced TCF as follows:  

At the same time a set of situations and a set of concepts tied together. By this, I mean that 
a concept’s meaning does not come from one situation only but from a variety of situations 
and that, reciprocally, a situation cannot be analysed with one concept alone, but rather 
with several concepts, forming systems. (p. 86) 

Vergnaud claimed that even though the definition of a conceptual field is quite clear, the boundaries or 
respective overlaps between them are not (Vergnaud, 1988). Vergnaud (1988) continued to clarify that 
conceptual fields and the definition of concepts are particularly interesting for researchers (and teachers) to 
interpret because they enable the understanding of the following: 

1. Mathematical concepts are rooted in situations and problems. 

2. We need to analyze and classify these situations and the procedures students use 
to deal with them. Mathematics is an indispensable tool for this analysis. 

3. Students’ ideas and competencies develop over a long period of time. Teaching 
students at a particular grade requires that one have a fair idea of the steps they 
may or may not have gone through and of the next and ultimate steps one would 
like them to reach. 

4. Symbols (signifiers) do not refer directly to reality but to the cognitive components 
(signified) underlying students’ behavioural procedures. I call the cognitive 
components [operational] invariants. Categories, object, properties, relationships, 
theorems-in-action […] are invariants. We must pay attention to the distinctions 
among situations, invariants and symbols. (Vergnaud, 1988, p. 142) 

In addition, Vergnaud introduced the notion of a scheme. With reference to Jean Piaget and Immanuel Kant, 
Vergnaud (1998) described a scheme as functional dynamic totality and “a universal that is efficient for a 
whole range of situations, and it can generate different sequences of action, information gathering or control, 
depending on the specific characteristics of each particular situation” (p. 172).  

The notion of the concept is described as a triple consisting simultaneously of a set of situations that are 
meaningful to the concept and where the concept is recognised, a set of operational invariants that can be used 
to deal with these situations and a set of representations.  
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Figure 4: Overview of theoretical constructs related to TCF. 

Vergnaud underlined that the meaning of his version of the word ‘representation’ is similar to a conception of 
or, at least, a representational reference to a set of situations and invariants. Imagine how thinking about a 
concept without choosing a relevant representation can seem quite impossible. Vergnaud described how the 
development of children’s schemes depends on the new situations in which they are forced to accommodate 
their existing schemes, thereby expanding their conceptual field, since the scheme somehow serves as a 
connection between situations and concepts. In some cases, schemes are not only efficient but also effective, 
in which case they can be thought of as algorithms. Efficient schemes are not necessarily destined to reach the 
desired or anticipated goal, where effective schemes (algorithms) are. Vergnaud (2009) defined a scheme as 
consisting of four aspects or components, as they are often referenced: 

The intentional aspect involves a goal or several goals that can be developed in subgoals 
and anticipations. The generative aspect involves rules to generate activity, namely the 
sequences of actions, information gathering, and controls. The epistemic aspect involves 
operational invariants, namely concepts-in-action and theorems-in-action. Their main 
function is to pick up and select the relevant information and infer from it goals and rules. 
The computational aspect involves possibilities of inference. They are essential to 
understand that thinking is made up of an intense activity of computation, even in 
apparently simple situations; even more in new situations. We need to generate goals, 
subgoals and rules, also properties and relationships that are not observable. 

The main points I needed to stress in this definition are the generative property of schemes, 
and the fact that they contain conceptual components, without which they would be unable 
to adapt activity to the variety of cases a subject usually meets. (p. 88, my emphasis on the 
aspects) 

Essential to the schemes are the operational invariants spanning the epistemic aspect of the scheme. A concept-
in-action is described as a concept that is held to be relevant in the current situation. As a part of every action, 
we choose certain objects, predicates or categories of such that are perceived to hold relevance in the current 
situation. A theorem-in-action is a proposition held to be true. When we engage in a mathematical situation, 
we believe certain ‘theorems’ to be true or false about the objects relevant to the situation. One could identify 
these theorems as truths derived via mathematical proofs but expanded to truths about objects related to 
mathematics without. According to Vergnaud, there is a dialectical connection between theorems and concepts; 
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this emerges from the fact that more advanced mathematical concepts originate from theorems, and vice versa. 
Nevertheless, it is important to distinguish the cognitive function of the operational invariants in this very 
specific way. Concepts-in-action are individually available concepts for the enactor-relevant representation in 
the situation. Concepts-in-action bear no value of logical truth, just relevance. Theorems-in-action are by 
nature true or false. These entities are sentences (propositions) that provide the concepts with the possibility 
of inferences taking place. The rules of action are not to be confused with the theorems-in-action. The function 
of the rules of action is to be appropriate and efficient, but they rely implicitly on theorems-in-action 
(Vergnaud, 1997).  

 

 
This section features the theoretical constructs mentioned in the above section applied in an example. The task 
was presented by Bodin (1993): 

7𝑥𝑥 − 3 = 13𝑥𝑥 + 15. 

This equation reflects the general form of linear equations mentioned above in section 1.1.1. To engage in the 
situation and solve the equation, the equation-solving scheme will be activated. The following four aspects 
will come into play according to where we are in the process. First, goals and anticipations will be set. In this 
case, the task is to solve the equation, and the goal is naturally adapted from the wording of the task (or the 
teacher). Second, some rules of action will be set. In this particular situation, the rule of action (strategy) will 
be to try to isolate the unknown. Of course, the activation of the four components is not as chronological as 
portrayed in this description. Some concepts-in-action will necessarily be deemed relevant during the process 
of deciding to isolate the unknown, namely the equation itself (the equals sign), the letter representing the 
unknown, numbers, operators, etc. Next, we activate theorems fitting the scheme chosen for the situation, 
specifically the theorems-in-action. To progress, theorems will be applied. To uphold the equality of the 
equation, the theorem of adding and subtracting equal measures on either side of the equals sign is applied, 
leaving us with the following: 

7𝑥𝑥 − 13𝑥𝑥 − 3 + 3 = 13𝑥𝑥 − 13𝑥𝑥 + 15 + 3. 

Here, the theorem-in-action give the idea that terms can be rearranged if signs are preserved and that equal 
terms with opposite signs equal 0 in an expression. In addition, the element 0 can be disregarded if added or 
subtracted. 

−6𝑥𝑥 = 18 

Next, the theorem of dividing by a non-zero/non-infinity amount on either side of the equals sign is applied. 
This leads to the following equation: 

𝑥𝑥 =
18
−6

 

𝑥𝑥 = −3 

A minor calculation theorem of dividing by a negative number is applied. Now, the unknown is isolated, and 
the rule of action has been carried out. The inferences will, in this example, be that the equation has a set of 
solutions that is {-3}. 
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 Research hypotheses as a means for working with the research questions 
In this section, I outline the research hypotheses that informed my exploration of the posed research questions. 
To do this, I return to the research questions and dedicate a subsection to each, explaining the thought process 
behind the development of the research hypotheses and the associated didactic variables. 

The didactic variables are the micro and macro choices that contribute to the different designs included in the 
project and the formation of the proposed hypotheses: 

Conception [design] and a priori analysis is a crucial phase of the methodology. It relies 
on the preliminary analyses carried out, and is the place where research hypotheses are 
made explicit and engaged in the conception of didactical situations, where theoretical 
constructs are put to the test. Conception requires a number of choices and these situate at 
different levels. (Artigue, 2015, p. 6) 

The choice in these didactic variables was driven by the preliminary analyses at both the micro and macro 
levels (Artigue, 2014, 2015); “Among the many variables influencing the possible dynamics of a situation and 
its learning outcomes, didactical variables are those under the control of the teacher” (Artigue, 2015, p. 6). 

In relation to the overall research questions, one might argue that only the interventions created on behalf of 
the detection and diagnostic processes constitute a didactic situation. However, in line with what I have already 
mentioned about fundamental situations, I choose to apply this idea here, that I require fundamental situations 
to create relevant diagnostic situations. 

In summary, the three posed research questions were all heavily inspired by the framework for addressing 
difficulties established by the Maths Counsellor Programme (Jankvist & Niss, 2015). I remind the reader that 
this framework consists of the idea of detecting students experiencing difficulties and diagnosing the origin of 
such difficulties before preparing suitable interventions to counteract these diagnosed difficulties. With the 
adaptation of this idea together with the preliminary analyses, I formed the hypotheses and determined the 
didactic variables informing the design process. 

 

 
Research Question 1 is separated into two parts, a and b. I chose to leave them as two parts since they both 
work in the direction of creating means for detecting students experiencing difficulties or, in other words, 
creating (didactical) situations with diagnostic opportunity. I present again the two parts of the research 
question. 

What design principles are appropriate when structuring and designing tasks capable of detecting students 
facing mathematics-specific difficulties related to learning the concept of linear equations and equation 
solving? 

a. What principles are appropriate when exploring one specific difficulty (the equals sign)?  
b. What principles are appropriate when exploring difficulties related to the more general 

topic of equation solving found in the literature? 

I wish to address didactic situations as a means for entailing the detection of students experiencing difficulties 
when solving linear equations. In relation to the first research question, I wish to focus the hypothesis and the 
effort on the design part of tasks suitable for detecting students experiencing difficulties. Based on the 
preliminary analyses, and perhaps in particular the institutional analysis, the main access to students is through 
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their inputs and thereby the data collected from MatematikFessor. This choice again stems from the aim to 
establish a data-driven approach to detecting students experiencing difficulties.  

Working towards establishing research hypotheses for Research Question 1, I imagine that extended 
knowledge, established in the preliminary analyses, on the concept of linear equations and particularly the 
associated difficulties students experience while working with such, paves the way for analysing or 
establishing the diagnostic potential of tasks involving solving linear equations. 

Returning to the idea of diagnostic value and potential, I imagine that in working with students through the 
means of the MatematikFessor, the border between what detects students experiencing difficulties and what 
diagnoses students’ difficulties can become blurred. In the publications describing the tests (they are referred 
to as detections tests) used in the Maths Counsellor Programme, Prof. Niss mentioned that should the tests 
designed for qualitative use be analysed in a quantitative fashion, new perspectives might appear.  

As mentioned, the structure of DE was applied retrospectively. Therefore, I also present the reader with 
hypotheses, as hypotheses presented themselves throughout the project. Even though some hypotheses might 
have been explored, new hypotheses emerged. 

 

3.2.1.1 Hypothesis 1.1: In MatematikFessor’s database, there are already thousands of tasks 
about linear equations relevant for lower secondary school students. These tasks have 
enough diagnostic potential in terms of design to detect students experiencing 
difficulties. 

 

The above hypothesis was established based on the idea that there exists a vast number of tasks involving 
solving linear equations, and the sheer volume of data points would suffice as a means for detecting students 
experiencing difficulties. Additionally, I had the idea that these already existing tasks would have collected 
data in the form of answers for a long time and would have been somewhat ready for analysis. In collaboration 
with Christian Hansen, I carried out a study where we attempted to cluster the students utilising unsupervised 
learning methods based on the thousands of tasks involving solving linear equations already implemented in 
MatematikFessor. However, as Paper A shows, we did not manage to achieve a fruitful result. Therefore, the 
idea of establishing task design principles based on the characteristics of students’ difficulties emerged. I shall 
return my exploration of Hypothesis 1.1 in the realisations phase (section 1.1.1) but mention that these findings 
led me to Hypothesis 1.2. 

 

3.2.1.2 Hypothesis 1.2: Designing a collection of tasks with the aim of uncovering the difficulties 
found in the literature can strengthen the possibility of achieving a set of fundamental 
tasks with significant diagnostic potential in detecting students experiencing 
difficulties. 

 

The tasks that were already implemented in MatematikFessor, the ones that served as the basis for the analysis 
in Paper A, were all designed using the multiple-choice input option. After examining the options that served 
as distractors, I found that many of these were not necessarily particularly well chosen, meaning that the 
diagnostic potential and the diagnostic relevance were not high. The distractors were not chosen based on 
empirical findings, further subtracting from the diagnostic potential and relevance. In addition, I found that 
many of these equations were quite similar in structure and potential challenges and additionally not 
categorised beyond the five levels of difficulty within a collection of tasks that MatematikFessor staff were 
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working with. These levels of difficulty are not important in the explorations made in this project. I simply 
mention them here to demonstrate that we were struggling to group students based on these already 
implemented tasks. The problem of choosing a preferred input type was a significant design choice in 
establishing the didactic situations that should serve as the basis for the data collection. In the second part of 
Paper B, Prof. Jankvist and I established a set of design principles and an exemplary design of tasks with the 
potential to assess anticipated or known difficulties when solving equations. Several micro choices were made 
in the conversion of the collected areas of difficulty to a set of equations suitable for addressing such difficulties 
at an appropriate conceptual level for lower secondary school. The choice fell on using (controlled) variation 
theory (Marton, 2015; Watson & Mason, 2006) in an attempt to not only generate a suitable structure of linear 
equations for lower secondary school but also to have the different types of equations with this structure 
address as many of the difficulties as possible. The idea was that we could somehow create a collection of 
tasks suitable for online learning environments and with both collective and individual diagnostic potential 
enabling the detection of students experiencing difficulties solving linear equations. 

 

3.2.1.3 Hypothesis 1.3: Choosing input fields instead of multiple-choice options when 
selecting/designing task involving solving linear equations will enable opportunities for 
discussing diagnostic potential, future design principles and knowledge on proper 
distractors. 

 

The equations that were designed and implemented based on the findings in Papers A and B were deliberately 
kept short and simple in formulation, following the idea that the tasks had already been implemented in the 
environment to avoid loss in diagnostic potential and value by creating an unwanted space for irrelevant 
difficulties. All the tasks were implemented, resembling the following example: 

 

Figure 5: Example task from MatematikFessor [translated from Danish]. 

Regarding the second part of Research Question 1, I invite the reader to join me in a theoretical design 
experiment. As part of the educational journey of working as a PhD student, my fellow PhD students at the 
Danish School of Education and I were introduced to TCF. The theoretical constructs caught my attention 
because I saw that it could be linked to working with errors and difficulties through the notion of scheme as 
presented through the TCF. During the PhD course on TCF we hosted at our institution, we acquired extensive 
insight into this theory. The four aspects (components) of the scheme in particular caught my attention. Much 
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of Vergnaud’s work only placed a small emphasis on three of the aspects, since the operational invariants in 
many cases seemed to be considered the most important or the only noteworthy aspect of the four.  

In Paper C, we provide a theoretical framework for designing tasks for implementation in an online learning 
environment specifically to work with formative assessment and fundamental situations. Since I decided that 
working with students directly, as prescribed by the framework of the Maths Counsellor Programme, was not 
a priority, my focus on establishing a framework for working with tasks as a part of diagnostics became a 
priority. In Paper C, we do not discuss the didactical aspect of the situations in relation to TDS; rather, we 
focus on the possibilities for generating means for formative assessment (diagnostic assessment) using the 
ideas from the TCF and discussing knowledge as presented via students’ schemes (their actions). The driving 
hypothesis for the second part of Research Question 1 is as follows: 

 

3.2.1.4 Hypothesis 1.4: The four aspects that define the scheme as a part of TCF can serve as a 
comprehensive means for designing tasks to ensure diagnostic potential in an 
assessment situation incorporating an entire action. 

 

I wanted to determine situations that allow for a diagnostic (and didactic) sequence or situations where students 
and teachers together manage to explore the origin of the difficulties leading to erroneous answers to tasks 
involving equation solving.  

 

 
The second research question has to do with utilising the data from MatematikFessor to potentially assess and 
analyse students’ difficulties in terms of diagnostic value. Again, I chose to explore the research in two parts. 
I remind the reader of Research Question 2. 

What possibilities for the general diagnosis of students’ difficulties related to equation solving can be 
established? 

a. What possibilities can be established based on a task found in the relevant literature? 
b. What possibilities can be established based on the analysis of an exhaustive set of tasks 

involving equation solving? 

Following the ideas presented under Research Question 1, my intention is that Research Question 1 is 
concerned with the design and diagnostic potential of tasks, whereas Research Question 2 is concerned with 
exploring possibilities for the analysis and diagnostic value of tasks. In the above section, I explained how 
Paper A in some way serves as a qualifier and a part of the preliminary analyses that, to a large extent, justifies 
the design of new tasks instead of using already implemented tasks. In relation to Part b of Research Question 
2, I propose the following hypotheses based on the idea that with the new tasks I had implemented in 
MatematikFessor, I would now be able to use a clustering method to categorise students as equation solvers. 
To some extent, this is an extension of Hypothesis 1.1 but with a different purpose, as it is being viewed in 
retrospect. Following the lessons learned regarding the task design, I wanted to explore these potential 
categorisations that could possibly be found in a large data set. 
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3.2.2.1 Hypothesis 2.1: Extensive didactic coding of answers to tasks can help create a means 
for exploring the extent of different reasons for students’ erroneous answers based on 
answers to linear equations from MatematikFessor. 

 

Following the design mentioned in Hypothesis 1.2, I aimed to establish what I refer to as reasons for the 
answers students provided to the tasks based on the design principles established in Paper B. This hypothesis 
leans into the idea that it is possible to establish the diagnostic value of each of the types of tasks. Remember 
that the equations were designed in a reasonably exhaustive fashion suited for students in lower secondary 
school. The coding should reflect these reasons for the errors students make when solving the linear equation, 
and a part of the hypothesis is that it is possible, to a large extent, to establish these reasons. Furthermore, the 
idea of going beyond correctness in establishing diagnostic value can help online learning environments 
provide better and more useful feedback to teachers. 

 

3.2.2.2 Hypothesis 2.2: Unsupervised learning methods (specifically MIRM3) together with 
additional didactic coding of answers to tasks can help create a means for categorising 
students based on answers to linear equations from MatematikFessor. 

 

Similar to the idea presented under Research Question 1, I assume that a critical number of tasks presented to 
a critical number of students can result in extensive knowledge of students’ actions (schemes) when solving 
linear equations. One way this idea can benefit the didactic situation is that the knowledge generated based on 
data could be utilised to support a more detailed diagnostic process than a diagnostic purely based on basic 
statistics through analysing the correctness of the answers the students provide. An obvious limitation of this 
hypothesis is that the data consisting of answers to tasks already implemented in the online learning 
environment were deemed insufficient. The implication of this was to establish additional means for generating 
data through the design of additional or new tasks to establish grounds for healthy and fruitful data analysis. 
In line with the previous hypothesis, I wanted to utilise didactical coding that enables the analyses to go beyond 
correctness. I believe that another strength lies in the implementation of more advanced analytical tools in this 
coding process that goes beyond correctness. A limitation connected to designing and implementing new tasks 
is that these tasks require additional time to gather data in the form of answers. 

 

3.2.2.3 Hypothesis 2.3: A diagnostic value can be interpreted by utilising the extensive amounts 
of data insights provided by applying unsupervised learning methods to data extracted 
from MatematikFessor. 

 

These questions can address the macro and micro choices in determining the prerequisites for gathering data. 
Initial macro choices in this context would be the choice of solely utilising data and the target group of the 
tasks being lower secondary school students in Denmark. In Paper A, Christian Hansen and I concluded that 
the equations already implemented in MatematikFessor served as insufficient grounds for clustering students 
into groups based on the answers provided. I must admit that during this phase, I was still establishing the 

                                                      
3 The Multinomial Infinite Relational Model is a model for co-clustering forming homogenous groups in a data points 
forming rows and columns. The model is explained in further detail in Paper E. 
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grounds for the data analysis I hoped to perform. Nonetheless, based on the process of working with the data 
in Paper A, I decided to conduct a new data analysis with a new collection of equations. 

Furthermore, when studying the literature, I realised that tasks of different kinds have been presented in several 
studies. One particular task and the results presented are particularly interesting to me. The task 8 + 4 = ___ +
5 presented by Falkner et al. (1999) produced very interesting results. The answers the students provided were 
few and seemed to represent a good idea of how the particular student providing the answer interpreted the 
task, especially the role of the equals sign, but also other important concepts. This led me to the next hypothesis 
regarding Part a of Research Question 2. 

 

3.2.2.4 Hypothesis 2.4: The task 𝟖𝟖 + 𝟒𝟒 = ___ + 𝟓𝟓 (Falkner et al., 1999) holds high diagnostic 
value and will serve as a good measure for comparing diagnostic value related to 
understanding the role of the equals sign. 

 

I found during my review of the literature that not many tasks are presented like classic textbook tasks, as 
many might know them from mathematics textbooks or maybe to a higher extent from digital environments, 
such as MatematikFessor. In the case of the task presented by Falkner et al. (1999), the empty space represents 
the unknown instead of a letter. Many might associate the empty space with the lower grades and with tasks 
highlighting arithmetic procedures and not algebraic (generalised) thinking. It was important to me that the 
tasks I created would resemble ‘normal’ everyday tasks that would be recognised as such by students. 
However, I also wanted to explore how tasks such as 8 + 4 = ___ + 5 would work in a digital version and 
whether I would get different results from the original authors. 

 

 
The third research question is focused on the last step of the Maths Counsellor Programme’s framework: the 
intervention. Research Question 3 was formulated as follows: 

What possibilities for general interventions in relation to the concept of linear equations and equation solving 
can be established?  

a. What possibilities can be established based on a specific difficulty from the literature? 
b. What possibilities can be established based on difficulties measured in an exhaustive set 

of tasks involving equation solving? 

I want to discuss the conceptions of didactic situations suitable for interventions against known difficulties 
related to students’ equation-solving schemes. I knew when embarking on this PhD project that I might not be 
able to base the interventions on the concrete difficulties that the students were diagnosed to be experiencing. 
Therefore, I chose to concentrate the possible intervention design on two different efforts or paths. 

To explore the space of general interventions, some initial questions arose: Is it a good idea for interventions 
to be generalised or how might such a concept exist to fruitfully target difficulties related to the concept of 
linear equations and equation solving? To accept the idea of a more general intervention, one might be forced 
to create or design a space in which it would be possible to address or counteract certain difficulties. This led 
me to the first intervention designed. As I mentioned in the sections about included papers and collaborations, 
during my employment at Edulab (the host company), I got the chance to work with Lui A. Thomsen in  
designing and developing a VR application for teaching and learning linear equation solving with a special 
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focus on working with equations made abstract by negative numbers. Such equations were chosen specifically 
because this could yield some interesting research aspects for Lui as well. 

 

3.2.3.1 Hypothesis 3.1: It is possible to set up an alternative (VR) environment in which 
teachers and students can explore equation solving while utilising metaphors to help 
guide students’ equation-solving schemes. 

 

The other path is more in line with the Maths Counsellor Programme, since this framework really aims to build 
interventions based on the findings from analysing the answers provided to tasks and interviews. However, 
returning to the issues raised in the introduction, I wanted to generate new value, meaning and possibilities 
based on the data collected specifically from MatematikFessor. Based on the data, I observed several obvious 
paths to follow when generating space for counteracting mathematics-specific difficulties related to solving 
linear equations. I could generate better feedback for students and personalising their learning by applying 
knowledge about their difficulties in a feedback system. However, as I found in the preliminary analysis, 
teachers experience difficulties interpreting feedback about students from online learning environments and 
perhaps struggle to establish formative assessment ideas based on this feedback. The preliminary analyses, 
especially the institutional analysis, revealed that teachers using the statistical tools in MatematikFessor 
struggle to make sense of them. Few teachers use the overview to measure performance and base their teaching 
or evaluations on it.  

 

3.2.3.2 Hypothesis 3.2: Utilising large amounts of data in addition to extensive coding and co-
clustering of answers to tasks involving equation solving will pave the way for 
formative assessment opportunities, allowing teachers to address students’ difficulties 
in solving linear equations using MatematikFessor. 

 

The idea is that multiple analyses of answers in large quantities will generate possibilities for interpretation, 
building on the entire structure of knowledge collected before to generate reasonable design ideas for 
implementing better ways to provide feedback for teachers working with online learning environments. 

 

 How the included papers connect to the proposed research hypotheses and didactic 
variables 

 

In this section, I present an overview of the included papers’ relevance to the established research hypotheses. 
The idea is to provide the reader with summaries of the included papers that are more related to the reading of 
this kappa than the summaries presented earlier in section 1.6. 

Paper A presents what came to serve as an initial study or analysis of tasks. In this paper, we present a range 
of tasks picked from among the already implemented tasks in MatematikFessor. This paper ends up deserving 
a spot that is not far from the preliminary analyses. The reason for Paper B having two parts is also because of 
the conclusions made in Paper A. We present a novel attempt, via an unsupervised learning method, to group 
or cluster students based on their answers provided to tasks implemented in MatematikFessor before the 
beginning of my PhD project. The paper also provides novel insight into utilising data on students’ answers to 
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tasks involving equation solving. In conclusion, the paper catalysed the establishment of new design principles 
for analysing students’ erroneous answers when solving linear equations. Paper A deals mostly with 
Hypothesis 1.1. 

Paper B presents a literature review that led to the design of a collection of linear equations suitable for online 
learning environments and students in lower secondary school in Denmark. The design includes 11 general 
types of linear equations—10 types of arithmetical equations and one type of algebraic (non-arithmetical) 
equation (Filloy & Rojano, 1989; Vlassis, 2002). In addition, we present a broad range of variations of these 
embedded in a potential learning-trajectory-tree structure covering what I consider a reasonable attempt at a 
comprehensive set of equations creating fundamental situations for learning linear equation solving. In this 
way, the literature review, presented in the first part of Paper B, plays a central role in the designs presented 
in Papers C, D, E and F. When speaking in terms of TCF, the design attempt presented in the second half of 
Paper B covers the conceptual field of linear equations in relation to lower secondary school students in 
Denmark. Controlled variation (Watson & Mason, 2006) is utilised in two dimensions—both to secure a 
reasonable variety of types of equations but also a reasonable variety of equations within each type, addressing 
as many of the identified difficulties as possible. Paper B plays a huge part in establishing the possibility for 
further design. It also plays a part in the preliminary analysis part of the DE structure presented in this 
dissertation. Therefore, Paper B mostly deals with Hypotheses 1.1, 1.2 and 1.3, but it also acts as a prerequisite 
for most of the project. 

Paper C presented an alternative or a more nuanced perspective on task design, featuring tasks that potentially 
hold a new and different value in terms of diagnostic assessment. The paper presents a framework for designing 
diagnostic tasks for online learning environments, using TCF and the components of the scheme as a guide or 
framework. Furthermore, the paper presents a framework for further developing this task design into something 
relevant for teachers in the classroom. The purpose of the tasks is to enable teachers to better hypothesise about 
the reason for their learners’ errors. In contrast to Paper B, Paper C has a much more direct and qualitative 
approach to addressing formative assessment and diagnosis through tasks in online learning environments. The 
paper relates to Hypothesis 1.4. 

Paper D replicated the famous 8 + 4 = ___ + 5 (Falkner et al., 1999) task through a modified conceptual 
replication study (Aguilar, 2020). The paper shows that online learning environments can help create data that 
help establish new or extended knowledge on how diagnostic tasks perform. The idea was to redesign and 
reuse elements from highly cited papers, including tasks involving linear equation solving from mathematics 
education research. The experiment was done to explore another research-supporting feature of online learning 
environments’ capability of gathering data for use in quantitative research. More importantly, perhaps the study 
helps in relation to the overall project to exemplify diagnostic potential and value. The paper relates to 
Hypothesis 2.4. 

Paper E presents the design of a framework for enhancing data gathered from answers to the collection of 
linear equations designed and presented in Paper B. Additionally, we present the application of an unsupervised 
learning method to co-cluster data matrices (students × tasks) to categorise lower secondary school students as 
equation solvers, as well as the 892 tasks designed based on Paper B. The idea in relation to TCF is to analyse 
and classify these situations involving linear equation solving and the procedures the students use to deal with 
them to generate qualitative formative assessments based on difficulties and not on correctness. This paper 
therefore relates to Hypotheses 2.2, 2.3 and 3.2. Paper E represents work performed at the very end of this PhD 
project and is therefore not yet a published paper. Establishing possibilities for analysing data, such as the data 
presented in Paper E, has proven to be quite a time-consuming process. The work presented in Paper E is thus 
still in the ideas stage, offering some thoughts about improved digital formative assessment at an early stage. 

Paper F presents the design and development of a digital experience for teaching linear equations using a 
modified balance model for equation solving. Lui A. Thomsen and I modified the balance model to alter 
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physics behaviour in a VR experience to strengthen students’ schemes for solving linear equations and to help 
students adapt their schemes to situations where negative numbers and mathematical negativity make equations 
abstract. The paper should be viewed as an attempt to design and develop a more general possibility for 
teachers to host interventions for their students, in line with research Hypothesis 3.1. The paper includes an 
exploratory study aimed at analysing and exploring the effects and affordances of teaching with the modified 
balance in the VR application. This novel teaching experience was conducted with 10 lower secondary school 
students. 
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Chapter 4  Realisation, observation and data collection 
In this chapter, I present the realisations, observations and data collection processes for the PhD project as part 
of the structure outlined by DE. In this phase, I paid attention to whether the data could inform the goals or 
hypotheses of the a priori analysis. To summarise, Artigue (2015) emphasised the importance of realisations 
made during this phase, as they often lead to some adaptation of the design, especially when the DE is of a 
significant size. Because I used DE as more of a structure, I did not include some sections regarding iterative 
processes in the research design.  

In the following section, I attempt to clarify the valuable contributions made by the papers. I also attempt to 
structure these in order of consequence or the impact the findings have had early in the project’s life span. A 
more detailed discussion on the implications of the findings related to the overall project will be conducted in 
the a posteriori analysis in part 4. For this part, I focus on the implications of exploring the hypotheses. 

 

 Hypotheses related to Research Question 1 
The posed hypotheses presented through these sections are related to Research Question 1, and under each 
section, I attempt to clarify the results and realisations I made when exploring them. In each section, I remind 
the reader of the related hypotheses. 

 

 
In MatematikFessor’s database, there are already thousands of tasks about linear equations relevant 
for lower secondary school students. These tasks have enough diagnostic potential in terms of design to 
detect students experiencing difficulties. 

The outcome of exploring this hypothesis has already been touched upon, as I wished to explain some of the 
thought processes that led to the further hypotheses. However, in this section, I want to dive a little deeper into 
what we realised when working with the tasks already implemented and some key aspects of analysing them.  

As we mentioned in Paper A, regarding the research questions, the aim was to qualify the analyses of tasks 
and answers to create a method for diagnosing lower secondary school students’ difficulties related to equation 
solving. For that reason, the working question in Paper A involved establishing some categorisation of students 
based on this analysis, and this categorisation was then to be the subject of further analyses. However, the 
categorisation, or the clusters, we wanted to establish did not exist based on the knowledge and data we had at 
our disposal. During the clustering, I took a closer look at the structure and design of the tasks that we had 
chosen as representing equations suitable for lower secondary school students. The structure can be seen in 
Figure 6. The equations were what were implemented in MatematikFessor prior to this project and were all 
using multiple-choice as input method. 
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Figure 6: Structure of equations included in Paper A. 

The task designers and editors at MatematikFessor are required to set a level of difficulty for each of the tasks 
implemented in MatematikFessor. This level of difficulty ranges from 1 to 5, where 5 is considered the most 
difficult. The idea is that the environment can then, based on this difficulty scale, apply algorithms and features 
in task assignments to students. We found that the level of distinction between the tasks was still too narrow. 
I realised that I needed to be able to produce means to collect data that were not going to fall into the same set 
of constraints causing the data to be too similar in construction. In other words, I needed a system or a collection 
of equations that was more likely to include not only fundamental tasks for solving equations but also equations 
that could be didactically distinguishable attempting to ensure high diagnostic potential. Therefore, I set up a 
structure for how I felt I could explore a larger variety of linear equations that could be considered closer to a 
set of fundamental equations for lower secondary school. I invented the following structure, in the form of a 
conceptual map, in an attempt to compensate for the similarity in task construction (see Figure 7) based on the 
findings from the literature review. 

 

Figure 7: Final conceptual map of linear equations based on the idea of Paper B refined in Paper E. 
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The conceptual map presented in Figure 7 is the final iteration of the idea presented in Paper E. Paper B 
presents a slightly different map, where the algebraic equations were not present. In Paper E, I outlined the 
design, and during the implementation process, I determined what equations we could and should implement. 

 

 
Designing a collection of tasks with the aim of uncovering the difficulties found in the literature can 
strengthen the possibility of achieving a set of fundamental tasks with significant diagnostic potential in 
detecting students experiencing difficulties. 

From working with the tasks already implemented in MatematikFessor, I realised that to achieve something 
that could bring me closer to establishing possibilities for providing teachers with new opportunities for 
feedback, I had to generate means for ‘better’ data. As I was working with the tasks already implemented, I 
began to think more and more about how these tasks were designed and what principles went into that process. 

Analysing the tasks already implemented in MatematikFessor, I found that what I now call the diagnostic 
potential was probably too weak when viewed and analysed as a collection. When I say weak, I mean that 
through talking to colleagues at Edulab, I found that only rather simple design principles had been implemented 
in relation to the construction of these tasks. Additionally, I found that these tasks were among the first tasks 
there had ever been designed for the online learning environment back in around 2010. This, alongside the fact 
that there were a vast amount similar tasks, challenged the clustering we wanted to use to characterise students 
via their erroneous answers. Another factor, and most importantly, the numbers used for coefficients and other 
terms in the equations were randomly chosen. This led me to believe that for the diagnostic potential to be 
significant, the numbers would have had to been chosen in a rather lucky manner for any given task to actually 
capture problematic characteristics. An example could be to showcase the reasoning behind two rather similar 
tasks with quite different diagnostic potentials, in my opinion Kieran (1985) provided some of the most down-
to-earth explanations of what students actually do when making errors solving linear equations. From her 
ideas/findings, one could extract important design principles. These are subtle but important when designing 
an extensive number of tasks. I realised the potentially important, perhaps subtle, differences allowing for 
inversing subtraction with subtraction, when solving equations, per design. The following example showcases 
this small but important realisation. One huge disclaimer is that task designers do not really know how a task 
performs and whether some unexpected behaviours in the form of strange answers might present themselves 
until the answers are collected and analysed. 

1. 5𝑥𝑥 − 6 = 14 

In this first example, if a student were to inverse the subtraction by subtraction, the action might be regretted 
simply because the next expression does not make good sense if the classroom is not used to answers such as 
8/5. I know that additional errors might cause a student to give the answer 3 simply because 5 plus 3 makes 8. 

2. 2𝑥𝑥 − 7 = 21 

In the first example, though an interesting task, inversing the subtraction with subtraction is not the focus in 
the same way as it is in this second example. This equation makes sense (for positive whole number solutions) 
whether subtraction is inversed with subtraction or not. This led to the idea that the ongoing literature review 
should actually be leading to a set of design principles, hence the second part of Paper B. This realisation I 
consider quite important for the further design choices I made. Working with the review of students’ 
difficulties, I established the following design principles for creating new tasks (Paper B): 
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• Negative numbers and the minus sign  
o as solutions 
o as terms 
o as operations 

• Rational numbers  
o as solutions  
o as present numbers 

• Interpretation of the equals sign  
o Situations that invoke an ‘element of crises’4 from an arithmetic point of view 

• Strategic, conventional and transformational questions 
o Increasingly complex and strategically demanding  
o Conventions concerning brackets  
o Conventions concerning missing multiplication 

Following these design goals (principles), I attempted to realise these in a concrete design for each type of 
equation presented in the conceptual map (Figure 7). This paper presents concrete examples of how such design 
goals could be manifested in linear equations suitable for implementation in an online learning environment. 
However, we needed a structure for this manifestation not provided by the design principles. The structure was 
designed using an exhaustive method partly based on variation theory. The structure was presented prior to the 
final implementation of the equations in the online learning environment. Working with the team of 
professionals in the editorial team at Edulab, we ended up not considering Type 8 (equations with brackets), 
as we constructed and implemented the equations into the online learning environment.  

 

 
Choosing input fields instead of multiple-choice options when selecting/designing task involving solving 
linear equations will enable opportunities for discussing diagnostic potential, future design principles 
and knowledge on proper distractors. 

Continuing with the idea of diagnostic potential, when realising that the tasks already implemented in 
MatematikFessor were probably not going to lead to a fruitful investigation relevant to the overall aim of 
exploring new data-driven possibilities for feedback under the umbrella of the Math Counsellor Programme’s 
framework of detecting, diagnosing and intervening, I began to think more and more about task design and its 
importance in establishing means for diagnostics in online learning environments. 

When I began establishing design principles for new and preferably more suitable tasks to realise the overall 
idea of enhancing feedback offered by online learning environments, I found myself taking a few side steps 
from the data analysis track I thought I was going to follow. It was not until much later in this project that I 
was able to establish a formulation or definition of what I consider diagnostic value or potential. However, the 
fact that the clustering of the tasks already implemented did not yield a fruitful result caused me to wonder 
how a good task should be presented. In MatematikFessor, tasks must meet certain requirements, such as 
anticipated difficulty level (from 1–5), and every task should be connected to an explanation that students 
would be presented should they give a wrong answer. Following the guidelines and structure of tasks presented 
by MatematikFessor, I began to design new tasks based on my initial findings from the literature review. I 
realised through this process that the multiple-choice possibilities had never been analytically validated in 
terms of determining what I now consider the diagnostic value of the task. These multiple-choice options were 

                                                      
4 The element of crisis in task design aims to contrast with standard procedures or understanding students usually apply 
(Bokhove, 2017). 
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simply based on a few people’s experiences and assumptions on what answer students might be willing to 
choose. 

Through conversations with Prof. Hodgen and Prof. Küchemann, I realised that to truly determine the best 
multiple-choice options or distracters, as some would refer to them, one would necessarily have to determine 
these through empirical testing. The two professors argued that to diagnostically test a student purely based on 
them solving tasks, one would have to present to them a too-large number of tasks for a test. However, one 
could counteract this by presenting the students with ‘perfect tasks’ precisely adjusted to measure certain 
parameters because of their unreasonably high diagnostic value. ‘Perfect tasks’ would only receive two 
different answers the correct answer and an incorrect answer perfectly exemplifying a recognised mathematical 
reason or action. I believe it is fair to assume that such tasks do not exist. Therefore, tasks designed for 
diagnostic purposes would have to accomplish the fine act of balancing both quantity and quality to achieve 
success in performing diagnostics. 

When working to detect and diagnose students’ difficulties in general terms, I realised that there is sometimes 
only a fine line between detection and diagnosis, knowing that detection refers to the idea that there is some 
unsuccessful handling of a situation and diagnosis refers to the idea of knowing why this handling was 
unsuccessful. I realised that when designing tasks for either purpose, I found myself in a place of caring about 
both. I found that the idea of an unfocused task for detecting students experiencing difficulties could generally 
just be any linear equation. Then, I would argue that the possibility of accidentally not detecting students who 
one would actually want to detect would be too high. I wanted to somehow make sure that I formulated types 
of equations sufficient for providing students with enough different situations to cover the topic of equation 
solving and for them to be able to actually experience difficulties in every situation. This might boil down to 
presenting students with every linear equation type and variation possible. However, this could be too 
comprehensive to accomplish. I argue that this is exactly the idea that ties detection and diagnosis so tightly 
together. When I create enough situations for teachers or observers to detect students experiencing difficulties, 
I would have implicitly created means for some level of (a priori) diagnosing to take place. This argument I 
believe continues to the next level of design. If one could design enough situations for students to display their 
difficulties, then one would also realise that within these situations, there should necessarily also be 
opportunities to display certain characteristics. 

In choosing the input field for the tasks I designed based on the literature reviewed and choosing some 
appropriate design principles that would fit the framework for how tasks would be presented in the online 
learning environment, I realised that I would be faced with the challenge of managing more answers than I 
would have to using multiple choice. However, adhering to the ideas of diagnostic value, diagnostic potential 
and through discussions I had with Prof. Küchemann and Prof. Hodgen, I believe that this decision allowed 
me to achieve a more meaningful analysis of how the tasks perform in situations for diagnostic purposes. I 
return to the importance of this when discussing Hypothesis 2.1. 

 

 
The four aspects that define the scheme as a part of the TCF can serve as a comprehensive means for 
designing tasks to ensure diagnostic potential in an assessment situation incorporating an entire action. 

In following the path of determining the task design philosophy and principles, I went on to think about a 
method for discussing perceptions and knowledge of subjects undergoing diagnostic evaluation. Up until I 
attended the PhD course about TCF, I felt that I had not found my epistemological standpoint when thinking 
about (mathematical) knowledge. As I mentioned in the preliminary analyses, the matter of discussing the 
origin of difficulties related to mathematics is not straightforward. I mentioned TDS and TCF as my most 
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prominent sources of inspiration when discussing and analysing knowledge and didactical design in 
mathematics education. 

I was fascinated with the idea that knowledge needed to be applied for an instrument to measure it. In my 
endeavour to detect and diagnose students’ difficulties solving equations, I adopted the idea of analysing 
students’ schemes as a way of capturing their actions that lead to application of mathematical knowledge when 
solving linear equations unsuccessfully. When discussing the notion of scheme in terms of Vergnaud, I realised 
that in his terms, an action (a scheme) consists of four elements. I felt that I had found a theoretical standpoint 
and a new outset for describing knowledge. 

During the PhD course on TCF, I discussed the notion of scheme with experts on the theory. I discovered that 
apparently, there is not the same interest in nor emphasis on the importance of three aspects of the scheme (the 
intentional, generative and computational) compared to the operational invariants (the epistemic aspect).  

Although Paper C is rather reflective of a thought experiment in writing, the idea of gathering information 
about an action and possibly a specific part of an action to diagnose students’ difficulties with mathematics is 
what resulted from going through the process of making this framework for designing tasks with Prof. Hodgen. 
The idea that the cause or the origin of a student’s error could stem from different aspects of the action (scheme) 
and that TCF gave us the means to discuss and think about this is what drove the establishment of the 
framework for implementing the a set of general design principles for diagnostic tasks for online learning 
environments. 

 

 Hypotheses related to Research Question 2 
In the following sections, I present the realisations that came from exploring the hypotheses related to Research 
Question 2. In each section, I remind the reader of the related hypotheses. 

 

 
Extensive didactic coding of answers to tasks can help create a means for exploring the extent of different 
reasons for students’ erroneous answers based on answers to linear equations from MatematikFessor. 

When exploring the potential of the new tasks presented in the design proposed in Paper B and analysed in 
Paper E, I realised a variety of different things. To explain these realisations fully, I first want to address some 
initial problems that had to be dealt with to explore this hypothesis.  

I anticipated that one obvious obstacle resulting from the extant feedback system is that the system does not 
offer any information as to why any given task is answered incorrectly. I wanted to explore the possibilities 
for performing statistical analyses on data sets consisting of students’ answers to tasks that went beyond 
correctness. The idea that online learning environments can process data before presenting the users with 
automated feedback is unique to these digital resources, meaning they have powerful potential, in my opinion.  

The data set I ended up with from releasing the equations I designed into MatematikFessor consisted of 
2,135,968 unique answers to a total of 892 unique tasks. I had removed 373,384 answers from the raw data set 
to end up with a situation where each student had answered each task a maximum of once. I decided that the 
most recent answer was the one I would keep in the set. The answers were provided by 94,368 students. There 
is value to be gleaned from the duplicate answers. Students’ progression and patterns answering the same task 
could be exciting to analyse; however, it was out of the scope of this project. The data set was then coded for 
the five most popular answers to each of the 892 tasks using the following coding format whose construction 
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began prior to the coding but was developed during the coding as well. The coding resulted in 49 unique codes 
constructed from the base codes in Table 2. 

Table 2: Base set of codes with explanations as presented in Paper E 

Name Tag Explanation 
Correct c Correct answer 
Negativity issue n Answers with additive inverses 
One more/one less o Answering for example 6 instead of 5 
Multiplication m Issues involving multiplication 
Addition a Issues involving addition 
Rearranging for sense making r Rearranging an expression to have it make sense 
Equals sign e Issues related to the role of the equals sign 
Conventions associated with letters v Issues related to the interpretation of letters 
Solving strategy s Issues related to equation-solving strategy 
Decimal number d Issues related to the acceptance of decimal numbers 
Zero z Issues related to the number 0 
Unknown reason u Unable to apply a valuable code 

 

Table 3 shows the most frequent codes. I realised that when I was done coding all the five most popular answers 
to the 892 tasks that some codes were related to quite a few answers and might therefore seem irrelevant. 
However, I decided to proceed with the data analysis using the co-clustering method as described in Paper E, 
since the alternative would show the few occurrences of more generic codes, such as ‘unknown reason’, or 
eliminate tasks from the data set to streamline the number of codes. I decided to attempt to keep the data as 
‘real’ or representative of what actually happened as possible.  

Table 3: Distribution of the most frequent codes applied to more than 1% of interpretable errors to the answers 
to the 892 included equations 

Name Tag Total answers % of total answers % of interpretable errors 
Correct c 1722740 80.7 --- 
Unknown reason u 182450 8.5 --- 
Negativity issue n 73373 3.4 31.8 
Rearranging for sense making o 36046 1.7 15.6 
One more/one less r 35814 1.7 15.5 
Rearranging and negativity issue  rn 27863 1.3 12.1 
Rearranging and multiplication 
issue 

rm 13417 0.6 5.8 

 av 9098 0.4 3.9 
Ignoring the coefficient mv 6279 0.3 2.7 
Rearranging and addition issue ra 5709 0.3 2.5 
Equals sign e 5511 0.3 2.4 
Rearranging and negativity issue 
with adding the coefficient to the 
unknown 

avrn 3505 0.2 1.5 

Disregarding operations on the 
unknown 

v 2833 0.1 1.2 
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I realised when I extracted the data consisting of the answers to the 892 equations that the answers followed a 
certain pattern of a few popular answers followed by a tail of less and less popular answers. Because the tasks 
used an input field, the tail of more and more uninterpretable answers would be unavoidable. I decided that I 
would prioritise coding the five most popular answers for each of the 892 tasks to provide reasons for each of 
those answers. In Paper E, some of the realisations connected to exploring the system of coding are presented; 
however, much is still left for future research. I shall discuss this matter in the a posteriori analysis in Chapter 
5 .  

By using the co-clustering method together with the didactical codes in writing Paper E, I realised some 
interesting behaviours that I did not expect, based on reasons derived from research literature. The coded ‘o’ 
(accidentally pressing the wrong button on the keyboard when inputting the answer) is something I believe to 
be unique to digital learning resources. Importantly, if I had not chosen an input field, I would not have been 
able to observe the phenomenon of the ‘one more/one less’ issue that presented itself in Paper E. Analysing 
and coding the answers from the approximately 94,000 students, I found that a significant number of errors to 
the 892 equations I designed were due to students answering with an unlucky press of a number on the 
keyboard. In some cases, students must had made reasonable progress in determining that the solution to, for 
example, the equation 6 − 𝑥𝑥 = 3 should be 3 but ended up inputting 2 or 4 as the solution. In the following, I 
present the most frequent error types for each type of equation and present the realisations I made from the 
analysis. Additionally, I present the common error types that constituted more than 1% of the interpretable 
errors. I chose not to present the types of equations in numerical order, as I found that the current arrangement 
was more appropriate for demonstrating the types of errors. 

Table 4: Type 1 equations with codes that were assigned to more than 1% of the interpretable answers 

Type 1 Total answers % of total % of identified errors Examples 

c 564155 88.66 __ 3 +  𝑥𝑥 =  8 
 

38 +  𝑥𝑥 =  83 
 

5 =  1 +  𝑥𝑥 
 

7 +  𝑥𝑥 =  4 

u 33788 5.31 __ 

n 15094 2.37 39.37 

o 12669 1.99 33.04 

r 4764 0.75 12.42 

rn 2635 0.41 6.87 

e 2152 0.34 5.61 

v 758 0.12 1.98 

 

Here, we see that the identifiable wrong answers that scored high were ‘n’ (answering with the additive inverse) 
and ‘o’ (accidentally pressing the neighbouring button on the keyboard when answering). The reason why we 
can observe ‘e’ (issues related to the equality symbol) in this table is because of the task originally presented 
by Falkner et al. (1999) and the variations presented in Paper D. I found that ‘r’ (rearranging expressions for 
sense making) are common in equations where the terms invite individuals to accidentally interpret the 
expression in a way that is perhaps more familiar or something students are more used to working with. 
Importantly, I also found that most of the errors to these types of equations were actually uninterpretable. 
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Table 5: Type 2 equations with codes that were assigned to more than 1% of the interpretable answers 

Type 2 Total answers % of total % of identified errors Examples 

c 222435 80.90 __ 𝑥𝑥 –  3 =  5 
 

𝑥𝑥 –  9 =  −4 
 

𝑥𝑥 − 4 = 8 

u 20396 7.42 __ 

r 10471 3.81 32.60 

n 9966 3.62 31.03 

rn 7888 2.87 24.56 

o 3517 1.28 10.95 

 

For these second types of equations, type ‘r’ errors represented a third of interpretable error alongside type ‘n’. 
Perhaps this is not surprising, since the structure resembles Type 1 equations. The ‘rn’ error (answering with 
the additive inverse after rearranging) was present with this type of equation, since these equations allow 
students to inverse subtraction with subtraction (Kieran, 1985). For these types of questions, the diagnostic 
value would seem quite high, since the results yielded only four quite strong contributions in the form of 
interpretable error types. I do remind the reader that close to 7.5% of the errors were uninterpretable.  

Table 6: Type 3 equations with codes that were assigned to more than 1% of the interpretable answers 

Type 3 Total answers % of total % of identified errors Examples 

c 193248 79.31 __ 6 –  𝑥𝑥 =  3 
 

3 –  𝑥𝑥 =  6 
 

3 − 𝑥𝑥 = 0 

r 18408 7.56 48.52 

n 13553 5.56 35.72 

u 12461 5.11 __ 

rn 3514 1.44 9.26 

o 1390 0.57 3.66 

mv 1036 0.43 2.73 

 

The third type of tasks again featured only three terms with a minus operation present. However, now the 
unknown is subtracted from a known number. I interpreted the change in the distribution of answers as a sign 
that these types of equations have a higher diagnostic value than Type 2 equations. The fact that the 
uninterpretable errors present significantly fewer observations is an important observation. The proportion of 
correct answers was practically the same as the type before, but the type ‘r’ errors over doubled in the frequency 
of occurrence. I suspect that Danish students are not so familiar with these types of equations. 

Table 7: Type 4 equations with codes that were assigned to more than 1% of the interpretable answers 

Type 4 Total answers % of total % of identified errors Examples 

c 221265 83.72 __ 2𝑥𝑥 =  14 
 

4𝑥𝑥 =  4 
 

6𝑥𝑥 =  −18 
 

−3𝑥𝑥 =  15 

u 19410 7.34 __ 

n 8493 3.21 35.95 

o 6795 2.57 28.76 

av 6319 2.39 26.75 

no 732 0.28 3.10 

rm 706 0.27 2.99 
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The fourth type of equations allows the study of equations with two terms and the unknown concatenated with 
a scalar or a coefficient. Again, the type ‘n’ and ‘o’ errors scored the highest. However, the type ‘n’ error was 
triggered by the presence of the minus sign and was only an issue in these equations for these types. The error 
type ‘av’ (confusing concatenation with addition) was present due to the fact that coefficients were introduced 
and accounted for more than 25% of interpretable errors. This can perhaps be expected, but nonetheless, it is 
a significant indication that certain error types are connected to the equations based on structure or design. 

Table 8: Type 5 equations with codes that were assigned to more than 1% of the interpretable answers 

Type 5 Total answers % of total % of identified errors Examples 

c 58189 73.72 __ 𝑥𝑥
3  =  9 

 
𝑥𝑥
−3  =  −3 

 
𝑥𝑥
7

 =  7 
 

𝑥𝑥
3

 =  −15 

rm 7332 9.29 51.97 

u 6635 8.41 __ 

n 2578 3.27 18.27 

v 1780 2.26 12.62 

ra 1360 1.72 9.64 

rnm 343 0.43 2.43 

rna 177 0.22 1.25 

rmo 168 0.21 1.19 

 

Type 5 tasks are, to a large extent, the reverse structure of the types before. However, I consider the added 
feature of the operator (fraction bar) an important difference. The error type ‘rm’ (rearranging with 
multiplication) was a significant error associated with these types of equations. Importantly, these errors were 
more common than the uninterpretable errors together. The errors were the result of students simply reversing 
division with division, using Kieran’s terminology. The proportion of correct answers was significantly lower 
than in the previous types of equations. The type ‘n’ errors were not surprisingly present here in relation to 
equations with negative numbers. The type ‘v’ errors (disregarding operations on the unknown) played a bigger 
role than I expected. These errors were present in response to equations where the denominator and the number 
on the right side of the equals sign were the same. The error might also rely on the idea that students imply 
that 𝑎𝑎

𝑎𝑎
= 𝑎𝑎. This would, of course, require further exploration to verify. Type ‘ra’ errors (rearranging with 

addition) comes into play here in situations where students think that adding the numerator and denominator 
should result in the number on the right side. Notably, the error type ‘o’ did not appear among the high scorers 
for errors associated with this type of equation. 

In Table 9 and Table 10, type 7 equations are presented in two groups, 𝑎𝑎𝑥𝑥 + 𝑏𝑏 = 𝑐𝑐 and 𝑎𝑎𝑥𝑥 − 𝑏𝑏 = 𝑐𝑐 (where b 
is always positive). The equations were implemented in MatematikFessor as two types and I found it important 
to notice the differences in answers the two types would receive. 
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Table 9: Arithmetical equations (Type 7, 𝒂𝒂𝒂𝒂 + 𝒃𝒃 = 𝒄𝒄) with codes that were assigned to more than 1% of the 
interpretable answers 

Arithmetical (+) Total answers % of total % of identified errors Examples 

c 109337 76.04 __ 2𝑥𝑥 +  7 =  21 
 

7𝑥𝑥 +  28 =  7 
 

6𝑥𝑥 +  7 =  −14 
 

−7𝑥𝑥 +  9 =  30 

u 17631 12.26 __ 

o 5054 3.51 30.04 

n 4658 3.24 27.69 

mv 2998 2.08 17.82 

av 1631 1.13 9.70 

mvr 713 0.50 4.24 

no 527 0.37 3.13 

rn 463 0.32 2.75 

 

The proportion of correct answers, for the first type 7 equations, was still fairly high, yet uninterpretable 
answers rose to above 12%. To my surprise, I found ‘o’ errors were most common, though unsurprisingly, this 
was followed by ‘n’ errors. For the first time, ‘mv’ (disregarding the coefficient or treating the entire term 
containing the unknown as the thing we are looking for) became a prevalent type of error. I can best showcase 
the ‘mv’ error through the following equation: 5𝑥𝑥 + 6 = 21. Students seemingly disregarded the coefficient 
and gave the answer 15. The same issue occurred with ‘mvr’ errors, where the student would just rearrange 
the expression before applying the same logic leading to the same error. The error ‘av’ was unsurprisingly still 
present to some extent, since the equations do feature coefficients. The error type ‘no’ combines the ‘n’ and 
‘o’ errors and reflects the idea that the students chose the additive inverse as the solution and pressed one more 
or one less on the keyboard. 

Table 10: Arithmetical equations (Type 7, 𝒂𝒂𝒂𝒂 − 𝒃𝒃 = 𝒄𝒄) with codes that were assigned to more than 1% of the 
interpretable answers 

Arithmetical (-) Total answers % of total % of identified errors Examples 

c 53395 79.99 __ 2𝑥𝑥 −  7 =  11 
 

4𝑥𝑥 − 4 = 24 
 

−8𝑥𝑥 −  13 =  7 
 

4𝑥𝑥 − 8 = −24 
 

5𝑥𝑥 −  25 =  5 
 

2𝑥𝑥 −  7 =  12 
 

8 =  2𝑥𝑥 −  4 

u 6270 9.39 __ 

rn 2411 3.61 34.00 

n 1331 1.99 18.77 

o 1304 1.95 18.39 

mv 544 0.81 7.67 

d 279 0.42 3.93 

mvrn 242 0.36 3.41 

avrn 207 0.31 2.92 

e 141 0.21 1.99 

av 131 0.20 1.85 

rmv 106 0.16 1.49 

avn 92 0.14 1.30 

mvn 89 0.13 1.26 
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For these second type 7 equations, I found a different distribution of answers compared to first type 7. Several 
were quite common (‘rn’, ‘n’ and ‘o’) before I observed a tail of error types representing the last of the 
interpretable errors. The presence of ‘rn’, ‘n’ and ‘o’ errors did not surprise me. The ‘mv’ error did surprise 
me, as it appeared with this equation type as it did for the previous equation type. The versions explain the tail 
of error types. ‘mv’, ‘mvrn’, ‘rmv’ and ‘mvn’ errors are all connected. The same is true for ‘av’, ‘avn’ and 
‘avrn’ errors. The main issues can perhaps be viewed as ‘mv’ or ‘av’ issues, and before the occurrence of these 
errors, the student had made an error based on rearranging and/or related to negativity. Lastly, I want to touch 
on the error types ‘d’ and ‘e’. The ‘d’ errors are connected to working with decimal numbers. For example, 
students would choose to give 9 as an answer instead of 9.5 to the equation 2𝑥𝑥 − 7 = 12. This error is also 
perhaps tied to the idea that if there are no decimal numbers present in the equation, there should not be a 
decimal number in the solution. Regarding error type ‘e’, I found that some students were willing to put 4 as a 
solution to 8 = 2𝑥𝑥 − 4, indicating that the minus operator and the term ‘4’ to the right of the unknown and the 
coefficient were disregarded because they operated under the idea that only one ‘thing’ should be present on 
the right side of the equals sign. 

Table 11: Simplified algebraic equations (Type 11, 𝒂𝒂𝒂𝒂 ± 𝒃𝒃 = 𝒄𝒄𝒂𝒂 ± 𝒅𝒅) with codes that were assigned to more than 
1% of the interpretable answers 

Algebraic Total answers % of total % of identified errors Examples 

c 130189 68.00 __ 7𝑥𝑥 +  9 =  2𝑥𝑥 +  4 
 

𝑥𝑥 − 12 = 3𝑥𝑥 − 2 
 

2𝑥𝑥 − 8 = 7𝑥𝑥 + 7 

u 34384 17.96 __ 

n 10329 5.40 38.43 

rn 8772 4.58 32.63 

avrn 1910 1.00 7.11 

o 1476 0.77 5.49 

mvrn 1297 0.68 4.83 

d 803 0.42 2.99 

mv 616 0.32 2.29 

no 371 0.19 1.38 

 

Type 11 equations are what I generally refer to as algebraic equations, with the unknown present on both sides 
of the equals sign. To solve these equations, it is more difficult to apply some substitution techniques or a 
guess-and-check strategy. Two major error types associated with this question type are highlighted below, as 
well as what seem to be quite a few uninterpretable answers. Perhaps one would expect the variations in 
answers to arise, keeping in mind that I only coded the five most popular answers for every equation. However, 
I think the diagnostic potential of algebraic equations is still valuable. These equations helped me evaluate 
whether students are capable of handling the unknown’s presence in more than one term and on both sides of 
the equals sign. Given the design of the equations, ensuring that the variations would cover as many of the 
found difficulties as possible, I did not find it strange that errors involving improper interpretation and the 
handling of negative numbers and negativity were among the most prevalent again. Interestingly, the errors 
connected to treating the coefficient as not existing (‘mv’ errors) or treating it as added onto the unknown (‘av’ 
errors) mostly occurred together with a rearranging coinciding with a negativity issue error. Additionally, I 
observed that the error type ‘o’ was still among the most frequent error types to occur, corresponding to more 
than 5% of identified errors. These types of equations were the first to have a proportion of correct answers 
below 70%. These equations proved to be the third most difficult among the types I implemented. 
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Table 12: Type 6 equations with codes that were assigned to more than 1% of the interpretable answers 

Type 6 
 

Total answers % of total % of identified errors Examples 

c 64768 77.25 __ 9
𝑥𝑥  =  3 

 
2
𝑥𝑥

 =  2 
 

18
𝑥𝑥

 =  −9 

u 6992 8.34 __ 

n 4447 5.30 36.82 

rm 2709 3.23 22.43 

ra 1669 1.99 13.82 

e 1267 1.51 10.49 

zm 606 0.72 5.02 

o 595 0.71 4.93 

ne 262 0.31 2.17 

no 233 0.28 1.93 

m 185 0.22 1.53 

 

Type 6 equations are inverse in structure from Type 5 equations. Thus, I expected ‘rm’ errors (rearranging 
with multiplication) to be among the most prevalent. Similarly, the number of uninterpretable erroneous 
answers was quite low compared to other types of equations, which signifies better opportunities for high 
diagnostic value. Starting from the bottom, the ‘m’ (multiplication) error was, in every case, connected to the 
idea that a decimal number would be the solution to an equation such as 3.3

𝑥𝑥
= 1.1. For example, students chose 

3.3 as the solution. Additionally, I observed the ‘zm’ error (multiplication/division with zero), which refers to 
students choosing the number zero as the solution to these equations, although only in instances in which 
equations were in the form 𝑎𝑎

𝑥𝑥
= 𝑎𝑎, indicating the idea that a number divided by zero should result in the number 

itself. Code ‘e’ errors (issues with interpretations of the equals sign) were found for this type of equation where 
the answers were equal to the number on the right side of the equals sign. In some cases, whether equations 
were in the form 𝑎𝑎

𝑥𝑥
= 𝑎𝑎 or 𝑏𝑏

𝑥𝑥
= 𝑎𝑎, some students would choose a as the solution. This issue was observed 

surprisingly many times and was not limited to the idea that a number divided by itself is the number (for 
example 𝑥𝑥

𝑥𝑥
= 𝑥𝑥). The error ‘ne’ corresponds to errors that involved the additive inverse of the error type ‘e’ 

that I just discussed. Lastly, I want to mention the errors coded as ‘ra’ (rearranging with addition). This code 
was applied to instances where students would treat the fraction not as indicating the need for the process of 
division but addition or subtraction. This error was observed in almost 14% of interpretable errors and is 
important in the idea of establishing diagnostic value for these types of equations. 

To my regret, no variations of the form 𝑎𝑎
𝑥𝑥

= 𝑏𝑏, where a is larger than b, were implemented in MatematikFessor 
as part of this study. My assumption is that these variations would have held high diagnostic value. 
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Table 13: Type 9 equations with codes that were assigned to more than 1% of the interpretable answers 

Type 9 Total answers % of total % of identified errors Examples 

c 52629 72.58 __ 3
𝑥𝑥 + 2 = 5 

 
8.5
𝑥𝑥 − 5.5 = −4.5 

 
 

u 10096 13.92 __ 

rm 2225 3.07 22.73 

e 1796 2.48 18.35 

n 1173 1.62 11.98 

mv 1036 1.43 10.58 

o 1011 1.39 10.33 

avrn 648 0.89 6.62 

rn 504 0.70 5.15 

av 434 0.60 4.43 

d 176 0.24 1.80 

mvn 173 0.24 1.77 

avn 169 0.23 1.73 

rmn 135 0.19 1.38 

 

Type 9 equations, which are an extension of type 6 equations, yielded only a slightly lower proportion of 
correct answers. However, these equations yielded a significantly higher proportion of uninterpretable errors. 
The most prevalent interpretable errors were part of a list where five error types constituted more than 10% of 
errors each. Again, the more complex in structure the equations are, the more types of errors one might expect. 
With that said, I saw that ‘rm’ errors (rearranging with multiplication) constituted the highest number of 
interpretable errors. Type ‘n’ errors were again represented, but type ‘e’ errors occurred more frequently this 
time. Type ‘e’ errors was were students would simply give the number on the right side of the equals sign as 
the solution to the equations. Perhaps not completely related to issues with the equals sign, however quite 
related to knowing what an equation is and what is meant by a solution to it.  

Type ‘mv’ errors were quite interesting in these equations. For these equations there was a commonality of 
seemingly interpreting the entire fraction as the unknown, as if the students would carry out a ‘cover up’ 
strategy and stopped halfway giving the covered as the solution.  These errors are exemplified through the 
following example. A student gave 3 as the solution to the equation 3

𝑥𝑥
+ 2 = 5. Using the same idea as the 

previous type, we can interpret this as the student disregarding the division operation. Whether this idea was 
applied before or after 2 was subtracted from 5, we will perhaps never know. Unfortunately, in this example, 
students’ could have applied the idea mentioned under a previous type that 𝑎𝑎

𝑎𝑎
= 𝑎𝑎. However, In the example 

of 8.5
𝑥𝑥
− 5.5 = −4.5, I observed behaviour indicating that students would treat the entire fraction as the 

unknown, leaving the answer 1. I return to the discussion of the diagnostic value of the task 3
𝑥𝑥

+ 2 = 5 in the 
a posteriori analysis (Chapter 5 ). The remainder of the error types were not surprising and had appeared before. 
Error type ‘d’ (decimal numbers) appeared with this type of equations as well. I realise that the errors appear 
in correspondence with the design, but I found it very interesting that students answered 2 or 3 instead of 2.5. 
Similarly, in other situations, students answered 1 or 2 to a task where 1.5 was the solution. 
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Table 14: Type 10 equations with codes that were assigned to more than 1% of the interpretable answers 

Type 10 Total answers % of total % of identified errors Examples 

c 40564 66.98 __ 4
𝑥𝑥 + 1 = 2 

 
12
𝑥𝑥 − 7 = −4 

u 11099 18.33 __ 

ra 2647 4.37 29.74 

r 1885 3.11 21.18 

n 1746 2.88 19.62 

o 1094 1.81 12.29 

rn 664 1.10 7.46 

rm 389 0.64 4.37 

z 289 0.48 3.25 

d 174 0.29 1.96 

 

Type 10 equations were again a progression from the 𝑎𝑎
𝑥𝑥

= 𝑏𝑏 (type 6) form of equations. These equations proved 
to be the second most difficult among the ones I designed. Perhaps expectedly, and however unfortunately, the 
uninterpretable errors summed up to over 18% of all answers. Interestingly, I observed that ‘ra’ errors 
(rearranging together with an addition/subtraction issue) were the most prevalent. The error was present in 
situations where students would resolve or interpret the fraction bar or the fraction construction as either 
subtraction or addition. In these cases, the students would actually treat the denominator correctly. In the 
example of 8

𝑥𝑥+1
= 4, they chose 3 as the solution. The error type ‘r’ occurred with these equations, signifying 

that the students rearranged and ignored the constant term added onto the unknown and treated the entire 
denominator as the unknown. Again, ‘n’ and ‘o’ errors were among the most common, with ‘rn’ errors 
occurring in cases where students made a calculation mistake with the denominator by attempting to reach the 
correct value as a dividend. For example, for −20

𝑥𝑥−9
= 4, students would not choose 4 but 14 in the attempt to 

reach 5 or -5. Interestingly the error type ‘z’ (issues related to the number zero) showed up for these equations. 
I observed issues arising from when students attempted to divide by 0 in response to equations in the form 
𝑎𝑎

𝑥𝑥+𝑏𝑏
= 𝑎𝑎. The students chose a number that would make x + b equal zero as a solution. My interpretation of 

this phenomenon is that some Danish students believe that a number divided by 0 is the number itself. 

Table 15: Non-simplified arithmetical equations (Type 12, 𝒂𝒂𝒂𝒂 ± 𝒃𝒃 ± 𝒄𝒄𝒂𝒂 = 𝒅𝒅) with codes that were assigned to 
more than 1% of the interpretable answers 

Non-simplified arithmetical equations Total answers % of total % of identified errors Examples 

c 12304 66.62 __ 𝑥𝑥 +  2 +  2𝑥𝑥 =  8 
 

4𝑥𝑥 − 11 − 2𝑥𝑥 = −3 u 3184 17.24 __ 

rn 983 5.32 32.96 

o 971 5.26 32.56 

avrn 495 2.68 16.60 

av 347 1.88 11.64 

v 101 0.55 3.39 

mv 46 0.25 1.54 

mvrn 34 0.18 1.14 
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Type 12 was the last type of equation I designed surprisingly they proved to be the most difficult for students 
to solve. I refer to these as non-simplified arithmetical equations. Unfortunately, the proportion of 
uninterpretable errors was also quite large for this subset of answers. However, with these equations, I found 
that the error of choosing the additive inverse as the solution (type ‘n’ errors) did not constitute more than 1% 
of interpretable errors. The two most prevalent error types are common errors, specifically ‘rn’ and ‘o’. I was 
surprised to find that type ‘o’ errors constituted such a huge proportion of the interpretable errors. Perhaps not 
surprisingly, the error type ’rn’ was significantly prevalent among the responses to equations with many terms 
and with occasional operational minus signs. Type ‘av’ and ‘mv’ errors were also unsurprisingly present; 
however, ‘v’ errors (issues related to the handling of the unknown) did come up in examples where students 
would seemingly disregard both the terms containing the unknown and provide a solution that would, together 
with the term not containing the unknown, sum up to the number on the right side of the equals sign. 

 

 
Unsupervised learning methods (specifically MIRM) together with additional didactic coding of answers 
to tasks can help create a means for categorising students based on answers to linear equations from 
MatematikFessor. 

Hypothesis 2.2 was based on the idea that even though I was unsuccessful in clustering students based on the 
linear equations already implemented in MatematikFessor, I still thought that the clustering idea could work. 
I wanted to create the best possible conditions for this idea to work. Together with the staff at MatematikFessor 
and my company supervisor Klaus Pedersen, I implemented the equations formulated based on the design 
principles presented in Paper B. 

I soon realised that this data set was extremely sparse, since the number of users who had interacted with one 
or more tasks was 94,368. To illustrate how sparse the data was, we looked at the (student × task) matrix and 
found that this matrix had 84,176,256 entries. This meant that I only had about 2.5% of the data that would 
complete the student × task matrix. As explained in Paper E, this matrix contained all the corresponding 
answers as entries matching the pairs (student and task). 

The most important realisation I had was how much work it would take to conduct analysis on a data set such 
as this. Although I had worked with pedagogical data in the past, I only had experience managing complete or 
at least nearly complete data (i.e., data with very few missing data points). I realised that in many cases, when 
working with data from online learning environments, the data would and should resemble the data I had 
extracted. I had just not realised in advance that the data would be so sparse. In fact, I had long had the idea 
that a machine learning process or method could help me in this endeavour. 

To establish any grounds to carry out future diagnostic processes, I had to be able to analyse these data. 
Together with Prof. Mørup, I discussed the possibilities of a clustering algorithm (unsupervised learning) for 
data analysis. Working with Prof. Mørup, I realised that we do, in fact, have a method for managing 
pedagogical data, such as data from online learning environments. Leveraging the knowledge of experienced 
data scientists, I realised that methods, such as the one utilised in Paper E (a co-clustering model called MIRM), 
can complete the data set by estimating the remaining 97.5% of the points and dividing the students and tasks 
into clusters. Prof. Mørup discussed with me the possibilities of finding clusters, and he anticipated that we 
would be able to find clusters with only 2.5% of the complete data set observed. 

I want to briefly explain why co-clustering is an attractive choice in this context. Of course, I could have 
attempted to categorise the students based on regular statistics following ideas such as correctness and other 
prominent codes or created intervals together with measurement of how many tasks were answered. I am sure 
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that some idea exists where students are only analysed or categorised at the classroom level based on the codes. 
However, for this project, I wanted to explore the possibilities for the whole data set. 

In Paper E, we established and analysed these groups (clusters) of students and tasks to determine what 
interesting findings such co-clustering could present. It is important to note that when applying a model such 
as the co-clustering model, we do not have control over the clusters found. This makes the clusters very 
interesting to observe, since the model seeks to discover the possible signals from the data alone. In the case 
of this data set, the goal of the model was to generate co-clusters, which is a subset of rows that exhibit similar 
behaviours across a subset of columns, and vice versa. 

I realised that this co-clustering model we trained on the data set could create the data points in the test set, 
which was left out of the training of each of the 25 models. Furthermore, this yielded better than baseline 
parameters, such as most common answer, most common student answer and most common answer for any 
given task. This provides researchers studying student answers, task design and feedback offered by online 
learning environments extended possibilities for extracting and collecting data. This co-clustering method 
could, based on merely 2.5% of a data set observed, create groups of students and tasks simultaneously, 
resulting in 7 groups of students and 395 groups of tasks (5 groups of students and 200 clusters of tasks using 
the subset). During this process of finding the best model, we learned to co-cluster these data so that the student 
groups were rather unpredictable, or what is referred to as a data set containing a lot of noise, and the model 
was therefore carried out in two settings—one where a student only had to have answered a single task to be 
included in the data set and another where a student had to have answered at least 100 tasks to be included. In 
the second setting, using the model on the subset of data, we found much more stable groups of students and 
effectively only 4 this time (the last group consisted of a single student) and only 200 groups of tasks.  

 

 
A diagnostic value can be interpreted by utilising the extensive amounts of data insights provided by 
applying unsupervised learning methods to data extracted from MatematikFessor. 

The results of the co-clustering model presented in Paper E yielded several realisations regarding procedures 
for establishing grounds for carrying out diagnostics. I realised that students are rather unstable in their 
belonging to the groups we defined. Additionally the student groups initially only seemed to corresponding to 
some level of success in solving equations. However when analysing the construction of the student groups, 
in terms of prevalent error in each of them, we found that there were more to them than simply a level of 
success in solving equations. Importantly, I realised that the exploration of this hypothesis cannot be finished 
within the scope of this PhD project. 

In total, we found 394 clusters of tasks. For a task to end up in a cluster with other tasks, they must share some 
characteristic in the form of answers provided. In this case, the goal is to provoke similar behaviours among 
the student population. Though many clusters of tasks were found, only 20 clusters included 7 or more tasks, 
and only 9 clusters had 10 or more tasks. Many of the clusters contained only a single task. 
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Figure 8: Bar plot of the distribution of tasks in clusters based on the original (full) data set. 

When running the co-clustering with the data set excluding students who did not answer at least 100 tasks, we 
got a different result. In Paper E, we mostly concentrated the analysis on the full data set; however, for this 
kappa, I wanted to add some perspective and thoughts. After implementing this criterion, we were down to 
2169 students, but every task of the 892 included in the design was still answered at least once. 

 

Figure 9: Bar plot of the distribution of tasks in clusters based on the subset where students had answered a 
minimum of 100 tasks. 

One key difference in running the same method of co-clustering is that we received only half the number of 
clusters of tasks, which means that we had the opportunity to observe a setting where more tasks could be 
recognised as reflecting similar performances when observing the reason for an erroneous answer. This also 
means that we could observe a somehow stronger signal in these clusters when observing the differences within 
them. The potential for using these clusters of tasks as indicators for what tasks in particular work great for 
observing specific difficulties increases with a data set that has more observations. 
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However, I do not want to say that a partially observed data set is always worse than a more observed one. In 
this case, yes, we did find better clusters of tasks in terms of the grouping of difficulties, and we did also find 
groups of students who were less uncertain. With that said, there is also value to be found in efficiency or 
effectiveness in discovering tendencies and features in a very partially observed data set.  

Table 16: Distribution of error types in % in the first four student clusters yielded by the model trained on the 
full data set, leaving out the last three clusters consisting only of 14 students 

 
c u n o r rn rm av mv ra 

C1 81.42 7.01 4.34 1.17 1.46 1.51 0.94 0.18 0.23 0.30 
C2 92.49 2.60 2.08 0.48 0.48 0.6 0.43 0.06 0.01 0.12 
C3 64.38 16.76 5.75 2.36 2.84 2.27 1.43 0.60 0.50 0.06 
C4 24.74 55.82 4.34 3.63 2.21 2.21 0.92 1.08 0.42 1.13 

 
 

e avrn v no d mvrn mvr zm mvn z rnm 
C1 0.26 0.18 0.14 0.08 0.02 0.19 0.00 0.03 0.06 0.07 0.04 
C2 0.12 0.05 0.06 0.01 0.09 0.03 0.00 0.01 0.02 0.02 0.00 
C3 0.55 0.36 0.24 0.18 0.28 0.22 0.00 0.03 0.08 0.05 0.08 
C4 0.63 0.75 0.63 0.38 0.17 0.21 0.04 0.04 0.04 0.04 0.21 

 

Table 17: Distribution of error types in % in the first four student clusters yielded by the model trained on the 
subset of the data, leaving out the last cluster only consisting of a single student 

 
c u n o r rn rm av mv ra 

C1 89.71 3.60 2.51 0.85 0.88 0.92 0.48 0.01 0.01 0.15 
C2 74.08 10.65 4.83 2.30 2.60 1.83 0.81 0.56 0.04 0.39 
C3 52.17 29.53 3.32 4.44 2.87 1.57 0.79 1.78 0.74 0.54 
C4 18.03 68.09 2.18 5.76 0.14 0.60 0.54 1.84 0.42 0.21 

 

 e avrn v no d mvrn mvr zm mvn z rnm 
C1 0.14 0.07 0.08 0.04 0.01 0.05 0.00 0.01 0.02 0.02 0.00 
C2 0.37 0.25 0.19 0.14 0.11 0.11 0.05 0.05 0.04 0.03 0.03 
C3 0.56 0.39 0.23 0.03 0.08 0.12 0.18 0.08 0.04 0.02 0.02 
C4 0.10 0.14 0.28 0.21 0.00 0.00 0.12 0.00 0.00 0.04 0.00 

 

In Paper E, we also applied the MIRM to a subset of the data, where each student had provided an answer to 
at least 100 of the tasks. The model trained on a subset of the data validated the model trained on the large data 
set in such a way that we expect that with a tighter or more observed data set, we would be able to observe 
something more specific (or better) about the clusters. The model trained on the subset could co-cluster the 
students and tasks more precisely than the model trained on the large data set, since the data contained less 
noise. More precisely, the model presents a larger possibility of being correct in the placement of the items 
(students and tasks). The large data set contains more noise than the smaller one, in the sense that there are 
some students in the large (original) data set who answered very few tasks. It makes sense that these students 
are difficult to place, since we know very little about them. The good thing about the large model is that it can 
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place a student in a cluster when that person has answered only a few tasks because we have such a large 
amount of data. 

Regarding the composition the clusters, we would also expect that the model ran on the small data set is better 
able to place the students and the tasks. Something else to note is that on the student side of things, the model 
trained on the smaller subset did not form significantly different clusters. In comparing the distribution of the 
two models, we could not observe large differences in the distribution of correct percentages or difficulties. 
However, if we observe the tasks side of the matter, we can glean a more information from analysing these 
clusters. With the expected result of some tighter clusters, we can put ourselves in a position to better observe 
groups of tasks that together reveal a specific difficulty.  

The diagnostic process would then be based on the idea that students in Denmark would be placed into a 
category according to one of the four clusters yielded by the model trained on the large data set, representing 
the variety of students as appropriately as possible. Within each of the clusters, it is possible to extract concrete 
tasks and tasks that serve as the best means for provoking a certain behaviour resulting in a specific error code. 
For example, we might look at students from Cluster 1. These students might on the surface be really good at 
solving equations and might be associated with results of having answered 80–90% of equations correctly. 
However, Cluster 1 also indicates that a student belonging to it should be struggling with equations that 
provoke the ‘negativity issue’ (answering with the additive inverse) resulting in the students answering the 
problem with the additive inverse. Analysing the clusters of tasks found in the subset, we see that by sorting 
the clusters first on a percent-wise distribution based on the error codes and then by the highest value of the 
‘negativity issue’, we get an opportunity to locate tasks particularly good at provoking certain errors (see Table 
18). 

Table 18: Subsection of task clusters sorted to locate the clusters that are most likely to cause a negativity issue 
 

c in % u in % n in % o in % r in % Total % 
C 93  49 6 45 0 0 100 
C 94  49 16 33 0 0 98 
C 185  66 5 27 0 1 99 
C 200  60 8 26 6 0 100 
C 88  65 7 23 0 0 95 
C 141  53 19 23 0 4 99 
C 120  73 5 21 1 0 90 

 

Noting the distribution of answers within the clusters allows us to observe what we can characterise as 
diagnostic value in this context. Looking at the tasks from Cluster 93 (the first row in Table 18), we see that 
45% of the answers provided were incorrect due to the ‘negativity issue’. Equally important is that the 
remaining answers are distributed among very few other codes, in this case 49% ‘correct’ and 6% ‘unknown 
reason’. The particular tasks in Cluster 93 are as follows: 

• −3𝑥𝑥 = −15   (type 4) 
• −4 − 𝑥𝑥 = 9   (type 3 ) 
• 12𝑥𝑥 + 57 = 2𝑥𝑥 + 27 (type ‘Algebraic’) 

We did exemplify this in Paper E; however, for this kappa, I took the opportunity to present additional data 
and perspectives from the model trained on the subset that provides better options for choosing clusters relevant 
to the most prominent error codes. In terms of diagnostic value, this was another opportunity for it to be 
exemplified. When we can discover groups of tasks, such as those from Cluster 93, we can locate tasks and 
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verify their diagnostic value, and this is true regardless of what type of equations they are. The diagnostic value 
of the tasks from Cluster 93 is therefore quite high based on the idea that the set of possible error codes is 
proportionally rather limited; at the same time, a large proportion of the answers are interpretable. 

I realise that categorising students based on knowledge or, in this case, equation-solving ability or knowledge 
of how to solve equations could be considered an impossible or even unfair thing to do. Intuitively, I could 
have predicted that students would be very unstable or inconsistent in their answering of tasks. This is also 
what we observed. In the a posteriori analysis, I return to the discussion or the consequences of categorising 
students into groups based on performance solving linear equations. 

 

 
The task 𝟖𝟖 + 𝟒𝟒 = ___ + 𝟓𝟓 (Falkner et al., 1999) holds high diagnostic value and will serve as a good 
measure for comparing diagnostic value related to understanding the role of the equals sign. 

This hypothesis is the product of the idea that tasks with diagnostic purposes related to the concept of linear 
equations could be represented differently than regular tasks, as they are from the online learning environment. 
When visiting Prof. Hodgen at UCL, I became familiar with the difficult process of designing tasks to evaluate 
students’ knowledge or capabilities. During his work with the CSMS, Prof. Küchemann had formulated several 
tasks aimed at measuring students’ difficulties conceptualising the rules and elements of algebra. Preparing to 
work with Prof. Hodgen and Prof. Küchemann, I reviewed the literature on students’ difficulties working with 
equations and found that many of these studies also reported findings of utilising tasks. 

As a part of my change in environment by visiting UCL, I worked under the supervision of Prof. Hodgen and 
Prof. Küchemann and designed a series of tasks supposed to function as diagnostic tasks. These tasks should 
be able to address a specific difficulty about a concept in relation to the concept of linear equations. These 
tasks should also be present in various representations, for instance, equality, when evaluating both students’ 
understanding of that concept and their performance.  

We ended up designing three ‘ten-minute tests’, as I named them. The idea was for the tasks to function through 
the online learning environment. I conducted a small pre-test featuring some of the tasks in two classrooms at 
two different schools using pen and paper before deciding on the 21 tasks going into each test. The tasks in the 
three tests were not unique to the tests. The tasks were mostly variations of each other, and some were identical. 
Included in these tests was the famous task by Falkner et al. (1999): 8 + 4 = ___ + 5. I was fascinated with the 
idea that this task would only produce one of three different answers—7, 12 or 17—and these answers do all 
signify an interpretable and well-defined error. I kept imagining that this task is a very good diagnostic task. I 
decided to design variations of this task for comparison in the other ten-minute tests. This led to several ideas. 

First, I wanted to use the original task in a replication study. Second, I wanted to prove that the original task is 
in fact a very good diagnostic task or rather a task holding high diagnostic value when relevant. Writing Paper 
D, we realised that the performance the authors found was rather extreme. In their reports, not a single 6th grade 
student provided the correct answer. In our finings, 6th grade students averaged a little over 60% correct 
answers and provided an answer sample space with the same values as the original study. I want to verify that 
my data were not somehow corrupted. Therefore, I conducted a small test in a single 6th grade classroom and 
got the same results as I had gotten using MatematikFessor. The two studies, Falkner et at. (1999) and ours in 
Paper D, are 20 years apart, and there could be several factors explaining why this difference in the distribution 
of answers is so enormous. 

Second, and perhaps most importantly, we investigated the diagnostic potential of the task. The results we got 
were that we could easily recreate the same ‘feeling’ in the task, in the sense that it was mainly the students’ 
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interpretation of the role of the equals sign that mattered in informing what answers they would give. However, 
we argue that it makes the most sense to formulate the equation with the empty space in the position right after 
the equals sign, since the variations we tested out in Paper D yielded relatively worse performance. 

 

 Hypotheses related to Research Question 3 
I now present the posed hypotheses related to Research Question 3 and what came out of exploring them. In 
each section, I remind the reader of the related hypotheses, which have to do with possibilities regarding 
establishing interventions that can help address difficulties already detected or in working with students to 
address generic issues when solving equations. 

 

 
It is possible to set up an alternative (VR) environment in which teachers and students can explore 
equation solving while utilising metaphors to help guide students’ equation-solving schemes. 

During the exploration of this hypothesis, I went over a variety of options, since Lui Thomsen and I decided 
to build a virtual environment from scratch. The initial idea was that we would generate an escape room setting 
where the user (the student) would need to solve a puzzle involving solving or working with equations to exit 
the room. We wanted the room to enable exploration, requiring students to acquire the pieces needed to solve 
the puzzle. The main puzzle should consist of a balance model that was out of balance and advancing the clear 
purpose that balancing the model would solve the puzzle. 

 

Figure 10: Initial escape room idea. 

The idea was that the user would need to explore the room to find or construct the gear (the unknown) that 
would balance the model (see Figure 10). The user must use a magical magnifying glass to find the gear(s) 
needed to counterbalance the unknown. We also wanted the puzzles to get harder by requiring the user to 
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construct a solution by using a combination of gears that make up a steampunk machine called the ‘separator’ 
or ‘assembler’ found in the opposite corner of the magnifying glass. This machine should let students transform 
the objects (the gears) by multiplying their weight or quantity to construct a solution to the puzzle. We worked 
with different objects that could represent numbers in the equations represented by the balance, and at some 
point, we switched to bottles instead of gears. This initial idea we actually designed and developed to the point 
that we did initial testing with a small group of students. This initial version incorporated a fully functioning 
virtual balance. The puzzles were to consist of a balance prepared with objects (bottles; see Figure 11) that do 
not balance the model. Scattered across the room, we had bottles for the user to find and use to solve the puzzle 
by achieving balance.  

 

Figure 11: Balance setup in original puzzle for escape room. 

As an additional exploration element, we implemented the feature of the magical magnifying glass, which 
gave the user the opportunity to see the hidden value of the bottles found inside each bottle cap (see Figure 
12).  

 

Figure 12: Magical magnifying glass. 

While working with the mechanics and dynamics of this escape room, we realised that we were not quite clear 
on how students would actually learn about equations and equation solving. We thought the puzzle aspect was 
fun and entertaining; however, we found it difficult to come up with robust ideas that would simulate equation 
solving for lower secondary school students working with known sources of difficulties. We realised that we 
needed to be more in control of the elements, as the equations from the escape room were easily solved by the 
test students, and the rest consisted of looking for bottles that would fit this simple solution. We tried to think 
of additional objects that would provide the idea with more relevance for teaching linear equations. For 
example, we thought of manipulating the assembler and separator, as we wanted to keep the gamified feeling 
of exploring equations through this escape room. 
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However, we ended up returning to the idea that the VR game should incorporate exploration and an 
intervention against a known difficulty students experience with equation solving. Because we realised that 
the functionality of the virtual environment would let us invert the direction of the gravitational force, we 
thought we could provide new possibilities for working with the balance model in the classroom. We decided 
that negative numbers was the obvious choice, since this corresponded well with the idea of inverting gravity. 
We abandoned the more gamified idea of the escape room and decided that we were designing a teaching tool. 
Many of the realisations that we had after this decision to change directions regarding modifying the balance 
in a teaching experience we discuss in Paper F. We felt that we could incorporate the affordances (Otten et al., 
2019) for teaching within the model and actually mitigate or avoid some of the constraints of the model that 
made it unfit for teaching equation solving (Pirie & Martin, 1997; Vlassis, 2002).  

Working with the VR application, we had the opportunity to perform a study resembling a teaching experiment 
with 10 lower secondary school students. These students and their teachers had not been working with 
equations for long and thought it would be fun to participate in an experiment involving VR. This study is also 
presented in Paper F. We realised through the process of designing and developing the VR teaching tool we 
called ‘Equations Lab’ that it was difficult anticipating how the students would interact with the mechanics, 
dynamic and aesthetics (the MDA framework from traditional game design) in our environment. The 
underlying thoughts regarding the development process are not reflected in Paper F, since they were not fitting 
for a research paper format. However, it took us the good part of half a year to develop the application using a 
development platform called Unity.5 All the 3D assets (objects) were modelled using free 3D modelling 
software called Blender.6 I modelled and hand painted the assets in Blender in an attempt to achieve what we 
felt was the perfect setting for solving linear equations in VR. The process of developing the experience became 
a very personal project, and I believe that the outcome was better because we made everything from scratch. 

 

Figure 13: VR environment for teaching linear equation solving 

Through Paper F, we managed to provide the students who participated in the study a unique experience, and 
we somehow had an epiphany working with the invert mechanic. The students had not seen such a term used 
before, and their schemes for working with equations in this experience seemed to assimilate towards the 
theorem-in-action that inverting a term and placing it on the opposite balance pan would maintain/restore 

                                                      
5 Unity is a platform for developing digital games and experiences. Read more at https://unity.com/ 
6 Blender is 3D modelling software for creating 3D assets, movies and more. Read more at https://www.blender.org/ 

https://unity.com/
https://www.blender.org/
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balance. Their thoughts seemed to conform to the idea that instead of pressing down on one side, you can 
achieve the same effect of pulling up on the opposite side when working with the balance model. We did 
realise that connecting the scheme(s) for working with equations in VR and their already established schemes 
for solving (or working with) linear equations was not a straightforward process. I do not know whether we 
expected it to be straightforward, but I remember dealing with some level of disappointment from how 
successful the knowledge transfer to pen and paper was, since we were rather excited about our innovation. 

 

 
Utilising large amounts of data in addition to extensive coding and co-clustering of answers to tasks 
involving equation solving will pave the way for formative assessment opportunities, allowing teachers 
to address students’ difficulties in solving linear equations using MatematikFessor. 

Realising that I would not be able to present anything near a fully functioning commercial product that can 
provide better and more relevant feedback for teachers working with MatematikFessor, I instead made some 
important realisations and observations along the way. Hypothesis 3.2 was built on the idea of developing 
diagnostic insights via co-clustering and data analyses enabling the design of improved automated feedback 
for teachers using MatematikFessor. For that reason, this hypothesis builds on the previous hypotheses, 2.1 
and 2.2. 

When analysing the most relevant part of the distribution of codes, we can conclude that the formative tool 
could be established based on the classroom distribution of students matching the clusters of students found. 
As I explained in relation to Hypothesis 2.2 and Paper E, I would attempt to notify teachers of the distribution 
of students relative to the clusters found.  

From Cluster 1, we can see that the most prominent errors were due to ‘negativity errors’. Therefore, an 
automated feature offered by MatematikFessor could be to suggest tasks from the literature related to this 
problem and tasks found in this data set by the co-clustering algorithm that are particularly well suited for 
provoking this error. Additionally, the automated system could provide teachers with the means to teach the 
important features and common misunderstandings when interpreting or solving such equations. 

As an example, we could look at a task from my collection of equations that seems to be well suited for 
provoking the negativity issue, specifically −3𝑥𝑥 = −15 (type 4 (2784)). When working with this equation, 
students should be made aware and learn about the different features and interpretations of the minus sign 
(Gallardo, 2002). Additionally, we are aware of equations similar to this one from the research literature, such 
as the famous task −6𝑥𝑥 = 24 (Vlassis, 2002). Thus, we are familiar with equations that are detached from a 
model and cannot meaningfully be represented on, for instance, a balance model. 

As another example, students from Clusters 2 and 3 might occasionally make errors such as ‘rearranging for 
sense making’. The tasks that are particularly good at provoking this error are 4 − 𝑥𝑥 = 5 (type 3) and 3 − 𝑥𝑥 =
6 (type 3). Here, we see two similar tasks in the form 𝑎𝑎 − 𝑥𝑥 = 𝑏𝑏, where b is larger than a, and thus, x is a 
negative number. For these equations, the most common answers were as follows: 
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𝟒𝟒 − 𝒂𝒂 = 𝟓𝟓 
Answer #Answers Code 
-1 7066 c 
9 4212 r 
1 1296 n 
-9 391 rn 
6 126 u 

 

𝟑𝟑 − 𝒂𝒂 = 𝟔𝟔 
Answer #Answers Code 
9 3804 r 
-3 2729 c 
3 1692 n 
6 189 u 
-9 187 rn 

With both these cases, the code ‘r’ covers a large number of the answers to these two tasks. In fact, in the latter 
case, we can see an extremely rare case of the correct answers not being the most popular choice. 

I believe that the data sets derived from online learning environments may initially look very different from 
data sets gathered by going into a classroom with a set of tasks suitable for a single intervention. What we 
learned from extracting data from MatematikFessor is that a large amount and variety of students access the 
tasks within it.  

I realise that using the clustering method to create the exact means for improved formative assessments might 
be clumsy or too unspecific. However, I believe that such studies can enhance knowledge about how students 
behave when solving linear equations in online learning environments and how we can improve assessment 
and task design principles. I believe that applying a coding system such as the one I have presented in this 
kappa can help establish that online learning environments can, on individual student basis, create track records 
of the codes students collect while solving tasks. These codes can then be reported to teachers so that they 
know what types of equations students struggle with and why. This would serve as a more individualised and 
perhaps precise and fair form of feedback for teachers. 

I do believe that the coding system could enable a better outset for statistical overviews provided by online 
learning environments, such as MatematikFessor. By combining the statistical tools already present and the 
coding from Paper E, these tools will gain new powerful abilities in providing feedback for teachers and 
students. However, I realised through working with the coding system that we might need to revise it, since 
the distribution showed that some error types were only minimally relevant. Nevertheless, through the co-
clustering study with the MIRM model, we can locate groups of tasks that perform as we desire even across 
types of equations.  
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Chapter 5  A posteriori analysis and validation 
In this fifth chapter of the kappa, I intend to revisit the methodological structure, engaging in a posteriori 
analysis and validation part of the DE structure, which should be organised in terms of contrast with the a 
priori analysis. During this phase, the data collected, realisations and observations made are analysed to 
identify convergences and divergences in relation to the preliminary analyses. The hypotheses made during 
the conception phase are put to the test during the validation and typically involves multiple data sources. 
Artigue (2015) argued that the validation process should not impose a perfect match between the two analyses. 
She further mentioned that the methods and tools for comparing the preliminary analyses and the a posteriori 
analyses are constantly evolving. 

 

 Discussion of findings in terms of hypotheses set during the a priori analysis 
In this section, I return to what was established in the preliminary analyses and discuss significant 
convergences and divergences and how to interpret these. For this exercise, I also want to include the research 
questions as a point of reference and an important factor in the discussion.  

 

 
In the a priori analysis, I established four hypotheses related to Research Question 1: 

• 1.1. In MatematikFessor’s database, there are already thousands of tasks about linear equations 
relevant for lower secondary school students. These tasks have enough diagnostic potential in terms 
of design to detect students experiencing difficulties. 

• 1.2. Designing a collection of tasks with the aim of uncovering the difficulties found in the literature 
can strengthen the possibility of achieving a set of fundamental tasks with significant diagnostic 
potential in detecting students experiencing difficulties. 

• 1.3. Choosing input fields instead of multiple-choice options when selecting/designing task involving 
solving linear equations will enable opportunities for discussing diagnostic potential, future design 
principles and knowledge on proper distractors. 

• 1.4. The four aspects that define the scheme as a part of the TCF can serve as a comprehensive means 
for designing tasks to ensure diagnostic potential in an assessment situation incorporating an entire 
action. 

I established in Paper A as part of the preliminary analyses and as a prerequisite for the design that the tasks 
already implemented in MatematikFessor were ill suited for establishing solid grounds for appropriate and 
valid diagnostics. In other words, to the best of my knowledge, I can say that Hypothesis 1.1 should be rejected. 
On the contrary, having learned from the research literature both about learners’ difficulties solving linear 
equations and task design principles, Hypothesis 1.2 should be accepted. I mainly base this acceptance on the 
analysis conducted when exploring the later hypotheses; however, since I formulated that the tasks should have 
diagnostic potential, I must accept Hypothesis 1.2 based on the knowledge acquired through the literature 
review conducted as part of Paper B.  

Choosing input fields instead of resorting to multiple choice was, in my opinion, the right choice. Even though 
the data set became noisier due to the many uninterpretable answers students gave, the trade-off would, in my 
opinion, be a lack of knowledge about the students and especially the tasks. I discovered something about the 
tasks because I designed them using an input field rather than multiple choice. The ‘one more/one less’ error 
type is a significant finding and would not have been discovered had I used multiple choice. I accept 
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Hypothesis 1.3, since the discovery of the ‘one more/one less’ error type verifies that I could not have created 
meaningfully distractors based on the findings from Paper B or other expert knowledge. There is more to it 
than just accepting Hypothesis 1.3 based on this finding alone. However, I firmly believe that exploring the 
potential gains in using input field instead of multiple-choice have extended my knowledge on the answers 
that would be provided in MatematikFessor and thereby a reason for establishing new and more refined design 
principles for tasks about equations for the environment. 

Accepting or rejecting Hypothesis 1.4 is a matter of accepting an idea or a design philosophy. I think the idea 
presented in Paper D is valid, and I think that creating or designing learning trajectories or sequences with the 
aspects of the action (the scheme) is an idea that creates awareness about how difficulties can arise when 
students solve mathematical tasks and engage in mathematical situations. 

 

 
In the a priori analysis, I established four hypotheses related to Research Question 2: 

• 2.1: Extensive didactic coding of answers to tasks can help create a means for exploring the extent of 
different reasons for students’ erroneous answers based on answers to linear equations from 
MatematikFessor. 

• 2.2: Unsupervised learning methods (specifically MIRM) together with additional didactic coding of 
answers to tasks can help create a means for categorising students based on answers to linear equations 
from MatematikFessor. 

• 2.3: A diagnostic value can be interpreted by utilising the extensive amounts of data insights provided 
by applying unsupervised learning methods to data extracted from MatematikFessor. 

• 2.4: The task 8 + 4 = ___ + 5 (Falkner et al., 1999) holds high diagnostic value and will serve as a 
good measure for comparing diagnostic value related to understanding the role of the equals sign. 

The choice to apply the codes is discussed in Paper E, and the idea is mostly presented as going beyond 
correctness. The findings presented in this kappa and in Paper E gave me an extended perspective on the 
possible answers students provide and that a coding system such as the one applied in this context can collect 
different erroneous answers into the same category of reasons for that particular error. To explore Hypothesis 
2.2, I applied co-clustering in Paper E to attempt to categorise students as equation solvers. From my 
perspective, the groups the students were placed in did provide some information. The groups were very 
unstable in the sense that the placement of the students in the cluster was quite uncertain. Second, the 
differences in behaviours that led to the groupings were not solely based on interpretable errors; rather, they 
were based on uninterpretable errors and the proportion of correct answers. However, in Hypothesis 2.3, I 
established that the information we can extract from the co-clustering of the tasks is quite applicable. The idea 
that we can extract precise behaviours from different types of tasks and their probability of collecting only 
certain types of errors is applicable to task design and assessments for feedback in MatematikFessor.  

The last hypothesis (Hypothesis 2.4) served as an opportunity to exemplify diagnostic value and to test what 
is considered a good task in a new environment to observe the outcome. The results showed that the task was 
still equally effective in collecting only a certain set of answers, and we showed with the variations that the 
placement of the blank space is important and is a testimony to how good the task is. Additionally, we found 
through the replication study (Paper D) that the distribution of answers revealed results that were far from the 
truth when applied to Danish students in MatematikFessor 20 years after the original study.  

 



   
 

84 
 

 
In the a priori analysis, I established two hypotheses related to Research Question 3: 

• 3.1. It is possible to set up an alternative (VR) environment in which teachers and students can explore 
equation solving while utilising metaphors to help guide students’ equation-solving schemes. 

• 3.2. Utilising large amounts of data in addition to extensive coding and co-clustering of answers to 
tasks involving equation solving will pave the way for formative assessment opportunities, allowing 
teachers to address students’ difficulties in solving linear equations using MatematikFessor. 

In Paper F, we presented our attempt at designing, developing and testing a novel VR application for teaching 
equation solving with a focus on exploring the difficulties related to solving equations made abstract by 
negativity and negative numbers. We found that students could pick up on the idea that negative values affected 
the balance in a different way than positive values. However, our idea did not incorporate any means for 
teaching the idea of the missing operator on the balance. The behaviour we saw from the students allowed us 
to infer the idea that the operations in standard algebraic equations caused them difficulties, and the VR balance 
teaching technique did not account for these difficulties.  

Hypothesis 3.2 has to do with the idea of establishing an improved, automated way to assess for students 
experiencing difficulties solving equations in MatematikFessor. Based on the knowledge gathered through 
exploring the hypotheses in this dissertation, I believe that automated assessment in online learning 
environments can be improved. Applying the codes to a select set of equations based on the clusters and the 
diagnostic value of the tasks could be a first step. Statistical overviews and reports that contain classifications 
of students based on their interactions with these select equations should be the next novel attempts at 
improving automated assessment in environments such as MatematikFessor. 

 

 Discussion of findings in terms of contrast to the preliminary analyses 
For clarification, this section might not be prescribed by the DE framework or structure. However, as this 
process was applied as part of the structure of the kappa, and the fact that it was applied in retrospect, I find it 
appropriate to assess for convergences and divergences in these analyses as well. 

 

 
An important part of the didactical analysis was the establishment of students’ difficulties in learning about or 
working with linear equations and linear equation solving. Much of this was learned through the literature 
review presented in Paper B. In the didactical analysis, I attempted to establish what prior research could reveal 
in terms of the teaching and learning of the concept of linear equations and linear equation solving. Within the 
didactical analysis, I also mentioned that I, to some extent, wanted to stick with the concept of didactical 
situations (Brousseau, 1997) and the emergence of such in online learning environments. Relying on the 
difficulties found in the literature and the idea of a terminology defining the concept of what I mean by 
difficulties, I wish to highlight and discuss the convergences and divergences in my realisations compared to 
the literature. In line with learning about didactical situations related to teaching and learning the concept of 
linear equations, I want to draw on several realisations. 

First, I want to discuss what I realised when assessing the students’ errors based on the data set I explored 
using the co-clustering model. We noticed several things that I did not expect based on the literature review. 
The most notable was that students in MatematikFessor ran into the obstacle of providing the wrong answer 
by presumably pressing the wrong button on the keyboard. I am referring to the error code ‘o’ (one more/one 
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less). This became important in the further analysis of didactical situations for analysing students’ difficulties 
in terms of gathering information based on which teachers and researchers can hypothesise about how to best 
move students forward. This error of pressing the wrong button when providing an answer in an environment 
such as MatematikFessor has to do with something very different from mathematical knowledge or schemes 
for solving linear equations. This error is connected to some affective value, such as a lack of concentration or 
focus due to factors that might prove very difficult to determine via MatematikFessor. On the other hand, 
variables, such as what time of day the student provided the answer or how fast the student provided the answer, 
might help determine the cause of the error. In my opinion, this issue is obviously not caused by difficulties of 
a mathematical nature, which is very important to note when analysing data from online learning environments. 

The equations designed using the findings from the literature review are based on variations in their types. The 
types were chosen in an attempt to cover what might be considered reasonable for lower secondary school 
students. To that end, I believe that the design was rather successful. None of the types of equations presented 
in the design seemed to be too difficult, based on the findings from the data analysis that no type suffered more 
than 33% wrong answers.  

Second, I wish to address the convergences revealed by the analysis of the large data set. As anticipated, the 
negative numbers or the minus operation proved to cause the students difficulties. In all the groups of students 
we identified in the co-clustering, we observed the negativity issue as most present only second to the 
unidentifiable or unknown issue.  

Rhine et al. (2018) argued that issues such as ‘acceptance of lack of closure’ (referring to e.g., Collis, 1978) or 
the process-product dilemma (referring to the work of Davis, 1975; Sfard, 1991) are apparent in students’ work 
with algebraic expressions and equations. Rhine et al. (2018) also connected this issue to the famous task 8 +
4 = ___ + 5 (Falkner et al., 1999), and the results showed that no 6th grade student out of a sample of 145 was 
able to provide the correct answer of 7. However, in our replication study, a little over 60% of 6th grade students 
were able to correctly answer 7, and what is extremely important in this context is that I got the same answers 
as the original study. Perhaps concepts such as ‘acceptance of lack of closure’ and the ‘process-product’ 
dilemma cannot be connected to tasks such as 8 + 4 =  ___ + 5 in the way we thought. Perhaps 20 years of 
progress in teaching has taught teachers, students and other stakeholders to be aware of issues when 
interpreting the equals sign to an extent that we now see a different distribution in the answers. This would 
indicate a positive change in the distribution. However, I found that equations that were ‘backwards’ in 
formulation did attract a fair number of errors. Here I mean errors connected to the interpretation of the equals 
sign. What I saw in the analysis of the large data set was that the largest clusters of tasks, meaning the largest 
groups of tasks that were grouped due to similar performance, were tasks of the same type from the structure 
group grouped together or were the majority of the tasks considered ‘backwards’ in formulation. I expected 
tasks of the same type to be grouped together to a certain extent, especially if they called for the same types of 
errors and thereby the same error codes. What is more interesting is that these subtypes I refer to as backward 
variations of both Types 3 and 7 were grouped together more than any other identifiable task type. 

 

 
In my exploration of the concept of linear equations, I focused on the idea of detecting students experiencing 
difficulties, diagnosing the origin of these difficulties and setting up the means for intervening against them. 
In the epistemological aspect of what linear equations are and have been, I attempted to explore different 
aspects of the concept of equality of expressions. 
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5.2.2.1 What is an equation and what is a solution to an equation? 
Having worked mostly with an online learning environment, I have somewhat limited experience with working 
directly with the concept of equality. However, in Papers C, D and F, I explored equality and the equals sign 
from different angles related to what equations are and what we mean by solutions to them. 

In most cases, we refer to equations rather than expressions when we want to identify something that has a 
possible solution. Sometimes, the distinction between expressions, equations and functional formulas can seem 
tricky and become a barrier or an obstacle when we want to explain what we mean or what is important in the 
current situation or setting. Prediger (2010) established that we apply a specific meaning to the equals sign 
when talking about equations, and asking for a condition under equality can be upheld by identifying the value 
of one or more unknowns. Similarly, Prof. Niss (personal conversation) identified that we can be talking about 
a certain set of situations where the relational aspect of equality acts like a proposition asking for a solution. 

During the experiment with the VR application, I found that the balance model and the setting in which we 
used and modified it provided the anticipated idea of equality. The students were intuitively aware that some 
unknown ensured that equality between the two pans was in fact established and that a ‘truth’ or a solution 
could be determined (see Otten et al., 2019). This idea of the equals sign proposes that the possibility of 
upholding it is different when the equations are represented on the balance model. Here, we did not represent 
equations without solutions, even though these equations might not be present in the typical classroom either. 
My point is that in Paper F, students got to experience the properties of the equals sign in its relational sense 
where the system or the situation kept other epistemological obstacles in check, since the system or the 
application would not allow for misinterpretations of the role occupied by equals sign or letters of the same 
appearance having different numerical value, etc. However, this does not change the perception of the equals 
sign; rather, it requires us as mathematicians or students to be rather specific in interpreting or teaching the 
idea or concept of an equation when attempting to work out a solution. When working with equations, the 
perception or the meaning of the equals sign is added a prompt. Prof. Niss (personal conversation) proposed 
the idea that when attempting to solve equations, the unknown resembles the job applicant we as interviewers 
are recruiting to fill a needed position. 

However, the representation on the balance to the symbolic representation did not achieve knowledge transfer 
as easily as we had hoped. With the balance in VR, we did not let students’ misinterpretations of how 
mathematics works influence the choice of solution. Students might not know how and why they reached a 
solution using the tools and balance in VR. However, they could not reach an incorrect solution. I argue that 
this creates a unique opportunity to learn about both the concept of equations and their solutions in controlled 
and explorative situations. 

In the task design using Vergnaud’s aspects of the scheme (Paper C) featuring the dual scheme idea focusing 
on the concept of substituting equal terms, I learned first that designers should be careful when designing tasks. 
For teachers to hypothesise about their students’ errors, we need very specific tasks or possibly sequences of 
tasks. Falkner et al.’s (1999) 8 + 4 =  ___ + 7 task is certainly a very good task for determining whether 
students are capable of reading expressions including an equals sign without interpreting the equals sign as a 
‘do something signal’. However, much more can be learned about students’ interpretations of expressions 
where the equals sign plays a major role. In Paper C, I hypothesised about students’ ability to interpret the 
equals sign or the structure of two expressions. The aim of writing this paper was to hypothesise about creating 
diagnostic potential or diagnostic situations detached from the necessity of having a conversation about the 
students’ difficulties as part of a diagnostic process.  
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5.2.2.2 Epistemological obstacles 
In this section, I go into more detail on the concrete errors students make while solving linear equations based 
on the explorations I conducted. The findings rely mostly on Papers B and E. In Paper B, I designed a set of 
linear equations that is supposedly a reasonably comprehensive set suited for lower secondary school. The 
linear equations were all based on the difficulties and obstacles identified in the literature review in the same 
paper. In Paper E, I summarised the four categories of difficulties in relation to the following: 

• The concept of numbers—This involves negative numbers (specifically the role of the minus sign in 
expressions) and numbers in expressions that belong to sets in general that stretch beyond the natural 
numbers (i.e., rational numbers and zero) (e.g., Gallardo, 2002; Vlassis, 2002). 

• The equals sign and its role in expressions—This issue is mainly concerned with how the equals sign 
is interpreted in concrete equations and how the structure of the expressions is thereby made sense of. 
In some cases, terms might be disregarded or misread (e.g., Kieran, 1981; Matthews et al., 2012; 
Prediger, 2010).  

• Strategies and transformations—Depending on the complexity of the equations, different strategies 
might come into play, including different sorts of transformations and procedures. This includes 
conventional concepts, such as the procedures and roles of operators when rearranging or transforming 
expressions to reach a solution (e.g., Jankvist & Niss, 2015; Kieran, 1985; Linsell, 2009). 

• Letters in expressions—These issues could be related to the role and handling of coefficients in terms 
of coefficients being added or multiplied onto the unknown (e.g., Küchemann, 1981). 

None of these four categories are easily summarised or condensed into concrete erroneous actions students 
make while solving linear equations. The four categories rather referred to areas of attention. To discuss the 
findings from analysing students’ answers to the equations designed based on the above ideas, I wish to 
compare my findings to a very specific primary source on students’ errors: the study conducted by Kieran 
(1985). Based on this study’s findings, I made the following tables (Table 19-Table 21). I find this an 
interesting comparison, since both the present study and Kieran (1985)’s study worked with approximately the 
same types of linear equations. 

Table 19: Errors made by both novice and intermediate equation solvers (adapted from Kieran, 1985, p. 143): 

Inversing a subtraction with a subtraction or failure to do so when necessary, e.g., solving  
16𝑥𝑥 −  215 =  265 by subtracting 215 from 265 or solving 37 −  𝑏𝑏 =  18 by adding 37 and 18. 
 
Giving up when attempting to solve using the substitution procedure. 
 
Inversing an addition with an addition, e.g., solving 30 =  𝑥𝑥 +  7 by adding 7 to 30. 
 
Computing a coefficient with a non- coefficient, e.g., solving 2 ⋅ 𝑐𝑐 +  5 =  𝑙𝑙 ⋅ 𝑐𝑐 +  8 by adding 2 with 5 on 
the left side. 
 
Forgetting that concatenation means multiplication, e.g., considering 6𝑏𝑏 =  24 as 6 +  𝑏𝑏 =  24. 
 

 

The first thing I want to highlight is the two issues common to both groups: inversing subtraction with 
subtraction and inversing addition with addition. In my coding, I had the codes ‘rn’ and ‘ra’; these two codes 
referred to rearranging with a negativity issue and rearranging with an addition issue. In addition, I used the 
code ‘r’, which I call rearranging for sense making. With this code, I refer to instances where it might not be 
totally obvious how the student came to the solution or the conclusion that led to the solution. Furthermore, I 
discovered that I could find instances of students making similar rearrangements with multiplication and 
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division. It is not only issues related to addition and subtraction that cause students to apply the inverse 
mechanism when attempting to solve linear equations by working backwards or applying transformations. 
Confusing multiplication and division was also very much present in the data related to the equations that 
enable it. What I found is that depending on the actual formulation or structure of the equations, I could find 
these rearrangements or transformations that did not follow the rules upholding equality. Additionally, I found 
that students answering with the additive inverse to the actual solution was an issue that persisted across all 
the equation types in my design. However, as I mentioned in the analysis and realisations of applying the error 
codes, this issue was probably a consequence of my design choices.  

In this format or with the analytical tools I chose, I was not able to justify or detect whether a student gave up 
while solving an equation; hence, I was not able to detect whether a student gave up while using a substitution 
procedure. Neither was I able to detect whether a student did compute a coefficient with a non-coefficient, as 
in the example from Kieran (1985). I was able to detect that students under the right circumstances were willing 
to forget that concatenation meant multiplication. However, in instances where students were to solve 
equations such as 2𝑥𝑥 − 7 = 13, this error of forgetting the meaning of concatenation was not present compared 
to other errors. We can learn from this that errors involving negative numbers and handling negativity in 
general are much more of a problem, at least among Danish students. Next, I move on to the errors made only 
by intermediate equation solvers (Kieran, 1985). 

Table 20: Errors made only by intermediate equation solvers (adapted from Kieran, 1985, p. 144) 

Leaving the unknown with a negative sign in front of it, e.g., −𝑥𝑥 =  −17. 
 
Changing an addition to a subtraction when transposing, but then commuting the subtraction, e.g., 30 =
 𝑥𝑥 +  7 -> 7 −  30 = 𝑥𝑥. 
 
Transposing only the literal part of the term and leaving the coefficient behind, e.g., solving 7 ⋅ 𝑐𝑐 = 𝑐𝑐 + 8 
by writing 7 −  8 = 𝑐𝑐 ∶ 𝑐𝑐. 
 
Dividing larger by smaller rather than respecting the order for inversing, e.g., 11𝑥𝑥 =  9   → 

𝑥𝑥 =  11/9. 
 
Computational error involving positive and negative numbers. 
 
Inversing a one-operation addition equation twice by inversing the addition and then dividing the unknown 
by the result of the subtraction, e.g., solving 𝑛𝑛 +  6 =  18 by subtracting 6 from 18 and then attempting to 
divide n by 12. 

 

Kieran (1985) found that negative numbers and the minus sign in general caused a lot of computational issues 
for students. In the analysis of my data, I was able to detect different issues of the improper handling of negative 
numbers and negativity. The second, third and fourth elements in the above table reflect something that is very 
similar to what I refer to as ‘rearranging for sense-making’ (my type ‘r’ error). The presence of this error in 
my data makes me believe that this error is in fact, alongside the errors ‘n’ and ‘o’, the most important. By 
important, I mean that such errors can be rather tricky to notice when simply observing the answers students 
give without observing their processes used to reach a solution. 

 

 

 



   
 

89 
 

Table 21: Errors made only by the novice equation solvers (adapted from Kieran, 1985, p. 144) 

Not using the order of operations convention. 
 
Not knowing how to start solving a given equation-type. 
 
Inversing a multi-operation equation before collecting together the multiplicative terms. 
 
Not using the convention that two occurrences of the same unknown are the same number. 
 
Giving precedence to an addition when it is preceded by a subtraction. 

 
Inversing a two-operation equation only once and then using the result of that operation as the solution. 

 
 

The errors mentioned in Kieran (1985), which are made only by novices, are complicated for me to compare 
my results against. Working with many students through online learning environments offers the opportunity 
to gather many answers from many students to many tasks. However, what I am not able to observe is also 
important to notice. Linsell (2008, 2009a, 2009b) also worked with linear equations with reference to Kieran 
but with a focus on strategies for finding solutions. Some of what Kieran (1985) observed I would refer to as 
strategic or process structuring errors that are perhaps not observable or deducible from the solutions reached.  

In many ways, I could verify that these errors Kieran found almost 40 years ago are still present today. Among 
all the errors that Kieran (1985) identified, I was not able to identify the issue of when students would give up 
after being unsuccessful using a substitution technique, nor did I aim to observe the students’ choice in strategy 
or rule of action in the data from MatematikFessor. However, I was able to verify the issue where students 
would forget that concatenation means multiplication.  

A difference and perhaps a strength of my study is that I was able to work with 892 different equations and 
gather data in the form of answers at the rate I did. Working with a reasonably comprehensive set of equations 
made it possible for me to distinguish the different kinds of errors and in some cases pair them with a certain 
type of equation(s). I imagine that this study can help other task designers working with linear equations to not 
only create distractors for working with the multiple-choice option but also in establishing diagnostic potential 
for their types of equations.  

Building on the knowledge from the literature review and Kieran (1985), I can confirm that errors were not 
present for every type of equation. My study confirms that the type of equation must (and intuitively only 
should) afford certain types of erroneous behaviour. This finding underlines the idea that “you find what you 
are searching for”. To prevent this idea from corrupting the emergence of new findings or discoveries, such as 
the error type ‘one more/one less’, I believe that it is necessary to attempt to make a reasonable comprehensive 
set or structure of tasks and let the data analysis reveal what erroneous behaviour can be learned. 

 

 
Coming to the last section of the a posteriori analysis, I review the findings against what I learned about online 
learning environments and their earlier use. I wish to compare my findings exploring the detection, diagnosis 
and intervention framework from the Maths Counsellor Programme in relation to linear equations against 
feedback systems as they are currently employed in online learning environments. 
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What I found in the small survey and review of teachers’ use of feedback tools in MatematikFessor is that this 
feedback is based purely on statistics measuring right or wrong answers. In Utterberg Modén (2021), teachers 
would experience difficulties interpreting the feedback options from statistical dashboards representing 
students’ progress.  

Another thought that keeps coming back to me is the idea of letting students’ teaching needs be deduced from 
their performance. By performance, I mean a measurement controlled by the proportion of correct answers 
relative to the number of tasks engaged with. I think we cheat ourselves out of learning from our students about 
our own teaching or about their previous knowledge or schemes used when engaging with (new) situations. 
Statements such as ‘Students X had only a 64% proportion of correct answers when working with mixed linear 
equations, so I must teach Student X the idea of solving equations again’ I believe are unhealthy and implement 
the ‘big idea’ of formative assessment mentioned in the introduction (Wiliam & Thompson, 2007). 
Furthermore, the idea that formative assessment can be built on this basis compares interestingly to the issues 
mentioned in Bennett (2011). As discussed in Paper C, Bennett (2011) raised several issues regarding the 
implementation or execution of formative assessments by teachers. With the coding system, I believe that we 
can actually move away from what Bennett refers to as his definitional issue: that when treated as an 
instrument, formative assessment is a test that produces a score from which teachers can deduct a ‘diagnostic 
value’. Even though the codes can be viewed as just a score, they can offer so much more information than 
what the automatic scoring can offer in MatematikFessor at the moment. Feedback for teachers from an online 
learning environment is not to be confused with a test in that data are accumulated over time and hypotheses 
are continuously changing with student learning.  

Acknowledging that formative assessment or assessment for learning is an idea that teachers are implementing 
in their teaching for themselves, we also need to be aware of what parameters make for fruitful formative 
assessment. I keep coming back to the question of how, if I begin with the second key strategy from Wiliam 
and Thompson (2007), to justify building a concept of diagnostics around performance based solely on a 
proportion of correct answers (possibly limited to a topic or a concept in mathematics). If so, how would I then 
justify following this interpretation after observing the error type ‘one more/one less’ and its propagation? 
Bennett (2011) claimed that formative assessment requires teachers to possess substantial knowledge and 
experience that enables them to make productive ‘formative hypotheses’ to act on. Building these 
hypotheses on a proportion of correct answers only enables teachers to hypothesise about what tasks or 
topics within mathematics students can or cannot do. 

My recommendation for developers working with online learning environments and digital resources capable 
of automated scoring of answers to tasks is, based on this study, to redefine the statistical overviews and their 
basis for construction. I am sure that statistical overviews can serve a beneficial purpose in how teachers gather 
information about their students’ mathematical capabilities. However, I am also sure that if the statistical 
overviews are based solely on correctness, these overviews will possibly drive teachers to think that the idea 
(in environments with automated scoring) is to reach a certain proportion of correct answers. I would like to 
challenge the idea that the understanding of a mathematical concept has a one-to-one correspondence with a 
certain threshold of a correct answer percentage. 

As mentioned under the institutional analysis, a teacher made the comment stating that “I tell children and 
parents that the target is 90% correct when working on MatematikFessor”. What I found during the analysis 
and especially the coding of the data is what I consider proof that we must not base statistical overviews in 
environments with automated scoring on a proportion of correct answers. Type ‘o’ errors (one more/one less) 
and the proportion of errors that were connected to them are to me proof that teachers building their ideas of 
students’ understanding of equation solving on a proportion of correct answers can be misled.  
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Chapter 6  Concluding remarks 
Working with the hypotheses and the preliminary analyses, in this final chapter, I wish to return to the research 
questions I set out to explore before discussing my reflections on the entire project. Afterwards, I will revisit 
the DE structure and the working questions I posed. The research questions were inspired by the framework 
established by Jankvist and Niss (2015), specifically the Maths Counsellor Programme’s approach of detecting 
students experiencing difficulties, diagnosing the origin of these difficulties and creating interventions to 
hopefully move past such difficulties. This framework was applied to students working with linear equations 
in MatematikFessor. For each research question, I attempted to create a setting that allowed me to explore the 
question in both a broad and narrow sense. 

 

 Research Question 1 
The first research question leaned into the idea of detecting students experiencing difficulties solving 
equations. The concept of task design was the focus when attempting to detect students experiencing 
difficulties in online learning environments. The main interaction with students was established by collecting 
data consisting of students’ answers to tasks about linear equations. Research Question 1 was as follows: 

What design principles are appropriate when structuring and designing tasks capable of detecting students 
facing mathematics-specific difficulties related to learning the concept of linear equations and equation 
solving? 

a. What principles are appropriate when exploring one specific difficulty (the equals sign)?  
b. What principles are appropriate when exploring difficulties related to the more general 

topic of equation solving found in the literature? 

Working with the first research question in the broad sense (b), I conducted a literature review that would 
enable me to establish a set of design principles to create a reasonably exhaustive set of equations suitable for 
implementation in MatematikFessor. I established four overall categories of difficulties, a system of linear 
equations (starting with a linear equation in its most general form) and a set of design principles (mainly 
variation theory). The set of equations should, to a reasonable extent, be considered a set of fundamental 
situations (Brousseau, 1997). The four categories of difficulties were originally established in Paper B and 
later adapted in Paper E: 

• The concept of numbers—This involves negative numbers (specifically the role of the minus sign in 
expressions) and numbers in expressions that belong to sets in general that stretch beyond the natural 
numbers (i.e., rational numbers and zero) (e.g., Gallardo, 2002; Vlassis, 2002). 

• The equals sign and its role in expressions—This issue is mainly concerned with how the equals sign 
is interpreted in concrete equations and how the structure of the expressions is thereby made sense of. 
In some cases, terms might be disregarded or misread (e.g., Kieran, 1981; Matthews et al., 2012; 
Prediger, 2010).  

• Strategies and transformations—Depending on the complexity of the equations, different strategies 
might come into play, including different sorts of transformations and procedures. This includes 
conventional concepts, such as the procedures and roles of operators when rearranging or transforming 
expressions to reach a solution (e.g., Jankvist & Niss, 2015; Kieran, 1985; Linsell, 2009). 

• Letters in expressions—These issues could be related to the role and handling of coefficients in terms 
of coefficients being added or multiplied onto the unknown (e.g., Küchemann, 1981). 

The design principles resulted in 892 linear equations distributed among 12 types. An obvious point of critique 
could be the idea that the set of equations I designed was close enough to a set of fundamental situations in 
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relation to lower secondary school. For the sake of these studies, I chose this set of equations; however, I 
realise and know that such a set could be quite different in construction. One important factor was the choice 
of using the input field. The equations already implemented in MatematikFessor were all multiple choice, and 
I strongly feel that a lot has been learned from exploring the input field option instead. 

In relation to the first part of the research question, I explored how the design principles might look if the tasks 
could detect students experiencing difficulties related to the equals sign. I conducted a somewhat theoretical 
thought experiment. The idea that students’ actions (schemes) when solving tasks should reveal their thought 
process would only work to a certain extent when we can observe only their inputs in MatematikFessor. The 
application of the action, the four aspects of task design, led me towards the idea of designing tasks for digital 
environments that were of a diagnostic character and tied to the idea of ensuring that every aspect of the action 
that led the student to reach an answer could potentially be examined in the process. This led to the 
establishment of the dual scheme idea that can be applied to a specific learning goal, in this case the idea of 
substituting equal expressions in a task: 

What number should be on the empty line? 

3𝑥𝑥        = 11 

3𝑥𝑥 + 4 = ___ 

The ‘dual scheme’ idea came about following the idea that this task could be solved in two obvious ways. The 
first is calculating the value of x and substituting it for the letter x in the second line’s expression. The second 
is substituting the entire term of 3x with 11 in the send line’s expression. We came up with the idea that the 
tasks could be presented in sequences where the calculation of the number x became increasingly difficult and 
where the substitution of the entire term would technically remain equally difficult. Afterwards, or in 
combination with a student either giving up or providing a wrong answer, follow-up questions based on the 
aspects of the scheme attempted to detect where in the action the student would experience difficulties. 

This thought experiment is also a set of design ideas or principles aimed at structuring task design with 
detection or diagnostic purposes (for online learning environments), where only the answer is observed. The 
‘dual scheme idea’ furthermore presents a learning opportunity, because in working with sequences of tasks 
where one solution method becomes increasingly more difficult, such a sequence might prove to let students 
discover the solution method that remains equally difficult. 

 

 Research Question 2 
The second research question concerns the idea of diagnosing the cause of students experiencing difficulties 
solving equations. Where the first research question leaned into the idea of task design, the second focused 
more into the idea of analysing answers to such tasks. 

What possibilities for the general diagnosis of students’ difficulties related to equation solving can be 
established? 

a. What possibilities can be established based on a task found in the relevant literature? 
b. What possibilities can be established based on the analysis of an exhaustive set of tasks 

involving equation solving. 

For this first part (a) of this research question, we worked with the famous task mentioned in Falkner et al. 
(1999): 8 + 4 = ___ + 5. Additionally, I established the ideas of diagnostic potential and diagnostic value. 
Diagnostic potential is the task designer’s a priori establishment of likely and possible student answers to a 
task that should indicate some behaviour leading to a diagnosis. Diagnostic value is the idea of evaluation the 



   
 

94 
 

distribution of the actual answers a task receives, correct, interpretable and uninterpretable. The task from 
Falkner et al. (1999) presents a high diagnostic value. Close to no uninterpretable answer are given by students 
and the interpretable are all concerned with a particular interpretation of the equals sign.  

In the first part of this second research question, I verified the high diagnostic value by replicating the task 
from Falkner et al. (1999) via MatematikFessor. The study (Paper D) confirmed that the diagnostic value of 
this task is very high, even when used in MatematikFessor. Even when answered by many students in an online 
learning environment, the task still received very few and very interpretable and meaningful answers. 

The second part of this research question and perhaps the main attraction of this dissertation involved the 
analyses of the 892 equations designed under Research Question 1. In the analysis of these tasks, I implemented 
the coding system aimed at explaining or reasoning about the error(s) students made arriving at the solution 
given to the task in MatematikFessor. The coding system was applied to the five most popular answers for 
each of the 892 tasks. Thereafter, I conducted two separate analyses of the coded tasks: 

1. Statistical overview of the representation of each code within each type of equation 
2. Unsupervised learning method for establishing co-clusters of students and coded answers 

In the statistical overview, we saw quite clearly the difference in errors students made relative to the structure 
or the type of equations they interacted with. Furthermore, I demonstrated some new errors, such as incorrectly 
rearranging terms and/or numbers in expression for them to make sense, not accepting negative numbers or 
confusing the solution with the additive inverse or presumably accidentally pressing the button next to the 
intended (or the actual solution) button on the keyboard when inputting the answer in MatematikFessor. 
Additionally, I confirmed many of the known errors students make when solving equations found in the 
literature over the last 45 years. 

The unsupervised learning method of co-clustering the student × task matrix, with entries corresponding to the 
94,368 participating students’ coded answers to the 892 tasks, resulted in some interesting analyses that made 
it possible to observe the four interesting groups of students and their characteristics, as well as the almost 400 
groups of tasks and their structure. Additionally, we recreated the co-clustering using a subset of the student × 
task matrix, only keeping the entries where a student had answered at least 100 of the tasks. These results 
yielded half as many task groups and a strengthened structure of student groups. Interestingly, these results 
yielded the opportunity to explore groupings of tasks (equations) independent of type, which performed highly 
similarly in terms of errors made in correspondence with each of the student groups. These results enable not 
only possibilities for diagnosing students as equation solvers in terms of the error types they make but also a 
strengthened possibility for task designers to evaluate their design and discuss the diagnostic value of the tasks 
in type-independent groupings. 

As mentioned, a discussion about the finding under Hypothesis 2.1 in relation to diagnostic value is 
appropriate. Going through the types of equations I had designed one by one, led to I finding that can be 
considered as a task with negative diagnostic value. In the case of the equation 3

𝑥𝑥
+ 2 = 5 and the error type 

‘mv’ (treating the entire fraction as the unknown), I found, that not only this reason could have led to the 
answer 3. In the same section I found indications that the idea of 𝑎𝑎

𝑎𝑎
= 𝑎𝑎, was applied. In the case of 3

𝑥𝑥
+ 2 = 5, 

both these ideas could have led to the answer 3. Because two recognised mathematical erroneous actions could 
have led to the same answer, the task is unreliable in terms of diagnostic value, meaning that the diagnostic 
value of this particular task is negative. This example underlines the importance of evaluating the diagnostic 
value and not only the diagnostic potential of tasks that we wish to base assessment on. In this case it is simply 
a matter of using different numbers in the equation in order to reach a task that does not present negative 
diagnostic value. 
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 Research Question 3 
The third research question was intended to cover the idea of establishing interventions that counteract specific 
difficulties identified in a diagnosis process. The ideas I presented in this dissertation lean into interventions 
from a design perspective. The first part of the research question is about designing an intervention that works 
with the interpretation and role of negative numbers in equations. The second part of the research question 
leans into the idea of establishing improved automated (formative) feedback for teachers working with 
equations in an online learning environment, such as MatematikFessor. 

What possibilities for general interventions in relation to the concept of linear equations and equation solving 
can be established?  

a. What possibilities can be established based on a specific difficulty from the literature? 
b. What possibilities can be established based on difficulties measured in an exhaustive set 

of tasks involving equation solving? 

For the first part (a) of this last research question, I explored the idea of establishing a situation or a space 
where students and teachers would be able to explore equations made abstract by negative numbers. The virtual 
environment we created gave students the opportunity to, in real time, use the classical balance model with the 
added feature of responding correctly to the ‘negative weight’ of terms with negative value. Our findings 
included, in addition to the design of the environments, a study of students’ reactions to working in the 
environment with us as teachers/guides. The results showed positive prospects for the idea of being able to 
invert the weight of a term and restoring balance by placing the inverted term on the opposite balance pan. We 
found that working without mathematical operators as one does when solving equations using the balance 
model proved to be difficult in the attempt to transfer the knowledge to pen and paper exercises with 
mathematical operators separating the terms. The metaphor of the weight of collected items is that the sum of 
the individual weights is perhaps not so intuitive when working with pen and paper representations. We 
suggested implementing a small blackboard in the virtual environment that would serve as a live symbolic 
representation of the equation the user would work with live on the balance.  

For the second part of the research question, I return to the set of equations, designed under the first research 
question and analysed under the second research question. I return to the overarching idea of enabling 
developers of online learning environments to create new and improved feedback for teachers based on the 
coding system and the analysis of tasks presented through the exploration of these research questions. The 
results showed that we could locate groups of tasks and expect only a certain number of different errors from 
students when solving these tasks. I argue that a feedback system based on developers of online learning 
environments applying codes to tasks through automated scoring would enable simple statistics to map out 
students as equation solvers. For example, this could be based on what types of equations students struggle 
with and issues related to their incorrect answers across multiple types of equations. I realise that what I am 
suggesting is not necessarily simple; however, much of the work has already been completed through this PhD 
project, which also offers an initial design for implementation that could be manufactured. 

 

 

 Reflections on the overall project and the motivation for it 
The project set out to investigate data extracted from the online learning environment MatematikFessor. My 
expectations were that the data would suffice as a means for interpretation and analyses that would result in 
meaningful diagnoses that could lead to improved learning in the classroom. In the beginning, I thought that I 
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would, after three years, have developed a digital tool for implementation in MatematikFessor that would 
improve students’ learning experiences by personalising them based on the difficulties they struggle with.  

I realised that developers claim to have been working on these adaptive tutoring systems for many years; 
however, I always expected them to be based on too simple structures and too few relevant assumptions about 
the didactical parameters. With didactical parameters I mean the general teaching material in Denmark is based 
on limited experience, and to a short extent on findings gathered through research.in mathematics education 
Perhaps research in mathematics education struggle or have yet, to prove its relevance for developers of 
teaching materials? 

Without restarting the motivation sections, I was a good portion of the way into the project before realising 
that I wanted to address and possibly qualify teachers’ formative work with the ideas and findings from the 
included papers in this project. I thought I would be able to finish such a digital tool that could be implemented 
into the feedback systems in MatematikFessor. Following the framework of detecting, diagnosing and 
intervening, the idea of working directly with the students to personalise their experience was perhaps easier 
to conceptualise than realise. However, I realised the interventions I could design and implement would 
possibly end up being too generic for what I imagined would actually be able to move the students forward. I 
imagined that such a tool would keep the students on the ‘digital escalator’ and reduce the teacher to, in the 
worst case, technical support.  

The deviation from this idea of only working with students through MatematikFessor had me rethinking the 
idea of interventions, as I wanted to keep the idea of working with the framework from the Maths Counsellor 
Programme. The aspect of formative assessment became much more present, shifting to the idea of letting the 
data analyses inform teachers using MatematikFessor with their students. Much of the initial idea of detecting 
and diagnosing students’ difficulties was still intact and developed into the six paper contributions and the 
kappa. I believe it was the right choice for me to address teachers instead of students. If I had the opportunity 
to continue the project, the next step would be to apply the results of analysing the codes in classrooms and 
conduct interviews with students to further verify the issues presented by the tasks. Importantly, I would 
conduct interviews with teachers to gather information about how such automated feedback would influence 
their teaching and how such feedback would be received. An obvious limitation of this project is the natural 
extension of the last sentence. All my findings have not been tested or discussed with teachers using 
MatematikFessor. I am hopeful that such a world exists where teachers would benefit positively from an 
improved type of feedback from MatematikFessor and that their teaching would flourish and be more fun and 
relevant to their students. I would encourage other researchers to study the use of statistical tools in online 
learning environments at the classroom level. I believe that it is important to further develop knowledge on 
how teachers identify formative values through these statistical tools and offer extended insight into students’ 
thoughts on how these statistical tools affect their classroom culture. 

As mentioned in the section about papers and collaborations, I cannot place enough emphasis on how 
collaborations with experts from within the field of mathematics education and perhaps even more so with 
experts from outside the field have been a priority of mine. Strengthening the possibilities for creating 
advanced data analyses and creating new and innovative grounds for teaching linear equations were of utmost 
importance to me. As an industrial PhD student, I participated in seminars and workshops with other industrial 
PhD students from a variety of fields far from mathematics education. Meeting researchers from research fields 
such as pharmacy, engineering and construction greatly inspired me to reach outside the sometimes seemingly 
closed field of mathematics education for perspectives and ideas that would benefit my project. 
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 Discussion of DE as a structure for a kappa 
In this final chapter, I wish to reflect on the process of applying the structure of DE as a method for writing a 
kappa. I remind the reader that while establishing the research questions, I posed an additional question 
referring to writing a kappa: 

In what sense can DE serve as an umbrella for structuring a kappa as part of a PhD dissertation? 

Returning to the structure of DE as a research method, I remind the reader of the important point that the 
structure was applied in retrospect. What this effectively means for the reading of this dissertation is that the 
chronological aspect of DE from phases one through four was implemented only for the sake of reading this 
dissertation. The papers feeding into the different phases of the DE initially only satisfied the overall idea 
presented through the research questions in relation to the Maths Counsellor Programme’s framework of 
detection, diagnosis and intervention. The four phases of DE, specifically the preliminary analyses, a priori 
analysis, realisations and a posteriori analysis, were applied to better guide the reader through the project and 
its contributions. 

With that said, I genuinely believe that the application of the phases and the structure of DE helped me organise 
the paper contributions into a dissertation that is better or more cohesive. In the process of writing this kappa, 
I forced myself to evaluate each and every one of the phases to not only guide the reader but also to achieve a 
more valid and trustworthy industrial PhD project dissertation. 

I am far from a DE expert, and I realise that the method perhaps is mainly reserved for didactical design and 
for the design of teaching. However, I propose that this method is also valuable as a structure for presenting 
PhD dissertations that are paper collections. In all its simplicity, the structure of DE makes sense. The idea of 
learning about or analysing an environment before establishing hypotheses about how this environment would 
react if exposed to some innovation makes sense. After some empirical realisations based on applying the 
innovation, one would also naturally attempt to confirm or reject the posed hypotheses. To a large extent, this 
is what the scholarly method is and should be. 

The structure of DE takes this intuitive framework and applies it to the science of teaching in all its aspects. 
Through DE, we observed nuances about the three areas of the environment the preliminary analyses should 
revolve around. Furthermore, we are advised to include a historical perspective in these preliminary analyses. 
Thus, I found the structure of DE extremely helpful and meaningful, not only as a research method but mostly 
as a guide for me to structure this dissertation. 

However, as mentioned the project was not planned with DE in mind. DE was only used for structuring and 
writing this kappa. I attempted to establish the hypotheses during the writing of the conception and a priori 
analysis, which I was actually working with throughout the project. These hypotheses would just have been 
structural ideas that would possibly not have been for the reader to review had the DE structure not been 
applied. To be fair, I added hypotheses to Phase Two while writing up this dissertation. Therefore, the 
hypotheses included might not be all the hypotheses I worked with during the project. However, these are the 
hypotheses that I deemed relevant for the reader to be familiar with to be able to read this dissertation and to 
ensure the relevance of the included paper contributions. 

Applying the DE structure retrospectively requires honesty. The hypotheses stated in the a priori analysis must 
be honest and relevant to the project. To a large extent, the relevance is self-explanatory if the framework of 
DE is meant to help guide the reader through a dissertation. To that end, DE serves a clear purpose of 
structuring the relevant aspects of a research project in a cohesive manner. Regarding honesty, the author 
should, while ensuring readability, attempt to tell the actual story of how the research came about. These 
thoughts were what went into establishing the hypotheses for this dissertation. These are not to be confused 
with the research questions presented in the paper contributions. The hypotheses established in the a priori 
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analysis phase of this kappa is my idea of how I wanted to explore the research problématique established in 
the introduction. 

I took some level of freedom when applying the structure of DE. In Phase Four, I realised that the DE method 
requires the researcher to engage in discussion before confirming or rejecting the established hypotheses. I 
took the liberty to discuss and evaluate them on three levels. First, I discussed the convergences and 
divergences of the hypotheses as prescribed. Second, I discussed what I had learned from the preliminary 
analyses and how this affected my findings from exploring the hypotheses and writing the papers included in 
this dissertation. Third, I returned in the concluding remarks to the posed research questions as part of the 
research problématique and the connection to the overall idea of following the framework prescribed in the 
Math Counsellor Programme. 

 

 For the future 

These is a lot to be learned about task design for online learning environments, in particular in relation to the 
effect task design has on the feedback system. If I was to continue this research project or start it again I think 
that a more comprehensive analysis of teachers’ use of the statistical tools in MatematikFessor would be 
appropriate. Many of the choices made during this PhD project, I was only able to make late in the process. I 
imagine that this holds true for many PhD projects. However, looking back on the process, I wish that I had 
been wiser in the beginning. The structure of DE came in late in the process of this PhD project. However, 
ideas of the design process of DE were implemented already. The preliminary analyses make sense in the way 
that one should be familiar with the environment and its traditions and its stakeholders. Thereafter, one 
construct hypotheses about how an innovation can or will affect this environment. Realisations exploring the 
hypotheses are made, before the hypotheses could be confirmed or rejected. I imagine that such generalisation 
of engineering or design holds true in many contexts. Returning to the research field of mathematics education, 
I believe that more projects could benefit from comprehensive preliminary analyses.  

I believe that research and development share a joint responsibility for enabling good teaching in Denmark. If 
it bears any truth that feedback systems in digital environments shape teachers’ perception of how students’ 
learning and understanding is signified through their proportion of correct answers, I believe that both teachers 
and developers are missing the point. Feedback systems for teachers should be relevant and I think there is 
much more to be learned about what such relevance is and how to improve it. 
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Please note that this published paper contains errors. Two direct quotes from Vergnaud (2009) are missing 
from the section labelled ‘The Theory of Conceptual Fields and the Notion of Scheme’ on page 129 after each 
of the colons. The quotes are listed here: 

It has two aims: (1) to describe and analyse the progressive complexity, on a long- and 
medium-term basis, of the mathematical competencies that students develop inside and  
outside school, and (2) to establish better connections between the operational form of  
knowledge, which consists in action in the physical and social world, and the predicative 
form of knowledge, which consists in the linguistic and symbolic expressions of this 
knowledge. As it deals with the progressive complexity of knowledge, the conceptual field 
framework is also useful to help teachers organize didactic situations and interventions, 
depending on both the epistemology of mathematics and a better understanding of the 
conceptualizing process of students. (Vergnaud, 2009, p. 83) 

 

[Schemes] describe ordinary ways of doing, for situations already mastered, and give hints 
on how to tackle new situations. Schemes are adaptable resources: they assimilate new 
situations by accommodating to them. Therefore, the definition of schemes must contain 
ready-made rules, tricks and procedures that have been shaped by already mastered 
situations. (Vergnaud, 2009, p. 88)  
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Appendix 1: Supplementary – Figures and Tables from 
MIRM(100) 
 

Corresponding results considering only students who answered at least 100 questions. This reduced data set 
contains only 2169 students.  

 

Most common  
answer 

Most common student 
answer 

Most common  
question answer 

Most probable  
MIRM answer  

81.89 % accuracy 81.89 % accuracy 82.13 % accuracy 82.19 % accuracy 

Table 1s: Answer prediction results leaving 1% of answers as missing during inferencing predicted by i) overall 
most common answer type, ii) most common student answer, iii) most common question answer and iv) most 
probable answer according to the MIRM. The McNemar test identified no significant differences between the 

approaches. 
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Appendix 2: Questions from the survey on teachers’ use 
of statistical tools in MatematikFessor 
 

The survey consisted of the following questions: 

1) How often do you use MatematikFessor in your teaching? 
a. Often 
b. Sometimes 
c. Never or almost never 

2) Do you use the tool ‘Live statistics’? 
a. Yes 
b. No 
c. I did not know such a tool existed. 

3) Do you use the tool ‘Student/task statistics’? 
a. Yes 
b. No 
c. I did not know such a tool existed. 

4) Do you use the tool ‘Topic statistics’? 
a. Yes 
b. No 
c. I did not know such a tool existed. 

5) Do you use the tool ‘Complete/school to home statistics’? 
a. Yes 
b. No 
c. I did not know such a tool existed. 
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Appendix 3: Co-clustering as a statistical tool 
 

In this section, I provide a short theoretical overview of the machine learning techniques utilised in this project. 
The main goal of machine learning algorithms is to learn from past experiences (observations) to generalise 
future situations of the same type with as little human intervention as possible. In general, there exist two areas 
of machine learning: supervised learning and unsupervised learning. Supervised learning is a method for 
establishing a model based on already known input and output pairs. Such a model can be used to solve 
classification or regression problems. Unsupervised learning is used to establish a categorisation (clustering) 
of the input data. Unsupervised learning is used to establish a model that can cluster data based on similarities, 
for instance, creating a model that groups pictures based on what animal is in the picture. A primitive model 
might be able to distinguish large animals from small animals, and a better model might be able to distinguish 
animals based on where they are found in the wild or those able to fly from those that cannot (Herlau et al., 
2022).  

Co-clustering is when the machine attempts to learn about groups along several axes. In the case of this project, 
I worked with students to solve tasks in an online learning environment. As I explained in further detail later, 
I sought to generate knowledge about the students as well as the tasks they engaged with in the online learning 
environment. 
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