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Abstract

The accurate measurement of fluid flow is essential in a wide range of industrial applications.
In this regard, ultrasonic flow meters present an accurate and cost-effective solution; however,
these systems introduce challenges due to their complex geometry and interaction with fluid
flow. Hence, understanding their flow dynamics is paramount in the improvement of their
design and operation. Simultaneously, data-driven turbulence modelling techniques have
emerged as promising tools to improve the precision of fluid flow simulations. This doctoral
thesis focuses on bridging these two domains by predicting complex flows in ultrasonic
flow meters, developing a robust methodology for geometrical optimisation, and enhancing
existing Reynolds-averaged Navier-Stokes (RANS) turbulence models with progressive and
generalisable data-driven methods.

A methodology based on computational fluid dynamics (CFD) is developed to predict the
flow dynamics throughout ultrasonic flow meters by the use of RANS k− ω SST. The method
is experimentally validated with laser Doppler velocimetry and pressure drop experiments
for the whole dynamic range of operation of these systems. Subsequently, a series of flow
simulations are driven by surrogate and Bayesian multi-objective optimisation methods to
provide improved geometrical designs. These improved geometries are further optimised
by an adjoint-based shape optimisation method that enables the 3-dimensional morphing of
the geometry, allowing higher improvement gains which cannot be achieved by traditional
engineering ingenuity.

In the realm of data-driven turbulence modelling, two critical aspects take centre stage:
generalisability and the consistency of a posteriori results. This thesis addresses these chal-
lenges through a systematic approach that combines the CFD-driven optimisation techniques
developed for flow meter improvement with a progressive augmentation strategy in the
k− ω SST turbulence model. The goal is to improve the prediction of turbulence anisotropy-
based secondary flows, and flow separation — two common stumbling blocks in fluid flow
simulations — without altering the successful law of the wall prediction by the original
model. Two correction terms are carefully defined and introduced in the momentum and
specific dissipation rate (ω) transport equations. After extensive numerical verification, the
enhanced models exhibit significant improvements in the prediction of secondary flows,
boundary-layer detachment and reattachment, and friction coefficients in both training and
testing cases, reaffirming their a posteriori reliability and generalisability.

In conclusion, this doctoral thesis presents a robust and cost-efficient methodology to
systematically improve the performance of complex engineering systems based on CFD
simulations. Additionally, two generalisable methods are developed to enhance turbulence
modelling based on data-driven progressive approaches. By addressing challenges related
to flow separation and secondary flow predictions in complex geometries together with
design and shape optimisation techniques, this research contributes to more accurate fluid
flow predictions and simulation-based optimisation; benefiting industries dependent on
precise flow measurements and simulations. The synergy between data-driven modelling
and complex system optimisation demonstrates the potential for innovative solutions in both
turbulence modelling and flow measurement technologies, with broad implications across
academic and industrial engineering sectors.
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Resumé

En nøjagtig måling af fluidstrømninger er essentiel indenfor en bred vifte af industrielle
applikationer. I dette henseende præsenterer ultralyd-flowmålere en nøjagtig og omkost-
ningseffektiv løsning; disse systemer introducerer dog udfordringer grundet deres komplekse
geometri og interaktion med fluidstrømningerne. Derfor er forståelsen af deres dynamiske
rolle afgørende for forbedring af deres design og drift. Samtidig har datadrevne metoder
til turbulensmodellering vist sig som et lovende værktøj til at forbedre præcisionen i simu-
leringer af fluidstrømninger. Denne ph.d.-afhandling fokuserer på at bygge bro mellem disse
to områder ved at forudsige komplekse fluidstrømninger i ultralyd-flowmålere, udvikle en
robust metode til deres geometriske optimering, og forbedre eksisterende Reynolds-averaged
Navier-Stokes (RANS) turbulensmodeller med progressive og generaliserbare datadrevne
metoder.

Der er udviklet en metode baseret på computational fluid dynamics (CFD) til at forudsige
fluidstrømningerne i ultralyd-flowmålere ved hjælp af RANS k− ω SST. Metoden er eksperi-
mentelt valideret med laser Doppler velocimetri og tryktabseksperimenter for hele driftsom-
rådet af disse systemer. Derefter styres en række simuleringer af surrogate og Bayesianske
multi-objektive optimeringsmetoder for at levere forbedrede geometriske designs. Disse
forbedrede geometrier optimeres yderligere ved hjælp af en adjoint-baseret formoptimer-
ingsmetode, der muliggør tredimensionel formændring af geometrien, hvilket muliggør
større forbedringer, der ikke kan opnås ved traditionelle ingeniørmetoder.

Inden for datadreven turbulensmodellering findes to centrale kritiske aspekter: generalis-
ering og konsistensen af a posteriori resultater. Denne afhandling adresserer disse udfordringer
gennem en systematisk tilgang, der kombinerer de CFD-drevne optimeringsteknikker, der er
udviklet til forbedring af flowmåleren, med en progressiv strategi for augmentering af k− ω
SST turbulensmodellen. Målet er at forbedre forudsigelsen af turbulensbaserede sekundære
strømninger og flowseparation (to almindelige udfordringer i fluidstrømningssimuleringer)
uden at ændre den oprindelige models vellykkede forudsigelse af den logaritmiske lov. To
korrektionstermer er omhyggeligt defineret og indført i henholdsvis bevægelsesligningerne
og transportligningerne for den specifikke dissipationshastighed (ω). Efter omfattende nu-
merisk verifikation, viser de augmenterede modeller betydelige forbedringer i forudsigelsen
af sekundære strømninger, løsrivelse og gentilknytning i grænselag, samt friktionskoeffi-
cienter i både trænings- og testsenarier, hvilket bekræfter deres a posteriori pålidelighed og
generalisering.

Afslutningsvis præsenterer denne ph.d.-afhandling en robust og omkostningseffektiv
metode til systematiske forbedringer af præstationen for komplekse ingeniørsystemer baseret
på CFD-simuleringer. Derudover er der udviklet to generaliserbare metoder til at forbedre tur-
bulensmodellering baseret på datadrevne progressive tilgange. Ved at adressere udfordringer
i forbindelse med flowseparation og forudsigelse af sekundære strømninger i komplekse
geometrier, sammen med design- og formoptimeringsteknikker, bidrager denne forskning til
mere nøjagtige forudsigelser af fluidstrømninger og simuleringsbaseret optimering, hvilket
gavner industrier som er afhængige af præcise flowmålinger og simuleringer. Samspillet
mellem datadreven modellering og kompleks systemoptimering demonstrerer potentiale
for innovative løsninger inden for både turbulensmodellering og flowmåleteknologier med
brede implikationer inden for akademiske og industrielle ingeniørsektorer.
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Resumen

La precisa medición del flujo de fluidos es esencial en una amplia gama de aplicaciones
industriales. En este sentido, los caudalímetros ultrasónicos presentan una solución precisa y
rentable; sin embargo, predecir el flujo en estos sistemas plantea desafíos debido al diseño
de su intricada geometría. Es así que comprender su fluidodinámica es fundamental para
mejorar su diseño y funcionamiento. A su vez, las técnicas de modelado de turbulencia
basadas en datos han surgido como herramientas prometedoras para mejorar la precisión de
las simulaciones de flujo de fluidos. Esta tesis doctoral se centra en unir estos dos campos al
predecir flujos complejos en caudalímetros ultrasónicos, desarrollar una metodología sólida
de optimización geométrica y mejorar los modelos de turbulencia de Reynolds-averaged
Navier-Stokes (RANS) existentes con métodos progresivos y generalizables basados en datos.

Esta tesis desarrolla una metodología basada en la dinámica de Fluidos Computacional
(CFD) para predecir la dinámica del flujo a lo largo de los caudalímetros ultrasónicos uti-
lizando RANS k− ω SST. El método es validado experimentalmente con velocimetría láser
Doppler y experimentos de pérdida de carga para todo el rango dinámico de funcionamiento
de estos sistemas. A continuación, se realizado una serie de simulaciones de flujo mediante
métodos de optimización multiobjetivo bayesianos y basados en modelos de sustitución para
proporcionar diseños geométricos mejorados. Estas geometrías mejoradas se optimizan aún
más mediante un método de optimización morfológica basado en métodos adjuntos que
permite obtener mejoras dificilmente alcanzables mediante la ingeniería tradicional.

En el ámbito del modelado de turbulencia basado en datos, dos aspectos críticos co-
bran protagonismo: la generalización y la consistencia de los resultados a posteriori. Esta
tesis aborda estos desafíos a través de un enfoque sistemático que combina las técnicas de
optimización impulsadas por CFD desarrolladas para la mejora de los caudalímetros con
una estrategia de ampliación progresiva en el modelo de turbulencia k− ω SST. El objetivo
es mejorar la predicción de flujos secundarios basados en anisotropía de turbulencia y la
separación de flujos, dos obstáculos comunes en las simulaciones de flujo de fluidos, sin
alterar la exitosa predicción de la ley de la pared del modelo original. Se definen y se in-
troducen cuidadosamente dos términos de corrección en las ecuaciones de transporte del
momento y la tasa de disipación específica (ω). Después de una amplia verificación numérica,
los modelos mejorados muestran mejoras significativas en la predicción de flujos secundar-
ios, el desprendimiento y unión de capas límite y los coeficientes de fricción para casos de
entrenamiento y pruebas; reafirmando la fiabilidad y generalización a posteriori del método.

En conclusión, esta tesis doctoral presenta una metodología sólida y rentable para mejorar
sistemáticamente el rendimiento de sistemas de ingeniería complejos basados en simula-
ciones de CFD. A su vez, se han desarrollado dos métodos para mejorar el modelado de
turbulencia basado en enfoques progresivos e impulsados por datos. Al abordar desafíos
relacionados con el desprendimiento de la capa límite y predicciones de flujos secundarios
en geometrías complejas junto con técnicas de diseño y optimización morfológica, esta inves-
tigación contribuye a predicciones de flujo de fluidos más precisas y optimización basada en
simulaciones. La sinergia entre el modelado basado en datos y la optimización de sistemas
complejos demuestra el potencial de éstas soluciones innovadoras; resultando en amplias
implicaciones en los sectores de la ingeniería académica e industrial.
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I
Introduction & Motivation

In the world of today, where sustainability and conservation are of paramount importance,
the responsible use of our planet’s resources has become an urgent matter. Water and energy,
in particular, are precious commodities that require careful management to ensure their
availability for future generations. Specifically, an increasingly large portion of the world’s
population is experiencing water scarcity due to direct human impact on the environment,
resulting in extreme weather conditions, and increasing demand due to the accelerated
population growth [1, 2]. Recognising this critical need and in order to avert a global crisis,
the water supply chain must adapt to this landscape by embracing and accommodating the
newest advancements in technology and engineering [3].

Figure I.1: Water supply chain sources (green)
and losses (red) of the EU in 2023 [4, 5].

The water supply chain involves a signif-
icant amount of stakeholders from retrieval,
treatment, and distribution; and while all
stakeholders should incorporate changes,
some of them show a significantly higher
influence on the overall supply chain effi-
ciency than others. One of the key stakehold-
ers is the water distribution network, where
a global average of 30% of the water in the
network does not reach its destination. All
unregistered water loss not accounting in
the system input volume is known as Non-
Revenue Water (NRW) [6]. Specifically, in
the countries of the European Union (EU),
25% of the water distribution is NRW, where
leakages are the cause of 71% of this water
loss (Fig. I.1) [4, 5]. The main factor in the
appearance of leakages is the ageing and deterioration of the network, which is solved by
replacing pipe segments. Particularly, in Europe, the water infrastructure is suffering from
low replacement rates, hence, effectively and accurately localising and preventing leakages is
a major task to reduce NRW and make a paramount impact on the supply chain as a whole
[7].

Currently, water scarcity and the rising demand for energy have spurred the development
of innovative technologies to monitor and control resource consumption. In this regard, there
is a leading solution to minimise NRW through continuous network monitoring and data
analytics: installing flow meters at designated locations in the network (Fig. I.2).

Ultrasonic flow meters have emerged as a promising solution due to their non-invasive
nature, high accuracy, and versatility. While metering has been proven to be an effective
approach to identifying leakages, a great number of devices are required to precisely pinpoint
leakage locations, comprehend consumption patterns, identify anomalies, and ultimately,
formulate strategies for consumption reduction. In the past, the only available cost-efficient
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solution has been the installation of flow meters at important locations (e.g. representative
junctions) due to the high cost and impact of flow meters on the network. Nevertheless,
in recent years, compact versions of traditional flow meters for water measurements have
been democratised (making the technology cost-efficient) and widely installed even at an
individual residence level. However, the high number of installed devices accounts for a
significant pressure loss and influence in the network that cannot be disregarded [8]. It is then
clear that leveraging the potential of ultrasonic flow meters to optimise water and energy
usage is of paramount importance.

Figure I.2: Example of metering on a distribu-
tion network. Each coloured point is a flow
meter displaying the network data where red
points show there is an issue in the network.
Figure adapted from [9].

Efficient water and energy management
goes beyond mere deployment and measure-
ment. Understanding the causes of patterns
and anomalies in the network is recognised
to be vital to mitigating losses. Hence, un-
derstanding the flow physics within ultra-
sonic flow meters is likewise essential for im-
proving the design and operation of not only
these systems but the water grid as a whole.
By investigating the intricacies of fluid be-
haviour within these devices, it is possible
to uncover insights that lead to enhanced ac-
curacy, increased reliability, and optimised
performance. However, in order to push the
boundaries of flow meter technology, a mul-
tidisciplinary approach is required by the
combined efforts of engineering principles,
computational modelling, and data analysis.

The insights gained from investigating flow physics within ultrasonic flow meters by the
combined efforts of academia and industry unlock new possibilities for conservation and
inspire further advancements in resource management practices. Therefore, this thesis aspires
to contribute to a more sustainable future by unveiling the flow complexities of ultrasonic
flow metering, providing the knowhow to improve these systems, and as a consequence,
reducing water and energy consumption, alleviating the strain on resources, and minimising
the significant environmental footprint associated with their losses.

I.1 State-of-the-art

To fulfil these objectives, several fields of knowledge must be reviewed and applied syner-
getically. To this end, understanding ultrasonic flow metering technology allows the accurate
simulation modelling of these systems and evaluation of their key parameters; the application
of computational fluid dynamics allows the prediction of flows in complex environments, pro-
viding quantifiable metrics; turbulence modelling accelerates the computational time required
to obtain numerical results in turbulence flows while maintaining accuracy; and optimisation
techniques allow the use of the obtained results to improve the design and operation of
ultrasonic flow meters. Therefore, these fields of knowledge are hereby reviewed, providing
a comprehensive summary of the latest research.
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I.1.1 Ultrasonic flow meters

Several water meter types are available in the market, however, in terms of cost, low-pressure
drop, and easy operation; transient-time ultrasonic flow meters are currently a state-of-the-art,
versatile, and efficient choice. Since 1955 (when there was arguably a single manufacturer
in the world trying to democratise ultrasonic metering), more than fifty manufacturers
mass-producing all types of ultrasonic flow meters joined the market [10]. The functioning
principle of these devices relies on the propagation of ultrasounds to measure the flow rate of
water moving through a pipe. The most widespread working principle for ultrasonic flow
meters is the transient time method, where two ultrasound waves are sent and received by
transducers. The speed of the sound wave varies due to its interaction with the fluid medium
and that time differential makes it possible to predict the volumetric flow [11]. Traditionally
in large-diameter pipes, the meter configuration allows the sound to travel in a straight
line throughout the pipe diameter and the time of flight calculation is straightforward [12].
Nevertheless, as this technology advances and adapts, more complex and accurate techniques
such as multi-path and off-diameter sound paths are more commonly used.

The most widespread residential ultrasonic flow meter for small-diameter pipes is pre-
cisely a multi-path and off-diameter sound path flow meter, leading to the implementation of
intrusive geometries (two-stand configuration) which interact with the flow. Most meters
adopt this configuration if the size of the transducers is of the same order of magnitude
as the pipe diameter (below DN40: 40 mm of internal diameter). Each of these stands is
located up and downstream of a constriction where the measurement is taken and the sound
wave travels. Here, the wave bounces at two reflectors placed on the stands and is directed
towards the transducers. The main objective of this practice is to allow the sound wave to
travel through the highest volume of the fluid possible and, therefore, obtain a more accurate
measurement. However, the introduction of two stands in the pipe yields a highly complex
flow behaviour inside the flow meter.

I.1.2 Applied computational fluid dynamics

Computational fluid dynamics (CFD) is the general term for various methods that aim at sim-
ulating the behaviour of fluids through calculation. Fluid motion generally displays chaotic
and complex behaviour in terms of turbulence. The correct prediction of turbulence has been
shown as one of the most complicated problems to solve in the field of physics and engineer-
ing for more than a century [13, 14]. In particular, the wide range of spatial and temporal
scales of turbulence to solve involves very costly calculations. High-fidelity scale-resolving
techniques such as large-eddy simulation (LES) and direct numerical simulation (DNS) in-
volve substantial computational expenses, which makes their feasibility and application in
industrial flows difficult to democratise nowadays [15]. Hence, CFD simulations mainly
use turbulence modelling techniques such as Reynolds-averaged Navier-Stokes (RANS) to
reduce computational costs. Consequently, several investigations utilise RANS to explore the
impacts on flow meters caused by distinct inlet conditions and various configurations of bent
pipes [16–19]. This approach even encompasses the evaluation of a portion of the operational
dynamic range of single-path ultrasonic flow meters [20]. Studies on the effectiveness of CFD
as a tool to analyse transducer location in multi-path ultrasonic flow meters without intrusive
geometries have been reported in Ref. [21]. CFD has also been employed to study the effect
of the header [22, 23] and flow conditioners in the steadiness of the flow for gas multi-path
ultrasonic flow meters [24, 25]. Commonly, the literature compares numerical results against
experimental data [26, 27], which is generally based on particle image velocimetry (PIV) to
study possible design improvements and inflow configurations [28]. However, previous
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publications only consider the interaction of diverse inflow conditions with a large-diameter
ultrasonic flow meter without invasive geometries in the flow.

To date, the main assumption is to model the flow meter as a straight section of pipe.
Hence, there has been a lack of reliable studies that numerically predict the interaction of
the flow with an intrusive two-stand configuration ultrasonic flow meter in an accurate
manner. In addition, previous research only focused on RANS turbulence modelling without
exploring the eddy-resolving CFD methods.

I.1.3 Turbulence modelling

Accurately predicting turbulent flows within intricate environments remains a challenging
task within RANS models [29], where their progress has exhibited a state of relative stagnation
through several decades [30]. While recent advances in data-driven methodologies have
initiated a surge of investigation aimed at refining the efficacy of these models [31], limitations
in terms of generalisability constrain the applicability of data-driven models to more general
contexts. A predominant thrust of these investigations involves harnessing high-fidelity
Reynolds stress tensor (RST) data to train and correct models with the aim of augmenting
outcomes derived from empirical models [32–37]. A distinct approach lies in CFD-driven
models [38, 39], which have demonstrated promise in the pursuit of dependable RANS
turbulence models due to their capacity to ensure coherence and robustness in their results.
Unlike other data-driven models, CFD-driven models undergo optimisation within RANS
simulations, thereby assuring the robustness of results by novel models. Meanwhile, models
developed via model-consistent training strategies [40] have yielded promising outcomes
for reliable RANS turbulence models. In these methodologies, model performance (i.e. a
posteriori outcomes) is integrated into the training process, ensuring the capability of the
final models’ consistency and robustness. The incorporation of optimisation algorithms
within CFD-driven techniques [38, 39] has demonstrated very promising performance in
the discovery of new generalisable RANS models. Hence, the enhancement of common
RANS models with robust optimisation and data-driven techniques seems to narrow the
gap between the fast and accurate prediction of complex flows (such as the flow through
ultrasonic flow meters) for further analysis and optimisation.

I.1.4 Optimisation

Coupling of CFD and optimisation techniques have been used extensively in the last 20 years
as a powerful tool to find the best possible parameters (shape, operating condition, model
variables, etc.) in industrial and academic applications alike [41]. Regarding optimisation,
algorithms to find the minimum (or maximum) of one or more given functions in a multidi-
mensional parameter space include slope followers, simplex methods [42], multi-objective
evolutionary [43], and particle swarm algorithms [44] among others. An early recognised
problem is that these methods require the evaluation of an objective function (i.e. performing
a CFD computation) in a large number of test configurations, which require considerable
computational resources. This leads to two distinct developments: the first one uses a rela-
tively smaller set of CFD simulations (whose parameters are selected using specific methods
[45, 46]) to create computationally cost-efficient models, known as surrogates or response
surfaces [47], that are then fastly optimised. The second innovation is the adjoint method,
where the adjoint equations are solved numerically to locally assess the effect of a change
of parameters on the quality (in the specific sense of optimisation) of the solution [48, 49].
Optimised solutions are therefore obtained with fewer computations at the cost of increased
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mathematical complexity. However, although the adjoint method has shown its maturity in
the field of solid mechanics, its robust application to fluid and turbulent flow is still in its
infancy [48]; by studies still using the frozen turbulence assumptions [50] or inexact meshes
[51].

Nevertheless, the adjoint method in turbulent flow has gained popularity in external
aerodynamics optimisation in aircraft [52–54], automotive applications [55, 56], and conjugate
heat transfer [57] among others. In numerous research studies, design and shape optimisation
techniques have been employed to enhance the forms of various engineering applications.
These investigations are primarily conducted in scenarios where structured grids are conven-
tionally utilised, as seen in canonical flow cases and simplified external aerodynamics [58].
This choice of applications facilitates adaptable and accessible mesh manipulation. However,
within the literature, there exists a notable gap in comprehensive studies concerning internal
flow and intricately constrained problems that involve the utilisation of unstructured grids,
such as the case of ultrasonic flow meters. Furthermore, a thorough examination of outcomes
achieved through these methodologies is lacking. Therefore, no concerted and sustained
effort has been made to develop a multi-objective optimisation strategy based on verified and
validated numerical CFD predictions, taking into account the main factors defining system
performance, and being able to provide solutions for diverse optimisation methodologies.

I.2 Research questions

This thesis, therefore, aims to develop the methodologies to accurately evaluate and validate
the flow through two-stand ultrasonic flow meters and to optimise current ultrasonic flow
meters by means of fluid mechanics alone. To this end, the following research questions are
to be answered:

1. Is it possible to accurately predict the flow in ultrasonic flow meters by numerical
methods?

2. Is it possible to optimise ultrasonic flow meters with a fast and robust numerical
methodology based on fluid mechanics?

3. Can RANS models be enhanced by data-driven approaches in a generalisable manner?

I.3 Project structure

To answer the research questions, this thesis is structured as a cohesive compilation of
different scientific publications dealing with unique objectives. The first chapter introduces
the research and lays the foundation for its motivation. The second chapter of this thesis
studies the development of a numerical methodology based on CFD to accurately predict
turbulent flows in flow meters. The third chapter expands on the validation of previous
methods to ensure an accurate flow prediction for the whole dynamic range of operation of
the system. The fourth chapter develops a design optimisation methodology to improve the
original flow meter based on key geometrical parameters whereas the fifth chapter applies
adjoint optimisation methods and mesh morphing to further improve the flow meter designs
obtained in chapter four. The sixth and seventh chapters develop and apply a methodology
based on the previous optimisation strategies, to enhance turbulence modelling; chapter six
focuses on the prediction of secondary flows while chapter seven focuses on the accurate
prediction of separated flows. The eighth chapter summarises the findings, answers the
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proposed research questions, and provides insights into the future research prospects in the
field. Lastly, the ninth and final chapter concludes this thesis with some words and reflections
from the author.
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II
Turbulent Flow in Ultrasonic Flow Meters

Turbulent flow in small-diameter ultrasonic flow meters: A nu-
merical and experimental study

ABSTRACT Small-diameter ultrasonic flow meters present an interesting industrial internal-
flow problem due to their unique geometry and complex interaction with fluid flow. In
order to efficiently evaluate and optimise these flow meters, their flow physics must be
accurately understood and predicted. In this study, computational fluid dynamics is used
to predict the turbulent flow inside a residential ultrasonic flow meter with an intrusive
two-stand configuration. Reynolds-averaged Navier-Stokes (RANS), with k − ε and k −
ω SST turbulence models, are evaluated in a wall-modelled and a wall-resolved grid. The
simulation results are compared against laser Doppler velocimetry, pressure drop, and
vortices visualisation experiments in both qualitative and quantitative manners. Numerical
results qualitatively agree with experimental data although some discrepancies are predicted
by the k− ε model. Overall, the results that best predict the flow structures, axial velocity, and
pressure drop are achieved by wall-resolved RANS k−ω SST model. While minor differences
are predicted by the wall-modelled k− ω SST, it is concluded that this approach is a good
candidate for performing time-efficient studies due to the reduced computational cost.

REFERENCE [59]: M. J. Rincón, M. Reclari, and M. Abkar (2022). “Turbulent flow in small-
diameter ultrasonic flow meters: A numerical and experimental study,” Flow Measurement
and Instrumentation, 87, 102227.

II.1 Introduction

Ultrasonic flow meters are highly accurate instruments that rely on the propagation of
ultrasounds to measure the flow rate of moving fluid through a conduit [11]. Compared to
non-ultrasonic technology, ultrasonic flow meters have several advantages: the equipment is
easy to handle and install; the flow regime can be laminar, transitional, or turbulent; pressure
drop is reduced; measurement accuracy, under favourable conditions, can be as low as 0.5%;
purchase, operating, and maintenance costs are very reasonable, and the fluid can be single
or multi-phase [60].

One of the most widely used instruments of this family is residential ultrasonic meters
for water measurement. These flow meters work following the transient time method where
two ultrasound waves are sent and received by transducers. The speed of the sound wave
varies due to its interaction with the medium, making it possible to predict the volumetric
flow based on the time differential. Traditionally, in ultrasonic flow meters, the sound can be
assumed to travel in a straight line where the velocity profile along the sound path line is
integrated, providing a difference in time of flight which is used to estimate the flow rate [12].
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Figure II.1: Schematic of a reflected sound-path two-stand ultrasonic flow meter.

Nevertheless, as the technology advances, more advanced techniques such as multi-path and
reflected sound-path (where the sound is redirected by reflectors inside the pipe between
transducers) are more commonly used to obtain a more accurate measurement [61].

In terms of fluid mechanics, an ultrasonic flow meter with these characteristics presents
an interesting wall-bounded flow problem. Understanding and evaluating how these devices
work from a fluid mechanics perspective allows for confidently evaluating and optimising
residential flow meters for diverse inlet flow conditions and minimising the load on the
network. To obtain so, numerical methods with computational fluid dynamics (CFD) are an
efficient candidate to predict the fluid flow in these devices.

Among previous studies in this area, CFD simulations are commonly used to study the
inlet effects for various bent pipe configurations [16]. Studies on the effectiveness of CFD as a
tool to analyse transducer location in reflected sound-path ultrasonic flow meters without
intrusive geometries have been reported in [21]. CFD has also been employed to study the
effect of a header [22, 23] and flow conditioners in the steadiness of the flow for gas reflected
sound-path ultrasonic flow meters [24, 25]. Commonly, the literature compares numeri-
cal results against experimental data [26, 27], which is generally based on particle image
velocimetry (PIV) to study possible design improvements and inflow configurations [28].
However, previous publications only consider the interaction of diverse inflow conditions
with a large-diameter ultrasonic flow meter without invasive geometries in the flow. Up to
date, the main assumption is to model the flow meter as a straight section of pipe, hence,
there has not been any reliable study that numerically predicts the interaction of the flow
with an intrusive two-stand configuration ultrasonic flow meter.

In this study, CFD tools with different Reynolds-averaged Navier-Stokes (RANS) turbu-
lence modelling are analysed together with experimental methods to verify and validate the
flow prediction throughout the flow meter. Unsteady RANS and other high-fidelity methods
such as large-eddy simulation (LES) are not considered due to their high computational costs.
Laser Doppler velocimetry (LDV), pressure drop, and vortical flow structure visualisation
experiments are chosen to perform this validation. Section II.2 presents the numerical and
experimental methods and their theoretical background used to predict the flow. Section
II.3 shows and discusses the results obtained together with a quantitative and qualitative
verification of the methods. Finally, a summary and discussion of the findings are presented
in Section II.4.

II.2 Methodology

The governing equations used in this study are the incompressible form of Navier-Stokes
equations, excluding heat transfer. These are written following Einstein’s summation convec-
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Figure II.2: Parametric description of chosen flow meter geometry for y-normal (top), and
z-normal (bottom) planes. Note that sharp edges at the stands are filleted with a constant
radius of 1 mm in order to ease the extrusion layer generation of the grid. Furthermore, note
that the origin of coordinates is located at the mid-point of the constriction section.

tion in their convective form [62] as
∂ui
∂xi

= 0, (II.1a)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (II.1b)

where xi is the ith axis in Cartesian coordinates with i = 1, 2, 3 corresponding to the stream-
wise (x), lateral (y), and vertical (z) directions, respectively. (u1,u2,u3) = (u, v,w) are the
components of the velocity field. t is time. p is the kinematic pressure, and ν is the molecular
kinematic viscosity. These equations are further developed to the RANS methods used in
this study.

The RANS equations are developed by applying the Reynolds decomposition ui =
⟨ui⟩+ u′i to Equations (II.1a) and (II.1b), where the angle ⟨·⟩ operators represent the mean
value in time and the prime superscript ·′ represents its fluctuating part. The RANS equations
are, therefore, written as

∂⟨ui⟩
∂xi

= 0, (II.2a)

∂⟨ui⟩
∂t

+ ⟨uj⟩
∂⟨ui⟩
∂xj

= −∂⟨p⟩
∂xi

+ ν
∂2⟨ui⟩
∂xj∂xj

−
∂⟨u′iu′j⟩
∂xj

, (II.2b)

The Reynolds stress tensor Rij = ⟨u′iu′j⟩ can be approximated by the Boussinesq hypothe-
sis and obtain closure by the two RANS turbulence models applied in this study: k− ε [63]
and k− ω SST [64]. In this study, the equations of fluid motion are solved numerically by the
general-purpose software OpenFOAM [65].
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II.2.1 Computational domain and grids

Table II.1: Geometry pa-
rameters values and rela-
tionships. Note that the i,
o, m, s, and c subscripts
stand for inlet, outlet, me-
ter, stand, and constriction
respectively.

Parameter Value

D 20 mm
Di 0.865D
Li 5D
Lo 5D
Lm 9.5D
Lc 2.25D
Ls 1.25D
Ds 0.6125D
hs 0.7785D
αs (rad) π / 4
αc (rad) π / 3

A simplified version of a two-stand ultrasonic flow meter
based on flowIQ 2200 of the manufacturer Kamstrup A/S, is
parametrised and generated with Computer-Aided Design
(CAD). These ultrasonic flow meters estimate the volumetric
flow rate with a correction curve determined by calibration
instead of a processing equation. In addition, these meters take
a flow measurement every 4 seconds and update their display
every 30 seconds by integrating the previous measurements
into a mean value. The simplified geometry is designed taking
into consideration the difficulties of manufacturing and the
areas that could lead to low-quality numerical grid generation.
Hence, the geometry chosen in Figure II.2 exhibits a compro-
mise between real flow meter fidelity, numerical, and experi-
mental applications. The geometry is parametrised as shown in
Table II.1 with a pipe diameter of D = 20 mm, consistent with
the pipe diameter of the reference flow meter: Kamstrup flowIQ
2200.

Two types of hexahedral-based grids are used in this study:
a wall-resolved and a wall-modelled grid. Both grids are com-
pared in order to validate the methods and to select the best
approach toward time-efficient numerical studies. Walls are
considered perfectly smooth and the wall model used is based
on the prediction of νt based on the turbulent kinetic energy
(named nutkWallFunction in OpenFOAM). Moreover, a grid independence study based on
RANS k − ω SST model is performed (see II.A) and symmetry boundary conditions are
applied at the x− z plane, hence, results are mirrored while post-processing the data to
display the full pipe.

II.2.2 Initial and boundary conditions

A standard simulation for the nominal flow of the flow meter according to the industry
standards is defined. Therefore, all numerical simulations performed in this study follow the
same conditions:

a) Pure water as fluid medium.

b) Inlet volumetric flow of Q̇ = 1.6 m3 h−1, equalling a uniform uinlet = 1.41 m s−1.

c) Inlet temperature of T = 20 ◦C, equivalent to ν = 1.00381 · 10−6 m2 s−1.

d) Linear limited divergence scheme with correction of the velocity gradient in interpo-
lation weights (O2, conditionally bounded). This scheme is implicit, bounded, and
second-order accurate to avoid stability restrictions [66, 67].

II.2.3 Inflow turbulent conditions

Following the best practices in CFD for internal-flow problems in circular pipes [68, 69],
RANS initial turbulence conditions are calculated as follows,
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Figure II.3: Rendered image of the test pipe and stands used in the experiments.

I = 0.16Re
−1
8 , (II.3a)

k =
3

2
(uinletI)

2
, (II.3b)

ε = Cµ
k

3
2

l
, (II.3c)

ω =
ε

Cµk
, (II.3d)

where Re is the Reynolds number, l is the turbulent length scale (l = 0.038D for internal-flows
in circular pipes), and Cµ = 0.09 is the turbulence model constant coefficient. Furthermore,
in order to ensure fully developed flow conditions before the flow starts conditioning due to
the upstream stand, the solution field is mapped at the inlet at a distance of 4D.

II.2.4 Experimental methods

Current non-intrusive experimental methods such as PIV and LDV are capable of yielding
qualitative and quantitative data with minimum influence on the flow. However, the exper-
imental setup and flow conditions must be properly adapted to the methods to generate
high-quality data. In this regard, a 1:1 pipe and stand set are manufactured. On the one
hand, the pipe is manufactured by drilling a well-polished polymethyl methacrylate (PMMA)
block in three operations; whereas additive manufacturing is chosen to fabricate the stand
set. PMMA is chosen as a material in order to minimise the light diffraction between water
and the material since both compounds have a similar refractive index (nwater = 1.333 and
nPMMA = 1.4906). On the other hand, the stands are fabricated with black Acrylonitrile
Butadiene Styrene (ABS) powder. Finally, two passing holes are drilled in the pipe together
with a thread in the stands to accurately fix them in place with screws (Figure II.3).

The pipe and stands are placed on a test bench with accurate control of volumetric flow
and temperature of the flow, maintaining constant conditions throughout the tests. In order
to perform the experiments, silver-coated glass-hollow neutrally-buoyant reflective particles
of 15 µm in diameter are introduced in the string. Experiments yielding velocity data at
x-normal planes are taken by means of LDV.

Regarding LDV, a 100 mW Nd:YAG (neodymium-doped yttrium aluminium garnet) laser
of a wavelength of λ = 532 nm is used to obtain the measurements, taking a minimum of
500 valid bursts per point. A 2D traverse unit (motorised and programmable in the y and z
axis where the change in x direction is done manually) is likewise used to take with control
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Figure II.4: LDV experimental setup schematic and cross-sectional data acquisition grid.

(a) Schematic. (b) Laboratory setup.

Figure II.5: Vortices visualisation experimental setup.

the measurements at different points. A uniformly spaced grid of 232 points to evaluate the
cross-sectional (x-normal planes) axial velocity is created (Figure II.4). To account for the light
diffraction, raytracing methods are employed taking into consideration the media between
the measurement points and the laser probe.

Moreover, pressure drop data is taken by two OMEGA PX429-100GI high accuracy pres-
sure transducers with a measuring uncertainty of ±0.08% placed right up and downstream
of the measurement pipe.

Finally, a valve is introduced into the test bench that allows the inclusion of controlled air
bubbles in the flow. As depicted in Figure II.5, a manual ball valve controls the gas fraction
into the water, allowing to visualise vortical structures at different levels of intensity. A flow
conditioner is likewise placed downstream of the air insertion location in order to radially
distribute the bubbles uniformly. Since the air bubbles coalesce at the low-pressure regions
in the flow, a record of this phenomenon with a high-speed camera at 9000 fps is used to
qualitatively analyse the problem and make a comparative study of the flow behaviour and
vortical structures.

II.3 Results and discussion

Numerical and experimental results are hereafter depicted. Concerning numerical methods,
the studied cases are divided by grid and turbulence model: RANS k − ε and k − ω SST;
wall-resolved and wall-modelled grids. Moreover, the pipe and stand walls are considered
perfectly smooth in all cases regarding wall functions. The main objective of this study is to
validate numerical results by discussing a series of depictions between methods. However,
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since the studied case is non-canonical in the fluid mechanics field, it is necessary to describe
and analyse the physics and flow structures involved beforehand. Therefore, a thorough
comparative analysis is performed. The analysis is composed of, firstly, the description of
the flow behaviour and structures in the system. Secondly, a pressure drop comparison of
the flow for both numerical and experimental methods. Thirdly, a more detailed study is
performed where a general qualitative study with velocity contours of the flow, is shown.
Finally, a quantitative comparison of velocity profiles at regions of interest in the flow is
presented. All results are similarly discussed and described followed by their corresponding
figures.

II.3.1 Flow behaviour

The ultrasonic flow meter analysed is composed of a symmetrical 3D geometry along the x− z
plane. The two stands are identical and located immediately upstream and downstream of the
constriction. This geometrical configuration is used in residential ultrasonic flow meters to
obtain a consistent flow profile throughout the flow meter measurement volume, minimising
inflow dependence without compromising pressure drop. In terms of flow mechanisms,
three regions of the flow can be discerned:

• The upstream pipe.

• The upstream stand and constriction.

• The downstream stand and pipe.

In numerical solutions, sufficiently high and local pressure gradients in the flow yield
vortical structures which can be predicted by vortex visualisation methods like the λ2 crite-
rion [70], whereas experimentally, the inclusion of air in the flow of water and its uniform
distribution allows the visualisation of coalesced bubbles in the low-pressure regions where
vortices are formed. The geometry of the system can be seen in Figure II.6, showing a de-
piction of the instantaneous and averaged images of the vortex visualisation experiments at
different intensities as well as numerical λ2 iso-surfaces.

Throughout the upstream pipe region, the fully developed turbulent flow evolves to an
adjusted and slightly skewed profile towards the upper section of the pipe. This is the result
of the constriction created by the presence of the upstream stand. The upstream stand region
is composed of gradual and steep cross-sectional area changes due to the stand and reflector
placement. Since cross-sectional gradients are not axially uniform throughout the stand,
the flow is accelerated unevenly and high-velocity gradients in z-direction occur, yielding
two symmetrical coherent structures in the form of vortices immediately downstream of the
stand. These vortices propagate throughout the constriction yielding high vorticity regions.
Subsequently, the flow interacts with the downstream stand. This region is greatly defined
by the presence of an adverse pressure gradient. The geometry of the downstream stand
disrupts the flow with a sudden section change followed by an elongated tail section. This
causes boundary-layer detachment, high vorticity, and high shear; yielding complex flow
conditions.

Regarding the experimental results, the instantaneous frame in Figure II.6 shows the
uniform distribution of air bubbles and their size compared to the experimental setup. Some
coherent structures can be visualised by the experiment. The low gas fraction case yields
the visualisation of a higher vortex intensity and vice-versa. Both cases display the initial
formation of vortices from the upper section of the upstream stand. In addition, the high
gas fraction case likewise displays the roll-up of another vortex from the bottom sides of the
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(a) (b)

Figure II.6: Vortices visualisation experiment with two different gas fractions (a and b).
From top to bottom: instantaneous frame from the experiment, time-averaged image of
the experiment, wall-resolved k − ε, and wall-resolved k − ω SST results respectively. The
difference of gas fraction in the experiments is achieved by varying the amount of air in the
pipe, where high-intensity (II.6a) and low-intensity (II.6b) vortices are visualised. Vortices
intensity in the CFD simulations is defined by iso-surfaces of λ2 = 4 · 104 and λ2 = 105 (II.6a);
and λ2 = 104 and λ2 = 3 · 104 (II.6b) for k− ε and k− ω SST, respectively. Furthermore, the
positive axial flow direction follows left to right.

upstream stand. These vortices evolve and diffuse upwards through the constriction to finally
break and diffuse on the upper section of the downstream stand. Concerning the numerical
λ2 contours, both cases display a high degree of agreement with the experiments, where the
location and shape of the vortices predominantly match. Nevertheless, k− ε predicts a higher
diffusivity of the vortices which deviates from the experiment.

The most characteristic flow structure in the system is the vortices throughout the constric-
tion. Due to the importance of the constriction for the flow measurement in ultrasonic flow
meters, performing a qualitative study of this pipe section is certainly important to ensure
the validation of the numerical methods.

II.3.2 Pressure drop

The momentum loss as a consequence of shear stresses and pressure gradients due to fluid-
solid interaction is characterised by the pressure drop (∆p). This parameter is a common
quality metric for wall-bounded flows due to the importance of energy losses in internal-flow
systems, metrology, and large pipe networks [71].

Diverse pressure drop experiments are performed where the radial position of the pressure
transducers is changed ensuring results repeatability. One final experiment is performed
after repeatability is ensured where 5 pressure measurements are taken each second during a
long acquisition time of 75 minutes. Experimental and numerical results of ∆p are shown in
Figure II.7 where all results predict the pressure drop inside the standard deviation of the
experiments. Whereas, k− ε tends to over-predict ∆p with values of 105.4% and 115.1% of
the experimental mean for its wall-modelled and wall-resolved grids, respectively; k− ω SST
shows better agreement with a prediction of 98.2% and 104.9% of the mean experimental
value for its wall-modelled and wall-resolved grids, respectively.

Both numerical models and grids accurately predict pressure drop throughout the flow
meter. RANS k − ω SST shows a better agreement, while RANS k − ε tends to slightly
over-estimate ∆p.
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Figure II.7: Pressure drop comparison between RANS and experimental results. Experimental
results show the mean value and standard deviation (σ) of the performed experiment. Note
that RANS does not display any fluctuation due to the averaging operation of the method.

II.3.3 Velocity distribution

Axial velocity contours are shown in this section to perform a comparative analysis between
experimental LDV data, and numerical methods. Figure II.8 shows axial velocity data for
both LDV experiments and numerical methods at different cross-sections in the pipe.

Fully-developed turbulent pipe flow is predicted and measured by all methods at x =
−5D where minimal differences can be qualitatively seen. The vortices regions throughout
the constriction and their propagation can be more clearly seen at x ∈ [−1, 1]D. The formation
and propagation of these vortices drive the flow to accelerate towards the centre region of
the pipe throughout the whole constriction. The latter effect can be distinctly seen at x− 1D.
Furthermore, the vortices diffuse from the central bottom region towards the bottom-sides
(x = 0D) and upper-sides pipe walls (x = 1D), elongating and stretching throughout the
constriction. Since the constriction is not long enough for the flow to develop to be fully
turbulent, the upstream stand influences the incident flow towards the downstream stand
as seen at x = 1D. At this cross-section, both RANS models predict a similar axial velocity
with a region of high velocity at the pipe centre and two symmetrical lower velocity regions
towards the upper sides of the pipe, which is consistent with the experimental observation.

According to the results obtained, all numerical methods are capable of accurately predict-
ing the majority of the flow in a qualitative manner. Minimal differences can be seen between
the two grids evaluated, with the exception of the predicted vortices size by k − ω SST at
x = −1D. Whereas RANS k− ε predicts high diffusivity affecting the vortices propagation,
k − ω SST predicts the flow more accurately with more defined shear layers in agreement
with the LDV data.

II.3.4 Velocity profiles analysis

To deliver a precise and more complete study of the flow, the numerical and experimental
axial velocity profiles along y for diverse x-normal planes are evaluated and compared as
shown in Figure II.10. The profiles evaluated are depicted in Figure II.9 by the dashed lines at
z = [−0.2125,−0.125, 0.125]D respectively to x = [−1, 0, 1]D. The results of WR k−ω SST are
chosen to define these locations since 1D LDV cannot reproduce sufficient data to locate the
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Figure II.8: LDV experimental results and CFD axial velocity contours at planes x ∈
[−5,−1, 0, 1]D. The abbreviations WM and WR stand for wall-modelled and wall-resolved
grids respectively. Note the reference frame location at the constriction and the cross-sectional
changes due to the system geometry throughout the streamwise direction.

vortices centres. These specific locations are chosen to compare the location and magnitude
of the vortex regions, which are the most representative locations of the flow.

Minor asymmetries of LDV data can be seen in Figure II.10. Due to the low value of
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(a) x = −1D. (b) x = 0D. (c) x = 1D.

Figure II.9: Wall-resolved RANS k − ω SST surface streamlines and axial velocity pro-
files. Here the vortices locations at z = [−0.2125,−0.125, 0.125]D are more obvious for
x = [−1, 0, 1]D respectively.

the pipe diameter (D = 20 mm), slight deviations in the experimental setup in terms of
manufacturing and stand placement can affect the perfect symmetry of experimental results.
Despite these experimental inaccuracies, experiments are ensured to be repeatable and
accurate. At x = −1D (Figure II.10a), five extrema are seen. Experimental results show a clear
deficit of velocity as two minima at the vortices location, where three maxima are seen at the
pipe centre and close to the walls. Both RANS methods and grids predict the velocity deficit
in agreement with the experiments. However, only k− ω SST matches the magnitude of the
experiments where k− ε underestimates the velocity deficit. Regarding the three maxima,
both numerical methods and grids agree with LDV data at the pipe centre, although only
WR k− ω SST agrees with LDV data near the wall.

Experimental data at x = 0D (Figure II.10b) shows a velocity maximum at the centre of
the pipe and two minima consistent with the vortices locations at the near-wall regions. In
this profile, both grids of k− ω SST agree at all locations with LDV data. However, although
k− ε likewise agrees with experimental data at the pipe centre, it overestimates the velocity
at the near-wall regions where vortices are located. Furthermore, negligible differences in the
velocity profiles between grids can be seen at this location.

At x = 1D (Figure II.10c), LDV data shows a profile characterised by the presence
of inflexion points, with a global maximum at the pipe centre. Experimental data at this
location shows slightly higher asymmetry due to spurious reflections made by manufacturing
constraints. Similarly to Figure II.10b, k−ω SST generally agrees with the experiments, where
the wall-resolved grid shows the highest agreement. On the other hand, k− ε overestimates
the velocity overall and does not agree in terms of gradients with the experimental data for
any of the grids analysed.

The velocity profiles at other locations are also analysed displaying results consistent with
Figure II.10. Hence, for the sake of simplicity and space limitation, these are not shown. In
summary, the RANS methods evaluated are able to predict the flow structures inside the flow
meter constriction. In terms of axial velocity gradients and magnitude, however, k− ω SST
agrees with experimental data more than k − ε. Overall, RANS k − ω SST is capable to
predict much more accurately the vortices’ locations and the axial velocity than k− ε, where
wall-resolved k− ω SST does predict the flow inside 2σ experimental levels of uncertainty.
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(a) (b) (c)

Figure II.10: Quantitative analysis of the velocity profiles at different locations in the flow
meter. The dashed lines in Figure II.9 represent the evaluated locations of the different figures.
Blue and red lines represent the methods using the wall-resolved or the wall-modelled grid,
respectively.

II.4 Conclusions

This study showed the applicability of current CFD methods with diverse fidelity levels
and their accuracy when tested in a simplified version of a reflected sound-path residential
ultrasonic flow meter. The geometry analysed yields a complex internal-flow problem at
a moderate Reynolds number of the order of 104. CFD with RANS k − ε and k − ω SST
turbulence models were evaluated. In addition, LDV together with pressure drop and
vortices visualisation experiments were performed to verify and validate the numerical
results both in qualitative and quantitative manners.

Both numerical models and grids studied were accurately capable of predicting the
majority of the flow throughout the measurement region of the system although RANS
k − ω SST showed an overall higher agreement with the experiments than RANS k − ε.
Coherent structures in the form of vortices were predicted by all models, nevertheless, RANS
k − ε was not capable of correctly predicting the magnitude and propagation of lower-
intensity vortices. Pressure drop was predicted by both models inside 2σ uncertainty margins
where RANS k− ω SST yielded the highest agreement. Hence, the measurement region of
the flow meter was consistently accurately predicted by k− ω SST.

Negligible differences in the predicted axial velocity were seen between the wall-resolved
and wall-modelled grids for all methods, where the results on the wall-modelled grid were
obtained with a factor of 25 times less computational time required than for the wall-resolved
grid.

A summary of the findings is shown in Table II.2.

Finally, the work done in this study showed the robustness and accuracy of CFD methods
against experimental data to predict complex wall-bounded flows. Future studies aim to
optimise the internal geometry of the flow meter based on CFD by using wall-modelled
k− ω SST as the most time-efficient and accurate method.
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Table II.2: A summary of the comparison between different numerical methods and experi-
mental data.

Grid Turbulence model ∆p/⟨∆p⟩exp Vortices propagation Vortices magnitude Velocity profiles

Wall-modelled k− ε 1.054 Inaccurate Underestimated Relatively inaccurate
k− ω SST 0.982 Relatively accurate Relatively accurate Relatively accurate

Wall-resolved k− ε 1.151 Inaccurate Underestimated Relatively inaccurate
k− ω SST 1.049 Accurate Accurate Accurate

(a) Wall-modelled. (b) Wall-resolved.

Figure II.11: Grid independence study represented as pressure drop in function of grid quality
for RANS k− ω SST.

II.A Appendix — Grid independence

A grid independence study is performed with the criterion of obtaining pressure drop mesh
independence for RANS k− ω SST turbulence model. The converged grid is likewise used
for all RANS models to obtain an identical resolution comparison.

On the one hand, regarding wall-modelled simulations, a fixed 5-layer extrusion-mesh
is defined with the first wall-adjacent cell thickness of 40µm and an expansion ratio of 1.25.
The coarse grid is defined by 20 cells along the pipe diameter. Subsequently, refined grids
are doubled in the number of cells. Figure II.11a shows the convergence of pressure drop
through refinement cases. The fine mesh shows convergence with 2.07 million cells.

On the other hand, for the wall-resolved cases, a fixed 15-layer extrusion-mesh is defined
with the first wall-adjacent cell thickness of 2.5 µm and an expansion ratio of 1.1. To ensure
an adequate cell-volume gradient between the bulk mesh and the extrusion layers, two
oct-tree refinement levels of 3-cells wide are specified near the walls: refinement level 2 at
1 mm, and refinement level 3 at 0.5 mm from all wall-type patches. Hence, refinement level 1
corresponds to the bulk mesh. The coarse grid is defined by 40 cells along the pipe diameter.
Subsequently, refined grids are doubled in the number of cells.

Figure II.11b shows the convergence of pressure drop through refinement cases. The fine
mesh shows convergence with 23.7 million cells.
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III
Dynamic Range Validation

Flow investigation of two-stand ultrasonic flow meters in a wide
dynamic range by numerical and experimental methods

ABSTRACT The enhancement of two-stand ultrasonic flow meters relies upon obtaining a
precise understanding and prediction of their complex flow physics throughout their entire
dynamic range of operation. This study provides a comprehensive numerical and experimen-
tal investigation of the flow physics of a typical two-stand ultrasonic flow meter by industry
standards. Predictions based on computational fluid dynamics simulations are employed to
obtain numerical results, which are validated through experiments based on laser Doppler
velocimetry and static pressure drop. Results indicate that no qualitative changes occur
beyond an inflow Reynolds number of 104 in terms of coherent structures and flow dynamics.
Analysis of the static pressure distribution across cross-sections reveals that the stands are
the most influential areas contributing to pressure drop. In cases with turbulent inflow, there
is a noticeable recovery of static pressure following significant pressure gradients across the
stands, while such recovery is absent in scenarios with laminar inflow. Both numerical and
experimental approaches yield excellent agreement in outcomes, accurately estimating the
axial velocity within the flow meter’s measurement volume and the pressure drop across
it, with deviations within experimental uncertainty ranges of 2 standard deviations. The
developed numerical methodology demonstrates its potential to accurately evaluate complex
internal-flow systems with similar flow features and Reynolds number ranges. The flow
dynamics for a wide dynamic range of operation in two-stand ultrasonic flow meters are
shown in detail in both laminar and turbulent flow regimes, displaying rolling vortices,
detached flow, and recirculation zones.

REFERENCE [72]: M. J. Rincón, A. Caspersen, N. T. Ingwersen, M. Reclari, and M. Abkar
(2024). “Flow investigation of two-stand ultrasonic flow meters in a wide dynamic range
by numerical and experimental methods,” Flow Measurement and Instrumentation, vol. 96, p.
102543.

III.1 Introduction

Efficient management of water supply heavily relies on accurate flow measurements since
obtaining accurate network data plays a crucial role in identifying and preventing issues such
as excessive water consumption, leaks, and water theft. To achieve this, an efficient method is
establishing a comprehensive flow meter network in the water grid. In this regard, installing
intelligent ultrasonic flow meters offers one of the best solutions by enabling accurate and
remote data acquisition of the water networks. Hence, by leveraging such technologies,
securing a clean water supply on a global scale becomes achievable [73].
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Figure III.1: Schematic of a simplified two-stand ultrasonic flow meter with its main function-
ing components.

Ultrasonic flow meters operate by measuring the time difference of sound waves trans-
mitted by piezoelectric transducers in both directions relative to the flow. The interaction
between the waves and the flowing medium causes acceleration and deceleration of the
waves, resulting in a time disparity between the up and downstream measurements. This
time disparity accurately estimates the volumetric flow passing through the flow meter
[60, 61, 74]. In low-diameter pipes (below an internal diameter of 20 mm), ultrasonic flow
meters commonly display a two-stand configuration. This enables improved measurement
accuracy and robustness by reflecting the soundwaves in the bulk of the flow, yielding a larger
measurement volume, and reducing possible inlet sensitivities (Fig. III.1). However, the high
blockage ratio of the stands introduces complex flow dynamics, making these systems an
intriguing and challenging subject for investigating fluid motion in wall-bounded flows.

The accurate prediction of the flow dynamics throughout the dynamic range of flow
meters aids in the identification of possible sources of uncertainties, ultimately leading to the
improvement of measurement robustness and the development of more advanced systems
[75]. It is then paramount for water distribution networks to rely on robust and reliable
metering devices under a wide range of flow conditions.

Previous research in this field has commonly employed computational fluid dynamics
(CFD) simulations based on Reynolds-averaged Navier-Stokes (RANS). Further high-fidelity
and eddy-resolving methods such as large-eddy simulation (LES) are yet to be studied for
these complex and industrial systems, where the high computational cost of these methods is
on the verge of their applicability in industrial flows [15]. Hence, numerous studies use RANS
to examine the effects in flow meters of different inlet conditions and different bent pipe
configurations [16–19], even assessing part of the dynamic range of operation of single-path
ultrasonic flow meters [20]. Additionally, some studies have investigated the use of CFD for
analysing the positioning of transducers in non-intrusive reflected sound-path ultrasonic flow
meters [21]. Furthermore, CFD has been utilised to explore the impact of headers [22, 23] and
flow conditioners on flow stability in gas-based reflected sound-path ultrasonic flow meters
[24, 25]. Some of these investigations compare numerical findings with experimental data,
often obtained through particle image velocimetry (PIV), to investigate and validate potential
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design improvements and optimal inflow configurations [26–28]. However, previous studies
have predominantly focused on examining the interaction between diverse inflow conditions
and large-diameter ultrasonic flow meters without intrusive geometries in the flow. Only
recent studies have been focused on the more complex two-stand configuration, where
diverse CFD turbulence models have been validated against laser Doppler velocimetry (LDV)
[59], and where the geometry has been improved by design optimisation studies for the
nominal flow rate of the system [76].

The previous studies regarding two-stand ultrasonic flow meters have only focused
on a single nominal inlet flow in the turbulent regime, resulting in a gap in the literature
when assessing the robustness and accuracy of common RANS models in their prediction
of the dynamic range of complex internal flows. This study thus presents a comprehensive
numerical and experimental investigation of the dynamic range of operation of a typical
two-stand ultrasonic flow meter by industry standards. By using numerical methods, we aim
to understand, accurately predict, and investigate the flow dynamics within the device and
evaluate its performance under varying flow rates within its dynamic range. Furthermore,
with a well-documented and grounded numerical foundation of the flow physics of the
dynamic range in these systems, we aim to provide the knowledge to analyse the performance
of ultrasonic flow meters and improve their performance based on numerical data.

In this study, Section 2 provides an overview of the numerical and experimental methods
used, along with the underlying assumptions. The results obtained and their discussions,
including experimental validation of the numerical methods, are presented in Section 3.
Finally, Section 4 offers a summary and a comprehensive discussion of the findings.

III.2 Methodology

To approach the numerical methodology, the incompressible form of the Navier-Stokes
equation is solved. Continuity and momentum equations are therefore defined as

∂ui
∂xi

= 0, (III.1a)

∂ui
∂t

+
∂ujui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (III.1b)

with i = 1, 2, 3, xi corresponding to the x, y and z directions in the cartesian corrdinate system,
respectively. The variable ui respectively represents the components of the velocity field u,
v, w; t is the time, p is the static kinematic pressure, and ν is the kinematic viscosity. These
are rewritten using the RANS equations to evaluate mean fields and reduce the complexity
of the numerical simulations. The Reynolds decomposition, ui = ⟨ui⟩+ u′i, is applied to Eq.
III.1a and III.1b, yielding

∂⟨ui⟩
∂xi

= 0, (III.2a)

∂⟨ui⟩
∂t

+ ⟨uj⟩
∂⟨ui⟩
∂xj

= −∂⟨p⟩
∂xi

+ ν
∂2⟨ui⟩
∂xj∂xj

−
∂⟨u′iu′j⟩
∂xj

, (III.2b)

where ⟨·⟩ is the Reynolds average and ·′ represents the fluctuating part of a field. To solve
the RANS closure problem and predict the Reynolds stresses (Rij = ⟨u′iu′j⟩), we use the
2-equation k− ω SST model [77], where its strengths and pitfalls by utilising the Boussinesq
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Figure III.2: Parametric description of the ultrasonic flow meter geometry. Top: y-normal
plane. Bottom: z-normal plane. It should be noted that both stands have their edges filleted
by a radius of 0.05D to ease the meshing procedure.

Table III.1: Geometry pa-
rameters for the baseline ge-
ometry as defined by [59].
Values are noted as a func-
tion of the pipe diameter D.
Subscripts i, o, m, s, and c
stand for inlet, outlet, me-
ter, stand, and constriction
respectively.

Parameter Value

D 20 mm
Di 0.865D
Li 5D
Lo 5D
Lm 9.5D
Lc 2.25D
Ls 1.25D
Ds 0.6125D
hs 0.7785D
αs (rad) π/4
αc (rad) π/3

approximation has been thoroughly studied in the literature
[78]. The applied methodology in this study is based and im-
proved upon the techniques developed in [59, 76], where a
validated CFD method is developed based on wall-modelled
RANS k− ω SST and more information can be found.

III.2.1 Geometry

The methodology is applied to an ultrasonic flow meter based
on a simplified version of Kamstrup’s flowIQ 2200 where its
geometry parameters are shown in Fig. III.2 with their specific
values in Table III.1. Regarding the geometry description, a
circular pipe of internal diameter D drives the inlet flow into
a constriction of diameter Di where two identical stands are
located up and downstream. Downstream of the constriction,
another section of circular pipe of internal diameter D drives
the flow out of the system.

III.2.2 Simulation framework

A validated wall-modelled hexahedral-based grid for an in-
let Re = 2.82 · 104 (equivalent to a volumetric flow of Q̇ =
1.6 m3 h−1) is generated, where some improvements to the orig-
inal grid by [59], are performed. An overall improvement of

the extrusion layer generation is done, yielding 5 extrusion layers with an expansion ratio of
1.2 and a maximum volume difference between the bulk mesh and the last extrusion layer
of 20%. Furthermore, one oct-tree level of refinement at a normal wall distance of 0.05D is
applied on the surfaces of stands and mirrors in order to better approximate the prediction
of the wall shear stresses in areas where the flow is in a non-equilibrium state. Hence, the
generated grid contains 1 384 762 cells of which 96% are hexahedra with a maximum and
mean non-orthogonality of 59.9 and 4.6, respectively. These values are inside of what is
generally considered a good-quality unstructured grid [79].

The full numerical methodology is applied using the general-purpose code OpenFOAM
[65]. The incompressible solver for steady-state turbulent flows by the SIMPLE algorithm
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[80], is used.

Table III.2: Inlet conditions for the simulation
and experimental cases. Flow rate with corre-
sponding mean inlet velocities and Reynolds
number.

Case Q̇ (Lh−1) ub (ms−1) Re

1 6.0 0.0053 105.7
2 8.6 0.0076 151.5
3 86.3 0.0763 1520.9
4 169 0.1491 2971.4
5 251 0.2219 4421.8
6 333 0.2947 5872.3
7 500 0.4421 8808.4
8 667 0.5895 11744.5
9 833 0.7368 14680.6
10 1000 0.8842 17616.8
11 1167 1.0316 20552.9
12 1333 1.1789 23489.0
13 1500 1.3263 26425.1
14 1600 1.4147 28186.8
15 1833 1.6210 32297.4
16 2000 1.7684 35233.5

For the discretisation of gradient and
divergence terms in the general transport
equation, a second-order central-difference
scheme is used for stability measures
(SFCDV scheme in OpenFOAM). Finally, the
pressure drop across the flow meter is calcu-
lated by performing a surface average sub-
traction of the static pressure of the inlet to
the outlet patch as follows

∆p =
1

Σi

∫
Σi

⟨p⟩dS − 1

Σo

∫
Σo

⟨p⟩dS, (III.3)

where Σ is the associated surface patch and
i, o as inlet and outlet, respectively; and dS
is the surface derivative. Since the numerical
simulations are performed assuming incom-
pressible flow conditions, the static pressure
results are divided by the density of water
at standard temperature and pressure (STP)
conditions (fluid density ρ = 998.2 kgm−3)
[81].

In addition, the performance of the flow
meter is numerically evaluated in the dy-
namic range following the work by Rincón
et al. [76, 82]. This performance function is
defined as

f2 = −
(
uΩ − u′Ω − σuΩ

ub

)
, (III.4)

where Ω is the estimated sound propagation volume, uΩ is the integrated velocity of the
fluid in the sound-path volume, u′Ω is the integrated velocity fluctuations in the sound-path
volume, σuΩ is the standard deviation of the integrated velocity distribution in the sound-path
volume. For more information about the performance function calculation, the reader is
referred to [76].

III.2.3 Dynamic range

The nominal flow rate in the simulated flow meter is Q̇nom = 1.6 m3 h−1. Simultaneously,
the minimum and maximum flow rates are determined from Q̇nom as Q̇min = Q̇nom/400 and
Q̇max = 1.2Q̇nom, respectively. Which is similarly equivalent to a dynamic range of R400
following the international standards by [83]. This yields an investigated range of inflow Re ∈
[106, 3.52 · 104] as shown in Table III.2 and a nominal inlet bulk velocity ub,norm = 1.41 m s−1.

III.2.4 Experimental methods

LDV and pressure drop experiments are conducted using a polymethyl methacrylate (PMMA)
pipe and acrylonitrile butadiene styrene (ABS) powder stand set. The experimental setup
is designed to replicate the numerical simulations on a 1:1 scale. PMMA is chosen as the
material to minimise light refraction between the water and the material due to their similar
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Figure III.3: LDV experimental setup schematic and cross-sectional data acquisition grid.

refractive indices. The experimental setup is placed on a test bench with precise temperature
and volumetric flow control, ensuring consistent flow conditions throughout the experiments.

LDV experiments are utilised to obtain qualitative and quantitative velocity data with
minimal impact on the flow where silver-coated glass-hollow neutrally-buoyant reflective
particles with a diameter of 15 µm and 80 g are introduced into the test bench. An Nd:YAG
laser with a power of 100 mW and a wavelength of λ = 532 nm is employed to make the
measurements [84]. A data-acquisition grid comprising 233 uniformly spaced points is
generated covering 85% of the pipe cross-section to avoid the total reflection of the laser beam
at the near-wall regions. The position of the laser probe is adjusted using a 3D traverse unit
and ray-tracing methods to account for light diffraction in different media. The traverse unit is
motorised and programmable in all axes (see Fig. III.3). The LDV experiments are conducted
with a minimum of 60 s of measurement per point, ensuring statistical convergence of the
mean axial velocity. Furthermore, to avoid physical asymmetries in the LDV data, a spatial
y-average is performed in the yielded data.

Pressure drop experiments involve the use of two high-precision pressure transducers
OMEGA PX429-100GI placed upstream and downstream of the measurement pipe. Both
sensors are calibrated, and measurement repeatability is verified prior to conducting the final
measurements. The experiments involve sampling pressure data every 5 ms for a minimum
duration of 150 s and ensuring statistical convergence of first and second-order statistics.

III.3 Results and discussion

Numerical simulations and static pressure drop experiments are performed for all cases
shown in Table III.2. Simultaneously, the axial velocity of three x-normal planes in the con-
striction region at x = [−1, 0, 1]D are evaluated experimentally with LDV for two different
flow rates at inflow Re = [106, 2.82 · 104]. Results are shown by initially qualitatively compar-
ing the flow characteristics at different inflow Re. Subsequently, a quantitative comparison
of the axial velocity obtained by CFD and experiments is shown by displaying the velocity
profiles at the measured regions. Finally, a comparison of the numerical and experimental
results of the static pressure drop as an important bulk quantity is performed. Experimental
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Figure III.4: Normalised kinematic pressure contours predicted at y-normal plane of the
baseline case for inflow Re = 2.82 · 104.

uncertainties follow the convention by ISO/IEC Guide 98-3 Part 3: GUM [85], displaying 2σ
ranges. All results are similarly discussed and described followed by their corresponding
figures.

III.3.1 Qualitative numerical analysis

It is remarkable to highlight that there is not a single geometrical parameter that holistically
governs the flow physics present in this type of ultrasonic flow meter. It is very complex
to determine and evaluate in detail the geometrical causes of all the physics present in this
case, therefore, the results section of this study focuses on the qualitative and quantitative
description of the physics and phenomena. For more information about the parameter
influence in this case, the reader is referred to the study by Rincón et al. (2023) [76].

The flow behaviour is complex due to the presence of the stands, as well as the converging-
diverging section of the flow meter. At nominal flow, this unique geometry induces a
combination of non-equilibrium flows by the presence of adverse pressure gradient regions.
These conditions hence yield recirculation zones, streamwise vortices generation and breakup,
and boundary-layer detachment and reattachment. These flow characteristics are common
to all tested cases at inflow Re > 1500, where turbulence transition takes place at diverse
regions throughout the flow meter. Figure III.4 displays the static pressure results, revealing
the imminent pressure drop across the flow meter and an adverse pressure gradient region
across the downstream stand. These results likewise indicate a complex flow throughout the
flow meter.

Axial velocity contours for cases 1, 3, 4, 9, and 14 (refer to Table III.2) are chosen as
distinctive numerical simulations to evaluate where their axial velocity contours are shown
in Fig. III.5. On the one hand, for all turbulent cases, two small recirculation zones are
predicted at the reflector of the upstream stand. A larger recirculation zone is present as the
boundary layer detaches from the reflector edge of the downstream stand and follows its sides.
Furthermore, any marginal variability on these flow characteristics settles at inflow Re > 104.
On the other hand, in the lowest inflow Re regime, the case exhibits a seamless velocity
profile throughout where the vortices and recirculation zones are largely reduced in size and
magnitude. Laminar flow is generally present throughout the system and boundary-layer
detachment is not visible.

As the inflow Re increases, the velocity profile at the inlet becomes more uniform, indi-
cating the development and transition to turbulent flow. In the analysed cases, two main
and two secondary vortices are symmetrically formed along the x-axis. The main vortices
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Figure III.5: Normalised streamwise velocity at y and z-normal planes for diverse inflow Re
cases of the dynamic range.

originate when the boundary layer detaches from the trailing edge of the upstream stand
and high-vorticity regions extend in the streamwise direction of the flow. These vortex pairs
display anti-symmetric rotation, where clockwise rotation is predicted by the vortex located
in the y-positive section, and counter-clockwise rotation by the vortex at the y-negative
section. The breakup of these vortices takes place at the start of the diverging section of the
system, with the exception of the laminar-inflow cases, where the vortices break up before
the end of the constriction is reached.

The flow behaviour undergoes changes as the inflow Re varies. Specifically, weaker
vortices are predicted in cases at low Re. Conversely, for all cases where the inflow Re > 3000,
λ2 values are at least one order of magnitude higher, whereas, for all cases, the primary
vortices originate from the top of the upstream stand trailing edges and extend to the top of
the downstream stand passing through the bottom and pipe sides of the constriction.

The secondary vortices are generated at the lower trailing edge of the upstream stand and
are influenced by the stronger vorticity of the primary vortices. As they develop through
the constriction, these secondary vortices eventually coalesce with the primary vortices just
downstream of the midpoint of the flow meter (x ≈ 0D). This phenomenon is shown in the λ2
isocontours for selected flow rates in Fig. III.6 [70]. The λ2 values represent a good criterion
to identify vortical structures. The criterion is defined as the second biggest eigenvalue (in
magnitude) of the matrix SikSkj + ΩikΩkj , where Sij is the rate-of-strain tensor and Ωij is
the rate-of-rotation tensor, defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(III.5a)

Ωij =
1

2

(
∂ui
∂xj

−
∂uj
∂xi

)
. (III.5b)

At lower inflow Re, the primary and secondary vortices are easily distinguishable. How-
ever, as the inflow Re increases, the secondary vortices become more chaotic and harder to
differentiate from the primary vortices.

As a final qualitative evaluation, the different cross-sections of interest are analysed in
Figure III.7, where axial velocity results are displayed showcasing the influence of the inflow
Re on the velocity field. Firstly, for all cross-sections, the transition from laminar to turbulent
flow regimes is seen in the lower Re cases. Secondly, a progressive change in the velocity
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Figure III.6: Isosurfaces of λ2-criterion for selected cases across the dynamic range. Since a
fixed value of λ2 for all cases is inadequate to visualise the vortices at the constriction for
flows at different inflow Re, the isosurface values differ for each case to adequately represent
the vortices.

gradients from the lower Re cases is seen until the inflow Re ≈ 1.47 · 104, where the flow
becomes qualitatively indistinguishable. Thirdly, the influence of the inflow Re in sections
x ∈ [−1, 0, 1]D displays the formation and propagation of vortices and, finally, a recirculation
region at x = 3D is predicted on the bottom section of the pipe, where vortices are predicted
on the top section of the downstream stand.

III.3.2 Experimental validation of axial velocity

The simulation framework is tested against experimental LDV for two inflow regimes (lam-
inar and turbulent) displaying the biggest axial velocity differences. In this regard, exper-
iments are taken for Re = [106, 2.82 · 104]. The aim is to qualitatively identify the flow
characteristics predicted by CFD for both cases and to quantify the predictive capabilities
by analysis of the axial velocity profiles at regions of interest. Experimental contours are
taken through the flow meter constriction at cross-sections x = [−1, 0, 1]D and subsequently
compared to the numerical predictions.

Axial velocity contours for inflow Re = 106 in Fig. III.8 show a particularly good agree-
ment between experimental and numerical data. High-velocity regions are seen on the
upper section of the pipe at x = −1D, whereas low-velocity regions are seen on the bottom
section near the pipe walls. At x = 0D, the flow accelerates in the middle section of the
pipe where deceleration regions are seen at the near-wall regions, displaying a more uniform
flow distribution. Finally, the velocity contours at x = 1D show a pattern very similar to
fully-developed laminar flow, slightly skewed to the upper section of the pipe. Between both
methods, there are no noticeable differences in gradients or magnitude predictions. These
results are somewhat expected since the lack of turbulence in the flow simplifies the velocity
predictions by CFD.

To perform the quantitative analysis, the axial velocity profiles at locations z =
[0.2, 0.1, 0.125]D (showed as dotted lines in Fig. III.8) and y = 0D are compared and shown in
Fig. III.9. On the one hand, regarding y-profiles (Fig. III.9a), the acceleration and deceleration
regions are distinguishable and accurately predicted by CFD for all cases, where negligible
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Figure III.7: Axial velocity contours for flow normal slices at x ∈ [−3, 3]D for selected inflow
Re cases.

differences are displayed at the symmetry plane due to the imposition of symmetry in the
results. On the other hand, z-profiles predictions of Fig. III.9b show very similar behaviour
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Figure III.9: Comparison of normalised axial velocity flow profiles for inflow Re = 106 in
three flow-normal planes for experimental LDV and CFD simulation results.

and trend, accurately predicting both gradients and magnitude of the velocity and displaying
a particularly accurate prediction in agreement with the experiments. Overall, all predictions
by CFD show a particularly good agreement with experimental data in both magnitude
and gradients, displaying results inside 2σ experimental uncertainty bounds in the analysed
profiles.

Regarding inflow Re = 2.82 · 104, qualitative results shown in Fig. III.10 display similar
agreement as previous results, where experimental and numerical data have particularly
good agreement. However, the complexity of predicting turbulent flows yields slightly
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Figure III.11: Comparison of normalized axial velocity flow profiles for inflow Re = 2.82 · 104
in three flow-normal planes for experimental LDV and CFD simulation results.

higher differences between experiments and CFD. Although not straightforwardly evident
qualitatively, the biggest differences are seen at x = [0, 1]D, where the vortices propagation
(shown as low-velocity regions) is slightly skewed and stretched by the numerical predictions.
Moreover, there is a slightly higher velocity region predicted by CFD at the centre of the pipe
in these cross-sections and two slender low-velocity regions are predicted at x = 0D in the
top section of the pipe that are not present in the experimental data. Overall, despite the
more complex flow conditions presented, the qualitative predictions and vortices locations
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Figure III.12: Numerical pressure drop prediction compared to experimental results. Figure
III.12a: normalised static pressure drop by ub,norm for simulations and experiments with 2σ
experimental measurement uncertainty. Figure III.12b: normalised pressure drop by ub of
each case for simulations and experiments with 2σ experimental measurement uncertainty.

are in particularly good agreement between both methods.
Axial velocity profiles at locations z = [−0.2,−0.0125, 0.125]D (showed as dotted lines

in Fig. III.10) and y = 0D are likewise compared and shown in Fig. III.11. Similarly to
previous results, the quantitative comparison yields particularly good agreement between
the numerical and experimental methods both in gradients and magnitudes. There are,
however, slight deviations in the mean value of the numerical prediction seen at x = 1D.
These deviations suggest a slight underprediction of the axial velocity at the centre and
top sections of the pipe and could indicate that the CFD methodology underestimates the
turbulence diffusion in some regions of the flow as well as boundary-layer detachment and
reattachment [29, 86, 87]. Nevertheless, all numerical results are confined inside experimental
uncertainty bounds of 2σ in the analysed profiles, where the slight disagreement of high Re
cases is expected due to their added physical complexity and the prediction of turbulent
fields.

III.3.3 Static pressure drop

Pressure drop serves as a convenient quantity to quantify the amount of energy lost due to
momentum loss, which, in turn, influences the flow rate and overall efficiency of internal
flow systems [71]. Therefore, pressure drop serves as an excellent bulk quantity to evaluate
the overall CFD prediction by comparing the numerical and experimental results.

Figure III.12 displays the direct comparison of static pressure drop with mean and 2σ
experimental uncertainty of the full range of Re studied. In order to represent dimensionless
static pressure drop, we employ two different normalisation methods: normalising the
kinematic static pressure by the square of the inlet bulk velocity of the baseline case at inflow
Re = 2.82 · 104 (Fig. III.12a); and normalising the kinematic static pressure drop by the square
of the bulk inlet velocity of each case (Fig. III.12b).

The pressure drop obtained from CFD simulations complies with the 2σ measurement
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Figure III.13: Polynomial and linear fits of static pressure drop data. Figure III.13a: Static
pressure drop as a function of inflow Re with second-order polynomial fit to CFD data. Figure
III.13b: Static pressure drop as a function of the normalised inlet kinetic energy with a linear
fit.
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Figure III.14: Static pressure drop distribution throughout the flow meter geometry for the
whole dynamic range. All analysed cases are depicted in Fig. III.14a while only laminar flow
cases are depicted in Fig. III.14b.

uncertainty of the experimental results for all tested inflow Re, encompassing the full dy-
namic range of the tested flowmeter. Results likewise indicate that pressure drop increases
exponentially as the inflow Re increases. Initially, at very low Re, the pressure drop is minimal
due to a lack of pressure drag, and the predominant presence of a laminar flow regime in
the system. However, as the inflow Re increases and the flow becomes more complex and
turbulent (with the formation of strong vortical structures, flow separation and recirculation)
the pressure drop increases dramatically.
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By normalising the pressure drop by the bulk inlet velocity of each case, no qualitative
changes in the flow are observed for inflow Re > 104 where the asymptotic behaviour of the
data is seen in Fig. III.12b, coinciding with the constant qualitative behaviour addressed in
section III.3.1. The visualisation of the data by normalising the pressure drop in this manner
is comparable to displaying the static pressure drop per inlet kinetic energy. Notably, the
low Re cases exhibit a larger normalised pressure loss, where the flow is mostly laminar. As
the Re increases, the normalised pressure drop converges to a constant value, implying a
linear relationship between the inlet kinetic energy and pressure drop. This relationship can
be described by a second-order polynomial, as seen in Fig.III.13a.

Such a polynomial fit is defined by ∆p/u2b,nom = a2Re
2 + b2Re+ c2, where (a2, b2, c2) =

(4.5329 · 10−9, 1.4214 · 10−5,−0.0123). Similarly, both numerical and experimental results
confirm the linear scaling of pressure drop with the kinetic energy of the inlet bulk velocity
for each case (Ek = 1

2ρu
2
b). Such a fit is given by ∆p/u2b,nom = akEk/

(
ρu2b,nom

)
+ bk, where

(ak, bk) = (3.9206, 0.0280) in this study.
In order to investigate where the pressure drop occurs in detail, the pressure distribution

throughout the flow meter is assessed by calculating the average static pressure distribution,
where mean values of static pressure are calculated in cross-sectional planes along the flow
meter axial direction. Cross-sectional average values are calculated with,

Φavg =
1

S

∫
ΦdS, (III.6)

where Φ is the quantity to be averaged, and S is the cross-sectional area. Furthermore, an
area-weighted average is utilised to account for different cell sizes.

The static pressure distribution is calculated following Eq. III.6 in the interval x ∈
[−5, 5]D as seen in Fig. III.14, where the distribution is shown for different inflow Re
throughout the flow meter geometry. In this context, the pressure drop increases consistently
in magnitude and gradient as the Re increases for all turbulent-dominated cases with no
canonical differences. To distinguish both flow regimes, Fig. III.14b depicts the pressure
distribution for the two lowest tested inflow Re, where more clear differences are predicted.

At inflow Re > 8808, the impact of viscous effects on the pressure drop is greatly reduced
due to flow complexity in turbulence-dominated cases and the occurrence of boundary-layer
separation. The majority of the pressure drop is shown to occur as the flow passes the stands
for all tested inflow Re where the stands account for the pressure drop almost equally. On
the one hand, for turbulent-inflow cases, higher static pressure gradients are predicted at
the locations of the stands. Immediately downstream both stands, static pressure recovery
takes place. On the other hand, laminar-inflow cases likewise display a high-pressure drop
at the stand locations, however, no static pressure recovery is predicted downstream. This
lack of recovery is due to the reduced instances of boundary-layer detachment, milder
adverse pressure gradients, and the formation of coherent structures present in this system
as discussed in Section III.3.1.

III.3.4 Performance in the dynamic range

Following the definition from Rincón et al. [76, 82], the performance of the flow meter under
the tested inlet conditions, is evaluated. The performance function f2 evaluates the velocity
and turbulence kinetic energy throughout the reflected sound-path volume and provides,
solely by the numerical flow solution, a performance value. A high negative value of f2
indicates a more robust and accurate measurement by the flow meter, whereas a value close
to 0 indicates the opposite.
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Figure III.15: Estimated flow meter performance performance f2 as a function of the tested
flow rates.

Figure III.15 shows the results of f2 in function of the inlet Reynolds number for all cases
studied. Results show that the estimated measurement performance decreases as the inlet
Re increases, with an asymptotic tendency towards f2 ≈ 0.49. For low inlet Re cases, the
estimated measurement performance improves.

Saturation values of f2 are reached approximately at Re = 104. This phenomenon occurs
due to the similarity of the flow fields at higher inlet Re. However, the differences in the
flow fields of the low flow rate cases yield large deviations in the performance estimates.
Excluding the laminar cases, which yield a 286% and 265% better performance than the
nominal inlet Re = 2.82 · 104. These findings point out that these types of flow meters yield
a more robust measurement at low inlet Re. Simultaneously, the variation in measurement
performance of these meters is highly reduced at higher inlet Re.

III.4 Conclusions

In this study, the dynamic range of a two-stand ultrasonic flow meter is evaluated by RANS
k− ω SST. To validate the numerical predictions, LDV and static pressure drop experiments
are performed where data is compared between both methods.

Numerical predictions identify no qualitative changes in the results above inflow Re > 104

in terms of coherent structures and flow dynamics. A clear distinction in the results is
predicted between flow regimes, where a lack of boundary-layer detachment and strong
vortical structures are predicted in the presence of laminar inflow.

Axial velocity comparisons between LDV and k − ω SST at cross-sections throughout
the flow meter measurement region show an excellent agreement in both qualitative and
quantitative manners. All evaluated velocity profiles concur with the experimental 2σ
uncertainty ranges and minor mean deviations are predicted as the inflow Re increases.

Numerical static pressure drop predictions and experimental results show particularly
good agreement. The pressure drop prediction in the whole dynamic range conforms with
the experimental data and uncertainty bounds of 2σ. Furthermore, the static pressure drop
predictions and experiments confirm the linear scaling of pressure drop with inlet kinetic
energy and the second-order distribution by varying Re.

Cross-sectional evaluation of the static pressure shows that the regions with the highest
influence in pressure drop are the stands. In addition, turbulent-inflow cases display static
pressure recovery after high-pressure gradients throughout the stands, whereas laminar-
inflow cases do not.
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The numerical flow meter performance shows that the velocity field at lower inlet Re yields
a more robust and accurate measurement compared to higher inlet Re, where a saturated
value of the performance function is observed in inlet Re > 104.

In conclusion, for its dynamic range, the flow behaviour throughout the flow meter shows
complex flow structures such as rolling vortices, detached flow, and recirculation zones. It is
predicted that these flow structures are affected by the inflow condition as flows with lower
Re yield weaker structures, where no qualitative changes in the flow are observed above
inflow Re > 104. The numerical and experimental methodologies show excellent agreement
in results estimating the axial velocity inside the measurement region of the flow meter, and
pressure drop throughout within experimental 2σ ranges.

37





IV
Design Optimisation

Validating the design optimisation of ultrasonic flow meters
using computational fluid dynamics and surrogate modelling

ABSTRACT Domestic ultrasonic flow meters with an intrusive two-stand configuration
present a complex flow behaviour due to their unique geometry, which offers an interesting
case to evaluate optimisation methods in wall-bounded turbulent flows. In this study, the
design and analysis of computer models by computational fluid dynamics are used to pre-
dict the turbulent flow and to perform robust design optimisation of the flow meter. The
optimisation is accomplished by surrogate modelling based on Kriging, Latin hypercube
sampling, and Bayesian strategies to ensure a high-quality and space-filled response surface.
A novel function to quantify flow meter measurement uncertainty is defined and evaluated
together with pressure drop in order to define the multi-objective optimisation problem. The
optimisation Pareto front is shown and compared numerically and experimentally against
pressure drop and laser Doppler velocimetry experiments, displaying performance gains
and geometrical changes in the 3D space. From the various improved designs sampled
experimentally, a 4.9% measurement uncertainty reduction and a 37.4% pressure drop reduc-
tion have been shown compared to the analysed baseline case. The applied methodology
provides a robust and efficient framework to evaluate design changes, improving ultrasonic
flow meters and internal flow problems with similar features.

REFERENCE [76]: M. J. Rincón, M. Reclari, X. I. A. Yang, and M. Abkar (2023). “Validating
the design optimisation of ultrasonic flow meters using computational fluid dynamics and
surrogate modelling,” International Journal of Heat and Fluid Flow, 100, 109112.

IV.1 Introduction

In the past 50 years, ultrasonic flow metering technology for water measurement has signifi-
cantly evolved to a democratised state [60]. Due to this fact and the advantages compared
to non-ultrasonic metering technologies, cost-efficient and accurate ultrasonic flow meters
have become one of the strongest technologies for high-scale flow measurement in the past
two decades [88]. Furthermore, the reliability and advantages of low-pressure drop and
non-intrusiveness of transient-time ultrasonic flow meters are leading to a high number of
these active systems in pipe networks, both for water and district heating applications [73].
Due to the large number of current and future flow meters in operation, there is a significant
impact in terms of pressure drop pipe networks. It is then of high relevance to study and
provide a methodology to yield an educated improvement of these complex systems.

Standard ultrasonic flow meters send and receive sound waves by means of two piezo-
electric transducers. The sensors are capable of estimating volumetric flows by detecting
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(a) Standard single-path configuration.

(b) Two-stand configuration and internal reflection of the beams.

Figure IV.1: Schematic of operation and geometries of transient-time ultrasonic flow meters
with different configurations. Both figures display the axial cross-section through the centre
of the pipe. Note that Fig. IV.1b does not represent the whole 3-dimensional geometry and
the blockage of the stands is not as severe as shown.

the time differential generated by the interaction of the waves and the media they travel
through (Fig. IV.1a). In order to acquire a more accurate measurement in low-diameter water
pipes (below 40 mm of internal diameter), internal reflections of the beams based on intrusive
geometries are commonly introduced in the flow meter (Fig. IV.1b). Although the use of this
technique improves the flow meter accuracy significantly, it yields a disruptive and complex
interaction with the flow that cannot be analysed straightforwardly by analytical methods
[61, 89, 90].

To overcome these limitations, computational fluid dynamics (CFD) with the aid of the
latest advances in numerical methods and computer hardware, has facilitated the detailed
study of fluid flow in complex systems. These analyses include the prediction of turbulent
flow in ultrasonic flow meters with two-stand configuration and internal reflection of the
beams [59]. However, CFD methods are nonetheless computationally expensive [91, 92]
and, to perform a thorough optimisation analysis of contemporary industrial engineering
applications by CFD alone, these costs largely exceed the justifiable time and resources needs
for current industrial, academic, and governmental institutions alike [15, 93, 94]. Hence, when
comprehensive optimisation studies, diverse methods that rely on mathematical complexity
are commonly used to reduce the limitations on resources and time of expensive numerical
methods.

Despite the growing market and widespread use of transient-time ultrasonic flow meters,
few studies using CFD have been published addressing their improvement. In most cases,
ultrasonic flow meters for gas measurement have been studied by CFD with non-intrusive
geometries [16, 22, 25, 27]. Nevertheless, the improvements have only been focused on
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Figure IV.2: Design optimisation strategy adopted. A sampling plan based on Latin hypercube
sampling (LHS) is initially applied and solved by CFD. Subsequently, an initial surrogate is
constructed based on Kriging. Due to the likelihood of the initial sampling not evaluating
the surrogate in extrema, Bayesian strategies based on efficient global optimisation (EGO)
and the evaluation of the expected improvement (E [I(x)]) function are applied to further
explore the surrogate and improve its quality. Finally, when the quality requirements are met,
a genetic algorithm is used to search for an optimum on the response surface of the surrogate
model.

finding thresholds of inlet flow conditions (e. g. maximum and minimum flow rate, swirl,
and asymmetry) to ensure accurate flow meter operation. The central issue arises when
coupling CFD and optimisation techniques, which have been used extensively in the last
20 years as a powerful tool to find the best possible parameters (shape, operating condition,
model variables, etc) in industrial and academic applications alike [41].

Design, shape, and topology optimisation methods distinguish geometrical optimisation
by the use of CFD. These methods are based on the characterisation of key geometrical param-
eters [95, 96] and the solution of the adjoint equations in their discrete [49] or continuous [48]
versions. Whereas shape and topology optimisation has shown its maturity in applications
like structural optimisation [97], the added complexity of flow physics (especially due to
turbulence) still adds challenges to democratising and validating these methods adequately.
In addition, current shortcomings of optimisation studies have been reported, highlighting
the need to perform research based on a thorough understanding of the methods and results,
their time-effectiveness, generalisation, scalability, and experimental validation [98]. Hence,
nowadays design optimisation presents the biggest potential, most effective, and most well-
known approach to yield significant improvements in an ultrasonic flow meter that can be
tested and validated with currently available tools.

Algorithms in design optimisation which are based on finding the minimum (or max-
imum) of one or more given functions in a multidimensional parameter space include
slope followers, simplex methods [42], multi-objective evolutionary [43], particle swarm
algorithms [44], and many more. An early recognised problem is that these methods
require the evaluation of the objective function (i.e. performing a CFD computation) in
a large number of test configurations, e.g., O(100) direct numerical simulations (DNSs)
are conducted in Ref. [99], which require considerable computational resources. This
led to a distinct development based on the use of a relatively smaller set of CFD simu-
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lations (whose parameters are selected using specific methods [45]) to create computation-
ally cost-efficient models (known as response surfaces or surrogates [47]) that are then
optimised. These methodologies have been partially applied to various engineering ap-
plications such as, but not limited to a laidback fan-shaped hole for film-cooling [100],

Table IV.1: Fixed geome-
try parameters common to
all cases. Note that the i,
o, m, s, and c subscripts
stand for inlet, outlet, me-
ter, stand, and constriction
respectively. Moreover, the
parameter δ includes a nar-
row distance between the
reflector and the pipe to
eliminate possible singular-
ity points which could yield
divergences, overlapped, or
collapsed edges during the
geometry generation.

Parameter Value

D 20 mm
Di 0.865D
Li 5D
Lo 5D
Lm 9.5D
Lc 2.25D
δ 0.05D
αs (rad) π / 4
αc (rad) π / 3

where a single objective function is optimised with surrogate-
based optimisation (SBO) in a 3D case with structured mesh
generation; aero-structural optimisation of plane wings [101],
where a 3D multi-physics problem is solved by SBO with a
structured-grid-deformation algorithm and a multi-objective
problem; gas cyclones [102], where CFD observations and ex-
perimental data were taken from the literature to perform multi-
objective SBO by evolutionary algorithms; centrifugal volute
pumps [103], where the impeller and the volute were improved
by SBO in different phases and results were supported by ex-
periments; and ground vehicles [104], where a single objective
problem was solved by SBO and experiments were used to
validate the surrogate model. However, there have not been
any studies adopting these optimisation methods applied to
an ultrasonic flow meter. In addition, the literature is like-
wise lacking reliable studies of these methods for complex 3D
wall-bounded fluid-flow problems at high Reynolds numbers,
the exclusive use of unstructured meshing techniques, and the
support of experimental validation of the results.

In this study, optimisation tools based on surrogate mod-
elling with the use of CFD with Reynolds-averaged Navier-
Stokes (RANS) turbulence modelling, are applied to improve
the performance of a two-stand ultrasonic flow meter with an
internal reflection of the beams. The study aims to identify the
key parameters and objective functions of the system and obtain
a new significantly improved design compared to the baseline
case. Section IV.2 presents the numerical and experimental
methods and assumptions employed. Section IV.3 shows the
results obtained and discusses the findings with experimental

validation of the optimisation methods. Finally, a summary and discussion of the findings
are presented in Section IV.4.

IV.2 Methodology

To approach the optimisation problem, a surrogate based on Kriging and Gaussian processes
(GPs) is generated following the design and analysis of computer experiments (DACE) to
obtain the observations, given by the sequence of computer-aided design (CAD) geometry
generation, meshing, CFD solution, and post-processing of results [46]. In order to evaluate
the performance of the flow meters, two main functions are defined based on the pressure
losses and the measurement uncertainty, defining a multi-objective optimisation problem.
Furthermore, an efficient sampling plan is described, and an infill criterion constrained by
quality metrics is specified. Moreover, the applied methodology is developed entirely with
open-source software at all of its stages where a flow diagram of the complete optimisation
methodology is depicted in Fig. IV.2.
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Figure IV.3: Design variables (in red) and parameter description (in blue) of the baseline flow
meter geometry for y-normal (top), and z-normal (bottom) planes. All stand edges are filleted
with a constant radius of 0.05D to aid unstructured-meshing prism layer extrusion. Note that
the origin of the coordinates is located at the mid-point of the constriction section. The solid
lines show the baseline geometry, and the dotted lines depict the threshold geometries.

IV.2.1 Case parametrisation

The reference flow meter studied is based on a modified version of Kamstrup A/S flowIQ 2200
with a configuration of two-stand with the internal reflection of the beams. The flow meter
geometry is parametrised by CAD and modified to approach studies based on numerical and
experimental methods. The parametrisation yields the geometry depicted in Fig. IV.3 with
fixed geometric values shown in Table IV.1. This geometry exhibits a compromise between
real flow meter fidelity and the suitability of numerical and experimental studies.

A pipe diameter of D = 20 mm is selected to be consistent with the pipe diameter of the
reference flow meter. Five design variables are chosen to perform the optimisation study
due to their impact on flow meter performance and pipe blockage. Furthermore, due to the
geometrical constraints of the system and the design variables chosen, certain geometrical
constraints must hold to avoid overlapping or collapsed edges during CAD generation:

Dsmin + Lsmin ≥ hsmax

tanαs
, (IV.1a)

Lsmax ≤ Lm − 2hsmax tanαs −Lc, (IV.1b)

where for Eq. (IV.1a) and Eq. (IV.1b), Dsmin is the minimum stand diameter, Lsmin and
Lsmax are respectively the minimum and maximum tail-length of the stands, hsmax is the
maximum stand height (constrained by the pipe diameter), Lm is the flow meter length, Lc is
the constriction length, and αs is the reflector angle (fixed at π/4).

The design optimisation is therefore constrained as shown in Table IV.2. The thresholds
likewise define the design space for the optimisation, which is normalised by the unit cube to
avoid scaling issues as

D = [0, 1]K , (IV.2)

where D is the design space, and K = 5 is the number of design variables following the
normalisation

xnorm =
x− xmin

xmax − xmin
. (IV.3)
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Table IV.2: Thresholds of the design optimisation and relative variation compared to the
baseline case.

Parameter Value

Baseline case Minimum Maximum Relative variation

Ds 0.6125D 0.3655D 0.9D 0.59 - 1.47
Lsus 1.25D 0.5D 2.75D 0.4 - 2.2
Lsds 1.25D 0.5D 2.75D 0.4 - 2.2
hsus 0.7785D 0.25D 0.865D 0.32 - 1.11
hsds 0.7785D 0.25D 0.865D 0.32 - 1.11

IV.2.1.1 Objective functions

Flow meters can be distinguished by performance in terms of pressure drop and measurement
uncertainty, where both of these quantities are aimed to be minimised. The pressure drop in
the system is straightforwardly calculated as

∆p =
1

Ai

∫
Ai

p dA− 1

Ao

∫
Ao

p dA, (IV.4)

where ∆p is the pressure drop, p is the kinematic static pressure, dA is the cross-sectional
area differential, and Ai and Ao are respectively the inlet and outlet cross-sectional pipe
areas. However, there is no analytical function in terms of fluid mechanics that defines the
measurement uncertainty of a flow meter of these characteristics. In practice, to estimate the
time travelled by the sound wave, the mean and peak amplitudes of the sent and received
signals are computed by an electronic calculator that reads the signals generated by the
piezoelectric transducers, where uncertainty is taken into account. In order to perform a
numerical study analogous to an ultrasonic wave travelling through the flow meter, it is
theorised that when an ultrasonic signal is sent by a transducer, it gets altered by the flow
before it reaches a receiver due to the following conditions (Fig. IV.4):

• The signal delays or accelerates its reception by the receiver transducer due to the flow
velocity along the sound path. The higher the time difference, the higher the flow meter
capability to measure low flows and the higher the measurement resolution:

uΩ =
1

V

∫
Ω
u · ê dV . (IV.5a)

• The signal attenuates due to energy dissipated by the turbulence kinetic energy, and
noise is generated by the presence of turbulent structures in the flow:

u′Ω =

√
2

3

1

V

∫
Ω
k dV . (IV.5b)

• The signal morphs its original shape due to velocity gradients along the sound path,
yielding higher uncertainty in the measurement:

σuΩ
=

√
1

V

∫
Ω

(
uΩi

− ⟨uΩ⟩
)2

· ê dV ; (IV.5c)
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Figure IV.4: Depiction of an altered ultrasonic signal from a sent transducer to a receiver.

in Eqs. (IV.5a), (IV.5b), and (IV.5c), Ω is the reflected sound-path volume, u is the flow velocity
vector, uΩ is the integrated velocity of the fluid in the sound-path volume, ê is the unitary
vector in the sound wave propagation direction, u′Ω is the integrated velocity fluctuations in
the sound-path volume, σuΩ

is the standard deviation of the integrated velocity distribution
in the sound-path volume, k is the turbulence kinetic energy, and dV is the differential of the
sound-path volume.

In order to evaluate these metrics, the reflected sound-path volume (Ω) of the system is
defined and calculated by extracting three cylinder volumes from the case. The volumes
follow the reflected sound beam between the transducers, which varies depending on the
stand geometry as seen in Fig. IV.5.

Although the sound travels in both stream and counter-streamwise directions, the analysis
of only one of the directions is required to evaluate the objective functions. Hence, for a
single streamwise propagating beam, the sound propagation vector equals ê1 = [0, 0,−1]
for the upstream vertical cylinder, ê2 = [1, 0, 0] for the streamwise horizontal cylinder, and
ê3 = [0, 0, 1] for the downstream vertical cylinder.

Based on the analysis of the metrics from Eqs. (IV.4), (IV.5a), (IV.5b), and (IV.5c); two
normalised objective functions are defined which quantify the performance qualities of
ultrasonic flow meters:

f1(x) =
∆p

u2inlet
, (IV.6a)

f2(x) = − V

Vref

(
uΩ − u′Ω − σuΩ

uinlet

)
, (IV.6b)

where uinlet = 1.41 m s−1 is the uniform velocity of the fluid at the inlet, and V and
Vref = 4.704 · 10−6 m3 are the volume and the reference volume of the reflected sound-
path (calculated from the baseline case), respectively. From these objective functions, Eq.
(IV.6a) represents the pressure drop across the flow meter whereas Eq. (IV.6b) represents the
measurement uncertainties of the flow meter.
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Figure IV.5: Definition of sound path volume by three cylinder-volume decomposition and
unitary vectors of the reflected beam.

IV.2.2 Sampling plan

Three main algorithms are used in order to sample observations and data in this study: Monte
Carlo, full factorial, and Latin hypercube (Fig. IV.6). Monte Carlo sampling is used when
extracting the test subset to compute the surrogate quality, while full factorial sampling is
used for visualisation purposes. Since the chosen sampling plan for the initial observations
is oriented to be space-filling, Latin Hypercube Sampling (LHS) [105] with optimised design
by the enhanced stochastic evolutionary (ESE) algorithm [106, 107] is used to obtain an
initial sample of the surrogate with a minimum number of observations, and simultaneously,
representing the real variability of the parameters. The initial sample by LHS with ESE
follows n0 = 10K, where n0 is the initial number of observations.

IV.2.3 Observations

Observations are based on the computation and post-process of a RANS k− ω SST [64] CFD
simulation. The governing equations used for the CFD observations in this study are the
incompressible form of the RANS equations, excluding heat transfer. These are written
following Einstein’s summation convention in their convective form [108] as

∂⟨ui⟩
∂xi

= 0, (IV.7a)

∂⟨ui⟩
∂t

+ ⟨uj⟩
∂⟨ui⟩
∂xj

= −∂⟨p⟩
∂xi

+ ν
∂2⟨ui⟩
∂xj∂xj

−
∂⟨u′iu′j⟩
∂xj

, (IV.7b)

where xi is the ith axis in Cartesian coordinates with i = 1, 2, 3 corresponding to the stream-
wise (x), lateral (y), and vertical (z) directions, respectively. (u1,u2,u3) = (u, v,w) are the
components of the velocity field, t is time, p is the kinematic pressure, and ν is the molecular
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Figure IV.6: Sampling methods: Monte Carlo (left), full factorial (middle), and LHS with
genetic algorithm optimisation (right).

kinematic viscosity. The angle ⟨·⟩ operators represent the mean value, and the prime super-
script ·′ represents its fluctuating part. Furthermore, the equations of fluid motion are solved
numerically by the general-purpose software OpenFOAM [65].

The chosen grid, its grid independence study, and the turbulence model selection follow
our previous numerical and experimental investigations in Ref. [59], where a time-efficient
wall-modelled hexahedral-based grid is generated for all cases. Walls are considered perfectly
smooth and the wall model used is based on the prediction of the turbulence kinematic
viscosity (νt) based on the turbulent kinetic energy (named nutkWallFunction in OpenFOAM).
Moreover, symmetry boundary conditions are applied at the x− z plane. For further details
on the numerical code, initial and boundary conditions, verification and validation against
the experiments, the reader can refer to Ref. [59].

IV.2.4 Surrogate construction

A surrogate attempts to map y = f(x) defined by the optimisation problem with an approxi-
mated function ŷ = f̂(x) based on the known observations [109]. Of the multiple approaches
to generating a surrogate, Kriging (also called spatial correlation modelling) [110, 111] has
been chosen due to its well-known implementation, its capability of computing uncertainties,
and its computation speed. In this study, Kriging interpolates the observations as a linear
combination of a know deterministic term with a constant model and an added realisation of
a stochastic process as follows

ŷ =
k∑

i=1

βifi(x) + Z(x), (IV.8)

where ŷ is the surrogate prediction, β is a constant deterministic model, f(x) is the known
function, and Z(x) is the realization of a stochastic process of zero mean and spatial covari-
ance function given by

cov
[
Z
(
x(i)
)
,Z
(
x(j)

)]
= σ2R

(
x(i),x(j)

)
, (IV.9)

where R is the spatial correlation function, which controls the smoothness of the Kriging
model, the differentiability of the response surface, and the effect of the nearby sampled
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points. In this study, the spatial correlation is defined following the squared exponential
(Gaussian) function as

nx∏
i=1

exp

{[
−θl

(
x
(i)
l − x

(j)
l

)2]}
, ∀θl ∈ R+, (IV.10)

where the correlation scalar θl is defined such as, for each point, a hyper-parameter θl is given
to define the variance of a GP at each point (higher values of θl represent higher gradients in
the correlation between points). Maximising the maximum likelihood estimation, it is possible
to find the optimum values for the matrix θl and other hyper-parameters of GPs such as the
mean µ, and standard deviation σ [112]. Due to the re-meshing operation between samples,
discontinuities on the solution space are expected, hence, the methodology evaluates the
yielded noise and applies L1 regularisation to obtain a smooth response surface.

IV.2.5 Quality metrics

To ensure the generation of a high-quality surrogate, a number of random test observations
nt = 0.6n x −→ y are taken. The root-mean-square error (RMSE) and Pearson’s correlation
coefficient squared (r2) are calculated to evaluate the initial surrogate quality as follows

RMSE =

√∑nt
i=1

(
y(i) − ŷ(i)

)2
nt

, (IV.11a)

r2 =

(
cov(y, ŷ)√

var(y)var(ŷ)

)2

. (IV.11b)

Values of 0.1 and 0.8 for RMSE and r2 respectively are set as thresholds of the quality of
surrogates in this study, following [113, 114].

IV.2.6 Infill space exploration

Exploring the surrogate beyond the initial sampling provides an overall lower level of
uncertainty and a more accurate approximation in extrema and unexplored regions. To
explore the surrogate, Bayesian optimisation strategies based on efficient global optimisation
(EGO) [115, 116] are applied. EGO is based on a figure of merit that balances local and
global search: the expected improvement (E[I(x)]) [117]. If F is the black-box function to
be predicted by Kriging, and X = {x1,x2, . . . ,xn} are the observed locations, yielding the
responses Y = {y1, y2, . . . , yn}, the expected improvement is calculated as

E[I(x)] = (fmin − µ(x))Φ
(
fmin − µ(x)

σ(x)

)
+ σ(x)ϕ

(
fmin − µ(x)

σ(x)

)
, (IV.12)

where fmin = minY , and Φ(·) and ϕ(·) are respectively the cumulative and probability
density functions of N (0, 1), following the distribution N (µ(x),σ2(x)). Hence, the following
sampling point is determined by

xn+1 = argmax
x

(E[I(x)]) . (IV.13)

The space exploration is performed by sampling new data in each of the objective functions
separately, where one sample of nEGO = 0.5n0 x −→ y for each objective is taken, yielding a
total of 10K = 50 new sampled points.
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Figure IV.7: Rendered image of the test pipe and baseline-case stands used in the experiments.
The pipe is manufactured by drilling a PMMA block whereas the stands are fabricated
by additive manufacturing. Two passing holes are drilled with a thread in the stands to
accurately fix them in place with screws.

IV.2.7 Multi-objective solution

One of the greatest advantages of the Kriging method is that algorithms that widely explore
the objective space can be applied. Hence, in order to find the optima of the surrogate, the
multi-objective evolutionary algorithm (MOEA) NSGA-II [118] is chosen. The choice is made
due to the versatility, fast and efficient convergence, non-penalty constraint handling, and
wide-range search of solutions of the algorithm. This ensures that the improved solutions are
non-dominated, do not fall into local minima, and the global optimum is highly likely to be
found for the sampled response surface.

IV.2.8 Experimental methods

A polymethyl methacrylate (PMMA) pipe and acrylonitrile butadiene styrene (ABS) powder
stand set are used to perform laser Doppler velocimetry (LDV) and pressure drop experiments.
The experimental set is manufactured as a 1:1 representation of the numerical simulations.
Furthermore, PMMA is chosen to minimise the light refraction between the water and the
material due to the similar magnitude of their refractive indices. The experimental set is
placed on a test bench with accurate control of temperature and volumetric flow, maintaining
constant flow conditions throughout the tests (Fig. IV.7).

LDV experiments are capable of yielding qualitative and quantitative velocity data with
minimum influence on the flow. To perform LDV, silver-coated glass-hollow neutrally-
buoyant reflective particles of 15 µm in diameter are introduced in the test bench and axial-
velocity experiments at x-normal planes are taken. A Nd:YAG (neodymium-doped yttrium
aluminium garnet) laser of 100 mW and a wavelength of λ = 532 nm is used to obtain the
measurements [84]. A data-acquisition grid of 232 uniformly-spaced points is generated
where the position of the laser probe is adjusted by means of a 3D traverse unit together with
ray-tracing methods to account for the light diffraction of the different media. The traversing
unit is motorised and programmable in the y and z axis where the change in the x direction
is done manually (Fig. IV.8). Finally, the LDV experiments are taken with a minimum of 500
valid bursts per point, ensuring mean axial-velocity statistical convergence.

Pressure drop experiments are taken by introducing two high-accuracy pressure transduc-
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Figure IV.8: LDV experimental setup schematic and cross-sectional data acquisition grid.

ers (model OMEGA PX429-100GI with measuring uncertainty of ±0.08%) up and downstream
of the measurement pipe. Both sensors are calibrated and measurement repeatability is en-
sured before the final measurement is taken. Finally, the experiments are taken by sampling
pressure data every 5 ms for 150 s, ensuring first and second-order statistical convergence.

IV.3 Results and discussion

Optimisation and experimental results are hereafter depicted and discussed. A surrogate
based on the design of experiments by CFD is generated. Contour plots showing the influence
of the design variables in the objective functions and quality results of the surrogate con-
cerning optimisation results are shown. The Pareto front solution of both objective functions
evaluated is displayed together with the main geometrical differences of the non-dominated
cases. Furthermore, a qualitative analysis of the velocity contours between numerical and
experimental cases is performed. Finally, numerical validation of the Pareto front results
is shown followed by experimental validation of the design space and objective functions
defined. All results are shown with their associated uncertainty and are similarly described
and discussed followed by their corresponding figures.

IV.3.1 Surrogate quality

The evaluation of the surrogate is based on a direct comparison between the surrogate
prediction (ŷ) and the numerical simulation results (y). The RMSE and r2 metrics of this
analysis present the overall quality of the surrogate. While r2 shows the capacity of the
surrogate model to explain the variability of the dataset, the RMSE represents the average
deviation of the predicted and numerical values. These metrics applied to the generated
surrogate are shown in Fig. IV.9, where the final quality achieved is shown in Table IV.3.

The prediction of the surrogate for several LHS n0 = nEGO = 50 yields an overall
high agreement with the numerical values. Lower values of the objective functions yield
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Figure IV.9: Surrogate quality through RMSE and r2 for the two objective functions analysed.
The quality thresholds in Fig. IV.9b are set to 0.8 and 0.1 for r2 and RMSE respectively.

higher agreement by the surrogate than higher values, where slight deviations are seen
(Fig. IV.9a). The surrogate yields all predictions inside the 15% deviation bounds for both
objective functions, showing that the surrogate predicts the objective space with reasonable
accuracy. However, slight deviations in the surrogate predictions are expected due to the
noisy behaviour of the solution space.

Table IV.3: Final surrogate qual-
ity values.

Objective Quality metric

RMSE r2

f1(x) 0.202 0.926
f2(x) 0.003 0.975

Regarding the evolution of the surrogate quality in
function of the number of sampled points (Fig. IV.9b), the
surrogate model does not yield any conclusive results un-
til n ≈ 15 points are sampled. Consequently, all quality
metrics consistently improve until n = n0 is reached. From
n ∈ (50, 100], the EGO algorithm predicts the new sam-
pling points and a tendency towards convergence is seen
in the quality metrics. As seen in the results of Fig. IV.9b,
the solution space is noisy due to the introduced discon-
tinuities by the re-meshing operation between samples;
therefore, due to this fact and the regularisation applied in the Kriging method, after EGO,
both RMSE and r2 metrics of f1(x) slightly worsen, while for f2(x), they slightly improve.
This shows the high sensitivity of the boundary layer prediction, wall-shear stress (τw), and
∆p to geometrical changes in the numerical simulations.

These results show that by taking a low number of samples (n = 10K), the surrogate
quality metrics achieve better values. Moreover, once EGO sampling is done, the quality
parameters display noisy behaviour and a higher value of RMSE1 than the initial obtained by
LHS. Although counter-intuitive if only these data are taken into consideration, sampling
with EGO has shown an overall improvement of the surrogate in terms of lower uncertainty
of the final Pareto front results. In addition, since regularisation is applied to handle the noisy
solution space and since multiple close proximity points yielding noisy data are evaluated by
EGO, the increased value of RMSE1 is justified.
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Figure IV.10: Surrogate visualisation of f1(x). Each tile shows a contour of f1(x), connected
to pressure drop, versus two of the design variables, with the remaining variables held at the
baseline value of Table IV.2.

IV.3.2 Surrogate visualisation

The possibility of visualising the response of the different design variables in the objective
space gives the advantage of obtaining global knowledge of the optimisation problem and
the influence of the design variables. Since the visualisation of a 5-dimensional space is
non-trivial, certain simplifications must be applied to visualise the changes in the design
variables in function of the objectives. Hence, each pair of design variables is shown in
function of each objective in Figs. IV.10 and IV.11, with the remaining design variables, kept
at their baseline values. Regarding f1(x), most of the design variables show a linear or
quasi-linear relationship, where the variables showing clear no-linearity are Ds, hsus , and
hsds in function of each other. The results show that the variable with higher influence in the
pressure drop is Ds, followed by the height of both stands; whereas the rest of the variables
show a lower influence in f1(x). Lower values of all variables show a decrease in ∆p, which
corresponds to reduced blockage of the stands in the pipe, minimising pressure and viscous
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Figure IV.11: Surrogate visualisation of f2(x). Each tile shows a contour of f2(x), connected
to measurement uncertainty, versus two of the design variables, with the remaining variables
held at the baseline value of Table IV.2.

drag. Correspondingly, high values of the variables increase blockage and the formation of
complex flow structures, increasing pressure drop. The only variable which shows a decrease
in f1(x) by increasing its value is Lsds , where a longer stand length delays flow separation
and reduces recirculation at the downstream stand region, yielding lower pressure drag
and decreasing ∆p. Regarding f2(x), linear or quasi-linear behaviour is seen between the
same variables as with f1(x), where non-linear behaviour is likewise seen by Ds, hsus , hsds in
function of each other. In contrast with pressure drop prediction, f2(x) displays non-trivial
locations of the different minima. In the range of 0.7 to 0.9, values of all design variables
except the stand lengths show a tendency towards the global minimum. Furthermore, the
stand lengths show a similar behaviour as in f1(x), where low values of Lsus and high values
of Lsds show a tendency towards the minimum of f2(x). The relationship of the variables
and f2(x) is not as trivial as the prediction of pressure drop. Generally, a higher blockage
and influence in the bulk flow by the stands does accelerate the fluid in the measurement
region and increase the measurement volume, which improves f2(x). However, the excessive
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Figure IV.12: Non-dominated solutions from the multi-objective optimisation and chosen
experimental cases. Note that the shaded areas in Fig. IV.12a represent the 3σ confidence
bounds for each of the objectives.
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Figure IV.13: Normalised non-dominated design variables variability.

blockage does likewise yield stronger and bigger vortical structures, higher turbulence kinetic
energy (TKE), and complex flow conditions which penalise f2(x).

From the surrogate visualisation, it can be highlighted that both functions display minima
at almost opposing values of the design variables, which shows the complexity of designing
geometries to improve the system.

IV.3.3 Pareto front solutions

The MOEA yields a front of non-dominated solutions where any change to the design
variables cannot improve one objective without further worsening the other. These solutions
are known as the Pareto non-dominated front (Fig. IV.12a). Since Kriging is based on GP, the
method likewise yields a unique uncertainty range for each objective function and design
solution. The uncertainty ranges of both objective functions are taken into consideration since
the evaluation of both values is subjected to a validation study. The chosen uncertainty range
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(a) Normalised axial velocity at y-normal plane. (b) Normalised axial velocity at z-normal plane.

Figure IV.14: CFD contours of normalised axial velocity at y- and z-normal planes for different
geometrical cases.

for the method is 3σ (equivalent to 99.7% of the distribution) due to the complexity of the
case of study, however, more conservative uncertainty ranges could be chosen in other cases
depending on the required accuracy and the nature of the system to optimise.

Diverse Pareto fronts have been studied and generated in order to evaluate the conver-
gence and quality of the surrogate in function of the number of samples. After this study, it
has been concluded that converged non-dominated results with minimum uncertainty are
yielded after EGO sampling and a population of 1000 through 500 generations by NSGA-II.

To experimentally validate the methodology, samples are taken and manufactured of
the non-dominated solutions at f1(x) = [2, 1.4, 1.05, 0.46], which are hereby referred to
alphabetically as cases A to D respectively as depicted in Fig. IV.12. These cases are chosen
to obtain a representative sample of the Pareto front and to obtain a sample of overall
improved (respective to the baseline case) designs for both objective functions (cases A and
B). Furthermore, the baseline case is likewise analysed with the applied methodology for
reference. The geometry representation of these cases is depicted in Fig. IV.12b where the
changes in geometry can be seen.

Regarding the design variable values, Ds, hsus , and hsds show a continuous trend, in
contrast to Lsus and Lsds , where their solution space is discontinuous (Fig. IV.13). While the
values of the continuous variables gradually change showing higher gradients at low values
of f1(x), Lsus and Lsds tend to yield the highest and lowest values possible, respectively.
These results show the high influence of Ds, hsus , and hsds in the solution space compared to
the stand tail lengths.

In addition, Fig. IV.14 and IV.15 are shown to provide an overview of the flow behaviour
for the baseline and the sampled cases from the Pareto front. The axial velocity distribution
(Fig. IV.14) of the baseline case shows an acceleration of the flow through the constriction
where two vortices are generated (the reader can refer to [59] for further details). Three
main shear layers are seen through the constriction, defining three regions of low velocity
(two close to the pipe walls, and one close to the downstream stand) and a main region of
high-velocity flow at the centre of the pipe. Downstream, a breakdown of the vortices takes
place, the flow greatly accelerates due to the high blockage, and the flow separates after its
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(a) Normalised TKE at y-normal plane. (b) Normalised TKE at z-normal plane.

Figure IV.15: CFD contours of normalised TKE at y- and z-normal planes for different
geometrical cases.

pass through the stand, creating a region where high TKE and mixing take place (Fig. IV.15).
In contrast, for cases A and B, the low-velocity regions at the constriction are smaller,

whereas close to the downstream stand, the low-velocity region is bigger. This causes the
high-velocity bulk flow region at the constriction to be wider and cover more cross-section
of the pipe, favouring f2(x). A more defined shear layer can be seen in the y-normal plane
for cases A and B, together with moderate values of TKE seen in the z-normal planes. This
indicates a higher positive vertical velocity (w) at the region close to the downstream reflector,
which is likewise favourable to f2(x).

Cases C and D, which display a best f1(x) performance, are characterised by a reduced
blockage and stand volume. Hence, the flow prediction shows lower disturbances throughout
the whole system. These low ∆p cases display a delay in the prediction of the shear layers at
the constriction, yielding a more uniform and wider high-velocity flow region, resulting in
lower TKE generated. Concurrently, cases C and D show reasonably lower velocity gradients
(favourable to f2(x)) and lower maximum velocity magnitudes (against f2(x)).

IV.3.4 Velocity field validation

Experimental LDV results are compared to numerical wall-modelled k− ω SST simulations
in Fig. IV.16. The experiments are taken at three different cross-sections throughout the flow
meter constriction at x ∈ [−1, 0, 1]D for each of the optimised and baseline cases described
in Fig. IV.12b.

At x = −1D, the location and magnitude of the vortices are accurately predicted in all
cases. Similarly, the bulk flow is likewise predicted in agreement with the experiments for all
cases and no major differences can be observed qualitatively.

A high level of agreement at x = 0D can likewise be observed between experiments
and simulations. However, slight differences can be recognised, predominantly in the axial
velocity magnitude predicted by CFD at the uppermost pipe region for all cases except the
baseline. For A to D cases, the axial velocity at the upper pipe section is underestimated
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Figure IV.16: LDV and CFD results for normalised axial velocity. The left half of the cross-
sections shows the LDV experimental results, whereas the right half shows the numerical
results.

compared to LDV data. Despite these differences, there is a high level of qualitative agreement
in terms of velocity gradients and vortices propagation in all cases.

Finally, at x = 1D, cases representing lower values of f1(x) (cases C and D) tend to show
higher agreement between experimental and numerical results than cases at higher f1(x)
(Baseline, A, and B cases). The main differences are seen at the baseline, case A, and case B,
where the numerical simulations generally tend to marginally underestimate the velocity at
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the centre of the pipe.
Overall, the LDV results show high agreement with the numerical simulations, qualita-

tively predicting the magnitude and gradients of the axial velocity regardless of the stand
geometry; as well as the position, propagation, and magnitude of the vortices throughout the
constriction with the different shear layers seen in the experiments.

IV.3.5 Pareto front validation

The validation of the optimisation methodology is performed by means of numerical simula-
tions at diverse points in the Pareto front, and through the experimental values acquired for
the sampled cases (Baseline, and A to D cases). The whole set of validation results is depicted
in Fig. IV.17.

On one hand, the sampled numerical simulations are spaced linearly by 25 points in func-
tion of f1(x) from its minimum to maximum non-dominated values (Fig IV.17a). Numerical
results show that predictions are inside the uncertainty ranges and a slight and expected
noisy behaviour is observed. The region of f1(x) ∈ [1.6, 1.9] yields the highest deviation from
the mean Pareto values, where RANS simulations predict three values of f2(x) outside the
uncertainty bounds. These outliers show a slight overestimation of f1(x) and a reasonably
high underestimation of f2(x). RANS models the turbulence instead of resolving it and
levels of known uncertainties in RANS turbulence models (including k− ω SST) have been
documented against high-fidelity methods [30, 31, 119–121]. Therefore, marginal inaccuracies
when modelling complex turbulence are expected as seen in the results.

On the other hand, the comparison of experimental values is depicted in Fig. IV.17b and
IV.17c, where the prediction of mean values of f1(x) is inside the uncertainty bounds of the
surrogate model for all cases. Furthermore, results show that designs that aim to reduce
pressure loss incur lower uncertainty.

Regarding f2(x), since it is not equitable to evaluate directly the function due to the
limitations of the present experimental methodology, a modified version of the objective
function and its associated uncertainty is defined as

F2(x) = −
(
uΩ − u′Ω − σuΩ

uinlet

)∣∣∣∣
x ∈ [−1,0,1]D

, (IV.14a)

ϵF2(x) = F2(x)LDV

∣∣∣∣1− F2(x)LDV

F2(x)CFD

∣∣∣∣ , (IV.14b)

where ϵF2(x) is the associated uncertainty of the F2(x) function and the subscripts LDV
and CFD denote the evaluation of the function by experimental and numerical methods,
respectively. The new function is evaluated for both CFD and LDV in order to perform a
trustworthy comparison of the numerical and experimental results evaluated and averaged
at the sampled cross-sections (x ∈ [−1, 0, 1]D). The objective of this evaluation is to validate
experimentally the axial velocity and TKE predictions by CFD to ensure a correct estimation
of f2(x).

Regarding the experimental validation (Fig. IV.17b), although the results yield high agree-
ment for all f1(x) values, where the mean value of the experiments fits inside the surrogate
uncertainty in all cases, there are higher associated uncertainties when approximating F2(x)
by experimental methods. The higher uncertainties are most likely due to the inability of
current LDV hardware to obtain the same resolution as CFD methods, and the approximation
of u′ΩLDV ≈ Ixux (where Ix is the axial turbulence intensity) due to the 1-dimensional data
yield by LDV experiments.
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Figure IV.17: Pareto front validation results with their dedicated uncertainty.

Despite these limitations, the mean experimental value of F2(x) for case A is inside
the uncertainty bounds. Nevertheless, the rest of the cases overestimate the mean value
outside the numerical uncertainty. Concurrently, designs that aim to reduce F2(x) suffer
from significant uncertainty due to the complex flow behaviour throughout the flow meter
and the limited accuracy of the present LDV and RANS simulations. Notwithstanding, the
combined uncertainty of the experiments and the surrogate is partly inside the conformity
bounds in all cases.

A more detailed analysis for the experimental validation is shown in Fig. IV.17c, where a
comparison is performed between CFD and LDV results of the variables defining F2(x) for
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each cross-section and case. Whereas values of uΩ are reasonably well-predicted in all cases,
values of u′Ω are overall slightly over-predicted and values of σuΩ are under-predicted by the
numerical simulations. Case B shows the best agreement with experimental results whereas
the rest of the cases display a similar deviation from the experimental data.

IV.4 Conclusions

This study showed the suitability of design optimisation methods based on Kriging surrogate
models to efficiently optimise residential ultrasonic flow meters. It has likewise been shown
that these flow meters display a complex flow behaviour that wall-modelled RANS k−ω SST
is able to predict with relatively good agreement even for diverse configurations of the
baseline geometry evaluated.

Two characteristic functions based purely on fluid mechanics have been defined to ana-
lytically evaluate the performance of ultrasonic flow meters. One of the functions evaluates
the pressure drop of the flow meter, whereas the other function evaluates the measurement
uncertainties with a novel approach by analysing the flow complexities and unsteadiness
throughout the flow meter sound path.

An approach of sampling by LHS together with an optimisation search infill criteria based
on Bayesian strategies and the expected improvement (E[I(x)]) function have shown to be
an efficient methodology to reach a high-quality response surface in a 5-dimensional design
space yielding noisy results on the objective space. The optimal sampling found in this study
suggests the use of n0 = nEGO = 10K to obtain a high-quality and space-filled surrogate.

The MOEA algorithm NSGA-II has shown its effectiveness to obtain a non-dominated
front of solutions for the multi-objective problem, minimising both the pressure losses and
measurement uncertainties of the flow meter and maximising the objective space exploration
while avoiding local minima.

On one hand, the combination of numerical samples and LDV experiments have validated
the surrogate and CFD predictions at the Pareto front with a relatively good agreement for
f1(x) and its association with pressure losses, where all results are inside the established
uncertainty bounds of 3σ. On the other hand, predictions of the measurement uncertainty
function f2(x) have incurred higher uncertainties in connection to the limitations of current
LDV hardware and low-fidelity RANS methods. Nevertheless, f2(x) validation results are
partly inside the conformity bounds of the numerical and experimental data obtained. These
results show that from an engineering standpoint, applied optimisation can be acted upon
in industrial cases following the methodology of this study. Nonetheless, more detailed
and accurate tools both numerically and experimentally can be employed if a more precise
prediction of the flow is required.

Concerning the optimisation results, it has been shown that diverse geometries of the
flow meter yield improved performance and lower pressure losses than the baseline case. A
set of improved designs is found where non-dominated solutions range from a 67% pressure
drop reduction to an 8.7% measurement uncertainty reduction relative to the baseline case.
Specifically for case B in this study, improvements show a numerical 37.4% pressure drop
reduction and a 4.9% measurement uncertainty reduction relative to the baseline case.

Finally, the work done in this study has shown the efficiency, robustness, and accuracy
of CFD-RANS k − ω SST model applied to DACE design optimisation based on Kriging
surrogate modelling to improve the design of ultrasonic flow meters where a thorough
validation has been performed based on numerical simulations, pressure drop, and LDV
experiments. The methodology applied in this study has the potential to likewise improve
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wall-bounded systems governed by fluid motion with similar features.
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V
Shape Optimisation

CFD-aided morphing and design optimisation of ultrasonic flow
meters

ABSTRACT Ultrasonic flow meters with an intrusive two-stand configuration present a
complex flow behaviour due to their unique geometry, which offers an interesting and
challenging case to evaluate optimisation methods in wall-bounded flows. In this study,
the design and analysis of computer models and shape optimisation by mesh morphing are
utilised to predict the turbulent flow and perform a robust two-step geometry optimisation
of the flow meter. Design optimisation is accomplished by surrogate modelling based on
Kriging, Latin hypercube sampling, and Bayesian strategies. A novel function to quantify
flow meter measurement robustness is evaluated together with pressure drop in order to
define a multi-objective optimisation problem. The design optimisation Pareto front is shown
and compared numerically and experimentally. Subsequently, one of the non-dominated
designs is further improved by mesh morphing with the aid of the adjoint method, acquiring
a novel topology with further optimisation gains. The final results display performance gains,
and the final geometrical changes in the 3D space are shown. The applied methodology
provides a robust and efficient framework to evaluate design changes and improve complex
internal-flow geometries with similar features.

REFERENCE [82] : M. J. Rincón, M. Reclari, X. I. A. Yang, and M. Abkar (2023). “CFD-aided
morphing and design optimisation of ultrasonic flow meters,” 14th ERCOFTAC Symposium on
Engineering Turbulence Modelling and Measurements. Barcelona, Spain.

V.1 Introduction

Ultrasonic flow meters employing an intrusive two-stand configuration exhibit intricate flow
characteristics owing to their distinctive geometry. This feature presents an interesting and
demanding scenario for assessing optimisation techniques in wall-bounded flows.

The operational principle of these meters relies on measuring the time differential of
sound waves transmitted by piezoelectric transducers in both directions relative to the flow.
The interaction between the waves and the flowing medium results in wave acceleration and
deceleration, leading to a time disparity that enables precise estimation of the volumetric
flow passing through the flow meter.

The fluid flow throughout these systems has been thoroughly studied with the use of
computational fluid dynamics (CFD) thanks to the advancements in computer hardware,
numerical, and experimental methods [59]. However, CFD methods are nonetheless compu-
tationally expensive and, in order to perform comprehensive optimisation studies, diverse
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methodologies that rely on mathematical complexity rather than considerable computational
power are generally preferred in order to reduce limitations on resources and time.

In this regard, design, shape, and topology optimisation methods can be used with
the aid of CFD to geometrically improve similar systems [122]. On the one hand, design
optimisation methods are based on the characterisation of key geometrical parameters,
their evaluation by design analysis of computer experiments (DACE), statistical methods,
and diverse optimisation algorithms which are problem-specific [76, 95, 96]. On the other
hand, shape and topology optimisation allows a cost-effective evaluation of the gradient
of an objective in function of a higher number of design variables by the use of the adjoint
formulation in their discrete or continuous versions [48, 49].

There are several studies which employ design and shape optimisation methods to opti-
mise the shape of diverse engineering applications. These studies are generally applied to
problems where structured meshes are commonly used, such as canonical flow cases and
simplified external aerodynamics [58], which allows for flexible and accessible mesh morph-
ing. However, in the literature, internal flow and highly constrained problems with the use
of unstructured meshing (as in the case of ultrasonic flow meters) are lacking comprehensive
studies and the analysis of the results obtained with these methods.

In this study, a two-step geometrical optimisation of a small-diameter flow meter is
performed. Starting from a baseline geometry, the first step employs design optimisation by
DACE and the second, the use of shape morphing by the adjoint method. The optimised
results obtained are numerically verified by means of high-quality CFD simulations. Section 2,
elaborates on the background and application of the design and shape optimisation methods
in ultrasonic flow meters, while Section 3 showcases the results obtained and discusses the
findings. Finally, Section 4 concludes this study with final remarks and future considerations.

V.2 Methodology

V.2.1 Design optimisation

To approach the optimisation problem, the performance parameters to optimise the system
must be defined. In this regard, two objective functions for design optimisation are defined
as

f1(x) =
∆p

u2inlet
, (V.1a)

f2(x) = − V

Vref

(
uΩ − u′Ω − σuΩ

uinlet

)
, (V.1b)

where uΩ is the integrated velocity of the fluid in the sound-path volume, u′Ω is the integrated
velocity fluctuations in the sound-path volume, and σuΩ

is the standard deviation of the
integrated velocity distribution in the sound-path volume. Additionally, uinlet = 1.41 m s−1

is the uniform velocity of the fluid at the inlet, and V and Vref = 4.704 · 10−6 m3 are the
volume and the reference volume of the reflected sound-path respectively. For an inlet pipe
diameter of D = 20 mm and a kinematic viscosity of ν = 1.00341 · 10−6, the case displays
a ReD = 2.82 · 104 and Reτ = 760. From these objective functions, Eq. (V.1a) represents
the pressure drop across the flow meter whereas Eq. (V.1b) represents the measurement
robustness of the flow meter. More information about the calculation of these quantities can
be found in [76].
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Figure V.1: Depiction of flow meter geometry with design variables to optimise and the
baseline flow meter geometry for y-normal (top), and z-normal (bottom) planes. The solid
lines show the baseline geometry, and the dotted lines depict the threshold geometries.

Table V.1: Thresholds of the design optimisation and relative variation compared to the
baseline case.

Parameter Value

Baseline case Minimum Maximum Relative variation

Ds 0.6125D 0.3655D 0.9D 0.59− 1.47
Lsus 1.25D 0.5D 2.75D 0.4− 2.2
Lsds 1.25D 0.5D 2.75D 0.4− 2.2
hsus 0.7785D 0.25D 0.865D 0.32− 1.11
hsds 0.7785D 0.25D 0.865D 0.32− 1.11

To approach the design optimisation problem, firstly, a surrogate based on Kriging is
generated following DACE, and secondly, the multi-objective evolutionary algorithm NSGA-
II [118] is used to optimise the surrogate, obtaining a non-dominated Pareto front of solutions.

To construct the surrogate, the Latin Hypercube sampling strategy is used to perform
an initial investigation of the objective space, where Bayesian optimisation is further imple-
mented to explore areas of high variance and possible minimum locations. The surrogate is
built by a sequence of computer-aided design (CAD) geometry generation, meshing, CFD
solution, and post-processing of results [46].

Five design parameters and their thresholds are defined (Figure V.1 and Table V.1) respect-
ing the geometry constraints.

For the second part of the optimisation, one of the results from the Pareto front is chosen
and subsequently improved by shape optimisation.

V.2.2 Adjoint shape optimisation

Taking into consideration the primal Navier-Stokes equations, continuity and momentum,
which are in function of

f (u, p, bn) , (V.2)

where u is the velocity vector, p is the kinematic pressure, and bn is a set of design variables.
Ideally, in shape optimisation problems, each grid point is considered a state variable. This
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offers great flexibility to explore the objective space and find optimised solutions, however,
the cost of the computation of local derivatives by traditional methods (e.g. direct or finite
differentiation) is not justified, since the cost of these methods scales linearly with the number
of design variables. Hence this is clearly unfeasible for the typical number of grid points
that a flow problem requires. To circumvent this issue, the adjoint method is applied. The
adjoint method is a cost-effective methodology based on Lagrange multipliers to compute
the gradient of a function with respect to the design variables in numerical optimisation
problems. Hence, the adjoint objective function is defined as a linear combination of each
objective as

J (bn) = ω1j1 (bn) + ω2j2 (bn) , (V.3)

where j1(bn) and j2(bn) are the 2 objective functions defined in this study, and ωi is the
associated weight given to each objective. Due to the added complexity of the adjoint method
in the numerical methodology and to ease the computation of the results, the objective
functions from Eqs. (V.1a) and (V.1b) are slightly modified as follows

j1(bn) =

∫ outlet
inlet

(
p+ ρu2

)
dS

2Su2inlet
, (V.4a)

j2(bn) = − V

Vref

∥uΩ∥ − u′Ω − σuΩ

uinlet
, (V.4b)

where j1(bn) evaluates the normalised total pressure drop between inlet and outlet patches,
and j2(bn) evaluates the measurement robustness of the flow meter throughout the measure-
ment volume Ω by the calculation of the velocity magnitude ∥uΩ∥ instead of its calculation
by its components as seen in Eq. (V.1b).

The adjoint method enables the computation of

dJ

dbn
=

∂J

∂bn
+

∂J

∂xk

dxk
dbn

, (V.5)

without computing ∂u
∂bn

and ∂p
∂bn

first. This requires solving the set of equations for the adjoint
pressure (q), adjoint velocity (v), and the associated adjoint variables of the chosen turbulence
model (k − ω SST in this study). Once the gradient dJ

dbn
has been computed, the steepest

descent gradient-based optimisation method is used to update the state variables iteratively,
constraining the maximum grid displacement to 0.01D (0.2 mm) per iteration. Hence, the
problem is approached by first solving the primal RANS k − ω SST equations and then
solving the respective adjoint equations to obtain the sensitivities with respect to the objective
function J . For more information about the applied continuous adjoint method and adjoint
wall functions, the reader is referred to [123].

While the initial flexibility gained from morphing all available grid points is appealing,
it can lead to challenges associated with numerical stability and potential self-intersected
edges in the geometry. To mitigate these problems, it is common practice to impose mesh
morphing constraints and control points to restrict and smooth the displacement. Control
points are introduced in order to constrain the displacement of the flow meter reflectors
and pipe, allowing movement only on the surfaces of both stands without deforming the
reflectors and pipe walls. The sensitivities calculated on these surfaces are then interpolated
to the control points, which are organised into nonuniform rational B-splines (NURBS) using
the methodology proposed by [124, 125]. For this purpose, two separate 3D control boxes
are defined, each comprising one of the stands. These control boxes consist of (x, y, z) =
(7, 5, 5) points and have B-spline basis function degrees of (pu, pv, pw) = (5, 4, 4). Finally, a
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laplacian mesh morphing algorithm is employed to deform the mesh, achieving the desired
modifications.

Since the downstream stand has a little-to-none influence on the flow in the flow meter
constriction (x ∈ [−1, 1]D) and upstream, the shape optimisation is performed in two steps:
an initial optimisation of the upstream stand, and subsequent optimisation of the downstream
stand starting from the obtained geometry from the upstream stand optimisation. Thus, the
final geometry obtained is a superposition of these two steps.

The final geometries obtained are extracted and re-meshed to minimise possible numerical
uncertainties created by mesh morphing, and the results are compared with the baseline,
design optimisation, and shape optimisation cases utilising the same mesh refinement used
in the adjoint shape optimisation.

V.3 Results

A set of 150 RANS simulations (50 by LHS to create an initial surrogate and 100 by Bayesian
optimisation) is performed to build the complete surrogate. The results of the multi-objective
optimisation applied to the Kriging-based surrogate yield a Pareto front with estimated
uncertainties (Figure V.2a). From the non-dominated solutions, 4 cases displaying diverse
gains for each of the objective functions are extracted and experimentally validated following
the study by [76] (Figure V.2b).

The results and methodology of the design optimisation show that various geometries
of the flow meter lead to increased performance and lower pressure losses compared to the
baseline design. A group of improved non-dominated designs are identified ranging from a
67% reduction in pressure drop to an 8.7% increase in measurement robustness compared to
the baseline design.

Regarding the geometrical changes, the results display a general tendency to enlarge
the tail of the downstream stand as much as possible and to reduce the tail length of the
upstream stand compared to the baseline case. Intuitively, cases leading towards an im-
provement of f1(x) (C and D), show a reduced blockage ratio in the pipe and the stand
volume is dramatically reduced to minimise interactions leading to pressure drag in the
flow. Alternatively, cases focusing on improving f2(x) (A and B) display a larger blockage
ratio where the upstream stand is slightly smaller in height compared to the downstream
stand. A globally favourable case representing a compromise of both objectives is case B,
with a numerical decrease of 37.4% in pressure drop and an increase of 4.9% in measurement
robustness relative to the baseline case and according to Eqs. (V.1a) and (V.1b), respectively.

Subsequently, optimised case B from design optimisation is chosen to be evaluated and
improved by shape optimisation and the adjoint method. The first-step optimisation, taking
into consideration only the upstream stand, shows an objective functions evolution leading to
the minimisation of both functions with the asymptotic behaviour of ⟨J⟩/J0 ≈ 0.925 after 27
primal-adjoint iterations (Figure V.3a). Performing another shape optimisation to the yielded
geometry of the last iteration of this first step, only the downstream stand is optimised.
Since the downstream stand has little-to-no influence on the upstream flow, the objective j2
only changes marginally where the objective j1 gets minimised displaying an asymptotic
behaviour at ⟨J⟩/J0 ≈ 0.97 after iteration 25 (Figure V.3b).

According to the objective function evaluation, the geometry of iteration 25 is chosen as
a converged and optimised case. This case is therefore compared and analysed against the
baseline and the design optimisation cases.

Regarding j1, the analysis of the function results is broken down into static, dynamic, and
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(a) Non-dominated solutions from the design opti-
misation and chosen experimental cases.

(b) Comparison of geometries of the experimental
cases chosen.

Figure V.2: Design optimisation results. Note that in Fig. V.2a, f1(x) represents the static
pressure losses and f2(x) represents the measurement robustness of the flow meter.
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Figure V.3: Objective functions evolution for both stands during their shape optimisation. It
should be noted that j1 represents the total pressure loss and j2 represents the flow meter’s
measurement robustness.

stagnation pressures. Results in Fig. V.4a show that the dynamic pressure contribution in
total pressure drop is negligible compared to the static pressure contribution. The design
optimisation case yields a 24.24% total pressure drop reduction whereas the adjoint optimi-
sation case yields a 23.2% reduction compared to the baseline case. However, the dynamic
pressure losses of the design optimisation and adjoint optimisation cases are 1.95 and 11.73
times respectively higher than the baseline. This again showcases the negligible effect of the
dynamic pressure on the total pressure drop.

Similarly, for j2, the function is broken down into its components: the measurement
volume velocity magnitude uΩ, the measurement volume velocity fluctuations due to TKE
u′Ω, and the spatial flow uniformity in the measurement region σuΩ . The results in Fig.
V.4b showcase the improvement of the measurement robustness by both design and adjoints
optimisation cases. The design optimisation case yields an overall 0.3% improvement whereas
the adjoint case yields a 7.07% improvement in measurement robustness compared to the
baseline case. Both the design optimisation and adjoint cases slightly compromise the
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Figure V.4: Objective functions comparison between cases with their associated components.
It should be noted that in Fig. V.4a, the stagnation pressure is equal to the objective function
j1.

velocity magnitude in order to greatly decrease the velocity fluctuations and increase the
flow uniformity in the measurement volume. The adjoint case displays the best measurement
robustness by decreasing uΩ by 3.6%, u′Ω by 22.75%, and σuΩ by 13.9%, respectively, to the
baseline case.

Qualitatively, the differences in the predicted axial velocity fields are not clearly visible in
the measurement region. The most remarkable variation between cases is the minimisation of
the recirculation zones downstream, which leads to a pressure drag reduction. It is remarkable
to highlight the main differences between the new wall-resolved results obtained in this
study and the wall-modelled results from [76] for the design optimisation case. These results
suggest that the use of wall models cannot predict the impending boundary layer detachment
when using the k − ω SST model. Simultaneously, k − ω SST is known to overestimate
boundary layer separation and re-attachment by the literature [86, 87]. Future work suggests
performing high-fidelity numerical simulations and/or experimentally investigating these
regions to validate the results and which methodology is more accurate.

Regarding the measurement robustness, since the flow mechanics between the stands
are very complex (displaying clear areas of non-equilibrium and adverse pressure gradients,
strong vortices, and separation and reattachment of flow [59]), it is not straightforward
to envision an improvement of j2 with the yielded geometries by traditional engineering
knowledge.

The mesh morphing of the adjoint case is considerable and clearly visible compared
to the initial geometry of the design optimisation case (Figure V.6). The surface normal
displacement shows the inwards and outwards deformation generated by the method on the
original surface. On the one hand, it can be seen that the upstream stand tail is marginally
enlarged and generally, the blockage ratio of the stand in the pipe is increased. The shape
displays a more streamlined topology and the upper section of the stand is slightly filleted.
On the other hand, the downstream stand shows a general volume reduction, yielding a
more streamlined topology with few changes from the original shape. The upper section of
the stand is likewise filleted and the length of the tail is not changed.

It is critical to remark on the possible drawbacks of the adjoint method and mesh morphing.
As initially seen, the optimisation gains calculated during the adjoint optimisation process
(Figure V.3) are higher than the yielded results of the re-meshed final geometry simulation
(Figure V.4). This is suggested to be due to the re-meshing procedures, the deterioration of
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final morphed geometry and comparison against design optimisation case. Top: y-normal
plane. Bottom: z-normal plane.

the mesh quality during the adjoint optimisation, and the possible predictive inaccuracies of
boundary layer detachment and reattachment by RANS k− ω SST. Nevertheless, the final
geometry obtained does yield overall improved numerical results compared to the initial
design.

V.4 Conclusions

The results and methodology of the optimisation have demonstrated that various geometries
of a small-diameter flow meter lead to higher measurement robustness and lower pres-
sure losses compared to the baseline design. The chosen optimisation methodology has
improved the baseline design by employing design optimisation with the aid of surrogates
and, subsequently, shape optimisation with mesh morphing.

A group of improved non-dominated designs have been identified and validated numeri-
cally and experimentally regarding design optimisation. One of these cases has been further
optimised by employing mesh morphing and the fast calculation of derivates by the adjoint
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method.
The final design has been achieved by employing a 2-step shape optimisation procedure,

improving first the upstream stand and, secondly, the downstream stand, where a final
superposed geometry has been obtained. The analysis of the baseline, design, and adjoint
optimisation geometries has shown that a gradual improvement of the objectives is achieved
by CFD simulations. However, the expected improvements by the adjoint optimisation
method are compromised when the mesh gets too deformed.

Due to the complexity of the system and the current implementation limitations of the
adjoint method, the objective function results obtained during the shape optimisation do
not completely agree with the final results once re-meshing and high-quality simulations are
performed. Nonetheless, the adjoint method has yielded improved geometries in measure-
ment robustness while only slightly increasing pressure drop with respect to the initial case.
These results are showcasing the implications of this methodology for future engineering
applications.

In conclusion, this study has demonstrated the numerical effectiveness, reliability, and
precision of using a 2-step global optimisation method with CFD-RANS k− ω SST model to
enhance the design of ultrasonic flow meters. The first step is built on DACE design optimisa-
tion and Kriging surrogate modelling, whereas the second step is based on the adjoint method
and mesh morphing. A comprehensive verification process has been conducted through
numerical simulations, yielding improved designs. Finally, the methodology employed in
this study has the potential to improve other wall-bounded systems with similar fluid motion
characteristics.
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VI
Turbulence Modelling for Secondary Flows

Progressive augmentation of turbulence models for secondary
flow prediction by computational fluid dynamics driven surro-
gate optimisation

ABSTRACT Generalisability and the consistency of the a posteriori results are the most critical
points of view regarding data-driven turbulence models. This study presents a progressive
improvement of turbulence models using simulation-driven Bayesian optimisation with Krig-
ing surrogates where the optimisation of the models is achieved by a multi-objective approach
based on duct flow quantities. We aim for the augmentation of secondary-flow prediction
capability in the linear eddy-viscosity model k− ω SST without violating its original perfor-
mance on canonical cases e.g. channel flow. Progressively data-augmented explicit algebraic
Reynolds stress correction models (PDA-EARSMs) for k− ω SST are obtained enabling the
prediction of secondary flows that the standard model fails to predict. The new models are
tested on channel flow cases guaranteeing that they preserve the successful performance of
the original k− ω SST model. Subsequently, numerical verification is performed for various
test cases. Regarding the generalisability of the new models, results of unseen test cases
demonstrate a significant improvement in the prediction of secondary flows and streamwise
velocity. These results highlight the potential of the progressive approach to enhance the
performance of data-driven turbulence models for fluid flow simulation while preserving the
robustness and stability of the solver.

REFERENCE [126]: M. J. Rincón, A. Amarloo, M. Reclari, X. I. A. Yang, and M. Abkar (2023).
“Progressive augmentation of Reynolds stress tensor models for secondary flow prediction by
computational fluid dynamics driven surrogate optimisation,” International Journal of Heat
and Fluid Flow, 104, 109242.*.

VI.1 Introduction

Reynolds-averaged Navier-Stokes (RANS) equations are widely preferred over high-fidelity
methods like direct numerical simulation (DNS) and large-eddy simulation (LES) for the
industrial applications of computational fluid dynamics (CFD) due to their robustness and
computational speed. In RANS, the physics of turbulence is predicted by a Reynolds stress
tensor (RST) model; hence, the results obtained are dependent on the performance of these
model predictions. Despite the popularity of RANS simulations, the common empirical
models have been found to have shortcomings [29], particularly in capturing Prandtl’s second
kind of secondary flow [127]. This limitation is accentuated in the most commonly used

*M.J. Rincón and A. Amarloo contributed equally to this study.
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RANS turbulence models (e.g. two-equation models based on the Boussinesq assumption
like k− ε and k− ω) due to their inability to predict complex turbulence anisotropy.

Although the development of reliable RANS turbulence models has remained stagnant for
decades [30], the recent advances in data-driven techniques have motivated a new wave of
studies aiming at improving the performance of RANS turbulence models [31]. The majority
of these studies have used available high-fidelity data of the RST values to train a model and
improve the predictions obtained from empirical models [32–37]. These studies have mainly
focused on obtaining ways to correct the RST prediction [87, 121, 128–130], or to modify the
available empirical models [40, 131, 132]. Taking into consideration a different approach, CFD-
driven models [38, 39] have shown promising results in finding reliable variants of RANS
turbulence modelling. Hence, CFD-driven models can guarantee consistency and robustness
in a posteriori results (i.e. by a model-consistent training method [40]), as opposed to other
data-driven RANS models (i.e. by a a priori-training method [40]) since they are optimised
while performing simulations to guarantee the improvement of the results obtained by new
models.

In order to improve these models by a CFD-driven approach, it is necessary to solve a
complex optimisation problem. In this regard, the use of optimisation algorithms that aim
to minimise or maximise one or more functions in a multi-dimensional parameter space is
essential. Some of the commonly used optimisation algorithms include slope followers [133],
simplex methods [42], multi-objective evolutionary [43], and particle swarm algorithms [44],
among others. However, these algorithms require the evaluation of an objective function,
which can be computationally expensive if CFD simulations are involved, especially in cases
where a large number of test configurations are required.

To address this issue, development has been made towards the use of a relatively smaller
set of simulations to create computationally efficient surrogate models, also known as re-
sponse surfaces, that can then be fastly optimised [134]. Response surfaces are mathematical
models that approximate the behaviour of the objective function in the parameter space
and can be used to predict the function values at untested configurations. This approach
has been applied to various engineering applications, such as optimising complex internal-
flow systems based on ultrasonic flow metering [59, 76], improving the efficiency of gas
cyclones [102], optimising the aero-structural design of plane wings [101], and improving the
performance of ground vehicles [104], among others.

There are only a few studies that have investigated the use of optimisation algorithms
and data-driven models for the improvement of the RANS turbulence models. Reference
[38] combined CFD-driven optimisation with gene expression programming to obtain a
correction for the RST modelled by the k− ω SST model. They showed that the CFD-driven
model had an improved performance compared to the data-driven model trained on the
same case. They concluded that CFD-driven models have a great potential for developing
reliable improved RANS models even though their new model is limitedly optimised for
wake mixing flow. In another study, Ref. [39] used response surfaces to find the best linear
combination of candidate functions to correct the RST values modelled by the k − ω SST
model for the cases with flow separation. They also showed that a CFD-driven approach
yields models that perform better than the data-driven models trained on the same set of
data. In Ref. [99], the authors resort to Kriging and obtained wall models for boundary layer
flows subjected to system rotation in an arbitrary direction. The model was shown to predict
deviations in the mean flow from the equilibrium law of the wall. In Ref. [135], the authors
employed an evolutionary neural network and arrived at numerical strategies for the pressure
Poisson equation with density discontinuities. Furthermore, the CFD-driven methodology is
extended to a multi-objective optimisation for coupled turbulence closure models by [136].
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Figure VI.1: Flow characteristics of a duct flow with AR = 1 and height and width of 2H.
Note the formation of secondary motions and their symmetry.

However, the application of surrogate-based optimisation (SBO) and Bayesian optimisation
methods [137] to improve complex mathematical tools such as RANS turbulence modelling
has not been widely explored. In this regard, SBO and Bayesian optimisation methods show
potential in evaluating problems based on design and analysis of computer experiments
(DACE) [46] with a low-to-medium number of parameters to optimise.

One of the most important topics in data-driven RANS modelling is the generalisability
of the new models for unseen cases [138]. It has been suggested that using a multi-case CFD-
driven approach to consider different turbulent phenomena during the optimisation process
can help with the generalisability of the new model [139]. However, even these new models
are still specific to either wall-free or wall-bounded flows; therefore, the generalisability
problem requires further investigation.

The generalisability is the ability of data-driven models to perform well both with unseen
cases (out of the training cases range) and with canonical cases like channel flow. The
combination of a conventional progressive approach with data-driven approaches has been
proposed to address this issue [140]. In the progressive approach, the starting point is
a baseline model that is already performing adequately for simple flows and adds more
complexity step by step without violating the model’s performance for flow cases that the
model was calibrated against. In this study, we use the progressive approach to add the
capability of secondary flow reconstruction to a linear eddy-viscosity model without violating
its successful performance in a channel flow simulation.

Since the CFD-driven technique ensures the consistency of the a posteriori results and
the progressive approach aids with the generalisability of the new models, in this study we
combine the CFD-driven surrogate and Bayesian optimisation technique with the progressive
approach to obtain a progressively data-augmented explicit algebraic Reynolds stress model
(PDA-EARSM) to the k− ω SST [64] model for exclusively predicting secondary flows. We
likewise investigate the potential of a progressive approach in the development of generalis-
able CFD-driven RANS models. Since standard linear eddy-viscosity models have difficulty
predicting secondary flows [127], we use the Pope’s decomposition of RST [141] to add a
non-linear term of the RST to the model, and we optimise the new models for the prediction
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of secondary flows induced by a duct flow with an aspect ratio (AR) of 1 (squared) at bulk
Reynolds number of 3500 (depicted in Fig. VI.1). The new models’ boundary-layer prediction
is tested on the channel flow to ensure that they do not affect the successful performance of
the original model. Considering the generalisability, the new models are verified on duct
flow cases with different Reynolds numbers and aspect ratios. Furthermore, we test the
new models against an extremely disadvantageous case regarding accurate flow prediction
by RANS models, we verify the models in a case where the secondary flow is induced by
roughness patches in a channel flow [142, 143] with a nominally infinite Reynolds number.
Finally, we test the performance of the models against two novel data-driven EARSMs and
the traditional BSL-EARSM based on the constitutive relation of Wallin and Johansson [144].

VI.2 Methodology

This section presents the structure of the progressive correction model for RANS modelling
and the optimisation technique for training the correction model. By using the Reynolds
decomposition of velocity and pressure, the Navier-Stokes equation for an incompressible
steady flow can be written as [108]

ui = ⟨ui⟩+ u′i, p = ⟨p⟩+ p′, (VI.1)

∂i⟨ui⟩ = 0, ∂j(⟨ui⟩⟨uj⟩) = −1

ρ
∂i⟨P ⟩+ ∂j (ν∂j⟨ui⟩ −Aij) , (VI.2)

where i, j = 1, 2, 3 are indicating the streamwise (x), spanwise (y), and vertical (z) directions,
respectively. ui and p are velocity and pressure decomposed to a temporal mean term,
indicated by ⟨·⟩, and fluctuations, indicated by ·′. The kinematic viscosity is denoted by ν, and
ρ is the fluid density. Aij = ⟨u′iu′j⟩ −

1
3⟨u

′
ku

′
k⟩δij is the anisotropic part of RST, and pressure is

modified with the isotropic part of the RST as ⟨P ⟩ = ⟨p⟩+ 1
3ρ⟨u

′
iu

′
i⟩.

In this study, the k − ω SST [64] model is used as a baseline model to be progressively
corrected to predict secondary flows. In the standard k− ω SST model, Aij is modelled as

ABL
ij = −2νtSij , (VI.3)

where Sij =
1
2(∂i⟨uj⟩+ ∂j⟨ui⟩) is the strain rate tensor, νt is the turbulent viscosity which is

calculated by values of turbulent kinetic energy (TKE) (i.e. k), and the specific dissipation
rate (i.e. ω), which are modelled by the original two-equation model [77].

VI.2.1 Progressively data-augmented EARSM

We extend the structure of the linear eddy-viscosity model (Eq.VI.3) by following Pope’s
decomposition [141] of the RST and considering the two first terms of the decomposition,

Aij = 2kα(1)Sij

ω
+ 2kα(2)SikΩkj − ΩikSkj

ω2
, (VI.4)

where Ωij =
1
2(∂i⟨uj⟩ − ∂j⟨ui⟩) is the rotation rate tensor, and α(n) are unknown functions of

5 invariants defined as,

I1 =
tr(SikSkj)

ω2
, I2 =

tr(ΩikΩkj)

ω2
, I3 =

tr(SikSkmSmj)

ω3
,

I4 =
tr(ΩikΩkmSmj)

ω3
, I5 =

tr(ΩikΩkmSmlSlj)

ω4
.

(VI.5)
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A comparison between Eq. VI.3 and Eq. VI.4 shows that the k− ω SST model is already
providing the first term in Pope’s decomposition of the RST (i.e., the turbulent viscosity);
therefore following the progressive approach, only the second term is trained in this study.
The reason behind this decision is to preserve the original performance of the k − ω SST
model in the prediction of the turbulent viscosity (i.e., νt) while the second basis tensor’s
coefficient is determined with the exclusive purpose of secondary flow prediction. Hence,
the new RST model can be written as

Aij = −2νt

(
Sij − α(2)SikΩkj − ΩikSkj

ω

)
, (VI.6)

where νt and ω are modelled by the standard k− ω SST model, where Eq. VI.6 is used for the
production term by the Reynolds stress tensor instead of Eq. VI.3, and the unknown function
of α(2) is determined by the CFD-driven optimisation technique. It should be mentioned
that the linear part of the new model is treated implicitly as turbulent viscosity, and the
non-linear part of the RST is added explicitly to the RANS equations. The assumption
behind the progressive approach is that using only the second basis tensor does not affect the
incompressible parallel shear flow, either in the momentum equation or via production in the
k-equation; therefore, the performance of k− ω SST is preserved in cases where secondary
flow is not present.

Inspired by a sparse regression of candidate functions (SpaRTA) [87] used for α(n), we
use a set of candidate functions to describe α(2) as

α(2) = θ0 +
20∑
i=1

θiDi, (VI.7)

D = {I1, I2, I3, I4, I5, I21 , I22 , I23 , I24 , I25 ,
I1I2, I1I3, I1I4, I1I5, I2I3, I2I4,

I2I5, I3I4, I3I5, I4I5},
(VI.8)

where θi are constant coefficients to be determined by the CFD-driven optimisation process.
To achieve a more efficient sparse optimisation, the normalised candidate functions are
normalised and defined as

Bi =
Di − µi

σi
, (VI.9)

where µi, σi are the mean and the standard deviation of each candidate function Di, respec-
tively. These statistics are calculated based on high-fidelity data from the optimisation case.
Therefore, Eq. VI.7 is rewritten as,

α(2) = C0 +
20∑
i=1

CiBi, (VI.10)

where an optimisation technique determines the coefficients Ci based on the performance of
the correction model for the reconstruction of the high-fidelity velocity field of an optimisation
case.

In this study, only 2D canonical flow cases are considered, since they are computationally
cost-effective. However, reducing the dimensionality of the optimisation problem and using
computational parallelisation is key if a complex 3D case is used in the training process.

Since considering 21 optimisation variables is impractical, making the model unnecessarily
complex and exposed to solution instabilities, two approaches are chosen:
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1. Selecting only the first m leading candidate functions.

2. Reducing the dimensionality of the problem using a statistical technique.

Both of these approaches are compared, and for the purpose of dimensionality reduction,
principal component analysis (PCA) is applied on the Bi functions to obtain the first m
principal components as,

φj =
20∑
i=1

a
(j)
i Bi, (VI.11)

where the coefficients a(j)i are obtained by performing PCA on the high-fidelity data from the
optimisation case. It should be mentioned that PCA also determines which features among
all the 20 features have a higher importance in the variability of α(2) by determining the
a
(j)
i coefficients for each of them. By considering this transformation equation, Eq. VI.10 is

rewritten as,

α(2) = C0 +
m∑
i=1

Ciφi. (VI.12)

Based on the high-fidelity data of the optimisation case, in Sec. VI.3.1 it is shown that the first
two principal components are enough to represent a high percentage of the variability of the
dataset (i.e. m = 2). Therefore, two different structures for α(2) are considered:

α
(2)
I = C0 +C1B1 +C2B2, (VI.13a)

α
(2)
II = C0 +C1φ1 +C2φ2, (VI.13b)

which are described as model I and model II, respectively. Where a unique set of three
coefficients C0, C1, and C2 are determined by a multi-objective optimisation technique for
each of the models.

VI.2.2 Optimisation methods

To approach the optimisation problem, a surrogate based on Kriging and Gaussian processes
(GPs) is built. The surrogate is based on DACE, using observations obtained from a sequence
of CFD solutions and post-processing of results. SBO has shown its advantages for these types
of problems, minimising the number of required observations, and allowing the use of goal-
seeking algorithms such as Bayesian optimisation [115]. To assess the model’s performance,
two main objective functions are established that involve streamwise velocity and streamwise
vorticity, defining a multi-objective optimisation problem. An effective sampling plan is
also outlined, and an infill criterion constrained by quality metrics is specified. Finally, the
methodology is implemented using the general-purpose software OpenFOAM [65]. A flow
diagram of the complete optimisation methodology is depicted in Fig. VI.2.

VI.2.2.1 Objective functions

The principal issue that is assessed in this study is the complete lack of prediction of secondary
flows in RANS turbulence models based on the Boussinesq assumption. In the chosen
optimisation case, the addition of these secondary flow motions is strong enough to also
incur changes in the streamwise direction of the flow. In addition, once the corrections are
made, the mean streamwise flow is simultaneously modified. Since the aim of this study is
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Figure VI.2: Optimisation strategy employed involving an initial sampling plan based on
Latin hypercube sampling (LHS) which is solved by CFD. Subsequently, an initial surrogate
is constructed using Kriging. Since it is likely that the initial sampling may not evaluate
the surrogate in extrema, Bayesian strategies based on efficient global optimisation (EGO)
and the evaluation of the expected improvement (E [I(x)]) function are then applied to
further explore the surrogate and improve its quality. Finally, once the quality requirements
have been met, a genetic algorithm is employed to search for non-dominated optima on the
surrogate model.

to improve the overall flow prediction, it is important to not disregard possible predictions
that could improve secondary flow but worsen streamwise velocity. Hence, two objective
functions that physically describe the streamwise flow and the secondary flow prediction are
defined and evaluated.

In this regard and to holistically evaluate the flow prediction, the normalised error of both
the streamwise velocity and vorticity with respect to high-fidelity data, are evaluated and
taken as objectives to be minimised. To yield a fair and accurate single value representing
these quantities, the volumetric average of each field is computed as the objective functions,
following

j1 =

∫
V (⟨u1⟩PDA-EARSM − ⟨u1⟩HF)dV∫

V (|⟨u1⟩k−ω − ⟨u1⟩HF|)dV
, (VI.14a)

j2 =

∫
V (⟨ω1⟩PDA-EARSM − ⟨ω1⟩HF)dV∫

V (|⟨ω1⟩k−ω − ⟨ω1⟩HF|)dV
, (VI.14b)

where | · | is the absolute value operation, ⟨ωi⟩ = εilk∂l⟨uk⟩ is the vorticity of the mean flow,
where εilk is the alternating unit tensor, HF stands for high fidelity, and k− ω refers to the
solution of the standard k− ω SST model. The definition of these functions yields a value of 1
when their output matches the prediction of k− ω SST and 0 when the predictions match the
high-fidelity data. Subsequently, to evaluate the overall results of the method, a global fitness
function is defined as

J =
1

2
(j1 + j2) . (VI.15)
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VI.2.2.2 Sampling plan

Two main algorithms are used in order to sample observations and data in this study: Monte
Carlo and Latin hypercube. Monte Carlo sampling is used when extracting a test subset to
compute the surrogate quality. Since the chosen sampling plan for the initial observations
is oriented to be space-filling, Latin Hypercube Sampling (LHS) [105] with optimised design
by the enhanced stochastic evolutionary (ESE) algorithm [106, 107] is used to obtain an
initial sample of the surrogate with a minimum number of observations, and simultaneously,
representing the real variability of the parameters. This deterministic sampling technique is a
type of stratified Monte Carlo that divides each dimension space representing a variable into
n0 sections, and only one point is placed in each partition. The initial sample by LHS with
ESE follows n0 = 30K, where n0 is the initial number of observations, and K is the number of
design variables.

VI.2.2.3 Surrogate construction

In the context of a sparse optimisation problem, surrogates are commonly used to approxi-
mate a function y = f(x) based on known observations. In this study, the Kriging method is
chosen for generating the surrogate based on CFD-driven observations. Kriging is one of the
most common surrogate construction methods due to its well-known implementation, ability
to compute uncertainties and speed. Furthermore, it has been proven useful in physical,
uncertainty quantification, and engineering applications [76, 145]. Kriging interpolates the
observations as a linear combination of a deterministic term and a stochastic process, which
is represented by

f̂(x) =
k∑

i=1

βifi(x) + Z(x), (VI.16)

where f̂(x) is the surrogate prediction, β is a linear deterministic model, f(x) is the known
function, and Z(x) is the realisation of a stochastic process with zero mean and spatial
covariance function given by

cov
[
Z
(
x(i)
)
,Z
(
x(j)

)]
= σ2R

(
x(i),x(j)

)
. (VI.17)

Here, the spatial correlation function R determines how smooth the Kriging model is, how
easily the response surface can be differentiated, and how much influence the nearby sampled
points have on the model. In this study, the spatial correlation is defined following the squared
exponential (Gaussian) function as

nx∏
i=1

exp

{[
−θl

(
x
(i)
l − x

(j)
l

)2]}
, ∀θl ∈ R+, (VI.18)

where the correlation scalar θl is used to define the variance of a Gaussian process at each
point, with higher values indicating a stronger correlation between points. By maximising
the maximum likelihood estimation, optimal values for hyper-parameters as θl, mean, and
standard deviation can be found [112].

VI.2.2.4 Quality metrics

The quality of the surrogate refers to how accurately it approximates the true function
being modelled. In order to evaluate this quality, a number of random test observations
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nt = n0 x −→ y, are taken. where nt is a function of the number of initial observations.
Once the test observations have been generated, they are used to compare the surrogate’s
predictions to the true values of the function being modelled. The root-mean-squared error
(RMSE) and Pearson’s correlation coefficient squared (r2), defined as

RMSE =

√∑nt
i=1

(
y(i) − ŷ(i)

)2
nt

, (VI.19a)

r2 =

(
cov(y, ŷ)√

var(y)var(ŷ)

)2

, (VI.19b)

are two common metrics used to evaluate the quality of surrogates. While the RMSE measures
the difference between the surrogate’s predictions and the true values, r2 measures the
strength of its linear relationship. A high RMSE and a low r2 indicate that the surrogate is
performing poorly and needs to be refined, while a low RMSE and a high r2 indicate that the
surrogate is performing accurately and can be used with confidence. Hence, these values
serve as reference points to determine whether the surrogate model is accurate enough to be
used in the optimisation process.

In this study, thresholds of 0.2 for RMSE and 0.8 for r2 are established as indicators of
good surrogate quality, based on previous studies [113, 114].

VI.2.2.5 Infill space exploration

Efficient global optimisation (EGO) based on Bayesian optimisation strategies is used to
improve the accuracy of surrogate models and decrease overall uncertainty [115, 116]. This
is achieved by exploring the surrogate beyond the initial sampling. EGO is a well-known
algorithm that employs both local and global searches to find the optimal solution by means
of the expected improvement (E[I(x)]) function as a key metric to direct its search. The
function calculates the potential improvement that can be obtained by evaluating a new
observation point based on the current best solution and the overall uncertainty of the
surrogate model [117]. The implementation of this function provides the necessary sparsity-
promoting behaviour to explore the design space in regions where their initial sampling was
not sufficient. The expected improvement function is defined as

E[I(x)] = (fmin − µ(x))Φ
(
fmin − µ(x)

σ(x)

)
+ σ(x)ϕ

(
fmin − µ(x)

σ(x)

)
, (VI.20)

where fmin = minY , and Φ(·) and ϕ(·) are respectively the cumulative and probability
density functions of N (0, 1), following the distribution N (µ(x),σ2(x)). Using EGO to explore
the surrogate beyond the initial sampling aids in decreasing the overall uncertainty and
improving the precision of the surrogate model, especially in the unexplored and extreme
regions of the design space. Consequently, the algorithm can effectively balance local and
global searches and locate the optimal solution more proficiently. Hence, the following
sampling point is determined by

xn+1 = argmax
x

(E[I(x)]) . (VI.21)

In order to fully explore the design space, new data is collected for each objective function
separately. This involves taking one sample of nEGO = n0 x −→ y for each objective, resulting
in a total of 180 new sampled points (n0 for each of the objectives). With the addition of
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the initial LHS, the total number of observations sums to 270 per model, yielding a cost-
efficient computational problem to be analysed by Kriging. However, since the design space
explored is large and the use of Bayesian optimisation might sample observations in very
close proximity, the gradients between points may be high, yielding possible noise. Therefore,
the surrogate is regularised following the methodology by [146], where noise is considered to
be Gaussian distributed and its homoscedastic variance is evaluated based on the performed
observations to obtain a smooth response surface.

VI.2.2.6 Multi-objective solution

The Kriging method offers a significant benefit since it allows the application of algorithms
that can thoroughly explore the objective space. Consequently, the objective of this study
is to find the optimal solution for the surrogate model. To achieve this, the multi-objective
evolutionary algorithm (MOEA) NSGA-II has been chosen. This algorithm is known for its
versatility, fast and efficient convergence, and ability to handle non-penalty constraints. It
also has a wide-range search for solutions, which implies that it can explore the objective
space more thoroughly and is less likely to get grounded in local optima [118]. By using
the MOEA NSGA-II algorithm, the improved solutions are ensured to be non-dominated,
meaning that they are not worse than any other feasible solution in all objective functions.
This also ensures that the solutions avoid local minima and are highly likely to discover the
global optimum for the sampled response surface. This makes the algorithm able to search
a large portion of the objective space and find the best possible solution for the surrogate
model while avoiding suboptimal solutions.

VI.2.3 High-fidelity data

Since the main purpose of this study is to obtain a PDA-EARSM for capturing the secondary
flow, the DNS data of a canonical case with this flow characteristic is chosen. A duct flow
case of AR = 1 and bulk Reynolds number of Reb = 3500 is used for the training process
(depicted in Fig. VI.1). The DNS data is obtained from Ref. [147] curated by Ref. [148].
Following the progressive approach, the trained PDA-EARSMs are tested on two cases
of channel flow with friction Reynolds number of Reτ = 395 and Reτ = 5200 for which
data is obtained from Refs. [149] and [150], respectively. Considering the generalisability of
the new models, we likewise test them on four unseen cases containing secondary flows,
including duct secondary flow cases with AR = 1 and higher bulk Reynolds numbers of
Reb = 5700 [151], and Reb = 10320 [152], a duct secondary flow case with AR = 3, a lower
bulk Reynolds number of Reb = 2600 [151], and a roughness-induced secondary flow with
nominally infinite Reynolds number (more information about the geometry and properties
of this case is available at Refs. [121, 143].

VI.3 Results and discussion

In this section, the results are presented in two subsections. In the first one, the results of the
optimisation process and training of the two best PDA-EARSMs are presented, whereas, in
the second, the performance of the trained models is evaluated on the test cases with different
geometries, Reynolds numbers, and boundary conditions. Associated contours and velocity
profiles accompany all results which are similarly described and discussed, followed by their
corresponding figures.
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Figure VI.3: Contours of streamwise velocity and secondary flow streamlines for duct flow
optimisation case at AR = 1 and Reb = 3500 for RANS k− ω SST (left) and DNS (right) data.
DNS data obtained from Ref. [147]. The dotted white lines denote the location of the velocity
profiles evaluated throughout this study to perform a quantitative comparison. It should be
noted the varying thickness of the secondary flow streamlines denotes their magnitude.
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Figure VI.4: Barycentric representation of RSTs’ shape for k− ω SST (left) and DNS (centre)
for training duct flow case with AR = 1 at Reb = 3500. DNS data obtained from Ref. [147].
The plain-strain limit is represented by the dotted line, and the colour representation (right)
follows the work by [153].

VI.3.1 Surrogate-based optimisation

VI.3.1.1 Optimisation case: k−ω SST performance

It is essential to qualitatively indicate the original performance of k − ω SST against high-
fidelity data prior to any modifications. For both fidelity levels, the results for the square
duct case show the progressive deceleration of the streamwise flow as it approaches the
walls of the duct, exhibiting higher gradients in the near-wall regions as a consequence of
the boundary layer and the fully developed turbulent flow. Whereas this behaviour can be
predicted by k − ω SST, the presence of a secondary flow predicted by DNS is completely
neglected by the RANS model (Fig. VI.3), as expected [127]. Two antisymmetric rotational
regions are generated diagonally at the duct’s vertex, preserving their symmetry at the 4
quadrants of the duct. This secondary flow is strong enough to drive the streamwise flow
towards the duct vertices, skewing the streamwise velocity field in the domain through an
impinging-like flow behaviour. Since k− ω SST does not predict these rotational motions, the
streamwise velocity distribution is not skewed and the spanwise and vertical components of
the velocity are zero.

Figure VI.4 compares the barycentric plots representing the shape of RSTs for the op-
timisation case. The location of each point is calculated based on the eigenvalues of the
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Figure VI.5: PCA results of the candidate functions calculated by DNS data of the optimisation
case.

normalised anisotropic part of the RST (more information about barycentric plots available at
Refs. [153, 154]). While k− ω SST yields all results within the plain-strain limit as expected
from a linear eddy-viscosity RANS model, DNS shows a more complex stress anisotropy
distribution as a combination of states toward one-component turbulence fluctuations x̂1c
(also known as rod-like or cigar-like turbulence) and an offset from the plain-strain limit with
a tendency towards isotropic (or spherical) turbulence x̂3c .

VI.3.1.2 Optimisation case: PDA-EARSMs

Since k−ω SST is not able to predict the secondary flow of the optimisation case, CFD-driven
optimisation is applied following the models described in Eqs. VI.13a and VI.13b focusing on
predicting secondary flows and correct streamwise velocity.

Regarding model II, PCA is applied to the set of candidate functions (listed in Eq. VI.8)
using the high-fidelity data of the optimisation case. Figure VI.5 presents the PCA results
and shows that only the first 2 principal components (φ1 and φ2) yield an explained variance
ratio of 0.90 (Fig. VI.5a), where φ1 is the main principal component explaining the variability.
Figure VI.5b presents the coefficients corresponding to the two first principal components
used for model II.

As mentioned in Sec. VI.2, the two first principal components for model II are chosen.
To compare model I in an analogous manner, the two first leading candidate functions are
likewise chosen where the coefficients of these two models are determined by surrogate and
Bayesian optimisation.

The surrogate model is generated using the RANS simulations results to find the optimal
values of the optimisation variables. Regarding the optimisation process and since cases with
high values of the objective functions are not of interest, the MOEA optimisation is performed
by imposing the constraints j1 ≤ 0.5 and j2 ≤ 0.4, therefore, the analysed non-dominated
solutions only take place in the regions of highest interest and potential global minimisation.
To yield a smooth non-dominated solution front, 5000 samples are required by the MOEA in
this study. This showcases the cost advantages of surrogates, where 270 CFD observations
are required, yielding a cost reduction of 18.4 times.

Regarding both models’ results, an optimal design space of [−2,−1,−1] ≤ Ci ≤ [0, 1, 1]
is chosen for model I, and an optimal design space of [−1.75,−0.25,−0.25] ≤ Ci ≤
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Figure VI.6: Surrogate contour visualisation for model I. It should be noted that each pair of
variables is shown by holding the other variable at the mid-value of their range.
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Figure VI.7: Surrogate quality against test set (Fig. VI.7a), and Pareto-front validation with
1σ uncertainty bounds (Fig. VI.7b) for model I.

[−1.25, 0.25, 0.25] is chosen for model II after various progressive surrogate iterations. The
iterations re-define the design space limits by analysing the non-dominated values of the
coefficients after optimisation. If these values reach the imposed limits, the objective space is
reset, and the design space is adapted.

VI.3.1.2.1 MODEL I Contour plots in Fig. VI.6b illustrate how the optimisation variables
affect the objective functions. On the one hand, the surrogate visualisation for j1 (Fig. VI.6a)
shows a quasi-linear tendency for all variables. The global minimum for j1 is shown towards
negative values for all Ci without clear visualisation of extrema. On the other hand, there is
a clear global minimum seen for j2 values, shown by a non-linear surrogate for C0 and C1,
where quasi-linear behaviour is predicted by the relationship between C1 and C2 (Fig. VI.6b).
It is important to highlight that, although the lowermost values for the coefficients predict an
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Figure VI.8: Surrogate contour visualisation for model II. It should be noted that each pair of
variables is shown by holding the other variable at the mid-value of their range.
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Figure VI.9: Surrogate quality against test set (Fig. VI.9a), and Pareto front validation with 2σ
uncertainty bounds (Fig. VI.9b) for model II.

improvement for j1, the tendency is not completely followed by j2 prediction. This implies
that a more accurate prediction of the streamwise flow does not necessarily correlate with the
secondary flow prediction in this case.

Regarding the surrogate quality (Fig. VI.7a), and Pareto front prediction and numerical
validation (Fig. VI.7b), the surrogate predicts the test set with great accuracy for the whole
design space tested, which is likewise reflected by a highly accurate Pareto front predic-
tion, where all numerical tests simulated are able to predict the objective space within 1σ
uncertainty bounds for both objective functions.

VI.3.1.2.2 MODEL II In contrast with model I, the surrogate visualisation for both objec-
tive functions (Fig. VI.8) in model II shows a non-linear prediction for all variables. This
behaviour is somewhat expected due to the added complexity of the model with the PCA.
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Table VI.1: Objective function results, coefficients, and quality for best models and surrogates
of each approach.

Model J j1 j2 C0 C1 C2 RMSE1 RMSE2 r21 r22

I 0.387 0.455 0.319 -1.653 0.625 1 0.004 0.048 0.999 0.966
II 0.398 0.457 0.339 -1.613 0.074 0.015 0.032 0.079 0.895 0.880

The global minimum for j1 does not have a straightforward location. Instead, there are
diverse regions where the global extrema can be found. Specifically, negative values of C0,
and near-zero values of C1 and C2 predict generally lower values of j1 and j2 (Figs. VI.8a
and VI.8b). Similarly to model I, although the objective spaces for both functions follow
similar tendencies, there are visible differences in the predicted locations of the minima, re-
flecting once more that a more accurate prediction of the streamwise flow does not necessarily
correlate with the secondary flow prediction.

Regarding the surrogate quality (Fig. VI.9a), and Pareto front prediction and numerical
validation (VI.8b), the surrogate predicts the test set with high accuracy for the whole design
space tested. These lower-confidence regions are not reflected in the non-dominated solutions
nor in their numerical validation. Since the expected improvement function prioritises good
confidence in the near-extrema region and the complexity of the model is higher, a certain
level of uncertainty is expected in far-away regions of the global minimum. Nevertheless, the
surrogate shows a good level of confidence at the Pareto front (within 2σ in Fig. VI.9b).

VI.3.2 Comparison of models

The final results for each model are shown in Table VI.1, where the best cases per model are
shown, followed by their Ci values and surrogate quality parameters. Both models signifi-
cantly improved the standard k− ω SST by 61.3% and 60.2% for model I and II respectively.
Differences in performance for the objective values are considered negligible. As seen in
Fig VI.7a and VI.9a, the surrogate quality is slightly worse for model II. This is due to the
higher complexity added by PCA and the inclusion of higher order terms in α2, yielding
more non-linear behaviour in the design space and, thus, a higher RMSE and lower r2 for
model II.

Regarding qualitative results for the optimisation case, both models are able to accurately
predict the direction and symmetry of the secondary motions while improving the streamwise
flow prediction. However, the streamwise vorticity error is generally higher in the near-wall
regions (Fig. VI.10). As a consequence of the prediction of a correct secondary flow direction,
the streamwise flow prediction likewise improves. Regions of slight overprediction of ⟨u1⟩
are seen in the near-wall vicinity as well as the middle section of the computational volume,
whereas regions of ⟨u1⟩ underprediction are seen in the bulk flow close to the channel vertex.
Regarding the prediction of ⟨ω1⟩, anti-symmetric predictions are seen with respect to the
diagonal symmetry line with a general over and underprediction in the near-wall region.

As expected from the objective function results, qualitative differences between models
(Fig. VI.11) are not clearly seen. For the streamwise velocity prediction, no significant differ-
ences can be seen in the contours of the error function, whereas for the vorticity prediction,
slight variations in the error can be seen between models without a significant impact on
the overall performance of the models. In summary, both models are able to predict the
secondary flow with high accuracy.

Concerning the quantitative analysis of the velocity profiles at y/H = [0.25, 0.5, 0.75], an
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Figure VI.11: Profiles of velocity components for duct flow case with AR = 1 and Reb = 3500.
High-fidelity data obtained from Ref. [147].

overall and significant improvement in the prediction of both models against standard k− ω
SST, can be seen. Although the prediction of both models displays minor differences between
each other, they both predict with high accuracy the DNS data. Some light discrepancy can be
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Figure VI.12: Barycentric map showing the physical reliasability and turbulence anisotropy
of the developed models following the colour representation by [153].
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seen in the magnitudes at near-wall regions, where the gradient of ⟨u2⟩ is high. Nevertheless,
gradients of velocity are accurately predicted, only displaying a slight underprediction in the
velocity magnitude in near-wall regions.

The turbulence shape of the developed models is represented in Figs. VI.12 and VI.13,
where the reliasability for both models is conserved. A certain level of anisotropy is added to
the models, yielding results in the vicinity of the plain-strain limit. Both models predict a
very similar turbulence shape while model II slightly yields results farther away from the
plain-strain limit. Nonetheless, results are distant from x̂1c and DNS anisotropy. Although
these results are expected, the integration of the whole Pope’s decomposition with its 10
tensors and a more thorough definition of B could be able to further improve the RANS
anisotropy prediction.

Figure VI.14 presents the profiles of RST components obtained by new models and
shows that new correction models improve the prediction of RST components. It should be
mentioned that the Reynolds stress tensor is calculated as

Rij = Aij +
2

3
kδij . (VI.22)

The results of Rij show that the introduced correction does not change the original R11

prediction by k− ω SST while the 2 other principal components of the tensor (R22 and R33)
are predicted in better agreement with high-fidelity data. Predictions of the off-diagonal
components of Rij are overall displaying an improvement in prediction, highlighting the
non-zero prediction of R23, which shows a certain level of mismatch with high-fidelity data
in the near-wall regions.
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Figure VI.14: Profiles of Reynolds stress components for duct flow case with AR = 1 and
Reb = 3500. High-fidelity data obtained from Ref. [147].

Qualitatively and quantitatively, both models improve the prediction and agreement with
high-fidelity Reynolds stresses while not showing significant differences in the prediction of
Reynolds stresses between models.

VI.3.3 Verification and generalisability on test cases

In this subsection, the best-found models are tested against diverse canonical cases in which
secondary flow is an important component as well as cases where secondary flow is not
present. This verification is performed in order to provide a performance overview of the
models’ generalisability, stability, and robustness to preserve canonical flow features. Firstly,
validation of the channel case and the boundary layer is performed at different Reynolds
numbers. Secondly, the models are tested against diverse cases of ducts with different aspect
ratios and Reynolds numbers. Lastly, the models are tested against a wall-modelled nominally
infinite Reynolds number case in which secondary flow is roughness-induced. Similarly as in
section VI.3, all results are shown and discussed with their respective velocity contour plots
with stream functions and qualitative flow analysis of the velocity profiles.

VI.3.3.1 Channel flow and law of the wall

The addition of T (2)
ij and further modifications in this study must not destabilise k− ω SST

and yield unphysical results. Therefore, both models are tested in a channel flow case at
friction Reynolds numbers 395 and 5200 to verify that the law of the wall is preserved. The
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Figure VI.15: Mean streamwise velocity and turbulent kinetic energy profiles for channel
flow: Reτ = 395 (Fig. VI.15a), and Reτ = 5200 (Fig. VI.15b). High-fidelity data obtained from
Ref. [149].

canonical channel flow cases are driven by a constant pressure gradient in order to match the
friction Reynolds number from DNS.

Results shown in Fig. VI.15 depict the streamwise velocity as u+ = u/uτ and k+ = k/u2τ
in function of y+ = uτy/ν, where uτ is the friction velocity. The results show a consistent
prediction of the law of the wall with k− ω SST without introducing any noticeable changes.
Both models yield the same results for both the streamwise velocity and the turbulence
kinetic energy, and no improvements or diminishments in the prediction of these variables
are seen compared to standard k− ω SST.

VI.3.3.2 Duct cases

To showcase the generalisability of the models, diverse duct cases are tested. The first case is
the flow through a duct of AR = 1 and a considerably higher Reb = 5700 compared to the
optimisation case.

A qualitative depiction of the results is shown in Fig. VI.16, where both models are able
to predict the gradients of the secondary flow and improve the prediction of the streamwise
velocity compared to k − ω SST. In agreement with the baseline results of the models, the
magnitude of the secondary motion is weaker than the high-fidelity data although the
motion’s antisymmetry and location of the vortices centres are predicted accurately.

Regarding the velocity profiles of the case (Fig. VI.17), a similar trend is observed where
the gradients and magnitude of the profiles are predicted with high accuracy in both models,
only displaying some discrepancies in the wall-near regions, where the high-fidelity data
yields slightly higher velocity gradients.

In order to verify the performance of the models in diverse cases with similar features,
the models are likewise tested against a duct of AR = 3 and a slightly lower Reb = 2600
compared to the optimisation case.

The qualitative results shown in Fig. VI.18 indicate a similar performance for both models:
gradients, symmetry, and direction of secondary flow are predicted accurately with slight
inaccuracies regarding the secondary flow magnitude in the near-wall regions. The location
of the vortices centres is likewise predicted with high accuracy, agreeing with high-fidelity
data (Fig. VI.18).
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Figure VI.16: Streamwise flow contours with stream function iso-lines depicting secondary
flow prediction and direction: Duct flow case with AR = 1 and Reb = 5700. High-fidelity
data obtained from Ref. [151].
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Figure VI.17: Profiles of velocity components for duct flow case with AR = 1 and Reb = 5700.
High-fidelity data obtained from Ref. [151].

In terms of the quantitative analysis and the evaluation of the velocity profiles, the results
shown in Fig. VI.19 likewise follow a similar trend compared to previous results in this
study. The region in the vicinity of the duct vertex shows some discrepancy in the velocity
prediction. Nevertheless, the bulk flow away from the near wall is accurately predicted.

VI.3.3.3 Roughness-induced secondary flow case

Finally, the verification of the models is tested on a roughness-induced secondary flow case.
The case is based on the studies by [142, 143], and is characterised by displaying a nominally
infinite Reynolds number. It should be noted that due to the very high Reynolds number,
the use of wall models is inevitable with current hardware, therefore, the atmospheric wall
models [155] have been used. The secondary flows generated in this case are recognised
as Prandtl’s second kind of secondary flow, similar to the square duct flow [127]. The
roughness-induced case is chosen to showcase the models’ performance in a more complex
and challenging to predict case, mostly by two-equation RANS turbulence models.

For a better analysis of roughness-induced secondary flow, dispersive velocity compo-
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Figure VI.18: Streamwise flow contours with stream function iso-lines depicting secondary
flow prediction and direction: Duct flow case with AR = 3 and Reb = 2600. High-fidelity
data obtained from Ref. [151].
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Figure VI.19: Profiles of velocity components for duct flow case with AR = 3 and Reb = 2600.
High-fidelity data obtained from Ref. [151].

nents are defined as,
⟨u′′i ⟩ = ⟨ui⟩ − ⟨ũi⟩, (VI.23)

where ⟨u′′i ⟩ is the dispersive velocity components, and ⟨ũi⟩ is the spatial spanwise-averaged
mean velocity.

Following previous verification, the qualitative results of the streamwise dispersive
velocity (⟨u′′1⟩) are shown in Fig. VI.20. On the one hand, results show that standard k− ω
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Figure VI.20: Streamwise dispersive velocity contours with stream function iso-lines depicting
secondary flow prediction and direction: Roughness-induced secondary flow case with
Reb = 2× 108. High-fidelity data obtained from Ref. [143].
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Figure VI.21: Profiles of velocity components for roughness-induced secondary flow with
Reb = 2× 108. High-fidelity data obtained from Ref. [143].

SST does not predict any secondary motion that drives the flow to display a high-momentum
path on top of the high-roughness patch and a low-momentum path at y/H = 0, as the high-
fidelity data predicts. On the other hand, the enhanced models are both capable of predicting
the secondary motion, although at a lower intensity compared to high-fidelity results. The
direction of the rotation (clockwise) is correctly predicted although the vortex centre does
not visibly match the high-fidelity counterpart. Even though the predicted secondary flow
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Figure VI.22: Roughness-induced secondary flow quantitative results of spanwise-averaged
streamwise velocity (left), and root-mean-squared dispersive vertical velocity (right). High-
fidelity data obtained from Ref. [143].

is not strong enough to move the low-momentum path to the top of the low-roughness
patch (y/H = 0), the existence of a weak high-momentum path is visible on top of the high-
roughness patch. Since the source of vorticity production lies at roughness-heterogeneity
existing at the bottom wall (more information at Ref. [143]), the authors believe that further
investigations about wall models regarding the secondary flow can help a better prediction
of the secondary flow.

Quantitive results reflect the previous qualitative analysis. Figure VI.21 shows the velocity
profiles at y/H = [π/8,π/4, 3π/8], where the improvement of the models can be seen.
In contrast to other verification cases in this study, both models’ predictions improve the
performance of standard k−ω SST, however, the secondary flow intensity is weaker compared
to the high-fidelity data. The predicted tendencies are correct, although there is a discrepancy
in the gradients and magnitudes predictions relative to previous verification cases.

To provide a complete and holistic comparative study for this case, the spatial average
of the streamwise, as well as vertical root-mean-squared (RMS) dispersive velocity (⟨ũ1⟩
and RMS ⟨u′′3⟩, respectively), are calculated. These results are shown in Fig. VI.22, where
the prediction of ⟨ũ1⟩ shows a considerable improvement compared to standard k− ω SST.
However, the bulk flow for the developed models is still overpredicted as a consequence
of the underpredicted secondary flow and its derived under-subtraction of the streamwise
momentum. Regarding the RMS ⟨u′′3⟩, a clear improvement in the prediction can be seen
by the developed models, where k − ω SST is unable to predict any vertical dispersive
velocity. The predictive profiles are underpredicted and slightly skewed towards z/H = 0
compared to the high-fidelity data, which verifies the mismatched location of the predicted
secondary flow vortices. Both developed models yield an almost identical prediction of the
flow, and a similar improvement is seen by models at their prediction of RMS ⟨u′′3⟩. Overall,
the applicability of the models to this case shows their generalisability, where robust and
improved predictions are obtained in more complex cases at very high Reynolds numbers.
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Figure VI.23: Model comparison of mean streamwise velocity and turbulent kinetic energy
profiles for channel flow: Reτ = 395 (Fig. VI.23a), and Reτ = 5200 (Fig. VI.23b). High-fidelity
data obtained from Ref. [149].

VI.4 Comparison with other EARSMs

To provide a complete and updated performance of the developed models, a comparison
is made against the two novel machine-learned EARSMs developed by Saidi et al. [39]
denoted as M1 (Model 1) and M2 (Model 2); and the classical (not machined-learned) EARSM
BSL-EARSM based on k− ω SST model and on the explicit constitutive relation by Ref. [144]
and developed by Menter et al. [156]. The comparison is made on CF395, CF5200, and duct
flow with Reb = 10320 and AR= 1.

As shown in the comparative results of Fig. VI.23, Saidi et al. models mispredict the
prediction of boundary layers due to its modification of T (1)

ij in their models. These modifica-
tions improve the prediction of separated flows at the expense of modifying the successful
prediction of the law of the wall by standard k − ω SST. This undesirable effect, however,
can be avoided by deactivating the T

(1)
ij correction in the regions corresponding to equilib-

rium boundary layers (e.g., a space-dependant aggregation in Ref. [157]). Since the work
performed in this study only adds the contributions of T (2)

ij , the developed models are able to
preserve the successful predictions of k− ω SST for equilibrium boundary layers.

Finally, a comparison showing the prediction of the ⟨u2⟩ component along the y = z
line of a square duct at Reb = 10320 is shown in Fig. VI.24. It can be seen that the PDA-
EARSMs outperform the models by Saidi et al. and yield similar performance compared to
BSL-EARSM.

VI.5 Conclusions

This study employs CFD-driven surrogate and Bayesian optimisation to enhance the k− ω
SST turbulence model focusing on predicting Prandtl’s second kind of secondary flow. A
progressive approach is adopted to enhance the linear eddy-viscosity model with the ability
to predict secondary flows while maintaining its effective performance in canonical flow
cases. The enhancement is based on the introduction of explicit algebraic Reynolds stress
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Figure VI.24: Normalised vertical velocity component comparison between models for
DF10320 with AR= 1 along line y = z. High-fidelity data obtained from Ref. [152].

correction models with two levels of complexity: introducing a linear combination of the
first two candidate functions and introducing a linear combination of the first two principal
components obtained from PCA on all candidate functions. These two models are optimised
to reach the best prediction of both secondary flow and streamwise flow in the optimisation
case of a duct flow with an aspect ratio of 1 and Reb = 3500.

Table VI.2: Objective function results for opti-
misation case and all verification cases tested.
Results are presented by the case abbrevia-
tion and characteristics: Duct flow cases as
DFAR, Re and roughness-induced secondary
flow as RIRe. It should be noted that DF1, 3500

is the optimisation case. J = 1 indicates the
k − ω SST original prediction and J = 0 indi-
cates a match of the high-fidelity data.

Case Model J j1 j2

DF1, 3500
I 0.387 0.455 0.319
II 0.398 0.457 0.339

DF1, 5700
I 0.405 0.482 0.328
II 0.392 0.461 0.323

DF3, 2600
I 0.458 0.551 0.365
II 0.502 0.580 0.424

RI2×108
I 0.693 0.663 0.723
II 0.698 0.666 0.730

Average I 0.486 0.538 0.434
II 0.498 0.541 0.454

Considering the progressive approach,
the enhanced models are tested against chan-
nel flow cases at different friction Reynolds
numbers, where the enhanced models pre-
serve the original performance of the k− ω
SST model in a successful reproduction of
the velocity and TKE profiles.

For the purpose of generalisability in-
vestigation, new models are tested against
verification duct-flow cases with different
Reynolds numbers and different aspect ra-
tios. Both enhanced models show a suc-
cessful prediction of secondary flow and im-
provement of streamwise velocity predic-
tion in the unseen cases. The third and fi-
nal verification case is a roughness-induced
secondary flow case at a nominally infinite
Reynolds number, where the enhanced mod-
els are able to predict the secondary motion,
although at a lower intensity compared to
high-fidelity data due to the limitations of
wall modelling for this type of cases.

Overall, the results, summarised in Ta-
ble VI.2, show that the developed models
perform substantially better than the stan-
dard k − ω SST model in all verification cases. The enhanced models are able to predict
secondary flow features, showing global improvements in the velocity field prediction. Both
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models show similar performance in successfully predicting secondary flows and streamwise
velocity. Therefore, more invariants combined with PCA do not necessarily improve the
performance of the models in the 2-dimensional cases considered in this study. Nevertheless,
considering scaling up the complexity of the model in 3-dimensional cases, the combination
with PCA dimensionality reduction could further improve the predictions. It should be
noted that the optimisation process and the nature of the PDA-EARSMs yield a certain level
of turbulence anisotropy while always maintaining solution robustness and stability. This
fact results in some discrepancies between the PDA-EARSMs and high-fidelity data in the
predicted turbulence shape.

These findings suggest that the use of CFD-driven optimisation with surrogate modelling
and Bayesian optimisation is a robust approach to enhance linear-eddy-viscosity turbulence
models to predict more complex physics. The enhanced PDA-EARSMs developed greatly
improve the prediction of turbulence anisotropy in wall-bounded flows, especially in cases
where the standard k − ω SST presents difficulties in accurately predicting the secondary
flow. The progressive nature of this development as a first step focuses on the prediction of
secondary flows, allowing further improvement of the models by adding more predictive
physics and verifying them on other test cases.
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VII
Turbulence Modelling for Separated Flows

Progressive augmentation of turbulence models for flow separa-
tion by multi-case computational fluid dynamics driven surro-
gate optimisation

ABSTRACT In the field of data-driven turbulence modelling, the consistency of the a poste-
riori results and generalisability are the most critical aspects of new models. In this study,
we combine a multi-case surrogate optimisation technique with a progressive augmentation
approach to enhance the performance of the popular k − ω Shear Stress Transport (SST)
turbulence model in the prediction of flow separation. We introduce a separation factor into
the transport equation of turbulent specific dissipation rate (ω) to correct the underestimation
of turbulent viscosity by the k− ω SST model in the case of flow separation for 2-dimensional
cases. The new model is optimised based on their performance on the training cases including
periodic hills and curved backward-facing step flow. Simulation of channel flow is likewise
included in the optimisation process to guarantee that the original performance of k− ω SST
is preserved in the absence of separation. The new model is verified on multiple unseen cases
with different Reynolds numbers and geometries. Results show a significant improvement
in the prediction of the recirculation zone, velocity components, and distribution of friction
coefficient in both training and testing cases, where flow separation is expected. The perfor-
mance of the new models on the test case with no separation shows that they preserve the
successful performance of k− ω SST when flow separation is not expected.

REFERENCE [158]: A. Amarloo, M. J. Rincón, M. Reclari, and M. Abkar (2023). “Progressive
augmentation of turbulence models for flow separation by multi-case computational fluid
dynamics driven surrogate optimization,” Physics of Fluids, vol.35, p. 125154, 12 2023 † ‡.

VII.1 Introduction

Compared to direct numerical simulations (DNS) and large-eddy simulations (LES), Reynolds-
averaged Navier-Stokes (RANS) simulations are quite popular and cost-effective in industrial
applications of computational fluid dynamics (CFD). In RANS, the accuracy of the results
relies on the performance of the RANS models in modelling the physics of turbulence (i.e.,
Reynolds stress tensor, RST). Despite the popularity of RANS, it is well established that
the common empirical models (e.g. linear eddy viscosity models like k− ε and k− ω) have

†M.J. Rincón and A. Amarloo contributed equally to this study.
‡This article may be downloaded for personal use only. Any other use requires prior permission of the

author and AIP Publishing. This article appeared in the abovementioned reference and may be found at this
URL.
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shortcomings in simulations of specific phenomena like secondary flows [127] and flows with
boundary-layer separation and reattachment [29].

The recent progress in data-driven methods has inspired a new wave of studies aimed
at improving the performance of RANS models [31]. Most of these investigations have
been focused on utilising available high-fidelity data (like LESs and DNSs) to enhance the
results produced by common empirical models [32–37, 40, 131, 132] or to find correction
models to the RST prediction [87, 121, 128–130, 159]. These studies use high-fidelity data by
a priori-training methods to find a better RANS model [40], where the main concern is the
generalisability and consistency of the new data-driven models for unseen cases [138].

In a different approach, models obtained by model-consistent training methods have
shown promising results in finding a reliable RANS turbulence model [40]. In these methods,
the performance of models (i.e., a posteriori results) is involved during the training process;
hence, these methods can guarantee the consistency and robustness of final models. In
this regard, using optimisation algorithms in CFD-driven techniques has shown promising
performance in finding new reliable RANS models [38, 39].

Optimisation algorithms, which are of paramount importance in engineering and scien-
tific domains, are designed to minimise or maximise functions within multi-dimensional
parameter spaces. These algorithms play a pivotal role in a wide array of fields, ranging
from the design of efficient engineering systems to the optimisation of intricate scientific
models. Commonly employed optimisation algorithms encompass slope followers [133],
simplex methods [42], multi-objective evolutionary [43], and particle swarm algorithms [44],
among others. Nevertheless, a notable challenge arises due to the considerable computational
expense associated with evaluating objective functions, particularly when engaging in CFD
simulations and dealing with an extensive range of test configurations.

To address this challenge and expedite the optimisation process, significant strides have
been made towards the implementation of a relatively smaller set of simulations to construct
computationally efficient surrogate models, also referred to as response surfaces [47, 137].
These response surfaces are mathematical approximations of the objective function’s be-
haviour within the parameter space, thus enabling the prediction of function values for
untested configurations. By capitalising on these response surfaces, engineers and scientists
can effectively explore the parameter space with reduced computational burden, rendering
the optimisation process both feasible and efficient. This approach finds wide application
within various engineering fields, such as the optimisation of complex internal-flow systems
using ultrasonic flow metering [59, 76], the enhancement of gas cyclone efficiency [102],
the optimisation of aero-structural designs of aircraft wings [101], and the improvement of
ground vehicle performance [104], among other notable applications. As the demand for
efficient optimisation algorithms continues to grow, the development of surrogate models
and response surface techniques assumes increasing importance in streamlining the design
and analysis processes of complex engineering systems and scientific models.

Surrogate-based optimisation (SBO) methods yet have not been widely investigated
for improving RANS turbulence models, and there are a few works that have explored
the potential of using optimisation techniques for the development of data-driven RANS
modelling. For example, Zhao et al. [38] used a gene expression programming tool to evolve
a correction model for the k − ω Shear Stress Transport (SST) model. They showed that
CFD-driven optimisation has a significant potential for finding reliable RANS models. Their
new models showed better performance compared to the data-driven (i.e., a priori-trained)
models trained on the same high-fidelity data, but the new model’s performance was limited
to the training cases. Later, this methodology was extended to a coupled turbulence closure
model by multi-objective optimisation [136]. In another study, Saïdi et al. [39] applied the
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response surfaces method to obtain a sparse regression of candidate functions for correcting
the k− ω SST model trained on the cases with recirculation zone. They also reported better
performance of their CFD-driven models when they compared their model-consistent trained
method with a priori-trained models. Most of these studies show that the model-consistent
method has the potential to solve the consistency problem attached to all data-driven RANS
models, yet new models are limited to their trained high-fidelity data and not generalisable
to unseen cases.

As a solution to this issue, Fang et al. [139] suggested including more cases in the training
process of CFD-driven optimisation which means that in each evaluation of the optimisation
algorithm, more CFD simulations have to be completed to include more a posteriori results in
the training process. Fang et al. [139] investigated this solution with a multi-case CFD-driven
optimisation including different turbulent phenomena. They reported that this solution
helped with the generalisability of the new model, however, their new models still have to be
separated into either wall-free or wall-bounded flows.

The new data-driven models’ inability to generalise is not only limited to unseen cases
extrapolated out of the training data but they also might not be able to perform well on simple
canonical cases like channel flow for which common empirical models have been tuned. In a
different solution, Bin et al. [140] suggested including the conventional progressive approach
of empirical models in new data-driven models. In the progressive approach, a common
RANS model, which has adequate performance for canonical simple flows, is progressively
augmented with new physical corrections for more complex flow cases without violating
its original performance in simple flow cases. Rincón et al. [126] combined this progressive
augmentation with a CFD-driven optimisation to improve the standard k − ω SST with
a data-driven correction for predicting secondary flows without violating the successful
performance of standard k− ω in channel flow.

In this study, we use the progressive augmentation method to improve the standard k− ω
SST with a data-driven correction factor for the flows with separation and reattachment phe-
nomena. This correction model consists of a correction term in the transport equation of the
turbulent specific dissipation rate (ω) with an activation function for the flows with separation
and adverse pressure gradient. In the case of flow separation, the ratio of production (Pk) to
dissipation (ε) of turbulent kinetic energy (i.e, Pk

ε ) is much higher than 1 [64]; therefore, we
use this criterion for activation functions of new correction models. As an example, Fig. VII.1
shows that in periodic hills flow where flow separation is expected, the standard k− ω SST
model overestimates the size of the recirculation zone, and the separation phenomenon
induces an area where Pk

ε > 1. In the data-driven approach, we use periodic hills flow and
curved backwards-facing step cases for the training process. The training process includes a
multi-case CFD-driven optimisation technique to guarantee the reliability and consistency of
the obtained model. We also include a channel flow case in the training process to preserve
the original law-of-the-wall prediction of k− ω SST [77]. The newly developed models are
verified on unseen test cases with different Reynolds numbers and geometries where flow
separation is expected. Regarding the progressive method, we likewise test the new models
where flow separation is not expected.

VII.2 Methodology

This section presents the methodology behind the progressive augmentation of a RANS model
for flow separation and training correction models by CFD-driven optimisation techniques.
The RANS equations for an incompressible steady flow, by using the Reynolds decomposition
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Figure VII.1: Streamwise velocity and stream function of flow separation at periodic hills
case with RANS k− ω SST turbulence model and high-fidelity simulation results. The ratio
of turbulent kinetic energy production to dissipation Pk/ε is used as an indication of flow
separation. High-fidelity data from Ref. [160].

of velocity and pressure, can be written as [108]

ui = ⟨ui⟩+ u′i, p = ⟨p⟩+ p′, (VII.1)

∂i⟨ui⟩ = 0, ∂j(⟨ui⟩⟨uj⟩) = −1

ρ
∂i⟨P ⟩+ ∂j (ν∂j⟨ui⟩ −Aij) , (VII.2)

where i, j = 1, 2, 3 indicate the streamwise (x), spanwise (y), and vertical (z) directions,
respectively. ui and p are velocity components and pressure, respectively, decomposed to
a mean value, indicated by ⟨·⟩, and fluctuations, indicated by ·′. ν and ρ are the kinematic
viscosity and the fluid density, respectively. ⟨P ⟩ = ⟨p⟩+ 1

3ρ⟨u
′
iu

′
i⟩ is the modified pressure,

and Aij = ⟨u′iu′j⟩ −
1
3⟨u

′
ku

′
k⟩δij is the anisotropic part of RST.

By using the Boussinesq approximation, Aij is modelled as

Aij = −2νtSij , (VII.3)

where Sij =
1
2(∂i⟨uj⟩+ ∂j⟨ui⟩) is the strain rate tensor, νt is the turbulent viscosity which is

determined by a RANS model. In this study, the k− ω SST [64] model is chosen as a baseline
model to be progressively corrected for flow separation prediction. In the standard k− ω SST
model, νt is calculated as

νt =
a1k

max(a1ω,F2S)
, (VII.4)

where k is the turbulent kinetic energy, and ω is the specific dissipation rate. In the standard
k− ω SST model, these quantities are calculated based on two transport equations as

∂j (⟨uj⟩k) = Pk − β∗ωk+ ∂j ((ν + σkνt)∂jk) , (VII.5)

∂j (⟨uj⟩ω) =
γ

νt
Pk − βω2 + ∂j ((ν + σωνt)∂jω) +CDkω, (VII.6)

where Pk = ∂i⟨uj⟩(2νtSij) is the production of turbulent kinetic energy by the RST. In this
study, we intend to modify Eq. VII.6; therefore for the sake of brevity, we skip the extra details
of the standard k− ω SST model for which one can refer to Ref. [77].
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VII.2.1 Progressive k− ω SST

In this study, the production term in the transport equation for ω (Eq. VII.6) is modified by
introducing a correction term R as

∂j (⟨uj⟩ω) =
γ

νt
(Pk +R)− βω2 + ∂j ((ν + σωνt)∂jω) +CDkω. (VII.7)

Since R can have both positive and negative values, this term could be considered either
a production or a dissipation term in Eq. VII.7. This term could be modelled as a production
term of a hypothetical RST following Pope’s decomposition [141] of the RST; therefore, we
introduce this correction as

R = ∂i⟨uj⟩(2νtαSij)X = PkαX , (VII.8)

where only the first tensor in Pope’s decomposition is considered. α is an unknown function
of the first two invariants including I1 = tr(SikSkj)/ω2, I2 = tr(ΩikΩkj)/ω2, where Ωij =
1
2(∂i⟨uj⟩ − ∂j⟨ui⟩) is the rotation rate tensor. X is an activation function for R to activate
the correction in case of flow separation. By placing Eq. VII.8 in Eq. VII.7, Eq. VII.7 can be
rewritten as

∂j (⟨uj⟩ω) =
γ

νt
Pk

(
1+ Fsep

)
− βω2 + ∂j ((ν + σωνt)∂jω) +CDkω, (VII.9a)

Fsep = αX , (VII.9b)

where Fsep is the new separation factor to modify the original transport equation from the
standard k− ω SST model (i.e., Eq. VII.6).

Inspired by the sparse regression method used by Schmelzer et al.[87], we consider a set
of candidate functions to define α as

α = θ0 +
27∑
i=1

θiDi, (VII.10)

D = {I1, I2,
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2
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2
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4
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1I

4
2 , I

5
2I2, I

6
2},

(VII.11)

where θi are unknown coefficients to be determined by a CFD-driven optimisation technique.
To obtain a holistic sparse optimisation, the candidate functions are normalised as

Bi =
Di − µi

σi
, (VII.12)

where µi is the mean, and σi is the standard deviation of each candidate function Di. These
statistics are obtained from high-fidelity data from the training cases. Therefore, Eq. VII.10 is
rewritten as,

α = C0 +
27∑
i=1

CiBi. (VII.13)
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Since optimisation with 28 design variables is impractical, and it makes the model exposed
to instabilities, two approaches are considered in this study including selecting only the first
m leading functions and reducing the dimensionality of the problem. We utilised principal
component analysis (PCA) as a dimensionality reduction on the Bi values from high-fidelity
data to find the first m principal components as,

φj =
27∑
i=1

a
(j)
i Bi, (VII.14)

where a
(j)
i are calculated by PCA on high-fidelity data of the training cases. It is shown in

Sec. VII.3.1 that the first two principal components represent the variability of all 27 candidate
functions sufficiently (i.e., m = 2). Therefore, here two structures are considered for α as

α = C0 +C1B1 +C2B2, (VII.15a)

α = C0 +C1φ1 +C2φ2, (VII.15b)

where C0, C1, C2 are the three optimisation variables for determining α inside the separation
factor (Eq. VII.9b). It should be mentioned that both φ1 and φ2 include a combination of all
the candidate functions (listed in Eq. VII.11), where B1 and B2 are the normalised versions of
the linear terms I1 and I2, respectively.

Considering the activation function, Menter [64] mentions that in the case of flow separa-
tion, the ratio of production to dissipation of k (i.e, Pk

ε ) is much higher than 1; therefore, they
modified the νt definition in Eq. VII.4. From this fact, we can use the value of νt for defining
a linear activation function as

Xlinear = 1− νt
ω

k
. (VII.16)

In other words, turbulent viscosity νt is equal to k
ω when there is no separation or adverse

pressure gradient (e.g. channel flow); therefore, the activation function is X = 0, and the
standard k− ω SST is used. Otherwise, νt < k

ω an activation function 0 < X < 1 activates the
correction term R in the transport equation of ω. Equation VII.16 is a linear activation function
considered in this study, and for a more general activation function, we also considered the
following form as

Xpower =

(
1−

(
νt
ω

k

)λ1)λ2

, (VII.17)

where λ1 and λ2 are considered as two extra optimisation variables. In this study, we
considered two equations for α (Eqs. VII.15a and VII.15b) and two equations for X (Eqs. VII.16
and VII.17); therefore, four models listed in Table VII.1 are compared in this study. It should
be mentioned that all of these correction models integrate only a few algebraic calculations to
each iteration in the simulations, which do not affect the computational cost of the simulations
compared to the original k− ω SST model.

VII.2.2 Optimisation methods

To tackle the optimisation challenge, a surrogate is constructed using Kriging and Gaussian
processes (GPs). This surrogate relies on the principles of Design and Analysis of Com-
puter Experiments (DACE) [46, 113, 114], utilising data from a series of CFD simulations
and subsequent result analysis. The model’s effectiveness is gauged through two primary
objective functions tied to velocity magnitude and friction coefficient at the walls, thereby
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Table VII.1: Four different models for the separation factor considered in this study

Name Model Equation Optimisation variables

Model I Fsep = (C0 +C1B1 +C2B2)
(
1− νt

ω

k

)
(VII.18a) C0, C1, C2

Model II Fsep = (C0 +C1φ1 +C2φ2)
(
1− νt

ω

k

)
(VII.18b) C0, C1, C2

Model III Fsep = (C0 +C1B1 +C2B2)

(
1−

(
νt
ω

k

)λ1
)λ2

(VII.18c) C0, C1, C2, λ1, λ2

Model IV Fsep = (C0 +C1φ1 +C2φ2)

(
1−

(
νt
ω

k

)λ1
)λ2

(VII.18d) C0, C1, C2, λ1, λ2

Figure VII.2: Optimisation approach involving an initial sampling plan using Latin hy-
percube sampling, resolved through CFD. A multi-case methodology is adopted, wherein
observations are simultaneously conducted across three cases: CBFS13700, PH2800, and CF5200.
Subsequent to this, an initial surrogate model is formulated using Kriging and improved
using Bayesian optimisation techniques.

framing a multi-objective optimisation task. A well-designed sampling plan is delineated
based on Latin hypercube sampling (LHS), with an infill criterion that adheres to quality
measures. Acknowledging the possibility that the initial sampling might not cover the
surrogate’s extreme values, Bayesian techniques rooted in efficient global optimisation are
employed, coupled with the evaluation of the expected improvement (E [I(x)]) function.
These strategies are aimed at further exploring the surrogate model, enhancing its reliability,
and obtaining optimal observations. The practical implementation employs the open-source
software OpenFOAM [65]. For a comprehensive view of the optimisation process, the reader
can refer to Fig. VII.2.

The primary concern addressed in this study involves the overestimation of boundary-
layer detachment within the k − ω SST turbulence model. In the selected optimisation
scenario, rectifying the velocity field and boundary-layer detachment introduces alterations
in the friction coefficient along the walls. Consequently, ensuring accurate prediction of the
friction coefficient becomes an equally key parameter to evaluate. Hence, to comprehensively
assess flow prediction, the normalised error of both velocity magnitude and friction coefficient
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with respect to high-fidelity data is computed and adopted as minimisation objectives. For a
comprehensive and reliable representation of these quantities, the volumetric average of each
field is computed as the objective functions, following

j1 =

∫
V

(
|⟨u⟩ − ⟨u⟩HF|

)
dV∫

V (|⟨u⟩k−ω − ⟨u⟩HF|)dV
, (VII.19a)

j2 =

∫
x

(
|cf − cHF

f |
)

dx∫
x

(
|ck−ω
f − cHF

f |
)

dx
, (VII.19b)

where ⟨u⟩ is the velocity magnitude, cf is the friction coefficient, | · | is the absolute value
operation, the superscript ·HF stands for high-fidelity, and ·k−ω refers to the solution of the
standard k− ω SST model. The formulation of these functions results in a value of 1 when
their output aligns with the prediction of the k− ω SST model, and 0 when the predictions
correspond to the high-fidelity data. To enhance the generalisability of the developed mod-
els, these objective functions are evaluated in multiple 2-dimensional canonical flow cases,
therefore, to comprehensively assess the method’s overall outcomes, a global fitness function
(JOPT ) is subsequently established as follows

JOPT =

∑N
i=1(Ji) + JCF

N + 1
, (VII.20a)

J =
1

2
(j1 + j2), (VII.20b)

where J is an averaged fitness function describing the performance of the models in the
prediction of velocity magnitude and friction coefficients, N is the number of training cases
for multi-case optimisation (2 in this study), and JCF is an objective filtering value given by
the convergence of a channel flow case defined as

JCF =

{
0 if Converged to k− ω SST result,
1 if Not converged to k− ω SST result.

(VII.21)

This study employs the Latin hypercube sampling (LHS) for sampling observations and
data. For the initial observations, a space-filling sampling plan is realised using LHS [105],
which is optimised through the enhanced stochastic evolutionary (ESE) algorithm [106, 107].
This approach yields an initial surrogate sample with a minimal number of observations
while effectively capturing parameter variability. The initial LHS with ESE sample consists of
n0 = 50K observations, where n0 signifies the initial number of observations and K denotes
the number of design variables.

In this study, the Kriging method is selected to construct a surrogate model based on
data-driven by CFD [76, 145]. The Kriging method interpolates observations by forming a
linear combination of a deterministic term and a stochastic process, given by

f̂(x) =
k∑

i=1

βifi(x) + Z(x), (VII.22)

where f̂(x) denotes the surrogate prediction, β represents a linear deterministic model, f(x)
corresponds to the known function, and Z(x) reflects the realisation of a stochastic process
with zero mean and spatial covariance function provided as

cov
[
Z
(
x(i)
)
,Z
(
x(j)

)]
= σ2R

(
x(i),x(j)

)
. (VII.23)

106



Chapter VII. Turbulence Modelling for Separated Flows

Within this context, the spatial correlation function R determines the smoothness of the
Kriging model, the ease of differentiating the response surface, and the extent of influence
that nearby sampled points exert on the model. In this study, the spatial correlation adheres
to the squared exponential (Gaussian) function

nx∏
i=1

exp

{[
−θl

(
x
(i)
l − x

(j)
l

)2]}
, ∀θl ∈ R+, (VII.24)

where the correlation scalar θl determines the Gaussian process variance at each point.
Through maximising the maximum likelihood estimation, optimal hyper-parameter values,
such as the matrix θl, mean, and standard deviation, can be determined [112].

Efficient global optimisation (EGO) employing Bayesian optimisation strategies is used
to enhance surrogate model accuracy and reduce overall uncertainty [115, 116]. This is
achieved by extending the exploration of the surrogate model beyond the initial LHS. EGO
is a recognised algorithm that blends both local and global searches to identify the optimal
solution, driven by the expected improvement (E[I(x)]) function, given as

E[I(x)] = (fmin − µ(x))Φ
(
fmin − µ(x)

σ(x)

)
+ σ(x)ϕ

(
fmin − µ(x)

σ(x)

)
, (VII.25)

where, fmin = minY , and Φ(·) and ϕ(·) respectively represent the cumulative and probability
density functions of N (0, 1), conforming to the distribution N (µ(x),σ2(x)). This function
gauges the potential enhancement attainable by assessing a new observation point, factoring
in the current best solution and the overall uncertainty of the surrogate model [117]. The al-
gorithm adeptly balances local and global searches, resulting in more proficient identification
of the optimal solution. Consequently, the subsequent sampling point is determined by

xn+1 = argmax
x

(E[I(x)]) . (VII.26)

To comprehensively explore the design space, new data is sampled for each objective
function individually. This entails collecting a single sample of nEGO = n0 for each objective,
resulting in a cumulative n = N · 50K new sampled points (with N = 2 in this study).
The optimised models to evaluate are obtained by the best (JOPT solution gathered during
Bayesian optimisation.

VII.2.3 High-fidelity data

Following the objective of this study to find an optimised correction model for flows with sep-
aration and reattachment, the high-fidelity data of canonical cases including these phenomena
are considered for both training and testing.

For the training process (i.e., multi-case optimisation of the separation factor models), we
use the DNS data of periodic hills with bulk Reynolds number of Reb = 2800 [160] (PH2800)
and the LES data of curved backwards-facing step flow with bulk Reynolds number of
Reb = 13700 [161] (CBFS13700). Also, we use the DNS data of channel flow with friction
Reynolds number of Reτ = 5200 [150] (CF5200) during the training process to guarantee that
the new models do not change the performance of standard k− ω SST model in the absence
of flow separation.

For the testing of the final four models found from the training process, all of the models
are tested on six unseen cases and the performance of the models is compared with the high-
fidelity of these six cases including LES data of periodic hills with bulk Reynolds number of
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Table VII.2: Characteristic properties used for training and testing cases.

Cases Characteristic properties

CBFS13700
uc: the center-channel inlet velocity
L: the height of the backward-facing step
ν = 1/Reb

PH2800

PH10595

uc: the average velocity on top of the hill
L: the height of the hill
ν = 1/Reb

CD12600

CD20580

uc: the center-channel inlet velocity
L: the half-height of the channel
ν = 1/Reb

BUMP20

BUMP42

uc = 16.77 m s−1: the inlet free-stream velocity
L = 0.305 m: the width of the bump
ν = 2.53× 10−5 m2 s−1

Reb = 1.01 · 105

Reb = 10595 [162] (PH10595), DNS data of converging-diverging channel with bulk Reynolds
number of Reb = 12600 [163] (CD12600), LES data of converging-diverging channel with bulk
Reynolds number of Reb = 20580 [164] (CD20580), and LES data of parametric bump [165]
with bump heights of h = 20 mm (BUMP20) and h = 42 mm (BUMP42).

For all of the training and testing cases, the characteristic properties used in simulations
and the presentation of results are listed in Table VII.2, where uc is the characteristic velocity,
and L is the characteristic length.

VII.3 Results and discussion

In this section, the results are divided into two subsections. In the first one, all four structures
listed in Table. VII.1 are optimised with multi-case optimisation, and the performance of
those models on the training cases is evaluated. In the second subsection, the performance of
the trained models is investigated on the unseen test cases with different Reynolds numbers
and geometries. Associated contours and velocity profiles for all of the training and test cases
are similarly described and discussed in each subsection. A summary of the performance of
each model on each case is presented in Table VII.3. It should be mentioned that according to
Eq. VII.19, j1 and j2 show the averaged error of mean velocity magnitude (⟨u⟩) and friction
coefficient (cf ), respectively, through the whole domain compared to the standard k− ω SST
error values. In other words, values of j1, j2 = 1 refer to a performance of the new model
similar to the standard k− ω SST, and values of j1, j2 = 0 refer to a performance of the new
model similar to high-fidelity data.

VII.3.1 Multi-case surrogate-based optimisation

For the purpose of multi-case surrogate optimisation, two cases PH2800 and CBFS13700 are
selected as training cases. For a more efficient optimisation, the candidate functions listed in
Eq. VII.11 are normalised by the mean and standard deviation values. For each candidate
function, these values are calculated based on the high-fidelity data of PH2800 and CBFS13700
and reported in Fig. VII.3. As mentioned in Sec. VII.2, for models II and IV, we employ PCA
to reduce the dimensionality of the α function. Similarly, we use the high-fidelity data of
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Figure VII.3: Mean (left) and standard deviation (right) values of each candidate functions
calculated based on the training cases, PH2800 and CBFS13700.
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Figure VII.4: Explained variance ratio of each principal component (left) and coefficients
associated with the first two principal components (right) calculated by high-fidelity data of
PH2800 and CBFS13700.

PH2800 and CBFS13700 in the PCA process. Figure VII.4 presents the explained variance of
each principal component, and it shows that the first two principal components are adequate
enough to represent the variance of the function. Figure VII.4 also reports the a

(1)
i and a

(2)
i

values corresponding to the two first principal components (i.e., φ1 and φ2, respectively).
In the training process, we optimise the 4 equations listed in Table. VII.1 by the multi-case

surrogate optimisation technique. As depicted in Fig. VII.5, these models are optimised with
450 observations for Models I and II, and 750 observations for Models III and IV (i.e., RANS
simulations of the training cases), and obtained equations are listed in Table. VII.4. All four
models have C0 < 0 which makes the separation factor have negative values. Hence, the new
models try to reduce the production (i.e., increase the dissipation) in the ω transport equation
(Eq. VII.9a). This changes the results in lower values of ω, and therefore, the turbulent
viscosity (Eq. VII.4) is increased by these new correction models.

For Models I and II, we choose a linear activation function whereas for Models III
and IV, the activation function is optimised during the CFD-driven surrogate optimisation.
Figure VII.6 compares the non-linear activation functions with the linear activation function,
showing that the optimal activation functions yield a higher gradient to switch between 0 and
1, instead of a linear behaviour. The enhanced activation functions also show zero gradients
close to the non-separation point (i.e., where νt

ω
k ≈ 1), which makes the model more stable in

cases when there is no separation phenomenon.
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Figure VII.5: Global objective function of the training cases obtained during the optimisation
process.

Table VII.4: Optimised model obtained by multi-case surrogate optimisation on high-fidelity
data of PH2800 and CBFS13700.

Model Name Model Equation

Model I Fsep = (−1.08− 0.38B1 + 0.063B2)
(
1− νt

ω

k

)
(VII.27a)

Model II Fsep = (−1.86+ 0.063φ1 + 0.016φ2)
(
1− νt

ω

k

)
(VII.27b)

Model III Fsep = (−0.25− 0.44B1 − 0.025B2)

(
1−

(
νt
ω

k

)16.47)4

(VII.27c)

Model IV Fsep = (−0.87+ 0.013φ1 − 0.077φ2)

(
1−

(
νt
ω

k

)20)7.25

(VII.27d)

All four models, listed in Table. VII.4, are optimised for the best performance in RANS
simulations of the training cases. Therefore at first, their performance in the reconstruction of
separation and reattachment is investigated for the training cases. As stated in Table VII.3,
the averaged normalised errors are 0.40 < J < 0.46 by all 4 obtained models for the case
CBFS13700. The comparison of the error values (Model I vs. II and Model III vs. IV) shows
that using the first two principal components has the same performance as using the first
two leading functions. These similarities in the performance of PCA and linear structures of
function α are an indication that the effect of higher order linear combinations of I1 and I2 is
negligible for model improvement in this study. However, the PCA analysis can decrease
the optimisation cost when more invariants are involved in complex and 3-dimensional
cases. Therefore, Models I and III which have simpler formats are chosen to be compared
throughout this paper to highlight the effect of non-linear (i.e., power) activation function
versus linear activation function. For the CBFS13700, it is shown that using a power activation
function over a linear one (i.e., Models III and IV) improves the reconstruction of both
velocity and friction coefficient.

By using the new correction models, the separation factor is expected to have a negative
value to reduce the production of ω, and Fig. VII.7 illustrates the values of Fsep and the area in
which activation function is activated. Therefore, as illustrated in Fig. VII.7, it is expected that
the values of predicted νt increase compared to the standard k− ω SST model. Furthermore,
due to the higher gradients of the optimised activation function X , the results of Fsep for
Model III show more extreme values.

Since the objective function of the optimisation process is defined based on averaged error
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Figure VII.6: Activation function search area. Blue lines represent possible activation func-
tions with diverse combinations of λ1 and λ2.
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Figure VII.7: Contours of separation factor Fsep (left) and turbulent viscosity νt (right) for the
training case CBFS13700.

values of velocity magnitude and friction coefficient (Eq. VII.19), we compare these quantities
obtained by the new models with high-fidelity data and the standard k− ω SST model. In
this regard, Fig. VII.8 shows that the recirculation zone predicted by the standard k− ω SST
model is larger than that of the high-fidelity method due to underprediction of νt by the
standard k−ω SST model. The recirculation zone resulting from RANS simulations corrected
by Models I and III are smaller which shows that the increment of νt by new separation
factors helps to shrink the recirculation zone. For a better comparison, Fig. VII.9 presents the
profiles of stream-wise velocity, wall-normal velocity, and bottom-wall friction coefficient.
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Figure VII.8: Contours of velocity magnitude with streamlines depicting separation and
reattachment for the training case CBFS13700. High-fidelity data obtained from Ref. [161].
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Figure VII.9: Profiles of streamwise velocity (upper left), wall-normal velocity (lower left) at
seven locations x/L = [0.5, 1.75, 3, 4.25, 5.5, 6.75, 8], and distribution of bottom-wall friction
coefficient (right) for the training case CBFS13700. High-fidelity data obtained from Ref. [161].

These results confirm the improvement of velocity prediction obtained by using Models I and
III. It likewise shows an improvement of the friction coefficient prediction by new models,
where Model III displays a better performance in the prediction of cf compared to Model I.
Furthermore, the results show that the size of the recirculation zone (i.e., where cf < 0) is
predicted with higher agreement between the new correction models and high-fidelity data.

For the other training case (PH2800), Table VII.3 shows that averaged error values are
0.39 < J < 0.41 which indicates a successful training of new models for PH2800. Similar to
CBFS13700, using PCA (in Models II and IV) does not show particular improvement, however,
using the non-linear (i.e., power) activation function improves the models’ performance.
Figure VII.10 shows that similar to CBFS13700 case, the size of the recirculation zone is
overpredicted by the standard k− ω SST model compared to DNS data for PH2800, and the
new models reduce the size of the otherwise overpredicted recirculation zone. Results in
Fig. VII.11 show a higher agreement in the prediction of stream-wise velocity, wall-normal
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Figure VII.10: Contours of velocity magnitude with streamlines depicting separation and
reattachment for the training case PH2800. High-fidelity data obtained from Ref. [160].

0

1

2

0.75〈u1〉/uc

0 2 4 6 8

0

1

2

5.0〈u2〉/uc

0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0.05

c
f

x/L

y
/
L

HF k − ω SST Model I Model III

Figure VII.11: Profiles of streamwise velocity (upper left), wall-normal velocity (lower left)
at seven locations x/L = [0.1, 1.42, 2.73, 4.05, 5.36, 6.68, 8], and distribution of bottom-wall
friction coefficient (right) for the training case PH2800. High-fidelity data obtained from
Ref. [160].

velocity, and bottom-wall friction coefficient with high-fidelity data. New models show a
successful improvement in the prediction of velocity and friction coefficient, specifically in
the reattachment area (i.e., x/L > 4).

Following the progressive approach, the activation function inside the separation factor
guarantees that the performance of the k− ω SST is preserved when new correction models
are applied in cases with no flow separation like the channel flow. Figure VII.12 shows that
the new models obtain identical results to the standard k− ω SST for the case of channel flow
CF5200. In this figure, u+ = ⟨u1⟩/uτ is the normalised streamwise velocity by friction velocity
uτ , and y+ = yuτ/ν is the normalised wall distance.
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Figure VII.12: Velocity profiles of the channel flow case CF5200.

VII.3.2 Verification on testing cases

In this subsection, the performance of new correction models is investigated for unseen
test cases. The case of periodic hills with bulk Reynolds number of Reb = 2800 (PH2800)
is included in the training process; therefore at first, new models are tested on the unseen
case of higher Reynolds number of the same case (PH10595). Table. VII.3 reports a successful
improvement in this unseen case (0.41 < J < 0.48), similar to the training case PH2800.

A comparison between the results in Fig. VII.13 and Fig. VII.10 shows that a higher
Reynolds number yields a smaller recirculation zone for this case, however, the standard
k−ω SST model still overpredicts the size of this recirculation zone compared to high-fidelity
data. Results in Fig. VII.13 likewise show that new models successfully correct the prediction
of the recirculation zone in the unseen case of a higher Reynolds number, where results in
Fig. VII.14 confirm the successful improvement in the prediction of velocity components
and bottom-wall friction coefficient in the unseen case of PH10595; which is similar to the
improvement in the training case PH2800.

The performance of the models is also evaluated on unseen cases with different geometries.
For this purpose, the new models are employed in the case of converging-diverging channel
flow at two different Reynolds numbers including CD12600, and CD20580. Figures VII.15
and VII.16 compare the performance of new models in the reconstruction of separation and
reattachment of flow for the cases of CD12600 and CD20580, respectively. In both cases, there
is not a large recirculation zone in the high-fidelity data, but the standard k− ω SST model
overpredicts the separation phenomenon. The new correction models are successfully able to
correct k− ω SST to shrink this area.

For a better comparison, Figs. VII.17 and VII.18 present the profiles of velocity components
and friction coefficient for cases of CD12600 and CD20580, respectively. These figures confirm
the ability of new models to successfully capture the velocity profiles in a case with a different
geometry than the training cases. The distribution of the bottom-wall friction coefficient
shows a small separation zone at 5.5 < x/L < 6.5 which is overstretched by the standard
k− ω SST to 6 < x/L < 9. Both Models I and III can improve the prediction of cf values by
shrinking the separation zone.

In another verification case, we choose the BUMP20 from the cases of parametric bumps,
studied by Matai and Durbin [165], to be tested by our new models to evaluate the per-
formance of new models in cases where separation is weak or non-existent. According to
Ref. [165], no separation of the flow is expected in this case of BUMP20. Figure VII.19 shows
the performance of standard k− ω SST and our new models compared to high-fidelity data.
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Figure VII.13: Contours of velocity magnitude with streamlines depicting separation and
reattachment for the test case PH10595. High-fidelity data obtained from Ref. [162].
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Figure VII.14: Profiles of streamwise velocity (upper left), wall-normal velocity (lower left)
at seven locations x/L = [0.1, 1.42, 2.73, 4.05, 5.36, 6.68, 8], and distribution of bottom-wall
friction coefficient (right) for the test case PH10595. High-fidelity data obtained from Ref. [162].

Since there is no separation in this case, the standard k− ω has a successful performance in
the reconstruction of the velocity domain. Figure VII.19 likewise shows that new models have
similarly a successful performance, and the averaged error values, reported in Table. VII.3,
indicate that new models improve the performance of k− ω SST slightly (i.e., the error values
0.95 < j1 < 0.96). Therefore following the progressive approach, the activation function
inside the new models prevents jeopardising the successful performance of the standard
k− ω SST in the cases where the separation phenomenon is very weak or non-existent.

Figure VII.20 compares the profiles of velocity components and distribution of the bottom-
wall friction coefficient. This figure confirms that the new models keep the successful
performance of the standard k − ω SST model in the prediction of velocity profiles while
improving the prediction of friction coefficients after the separation area.

We likewise try the new models on the case BUMP42 which has similar geometry to
BUMP20, however, due to the higher height of the bump, flow separation is expected in
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Figure VII.15: Contours of velocity magnitude with streamlines depicting separation and
reattachment for the test case CD12600. High-fidelity data obtained from Ref. [163].
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Figure VII.16: Contours of velocity magnitude with streamlines depicting separation and
reattachment for the test case CD20580. High-fidelity data obtained from Ref. [164].

this case. Figure. VII.21 compares the separation zone predicted by the standard k− ω SST
and our new models with that of high-fidelity data. The recirculation zone in high-fidelity
is placed approximately in 0.8 < x/L < 1.2, and the standard k − ω SST overstretches the
recirculation zone (0.6 < x/L < 1.4) whereas new correction models successfully predict the
size of the recirculation zone in this unseen test case. The profiles of velocity components
and distribution of bottom-wall friction coefficient are compared in Fig. VII.22. The averaged
error values in Table VII.3 (0.53 < J < 0.64) and the comparison in Fig. VII.22 confirms the
improvement resulting from the new correction models.

It should be mentioned that the mismatch in values of cf at the inlet shown in Figs. VII.20
and VII.22, which are also present in Figs. VII.17 and VII.18, are due to the underestimation of
friction coefficient by the standard k− ω SST. Since the purpose of the new correction models
is to only modify the k− ω SST when separation flow exists, this mismatch is also present in
the predictions by the corrected models.

Fig. VII.22 shows that the cf in the 0.2 < x/L < 0.6 is slightly overpredicted compared to

117



M. J. Rincón Ph.D. Thesis

0.00

0.25

0.50

0.75

1.00
0.8〈u1〉/uc

5 6 7 8 9 10 11 12

0.00

0.25

0.50

0.75

1.00
3.0〈u2〉/uc

0 2 4 6 8 10 12

−0.005

0.000

0.005

0.010

0.015

0.020

c
f

x/L

y
/
L

HF k − ω SST Model I Model III

Figure VII.17: Profiles of streamwise velocity (upper left), wall-normal velocity (lower left)
at seven locations x/L = [5, 6.08, 7.17, 8.25, 9.33, 10.42, 11.5], and distribution of bottom-wall
friction coefficient (right) for the test case CD12600. High-fidelity data obtained from Ref. [163].
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Figure VII.18: Profiles of streamwise velocity (upper left), wall-normal velocity (lower left)
at seven locations x/L = [5, 6.08, 7.17, 8.25, 9.33, 10.42, 11.5], and distribution of bottom-wall
friction coefficient (right) for the test case CD20580. High-fidelity data obtained from Ref. [164].

the standard k− ω SST. For a better analysis of the new models’ effect in this case, Fig. VII.23
presents the Fsep values and the effect of new models on the values of turbulent viscosity (i.e.,
νt). The values of νt are similar to the standard k− ω SST before the bump. The main changes
in νt happen after the apex of the bump, where a strong adverse pressure gradient causes a
high ratio of production to dissipation and a higher value of νt can help the prediction of the
velocity profiles. Also, Fig. VII.23 shows that Fsep is not activated where cf is overestimated
(i.e., bottom-wall boundary at 0.2 < x/L < 0.6). It should be mentioned that even though
Fsep value is varied locally, its effect can be transported within the domain by convection and
diffusion in the ω transport equation, and it is unavoidable that we see the effect of Fsep on cf
in this region of an unseen test case.
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Figure VII.19: Contours of velocity magnitude with streamlines depicting separation and
reattachment for the test case BUMP20. High-fidelity data obtained from Ref. [165].
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Figure VII.20: Profiles of streamwise velocity (upper left), wall-normal velocity (lower left)
at seven locations x/L = [0.51, 0.675, 0.84, 1.005, 1.17, 1.335, 1.5], and distribution of bottom-
wall friction coefficient (right) for the test case BUMP20. High-fidelity data obtained from
Ref. [165].
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Figure VII.21: Contours of velocity magnitude with streamlines depicting separation and
reattachment for the test case BUMP42. High-fidelity data obtained from Ref. [165].
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Figure VII.22: Profiles of streamwise velocity (upper left), wall-normal velocity (lower left)
at seven locations x/L = [0.51, 0.675, 0.84, 1.005, 1.17, 1.335, 1.5], and distribution of bottom-
wall friction coefficient (right) for the test case BUMP42. High-fidelity data obtained from
Ref. [165].
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Figure VII.23: Contours of separation factor Fsep (left) and turbulent viscosity νt (right) for
the testing case BUMP42.

VII.4 Accountability of flow transition effects

To finalise this study, a short discussion is done regarding the influence of flow transition in
separation and reattachment. In 2-dimensional cases where favourable and adverse pressure
gradients are present; boundary-layer transition, laminar separation bubbles, and flow re-
laminarisation play an important role in flow physics. In this study, these physics take place
in test cases CD12600, CD20580, BUMP20, and, BUMP41.

Due to the limitations of standard k−ω SST, it is not possible to account for the predictions
of all flow physics and complexities. Specifically, for the BUMP cases, it has been reported that
the flow does not re-laminarise through the favourable pressure gradient region, nevertheless,
boundary-layer transition effects that affect separation are predicted by the high-fidelity
simulations in the adverse pressure gradient region [165]. Such effects cannot be predicted
by standard k− ω SST.

On the one hand, these issues are encapsulated as part of a different physical phenomenon
(i.e., the transition effect) than boundary-layer separation. On the other hand, the corrections
added to k− ω SST improve the overall separation and reattachment prediction of not only
training but also the test cases in which this extra phenomenon occurs. Nevertheless, the
prediction of the velocity profiles is improved, although the mismatch in cf is due to the
abovementioned physics.

In order to showcase the transition effects inside linear eddy-viscosity models, simulations
with the transition model k− ω SST γ − Reθ [166, 167] have been performed for these cases.
Results in Fig. VII.24 display the differences in flow prediction when turbulence transition is
modelled for BUMP42. The k−ω SST γ−Reθ transition model is capable of slightly predicting
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Figure VII.24: Profiles of streamwise velocity (upper left), wall-normal velocity (lower left) at
ten locations x/L = [0.01, 0.17, 0.34, 0.51, 0.672, 0.84, 1.003, 1.17, 1.335, 1.5], and distribution
of bottom-wall friction coefficient (right) for the test case BUMP42. High-fidelity data obtained
from Ref. [165].

transition effects and accurately predicting the cf upstream the bump’s apex (at x/L ≈ 0.6);
however, the prediction still displays the overstretched flow separation and reattachment
issue that standard k− ω SST has. Regarding velocity profiles, k− ω SST γ − Reθ enhances
the prediction by the standard model although it does not improve it as much as the new
correction models developed in this study.

A comparison of cf values in range 0.2 < x/L < 0.6 in Fig. VII.24 shows that accounting
for the transition effect has improved the k − ω SST performance and has the potential to
help new correction models to overcome the overprediction of cf in that range. Therefore in
a future study, it would be interesting to perform an enhanced model optimisation for k− ω
SST γ − Reθ since the results based on Fig. VII.24 show the model’s potential to be improved
in a generalisable manner following the progressive methodology of this study.

VII.5 Conclusions

In this study, we use a multi-case CFD-driven surrogate optimisation to enhance the stan-
dard k− ω SST in the prediction of flow separation. We employ a progressive approach to
introduce a correction to ω transport equations which is activated in the case of separation
and guarantees the original performance of the k− ω SST in the absence of separation.

The performance of standard k−ω SST in 6 different tested cases, where flow separation is
expected, shows that the recirculation zone is predicted larger than that of high-fidelity data.
This overstretched recirculation zone is due to the underestimation of turbulent viscosity (νt)
by standard k− ω SST. Therefore, all optimised models introduce a separation factor (Fsep) to
the transport equation of ω, leading to lower values of ω and higher values for νt in localised
regions of the flow field. This modification enhances the prediction of the velocity field and
friction coefficient.

Considering the structure of the separation factor, we investigate two forms of dimen-
sionality reduction including the first two leading components and the first two principal
components. We likewise investigate two forms of activation functions, including a linear
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function and a non-linear (i.e., power) function inside the separation factor formulation.
The comparison of results in both training and testing cases shows that in general, using
PCA does not improve the performance of the models in this case whereas using the power
activation functions improves such performance; hence, Model III in this study has shown
the best performance and generalisability in the tested cases.

All of the models are optimised for the lowest averaged error for the training cases (PH2800

and CBFS13700) while the channel flow case (CF5200) is used to guarantee the original perfor-
mance of the standard k− ω SST in the absence of separation. We use 5 cases with different
geometries and Reynolds numbers (PH10595, CD12600, CD20580, BUMP20, and BUMP42) as
unseen test cases to evaluate the generalisability of the new models. All of the new models
show significant improvement in the prediction of velocity domain and friction coefficient in
both training and testing cases.

For the test cases where flow separation is expected (PH10595, CD12600, CD20580, and
BUMP42), the new separation factors successfully increase the values of νt to shrink the over-
estimated size of the recirculation zone by the standard k− ω SST. In the test case of BUMP20,
where flow separation is not expected, the new models preserve the successful performance
of the standard k − ω SST in the prediction of the velocity domain while improving the
prediction of friction coefficient distribution at the walls.

The results of this study suggest that the progressive augmentation methodology com-
bined with CFD-driven optimisation is a consistent and generalisable approach to enhance
common popular RANS models (e.g., standard k − ω SST model) for their shortcomings
while preserving their original favourable aspects.
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VIII
Final Remarks

This thesis shows the current status of the application of fluid mechanics, turbulence mod-
elling, data-driven methods, and optimisation in complex industrial internal flows. The
principal objective is to develop methods to evaluate and improve ultrasonic flow meters
and popular turbulence models. With these methods, robust predictions of the flow fields
throughout ultrasonic flow meters are used to improve these or any other system with similar
characteristics. The applicability of these simulation-based tools allows the improvement of
engineered systems in ways that would not be possible with the use of traditional technical
knowledge.

The flow physics throughout a baseline two-stand ultrasonic flow meter geometry is gen-
erally complex, yielding a combination of rolling vortices generation and breakup, boundary-
layer separation and reattachment, recirculation zones, and high shear and rotational regions
in the flow. These flow characteristics are common for most of the flow meter dynamic range
and mostly predominant for inlet turbulent flows. Furthermore, no qualitative changes in
terms of coherent structures and flow dynamics are seen above an inflow Re > 104. These
findings show that two-stand ultrasonic flow meters display non-canonical and intricate flow
dynamics, presenting an excellent case to prove the latest methods in flow prediction and
optimisation.

With the use of CFD methods and RANS k− ω SST turbulence modelling, these complex
flows are predicted with particularly good agreement in the whole dynamic range of the
flow meter. These predictions are compared to LDV and pressure drop experiments with an
uncertainty agreement in results of 1 and 3 standard deviations, respectively. Predictions
in the baseline flow meter geometry show an incipient pressure drop due to boundary-
layer detachment. Moreover, high flow non-uniformities and turbulence kinetic energy are
predicted in the flow meter measurement region, where the ultrasound waves travel between
transducers. These facts are clear indicators of opportunities for improvement in the baseline
geometry.

The use of steady-state RANS allows the relatively fast computation of results, which is a
determinant factor when approaching geometrical optimisation and the practical usability
of methods. In this regard, a two-step geometrical optimisation strategy is applied. Firstly,
a design optimisation method is developed, parametrising the flow meter geometry and
employing surrogate and Bayesian optimisation to define a response surface. This surrogate
is subsequently searched for optima with a multi-objective evolutionary algorithm in a fast-
paced manner. Secondly, the design optimisation method results are further improved by
applying shape optimisation with the adjoint method and a custom control-point box to
morph the geometry in the 3D space. This last step allows the refinement of the obtained
geometry, further improving the system. This optimisation strategy shows the coupled use
of CFD and optimisation to provide improved and experimentally validated designs by
means of computational simulations. The repercussions of these findings open the door to
the optimisation of systems with similar geometries and flow physics.

Previous optimisation efforts could not be possible without an accurate prediction of
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the flow fields. Nevertheless, although accurate, eddy-viscosity RANS models have shown
shortcomings in the prediction of anisotropy-based secondary flow and boundary-layer
separation and reattachment in canonical flow cases. Expanding the use of the previous
optimisation methodology into RANS k − ω SST, the model is enhanced by the use of a
sparse regression of basis tensors and their invariants together with coefficients, where the
coefficients’ values are calibrated by surrogate and Bayesian optimisation.

On the one hand, regarding secondary flow prediction, a set of principal components
based on the invariant functions and coefficients are defined into the second basis tensor
of Pope’s decomposition, adding a non-linear term into the Reynolds stress prediction that
accounts for a certain level of turbulence anisotropy. Performing surrogate optimisation
in a simplified square duct case and comparing the results to high-fidelity data, a set of
optimal coefficients is found. On the other hand, regarding the prediction of boundary-layer
separation and reattachment, a combination of the first and second invariants and coefficients
is used to correct the production of dissipation. To not alter the correct law of the wall
prediction of the original model, an activation function defined by two exponents is likewise
defined and added to the correction. Performing simultaneous Bayesian optimisation to a
series of canonical flows in which separation is expected, an optimal set of coefficients and
exponents is likewise found.

All models are tested in diverse canonical cases with different geometries and Reynolds
numbers, generally showing excellent generalisability in 2-dimensional cases. Hence, these
approaches have shown to be consistent and generalisable methods for enhancing popular
RANS models by data-driven techniques.

The methods developed throughout this thesis have been able to evaluate, characterise key
metrics, and optimise two-stand ultrasonic flow meters via numerical simulation tools, while
experimentally validating the obtained results. In addition, the data-driven optimisation
methods developed have been expanded and used to progressively enhance common RANS
turbulence models in an accurate and generalised manner.

VIII.1 Future prospects

The work done in this thesis likewise leads to certain insights to keep advancing the state-
of-the-art of fluid-based optimisation and data-driven RANS modelling. The most relevant
research topics to be studied as a consequence of this thesis are discussed as follows:

• For the specific case of ultrasonic flow metering, there are gaps in the literature that
must be filled in order to ensure an optimal evaluation of flow meter performances.
The performance functions defined in this thesis are based on empirical and previous
industrial technical knowledge. Although their base shows physical significance, these
functions have not been experimentally validated. Hence, it is required to develop the
experimental hardware to evaluate the ultrasound-fluid interaction and validate the
performance functions.

• During the timeframe of this thesis, it was not possible to experimentally evaluate
wide fields of view. Although very accurate, LDV is a time-consuming experimental
technique that evaluates velocity locally. In this regard, the experimental evaluation of
2D or 3D velocity fields by PIV or similar techniques throughout the flow meter would
be desirable to validate the numerical methodology at other locations.

• It would be desirable to perform an extended design optimisation in the flow meter
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where more geometrical degrees of freedom are allowed based on the results of this
thesis and a refined performance function is validated.

• The final results of shape optimisation by mesh morphing and the adjoint method
obtained during this thesis do not fully agree with the calculated gains by the method.
To this end, it would be desirable to perform experimental validation on the final ge-
ometry and implement careful re-meshing between optimisation iterations to maintain
consistency in the results.

• Regarding data-driven RANS turbulence modelling enhancement, the progressive
approach has proven to be very useful in the generalisability and robustness of the
models. However, the introduction of a non-linear term into the Reynolds stress has
shown certain tendencies towards solver divergence that should not be overlooked.
One suggestion to improve the models’ convergence is the inclusion of a sparsity-
promoting function with regularisation during optimisation that penalises the final
objective the bigger the coefficient values are. This approach would minimise the non-
linear correction to the model while still being accurate in the prediction of secondary
flows.

• All enhanced turbulence models have been trained in 2D canonical flow cases. It is
expected that certain terms in the yielded functions and invariants would be insignif-
icant due to the limited dimensionality of the training cases. Therefore, using a 3D
case with significant complexity (such as a two-stand ultrasonic flow meter or the 3D
Boeing Gaussian speed bump) to perform the training would probably yield more
generalisable and accurate models for both 2D and 3D cases alike.
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IX
Epilogue from the Author

To conclude, I would like to share some light-hearted reflections on our past, our present,
and our future based on what I have learned during my Ph.D journey.

Nowadays, every little improvement in society and technology involves solving a very
complex knowledge problem. One can only imagine then that big changes do not come easy,
and when they come, they are the result of small incremental contributions by a lot of people.
Some would say that knowledge is power due to this fact, but I believe that knowledge is
something more: opportunity. An opportunity to dare to try, an opportunity to change and
make things better, an opportunity to feel safe in a world full of uncertainties...

We should not neglect the importance of knowledge (and research) in today’s world. I
found it very interesting that knowledge showcases a feedback loop. Showing that every an-
swer just leads to more questions, therefore, we must not stop learning, so we can always find
the answers to the questions, and most importantly: the solutions to the lurking problems.

Throughout history, it has been seen that the correct use of physical laws in favour of
human aid enables changes to increase the well-being of society as a whole. To this end, I
hope that the research performed in this thesis places a little grain of sand in the mountain
of knowledge and societal progress that will improve the well-being of current and future
generations.

If you have followed this thesis, you must have noticed the problem that we are trying to
solve: mitigating or completely avoiding the collateral damages of climate change, mostly,
water scarcity. To do so, a substantial amount of engineering-based efforts must be placed
in the improvement of the water distribution networks at a global scale. That is why fluid
mechanics knowledge is very important if we need to understand the flow of fluids in current
distribution networks.

Extrapolating this fact, we live surrounded by the consequences of fluid mechanics, thus
improving our prediction of fluid motion is very relevant to solving a staggering amount of
engineering challenges. But simultaneously, we should not forget the need for collaboration
and multi-disciplinary synergies between fields, not only from technical disciplines but also
from humanities and social sciences. Ultimately, we all live in society and the contemporary
landscape requires understanding each other while cooperating.

A fundamental matter that I have learned during these years is that, in the current
scene of engineering and physics research, the applicability of state-of-the-art methods and
technologies is the holy grail of progress. With this, I have the feeling that applying the
methods developed and knowledge uncovered during my years of research opens the door to
a fascinating opportunity for continuous improvement. My final hope is that this opportunity is
welcomed with open arms and used wisely in the years to come.

Thank you for the time to go through my thesis, my dear reader. Let us all remember to
make this world a better place, together.
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A
Erratum

Everyone makes mistakes (even in a Ph.D. thesis), hence, this appendix includes various
updates to the Ph.D. Thesis titled Robust Optimisation of Ultrasonic Flow Meters by Computational
Fluid Dynamics and Enhanced Turbulence Modelling by the author Mario Javier Rincón. The
thesis was originally submitted for assessment to the Graduate School of Technical Sciences
(GSTS) of Aarhus University (AU) on October 30th, 2023 and, according to:

Rules & Regulations 11.7 “Corrections to the thesis: The thesis available for the defence must in
principle be identical to the version submitted for assessment. However, the PhD student is allowed to
incorporate small corrections and changes provided that a detailed description of these corrections and
changes is included as well; this also applies to corrections and changes incorporated after the defence."

Following this rule, certain updates are made to the submitted thesis version due to
the final publication and acceptance of 2 out of 6 manuscripts composing the thesis. These
manuscripts compose Chapters 3, and 7 of the thesis. The minor changes included following
the suggestions of the journal reviewers, who pointed out improvements to the text and some
figures. In addition, the reference of these chapters is updated to match them with reference
journals in which these are now published.

Hence, all updates are based on the reviewer’s comments and have been peer-reviewed
after their implementation in the articles. Changes are made to provide a finished and
complete version of the studies made during the Ph.D. prior to the thesis defence and
printing by the University Library.

A.1 List of Changes

A.1.1 Chapter II

1. Title has changed: Flow investigation of two-stand ultrasonic flow meters in a wide
dynamic range by numerical and experimental methods.

2. Reference changed with the new title.

3. Paragraph added at the end of Section 1: The previous studies regarding two-stand
ultrasonic flow meters have only focused on a single nominal inlet flow in the turbulent
regime, resulting in a gap in the literature when assessing the robustness and accu-
racy of common RANS models in their prediction of the dynamic range of complex
internal flows. This study thus presents a comprehensive numerical and experimental
investigation of the dynamic range of operation of a typical two-stand ultrasonic flow
meter by industry standards. By using numerical methods, we aim to understand,
accurately predict, and investigate the flow dynamics within the device and evaluate
its performance under varying flow rates within its dynamic range. Furthermore, with
a well-documented and grounded numerical foundation of the flow physics of the
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dynamic range in these systems, we aim to provide the knowledge to analyse the per-
formance of ultrasonic flow meters and improve their performance based on numerical
data.

4. Paragraph added at the end of section 2: In addition, the performance of the flow meter
is numerically evaluated in the dynamic range following the work by Rincón et al.
[76, 82]. This performance function is defined as

f2 = −
(
uΩ − u′Ω − σuΩ

ub

)
, (A.1)

where Ω is the estimated sound propagation volume, uΩ is the integrated velocity of
the fluid in the sound-path volume, u′Ω is the integrated velocity fluctuations in the
sound-path volume, σuΩ is the standard deviation of the integrated velocity distribution
in the sound-path volume. For more information about the performance function
calculation, the reader is referred to [76].

5. Line is added at the beginning of Section 3: Experimental uncertainties follow the
convention by ISO/IEC Guide 98-3 Part 3: GUM [85], displaying 2σ ranges. All results
are similarly discussed and described followed by their corresponding figures.

6. Paragraph is added at the beginning of Subsection 3.1: It is remarkable to highlight that
there is not a single geometrical parameter that holistically governs the flow physics
present in this type of ultrasonic flow meter. It is very complex to determine and
evaluate in detail the geometrical causes of all the physics present in this case, therefore,
the results section of this study focuses on the qualitative and quantitative description
of the physics and phenomena. For more information about the parameter influence in
this case, the reader is referred to the study by Rincón et al. (2023) [76].

And after Figure 6 of Subsection 3.1: The λ2 values represent a good criterion to
identify vortical structures. The criterion is defined as the second biggest eigenvalue
(in magnitude) of the matrix SikSkj + ΩikΩkj , where Sij is the rate-of-strain tensor and
Ωij is the rate-of-rotation tensor, defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(A.2a)

Ωij =
1

2

(
∂ui
∂xj

−
∂uj
∂xi

)
. (A.2b)

7. Figure 7 has been updated showing a schematic on top of it.

8. Figure 9 has been updated showing darker uncertainty bounds to improve its printabil-
ity. Uncertainty bounds are now showing 2σ.

9. Figure 11 has been updated showing darker uncertainty bounds to improve its print-
ability. Uncertainty bounds are now showing 2σ.

10. Figure 12 has been updated showing now 2σ uncertainty bounds.

11. Figure 13 has been updated showing now 2σ uncertainty bounds.
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12. Subsection 3.4 has been added: Following the definition from Rincón et al. [76, 82],
the performance of the flow meter under the tested inlet conditions, is evaluated.
The performance function f2 evaluates the velocity and turbulence kinetic energy
throughout the reflected sound-path volume and provides, solely by the numerical
flow solution, a performance value. A high negative value of f2 indicates a more robust
and accurate measurement by the flow meter, whereas a value close to 0 indicates the
opposite.

Figure 15 shows the results of f2 in function of the inlet Reynolds number for all cases
studied. Results show that the estimated measurement performance decreases as the
inlet Re increases, with an asymptotic tendency towards f2 ≈ 0.49. For low inlet Re
cases, the estimated measurement performance improves.

Saturation values of f2 are reached approximately at Re = 104. This phenomenon occurs
due to the similarity of the flow fields at higher inlet Re. However, the differences in the
flow fields of the low flow rate cases yield large deviations in the performance estimates.
Excluding the laminar cases, which yield a 286% and 265% better performance than
the nominal inlet Re = 2.82 · 104. These findings point out that these types of flow
meters yield a more robust measurement at low inlet Re. Simultaneously, the variation
in measurement performance of these meters is highly reduced at higher inlet Re.

13. Figure 15 has been added to support the claims of Subsection 3.4.

14. A line has been added to Section 4: The numerical flow meter performance shows that
the velocity field at lower inlet Re yields a more robust and accurate measurement
compared to higher inlet Re, where a saturated value of the performance function is
observed in inlet Re > 104. .

A.1.2 Chapter VII

1. Paper title changed from British to American spelling to be consistent with the published
version, e.g. the word optimisation has been changed to the word optimization. These
changes of British to American spelling in the title are changed throughout the whole
text.

2. The article reference has been changed to be consistent with the published manuscript.

3. Lines added in Section 2.1: It should be mentioned that both φ1 and φ2 include a
combination of all the candidate functions (listed in Eq. VII.11), where B1 and B2 are
the normalised versions of the linear terms I1 and I2, respectively.

4. Lines added after Eq. II.17: It should be mentioned that all of these correction models
integrate only a few algebraic calculations to each iteration in the simulations, which
do not affect the computational cost of the simulations compared to the original k− ω
SST model.

5. Lines added in section 2.2: A well-designed sampling plan is delineated based on Latin
hypercube sampling (LHS), with an infill criterion that adheres to quality measures.
Acknowledging the possibility that the initial sampling might not cover the surrogate’s
extreme values, Bayesian techniques rooted in efficient global optimisation are em-
ployed, coupled with the evaluation of the expected improvement (E [I(x)]) function.
These strategies are aimed at further exploring the surrogate model, enhancing its
reliability, and obtaining optimal observations.
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6. Caption changed in Fig. II.2: Optimisation approach involving an initial sampling
plan using Latin hypercube sampling, resolved through CFD. A multi-case method-
ology is adopted, wherein observations are simultaneously conducted across three
cases: CBFS13700, PH2800, and CF5200. Subsequent to this, an initial surrogate model is
formulated using Kriging and improved using Bayesian optimisation techniques.

7. Line added at the end of table II.2: Reb = 1.01 · 105.

8. Lines added after Fig. II.6: These similarities in the performance of PCA and linear
structures of function α are an indication that the effect of higher order linear combina-
tions of I1 and I2 is negligible for model improvement in this study. However, the PCA
analysis can decrease the optimisation cost when more invariants are involved in com-
plex and 3-dimensional cases. Therefore, Models I and III which have simpler formats
are chosen to be compared throughout this paper to highlight the effect of non-linear
(i.e., power) activation function versus linear activation function... Furthermore, due
to the higher gradients of the optimised activation function X , the results of Fsep for
Model III show more extreme values.

9. Caption of Fig. II.7: Contours of separation factor Fsep (left) and turbulent viscosity νt
(right) for the training case CBFS13700.

10. Paragraph added at the end of section 3.2: It should be mentioned that the mismatch
in values of cf at the inlet shown in Figs. 20 and 22, which are also present in Figs. 17
and 18, are due to the underestimation of friction coefficient by the standard k− ω SST.
Since the purpose of the new correction models is to only modify the k− ω SST when
separation flow exists, this mismatch is also present in the predictions by the corrected
models.

Fig. 22 shows that the cf in the 0.2 < x/L < 0.6 is slightly overpredicted compared
to the standard k− ω SST. For a better analysis of the new models’ effect in this case,
Fig. 22 presents the Fsep values and the effect of new models on the values of turbulent
viscosity (i.e., νt). The values of νt are similar to the standard k−ω SST before the bump.
The main changes in νt happen after the apex of the bump, where a strong adverse
pressure gradient causes a high ratio of production to dissipation and a higher value of
νt can help the prediction of the velocity profiles. Also, Fig. 23 shows that Fsep is not
activated where cf is overestimated (i.e., bottom-wall boundary at 0.2 < x/L < 0.6).
It should be mentioned that even though Fsep value is varied locally, its effect can be
transported within the domain by convection and diffusion in the ω transport equation,
and it is unavoidable that we see the effect of Fsep on cf in this region of an unseen test
case.

11. Section 4: Accountability of flow transition effects, has been added with two new
figures.
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