
Casting the runes
and parsing them

Unpacking software mediation, interactions,
and computational literacy in non-con-

ventional programming configurations

 PhD dissertation F2023
bjarke vognstrup fog

Aarhus University
School of communication

and culture

Århus University
Department of Digital Design and Information Studies

Doctoral dissertation

Casting the runes and parsing them: Unpacking software mediation,
interactions, and computational literacy in non-conventional

programming configurations

Bjarke Vognstrup Fog

Supervisor
Clemens Nylandsted Klokmose

Co-supervisor
Ole Sejer Iversen

PhD programme director
Iben Have

June 2023

DOI: 10.7146/aul.501
ISBN: 978-87-7507-548-5

i

Acknowledgements

This dissertation only has me on the author list. Yet it would not exist had it not been for so many
people around me. First and foremost, I wish to thank Dr. Kate Howland and Prof. Dr. Andreas
Mühling for taking the time to read and assess the present dissertation as part of the assessment
committee. The committee would also not be complete without Minna Pakanen who, besides taking
the time to head the committee, has been a source of great talks and office candy over the years. A
special thank goes to Kasper Ostrowski for making the front page and to Jonas and Frida for giving
me feedback on various parts of the dissertation.

I also need to thank my supervisors, Clemens Nylandsted Klokmose and Ole Sejer Iversen, for all
the supervision, support, and guidance they have provided over the years, even after their official
obligation to supervise me ended. I have not always been the easiest PhD student to supervise, yet
you never gave up on me. Clemens, thank you for being a great supervisor, co-author, co-teacher,
travel buddy, concert goer, and friend. Your approach to research has been inspiring. Ole, thank you
for the great chats, for challenging me at every step, and for forcing me to take on some of your
“method fundamentalism” which has helped ground me when my head was in the clouds.

Since the beginning of my PhD in 2018, I have almost religiously been attending every Fridaymeeting
at CCTD. Not only because of the academic content and the morning rolls, but because of the people
who always made me feel included as a valued colleague. Despite COVID, I managed to get to know
and visit Gregor, Andreas, and all the other wonderful people from the Arbeitsgruppe Didaktik der
Informatik at Christian-Albrechts-Universität in Kiel. Thank you so much for letting me visit and for
providing nice academic and personal experiences. I still think fondly of the trip to Haithabu.

I have been lucky to be surrounded with many great colleagues. Among my fellow PhD students
at IMCJ, I found friends and partners-in-suffering. The Christmas party in particular was one of the
highlights of last year. A lot of other people have made my life at the office pleasant and enjoyable.
I cannot possibly mention all of you here, but I especially enjoyed the company of Liam and Ignacio
(and their partners) at our many bouldering outings. Of course, Line Have and Malle need to be
recognized for their ways of being and for listening to my many woes over the years. Morten and
Iben likewise deserve a thought of gratitude for helping me through the hard times. At CHC, I have
met other people whose company is both joyful and provides me with the opportunity for growth.
Thank you all for being you. Especially Peter has been vital for my interest in programming since I
first worked with you as a teaching assistant eight years ago.

Of course, none of the articles in this dissertation would be possible without my various co-authors
over the years: Clemens, Midas, Marcel, Carla, James, ML, Line Have, Marianne, Blanka, and Alberte.
It has been a joy to work with all of you. All the participants in our research deserve thanks, too. But
not only have I been a researcher during the last five years, I have also been a teacher. Thank you to
all of my students for providing me with good experiences, for challenging me, and for showing me
that what I say actually matters.

Despite this extensive list, I have probably forgotten some of those that have contributed to my
personal and academic development during the last five years. Even so, I have appreciated all the
people that I have met over the years. All of you who engage in chats at the coffee machine, the
secretaries, the cleaning staff, the casual acquaintances at various gatherings. And of course, my
numerous office mates (9!) with whom I have had the pleasure of sharing a space.

On a more private note, my sister Kristine deserves a shoutout. Thank you for being there when
everything else fell apart. The same goes for Lisbeth, Martin, Thomas, Kasper, Johnny, Anne, Carina,
and the rest of the Gang. I know that many of you have been on the receiving end of my complaints,
qualms, and frustrations. And finally, what you are currently reading would have never existed
without the support of my dear Lotte. You make me the best version of myself. Thank you for being
by my side through all the long days and nights of work.

BjaRKe VognstRup Fog
Århus

June 2023

iii

List of publications

Paper 1 Bjarke Vognstrup Fog & Clemens Nylandsted Klokmose (2019). Mapping the landscape of lit-
erate computing. In Proceedings of the 30th Annual Workshop of the Psychology of Programming
Interest Group, ser. PPIG.

Paper 2 Midas Nouwens, Marcel Borowski, Bjarke Vognstrup Fog & Clemens Nylandsted Klok-
mose (2020). Between Scripts and Applications: Computational Media for the Frontier of
Nanoscience. In CHI ’20: Proceedings of the 2020 CHI Conference on Human Factors in Com-
puting Systems.

Paper 3 Marcel Borowski, Bjarke Vognstrup Fog, Carla F. Griggio, James Eagan & Clemens Nyland-
sted Klokmose (2022). Between Principle and Pragmatism: Reflections on Prototyping Compu-
tational Media with WebstRates. In TOCHI: ACM Transactions on Computer-Human Interac-
tion.

Paper 4 Marie-Louise Stisen Kjerstein Sørensen, Bjarke Vognstrup Fog, Line Have Musaeus & Mari-
anne Graves Petersen (2022). KnitxCode: Exploring a Craftsmanship-driven Approach to Com-
putational Thinking. In NordiCHI ’22: Adjunct Proceedings of the 2022 Nordic Human-Computer
Interaction Conference.

Paper 5 Bjarke Vognstrup Fog, Blanka Pálfi, Alberte Uhre Mortensen & Line Have Musaeus (2023,
submitted). Computational self-concept: Towards an understanding of students’ identities, at-
titudes, and beliefs. Submitted to Education and Information Technologies.

Table 1: Published and submitted research articles

Other research output

Eva Eriksson, Ole Sejer Iversen, Gökçe Elif Baykal, Maarten VanMechelen, Rachel Charlotte Smith, Marie-Louise
Wagner,BjarkeVognstrup Fog, Clemens Nylandsted Klokmose, BronwynCumbo, Hermes Arthur Hjorth, Line
HaveMusaeus, MarianneGraves Petersen&Niels Olof Bouvin (2019). Widening the Scope of FabLearn Research:
Integrating Computational Thinking, Design and Making. In FabLearn Europe ’19: Proceedings of the FabLearn
Europe 2019 Conference.

BjarkeVognstrup Fog (2021, August 16–19). Computational self-concept— and the issue of having people identify
as computationally competent [Lightning talk]. ICER 2021, virtual.

Marie-Louise Stisen Kjerstein Sørensen, Bjarke Vognstrup Fog, Line Have Museaus & Marianne Graves Pe-
tersen (2022). Knit x Code - Exploring a Craftsmanship-driven Approach to Computational Thinking. Dutch
Design Week, TU Delft. https://www.4tu.nl/du/columns/Knit%20x%20Code/.

Table 2: Other research dissemination

https://www.4tu.nl/du/columns/Knit%20x%20Code/

v

Abstract

This dissertation is an investigation of computational literacy and how it is shaped by software use
and mediation. Early visionaries such as Perlis and Naur recognized the need for everyone to learn
computing, but these ideals are yet to be fully realized. Arguably, a narrow focus on computational
thinking is the more popular approach in contemporary computing education research and poli-
cymaking. Another branch of researchers, in particular Kay and diSessa, have argued for the need
for providing the right media for computing. In line with them, I argue that a more materially
grounded literacy is a necessary step. By extension, this means providing a better understand-
ing of how these material conditions (e.g., software) influence the development of computational
literacy.

Through eight studies, I have employed a mix of qualitative methods and constructive design
research. The qualitative methods fall under ethnography, technography, and retrospective au-
toethnography. The empirically grounded research draws from interviews with five humanities
students, interviews and observations of four biomolecular scientists, interviews with 12 experi-
enced programmers, and a workshop and observations of 12 experienced knitters. These inter-
views focused on their experiences with programming, their ability to use and appropriate unfa-
miliar software, and their feelings of mastery and disempowerment. This is supplemented with
technographic investigations of computational media, literate computing environments, and pro-
gramming interfaces that focuses on the mediating qualities of software for programming such as
interaction, semiotics, ethics, and transformation.

My work has shown the importance of the material foundations of computational literacy in these
contexts. More specifically, the material conditions affect this literacy in multiple ways such as
the dissonance between software visions, people’s expectations, and the practical implementa-
tions. People experience disempowerment and crises and resolve those through various means
such as enrolling a more capable peer or incorporating supporting artifacts. The dissertation fur-
ther presents computational media as a promising, yet fragile software paradigm and shows how
this paradigm blends use and development, inscribes particular user roles, and balances between
evoking trust and alienation in its users. Finally, by emphasizing a theoretical lens of self-concept
in the context of computational literacy, the dissertation provides a view of literacy as a product
of continuous experiences and confirmations from people’s social and material lifeworlds.

These findings should resonate with scholars of newmedia, human-computer interaction, and com-
puting education, as the dissertation explores the complex mutual relationships between people’s
cultural, social, and material environments as well as their ongoing and sometimes contradictory
ways of seeing themselves. Computational literacy can be emancipatory for everyone, not just for
computer scientists, yet the development of literacy demands adequate conditions. This disserta-
tion is an argument for the importance of those conditions.

vii

Dansk resumé

At riste og råde runerne: En udlægning af mediering, interaktion
og datalogiske kompetencer i ukonventionelle

programmeringskonfigurationer

Denne afhandling er skrevet på engelsk. Jeg benytter engelske begreber, som desværre er vanske-
lige at oversætte uden at miste noget af deres betydning. Eksempelvis er der på engelsk en forskel
mellem literacy og kompetencer, som ikke findes på samme måde på dansk. Computational har jeg
nogle steder i det følgende oversat til datalogisk, selvom der er en mindre begrebsmæssig forskel.
Ligeledes har jeg oversat computing til datalære, hvor det er hensigtsmæssigt.

aaa

Afhandlingen er en undersøgelse af datalogiske kompetencer (en. computational literacy), og hvor-
dan de formes af softwarebrug og -mediering. Tidlige visionærer som Perlis og Naur indså behovet
for, at alle skulle lære datalære, men disse idealer er endnu ikke opfyldt. Et snævert fokus på data-
logisk tænkning (en. computational thinking) er tilsyneladenede en mere populær tilgang i aktuel
uddannelsesforskning og på den politiske dagsorden. En forskningsgren, anført af blandt andre
Kay og diSessa, har argumenteret for behovet for de rigtige medier i datalære (en. computing). I
tråd med disse argumenter italesætter jeg også det nødvendige i mere materielt funderede kompe-
tencer. Det betyder altså i denne sammenhæng, at der er behov for en bedre forståelse af, hvordan
de materielle betingelser (fx software) påvirker udviklingen af datalogiske kompetencer.

Gennem otte studier har jeg anvendt en kombination af kvalitative metoder og konstruktiv de-
signforskning. De kvalitative metoder er mere specifikt etnografi, teknografi og retrospektiv au-
toetnografi. Min empirisk funderede forskning trækker på interviews med fem humanistiske stud-
erende, interviews og observationer med fire biomolekylære forskere, interviews med tolv erfarne
programmører og en workshop og observationer med tolv erfarne strikkere. Fokus i interviews
og observationer var deltagernes erfaringer med programmering, deres evne til at bruge og ti-
legne sig ukendt software samt deres følelse af mestring og umyndiggørelse. Dette blev suppleret
med teknografiske undersøgelser af computational medier, literate computing-miljøer og program-
meringsinterfaces med fokus på de medierende kvaliteter i programmeringssoftware, eksempelvis
interaktion, semiotik, etik og transformation.

Mit arbejde har demonstreret betydningen af det materielle fundament for datalogiske kompe-
tencer i disse kontekster. Mere specifikt påvirker de materielle betingelser kompetencerne på flere
måder, eksempelvis i form af dissonans mellem softwarevisioner, forventninger og praktiske im-
plementeringer. Deltagerne oplever umyndiggørelse og kriser, som de løser på forskellige måder,
blandt andet ved indrullering af mere kompetente ligesindede eller inkorporering af andre artefak-
ter. Afhandlingen præsenterer derudover computational medier som et lovende, men skrøbeligt
softwareparadigme og viser, hvordan paradigmet blander brug og udvikling, indskriver bestemte
brugerroller og balancerer mellem tillid og fremmedgørelse for de mennesker, som har med det
at gøre. Slutteligt bidrager afhandlingen med et perspektiv på kompetencer, der bygger på selvbe-
greb som et teoretisk indgangsvinkel. I dette perspektiv er kompetence et produkt af folks løbende
erfaringer og bekræftelser fra deres sociale og materielle livsverdener.

Mine resultater skulle gerne give genlyd blandt forskere med interesse i nye medier, menneske-
maskin-interaktion og informatikundervisning. Dette skyldes især, at afhandlingen udforsker de
komplekse og gensidige forhold mellem folks kulturelle, sociale og materielle omverden samt
de løbende og ofte selvmodsigende måder, de ser sig selv. Datalogiske kompetencer kan være
frigørende og dannende for alle, ikke bare for dataloger og programmører, men udviklingen af
disse kompetencer forudsætter altså tilstrækkelige betingelser. Denne afhandling er et argument
for vigtigheden af disse betingelser.

Contents

Acknowledgements i

List of publications included in the dissertation iii

Abstract v

Dansk resumé vii

I Overview article 1

1 Introduction 3
1.1 Research question and contributions . 4
1.2 Overview of the dissertation . 5
1.3 A short reflection on the development of the research design 6
1.4 Brief summary of the articles . 7

2 Methodology and research design 9
2.1 Epistemological reflections . 9
2.2 Positioning the research methodology . 10
2.3 Research design and strategy . 15

3 Computational literacy and how it is formed 27
3.1 Tracing literacy broadly . 27
3.2 Why computational literacy? . 29
3.3 What is computational about computational literacy? 31
3.4 Self-concept: How computational literacy is formed 33
3.5 Discussion . 39
3.6 Conclusion . 40

4 Mediation and interaction in HCI and beyond 41
4.1 Interaction . 42
4.2 Mediation . 43
4.3 A definition of mediating qualities . 45

5 Software and computational media 49
5.1 A few conceptual clarifications . 49
5.2 Programming and mediation . 52
5.3 Computational media . 62
5.4 The unfulfilled promise of literate computing . 70
5.5 Findings, or how computational media mediates . 76
5.6 Computational media as technical imaginaries . 85
5.7 Conclusion . 86

6 Interactive qualities, software mediation, computational literacy 87
6.1 Computational media, visions, and literacy . 88
6.2 Computational culture . 90
6.3 Computational crises . 92
6.4 Strategies for workarounds and recovery . 94

ix

x CONTENTS

6.5 Computational literacy in action . 98
6.6 Embodiment and programming as a craft . 99
6.7 A taxonomy of the foundations of computational literacy 101
6.8 Implications . 103

7 Conclusion 105

Bibliography 107

List of Figures 121

List of Tables 123

Part I

Overview article

Introduction 1

Before starting the dissertation proper, I must explain the title. In the early days of computing history,
more specifically in the AI labs of MIT and Stanford among other computing research centers in the
50s, a set of insider slang developed among those “in the know”. This list grew and was codified in
the 70s as what became known as the Jargon File. The Jargon File has thus become a kind of cultural
lexicon of a now largely dissolved subculture. Its glossary includes, among hundreds of other entries,
the following definitions:

Runes “Anything that requires heavy wizardry or black art to parse: core dumps, JCL commands,
APL, or code in a language you haven’t a clue how to read”1

Casting the runes “What a guru does when you ask him or her to run a particular program and
type at it because it never works for anyone else; esp. used when nobody can ever see what
the guru is doing different from what J. Random Luser does”2

Parse “More generally, to understand or comprehend. ‘It’s very simple; you just kretch the glims
and then aos the zotz.’ ‘I can’t parse that’.”3

These entries illustrate the close connections between reading, writing, understanding, and exper-
tise in the computational realm. Besides the references to other insider slang such as guru and the
imagined persona called J. Random Luser, the choice of a runic metaphor is interesting; in prehistoric
Scandinavia, only a select few were able to read, let alone write, runic letters in this largely oral cul-
ture, sometimes even imbuing them with seemingly magical properties (“Sayings of the High One”
2014). In a similar vein, for many people today, computers are essentially black boxes, only accessible
to the few people who possess the “magical powers” to read and write their esoteric commands.

I tried to get it to work on my home computer and ran into some difficulties and decided
to just give up and that it’s better not to work from home. (A nanomolecular researcher
working at the cutting-edge of computational RNA folding).

One consequence of the spread and development of digital technologies is that they are no longer only
for the initiated. Leisure, governance, work, education, and basically all aspects of civic life are medi-
ated through digital technologies, tending towards mandatory rather than discretionary use (Grudin
2017, pp. 42–43). This demands a new perspective on the kind of Bildung that have for centuries been
a central part of the educational goal in many parts of Europe (C. Schulte and Budde 2018). Even in
countries not traditionally familiar with the concept of Bildung, the winds have changed towards
empowering people with the skills and competencies to comprehend digital technologies beyond
use (Tissenbaum, Sheldon, Seop, et al. 2017; Weintrop, Holbert, and Tissenbaum 2020). This points
to a need for an emancipatory computational literacy that allows people to read and write these tech-
nologies. This is the larger goal that the dissertation is oriented towards. Concretely, there is a need
to better understand the material, social, cultural, and cognitive conditions for computational literacy.

This dissertation therefore investigates the relationship between the materialities of computing and
computational literacy, empowerment, crises, and recovery. More specifically, it is an inquiry into the
non-conventional programming configurations of contemporary human-computer relations. By pro-
gramming configurations I mean those human-computer assemblies where computation and program-
ming (rather than simple use) is central. Conversely, non-conventional are those configurations where
either the human or the software (or both) fall outside the conventional programmer-environment

1http://www.catb.org/jargon/html/R/runes.html (visited Jun. 8 2023)
2http://www.catb.org/jargon/html/C/casting-the-runes.html (visited Jun. 8 2023)
3http://www.catb.org/jargon/html/P/parse.html (visited Jun. 8 2023)

3

http://www.catb.org/jargon/html/R/runes.html
http://www.catb.org/jargon/html/C/casting-the-runes.html
http://www.catb.org/jargon/html/P/parse.html

1. IntRoduction

forms, for instance humanities students who learn programming in a mandatory course; nanosci-
entists who are not trained programmers; computational media that scaffolds computing activities;
and novel environments for software development. The quote by the nanomolecular scientist above
illustrates someone who is not able to “cast the runes” despite their dependence on those runes for
both daily work and future career opportunities.

The issue cannot be reduced to a purelymental phenomenon. Despite the popularity of computational
thinking in computing education and the encouragements that everyone benefits from learning to
think through processes of abstractions, generalizations, and algorithms (Wing 2006; Curzon et
al. 2019), the troubles experienced by nanoscientists, students, and programmers in my research
seemingly do not come from a lack of computational thinking skills. Rather, there is something in
their environment, in their computational lifeworlds, that demands attention. In turn, this suggests
a reorientation towards the material conditions, as advocated by various new media scholars (e.g.,
T. H. Nelson 2003; Kay 1984; Kay 2013a; Mateas 2005).

Computational media as envisioned by, among other diSessa (2001), suggests precisely this kind of
reorientation towards new media forms and the ways that literacy grows from them. Computational
media is a software paradigm that dissolves any a priori distinction between use and development
and between document and application, and diSessa envisioned that these media forms might be
suitable for the development of material intelligence. Vee (2013), drawing on, among other, diSessa,
argues that once technologies become infrastructural in societies, they demand not only material
intelligence but literacy. However, literacy is not enough. For instance, digital literacy offers mainly
use-oriented perspectives on the digital realm (Bundsgaard 2017) and does not take into account the
computational capabilities of the computer beyond information processing. According to Dirckinck-
Holmfeld, Nielsen, andWebb (1988), such a literacy is adaptive and requires the individual to conform
to its circumstances. Instead, they bring forth an admirable counterpoint: True literacy is emancipa-
tory, enabling the individual to transcend and transform themselves and their world in the process.

Parallel to the historical change from an emancipatory perspective of computational literacy towards
a utilitarian view of computing as is the current Zeitgeist in much of the US and Europe, the percep-
tion of software and media followed along. The grand visions of computational media that blend
development and use and allowed for transformative experiences were never realized on a larger
scale. Instead, the focus largely turned to efficiency, usability, and incremental innovations (diSessa
2001, p. 232). A renewed focus on the mediating aspect of computers thus allows us to transcend the
narrow image of human-computer relationships in terms of use and interaction as also emphasized
by, e.g., Suchman (1987) and Hornbæk, Mottelson, et al. (2019). The visions from the history of com-
puting combined with the empirical groundedness of software studies and the postphenomenological
insistence on mediation all serve to remind us that computing is more than use. By providing the
proper media, the mutual transformation of both software, world, and individual can culminate in a
better understanding of all three. This is the potential of emancipation through literacy, afforded by
the proper social, cultural, and material conditions.

1.1 Research question and contributions

Through my research, I have therefore been seeking to contribute to a better understanding of the
foundations of computational literacy through three prongs: An investigation into computational
literacy as concept and educational goal; an investigation into the mediating qualities of software
for programming; and an empirically founded investigation of the higher-order challenges and op-
portunities of computational literacy and software for programming. This leads me to the following
research question:

Research question How do the mediating qualities of software for programming contribute to the
development of computational literacy?

This research question frames my work in terms of the material conditions of computational liter-
acy. More specifically, it allows me to go beyond a simple use-development dichotomy and address
the mediation afforded by computational media and other software for programming. A focus on

4

1.2. Overview of the dissertation

mediation emphasizes the mutual co-creation of software and people and reopens questions of pro-
gramming paradigms, mastery and empowerment, and inscribed user roles. The mediating qualities
of software go beyond use-oriented qualities and software affordances by engaging in interactions,
semiotics, distribution, ethics, and transformative effects. In this respect, mediating qualities do not
reside in the artifacts, but emerge through continued interaction over time. Further, I do not mean to
suggest a purely causal relationship between these qualities and the development of computational
literacy. It is rather a matter of gaining a deep understanding of the possible ways that software acts
in and shapes the human-computer relationship (Dourish 2014a).

aaa

Through answering the research question, I provide the following contributions:

1. A theoretical model of self-concept as an explanatory framework for computational literacy
development

2. A holistic model of technological mediation bridging science and technology studies, human-
computer interaction, and computational literacy

3. A mediation analysis of a selection of distinctive human-computer configurations in program-
ming history

4. An empirically grounded analysis of the mediating qualities of computational media

5. An empirical investigation of the relationship between computational literacy, technological
mediation, and programming software

6. A taxonomy of the foundation for computational literacy

1.1.1 Positioning the contributions

My contributions are of particular interest to researchers interested in new media and computational
literacy regardless of their fields. More concretely, the dissertation provides a valuable contribution
for those who push for computational thinking in curricula and policymaking. Similarly, it serves as
a counterpoint to utilitarian views of computing by emphasizing the emancipatory opportunities in
computational literacy development. In this respect, it also serves to highlight the limits of a focus
on fostering digital literacy and computer literacy, respectively.

HCI researchers interested in the nature of human-computer interaction will also benefit from my
contributions, particularly the historical analyses of computing configurations and the investigations
of computational media as alternative software paradigms. Further, the interdisciplinary character
of the work should be relevant to philosophers of technology and researchers in software studies
interested in a closer coupling with HCI of their respective fields. Specifically, this coupling provides
new opportunities for empirically grounded investigations of mediation.

Finally, the self-concept framework and the contributions to computational literacy is useful for com-
puting education researchers. By providing a holistic model of computational literacy and the con-
ditions necessary, researchers of computer science education and computing education gain a more
thorough view of the complex interplay between individuals and their computational lifeworlds.

1.2 Overview of the dissertation

Being an article-based dissertation, there are two parts. The first part is the overview article, while
the second part are research articles. The overview article is structured in the following way

Chapter 1 is the introduction which provides context for my research and frames the dissertation.
The introduction also presents my contributions and positions them in the larger research fields.

Chapter 2 is methodology. Here, I first position my work in an epistemological frame, after which
I present and contextualize the methods I have used. Finally, I present an overview of my research
and a more concrete elaboration of the individual inquiries.

5

1. IntRoduction

Chapter 3 first presents a definition of computational literacy in contrast to other literacies and
related concepts such as material intelligence and competencies. Then, a self-concept framework is
introduced as a promising explanatory model of the development of computational literacy.

Chapter 4 brings together interaction and mediation. After presenting both concepts from HCI
and postphenomenology, respectively, I bridge these fields in an integrated model of mediation with
differentiated aspects.

Chapter 5 is about computational media and software mediation and consists of three parts. I have
selected distinctive programming modalities from computing history and present mediation analyses
of them. Afterwards, I present computationalmedia and literate computing4 as alternativemateriality
and activity for computational literacy, respectively. This is followed by an empirically founded
analysis of computational media as technological mediation in practice.

Chapter 6 connects computational literacy and themediating qualities of software through a number
of empirically grounded themes. The relationship between computational media, literacy, and visions
is examined which is followed by a discussion of computational culture. Afterwards, I present the
crises, workarounds, fluency and success related to computational literacy in action as experienced
by people in my research. The chapter ends with a taxonomy of requirements for computational
literacy to flourish and implications for HCI and computing education, respectively.

Chapter 7 provides a conclusion and an answer to the research question.

The second part of the dissertation consists of the published and submitted research articles that form
the foundations of my work, attached as appendices. An overview of these can be found in table 1
on page iii.

1.2.1 Some notes on reading the dissertation

The structure of the dissertation does not reflect the chronological nature of the research activities
that preceded it. For a chronological presentation of the concrete activities and how they connect in
a hermeneutical manner, see section 2.3. The research activities are a series of studies, but one study
can consist of multiple research engagements. For instance, the study of nanoscientists consisted of
both an ethnographic fieldwork phase and a constructive design research and evaluation. For this
reason, the smallest unit of research in the dissertation is the inquiry. When referencing my research
activities, I therefore sometimes refer to the individual inquiries rather than the larger studies. An
overview can be found in table 2.1 on page 16.

As I have conducted ethnographic fieldwork with multiple groups of participants, I distinguish them
in the following way: S1–5 are the students, N1–11 are the nanoscientists, and P1–12 are the pro-
grammers from the game design study. This nomenclature should make it a little easier for the
reader. Finally, the reader is advised that the two empirically grounded chapters (chapters 5 and 6)
are interspersed with quotes. As a phenomenological study of literacy and mediation in action, the
quotes serve to illustrate the richness of people’s lived experiences as well as preserve the ambiguities
and complexity of these.

1.3 A short reflection on the development of the research design

To some degree, I have allowed the ongoing progress of my research project to dynamically unfold in
theways that I deemedmost promising. Concretely, thatmeans that I let the insights from one inquiry
feed into the next in an iterative process. This is in part due to me being open to opportunities and
promising research directions, and partly due to factors outside my control, for instance the COVID
lockdown which prevented me from doing some planned activities, making it necessary to adjust the
original plan significantly. A map of this development can be found in figure 2.1 on page 15.

4Literate computing is a computing paradigm that blends computing and rich media such as text and multimedia (see
section 5.4 for a more thorough presentation)

6

1.4. Brief summary of the articles

1.4 Brief summary of the articles

“Mapping the Landscape of Literate Computing” (Fog and Klokmose 2019) is an investigation of so-
called literate computing environments. Through an artifact analysis of commercial products, re-
search prototypes, and other software artifacts that exhibit literate computing characteristics, we
framed these environments through a series of relevant themes such as communities, use, develop-
ment, etc. The article concludes with a set of design considerations for developers of these kinds of
environments.

“Between Scripts and Applications: Computational Media for the Frontier of Nanoscience” (Nouwens,
Borowski, et al. 2020) was the result of a multiphase study of biomolecular nanoscientists who work
on the cutting-edge of science. The first part of the study was an empirical inquiry of the material
and sociocultural working conditions of the nanoscientists, i.e., their computational tools, scripts,
and environments and the computational culture(s) in which they work. The second part was the
development, introduction, and evaluation of a computational lab book for their work, based on the
principles of computational media.

“Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates”
(Borowski, Fog, et al. 2022) encompasses multiple studies. The first half is a retrospective inquiry into
a family of computational media developed and used by the research group that I have been part of.
From this inquirywe draw out a series of tensions between visions and practicalities of computational
media. The second half is an empirically grounded inquiry into the possibilities and challenges of the
newest iteration of this family, namely CodestRates v2. This was conducted through what we called
a game design challenge that sought to leverage the unique characteristics of computational media.
Based on this work, we present an analysis of the challenges and opportunities of computational
media and a series of lessons learned for future designers of such media.

“KnitxCode: Exploring a Craftsmanship-driven Approach to Computational Thinking” (Sørensen et al.
2022) presents results from a workshop conducted with experienced knitters that aimed to lever-
age crafts and arts as a springboard towards computational competencies. In the workshop, which
involved 12 knitters without previous programming experience, we utilized knitting patterns and
material knowledge to introduce computational concepts such as loops, variables, and algorithms.
This was followed by a physical computing exercise in which participants created artifacts relevant
to their knitting practice.

“Computational self-concept: Towards an understanding of students’ identities, attitudes, and beliefs”
(Fog, Pálfi, et al. 2023) presents computational self-concept as a psychological construct which pro-
vides a framework for understanding how people develop identities and competencies in computing.
Part of the article is a theory transfer from psychology, while the latter half is an empirical study of
five humanities students and how they build competencies and identities throughout a computing
course.

7

Methodology and research design 2

Dealing with failure is easy: Work
hard to improve. Success is also easy
to handle: You’ve solved the wrong
problem. Work hard to improve.

Perlis (1982)

In this chapter, I will present and discuss themethodological considerations thatmy research question
gives rise to. To reiterate, my research question is as follows:

Research question How do the mediating qualities of software for programming contribute to the
development of computational literacy?

In the coming chapter, I address three different but interrelated aspects of the way I have answered
said question. First, I characterize the research question and describe my epistemological positioning.
In other words, I show what kind of research question that is at play and the possible ways of answer-
ing that question within my epistemological frame of reference. Having provided an epistemological
framing of the research question, in the second part I position my research methodology. This con-
sists of a discussion of specific research traditions and methods and the concrete methods employed
in my studies. Finally, I present my research design and strategy for the dissertation as a whole. This
section answers the question of my specific engagement with the world in an intentional and delib-
erate way of seeking answers to my research question. This following chapter will, in other words,
establish accountability and transparency for the approach taken to answer the research question.

aaa

2.1 Epistemological reflections

Epistemology denotes what kinds of knowledge can be claimed. Already the phrasing of my research
question demarcates a line of reasoning that defines the type of answer that can be given. And
while the research question could be answered in a multitude of ways, some are more valid than
others. My dissertation draws on a knowledge framing from postphenomenology which takes its
epistemological and ontological position from pragmatism and phenomenology. In this section I
elaborate why this is the case, what it means formy research, and how this choice affects theway I can
engage with the world as a researcher. Different epistemologies do not necessarily conflict. Of course,
any particular inquiry must be interpreted within a given epistemological frame, but the dissertation
as a whole, as it draws together multiple studies conducted over several years, can meaningfully be
built from multiple epistemological positions (Creswell 2014, p. 82). Rather than diminishing each
other’s claims to knowledge, multiple ways of knowing can co-exist and positively supplement each
other in answering a question (Tracy 2013, p. 47).

My studies largely draw on a postphenomenological approach to knowledge creation which posits a
particular arrangement between the knowing and the known. Postphenomenology, as it originates
in pragmatism and phenomenology, sees no a priori world out there. There is no world without
interpretation (Overgaard and Zahavi 2009). A consequence of this position is that there is no in-
herent separation between ontology and epistemology (Jacobsen, Tanggaard, and Brinkmann 2020).
Another consequence of my epistemological position is that it allows me to say some things and not
say others. I do not claim that any of the findings in the present dissertation are absolute and un-
questionable. They are deeply dependent on the contexts in which they were created and presented.
Further, they shape my space for action in that only some methodologies and concrete methods fit
in well with this particular epistemology.

9

2. Methodology and ReseaRch design

This dissertation does not aim to provide any definitive, falsifiable answers to the question. I am
not working within a positivist (or even post-positivist) research paradigm that seeks to understand
the world as is through research ideals such as replicability, reproducibility, and validity. There is
no “view from nowhere” in my research (Haraway 1988). The ideals to which my dissertation is
to be measured by are instead criteria such as transparency, rigor, sincerity, and credibility (Tracy
2010). Considering my epistemological positioning and the character of qualitative research, the an-
swers will be contextual and affected by my position as a scholar and a human being. While I do
not seek to answer my research question in a way that claims totality and complete generalizability,
my contributions are still valid in their own right. They must be understood as products of a par-
ticular engagement with the world through me, the researcher, as a tool, but they nonetheless bear
significance, coherence, and transferability.

aaa

Having so far laid out my epistemological considerations and characterized my research question,
the next section will position my research methodology.

2.2 Positioning the research methodology

Most of my research has been empirically informed. One exception, the creation of the self-concept
framework, is not treated in this section, but is addressed in the later section 3.4. One important facet
of using postphenomenology as ontological and epistemological frame of reference is that,

(…) there is no strict postphenomenological methodology that scholars could follow.
Postphenomenology comes in just as many flavors as there are scholars in the field.
(Rosenberger and Verbeek 2015)

This is not particularly helpful for approaching postphenomenological research. In part, it stems
from the fact that postphenomenology can trace its origins to the philosophy of technology and
does not encompass a research methodology. A pertinent question to ask, given this methodological
free-for-all, is how one might distinguish between postphenomenological research with other kinds
of research. Or even whether it can provide any form of (internal) validity and thus be considered
research proper (cf. the demarcation problem). To avoid such criticism, I have used a variety of
well-established research methods from HCI research and related fields such as anthropology and
interaction design. In the coming sections, these are unfolded more fully. Postphenomenology for
me thus becomes not a way of doing research, but a way of defining the objects of interest and a way
to understand my findings as pertaining to the particular. In later chapters, these investigations of
the particular will be tied to my broader research question and beyond, seeking not to present gen-
eralizable findings but to try and answer the research question from the concrete human-technology
relationships that I have investigated.

I haveworked in a variety of methodologies under the grander themes of qualitative research and con-
structive design research. In this section I will position my concrete choice of methods into larger
methodologies as well as relating these methodologies to my epistemological basis. The methods
discussed, e.g., observations and interviews, will not be unfolded in their concreteness. What this
means is that concrete details such as the numbers of participants, format of interviews, and work-
shop prompts will be illuminated later in the manuscript when presenting the individual inquiries.
The section, on the other hand, puts forth an argument for the appropriateness of the methodologies
in regard to my research question. Any epistemological framing naturally affords certain method-
ologies and traditions while barring others. At the same time, I am inclined to follow Creswell’s
notion of the “pragmatic worldview” (Creswell 2014, p. 90), in that my focus is on answering the re-
search question, and that concrete methods can be considered valid insofar as they help understand
and answer the problem. The fundamental issue of HCI research being, in essence, interdisciplinary
and drawing from other, more established fields is well-known and discussed (see, e.g., Mackay and
Fayard 1997).

The dissertation is based on several research traditions, each of which have their own established
methods, assumptions, and judgement criteria. In the following I present qualitative research and con-

10

2.2. Positioning the research methodology

structive design research methodologies and argue why my chosen methods are the best approaches
to answer my research question.

2.2.1 Qualitative research

While phenomenology originated as a mainly philosophical tradition, it has since become a viable
way to conduct qualitative research (Aagaard 2017). A postphenomenological approach to qualita-
tive research thus brings the perspective that people and artifacts are closely related. Further, the
phenomenological perspective acknowledges that people are not separate from the activities and
contexts in which they engage. Therefore, to gain a deeper understanding of the relationship be-
tween concrete people and software as sociotechnical configurations, it is important to study them
in-the-wild. To this end, qualitative research that takes seriously the context of practice is highly
useful.

The concrete qualitative methods that I have employed in my work largely come from a set of estab-
lished ethnographic methods. Qualitative research must be judged from a distinct set of criteria, one
of which is the focus on, e.g., transferability rather than generalizability. This means that qualitative
research should not be confined to the individual study, but rather resonate with a larger space be-
yond the immediate context. This criterion is highly commensurable with the postphenomenological
focus on the particular. By starting from the particular people and artifacts under study, I can then
broaden out and discuss the wider implications of my findings. My ethnographic work in the knit-
ting workshop, for instance, cannot give any truth about a larger population of knitters. However,
by looking at these particular people in a certain context, the findings are also suggestions that illu-
minate certain things to be explored further. They are both findings in their own right and prompts
for future work.

Validity in qualitative research is judged by notions such as “trustworthiness, authenticity, and cred-
ibility” (Creswell 2014). This can be achieved through efforts like triangulation, self-reflection, inter-
rater reliability and similar checks that I have sought to incorporate into my research. For instance,
regarding my overall research question, the process of answering that has been in the form of a con-
tinuous, hermeneutic triangulation marked by transparency in methodology and challenges and a
choice of research methods that match my epistemological stance (Tracy 2010).

2.2.1.1 Ethnographic methods

Ethnographic methods come from fields such as anthropology in which they came into being as long-
term engagements with the people under study. A long-term engagement is generally not possible
or desirable in HCI research. In this context, I have adapted them to the particular timescale of my
research, in line with Hanington’s view:

These adapted methods serve to condense the extraordinary time devoted by formal
ethnographers into more manageable and ultimately more relevant samples of informa-
tion. (Hanington 2022)

For one inquiry in particular, though, I followed a group of scientists over a time period of more than
a year in which my fellow researchers and I built a closer relationship with the participants. This
allowed me to build trust and mutual engagement with the participants in question. According to Aa-
gaard andMatthiesen (2016), qualitative methods such as observations and interviews, particularly in
combination, are well-suited for postphenomenological investigations of materiality. Further, ethno-
graphic methods are well-established in HCI research and have been so for several decades (Dourish
2014b). The use of ethnographic methods such as observations and interviews are therefore particu-
larly useful in answering my research question.

As my research concerns the mediating aspects (or, mediating qualities) of computational media, I
engaged in participant observations as a way to gain insight into the concrete interactions as they
took place in both natural and artificial settings. By natural setting I refer to the contextual inquiry-
based observations (Holtzblatt and Jones 2017) that I did in the case of the nanoscientists’ own work
practices. In contrast, I also did observations in the “lab”1 of a different group of people, knitters.

1The word is used here to denote the opposite of in-the-wild

11

2. Methodology and ReseaRch design

The purpose of investigating nanoscientists in context was to better understand the sociotechnical
circumstances under which the scientists perform their daily work as well as inspect the interaction
between scientists and their tools in action. My observations among the knitters had a related, but
ultimately different goal. They were intended not to illuminate any existing work practice, but rather
to investigate the meaning-making that took place among knitters who encountered programming
and used relevant software for the first time.

Interviews are, like observations, a stable in qualitative research, and their validity as methods are
well-established across a variety of disciplines including HCI. The purpose of using interviews to an-
swer my research question is not to get to any one truth, but to get insights into participants’ experi-
ences andmeaning-making processes. The pragmatic and phenomenological approach indeed argues
that experiences of being-in-the-world are the main object of interest. I conducted interviews both
as a supplement to observational studies and as a stand-alone engagement with university students.
Interviews as a method allowed me to probe into the conceptions held by participants, for instance,
in interviewing university students about their feelings of identity and self-concept in relation to pro-
gramming. Here, group interviews were used as a method as the purpose was to encourage dialog
between participants and foster mutual inquiry into the subject (Tracy 2013, p. 167). For my study
of the nanoscientists, interviews were used to supplement observations as part of the contextual in-
quiries to substantiate and clarify their experiences with the prototype. In the case of the KnitxCode
workshop, impromptu interviews (also called ethnographic interviews (ibid., p. 140)) were used to
inquire about particular situations in situ as they took place.

2.2.1.2 Technographic methods

This term, technography, denotes a set of methods (and, arguably, a methodology in itself (Jansen and
Vellema 2011)) that allows for investigating the relationships between people and artifacts (Kien 2008).
The goal of using technographic methods was to gain a deeper understand of the actual artifacts,
their affordances, and their mediating qualities. Verbeek provides an important starting point to
avoid perceived pitfalls such as essentialism: “[A]n approach to technology in terms of concrete
technological artifacts is essential in the philosophy of technology.” (Verbeek 2005)

We must, in other words, start from the concrete being-in-the-world of the technologies. This need
to study artifacts in use is supported by, e.g., Bannon, Bødker, et al. (1991). Aagaard (2017) more
concretely presents two suggestions for how to approach such a study of the concrete artifacts: An
in-depth exploration of the typical use of a given technology or a critical comparison of multiple
versions of a technology. Through the various inquiries and engagement with the technologies under
study, I have used the latter of these as well as supplementary methods. For example, my study of
literate computing environments represents a critical comparison ofmultiple versions of a technology.
In doing so, the otherwise subtle differences between systems become emphasized, allowing me to
address these as manifestations of broader themes such as metaphor, script, and user community.
Engaging technographically, the software takes on the role of a participant. A main difference is,
as should be evident, that artifacts do not speak by itself. Considering that mediating qualities of
artifacts is a central part of my research question, technographic methods are a way of interrogating
the artifacts and their qualities, not in terms of their concrete effects on people but in the ways that
values, preconceptions, and scripts for interaction are inscribed into them.

Technographic methods have gained legitimacy, especially in research on databases as epistemolog-
ical technologies. For instance, Schuurman (2008) draws on STS and ethnomethodology to inquire
into databases as they act on the world around them. Although not providing concrete methodolo-
gies, this approach constructs the artifact as an object of study beyond a simple tool perspective.
A similar approach can be found in Burns and Wark (2020) for whom the technology acts as basis
for subsequent ethnography. As their objects of study are databases, their focus is on the epistemo-
logical and ontological characteristics of the artifact. However, their approach lends a very useful
perspective that,

digital objects should be understood as events—with questions around what they do—
rather than as static objects—with questions around what they are (ibid.)

My approach to the investigation of the mediating qualities of software benefits from this perspective.

12

2.2. Positioning the research methodology

To understand how computational literacy is shaped by material conditions, the focus of what tech-
nologies do is central. This aligns well with a postphenomenological view of artifacts as more than
simple tools for use. Finally, the research field of software studies has a rich tradition of technography.
As supported by Dourish (2014a), starting from the concrete technologies as contingent manifesta-
tions of multiple historical alternatives is central. By providing a historical perspective of program-
ming modalities (see section 5.2), I make the argument that programming could be different and that
various modalities bring about different levels of abstraction, opacity, and mediation.

Finally, software studies, just like database studies, emphasizes the ways that software can “constrain,
shape, guide, and resist patterns of engagement and use” (ibid.). Thus, database studies and software
studies provide both an ontological perspective of software as objects that act on the world and con-
crete methodological considerations of starting at the concrete materiality. The retrospective view of
the *-stRates software family2 and the historical overview of programming modalities draw heavily
on these kinds of technographic methods. Finally, my technographic investigations of computational
media have been heavily informed by Fuchsberger, Murer, and Tscheligi (2013) who argue for a media
perspective on digital technologies that draws on actor-network theory. Using this media analysis
approach has allowed me to better understand the ways that computational media and programming
environments are not solitary objects but inscribed artifacts that constitute people and practice in
particular ways. The analyses of programming mediation in section 5.2 is a clear example of the
possibilities of such an approach.

2.2.1.3 First-person methods

The final type of qualitative research methods that I employed in my studies is what can be termed
a retrospective sociotechnical autoethnography. Using this method provides a way of opening the
established research narrative in which research results are often presented as successful endeavors
even if this ultimately might result in, e.g., publication bias (Song et al. 2010). This is equally the
case in HCI, and likely even to a higher degree when the research contribution also encompasses a
technological artifact.

My approach to this is similar to, e.g., “retrospective trioethnography”, an approach that addresses
constructive design research previously published as successful contributions but readdresses them
as learning experiences (Howell, Desjardins, and Fox 2021). By doing a first-person inquiry into the
computational media it was possible for me to critically trace the genealogy of the *-stRates family
of computational and reflect on the decisions that formed their design. In doing so, the computational
artifacts can become destabilized; no longer conceived of as any ”natural” or obvious evolution but
rather as a series of contingent and contestable materialities, all of them the results of particular
engagements with the world (Bevir 2008). As my research question pertains to software for program-
ming, a retrospective approach to technography allowed me to view the different manifestations of
computational media and reflect on how their mediating qualities were shaped by a particular set of
values, principles, and practical circumstances. As such, it also helps qualify the question of materi-
ality in terms of computational literacy.

2.2.2 Constructive design research

Some of my inquiries into my research question have been in the form of a constructive engage-
ment with the digital material. The discussion as to the type and extent of the knowledge that can
be generated through such an interventionist or designerly practice has been an issue in fields such
as interaction design and HCI. In interaction design research, for instance, the notion of research-
through-design has been defined (Frayling 1993), explored (Dalsgaard 2010; Gaver 2012), and cri-
tiqued (Zimmerman, Stolterman, and Forlizzi 2010), making it an established methodology tied to
certain traditions and epistemological assumptions. Another field of study, educational research, has
similarly used a methodological approach called design-based research for many years (T. Anderson
and Shattuck 2012). Despite these similarities in nomenclature, their epistemologies and methodolo-
gies are quite different. Even within the individual disciplines, there seems to be a lack of agreement
on, e.g., what kind of knowledge is generated (Höök et al. 2015).

2The *-stRates software family is my collective term for the group of computational media that are built on the Web-
stRates platform (see more in section 5.3.2)

13

2. Methodology and ReseaRch design

Instead of using these terms, myway of making inquiries into the world by intervening and designing
is to be seen as constructive design research (Koskinen et al. 2011). While the concrete activities might
still be the same—constructive design research is not a method, after all—the name serves to discard
the methodological baggage of the contested terms and start with a blank slate. Under the umbrella
term of constructive design research, my inquiries are understood as knowledge-generating activities
that align closely with other disciplines. While constructive design research is not tied into one
particular epistemology, the field is built upon and grew from pragmatist and phenomenological
philosophies.

Koskinen et al. (ibid.) present three ’spaces’ in which design research might take place. Using their
conceptual terminology, these are considered the lab, the field, and the showroom. These terms pro-
vide a way to position my constructive design inquiries, e.g., the computational lab book, into a
certain space such as the field. Investigating the computational lab book in the field is well-aligned
with the other kinds of knowledge-producing activities that I have employed such as contextual
inquiries, observations, and in situ interviews. The constructive design research approach that I
have employed likewise draws from participatory design practices and, to a lesser degree, action re-
search (Hayes 2014). However, action research is fundamentally about creating sustainable change
through intervention. In the case of the computational lab book, the nanoscientists were left with
only a functioning prototype after the conclusion of the study without properly “ensuring that the
technologies can be left behind and if left behind can be maintained” (Hayes 2011). This is an ethical
challenge that is addressed in chapter 6.

A particular aspect of participatory design has informed my work. While some axioms of the first
wave of participatory design, like the strong political agenda and the assumption of conflicting inter-
ests between workers and employers, were not central to my work, participatory design’s focus on
workers and their skills has nonetheless been influential in my approach to, for instance, the nanosci-
entists under study. For the purpose of this dissertation I will stick with the concept of constructive
design research as the type of engagement that I have done. However, an important point of using
this term is that more specific approaches, such as participatory design, can be understood within
the ’spaces’ of constructive design research (Zimmerman and Forlizzi 2014).

I chose to engage in constructive design research as my research question explicitly treats the digital
artifacts as the object of study. Using the qualitative methods allowed me to probe into the state of
Things3 as they are. In contrast, by engaging in constructive design research, I was able to explore
what might be. In the case of the nanoscientists I was thus able to not only investigate their current
use of digital tools, but also to create a possible future for the participants (Salovaara, Oulasvirta, and
Jacucci 2017). The concrete computational lab book, while interesting in itself as a design exemplar,
became something else in the subsequent deployment and evaluation among the very same people. It
allowed me to talk to participants through the prototype and bring to light the taken-for-granted and
invisible aspects of their current work practices. The prototype therefore both represents a concrete
artifact in itself, open to analysis and interpretation, and acts as a vessel into which assumptions can
be questioned. However, as demonstrated by Salovaara, Oulasvirta, and Jacucci (ibid.), the use of
prototypes as means for investigating both the present and possible futures brings its own set of epis-
temological issues regarding how to evaluate the prototype. While I, of course, need to be reflective
about the in-betweenness of the prototype (part artifact, part vision), my main use of the prototype
in the context of this dissertation is to investigate current practices. A final remark concerns the type
of knowledge to be gained from constructive design research. There is an inherent contradiction
between the knowledge production of design and of research (Fallman 2007; Bødker, Dindler, et al.
2022). Research seeks to produce generalizable (or transferable) knowledge, while design produces
localized knowledge. Through the constructive design process of working with the computational lab
book, we generated knowledge about a particular artifact in a particular group of people. However,
I do not so much aim to evaluate the prototype itself, as I aim to use it as a springboard (Engeström
2015) for a better understanding of the current situation.

3I use the concept of Thing in the sense of “matters of concern” put forth by Latour (2004)

14

2.3. Research design and strategy

2.3 Research design and strategy

To answermy research question I have investigated three threads of inquiry. One thread concerns the
material conditions (i.e, the software). A second thread concerns the relationships between people
and their digital artifacts; that is, the mediating qualities that shape particular kinds of engagement.
The final thread is the people themselves and how they think and act through and on technology. This
separation into threads is artificial and does not neatly line up with the divisions of the dissertation.
In practice, they might be represented as a series of inquiries in a continuum between the purely
technical and the purely human. Further, the distinction between threads is mine for the purpose
of characterizing my research. Each individual inquiry in my research takes into account both the
human and the technical aspects. In my analysis of literate computing environments, for instance,
even if the target of my work is the digital artifacts, I also keep a firm view of the (potential) people
using them.

Considering the individual inquiries as a larger pattern of investigation into the research matter at
hand, this larger pattern is both triangular and hermeneutic in nature. Approaching my research
question using a variety of methods, approaches, and perspectives has allowed me to gain a broader,
deeper, and more nuanced understanding of the mediating qualities of software and the people using
them (Thurmond 2001; Tracy 2010). My approach, as a series of continuous inquiries that inform
each other, further benefits from the hermeneutically connected insights. It is therefore not only the
case that I have investigated computational media from two perspectives, for example. Instead, the
fact is that each inquiry has led to new knowledge which has since fed into the subsequent inquiries
in a hermeneutic phenomenological fashion (Kafle 2013). There is, therefore, both a parallel and a
serial relationship between them.

The scholarly work upon which the present dissertation is written can be found in part II. However,
it is not simply the case that each research output, for instance a conference contribution, equals
exactly one research activity. Each engagement with the research “object”4 I have termed an inquiry.
Through my research design and strategy I have continually moved between the parts and the whole,
each inquiry drawing from the ones preceding it and informing the subsequent ones. To show this
process in the context of my research work, the map in figure 2.1 illustrates my various inquiries:

So
ftw

ar
e

N
an

os
ci
en

tis
ts

Pr
og

ra
m
m
er
s

Th
eo

ry

H
um

an
iti
es

st
ud

en
ts

Kn
itt

er
s

Literate computing 1

Computational literacy 2 8

Computational media 4 3 5

Self-concept 6 7

FiguRe 2.1: A map showing the development of inquiries. The y-axis shows the various themes or strands of
inquiry, while the x-axis are the central phenomena (i.e., objects of study) of those inquiries.

The rest of the chapter presents the individual inquiries that form the basis of this dissertation. For
each inquiry is described what decisions led to it, the inquiry in brief, the methods and context, and
finally how the outcome of the inquiry led my research forward. The research question has framed a
certain direction for my studies that the inquiries follow in a hermeneutic way. Table 2.1 on page 16
gives an overview of all inquiries.

4I use the term object in this dissertation to mean the matter under study

15

2. Methodology and ReseaRch design

#
N
am

e
M
ethods

Em
piricalfoundation

Research
output

1
Literate

com
puting

environm
ents

A
rtifactanalysis;affordance

analysis
12

softw
are

artifacts
Fog

and
Klokm

ose
(2019)

2
Study

ofnanoscientists
O
bservations;interview

s
12

participants
N
ouw

ens,Borow
ski,etal.(2020)

3
D
esign

and
evaluation

ofcom
putationallabbook

Participatory
design;in

situ
interview

s
4
participants

N
ouw

ens,Borow
ski,etal.(2020)

4
Reflectionson

the
*-stRatesfam

ily
genealogy

Technography;retrospective
trioethnography

*-stRatesfam
ily

ofsoftw
are

Borow
ski,Fog,etal.(2022)

5
Gam

e
design

challenge
and

interview
s

Interview
s

12
participants

Borow
ski,Fog,etal.(2022)

6
A

theory
ofcom

putationalself-concept
Th

eoreticaltransfer
-

Fog,Pálfi,etal.(2023)

7
Studentself-conceptinterview

s
Group

interview
s

5
participants

Fog,Pálfi,etal.(2023)

8
KnitxCode

w
orkshop

W
orkshop;observations;interview

s
12

participants
Sørensen

etal.(2022)

Table
2.1:A

n
overview

ofm
y
research

inquiries

16

2.3. Research design and strategy

2.3.1 1 Literate computing environments and characteristics

As a starting point for my research, I approached the concept of literate computing, a computing
activity especially popular in the data sciences. Literate computing is a relevant phenomenon to in-
vestigate in relation to computational media as literate computing activities largely produce computa-
tional media as their output. Asmy research question specifically addresses themediating qualities of
software, I found that the literate computing paradigm presents a different kind of human-computer
interaction that combines computing with textual production and multimedia in the same conceptual
space. The original vision of literate computing was to bring use and development closer together by
enabling the creation of interactive media and computational narratives. Literate computing there-
fore represented a promising programming paradigm in the larger scope of the development of com-
putational literacy. Simultaneously, I was involved with the early stages of inquiry 2 and 3, and I
wished to learn more about literate computing as a phenomenon, since inquiry 3 was guided by the
development of a computational lab book based on literate computing principles.

To investigate literate computing software, I followed the postphenomenological suggestion from
Aagaard (2017). I selected twelve software environments that either directly allowed for literate
computing activities or exhibited characteristics of the paradigm. Each system was analyzed on the
basis of a number of themes. To guide the analysis, I took inspiration from Davis and Chouinard
(2016) who provide a list of verbs for understanding artifact affordances. While the analysis is not
an affordance analysis in itself, the approach helped me to articulate my findings in more nuance,
for instance using qualifying verbs (encourages, discourages, enables, demands, etc.). In a grounded
theory approach, the final themes were inductively created based on my engagement with the tools.
Through this recursive movement between emergence of themes and analysis using themes, I ended
up with a series of findings related to, e.g., users, system metaphor, collaboration, malleability, and
intentionality.

This study led to my first publication (Fog and Klokmose 2019). It made it clear to me that the
artifact inscriptions matter deeply, for instance, how the software metaphor shapes how a user sees
and interacts with the system. It also highlighted how there might be a relationship between the
interactional qualities of software for programming and the computational literacy necessary to not
only use them but become fluid in them. In particular, computational media stood out as a way to
bridge this perceived gap between developing and using software more broadly.

2.3.2 2 Study of nanoscientists

I wished to learnmore about the possibility of supporting particular types of knowledgework through
computational media. Further, engaging with a group of people deeply dependent on computational
tools who struggle with not having been trained to use them provides me with a case where com-
putational literacy is lacking. More specifically, with a few colleagues, I gained access to a group
of scientists at the interdisciplinary research center iNANO who do research on RNA origami. This
particular group was relevant for my work for several reasons. First, they work on the breaking
edge of their research fields, so there are no applications or ready-made software packages that allow
them to do their work. Rather, they scrape together assorted scripts and web services for their work.
Second, the scientists have no formal computing education despite the fact that their work is deeply
dependent on computational competencies. Third, the group under study had already implemented
digital tools for research such as electronic laboratory notebooks for research documentation and col-
laboration and were thus willing to experiment and invest resources into digital tools. And finally,
the scientists’ existing tools such as scripts and web services were quite suitable for translating into
a computational lab book.

The computational lab book was developed in the subsequent inquiry, but I first wished to better un-
derstand the sociotechnical context of the nanoscientists under study. While the initial engagement
with the group had already begun before the start of my research process (i.e., a large portion of the
ethnographic fieldwork and a future workshop), I took part in subsequent analysis of the data result-
ing from these studies. Therefore, while I did not create the research data, I was intimately engaged
with the data and the analysis of it. I further took part in later ethnographic fieldwork during the
participatory design process in inquiry 3. These two inquiries (2 and 3) are thus highly connected.

Throughout the almost three-year long engagement with the nanoscientists, my peers and I used a va-

17

2. Methodology and ReseaRch design

riety of ethnographically inspired methods to understand their current sociotechnical circumstances
as well as a future workshop to gauge participants’ needs and wants for the prototype. I again wish
to clarify that I did not take part in conducting the initial interviews and the future workshop, but I
did work with the original PI in analyzing and (re)interpreting the data after I joined the project. An
overview of the timeline and involvement of researchers and participants can be found in figure 2.2.
A total of 12 participants, all connected with the lab in a research capacity, took part in the study at
various points.

In short, the scientists struggled with some level of computational illiteracy, and the notions of the
more capable peer, computational disempowerment, and computational culture came to be guiding
principles for my future work which also fed into subsequent inquiries. The results from inquiry 2
can be found in Nouwens, Borowski, et al. (2020).

2.3.3 3 Design and evaluation of a computational lab book

Based on our findings, we believed that a computational medium might solve some of these issues
related to the computational conditions. As my research question focuses on the mediating qualities
of software for programming, it was relevant for me to take part in the construction and evaluation
of a computational lab book for the scientists as a way to probe into their issues with computational
illiteracy. Further, it allowed me to explore how a domain-specific computational medium might be
realized as opposed to the more domain-agnostic exemplars such as BoxeR or WebstRates.

The design process was heavily informed by a participatory design approach in which the goal was
to co-create a computational notebook prototype that was “empirically researchable in the present
world” (Salovaara, Oulasvirta, and Jacucci 2017). To start it off, participants were engaged in a full-day
future workshop to collectively reimagine how computationally supported biomolecular nanoscience
might look. Based on these suggestions, a design idea for a prototype was chosen based on its level
of significance to their research and the feasibility of implementing it technically. The workshop was
conducted before my participation in the project, but I took part in the rest of the study. Through the
participatory design process, we were in continuous dialogue with the participating nanoscientists.
More concretely, we conducted four meetings with participants and—based on these and the empir-
ical findings from inquiry 2—we constructed a prototype which was presented to the scientists in a
meeting and iterated upon along the way. An overview of the participatory design process can be
seen in figure 2.2. For amore thorough presentation of themethods, the reader is referred toNouwens,
Borowski, et al. (2020). The final outcome of the participatory design process was a computational
lab book, i.e. a laboratory notebook based on the principles of contemporary computational media:
malleability, shareability, distributability, and computability5. With this computational notebook, we
made in situ interviews with participants using the artifact for their actual work, utilizing the artifact
as a springboard for broader discussions of computational media and participants’ computational
conditions.

The participatory design process and the creation of the computational lab book provided a lot of
new insights for my research. For instance, it became clear how computational media is not a one-
size-fits-all in contrast with the visions from Kay and diSessa. The computational medium was, in
practice, a malleable and computational media for us as researchers, not for the scientists. To them, it
largely appeared as a bespoke web application, not a reconfigurable medium. This study with Code-
stRates, among other studies not included in this dissertation, made it clear to me that the literate
computing paradigm that CodestRates was built upon was not necessarily the ideal expression of a
contemporary computation medium. This insight also led to the subsequent iteration of the software
into CodestRates v2. It further prompted me to investigate how the mediating qualities of these
genealogical iterations had changed over time which resulted in inquiry 4.

2.3.4 4 Reflections on the *-stRates family genealogy

Although I did not take part in the development of neither WebstRates, CodestRates, nor Code-
stRates v2, I was closely involved with those that did. My findings from the previous inquiries on
computational media and literate computing made it interesting for me to reflect back on how these
different materialities afforded various interactions and how these were expressions of particular

5These principles are explained in section 5.3.2

18

2.3. Research design and strategy

2019

Activities

Project brief and
technology demo
Observations and
interviews

Future workshop

Prototype iteration #1

Prototype presentation
and design discussion

Prototype iteration #2

Observations and
interview

Prototype iteration #3

Remote videocall
prototype demo
Prototype testing and
contextual interviews

In-situ interviews w/
prototype #4

2017

2018

People involved: participants
(0–11) & researchers (I–IV)
1 2 3 4 5 6 7 8 9 1011 I II III IV

Initial design meeting

Prototype iteration #4

0

FiguRe 2.2: An overview of inquiry 2 & 3, leading to the development of the computational lab book. I am
researcher IV in the model (in red). While I did not perform the actual interviews, I was still involved with
subsequent data analysis.

tensions between the ideals of computational media and the practicalities of software, code, digital
infrastructures, and computational idiosyncrasies. I did this with fellow researchers also affiliated
with the *-stRates family and interested in computational media.

For the study, I sought to trace the genealogy of the *-stRates software family. We included the
major platforms, WebstRates, CodestRates, and CodestRates v2, as well as auxiliary software
such as VideostRates and VistRates. To do this, we employed a first-person method inspired by,
e.g., retrospective trioethnography (Howell, Desjardins, and Fox 2021) in which previously published
success stories of design exemplars are reevaluated to identify the cracks in the narratives. In other
words, how these outputs of constructive design research also embody imperfect design decisions.
This was coupled with case studies of other software artifacts created using *-stRates such as the
computational lab book (inquiry 3) and collaborative software for public libraries. Based on our ge-
nealogical analysis, we identified eight tensions related to computational media built onWebstRates.
Most of these are concerned with mediating qualities such as directness in editing and malleability
versus stability. These tensions combined with the results from inquiry 5 led to us pointing out six
broader “lessons learned” that other researchers in computational media should take away.

An important insight for me was the realization that the issues with computational media are not
only specific to interactive qualities, but also point to broader questions of how to bridge the idealistic
vision of computational media and the practicalities of technical limitations and people’s existing life-
worlds. This inquiry provided a few realizations regarding concrete manifestations of computational
media. Through the retrospection, it became clear that computational media is a promising software
paradigm for computational literacy, yet difficult to realize in practice. In the constructive design
process of interactive systems, interaction cannot be predicted, only suggested. This is even more
true in the case of reconfigurable, computational media that do not provide one predefined user
interface. I wished to examine how these mediating qualities might actually play out in practice
which led me to the subsequent inquiry (5), which would allow me to investigate the links between
these qualities and the computational literacy of user-programmers.

19

2. Methodology and ReseaRch design

2.3.5 5 Game design challenge and interviews

To investigate how the mediating qualities of computational media can influence people’s skills and
self-perceptions, we decided to conduct a study of the newly developed CodestRates v2. This would
allowme to understand better how the particular implementation of a computational medium, Code-
stRates v2, was experienced by programmers, thereby probing into how these people and the arti-
fact would co-create each other in the mediating experience. Further, by exploring the multiplicity
of roles embodied by CodestRates v2 in the interaction, I would be able to learn more about its
capability for influencing computational literacy.

The study was designed as what we called a “game design challenge”. We recruited people through an
existing Slack space for WebstRates, Twitter, and through direct engagement with potential partici-
pants, aiming for a group of participants with varying degrees of experience with both WebstRates
and CodestRates v1. Participants were required to have experience with web programming and
JavaScRipt. 23 people signed up for the study, and 12 of these participated in the full game design
challenge and the subsequent interviews. An overview of their previous experience and skills can be
found in table 2.2. For more information about participants, see Borowski, Fog, et al. (2022).

Participants P1 P2 P4 P5 P6 P7 P8 P9 P10

Programming 8 2 8 8 6 8 7 8 10

Web development 6 3 7 5 6 7 8 6 5

JavaScRipt 8 2 9 6 6 7 9 7 8

Game development 5 4 5 1 3 1 2 2 6

WebstRates 8 3 7 7 2 9 4 5 1

CodestRates v1 4 3 5 6 2 1 2 5 3

Developed with WebstRates yes no yes yes no yes no no no

Developed with CodestRates v1 no no yes no no no no yes yes

Table 2.2: Overview of the participants’ self-assessed programming knowledge on a scale from 1 (no knowledge)
to 10 (expert), and whether they developed with WebstRates and CodestRates v1 before. (Only participants
that filled out the demographic questionnaire are listed.)

Participants’ ages ranged from 24 to 37. Most were PhD students, postdocs, or researchers, while
one was a software engineer. Due to the ongoing COVID-19 pandemic, the whole study took place
online. Participants were sent a design brief and given three weeks for their projects. The design brief
contained a task description, software documentation, a few inspirational game projects, and a tiered
list of goals. The goals were to make a small game that, ideally, would make its rules (collaboratively)
editable by players. Further, participants were given a set of constraints, most importantly to only use
the built-in editor CauldRon for the project (for more details about CauldRon and CodestRates v2,
see section 5.3.6). After developing their projects, participants were invited to a demonstration day
in which they shared their creations with each other and us. The participants were subsequently
interviewed in eight semi-structured interviews (some had worked in groups and were interviewed
together). Themes covered were, among other, the games themselves, how their ideas had formed,
and their experiences with using the CodestRates v2+CauldRon development platform. Further,
those who worked in groups were asked about their experiences with collaboration in CauldRon.
Most interviews lasted between 30 and 75 minutes and were recorded and transcribed verbatim. For
the analysis, we employed a two-stage reflective thematic analysis (Braun and Clarke 2006). In the
first stage, we performed deductive coding of the interviews, guided by the eight design tensions
identified in inquiry 4. The second stage was a combination of deductive coding and inductive coding
to identify nuances and subthemes. For this purpose, all co-authors (at that stage) went over every
interview together. The purpose of these interviews were not to establish agreement, but to use
disagreements and differences as discussion drivers (McDonald, Schoenebeck, and Forte 2019). We
mainly focused on issues related to breakdowns, frustrations, and confusions and did not address the
things that worked well.

20

2.3. Research design and strategy

In regard to my overall research question, this inquiry in particular highlighted the intimate relation-
ship between software and computational literacy. This made me realize that research on computa-
tional media—and other types of software for development—must take seriously their mediating role
in the programming activity. People rely on what they know, and their computational literacies are
intimately connected with the software and its interface. Finally, I came to realize how important
people’s habits and conventions are for not only their skills but also their feelings of empowerment.
While the tools matter, they are not enough.

2.3.6 6 A theory of computational self-concept

Based on the findings from, among other, inquiries 2, 3, and 5, I came to realize the importance of
understanding how and why some people develop computational literacy and some do not, as well
as the particular processes in which this development happens. In my studies with the nanoscien-
tists and the game design challenge with CodestRates v2, it became clear to me that the feelings of
frustration, the breakdowns, and the helplessness experienced were not just attributable to the tools
themselves or even the skill sets of the people using them. In fact, these feelings of computational
disempowerment were expressed by highly educated and otherwise computationally fluent people
such as natural science researchers and experienced software developers. This led me to the insight
that supporting computational literacy requires also a focus on the psychosocial conditions of the
people involved. Further, as argued by, e.g., G. L. Nelson and Ko (2018), the use of theory from the
more general fields of, for instance, learning science and psychology can contribute to a better un-
derstanding of these domain-specific psychosocial conditions. Malmi et al. (2019) similarly highlight
the importance of using and creating theory to better understand the development of computational
skills and literacies.

By looking towards computing education, a field in which these issues are widely investigated, pop-
ular theoretical constructs such as self-efficacy and identity seemed to provide at least part of the
answer. My main issue with many of these was that they largely lack explanatory power for un-
derstanding the processes leading to the individual development of computational literacy. Some,
like the widely referenced construct of situated learning (Lave and Wenger 1991), are sociocultural
constructs that explain the processes of learning in terms of participation and practices, while others
are oriented towards psychological phenomena such as self-efficacy and attitudes. By taking inspira-
tion from Hattie’s theoretical framework of self-concept (Hattie 1992), I sought to provide a domain-
specific theory of computational self-concept. This framework was combined with the concepts pre-
sented by Barnett (2009) to provide a more nuanced division between selected subcomponents of the
framework.

Although self-concept as a theoretical construct has already been used in computing education re-
search, the concept is, much like identity, a potentially empty signifier in the sense that it means
multiple things in different scholarly traditions. Therefore, although I use the same terminology
as other theories of self-concept, my aim was to present a version of the construct coming from a
particular school of thought. Self-concept, as stated, is difficult to define universally. Like other
generalizable theoretical constructs from psychology, self-concept comes out of multiple traditions,
each one drawing on a particular body of thought. My purpose was therefore not to provide one
unifying theory, but to provide a useful theory to understand the process of computational literacy
development. For the same reason, I aimed for the provision of a domain-specific self-concept, the
relevance and importance of which is acknowledged in psychology (see, e.g., Shavelson, Marsh, and
Byrne 1992; Yeung, McInerney, and Russell-Bowie 2001).

While the development of the theoretical framework did not yield any empirical findings in contrast
with the rest of my inquiries, it nonetheless suggested the feasibility of introducing a domain-specific
computational self-concept and making it operationalizable. In particular, the importance of confir-
mation and disconfirmation for the formation of self-images is an important addition for understand-
ing the development of computational literacy. Regarding my overall research question, the inquiry
therefore served to better understand the processes that lead to the formation of computational liter-
acy. This can help explain my findings from previous inquiries in which otherwise competent people
experience computational crises and disempowerment. More broadly, computational self-concept
can illuminate the hindrances to the development of computational literacy. To explore the frame-
work’s viability as an explanatory theoretical construct, I conducted a series of interviews (inquiry 7).

21

2. Methodology and ReseaRch design

2.3.7 7 Student self-concept interviews

As stated, I wanted to examine the practical usefulness of the operationalized framework. Further, I
wished to better understand how a particular group of people—humanities students—experienced the
process of learning to program. The purpose was therefore two-fold. First, I sought to investigate the
usefulness of the framework to guide qualitative research on the formation of computational skills
and identities. This is not to be considered a validation of the framework, as validation requires a
formal and systematic testing of each individual component and their internal coherence and cor-
relation. Rather, I wished to understand its explanatory power, i.e., how well it fares as a number
of interlinked, theoretical concepts that highlight particular elements of an individual’s process of
engagement with computational artifacts. Second, I also aimed to investigate a particular group of
students and how they experienced an introductory programming course in a bachelor’s degree in
the humanities. The goal was thus a phenomenological inquiry into the experiences of the students
and how these shaped their computational self-concepts.

For the inquiry, I put out a call for participants among a first semester programming class that I
was co-teaching (as teaching assistant) at the time. The degree is an IT bachelor in the humanities
and largely equally distributed between genders. To ensure a broad range of representation, we
randomly selected ten students from the class list and reached out to these via email. Five students
agreed to take part, of which three were self-identified women and two were self-identified men.
Participants were between the ages of 20 and 22 at the time of the study. To avoid students feeling
put “on the spot” and to foster a more conversational interview style, I decided to do group interviews.
Participants were split into two groups, one with two and one with three participants. Each group
had both genders represented. As computational self-concept is largely oriented towards experiences
and processual development, we conducted two interviews with each group. One in the beginning
of the semester and one after the final lecture (but before the summative oral examination). All
interviews were conducted by me and a student helper in the same context. The student helper was a
former student of the same course, brought in to take notes and prompt participant dialog by sharing
her own experiences as conversation starters. To provide additional context for the interviews, each
participant was asked to provide information about their background and previous programming
experience (before the course). Finally, to examine if there were any links between their experiences
as they came up in the interviews and their feelings of computational literacy, each participant was
asked three times during the study (before, between, and after the interviews) to self-report their
general computer competencies and their programming competencies on a scale from 1 to 100.

Background Tendency to …

Group ID Gender Previous experience Underestimate abilities Overestimate abilities

A
P1 M Yes, a little Slightly agree Slightly disagree

P2 F No Agree Disagree

B

P3 M No Slightly agree Slightly agree

P4 F Yes, a little Agree Disagree

P5 F No - -

Table 2.3: Students’ background information

The semi-structured interviewswere centered around themes of breakdowns, feelings of helplessness,
and breakthroughs. More information about participants, interview prompts, and methodology can
be found in appendix 5. All interviews were subsequently transcribed verbatim. For the purpose
of research dissemination, the quotes used in the dissertation have been translated from Danish to
English, aiming towards equivalence in meaning rather than transliteration (Regmi, Naidoo, and Pilk-
ington 2010). To analyze the data, we conducted a two-cycle data analysis based on Tracy (2013). In
the first cycle, the co-interviewer and I coded all interviews individually. This first cycle was largely
deductive in nature. This was followed by discussions of the emergent findings as recommended
by Tracy (ibid., p. 189). These discussions led us to revise some codes for agreement or disbandment

22

2.3. Research design and strategy

Early Mid Late

ID Computer Prog. Computer Prog. Computer Prog.

P1 75 65 72 71 77 76

P2 65 25 75 69 75 65

P3 - - - - - -

P4 60 27 69 26 69 30

P5 75 15 50 50 70 50

Table 2.4: Participants’ self-reported computer competencies (1–100) and programming competencies (1–100)

of codes where no agreement could be found. To provide a measurement of inter-rater reliability, a
third researcher was given the developed codebook and coded two of the four interviews. In compar-
ing both the coded sentences and the specific codes applied, we found a Cohen’s unweighted kappa
of 0.95, signifying an “almost perfect match” (McHugh 2012). For more details, see appendix 5. In the
second cycle, we sought to inductively bring out subthemes that were either prevalent among the
participants’ expressions or stood out as interesting edge cases. In doing so, we would be sensitive
to both general patterns and individual idiosyncrasies.

The student interviews led me to the insight that the interplay between material conditions, skills,
and self-images are complex, and that to foster computational literacy, the people involved must also
come to see themselves as computationally literate.

2.3.8 8 KnitxCode workshop

One of my takeaways from inquiry 7 was the complex relationship between materiality, identity,
skills, and competencies, and how the development of computational literacy likely depends on all of
these factors. This was also made clear in my studies on computational media (i.e., the computational
lab book and CodestRates v2). All of my previous empirical work, however, dealt with people
for whom computation and programming was already a part of their daily lives. To investigate
a different group, a fellow researcher and I designed a workshop in which we recruited knitters
without programming experience in order to examine a craftsmanship-based approach to computing
that takes advantage of people’s existing material intelligence.

The foundation of the study was the perceived similarities between computational thinking and knit-
ting. The study specifically investigated computational thinking, based in particular on the frame-
work from Brennan and Resnick (2012) which deals not just with computational concepts and ac-
tivities, but also with broader perspectives, leaning towards notions of computational literacy. After
conducting and redesigning a pilot workshop, we recruited 12 participants for the full workshop (11
female, one non-binary). Participants were between 21 and 46 years old and had 2–25 years of knit-
ting experience (M = 6). One participant had limited programming experience while the rest had
none. Participants were recruited from a Facebook group for people interested in participating in
research. When signing up, participants filled out a questionnaire about knitting and programming
experience and their motivation for taking part. Motivations were generally the desire to learn some-
thing new and to become acquainted with programming. The workshop lasted around two and a half
hours including breaks and consisted of the following activities:

1. Introduction to the workshop

2. Activity: Decode and recreate

3. Activity: KnitxCode

4. Evaluation

23

2. Methodology and ReseaRch design

Decode and recreate aimed at letting participants explore the computational nature of knitting recipes.
To do this, participants were paired up and given a knitted square. The were then asked to decode the
square as a series of programmatic instructions and concepts (see figure 2.3). Afterwards, participants
swapped instructions between each other and were tasked with drawing the other person’s square
in a pattern template, based solely on the instructions. The second activity, KnitxCode, aimed to
investigate the transfer of skills and competencies to computing. In this activity, we provided partici-
pants with a micRo:bit and gave them access to pre-made programming templates in the block-based
micRo:bit editor (see figure 2.4). For the activity, participants were asked to complete four program-
ming exercises, each one building on the concepts and principles from the previous one. Before each
activity, the concepts (e.g., loops) were introduced and related to knitting patterns, and participants
were shown a video of what the micRo:bit should look like at the end of the exercise. To encourage in-
clusion, a new exercise was only introduced after everyone had completed the previous one. Finally,
we conducted a semi-structured group interview with all participants to evaluate the workshop and
the participants’ experiences with it. Participants further filled out a post-hoc questionnaire about
their perception of computational thinking.

FiguRe 2.3: Activity: Decode and recreate. Template (left), pattern (top middle), knitted square (bottom middle),
and participants (right).

FiguRe 2.4: Activity: KnitxCode. Block-based interface (left) and participant (right).

To gather data during the workshop, we mainly relied on participant observations and ongoing note-
taking during the workshop. To support our notes, we also took photographs and videos of partic-
ipants during the activities. Further, to better understand particular situations of interest, we con-
ducted spontaneous, informal interviews when such a situation arose. Finally, all statements made
during the evaluation that informed the existing observations and interviews were written down
verbatim.

Concerning my overall research question, the workshop showed the importance of material familiar-
ity for the development of computational literacy. As was made clear in my studies on computational

24

2.3. Research design and strategy

media, programmers draw on their repertoire of human-computer interfaces to make sense of an
unknown medium. Here, the knitters’ development show that this transfer is also possible from non-
computing domains. Importantly, it seems as if the knitters were able to not only transfer skills, but
also positive self-concepts by drawing on their existing material competencies. The workshop in par-
ticular made me realize that the materiality of computing matters more than we might think. This is
investigated further in section 5.2. The inquiry also points towards a notion of computational literacy
that emphasize craftsmanship and aesthetics which could hopefully also increase gender diversity in
computing education.

aaa

My research activities thus form a series of ongoing engagements, each of which is an inquiry that
draws from previous inquiries and feeds into the following. Moving on, the following chapter is a
theoretically grounded exploration of computational literacy and the relationship of the concept with
other related theoretical constructs.

25

Computational literacy and how it is formed 3

Most people find the concept of
programming obvious, but the doing
impossible.

Perlis (1982)

To be able to relate the mediating qualities of software for programming to any kind of literacy, I use
this chapter to unfold the concept of computational literacy and the prerequisites for the formation
of such a literacy. This allows me to position the contributions from the dissertation in the historical
and current conceptualization of literacy in computing. At the core of literacy is the meeting of three
basic human states: knowing, being, and doing. On top of that is the larger questions of how andwhy
we ought to know, be, and do something. An early proponent of a literacy of computing was Danish
computer scientist Peter Naur, who argued that computing (or, more specifically, datalogy1) ought
to be considered part of a general education for everyone (Naur 1967). Returning to my research
question for the dissertation, this chapter concerns one part of the relationship between the elements:
Computational literacy.

Research question How do the mediating qualities of software for programming contribute to the
development of computational literacy?

The concept of literacy is nontrivial. There is a variety of viewpoints of what literacy is or might be,
each of which takes into account a different cultural imaginary and ideological backgrounds. The
image is further complicated by the modifier computational. This chapter will therefore serve two
main purposes. First, it provides a background section on computational literacy that culminates
in a working definition of the term. Second, based on inquiries 6 and 7, I introduce computational
self-concept as a complementary construct for understanding literacy formation.

aaa

The first part of the chapter presents various accounts of literacy, ultimately culminating in a work-
ing definition for the purpose of this dissertation. In this process, I compare computational literacy
to other established concepts such as computational thinking, Bildung, material intelligence, and var-
ious new literacies to illustrate how computational literacy designates a particular human-computer
relationship. Afterwards, I introduce computational self-concept as a way of understanding the pro-
cesses that lead to identity formation and the development of computational literacy.

3.1 Tracing literacy broadly

Before presenting computational literacy, it is necessary to understand the broader concept of literacy,
as literacy is closely related to sociocultural norms, societal values and governance, and individual
competencies. Wemust therefore have a basic understanding of literacy and itsmultiple connotations.
Etymologically, the word ultimately derives from Latin littera, a letter of the alphabet or, in the plural,
letters, books, and similar written documents. To be literatus meant not just being able to read and
write, but also to be learned, scholarly, and cultured. From the very beginning, literacy has been
deeply connected to both the concrete activity of reading and writing through a textual medium as
well as a broader quality of being learned or educated.

The Age of Enlightenment in Europe brought, among other ideas, the conception of educational
ideals about equipping the emerging public with the capacity for engagement in the newly emerging

1Computer science was and is still called datalogi in Danish universities

27

3. Computational liteRacy and how it is foRmed

nation-states, in opposition to their previous roles as subjects to an absolute monarch. This was not
just a matter of enabling a population of citizens to read and write, but to be able to actively take part
in society. Literacy is therefore deeply related to educational goals which, particularly in a Central
and Northern European context, go beyond educating people to join the workforce. Scandinavian
and German educational ideals also focus on Bildung which concerns the individual’s becoming:

Learning - as defined in opposition to Bildung - is merely equipping the individual with
knowledge and the ability to do something, whereas Bildung is the innate development
of one’s own capacities (C. Schulte and Budde 2018)

(…) it’s not public Bildung, because [programming] is not something that the general [pub-
lic] have to do with (…) but I do think that it could be necessary that people did that, I mean,
in line with the general development or whatever you call it (S2 (post), inq. 7).

As also argued by Dirckinck-Holmfeld, Nielsen, and Webb (1988), literacy is therefore not just about
the ability to read and write. Rather, it can be seen as part of a larger movement of literacy as eman-
cipation, that is, Bildung, of the ability to participate on equal foot in a democratic society. C. Schulte
and Budde (2018) argue that any serious undertaking of computing education should start from the
didactic ideals of Bildung. In doing so, they pave the way for a dual purpose of computing education,
of both learning and Bildung. Related to literacy and Bildung is also the notion of empowerment:

(…) obtaining digital technology related skills and competencies as part of basic educa-
tion is not enough, but in addition to that, agency and empowerment of people to use
those skills are also significant (Kinnula et al. 2017)

Literacy is also intimately connected to competencies, defined by Rychen and Salganik (2003) as not
just knowledge and skills, but also values and attitudes. Thismodel of competence is, however, largely
a sociocultural view of human being and doing. In this dissertation I argue that it is necessary to take
into account the non-human actors, i.e., the technology, and the embodied and material intelligence
that people develop. Literacy is therefore a more suitable term for addressing those competencies
that involve a material “other” such as computational media or other types of software.

Having presented literacy in relation to related concepts, I argue for the following distinction:

1. Competencies are skills, knowledge, values, and attitudes (ibid.)

2. Literacy is a combination of competencies, fluency (Kay 1984), and societal relevance (Vee
2013)

3. Bildung is the development of literacy with a particular focus on the realization of an individ-
ual’s capacities and the development of an informed public (C. Schulte and Budde 2018)

4. Empowerment is a combination of literacy and personal agency, reflection, and participation
in democratic societies (Kinnula et al. 2017; Iversen, Smith, and Dindler 2018)

This hierarchy is not set in stone, and the difference between concepts is more relative than absolute.
The reality is also that people sometimes use the terms interchangeably and with varying consistency.
For instance, Kinnula et al. (2017) talk about “literacy skills”. Similarly, in areas such as the USwithout
an educational tradition of Bildung, empowerment or literacy is often substituted in meaning. I
present a more in-depth definition of literacy in section 3.3.4. Before discussing why I scope my
research as literacy, I wish to briefly present various modes of literacy.

28

3.2. Why computational literacy?

3.1.1 Degrees and modes of literacy

Besides the various academic disagreements on the nature of literacy, there seems to be consensus
that there are multiple modes, degrees, or levels of literacy. Formal literacy is the ability to, e.g.,
read and write without being able to apply it towards any real-world purpose (Dirckinck-Holmfeld,
Nielsen, and Webb 1988). In contrast, functional literacy is proficiency in use of tools (Hoffman and
Vance 2005). More specifically, we can understand functional literacy in relation to the ideals of
Bildung and empowerment. For instance, Dirckinck-Holmfeld, Nielsen, and Webb (1988) call this
level of literacy an adaptive functional literacy and emphasize how these competencies are used to
“support and solidify the existing roles and institutionalized patterns” [my translation] that are part
of everyday life. In comparison, emancipatory functional literacy is the ability to, inter alia, critically
reflect on those roles and patterns (ibid.). In more recent literature, parts of this emancipatory view
of literacy can be found in the concept of critical literacy. Critical literacy is, essentially, the ability
to incorporate a medium or textuality in support of, e.g., critical thinking (Hoffman and Vance 2005)
or a critical pedagogy (Tissenbaum, Sheldon, Seop, et al. 2017).

I mean, isn’t there like a difference between being competent and having a deeper under-
standing of it? Because I guess you can be a very competent user of technology without
having a deeper understanding of what’s going on behind the scenes, I think. (S4 (pre),
inq. 7).

These modes of literacy in many ways mirror the five views of empowerment presented by Kinnula
et al. (2017). This again illustrates the close coupling between literacy and empowerment. Further,
they are a reminder that literacy is one of those terms that easily run the risk of becoming an “empty
signifier” (Brown 2016). An empty signifier means, in Laclau’s terminology, a signifier without the
signified. Concretely, it means that the word literacy does not point to an enduring concept of lit-
eracy across time and place, but rather is an empty term to be filled depending on the particular
context in which it is used. I also wish to remind the reader that other modes of literacy can likely
be distinguished, but these concepts serve to frame what is meant by literacy in this dissertation.

3.2 Why computational literacy?

In my specific choice of literacy as the focal point (rather than, say, empowerment, competence,
thinking, or knowledge) lies a certain conception of the human-computer relationship. Computa-
tional literacy is on a general level related to Bildung, competencies, and empowerment. The concept
is further related to material intelligence, computational thinking, and computational empowerment.
In this section, I trace how these constructs are related and why the concept of literacy is better suited
for my research.

3.2.1 Material intelligence

diSessa has advocated for the use of material intelligence as a concept, specifically exploring how to
foster the development of said concept through the Boxer environment (diSessa 2001). Material in-
telligence signifies an “intelligence achieved cooperatively with external materials” (ibid.). There are
many similarities betweenmaterial intelligence and computational literacy, and my understanding of
literacy draws heavily from diSessa. However, as pointed out by Vee, there is one crucial difference
between these positions: “While people benefit from material intelligences, they need literacies to
negotiate their world” (Vee 2013). As will become apparent in chapter 6, the challenges and opportu-
nities experienced by the students, researchers, and programmers in my research are not external to
but an intricate part of their daily lives. Further, this understanding of literacy does not necessitate
a common societal literacy; “their world” relates to participants’ life-worlds:

(…) but I just knew I had to have something with IT, because it’s really the future. Then this
was just a perfect match, and I thought that this kind of programming, I need that (…) (S3
(pre), inq. 7).

From material intelligence I have also drawn the importance of mediation. In diSessa’s view, the
three pillars of material intelligence are the material, the cognitive, and the social. While diSessa

29

3. Computational liteRacy and how it is foRmed

comes from an educational computing field, this tripartite division is also mirrored in (parts of) HCI
research such as the concept of embodied interaction (Dourish 1999). The central tenet of these
positions is that material intelligence (and, by extension, computational literacy) does not reside in
either the person or the material but emerges as a property of the relationship between them (diSessa
2001, p. 8). These are the mediating qualities that I refer to in my overall research question which are
central in the following chapters.

Finally, in addressing literacy rather than material intelligence, I wish to emphasize the emancipatory
and, conversely, hampering aspects of mediation. It is not just a matter of benefit and inconvenience
for my research participants but a central part of their life-world, particularly as computational liter-
acy becomes an inseparable part of their studies or work.

3.2.2 Computational thinking

Computational literacy is also not equal to computational thinking. Since Jeanette Wing’s call for
teaching computational thinking to the broader populace (Wing 2006), the term has been on the
agenda in both computing education and in broader educational policymaking in Denmark (e.g.,
Lund-Larsen 2017) and beyond (Heintz, Mannila, and Farnqvist 2016; Hsu, Irie, and Ching 2019).
Computational thinking is, according to Wing, a generalizable way of thinking that stems from com-
puter science and involves abstraction, modularity, et cetera. In this sense, computational thinking
is seen as a general problem-solving skill that everyone will benefit from learning.

Different schools of computational thinking can be identified. Traditional computational thinking
inherits from the constructionist pedagogy of Papert and focuses on programming practices, while
the newer schools consider computational thinking a set of generalizable problem-solving abilities
through concept learning (Spangsberg and Brynskov 2017; Denning 2017). The nature of computa-
tional thinking is still deeply contested (see, e.g., Tedre and Denning 2016; Denning 2017). I will not
unfold the entire research discourse on computational thinking here but merely emphasize that “it
was Wing’s use of the term, not Papert’s, which led to the concept being widely adopted” (Curzon
et al. 2019). For a systematic overview of the field, the reader is referred to Li et al. (2020b).

The distinction between computational thinking as programming practice and computational think-
ing as concept learning (Li et al. 2020a) can be seen as a distinction between competencies and knowl-
edge. The following quote by S1 illustrates just how big this gap can be (similar statements were given
by S3, S4, and S5 in the same study):

And the hardest part [about the course] is that you don’t really know what you– I mean,
you know the concepts. I just don’t really understand how to use them. (S1 (pre), inq. 7).

Aho’s oft-cited contribution on the nature of computational thinking defines it as “thought processes”
involved in formulating problems and solutions (Aho 2011). Computational thinking as a cognitive
process was also advocated by Guzdial (2008). However, this version of computational thinking,
much like Wing’s, strips away the mediating role of the sociomaterial conditions, an integral part
of computational literacy. At play is, in essence, an ontological distinction between cognition as an
individual, isolated phenomenon and cognition as a distributed, embodied, andmaterial phenomenon
that is more than the individual itself (Hollan, Hutchins, and Kirsh 2000; Bjørndahl et al. 2014).

It is my argument throughout this dissertation that we cannot separate thinking from doing. Compu-
tational literacy is an embodied and distributed phenomenon that involves thinkingwith and through
media. Early proponents of computational thinking seem to also have realized the importance of
the medium (see, e.g., Guzdial 2008; Guzdial 2019) Finally, the relationship between computational
thinking and computational literacy is neatly summarized by Li et al. (2020a), who argue that compu-
tational literacy is important to every student but not as the new school of computational thinking:
“computation is not the special province of computer scientists, and everyone does not need to think
like a computer scientist”. If my research contributes to a better understanding of computational
thinking, then it is in the form of a revival of the practice-oriented and materially grounded school
advocated by Papert, diSessa, Kay, and Nelson.

30

3.3. What is computational about computational literacy?

3.2.3 Computational empowerment

Despite its age, Wing’s new school of computational thinking is still cited regularly and has come to
dominate the discourse (Curzon et al. 2019); however, a number of computing education researchers
have pointed out some issues with the terminology. For instance, as argued by Iversen, Smith, and
Dindler (2018), computational thinking is closely tied with American STEM education, and the ac-
tivities encompassed by the term are ill-defined. The authors suggest computational empowerment
as a different term that not only includes computational thinking skills, but also broader abilities
for reflection and participation in a digitized, democratic society. This position is partly inspired
by Brennan and Resnick (2012), who posited that computational thinking is not just problem-solving
but rather a broader set of dimensions: computational concepts, computational practices, and com-
putational perspectives. Recently, though, it seems as if computational empowerment is gaining a
larger foothold in American computing education research (Tissenbaum, Sheldon, and Abelson 2019)

I agree with computational empowerment as a worthwhile goal, but it is outside the scope of my
research. Themain reason being my conviction that empowerment is, in essence, processual capacity-
building and develops from sustained feelings of being literate and competent (through ongoing me-
diation). This position is supported by Tissenbaum, Sheldon, Seop, et al. (2017), Schneider et al. (2018),
and Iversen, Smith, and Dindler (2018). Of course, inquiring into empowerment also depends on an
agreed upon definition of empowerment which is far from the case (see, e.g., Kinnula et al. 2017;
Abbate 2018)

3.3 What is computational about computational literacy?

While the close ties between literacy and Bildung have been acknowledged for many years, a com-
paratively new development is the proliferation of domain-specific literacies, examples of which are
economic literacy (Stigler 1970), design literacy (Christensen et al. 2016), and political literacy (Osler
2000). More specifically, since the spread of digital technologies in both private and public spheres,
the so-called “new” literacies have appeared. Exactly what the term new literacies encompasses
seems in flux; the Handbook of research on new literacies, for instance, largely sees new literacies as
those afforded by the Internet and multimedia, e.g., information literacy and media literacy (Coiro
2008). For a more recent view, we might turn to Knobel and Lankshear (2014), who address two
fundamental characteristics of new literacies: The transition from physical to a digital material and
the change in ethos towards participation and democratization. However, they still largely see the
difference between old and new literacies as a matter of modality. In their view, the digital medium
is a tool through which new textual forms and social configurations might emerge (e.g., fan fiction,
social media) that are the target of new literacies. New literacies, as an umbrella term, therefore does
not succinctly capture the fundamental change that the computational medium as a computational
medium brings. Similarly, the literacies touted under names such as computer literacy and digital
literacy are not computational literacies despite their related names.

3.3.1 Computational literacy is not computer literacy

One perspective on computer literacy can be found in Hoffman and Vance (2005). The authors dis-
tinguish between different computer literacies such as functional computer literacy, information lit-
eracy, and critical computer literacy. These three levels, respectively, correspond to proficiency with
the computer, how to use and understand the computer as a means for communication and informa-
tion, and, finally, the ability to “incorporate computing technology in support of critical thinking”
(ibid.). While these perspectives are admirable, they all represent the computer as a tool and liter-
acy as increasingly sophisticated skills in tool use (Vee 2013). This position is supported in early
work by Dirckinck-Holmfeld, Nielsen, and Webb (1988) who argue that computer literacy is, at best,
an adaptive functional literacy based on technical skills for using computing systems. diSessa com-
pares this kind of computer literacy to being able to decode “typical words” in place of a full textual
literacy (diSessa 2001, p. 5).

3.3.2 Computational literacy is not digital literacy, either

While digital literacy and computational literacy might imply the same phenomenon—after all, com-
puters are digital—I consider them two different things. Digital literacy is the competencies involved

31

3. Computational liteRacy and how it is foRmed

with using and creating with digital technologies. The term (in its Danish translation digital dannelse)
is often conceptualized as being able to use applications for media creation, find information online
and evaluate information, and use social media in an informed and responsible way (see, e.g., Bunds-
gaard 2017). While these absolutely are worthwhile endeavors, they largely treat the computer (or
smart device) as a black boxed tool through which young people must learn to navigate, use, create,
and reflect.

Tissenbaum, Sheldon, Seop, et al. (2017) similarly define digital literacy as the “ability to share ideas
through digital mediums”. They draw on an understanding of literacy as the equivalent of reading
and writing, much like Pérez-Escoda and Rodríguez-Conde (2015) who argue that digital literacy
concerns managing information, communicating through digital technologies, and understanding
digital media (albeit digitized versions of traditional mass media), although they do acknowledge the
cultural and scientific viewpoints involved in such a definition. All of these perspectives paint visions
of digital literacy as, basically, adaptive functional literacies enabling people to fill roles and follow
existing patterns. A more current perspective can be found in Tuhkala et al. (2019) who tie digital
literacy in with notions of empowerment, making, and digital fabrication, arguing that digital literacy
is necessary to meaningfully take part in an increasingly digitized world. Still, the digital literacy
presented by Tuhkala et al. is less concerned with the computational capabilities of the medium than
with empowerment through the medium.

3.3.3 Computational literacy is not (just) programming

Finally, before presenting a definition of computational literacy, I wish to emphasize that computa-
tional literacy does not equate programming. At least not programming as a purely textual practice
as presented by Vista (2020). As elaborated further in chapter 5, there is an inherent duality in soft-
ware in the sense that the textual representation is not the software. While the textual (or graphical)
representation of executable code represents the actual code, the mediation happens between the
programmer and the code as potential. Programming is an activity that may feed into a computa-
tional literacy, but it does not do so by necessity. Kay and diSessa focus less on the concrete forms
of interaction and more on the characteristics of this mediation. For instance, Kay defined literacy as
fluency:

Literacy means fluency (…) Computer literacy is not even learning to program (…) Com-
puter literacy is a contact with the activity of computing deep enough to make the com-
putational equivalent of reading and writing fluent and enjoyable” (Kay 1984).

This is implicitly echoed by diSessa who does not discuss programming in his argument for compu-
tational literacy (diSessa 2001, pp. 1–28). The dangers of conflating literacy and empowerment with
“coding” are also examined by Abbate (2018).

Based on these positions, I consider programming to be just one form of human-computer interaction,
albeit a very powerful one. What is more important than the interactional form (e.g., programming)
is the fluency, the mediating experience, and the emancipatory effects of computing. Finally, other lit-
eracies such as data literacy (Carrington 2018) and information literacy (Dirckinck-Holmfeld, Nielsen,
and Webb 1988; Bruce 2004) are mainly concerned with computers insofar as they make it possible
to work with data and information. That is, computation as a means for something else. One final
literacy worthy of mention, however, is Mateas’ procedural literacy which builds on the tradition of
work by Papert, Kay, and Nelson (Mateas 2005). Procedural literacy is defined in terms of reading and
writing processes, aesthetics, and the relationship between “culturally-embedded practices of human
meaning-making and technically-mediated processes” (ibid.). This literacy perspective is closely re-
lated to what my research has focused on: The mediating qualities of software and how people make
sense of these in a reciprocal manner.

3.3.4 Computational literacy is …— A definition

On the basis of the preceding pages, I argue that computational literacy has a particular character
that is not equal or reducible to constructs such as programming, computational thinking, digital
literacy, and material intelligence, even if there might be (sometimes considerable) overlap between

32

3.4. Self-concept: How computational literacy is formed

them. I draw heavily from Vee (2013), Mateas (2005), diSessa (2001), and Kay (1984) for the following
definition which I have utilized in my work. My position is therefore informed partly from a view of
computational literacy as an emancipatory practice towards empowerment and Bildung and partly
from a new media perspective that treats digital artifacts as mediating technologies.

Computational literacy …

∼ …is not just competencies, but is related to wider societal considerations
∼ …cannot be reduced to a cognitive phenomenon, but is deeply connected to the material condi-

tions in which it is formed
∼ …is more than material intelligence in the sense that it foreshadows the influence of computa-

tional technologies in all aspects of daily life
∼ …is often related to programming (but does not have to be)
∼ …has a mediating and reciprocal character
∼ …is more than tool use
∼ …is experienced as fluency in a medium
∼ …is the prerequisite for computational empowerment and Bildung
∼ …is a sociocultural phenomenon and is shaped by the cultures and ideologies in which it exists
∼ …relies on not just actual, but also perceived competencies and self-images
∼ …leads to identity development and demands the availability of a fitting identity
∼ …is developed in an ongoing, unpredictable fashion through experiences

That computational literacy has these characteristics does not imply that everyone exhibits or ex-
periences computational literacy in the same way. We can, however, draw out a few general ways
that a computationally literate person might act in and understand the world. Most important are
the actual competencies, i.e., the skills and knowledge of software and data along with an appraisal
of the importance of these competencies. In practice, this can manifest as an understanding of com-
puters beyond the user interface, of something that is qualitatively different from analog materials.
For instance, a computationally literate person could write a script to automate manual or repetitive
tasks. Ideally, this person also experiences computing and software fluently. This does not mean that
they know everything, but they would have the competencies to navigate, learn, and act fluently. If
the operating system breaks down, for example, a computationally literate person would be able to
reason their way through the errors. And while they do not necessarily know how to or is able to
program, they would be able to learn based on their existing competencies and appraisals. Finally, a
computationally literate person sees themselves as such. If they encounter an unfamiliar program-
ming language or computing environment, they should be able to draw on an existing belief in their
own competencies.

Trying to a priori define what a computationally literate person is and does is comparable to asking
what makes a great handball player (compared to an average one). They can both play handball, yet
the way they do it is vastly different. What is, then, perhaps more interesting than this hypothetical
person is to see how (the lack of) computational literacy is realized and experienced by the actual
scientists, students, and programmers in my research. This empirically grounded investigation is
elaborated in chapter 6. The latter three points in the definition of literacy have not yet been discussed.
One of diSessa’s arguments is that literacy consists of three pillars: The social, the cognitive, and the
material (diSessa 2001, pp. 6–8). The rest of this chapter introduces computational self-concept as
a framework for understanding the processes in which these pillars are shaped by and shape each
other. This framework is a key contribution of this chapter and in particular provides insights into
the way experience shapes the pillars of literacy.

3.4 Self-concept: How computational literacy is formed

This section is primarily informed by my work with students (Fog, Pálfi, et al. 2023). While I found
inspiration in existing research on the nature of computational literacy, I was highly motivated by an
interest in how such a literacy comes to be. Although my research is not specifically about fostering

33

3. Computational liteRacy and how it is foRmed

computational literacy in formal education, the field of computing education research is nonetheless
a central venue in which research is done on how to support the development of computational liter-
acy and associated skills and competencies. Particularly, personal-cognitive constructs like identity
and self-efficacy as well as sociocultural constructs such as sense of belonging and communities of
practice provide valuable insights into an understanding of computational literacy. Yet none of these
deal explicitly with a model of the concrete experiences that feed into one’s image of self.

From psychological research we get the notion of self-concept which has not yet seen the same pop-
ularity in computing education research as the aforementioned constructs. However, self-concept
seems to be able to provide a promising model for the ongoing development of literacy. Even though
several scholars have used the construct in computing education research, it is often vaguely de-
fined, conflated with identity, and not living up to its full potential for exploring the wider social and
discursive practices of identity development (Große-Bölting et al. 2021).

Self-concept, especially in the form presented by Hattie (1992), aims to provide a holistic model of
how a person’s self-image is influenced by and constructed from a series of valued statements ap-
plied to oneself and the world in an ongoing manner. More specifically, self-concepts consist of
descriptions, prescriptions, and expectations of oneself and the world. Self-concepts are influenced
by confirmations and disconfirmations of these beliefs.

My use of self-concept as a theoretical model is informed by two main considerations. First, self-
concept does not replace or compete with other psychological concepts such as identity or self-
efficacy. Rather, the construct can complement those perspectives by focusing on the ongoing de-
velopment of these. Second, self-concept can be considered domain-specific (Shavelson, Marsh, and
Byrne 1992; Yeung, McInerney, and Russell-Bowie 2001). That is, one can have multiple self-concepts
that are dependent on the particular context in which one is engaged. As argued by Vee (2013) and
Vee (2017), the development of computational literacy not only requires people to build competencies.
Theymust also, in the process, come to find a place for them, a suitable role to inhabit. Self-concept as
a psychological theory is, as stated, closely related to identity. In fact, the distinction between these
constructs is muddied and still contested (Große-Bölting et al. 2021). For a more in-depth discussion
of these terms, the reader is referred to this excellent paper.

3.4.1 The self-concept model

I was very inspired by the model of self-concept laid out by Hattie (1992). Although not directly
operationalizable due to the way it is presented as a series of reduction sentences, it nonetheless
quite clearly demarcates a few interesting subconstructs. Arguably, my framework is a poor substi-
tute for the richness of Hattie’s reduction sentences and the ambiguity and openness of them. The
benefit, on the other hand, is a set of usable constructs to frame people’s development of literacy:
Descriptions, prescriptions, expectations, and confirmations and disconfirmations. Hattie’s original
reduction sentences are replicated here:

Our [self-concepts / conceptions of our self] are cognitive appraisals, expressed in terms
of [expectations / descriptions / prescriptions], integrated across various dimensions
that we attribute to ourselves. The integration is primarily via [self-verification / self-
consistency / self-complexity / self-enhancement]. These attributes may be [consistent /
inconsistent] depending on the [type / amount] of [confirmation / disconfirmation] our
appraisals received from [others / ourselves]. (ibid.)

As argued in section 3.3.4, computational literacy is, among other, related to perceived versus actual
competencies and self-images, the development of identity and possible roles, and an ongoing en-
gagement with the world through experiences. These aspects are explored in the subconstructs of
computational self-concept as shown in the following sections. First, I wish to emphasize for the
reader that self-concepts do not have to be true. They are value assessments and deeply subjective.
A person’s self-concept does not say whether they are, in fact, computationally literate, but it tells
us whether they feel literate. That is, self-concepts also include the values and attitudes that people
develop towards themselves and the materialities and activities associated with literacy.

34

3.4. Self-concept: How computational literacy is formed

Finally, I have been very inspired by Barnett’s perspective in which he argues for a pedagogy of
higher education that links scholarly disciplines with being and becoming (Barnett 2009). The pur-
pose of the article is to reintroduce to higher education and their curricula the being that ought to
complement the development of skills and knowledge in higher education. Barnett’s project is eman-
cipatory, emphasizing the relationship between knowing, being, and becoming. To allow students
to become their full potential (i.e., the ethos of Bildung), it is, according to Barnett, necessary to
develop their dispositions and qualities. Dispositions are those inherent characteristics of a person,
fundamental ways of being and navigating in the world such as the will to learn, determination, and
preparedness to explore (ibid.). The ways these dispositions actually show in the world are through
associated qualities; for instance, the will to learn can show in many ways depending on a person and
the circumstances. The qualities are the character of the person. I have integrated the concepts of
dispositions and qualities in the descriptions component of the self-concept framework, as the rela-
tionship between dispositions and qualities are especially relevant for the formation of computational
literacy.

For context, I will introduce the central elements of the model before returning to a more in-depth
discussion of the opportunities that it brings to my own research as well as computational literacy
research in general. An overview of the components and their descriptions can be seen in table 3.1.
For a more in-depth description of the individual components, see Fog, Pálfi, et al. (2023). In the
following section, I will show the usefulness of the computational self-concept framework by drawing
on my empirical findings. The reader is reminded that my investigation of literacy among humanities
student was done as part of these students’ programming class; while programming does not equal
computational literacy, diSessa and Guzdial make good arguments for their close connection (Vee
2017, p. 9).

Description of the component Examples: Self Examples: World

Dispositions (desc.) The nature of what I am; an in-
nate quality

“I am logical”
“Programming is based on logic”

Qualities (desc.) How my dispositions are acted
out in the world

“I use my logic when approach-
ing new tasks”

Prescriptions How the world or I ought to be “I need good programming
skills to impress my friends”

“It is important to know how to
program in contemporary soci-
ety”

Expectations A future-oriented view of what
will happen

“I expect that I will get a good
job”

“I expect that AI automation
will make programming skills
unnecessary”

(Dis-)confirmations Theexperiences that inform and
change descriptions, prescrip-
tions, and expectations

“I failed the exam” “My teacher said that my work
was good”, “My program ran on
the first try”, “My boyfriend said
I’m smart”

Table 3.1: An overview of self-concept components

3.4.1.1 Descriptions

Throughout my empirical research, descriptions of both self and the world turned up repeatedly
when people made sense of their material intelligence. These descriptions can point to a variety of
domains such as talent, skills, knowledge, and self-images. Self-descriptions can come up as identity,
for instance. P2, who never made it through the game design challenge of inquiry 5, said,

I mean, yeah, as a non-computer scientist I think I really need very, very simple and basic
kind of starting point (P2, inq. 5).

In Borowski, Fog, et al. (2022), we framed this lack of success as a question of the medium itself
and its characteristics. It is, however, likely that P2’s self-description also hinders any substantial
development of computational literacy, i.e., the cognitive pillar. While it is true that P2 is not a
trained computer scientist, she possibly equates this not having the same “gene” for computational
literacy, despite the fact that she had some existing programming experience. A similar statement

35

3. Computational liteRacy and how it is foRmed

came from a nanoscientist in inquiry 3 who called himself a “non-computer guy” even though he
uses scripts as part of his daily work. In contrast, S1 and S2 in the first round of student interviews
(inquiry 7) discuss how—after only three programming classes—they are now different from “normal
people”.

The conversation between S1 and S2 also contributes with a view of how the social pillar of compu-
tational literacy comes into play. In “stepping up” from other people, they are now building on the
sociocultural conditions of literacy.

S2: “We sort of have a language that is for the initiated” S1: “Yes, you feel a little like part
of the club” (S1 and S2 (pre), inq. 7).

Interestingly, though, this “club” is never specified, and later in the same interview S1 discusses how
he feels as if he stole someone else’s spot in the class, while S2 says that she feels like she’s “neither
old enough, adult enough, nor good enough”.

S2, at least partly, attributes this to her dispositions (i.e., talent): “There are also those who just can do
it, where it just makes sense” (S2 (pre), inq. 7). Several times throughout all student interviews, the
perceived importance of various personal dispositions and qualities come up, such as the necessity
of being curious (S2, S4), driven (S1), persistent (S4), logical (S2), and social (all participants). In con-
trast, S1 many times describes himself as being too colorful and humanistic to be a programmer. This
is to some degree echoed by S5 who acknowledges that she is more creative than logical, although
she several times points out that she can probably find her “niche” by doing more creative and aes-
thetic programming projects. These examples of how people describe themselves and the world are
beneficial to understand identity development and sense of belonging in relation to computational
literacy.

3.4.1.2 Prescriptions

Prescriptions are those kinds of value statements that say something about how oneself or the world
ought to be. While these are often presented in the positive, they can also appear in the negative.
Importantly, they do not have to be true; they can appear in the form of imaginations. Reminiscing
about the beginning of the degree, S1 discusses his (false) prescriptions about how programmers
ought to be:

(…) but I thought I was too colorful, but then I kind of found out that it’s possible to both be
colorful and a programmer (S1 (pre), inq. 7).

This kind of prescriptions about the nature of programming and programmers appear aplenty through-
out my research. In general, they seem to fall into three categories: How a programmer ought to be
(to be a real programmer), what programming ought to be (to be real programming), and the impor-
tance of learning programming (for all citizens). Particularly the latter point is reminiscent of the
societal aspect of computational literacy. “(…) a general knowledge that sort of becomes so relevant
that you need to have it” (S3 (pre), inq. 7).

In the game design challenge (inquiry 5), P2 shares her view that programmers should be computer
scientists to fully grasp the competencies required. This is mirrored even more dramatically by S1:

(…) because you had this sort of idea that you had to be really nerdy to sit and program.
But then all of a sudden you remember that you can sort of make it what you want to. (S1
(pre), inq. 7).

One nanoscientist talks about the role of programming in their work: “Yeah, we don’t code much in
this lab. We should, but…” (N8, inq. 3). To be a good nanoscientist, one ought to be able to program.
This is mirrored by another scientist who admits that he does not know how to fix a script, but that
he should be able to. Here, the nanoscientists’ prescriptions of programming influence their literacy
development, ultimately leading to crises (more on crises in chapter 6).

36

3.4. Self-concept: How computational literacy is formed

Interestingly, across all participants who can be called unintentional programmers (inquiries 3 and 7),
everyone seems to agree that programming is important and that everyone (including themselves)
ought to learn it to do their jobs better, become better students, or become more educated and em-
powered citizens. Whether these views are true or not is less important than the fact that it shapes
how those people engage with computing in their daily life. Arguably, this focus on values is already
inherent in my definition of competencies, but the model emphasizes the close connection between
such prescriptions and identity formation, sense of belonging, motivation, and computational liter-
acy.

3.4.1.3 Expectations

Expectations are future-oriented statements that are directed towards oneself or the world. As I argue
in the following chapter, the transformational aspects of mediation are at least partly of a temporal
character, particularly as my research is oriented towards the conditions for computational literacy.
Expectations are therefore a key element in the development of literacy, drawing on values such
as motivation, societal relevance, future identity, empowerment, and employment. For instance, in
the first round of student interviews, S5 has seemingly already formed expectations of her future
computational literacy:

Okay, I just need an understanding of how things work (…) Sure, you might understand the
advanced stuff, I understand some of it, and then I understand how it’s supposed to be for
the person who is to use it (S5 (pre), inq. 7).

S5 distinguishes herself from those who understand the “advanced stuf”, likely computer scientists
and software engineers. This position is echoed by other students such as S1 and S3 as well. Where
does this expectation come from? The identity of the study degree—a mix between humanities and
IT—is likely a big contributor. It is very probable that such an identity expectation transforms into
a specific computational culture that is, perhaps, unique to the type of degree. It could also be the
case that each class develops their own computational culture. The extent and type of this culture is
important, yes, but even more important is the way that students’ views of computational literacy is
colored by the culture in which they are embedded:

We are not supposed to sit and program, invent our own code, it’s not what we’re studying
for. We’re studying to understand other people’s code (S4 (pre), inq. 7).

A different kind of expectations are presented by another student, S2, in the first interview: “[I’m
more like at the] start of competent. I mean, I have a feeling that I will become [competent]”. This
is a very interesting finding, as it indicates that computational literacy can exist in the potential. It
likewise points to a difference between participant demographics as students (inquiry 7), nanosci-
entists (inquiry 2), and experienced programmers (inquiry 5). While the overall feeling expressed
by the students is a trust in the process and a certainty that they will understand eventually, the
nanoscientists arguably take another position that learning how to program is considered “a whole
other career” rather than an integral part of their job. Finally, experienced programmers can draw
on their existing computational literacy. For instance, when asked if anything but time would hinder
them from completing their game challenge:

Oh no, not at all. We could have finished it, no problem. We’d probably also have redone it
and made it properly [*laughs*] (P11, inq. 5).

We see indications that the different groups are at different stages of computational literacy devel-
opment. The students are in the process of literacy development, likely drawing on previous experi-
ences that formal education eventually leads to competence. The programmers from the game design
study have already developed some literacy, being able to draw on this literacy in their expectations.
A third group is the nanoscientists who are outside formal education but never built a substantial
literacy. When discussing their challenges, they mostly seem to exhibit resignation. These findings

37

3. Computational liteRacy and how it is foRmed

are, of course, slightly generalized and are further elaborated in section 6.3 on computational crises
and disempowerment.

These findings indicate two things. First, computational literacy is processual and second, people are
able to alleviate a lack of competencies by drawing on future potentials. This is in agreement with
research from metacognitive psychology which argues that metacognition (i.e., the ability to reflect
on one’s learning) is an indicator of academic success (Veenman, Van Hout-Wolters, and Afflerbach
2006). Expectations are seemingly important for the development of computational literacy, since a
future-oriented view provides a frame from which people can draw motivation, drive, resilience, and
acceptance. In this sense, expectations are also related to self-efficacy, i.e., the belief in one’s own
abilities.

3.4.2 The missing link: Experiences, confirmations and disconfirmations

While descriptions, prescriptions, and expectations are value-laden appraisals of oneself and the
world, they are not set in stone. After all, literacy is not a static phenomenon, but a dynamic qual-
ity that is shaped through interactions with the material and social world. As such, experiences in
the form of confirmations and disconfirmations are most likely a key factor for the development of
computational literacy. These (dis)confirmations can come from a variety of sources such as oneself,
the social realm, and the material realm. Ihde’s mediation concept of reflexive relations with the
world (Ihde 1975, p. 270) likewise argues that learning and formation of self-understanding happens
through engagement with a world that talks back, providing a phenomenological argument for the
need for confirmations.

One such experience happened to a group (P6 and P8) in the game design challenge who had grand
ideas for their game, but then were “faced with the realities that none of us were game developers”.
Despite this, they were able to remix the provided template code and produce a game, seemingly
drawing on their existing literacy as computational scientists. An experience like theirs does not
mean much for their self-concepts, and at no time in their respective interviews do they place doubts
in their own competencies.

A student, S3, draws experiences from comparing himself to his classmates, albeit not negatively.
Rather, by being able to figure things out on his own, preferably before his study group, he gains
positive confirmation of his own competencies: “But it’s just so awesome to figure it out on your
own”. Another student, S1, recounted in the second interview a story of how he was talking to some
peers withmore programming experience and had the realization that, “you sort of felt that you could,
that you understood what they said. And then I was, like, ‘hmm, maybe I am not that bad after all’”.
This confirming experience seemingly helps cement the student’s sense of belonging and self-image,
i.e., his descriptions of self. S5 reminisced about a similar experience from her high school years in
which a male classmate asked her to help with a computer issue, and she ended up wondering: “Am
I technical? (…) I was probably also challenged on my perceptions of how competent I really am” (S5
(post), inq. 7).

Another category of confirmations is the one coming from the human-computer interaction, for in-
stance code running successfully. In the educational setting of the students, several of them speak
highly of the automated grading system in the CodestRates2-based computational medium used for
assignments: “It’s really a confirmation from the application [CodestRates exercises] with those check-
marks. I miss that so much” (S3 (pre), inq. 7). Conversely, when not receiving these confirmations,
this lack of feedback was a challenge to the same students:

I’m kind of, like, “I don’t have any warning lights in any way, but I can see that the result
that I’m getting is not what I want to have”. Then now what? (S5 (pre), inq. 7).

These findings are likely partly attributable to the role of confirmations in (computing) education
which is widely established (see, e.g., Marwan et al. 2020). However, they are a reminder that the
development of computational literacy depends on people receiving confirmation of their competen-

2See section 5.3 on page 62 for an explanation of CodestRates

38

3.5. Discussion

cies whether from teachers, fellow students, or the medium itself. This latter point relates directly to
the mediating qualities of software and is addressed throughout the dissertation.

Disconfirmations can similarly appear under a variety of guises such as failing an assignment, code
not running, or being stuck and lost without the competencies to find a solution. P2 in the game
design study was already struggling with her computational self-concept and the constant disconfir-
mations led to further feelings of disempowerment and resignation. Similar feelings of disempow-
erment were reported by several of the nanoscientists when faced with issues in their scripts. The
dynamics of disempowerment and recovery strategies are unfolded further in chapter 6.

As noted by C. Schulte and Budde (2018), interactions with the world provide learning opportunities
for an individual that can ultimately transform the person and their views of themselves and the
world. While they discuss the role of these interactions in terms of Bildung, this transformative
effect of experiences is central to understanding how computational literacy develops. The cognitive,
the social, and the material pillars are built from the positive experiences (i.e., confirmations) that the
individual has. In the coming chapter on mediation and interaction, I show how this transformation
is a core aspect of the mediating qualities of the software for computational literacy.

3.5 Discussion

Being a theoretical construct from cognitive psychology, self-concept cannot in any way explain ev-
ery single aspect of how computational literacy develops. It is, however, a promising model of the
interaction between the cognitive, the social, and the material aspects of computational literacy. In
particular, the model’s focus on experiences and the associated confirmations and disconfirmations
provides an important contribution for understanding people’s concrete interactions with the mate-
rial.

Further, my findings indicate the importance of alignment between the model’s various components.
For instance, S1 and S2 have—in the first interview—talked extensively about their prescriptions of
programmers in the negative. Yet in the second interview, both of them seem to have changed those
prejudices:

(…) at least question that kind of normal conception of a programmer (…) It’s also regular
people who need help who are programmers (S2 (post), inq. 7).

It seems as if S2’s self-image came into conflict with her prescriptions of what it means to be a pro-
grammer, and she had to resolve this internal conflict. Similarly, another student (S3) seems to have
had a potential conflict between his view of himself, his prescriptions, and his future expectations:

I actually thought that I would be studying a software engineering degree, because I thought
’it’s really cool and super relevant’, and then I sort of had this period where I was, like ’you
won’t complete it’. I mean, I thought that when I was looking at those studying it and those
who I know who were going to study it. And we were just very different (…) but I just knew
I had to have something with IT, because it’s really the future (S3 (pre), inq. 7).

S3 seemingly resolved this conflict by adjusting the kind and extent of computational literacy appro-
priate for him. These internal conflicts were not purposefully addressed in inquiry 7, but the findings
indicate the importance of finding a suitable role for oneself (Vee 2013). Interestingly, it seems as if
the process of identity formation can also happen in reverse. One student (S1) in the first interview
specifically talks about getting recognition for his competencies, and “then all of a sudden you also
feel that programming is a little important, so you bring it in with you. And this also ends up defining
a little who you are”.

The conceptual distinction between descriptions (such as identity) and prescriptions about computing
is a useful consideration for computational literacy and its foundations. This is unfolded further in
the final chapter. Just as the disconnects between the internal components of self-concept seem to be
important to resolve, it also seems to be necessary for the formation of computational literacy that

39

3. Computational liteRacy and how it is foRmed

one has (or is able to create) alignment between one’s self-concept and one’s competencies such as
skills and knowledge. For instance one scientist discusses the conflict between his prescriptions and
his actual competencies:

Yep, I should be able to access it myself. But I don’t know how to do it. I have no clue (…)
But it looks like a complicated way for a non-computer guy. (N11, inq. 3).

This is a central contribution of this chapter: Computational literacy relies on competencies, but also
demands a suitable self-image in relation to the world (as also hinted by diSessa (2001) and Vee (2017)).
In section 6.3, I return to the crises that can appear when people are challenged on this alignment as
well as the strategies they use to mitigate them.

3.6 Conclusion

In this chapter, I have provided a definition of computational literacy that builds on previous work
from Kay (1984), diSessa (2001), and Vee (2013). By doing so, I illustrate how computational literacy
is different from other literacies of the digital realm such as digital literacy and computer literacy. A
central contribution from this is the emphasis on placing computational literacy in the larger context
of Bildung and computational empowerment.

Another key contribution is the introduction of computational self-concept as a model of literacy
development that emphasizes the relationship between self-images, prescriptions and values, and
expectations for oneself and others. The model’s strength comes from a deliberate focus on confirma-
tions and disconfirmations as the positive and negative experiences that shape people’s self-images,
ultimately hindering or supporting computational literacy. By introducing the self-concept model
into a computational literacy context, I have shown how identity and self-concept is not a tangen-
tially related byproduct of literacy, but a central output of and foundation for literacy development.

Having explored computational literacy as a concept and provided an explanatory model for its cog-
nitive pillar, in the next two chapters I take on the material pillar of computational literacy. First,
through an investigation of the mediating qualities of software which is followed by an empirically
founded inquiry into the mediation of software for programming.

40

Mediation and interaction in HCI and beyond 4

In man-machine symbiosis, it is man
who must adjust: The machines
can’t.

Perlis (1982)

Since my research question explicitly tackles the mediating qualities of specific kinds of software, a
substantiation of this concept, “mediating qualities”, is needed. This chapter will therefore serve as a
theoretically grounded account of mediation and how various research traditions fit into this account.
My research question is, to reiterate:

Research question How do the mediating qualities of software for programming contribute to the
development of computational literacy?

Through my research, I have been interested in a better understanding of how the mediating qualities
of software might change the human being who uses it. Early visionaries of new media suggested,
for instance, that the media are not interesting by themselves, but that they are interesting insofar
as the people using them become something else in the process (Kay 2013b). For this reason, the
mediating qualities of software become front and center if we wish to understand how the use of
software might lead to computational competencies. In inquiry 2, for instance, it became evident
that the nanoscientists struggled to maintain positive self-concepts because of the software that they
used. This blame cannot be put solely on the software itself: After all, a different researcher might
be able to overcome these issues. The blame cannot, on the other hand, be placed solely with the
scientist: It is not just a matter of skills and familiarity of use. Rather, it is in the meeting between
software and human, in the mediation, that something is off. If we want to understand this “offness”,
we must look towards the technological mediation.

Mediation and interaction are both diffuse concepts that are used, sometimes interchangeably, to de-
note various aspects of human-machine relations. In the present chapter, I therefore wish to contrast
common conceptions of interaction and mediation, respectively, and posit a working definition of
mediating qualities of software for the purpose of this dissertation.

My use of postphenomenology as a research approach is, ultimately, rooted in my interest in the
mediating qualities of software for programming. Therefore, I will start the chapter by touching upon
the broader implications of approaching my studies using such a lens. There are a few central tenets
of postphenomenology that is of interest here. First, stemming from a philosophy of technology, the
object of interest—the primary “target” of postphenomenology—is the mediation between human
and the world through artifacts. Second, mediation is invisible, immaterial, and mutually enacted
and therefore difficult to study empirically. Third, mediation is not neutral. Both parties (human
and machine) become something else in the process of mediation. These points mean that the study
of mediating qualities is relevant beyond the concrete user-computer interactions in my empirical
studies and presents a number of challenges for empirical work. To counter this, the chapter serves
as a theoretical unfolding of mediation and interaction and culminates in a working definition of
mediating qualities with a set of theoretical concepts with which to grasp these. In this chapter,
empirical findings will only be presented as examples. In chapters 5 and 6, my concrete empirical
findings are presented, analyzed, and discussed more fully.

It is important to note that the purpose of this chapter is not to unfold the entire history and all
variations of interaction andmediation as concepts. Rather, I present selected views of interaction and
mediation as a stepping stone towards a working definition of how I understand mediating qualities
in my studies.

41

4. Mediation and inteRaction in HCI and beyond

aaa

I will start by referring back to the pragmatic worldview that I discussed with regard to methodology
in chapter 2. Just like any research method might be appropriate insofar as it can help understand a
particular question, so the different views of mediation and interaction can supplement rather than
contradict each other. This position is reflected in key HCI research on the concept(s) of interaction:

Whether or not [views of interaction] are true is less important than whether they are
useful for understanding phenomena in human use of computing or interactive technol-
ogy. (Hornbæk and Oulasvirta 2017)

Different research fields bring about particular sets of sensitizing concepts (Bowen 2006) that illu-
minate certain aspects of the human-computer relationship. This chapter therefore introduces key
concepts that can be used to conceptualize and analyze digital artifacts as mediating technologies. Be-
fore that, I start by demarcating the concepts of interaction and mediation, as these concepts, while
related, denote different perspectives on the human-computer relationship.

4.1 Interaction

A promising starting point is to look at HCI, human-computer interaction, a field whose very name
embodies the concept. However, even here, interaction is often ill-defined. As laid out by Hornbæk
and Oulasvirta (2017), interaction has been understood in at least seven different ways in HCI re-
search: as dialogue, transmission, tool use, optimal behavior, embodiment, experience, and control.
The two that come the closest to my approach are interaction as tool use and interaction as embod-
iment. Embodiment in particular seems to provide a promising understanding of human-computer
interaction as not only being physically embodied but also socially embodied, always embedded in a
particular cultural context and denoting a participative quality (Dourish 1999). In this sense, embod-
iment also addresses meaning-making in a concrete lifeworld.

However, as shown by Hornbæk, Mottelson, et al. (2019) in their overview of 35 years of interaction
research at the CHI conference, even though the modalities and characteristics of interaction have
increasingly become the topic of HCI research, the dominant interpretations of interaction are still
rooted in concrete interactions and centered around “structure, feel, effectiveness, and efficiency”
(ibid.). At least some part of this could likely be explained by the role of artifacts in HCI research. They
are often characterized as problem-solving solutions evaluated in terms of significance, effectiveness,
efficiency, transfer, and confidence (Oulasvirta and Hornbæk 2016). In many cases, HCI research
specifically seeks to engage with empirically based theories of human behavior from other fields
(e.g., psychology or sociology). In these cases, the purpose of these engagements is largely to inform
the constructive process of artifact creation or to evaluate the constructed artifact on the basis of
theory (Beaudouin-Lafon, Bødker, and Mackay 2021).

These conceptualizations of interaction fromHCI are therefore not well-suited for understanding how
computational competencies might grow out of human-computer interactions. In the field of inter-
action design, in contrast with HCI, we might find a more explicit focus on the use-oriented qualities
beyond the concrete interaction. For instance, coming from the markedly political engagement of
Scandinavian participatory design, Löwgren and Stolterman (2007, p. 5) argue that the user-oriented
qualities also encompass ethical, aesthetic, political, and ideological aspects. Still, interaction design
has as its focus how to design particular interactions, addressing the assumptions and worldviews
that designers and participants bring into the process. Broadly, interaction design research therefore
aims for knowledge about the designerly process itself (Fallman and Stolterman 2010). The field much
less relates itself to the finished artifacts and the way they exist in the world after-the-fact.

In my work on literate computing environments (inquiry 1), I was inspired by the visions of computa-
tional media from diSessa and Kay that addressed the mutual changes in both human and artifact that
follows from mediation. This media perspective is perhaps most clear in the following quote: “what
is most important about a communications medium is ‘what we have to become’ in order to use it
fluently.” (Kay 2013b) Engelbert’s conceptual exploration, drawing on Bush’s Memex, addressed this
same notion of the transformative and emancipatory quality of the (computational) medium.

42

4.2. Mediation

In HCI, we can find a conceptual exploration of this transformative aspect by going back to Wartof-
sky’s notion of tertiary artifacts. As explained by Bertelsen (2004), tertiary artifacts stem from produc-
tive activities but are abstracted away from the concrete practice. They encompass poetic qualities
and the transformational capabilities of tool use. Tertiary artifacts are, in brief, visions of alternatives
to our existing tools and practices. Their transformational capabilities both concern the concrete tools
and the humans using them. In the concept of the tertiary artifact, we thus find notions of interaction
that are commensurable with mediation theory. Fuchsberger, Murer, and Tscheligi (2013) further ar-
gue that an important consideration for research on materiality and interaction is to “understand
why certain media or materials led to specific ways of interaction”The use of a mediation framework
provides a way to understand this.

4.2 Mediation

Mediation, as a broader and more abstract concept than interaction, is therefore a better frame for
understanding the qualities of software for programming in the scope of this dissertation. A working
definition of mediation is that designates the quality of the relationship between human and medium.
Some branches of HCI do, however, engage with mediation as a concept. Some of the more influential
research traditions in HCI that draw on mediation to explore and explain human-computer interac-
tion use activity theory and affordances, respectively, as their theoretical foundations. Activity the-
ory has as its basis that human being-in-the-world is mediated by artifacts (Bertelsen and Wartofsky
1999). However, this mediation perspective only encompasses one aspect of the full range of medi-
ating qualities that I am interested in (see table 4.1). For instance, in Bødker and Bøgh Andersen’s
work on complex mediation, the mediation paradigm of activity theory is characterized as “material
mediation” in which tools are placed between the goal-oriented subject and the object to be worked
on (Bødker and Andersen 2005).

Where my work differs from activity theoretical HCI is that this position largely has a focus on work
contexts and an implicit view of humans as acting towards a known goal. While the third wave of
HCI marks an increasing diversion from a sole focus on work, there still seems to be both a need
for—and confusion in—providing a definition of the difference between work and nonwork (Bødker
2006). I do not readily distinguish between work and nonwork in my studies. Further, activity theory
has the theoretical underpinning that there exists a structural hierarchy of human doing as activities,
actions, and operations (Bertelsen and Bødker 2003). A foundation of activity theory is an ontological
separation between subject and object with activities being,

the purposeful interaction of the subject with the world, a process in which mutual trans-
formations between the poles of “subject-object” are accomplished (Kaptelinin and Nardi
2006, p. 31)

Activity theory, like mediation theory, emphasizes the transformative effects of interaction between
subject and object. My main reason for adhering to a postphenomenological approach over an ac-
tivity theoretical one is that the ontological foundations are different. Activity theory draws from
a psychological tradition and emphasizes its close relationship with consciousness (ibid., pp. 36–37).
This implies an ontological stability for both subject and object and prescribes the subject as a con-
scious, intentional actor who acts through the technology as tool. In contrast, postphenomenology
emphasizes the multistability of artifacts and the co-creation of both human and artifact as products
of the concrete relations (Verbeek 2005, p. 217).

While this certainly has its validity, in the scope of my work this division is only a small part of the
larger understanding of tool use and interaction. Finally, as implied in their names, a mediation per-
spective takes mediation as the foundational element, whereas activity theory takes as its basis the
activity. The two positions can be commensurable, but their theoretical object of interest is different.
However, by drawing from a postphenomenological perspective, the activity theoretical view on hu-
mans and artifacts can be integrated within the larger scope of mediation as being-in-the-world. For
example, consider the nanoscientists from inquiry 3. Viewing their work through an activity theo-
retical lens would conceptualize them as being motive-oriented scientists, aiming to perform their
scientific work as part of the larger activity of doing research. Their more concrete actions are, among

43

4. Mediation and inteRaction in HCI and beyond

other, writing scripts, managing environments, interpreting textual and image results, and perform-
ing lab experiments. As such, the scientists are intentional, conscious actors whose work is grounded
in their material surroundings as tools for work. In contrast, a mediation perspective starts at the me-
diating qualities of the artifacts and how these co-construct both the nanoscientists as nanoscientists
and the scripts as mediators between scientists and their world. They are constituted as scientists
precisely because of their use of these technologies. Similarly, their objects of work appear through
themediation. Without the mediation there would be no “object” of work. As previously stated, these
two perspectives differ less on their objects of study and more on their ontological focuses. I could
have approached my work through an activity theoretical approach, but the mediation perspective
provides a framing for understanding other qualities of the human-computer relationship.

Another interesting theoretical perspective on interactions between people and artifacts can be found
in the concept of affordances which stems from ecological psychology, particularly in the works of
Gibson (Kaptelinin and Nardi 2012). In this theoretical perspective, humans are conceptualized as
perceptive and embodied actors in-the-world, whose interactions with the environment are based on
the ways that the environment ”lends itself” to a particular engagement. A mediated action perspec-
tive on the basis of affordances is laid forward by Kaptelinin and Nardi (ibid.). The authors move away
from a Gibsonian perspective of affordances as possibilities of action in a physical environment to-
wards a view of affordances as “possibilities for human action in cultural environments” (ibid.). Still,
both activity theoretical and affordance-oriented approaches in HCI has a series of foundational blind
spots in common with other HCI research on interaction:

All concepts we reviewed commit to some causal role of intentions (e.g., goals)—even the
lower-level control and transmission views. However, intentions are taken-for-granted
and precede interaction. Even Norman’s “gulfs” say nothing about how they change via
interaction. An exception is the interaction-as-embodiment view, which speaks about
intentions and agency, but which still is silent about how intentions evolve. Thus, HCI,
via its concepts, has had an overwhelming tendency to understand interaction as one-
sided—as channeling and realization of human intentions through a computer, further-
more assuming that these intentions are outside the realm of interaction itself. (Hornbæk
and Oulasvirta 2017)

If we accept the statement, there are a few ways to overcome this apparent limitation in interaction
concepts. One is to focus largely on interaction as embodiment as a promising frame; another is to
expand the notion beyond interaction and towards a broader concept of mediation. I take the latter
approach. To supplement the views of interaction in HCI, I include writings from related fields such
as the philosophy of technology, STS1, and software studies, as each of these fields bring particular
understandings of the human-computer relationship. By turning to Verbeek and the philosophy of
technology, for instance, we can see interaction and meditation as being two distinct phenomena,
with the concept of mediation being able to bridge the fields of interaction design, human-computer
interaction, and philosophy of technology (Verbeek 2015).

4.2.1 Mediation beyond interaction

Mediation theory is fundamentally directed towards the broader role of technologies and their impact
on the human condition. In the context of this dissertation, this scope is too broad. From the philoso-
phy of technology we do, however, get a starting point for how to conceptualize human-technology
relations. Verbeek argues that instead of understanding interaction as something that happens be-
tween a human actor and an artifact, we can consider the interaction the force in which artifacts
and humans co-create one another (ibid.). To be more precise, this is particularly so in the type of
relationship which Ihde calls the alterity relationship (Verbeek 2001, p. 131) in which the world “dis-
appears” from the human-technology relationship. Postphenomenology as a philosophical tradition
has as its objects of study the various technological mediations between people and the world. The
alterity relation is one in which the world is the artifact. It is mainly this human-artifact relationship
that I draw on in the present dissertation. However, in some cases, for instance the nanoscientists’

1Science, technology, and society

44

4.3. A definition of mediating qualities

work on their virtual RNA structures, the relationship is instead embodied. When working with rep-
resentations of RNA structures, the nanoscientists are in a hermeneutic relationship with the world.
Here, the world and the technology blends together. The unintended shifts between mediation rela-
tions are experienced as breakdowns in which the world disappears and the mediating technology
becomes present (Madsen 1988). For instance, when the scripts stop working or the medium acts in
unexpected ways, the technology itself becomes foregrounded.

Understanding interaction as a manifestation of mediation alleviates the blind spot expressed by
Hornbæk and Oulasvirta (2017). This is not to say that there does not exist an object or subject outside
a relation, but this distinction brings to the fore how the mediation shapes a particular human and
a particular artifact. Kiran (2015) identifies four dimensions of technological mediation that relate
to different ways of seeing the mediation: the ontological, epistemological, ethical, and practical
dimensions. As we shall see in the subsequent chapter on computational media, for instance, the
media and the people using them give form and meaning to each other across all of these dimensions.
I wish to stress here that activity theory, especially in the form laid out by, e.g., Engeström (2015),
also has a perspective on the dialectical nature between humans and artifacts. My reasons for using
a mediation perspective are partly that the terms interaction and activity theory carry significant
connotations to their use. In other words, these concepts are already filled with meaning. Second,
a mediation perspective emphasizes the multistability of technologies and how they carry implicit
narratives and directionality.

Ihde calls the inherent directionality of artifacts a “technological intentionality” (Ihde 1990, p. 141).
The technological intentionality, importantly, is not technologically determining. It is, after all, pos-
sible to program an implementation of Doom in MicRosoft Excel2 or subvert the governing capa-
bilities of ICANN’s DNS root3. Rather, technologies always carry particular inclinations for their use.
This intentionality is termed a script in actor-network theory (Latour 1994). Similarly, Suchman uses
the concept of plans to mean those prescribed user action list already written into the artifacts (Such-
man 1987, p. 44), while Oudshoorn and Pinch (2008) speak of the intentionality of technologies as
“configuring the user”.

I choose a mediation perspective for the interactive qualities for several reasons. Most importantly,
the concept of mediation is capable of addressing the transformative and transcendental aspects of
interaction. Second, mediation emphasizes the non-neutral role of technology. And finally, mediation
has a temporal character beyond the individual interaction. For the purpose of this dissertation,
the central difference between mediation and interaction is that mediation involves a metaphysical
element. This element might appear in the form of a transcendence. In this view, the mediating
qualities that Kay expressed, such as “becoming something else” is the signs of a truly mediating
experience, not just an interactive experience. Themeeting between human and artifact as experience
is rooted in a pragmatist outlook and quite elegantly expressed by, e.g., McCarthy and Wright (2004).
Pragmatism is, however, not a philosophy of technology but a philosophy of being and experience.
For that reason, a pragmatist perspective is not sufficient for my purpose.

4.3 A definition of mediating qualities

To be able to answer my research question, I here wish to present a view of mediating qualities as I
have chosen to utilize it. This conceptualization consists of five aspects of the these qualities, drawing
from HCI as well as the sociology and philosophy of technology. In short, the qualities related to
human-computer mediation fall under the following aspects: Interactional, semiotic, distributional,
ethical, and transformative aspects. Table 4.1 shows an overview of the aspects as well as concepts
related to them. The different aspects are not mutually exclusive, but they each provide particular
perspectives on mediation. This is precisely the point: These perspectives supplement each other to
more fully understand a given human-artifact relationship.

While I am inspired by Kiran’s four dimensions of technological mediation, these dimensions are
too broad for my current purpose. I have therefore created the taxonomy of mediation presented
in table 4.1 which synthesizes and brings together perspectives on mediation that I employ in my

2https://www.gamedeveloper.com/design/3d-engine-entirely-made-of-ms-excel-formulae-enjoy-this-doom-xls-file-
(visited Jun. 8 2023)

3https://www.opennic.org/ (visited Jun. 8 2023)

45

https://www.gamedeveloper.com/design/3d-engine-entirely-made-of-ms-excel-formulae-enjoy-this-doom-xls-file-
https://www.opennic.org/

4. Mediation and inteRaction in HCI and beyond

Aspect Description Concepts

Interactional These are the qualities that relate to use and
breakdowns. In this aspect, the tool takes on
the characteristics of a primary artifact.

Use
Embodiment (Dourish 1999)
Actions (Kuutti 1995)
Primary artifactness (Bertelsen 2004)
Breakdown (Madsen 1988)

Semiotic These qualities go beyond the immediate use
of the artifact and are concerned with both
how people make sense of artifacts and how
artifacts present themselves to humans.

Artifact intentionality (Ihde 1990, p. 141)
User configuration
(Oudshoorn and Pinch 2008)
Script (Latour 1992)
Plans (Suchman 1987)
Secondary artifactness (Bertelsen 2004)

Distributional These qualities concern the displacement of
responsibility and action in the mediation.
Here, the notion of enrollment and delega-
tion from actor-network theory address how
mediation can be temporally and physically
distributed.

Complex mediation
(Bødker and Andersen 2005)
Enrollment and delegation
(Callon 1984; Latour 1994)
More capable peer
(Vygotsky and Cole 1978)

Ethical These qualities concern a broader value ap-
praisal beyond immediate use. The quali-
ties, as in the other aspects, do not address
the artifact as such and are not appraisals of
that. Rather, it is the mediation itself that
carries ethical aspects, being crystallized into
notions such as trust, alienation and involve-
ment.

Trust (Kiran and Verbeek 2010)
Alienation and involvement (Kiran 2015)
Convivial computing
(Kato and Shimakage 2020)

Transformative The transformative qualities are those related
to transcendence and becoming something
else. In this aspect, mediation can address
the development of, e.g., computational em-
powerment.

Hybrid (Latour 1994)
Empowerment
(Iversen, Smith, and Dindler 2018)
Bildung (C. Schulte and Budde 2018)
Literacy (Vee 2013)
Tertiary artifactness (Bertelsen 2004)

Table 4.1: The aspects of technological mediation

dissertation. Importantly, the taxonomy is not aiming for a comprehensive overview of all possible
interpretations of mediation. For instance, the semiotic perspective would be completely lacking
without seminal work such as computer semiotics (e.g., Andersen (1991) and Andersen (2001)). And
while I recognize that seminal work in HCI research addresses interaction beyond the concrete use
(e.g., Bertelsen and Wartofsky (1999) and Bertelsen (2004)), I shy away from using interaction as a
guiding concept because of its prevalent history in HCI research and its associated connotations. By
providing this taxonomy, I draw together concepts from different research traditions that are able
to supplement each other by relating to different aspects of mediation. The concepts presented in
table 4.1 are selected concepts that embody the aspect, most of which I employ in my work. In
particular, mediation as a concept is able to capture the transformative and metaphysical aspect of
the human-computer relationship and can explain and expand upon the concept of computational
literacy.

4.3.1 Interactional aspect

In this perspective, we can view the human-artifact relationship in terms of tool use. For instance,
in the case of the nanoscientists (inquiry 3), we see how their engagement with their digital tools to
a large degree can be seen as a use-breakdown-adapt loop. In one interview, a participant explained
how they would find unsupported software online to do their work. When the software seemingly
broke down (likely related to the scientist’s lack of computational competencies), their existing work-
flow was disrupted. They would then go on to either get help from a more capable peer or find new
tools to replace the old ones.

46

4.3. A definition of mediating qualities

4.3.2 Semiotic aspect

The semiotic aspect addresses the ways that the artifacts are more than just tools for use. Rather, they
embody particular inscriptions or plans that casts the user into a certain role. When interviewing
students (inquiry 7) it became apparent that the switch from embedded web tools to WebStoRm (an
IDE) was much more than just a change in tools. The students were cast into new roles as “real
programmers” rather than “experimenting with programming”.

4.3.3 Distributional aspect

From the distributional perspective, mediation can be conceptualized in terms of the quality and
degree of enrollment and delegation. I specifically use these terms from actor-network theory as
they do not readily distinguish between human and non-human actors. This is not a case for the
symmetrical ontology of actor-network theory as such, but the distributional aspects are relevant in
terms of both artifacts and people. For instance, the computational lab book (inquiry 3) introduced
the possibility of delegating code execution to a central server, thus enrolling another non-human
actor. Interestingly, this actor is largely invisible to the scientists and takes on a different character
altogether. Meanwhile, the self-hosted characteristics of the lab book accessible by a simple URL and
the collaborative nature of the medium allowed the scientists to easily enrol a more capable peer.

4.3.4 Ethical aspect

The ethical aspect is concerned with qualities such as trust, conviviality, and estrangement. In an
interview, a participant in the game design challenge expressed how the use of CodestRates v2
proved difficult for him:

I think I would have been like, this is too much for me, I just go back to my old editor and
… being sure things work the way I expect them to work (P7, inq. 5).

Part of this can probably be explained in terms of tool use and familiarity, but a key point is that the
breakdown in the interaction also carries ethical implications regarding trust in the software. In fact,
P7 was never able to finish the game design challenge.

4.3.5 Transformative aspect

This final aspect addresses the ways that technological mediation can bring about “something new”.
This “something new” is difficult to define for all possible cases (owing in part to the multistability of
technologies), but concepts such as hybrid, reflexivity, and literacy can be used to understand these
qualities. In an interview with a programming student, she addressed how one particular engage-
ment changed their self-image. The student explained how, during a web development module, she
had an “eye-opening experience” of both the inner workings of webpages and her own abilities as
a programmer. The student-IDE-browser hybrid thus transformed the student into a more computa-
tionally literate person.

aaa

It seems clear that a mediation perspective can meaningfully be used to investigate how software for
programming may lead to computational literacy. In the schematic that I have put forth (table 4.1),
the different aspects draw together a series of concepts that can supplement each other rather than
compete. For instance, when observing knitters learning how to program during a workshop, the
human-artifact relationships can simultaneously be viewed in terms of, e.g., use and breakdowns, in
situ meaning-making, trust, and empowerment. An interaction perspective or an activity theoretical
approach might in principle be able to do the same, but both approaches run the risk of drawing upon
established traditions of meaning associated with the concepts involved. Therefore, I have employed
a mediation perspective that is able to integrate with other approaches.

Part of the significance of this chapter is the operationalization of a theory of mediation. A post-
phenomenological perspective is largely philosophical, but the schematic outlined in table 4.1 is an
attempt to bring the philosophy closer to the empirically based traditions such as HCI. This should

47

4. Mediation and inteRaction in HCI and beyond

be a boon to all who wish to understand human-computer relationships in both HCI and beyond. In
the following chapters, I will employ this mediation perspective to unfold my research question and
investigate, based on empirical studies, how the mediating qualities of software for programming can
be understood in terms of computational competencies, empowerment, and literacy.

48

Software and computational media 5

So many good ideas are never heard
from again once they embark in a
voyage on the semantic gulf.

Perlis (1982)

aaa

Having presented a vision of computational literacy and a model of technological mediation in the
preceding chapters, the following chapter provides an investigation of software for programming as
part of my research question:

Research question How do the mediating qualities of software for programming contribute to the
development of computational literacy?

First, to provide a common ground and clarify concepts, I address the topic of what software is.
Afterwards, to provide a perspective on software for programming, I give a historical overview of
programming modalities and, more specifically, the visions of computational media. Computational
media are touted as a particularly fruitful software paradigm for the development of computational
literacy (diSessa 2001). A large part of my investigation concerns the computational media environ-
ments used in my own research. As the early iterations of our *-stRates family were based on the
literate computing paradigm, this programming modality is given special attention. Finally, I provide
a set of empirically grounded findings about computational media and their mediating qualities in
action.

aaa

Any type of inquiry into the computational material such as the present dissertation requires an
elaboration of concepts pertaining to said material. As my research question tackles the mediation
between material conditions and computational literacy, it is important to distinguish exactly what
both of these terms connote. In this chapter, I therefore set out to present a vision of software for
programming, actual and potential. This includes a review of computational media as a particular
software paradigm and an in-depth discussion of literate computing environments.

5.1 A few conceptual clarifications

To start off, I wish to clarify some concepts relating to both the materiality and activity of program-
ming, as the vernacular language often uses similar, but different words interchangeably. These
words further have culturally contextual meanings.

Regarding the aspect of materiality, there are at least two concepts that need clarification: code and
software. The act of creating these digital artifacts is similarly often conceptualized as either coding
or programming. This section is not intended to provide a full overview of all possible permutations
of meaning, but serves to lay down working definitions for the purpose of the dissertation. There
are two reasons for this. First, the materiality of the digital is in itself a difficult entity as evidenced
in multiple fields such as interaction design (Löwgren and Stolterman 2007), software studies (Berry
2011; Dourish 2022), HCI (Fuchsberger, Murer, and Tscheligi 2013), and literacy studies (Vee 2013).
All the more reason to try and pinpoint a conceptualization of it. Second, to actually investigate the
material conditions of computational literacy, it is important to understand what kinds of activities
might be involved in such a literacy. Here, I also wish to point out to the reader that I prefer to use
the term user-programmer when discussing software mediation rather than user :

49

5. SoftwaRe and computational media

the very idea of “the user” reconfigures a multifaceted human being as an adjunct to a
piece of hardware or software (Satchell and Dourish 2009).

And while there are other established terms such as end-user developers (Fischer and Giaccardi 2006;
Borowski and Larsen-Ledet 2021), this discourse implicitly creates and sustains a particular relation-
ship between people and artifacts. For instance, in the case of computational media, the output can
be other computational media. So where is the end of this chain of transformation? For lack of a
better word, I use the term user-programmer to signify the full human being in its emancipatory
capabilities.

5.1.1 The act of doing

One of these conceptual confusions relates to the act of writing executable code. In the popular ver-
nacular, particularly in a US context, the verb to code is often used. For instance, the popular platform
Codecademy uses the subtitle “learn to code”1. The case is similar across a variety of other NGOs that
advocate for and teach technical skills outside formal educational settings, e.g., freeCodeCamp.org2

and Code.org3. Often, this is coupled with advocacy of computer science, creating a narrative in
which computer science is the theory, and coding is the practice. Another school of thought cat-
egorizes the activity as programming, often lamenting the connotations of coding as a process of
simple translation (Abbate 2018). Finally, the broader notion of computing is often used, especially
in educational contexts.

For the purpose of my current work, I put forth the following definitions:

Coding Coding can be considered the act of applying codes to a given material. In the context of
code authoring software, such a case might be the creation of a website by writing HTML.
However, for the sake of simplicity and due to its popularity in vernacular English, I consider
its usage equivalent to programming.

Programming Programming is the act of creating software using either physical or symbolic ma-
nipulation of a digital material. The type of artifact that programming produces can be one of
many as will be unfolded below. One example of programming is software development.

Computing Computing is a broader term that not only encompasses concrete interactions like cod-
ing and programming but also auxiliary activities such as setting up a development environ-
ment and using versioning tools. As argued by Galey and Ruecker (2010) who in turn draw on
McCarty, computing further signifies intellectual processes beyond the single artifact.

Other terms like development certainly also have their merits. My reason for using programming over
development is mainly that the notion of (software) development is loaded with regard to the type of
artifacts produced, namely interactive software. Programming can equally well describe the act of
creating a one-off script or doing data science as writing a full-blown application. Further, while Vee
argues for the terminology “coding literacy” (Vee 2013; Vee 2017), I find the use of coding as a term
to potentially reduce computing and programming to a purely textual activity.

These activities all involve a direct interaction with the machine. There are other activities of a
different character, e.g., computational thinking, that are related to these, but ultimately designate a
different kind of (non-mediating) activity. The connection between these activities and computational
literacy can be found in chapter 3. For now, the definitions serve as a background framing of the rest
of this chapter which will investigate and elaborate on programming and software.

5.1.2 The artifact produced

The second conceptual confusion arises from the material produced through the constructive act of
programming (or coding, depending on one’s vocabulary). What is, indeed, the major difference(s)

1https://www.codecademy.com/ (visited Jun. 8 2023)
2“Learn to code”; https://www.freecodecamp.org/ (visited Jun. 8 2023)
3https://code.org/ (visited Jun. 8 2023)

50

https://www.codecademy.com/
https://www.freecodecamp.org/
https://code.org/

5.1. A few conceptual clarifications

between code, program, and software? Software is typically defined in contrast to the physical hard-
ware. A humorous adage is that the hardware is what you kick, while the software is what you can
only yell at. While likely hitting close to home for many people who have been frustrated with the
digital technologies in their lives, it also points at a fundamental difficulty with grasping software
as a concept: its materiality. Influential interaction design researchers have, for instance, called the
digital the “material without qualities” (Löwgren and Stolterman 2007). However, despite the fact
that the physical materiality of software is literally just seemingly arbitrary sequences of 0s and 1s
encoded as electrical signals, there are structural, social, and cultural forces that shape what can
and cannot be done with software. In turn, the mediating qualities of software are not completely
arbitrary, but rather deeply embedded in existing communities, materialities, and practices.

For the purpose of the dissertation I put forth a few working definitions of software, application,
program, and code. Just like coding and programming, these are terms that are often used more or
less synonymously. Kay terms software the “materials of computing” (Kay 1984). Berry (2011), on
the other hand, distinguishes between ideal types of code, two of which he calls “delegated code” and
“prescriptive code”. Delegated code is (textual) human-readable source code while prescriptive code
is software, that is, machine-readable streams of 0s and 1s. The process of transformation from source
code to software happens through translation, for instance via a compiler, an intermediate software
artifact.

Software Software is processual. Software is not code, but the result of translating source code into
machine-readable streams of binary. For the sake of simplicity in the scope of this dissertation,
any binary representation in a digital system that is not data is software. Although Dourish,
referencing von Neumann, argues that data and programs are essentially the same (Dourish
2022, p. 22), this does not provide for useable definitions in the present context. Importantly,
software is not by necessity the outcome of programming, but can be both an output and an
intermediate step towards it.

Application An application is a specific type of software; a “monolithic, nonmodifiable” (diSessa
2001) entity that is often tied to a particular work domain and conceptually separate from the
data on which it operates. It is also the dominant mode of contemporary human-computer
interaction (Nouwens and Klokmose 2018).

Program The word is often used synonymously with software and application. However, the word
itself connotes regularity, order and sequence as evident in the use to mean, for instance, a
political program or a schedule. It is also often used colloquially to mean application. For
these reasons I choose to use the more general and computing-specific software.

Code Code is the basis for software. Through the act of programming, a programmer writes code
(often textual) that is translated into software. Code is the textual or visual representation that
requires a level of proficiency and literacy to manipulate (Vee 2017).

For the purpose of the dissertation I also want to distinguish between three ideal types of purposes
for programming, as not all programming activities happen for the same reasons. The first of these I
call programming for system development. The intended outcome of this type of interaction with the
machine is to develop a system that can be executed. When software engineers work to create an
application, the back-end of a social network, or embedded systems, this is the type of programming
that they undertake. Another ideal type is programming for computation whose main purpose is
to perform computations on an input to provide an output in the form of data. Data scientists are
a group of programmers whose work centers on computing data, as are, for instance, statisticians
working in R or Stata. Finally, programming for interaction seeks to provide interactive qualities to
a system. The most common contemporary example of this can be found in front-end programming
of websites, but historical systems like HypeRCaRd similarly targeted this form of programming. It is
important to note here that these are ideal types, and that real-world programming activities might
have some overlap.

51

5. SoftwaRe and computational media

5.2 Programming and mediation

With the terminology settled for now, I want to first present a historical overview and material-
interactional analysis of selected human-computer interactions for programming. This is a novel
contribution that was not covered in any of my previous work. In the spirit of Petrick (2020) who
merges media and interaction perspectives in analyses of various interfaces, the present contribution
serves to show that interfaces do not tell the full story by themselves. The history of human-computer
interaction is also the history of mediation, of ethics, distributions, translations, and transformations.
Understanding the various historical configurations allows us to better reflect upon dominant soft-
ware paradigms and alternative visions. It further cements the importance of the material conditions
for the development of literacy, mastery, and identity among those who engage with digital tech-
nologies.

While the early days of programming consisted of manipulating physical switches and wires, along
theway additional layers ofmediationwere introduced. By tracing the development of interaction for
programming, I first and foremost seek to address the contingency of today’s programming software.
Popular, contemporary IDEs such as Visual Studio Code orWebStoRm are not a necessary end goal
of any continuous evolution and improvement of programming modalities. Rather, they represent
a stabilization of a particular variation of technologies (Pinch and Bijker 1984), themselves products
of the idiosyncrasies of those who invented them in the first place. By presenting other ways of
interacting with the machine to create software, I aim to illustrate that things could be different and
that varying types of mediation and delegation take place in these multiple configurations.

The earliest computers were imaginary: The principles behind the Babbage analytical engine did not
come into physical existence until almost a century after their conception (Vee 2013). Similarly, the
first formal program for this analytical engine was a physical representation, drawn using pen, ruler
and paper by Ada Lovelace. This first conception of a computer was essentially a mechanical con-
traption, operated through the physical manipulation of levers and switches. Although fascinating,
the broader history of computing as a whole is not covered in this dissertation (see, e.g., Fuegi and
Francis 2003; Campbell-Kelly et al. 2018, for overviews). A later mode of operation was in the form of
punch cards: Cardboard pieces containing literal holes in which current could travel to form the right
connections for the computer to do its calculations. Once the graphical interface became a mode of
interaction with the machine, ways of programming also changed.

In this section I present seven different human-machine configurations in the context of computer
programming: ENIAC, punch cards, teleprinter/mainframe, programming languages and compilers,
operating systems, Emacs and IDEs. Despite the seemingly evolutionary and chronological order, the
list is not to be seen as subsequent developments that naturally build on top of previous ones. These
various configurations have existed—and still exist—in complex, mediated layers entangledwith other
configurations. Infrastructural just as much as interactional configurations, these configurations
build on each other and often co-exist in networks of dependency (Star 1999; Straube 2016). Nor is
the purpose here to lay out an exhaustive list; multiple other ways to program have existed and still do.
Themain point is rather to make a technographic analysis of significant programming modalities and
explore their interactive and mediating qualities. Each of the following configurations is considered
a network of artifacts and human actors between the person that conceptualizes the program and the
machine carrying out said program.

5.2.1 ENIAC

The ENIAC is presented here as a representative of the early electronic computers that were pro-
grammed through the physical manipulation of wires and plugboards. Programming this machine
meant to literally manipulate the hardware by moving wires around. In this section, it is necessary
to clarify a few concepts. The programmers of the ENIAC are the operators, the people physically
programming the machine by moving wires and flicking switches. The person writing the programs
to be executed is, in this terminology, the engineer. These are fluid definitions, and various sources
use the term programmer to mean either role.

The act of programming was highly embodied. To program the ENIAC required weeks of manual
work on behalf of the programmer. In turn, the programmers were deeply familiar with the inner
workings of the machine, often being able to pinpoint the exact piece of faulty hardware responsi-

52

5.2. Programming and mediation

FiguRe 5.1: Ruth Teitelbaum and Marlyn Meltzer wiring the ENIAC with a new program in 1946. Image souRce:
“Two women wiring the right side of the ENIAC” by Unidentified U.S. Army photographer. Retreived from https:
//commons.wikimedia.org/wiki/File:Reprogramming_ENIAC.png. License: Creative Commons Public Domain

ble for errors (Fritz 1996). The embodied interaction afforded a different mode of engagement than
what our software-dominated contemporary programming modality affords (Streeck, Goodwin, and
LeBaron 2011). At the same time, the ENIAC and the complex, embodied forms of interaction that it
afforded was also the cause of delegation of work. The vision of Babbage’s analytical engine already
set out to delegate processes of computation through the enrollment of a machine to perform com-
plicated computations. In the case of the ENIAC, the small, highly specialized corps of programmers
represents another degree of mediated action, as the human programmers came to be an obligatory
passage point (Callon 1984) for interaction with the machine.

Document Program Computation

FiguRe 5.2: The engineer creates a symbolic representation of the programwhich is handed over to the program-
mer. The programmer engages with the machine in an embodied manner which leads to the machine computing
results.

Programming the ENIAC thus depended on the successful enrollment of both human and non-human
actors, creating a programmer-machine hybrid configuration. Despite the close relationship between
the programmers and the machine due to the embodied nature of the interaction, there was consid-
erable distance between the creator of the symbolic program and the machine carrying it out. The
engineers would create symbolic representations of the program which would then be delegated
to the programmers, relying on their embodied relationship to carry out the calculations through
translational processes. Finally, programming the ENIAC had the explicit goal of programming for
computation to arrive at a set of finished results such as ballistic tables. In the days of the ENIAC,
there was no inherent separation between the two categories of user and programmer. In fact, one
could not make use of the machine without programming it in some way. However, as demonstrated
by, e.g., Light (1999), the (women) programmers were largely removed from computing history, in
turn also obscuring the historical importance of the embodied nature of programming the ENIAC.
The history of the ENIAC is, then, largely the history of the hardware, not of its interactional qual-
ities. This material history of the ENIAC therefore does not tell the full story about the complex
layers of mediation and delegated expertise. A final note on the ENIAC’s materiality: As a physical
phenomenon, it was literally larger than life, confined to a large room and representing an enormous

53

https://commons.wikimedia.org/wiki/File:Reprogramming_ENIAC.png
https://commons.wikimedia.org/wiki/File:Reprogramming_ENIAC.png
https://creativecommons.org/publicdomain/mark/1.0/

5. SoftwaRe and computational media

sum of money and knowledge. Interacting with the machine implied a special ontological and epis-
temological status of the people who knew how to program it (Fritz 1996). This in turn inscribed the
user-programmer as a developer-with-privileged-knowledge-and-status.

5.2.2 Punch cards

While the concept of punch cards already existed in manufacturing (most famously in the case of
the Jacquard loom) and census counting, its use in computer programming lasted until well after the
introduction of the first programming language. Programming via punch cards requires additional
enrollment, translation, and delegation in comparison to the ENIAC: A programmer wrote the pro-
gram in a symbolic form, for instance mathematical formulas or a list of instructions, not immediately
parsable by the machine. To construct machine instructions, the instructions were passed along to
the coder who would translate the symbolic into the physical by literally punching out the holes in
the cards. Finally, the machine operator fed the cards into the machine. The exact nature of the sym-
bolic instructions, whether text or formulas, is less important for the current example than the fact
that some form of translational process was necessary to turn them into cardboard-based machine
instructions.

FiguRe 5.3: Woman operating an IBM 711 card reader on an IBM 704 computer in 1957. Image souRce: “IBM 704
computer at NACA” by NASA. Retreived from https://commons.wikimedia.org/wiki/File:IBM_Electronic_Data_
Processing_Machine_-_GPN-2000-001881.jpg. License: Creative Commons Public Domain

Punch cards represent a different materiality than the ENIAC, one that has even become part of the
cultural lexicon among certain social groups (Lubar 1992). In a way, their materiality is simulta-
neously more and less abstract than the ENIAC. On the one hand, the actual instructions (i.e., the
program) are stored as executable code in a physical format. They have a form, and a program can
be stored indefinitely, at least in theory. On the other hand, they represent an abstraction away from
both machine and program. Punch cards, literally cards with punched holes, are semantically mean-
ingless outside their context. It is only in their mediating roles in the network of people and artifacts
that they have any meaning.

The interaction that takes place is therefore a complex entanglement of humans, artifacts, practices,

54

https://commons.wikimedia.org/wiki/File:IBM_Electronic_Data_Processing_Machine_-_GPN-2000-001881.jpg
https://commons.wikimedia.org/wiki/File:IBM_Electronic_Data_Processing_Machine_-_GPN-2000-001881.jpg
https://creativecommons.org/publicdomain/mark/1.0/

5.2. Programming and mediation

Instruct Translate Operate Compute

FiguRe 5.4: The programmer writes the programwhich is then translated by the coder into physical cards. These
cards are fed to the card reader by the machine operator at which point computations are performed.

and conventions in situ. In fact, that is not different from most other programming modalities, but
in contemporary programming practices the roles and responsibilities of people and artifacts are
increasingly subsumed into the material conditions. It is also not unique to programming activities—
Suchman’s seminal work on photocopiers as bearers of situated plans examines just this inscription
of interaction into the artifacts (Suchman 1987).

5.2.3 Teleprinters and mainframes

The teleprinter represents a mode of programming that still exists in contemporary life, even if it
mostly looms in the background for most people. Modern operating systems implement the tele-
printer as a possible way of interacting with the machine—one big difference between early text-
based interactions and the current operating system terminals is that this mode is often optional
today.

FiguRe 5.5: Woman interacting with a FRiden FlexowRiteR in 1966. Image souRce: “Flexowriter” by Yves
Tessier. Retreived from https://commons.wikimedia.org/wiki/File:Flexowriter_192-1-004.jpg. License: CC BY-
SA 4.0

In contrast with the contemporary operating system terminal, the interactional qualities of the tele-
printer were characterized by both temporal and spatial shifts. Whereas the ENIAC and punch card-
operated machines required co-location (or at least the enrollment of and delegation to a co-located
human actor), the teleprinter allows for operation at a distance. Through the incorporation of exist-
ing infrastructural technologies such as telephone lines, a computer programmer could provide data
and programs to a mainframe located in a different place. The interaction with a teleprinter can be
considered a form of conversation: A symbolic rather than physical manipulation of a system in a
call-and-response interaction modality. Further, the interaction is characterized by the teleprinter
not being the ultimate target of interaction itself. The teleprinter becomes a medium through which
one operates in order to effect a remote mainframe. The teleprinter is translational and mediating,
transforming the program and communicating with the mainframe on behalf of the human operator.

55

https://commons.wikimedia.org/wiki/File:Flexowriter_192-1-004.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5. SoftwaRe and computational media

Interact Delegate Compute

FiguRe 5.6: The programmer interacts symbolically with themachine which distributes and delegates computing
at a distance. Themainframe is the locus of computation, black boxed and hidden from the programming practice,
and returns only the finished computations.

Finally, the teleprinter and related technologies mark a change in the materiality of programs. Early
computer interaction happened on the terms of the machine, plugging electrical wires or punching
out holes through which electrical current could run. Interacting with a teleprinter involves commu-
nication in a human-friendly medium, text, but in the mediating process the text is transformed into
a truly symbolic and ephemeral form rather than a material one. There is no program outside the
text itself. This transition to semantically meaningful textual interaction took place already with the
development of (high-level) programming languages.

5.2.4 Programming languages and compilers

Whereas the ENIAC, punch cards, and the teleprinter represent physical, in-the-world technologies,
the software for programming is equally important. With the invention of the stored-program com-
puters, programming took a different character: Rather than having to manually input the program
every time, programs could be stored in electronic form in the machine in an ephemeral and intangi-
ble form.

FiguRe 5.7: BASIC code. Image souRce: “Green Code on Black Background” by JOGOS Public Assets. Retreived
from https://commons.wikimedia.org/wiki/File:Green_Code_on_Black_Background_2.png. License: CC BY-SA
4.0

A taxonomy of programming languages might separate different languages into levels such as low-
level, high-level, and very high-level (see, e.g., Trois et al. 2016). I do not aim to discuss what the right
taxonomy is. Rather, I wish to point to the mediating qualities of different levels of programming
languages.

Programming languages and compilers are included in the list as they represent an embedded, transla-
tional interaction. Interacting with the computer through a low-level programming language such as
Assembly shapes the user as user-playing-computer. With the introduction of higher-level program-
ming languages, two interesting developments have happened. First, the textual interaction took on
a different discursive character. Instead of writing esoteric, machine-friendly commands, the pro-
grammer could now interact with the machine by writing in an artificial language close to English
(for a discussion about the implications of using English as the de facto language of programming,

56

https://commons.wikimedia.org/wiki/File:Green_Code_on_Black_Background_2.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5.2. Programming and mediation

see, e.g., Guo (2018)). Second, there was now a need for yet another mediating entity to translate
from these higher-level languages into machine code, i.e., the compiler. High-level programming
languages therefore both represent a qualitatively different textuality and demand the enrollment
of translating artifacts, transforming one symbolic representation into another and simultaneously
black boxing said translational quality.

Program Translate Translate

Compile

Compute

FiguRe 5.8: The programmer writes high-level code which is passed through layers of mediation and translation
to become, ultimately, machine code which can perform the desired action whether computing or developing.

Programming in software rather than hardware also has a recursive character; it is development of
software in software. One example is a compiler written in the same language that it compiles. The
ultimate recursive software is, then, programming a system in itself from within, i.e., bootstrapping
(this will be unfolded in section 5.3). Finally, programming in software marks the final departure from
an embodied interaction. Software technologies do not allow for truly “bodily-sensory experiences”
(Verbeek 2005, p. 228), although, as illustrated in chapter 6, keyboard shortcuts and finger dexterity
still represent a remaining, albeit poor, form of embodiment in contemporary computing.

5.2.5 Personal computer operating systems

The operating system as an entity is, in essence, a catch-all term for software that allows one to use a
machine. Operating systems were of course in use for decades before, but the release of MS-DOS in
1981 represented a transition in computational interaction. While systems such as the CommodoRe 64
brought the computer to the broader population, and the XeRox StaR introduced many innovations
that would come to influence computing (Johnson et al. 1989), MS-DOS in many ways represents the
advent of the age of the personal computer.

MS-DOS, a commercial operating system, is emblematic of the growing division between user and
programmer. The operating system provided an infrastructural ecosystem where people could install
software that other people made. In the early days of personal computing, software was often pub-
lished in hobby magazines as raw source code which you had to compile into working software on
your own machine (N. Anderson 2018). MS-DOS, while not the only operating system, stands as a
symbol for the transition into the commercialization of proprietary software, a move still contested
by advocates for free software (see, e.g., Stallman 2015, p. 28). In fact, the source code was not made
publically available until some thirty years later (Finley 2014), meaning that if the user of MS-DOS
wanted to change something in the operating system before 2014—too bad.

It also marks a broader change in the relationship between the user and the programmer. Where
computing previously belonged to the domain of the single user-programmer, multiple possible roles
were now being created. Arguably, this transition was already well underway, such as with the
introduction of the XeRox StaR and its graphical user interface (Johnson et al. 1989). This graphical
user interface presents a new degree of mediation and translation. In pointing and clicking, the
responsibility of executing the precise commands to the system is delegated to themediating qualities
of the graphical user interface. The expertise of the system programmer had thus becomematerialized
into the artifact, presupposing not only a division of roles and responsibilities, but also a temporal and
spatial shift between use and programming. The operating system of the personal computer inscribes
the user as just that—a user. In spite of this, there were and are alternatives to the user-programmer
dichotomy of software in the age of the graphical operating system.

5.2.6 Emacs

One such type of software is Emacs, which is not a specific piece of software, but rather a family of
related text editors that draw from a common ideological and technical heritage. The software was
originally created as a series of macros4 with the possibility of altering and extending this series.

4The name is a portmanteau of “Editing MACroS”

57

5. SoftwaRe and computational media

FiguRe 5.9: Woman interacting with DOS running on an Ampex computer. Image souRce: “MSDOS” by Rexhep-
bunjaku. Retreived from https://www.wired.com/2014/03/msdos-source-code/. License: Fair use

Program Use

FiguRe 5.10: Operating systems conceptualize the user and the programmer of the machine as different people.
Through black boxing “irrelevant” concerns and commercializing the software, the “user-as-consumer” category
is created.

Emacs is included on this list due to its absolute insistence on dissolving the dichotomies of software.
One of the first innovations of Emacs was the conflation of reading and writing text. Previously two
separate modes of interaction, Emacs made it possible to do both in one “real-time display editor”
(Stallman 1981). What is even more interesting with regard to this real-time editor is the absolute
commitment to all text being treated as program code. Any interaction with Emacs is in the form
of commands, i.e., interactive functions: The graphical user interface of modern Emacs distributions
is simply a shell that calls Lisp commands under the hood. At the same time, Emacs provides an
embodied delegation of commands into a multitude of keyboard commands in the form of chord-like
combinations. A different mode is presented when pressing the M-x key combination: This brings up
an interactive editor in which Lisp commands can be entered as text.

Even writing plaintext in the editor happens when letter characters trigger the self-insert-command.
“These characters, which include letters, digits and punctuation, are normally all defined as commands
to insert themselves into the text” (ibid.). The plans inscribed into the artifact are literally scripts. Of
course, these commands can be altered as well, making it possible to re-script the semiotic aspects
of the mediation. Emacs works through the so-called modes which define and frame the object of
work. For instance, the HTML mode enables commands appropriate for writing HTML code. The
ORg mode5 has Emacs itself as the object of work, allowing the system to get new, recursive qualities
as a computational medium. I return to ORg mode in section 5.3.

5(The Org Mode Community n.d.)

58

https://www.wired.com/2014/03/msdos-source-code/
https://ogc.harvard.edu/pages/copyright-and-fair-use

5.2. Programming and mediation

FiguRe 5.11: GNU Emacs 25 running on GNOME 3. Image souRce: “GNU Emacs 25” by GNU Project. Retreived
from https://commons.wikimedia.org/wiki/File:GNU_Emacs_25.png. License: CC BY-SA 4.0

Interact

Reconfigure

Write

FiguRe 5.12: The programmer interacts with Emacs through writing text. All text is commands and the medium
is inscribed with particular plans of action, rendering the dual options of working through and on the medium.

Emacs dissolves the ontological difference between text and code and the associated categories of tool,
medium, and object of work. For instance, by editing Emacs’ textual configuration files or writing
executable Lisp code, it is possible to reprogram the system in real time. This has a few higher-
order effects on the mediating qualities. First, the materiality of Emacs is code, the whole code,
and nothing but the code. The Lisp programming language is based on symbolic expressions that
can be both executable code and data. Second, because everything is code, whether one is using or
programming Emacs is an emergent property of the concrete interactions. The delegating qualities of
the software are reduced by providing abstractions (e.g., commands) that can be reasoned on andwith
depending on one’s competencies: “Writing an extension is programming, but non-programmers can
use it afterwards” (Free Software Foundation, Inc. n.d.). Third, the user configurations are flexible
and not prescribed. One can take on various roles, depending on the type and extent of the activity
undertaken.

Emacs is inherently distributional. It allows for remote access and can interface with other soft-
ware such as web browsers, PDF readers, and LATEX. Finally, Emacs is solidly founded in hacker
culture and Stallman’s principles of the right to edit software. The ethical mediating qualities of the
software reflect this commitment to what can be termed absolute transparency. Nothing is hidden
away, and everything can be viewed, edited, and reasoned with. The downside to this commitment
to extensibility and transparency is that the full complexity of the software is delegated to the user-
programmer (Borenstein and Gosling 1988). An opposing movement can be found in the contempo-
rary IDE which consolidates programming software as applications.

59

https://commons.wikimedia.org/wiki/File:GNU_Emacs_25.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5. SoftwaRe and computational media

5.2.7 Contemporary IDEs

The current endpoint of programming modalities is the integrated development environment (IDE).
The IDE is, in essence, nothing more than a collection of related tools for programming, typically a
plain text editor with auxiliary tools such as syntax highlighting as well as tools for version manage-
ment, a terminal window, and a file explorer. However, the IDE as a concept consolidates the various
tools for programming into a neat package.

The concept of the IDE is not new, and seminal IDEs such as the DaRtmouth Time ShaRing Sys-
tem, the MaestRo, and SmalltalK have thoroughly shaped the history of computing. What I have
selected in this investigation are simply a few of many possible choices. Second, there is far more at
stake in the history of the IDE than what is elaborated in the following, it is just not central to the
present inquiry.

FiguRe 5.13: Visual Studio Code running in Ubuntu. Image souRce: “Visual Studio Code running in Ubuntu
with custom complements” by Gátomo Dev. Retreived from https://commons.wikimedia.org/wiki/File:Visual_
studio_code_updated.png. License: CC BY-SA 4.0

Many contemporary IDEs are commercially developed and sold, e.g., JetBrains’ WebStoRm, but even
those that are not, like Eclipse, still largely operate under the application-centric paradigm. The Jar-
gon File, a dictionary of computing-related terms developed among early hacker communities (Ray-
mond 1999) has the following entry for the application:

app “/ap/, n. Short for ‘application program’, as opposed to a systems program. Apps are what
systems vendors are forever chasing developers to create for their environments so they can
sell more boxes. Hackers tend not to think of the things they themselves run as apps; thus, in
hacker parlance the term excludes compilers, program editors, games, and messaging systems,
though a user would consider all those to be apps. (Broadly, an app is often a self-contained
environment for performing some well-defined task such as ‘word processing’; hackers tend
to prefer more general-purpose tools.) See killer app; oppose tool, operating system.”6

The modern IDEs see the (professional) programmer as both conceptually, temporally, and spatially
removed from what they develop. The black boxing of the translations and delegations into the appli-
cation proper adds a complex layer of mediation. It is not easy to modify the IDE: Some, like Visual
Studio Code, provide a rich interface for modifying settings and installing third-party extensions,
while the software itself is not truly open. Despite the fact that its source code is released publically

6http://www.catb.org/~esr/jargon/html/A/app.html (visited Jun. 8 2023)

60

https://commons.wikimedia.org/wiki/File:Visual_studio_code_updated.png
https://commons.wikimedia.org/wiki/File:Visual_studio_code_updated.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
http://www.catb.org/~esr/jargon/html/A/app.html

5.2. Programming and mediation

on GitHub7, it is available only through the Microsoft Software License. The license further stipulates
that, by using Visual Studio Code, you agree that,

The software may periodically check for updates and download and install them for you.
You may obtain updates only from Microsoft or authorized sources. Microsoft may need
to update your system to provide you with updates. You agree to receive these automatic
updates without any additional notice. (Microsoft, Inc. n.d.)

Not only does the license affect the relationship between the programmer and the software, enforcing
power dynamics of use and misuse, it likewise creeps out from the software’s scope to the wider oper-
ating system. Visual Studio Code, a hugely popular development environment, not only mediates
between programmer and software, but also embodies and codifies Microsoft’s corporate interests,
delegating to the software duties of power and control.

Program

Compile

Compute

FiguRe 5.14: The programmer interacts with the contemporary IDE as a black box. It directs the action towards
the production of artifacts or computation, yet the IDE itself is opaque and not immediately available as more
than a consolidated set of tools.

aaa

Why this section on programming modalities? It provides context for the visions and realizations
of computational media and serves as a springboard for the next chapter on the development of
computational literacy in an age increasingly characterized by mediation and black boxing. From
the historical overview we can gauge that a few core developments have taken place in the history
of the (digital) computer.

First, there has been an ongoing substitution of human actors for technical actors. In the early days
of the computer, humans acted as the translators between wish and reality in the process of program-
ming. Second, the mediation between human and machine is increasingly complex. Translational
processes and technical expertise have been subsumed into black boxes: Technical processes wrapped
in neat application packages. While it may ease the use of computers, it also causes estrangement.
Paradoxically, most of us have at our disposal vast capabilities for computing, but only a few possess
the abilities for this. Third, as computer expertise has become technically embedded, computer users
lose access to the expert. The programmer (in the sense from the early post-war days) no longer
exists, having been absorbed into the software. Finally, and maybe most significantly, the user and
the programmer are no longer the same. The activities of programming and use have increasingly
become separated, if not physically then conceptually, for most people. The inscribed user—the role
available to us in the interaction—has become something else than in the past.

These developments have, in effect, rendered many users of the computer impotent and incapable.
Far from the early days of MIT’s hacker spirit, the lack of computational literacy is a very real prob-
lem, despite the fact that we have more information available than ever before. It is therefore not
just a matter of knowledge, although it is also that. It is a matter of the mediating qualities of the
artifacts that we surround ourselves with. They inscribe particular users, not in a totalitarian way,
but in a convincingly seductive way. Contemporary computing systems are built for ease. That the
materiality of computers affects people is not a new insight, however. In the next section on com-
putational media, I dive deeper into these visions of new media and the work that I have done on
them. As a final note before that, however, I wish to address something that I did not explicitly go
into detail with so far. The aforementioned characterizations of the human-computer interaction as-
sumes an interactional chain between one person and one machine. As postphenomenology reminds
us (Rosenberger and Verbeek 2015), human-technology mediation is never truly solitary—it is shaped
by and in turn shapes the collective life around us in the form of cultural and social factors.

7https://github.com/microsoft/vscode (visited Jun. 8 2023)

61

https://github.com/microsoft/vscode

5. SoftwaRe and computational media

5.3 Computational media

The following conceptualization of computational media draws on previously published work, pri-
marily Nouwens, Borowski, et al. (2020) and Borowski, Fog, et al. (2022). This is supplemented by
new work in which I revisited the empirical data from these previous studies.

aaa

The dominant mode of contemporary software is the application (see, e.g., Nouwens and Klokmose
(2018) for a brilliant investigation of the application-centric paradigm). One of the consequences of
this development is a clear separation between the document and the application. While the separa-
tion of data and program has been a foundation of computing since its early days, the application-
centric paradigm not only emphasizes this division; it reinforces it and reconceptualizes the rela-
tionship between program and data. In the application-centric paradigm, software is hard to modify
and often built from inaccessible or proprietary source code. However, even if the source code is
freely available to access and modify (e.g., FLOSS8), there is still a large conceptual and practical gap
from using to modifying one’s software. Finally, the contemporary application, as it grew from the
post-war North American office setting, is often oriented around a particular domain of work such
as word processing or image editing and largely consolidated into the hands of a few corporate ac-
tors (Bergin 2006). Berry’s notion of software as “prescriptive code” (Berry 2011) is quite fitting here;
the application prescribes what can and cannot be done with it, shaping its interactive capabilities as
well.

While some software ecologies offer a more interoperable and document-centric approach to, e.g.,
traditional office work (MicRosoft Office Suite) or creative publishing (Affinity StudioLinK),
they are still not truly document-centric (see, e.g., Bier 1991) and fundamentally tied to a paradigm
of (commercial) application use, not enabling the modification of the tools themselves. The do-
main of software for programming is likewise highly dominated by the application-centric software
paradigm. Obviously, there are exceptions. For instance, there is a community of programmers who
produce commercial software using modern implementations of SmalltalK such as SeaK and
PhaRo (Ducasse et al. 2016), while a (likely diminishing) group of developers still use the Emacs text
editor—a remnant of the editor war of the 70s and forward (Auerbach 2014) that can be extended
from within as a live software environment using the ORg mode extension (E. Schulte et al. 2012).
In fact, Emacs ORg mode represents a computational medium that allows for literate computing-like
interaction. I return to it in section 5.4.2.

The fact remains that modern programming often takes place in a bewildering array of applications.
Some are for the programming activity proper, while others are auxiliary and infrastructural such
as git for version control. Another interesting development is that for each new auxiliary task and
associated tool, the IDE as application increasingly absorbs it into its interface. This is not to say
that programming in an application is by definition bad. On the contrary, as this chapter shows,
there are many benefits to using, e.g., a commercial IDE for programming. What the dissertation
illustrates is that a common theme of contemporary software development is that, no matter the
concrete tools employed, development of software is largely separated from the use of software. This
is an important point. The inherent issues with such a separation have been acknowledged for several
decades (see, e.g., Abbate 2018). Several serious efforts have been undertaken to address this conflict.
Some proposed solutions for diminishing this perceived use-development gap have been concerned
with creating educational initiatives and improving the opportunities for non-traditional users to
grasp their software. Another branch of solutions concerns the imagination and development of new
media for computing. The following section considers this latter category.

5.3.1 Visions of computational media

Throughout computing history, multiple visions of computational media have emerged. Some of
themmainly existed in the minds of those who conceived them—whether for reasons of technical lim-
itations or otherwise—while other were concrete manifestations of the visions behind them. Some of
the more impactful and long-lasting visions come from people such as Alan Kay and Andrea diSessa.
These present visions of the computational medium as a way of expanding one’s capability for think-

8Free and Libre Open Source Software

62

5.3. Computational media

FiguRe 5.15: Applications (left) versus computational media (right)

ing and becoming. In essence, by using a computational medium, the medium-user hybrid turns both
parties into something else.

Bush’s idea of the Memex (Bush et al. 1945) still remains an oft-cited notion of the epistemologi-
cal capabilities of computers to extend the human mind. With the vision of the personal dynamic
medium (Kay and Goldberg 1977), however, the idea of the computational medium proper took hold,
representing the mutual co-creation of both human and artifact in its moldable and interactive shape.
Inspired by McLuhan, Kay posited that the most interesting aspect of a medium is what someone
has to become to use it (Barnes 2007). In other words, the mediating or interactive qualities of the
medium became a central point for Kay.

Kay’s vision of the DynabooK represents just how such a personal dynamic medium might be real-
ized (Kay 1972). This first vision was very much a technical imaginary, presented through drawings
and “science fiction”. Some years later, Kay and Goldberg realized their prototype in what they called
“interim DynabooKs” built using the SmalltalK language and the XeRox Alto computer, both cre-
ated for this purpose (Kay and Goldberg 1977). The vision of the DynabooK is interesting because
of its insistence on context and learning as well as its suggestions of novel interaction forms. Si-
multaneously, its concrete implementation was “expensive, clumsy, slow, and—in practice—useless”
(Löwgren and Stolterman 2007, p. vii).

Around a decade later, diSessa and Abelson presented their BoxeR prototype, a “reconstructible com-
putational medium” (diSessa and Abelson 1986). BoxeR operates on the principle of naïve realism;
everything is a box, whether text, multimedia, or executable code. Boxer never gained a wider adop-
tion beyond the studies in which it was deployed. According to diSessa, this was in part due to the
lack of resources and institutional support for implementing BoxeR at a more cultural level (diSessa
2001, p. 236). For BoxeR to become a viable alternative to other software paradigms, it needed to
be approached in three levels: technical, small-world, and large-scale macroculture. The latter of
these is similar to the postphenomenological perspective on people’s macrocultural life-world. That
is, those larger cultural contexts beyond the individual’s immediate lifeworld.

While the concrete manifestations and visions vary, there are certain commonalities that allow us
to provide a definition of computational media. First, they have a loose distinction between using
the medium and (re)programming to the medium, both technically and conceptually. This is in part
realized through a loose distinction between application and document. In computational media,
whether the medium is an application or a document is a matter of context and use, not as an onto-
logical definition inscribed into the medium. Finally, computational media work on the principles of
seeding and extension. This means that, ideally, it should be able to seed the medium, for instance
by providing basic editing features, and allowing people to extend upon these seeds. Figure 5.15
illustrates the difference between computational media and application-centric computing.

Both Kay and diSessa were inspired by Papert’s work on LOGO (Papert 1993), particularly focusing
on using computational media for teaching concepts from mathematics and physics. In my research
on computational media using the *-stRates family of software, I have explored the potential and
challenges of computational media for the development of computational literacy outside formal
education.

Even if much of the seminal work on computational media is decades old, the fundamental issues
that they try to address have not been resolved. The mode of engagement in most contemporary

63

5. SoftwaRe and computational media

software for programming is still highly symbolic and complex (Tedre 2020)9. Both Kay and diSessa
have also entered the academic discussion about computational literacy and computational thinking
as elaborated in chapter 3.

5.3.2 A contemporary anatomy of computational media

Since the introduction of BoxeR and the DynabooK prototype, there has, of course, been tremen-
dous developments of technological capacities in terms of both faster, more powerful hardware and
the introduction and spread of new programming paradigms. So why hasn’t computational media
been realized beyond research yet? diSessa attributes the lack of success of computational media
to a changing Zeitgeist in the ’80s and ’90s. A changing conception of the nature and purpose of
programming combined with a focus on vocationalism meant that,

[t]echnically, most people assumed the media that existed at the time were sufficient,
with minor changes. As a consequence, few if any attempts emerged to improve the
medium specifically as a literacy base (as opposed to commercial work to improve the
“interface”, speed, and prettiness) (diSessa 2001, p. 232)

In our work on a contemporary vision and manifestation of computational media, we have defined
four characteristics as the basis for the new generation of computationalmedia. These are shareability,
distributability, malleability, and computability. Shareability means the ability to share the medium
with other people. Distributability is the ability to distribute (parts of) the computational medium
across devices in an artifact ecology (Bødker and Klokmose 2012). Malleability denotes the ability to
change the medium from within, according to one’s wishes and needs, and finally, computability is
the ability to perform computations in the medium. Notably, all principles share the suffix -ability,
which,

Forms a noun from a verb or an adjective by changing from -able; ability, inclination or
for a specified function or condition10

Therefore, I would argue, these words do not define what computational media are, but what peo-
ple might do with such a medium, much in the spirit of Kay’s original vision. They give shape to
and influence the possibilities of interaction and mediation. They form the mediating aspects of the
medium. The following is therefore not to be considered an analysis of any essences of computational
media. Rather than being essential, these characteristics are affordances in the sense that they allow,
shape, and hinder particular ways of interacting with the medium. These characteristics have proven
useful as guiding principles for conceptualizing and imagining computational media as they might
exist in a contemporary sociotechnical software ecology. At the same time, they represent ideals. The
matter of fact is that any concrete implementation of a digital imaginary will have to come to terms
with the practicalities of its context. Before moving on to these characteristics and the subsequent
analysis of their mediating qualities, I wish to present the software that has been the basis for my
studies.

5.3.3 WebstRates

This section present WebstRates, a research prototype developed in the research group that I have
worked with. While WebstRates was developed before I started my PhD project, it has been the
foundation for several of the inquiries that I made. In the following section I introduce WebstRates
based on previous work (Klokmose et al. 2015). Part of this introduction is an overview of the four
guiding principles that have influenced the subsequent computational media prototypes used in my
studies, e.g., CodestRates. Similarly, while I was not part of the technical and conceptual develop-
ment of CodestRates, I have nonetheless been intimately involved in subsequent use and reflections,
particularly in Borowski, Fog, et al. (2022), where my peers and I have looked back on the history of

9The closing keynote was available here: https://drive.google.com/file/d/144DkaFHXhbYLd2pKe7PRP_DtNPKdR8-T/
view (visited Dec. 20 2022; no longer online)

10https://en.wiktionary.org/wiki/-ability (visited Jun. 8 2023)

64

https://drive.google.com/file/d/144DkaFHXhbYLd2pKe7PRP_DtNPKdR8-T/view
https://drive.google.com/file/d/144DkaFHXhbYLd2pKe7PRP_DtNPKdR8-T/view
https://en.wiktionary.org/wiki/-ability

5.3. Computational media

the software. Therefore, even though I have not developed WebstRates nor CodestRates, I have
still conducted research based on these two systems. Figure 5.16 illustrates the timeline of the history
of the WebstRates software family11.

+

/web_substrate- +

A uc t o r , quam qu i s
scelerisque volutpat, diam
felis commodo orci, eget
pharet ra lacus dolor et
augue.Mauris commodoac
ipsum ut luctus. Aliquam
elementum sem ac diam
pulvinar, eget molest ie
t ellus ef ficit ur. Et iam
fringilla dui vitae pretium
t incidunt. Nullam risus
lectus, congue eget ligula
vitae, dapibus egestas dui.
Quisque dapibus, risus at
maximus varius, massa
erat mollis lorem,et varius
ipsum massa et nulla.
Morbi pretium id sapienut
m a x i mus . A en e a n
sceler isque f aucibus
porttitor.

Lorem ipsum dolor sit
ame t , c on sec t e t u r
adipiscing elit. Aenean
cursus semper diam, at
interdum ligula semper et.
Maecenas dictum tellus ut
nisl semper ultrices nec
blandit metus. Praesent
egestas sit amet lectus at
tincidunt.

Kongbani

Object Governor

Instrument

View

Manipulates

Observes

VIGO
(Klokmose & Beaudoin-Lafon, 2009)

Shared Substance
(Gjerlufsen et al., 2011)

Codestrates v1
(Raedle et al., 2017)

Codestrates v2
(Borowski et al., 2020)

2009

2011

Scotty
(Eaganet al., 2011)

Instrumental Interaction on the Web
(Klokmose & Eagan, 2012)

2012

2014

2015

Webstrates
(Klokmose et al, 2015)

2017

2020

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Lorem ipsum!

//webstrate/lorem_ipsum

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Lorem ipsum!

//webstrate/james_instruments_1

//webstrate/lorem_ipsum

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Lorem ipsum!

//webstrate/wendys_color_instruments_2

//webstrate/lorem_ipsum //webstrate/colors_5

//webstrate/colors_5

//webstrate/pixelmator_like_instruments

//webstrate/michels_mighty_meta_instrument

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

Lorem ipsum!

//webstrate/lorem_ipsum

//webstrate/james_instruments_1

Transclusion Eureka Moment
(Klokmose, 2014)

FiguRe 5.16: A timeline of the WebstRates software family

WebstRates12 was initially developed as a prototype for exploring a contemporary vision and imple-
mentation of a “personal dynamicmedium” (Kay andGoldberg 1977). Built on basic web technologies,
WebstRates was presented as a “shareable dynamic medium” (Klokmose et al. 2015). Interestingly,
WebstRates is both a piece of software in itself and a computational and extensible medium with
infrastructural capacities. A WebstRates server serves web pages that are collaboratively editable.
A single webstrate is a persistent, self-contained document. A document can contain markup (i.e.,
HTML and CSS) and program code (JavaScRipt). Therefore, a single webstrate contains both data
and code, making it document and application in one. Any changes to the document is saved in the
Document Object Model (DOM) of the webpage and synchronized across all instances of the same
page using operational transformation for conflict resolution, much like Google Docs and similar
collaborative systems. A fundamental characteristic of WebstRates is transclusion, the ability to in-
clude one webstrate in another through an iframe HTML element. If both webstrates share the same
domain name, transclusion also allows for a shared JavaScRipt environment. The four principles
of contemporary computational media that served to guide the development of WebstRates are, as
stated, shareability, malleability, distributability, and computability.

Shareability denotes the ability to share a document (i.e., a webstrate) with other people. For a con-
ventional file-based document, this often involves sending a copy of the file via email or a similar
transfer technology. It further requires that the recipient has an appropriate application installed on
their machine to open and edit the file. And finally, the process demands coordination between the
involved parties for managing versions and merging files. WebstRates, in contrast, takes advantage
of the infrastructural capacities of the web. When a new webstrate is created by the server, it is given
a unique and persistent URL. Sharing a webstrate is as simple as sharing said URL. Further, by ap-
pending the URL with the query ?copy, the server will create a self-contained copy of the webstrate
at the URL and provide a new, unique URL for the copy. WebstRates also provides the ability to
indirectly share by using the principle of transclusion. Through transclusion, one webstrate might
be reused and shared between people working in different webstrates.

Distributability was achieved in WebstRates much in the same way as shareability. Due to the col-
laborative and web-based nature of WebstRates, distribution across devices could be done using
URLs and the individual devices’ web browsers. In plain WebstRates, distribution is either-or. Dis-

11For a brief overview, the reader is referred to the TOCHI presentation video https://youtu.be/VY9lX2obcHo (visited Jun.
8 2023)

12https://webstrates.net/ (visited Jun. 8 2023)

65

https://youtu.be/VY9lX2obcHo
https://webstrates.net/

5. SoftwaRe and computational media

tributability is also not fully realized in WebstRates, as browsers on mobile devices are less likely to
have tools for manipulating the DOM.

Malleability is the ability to change the system from within. As a webstrate is, in essence, just a
persistent webpage, the native way to change this environment is through the browser’s developer
tools. The contemporary web browser is sadly far from Berners-Lee’s vision of the combined web
browser and editor (Berners-Lee 1996). However, by taking advantage of the HTML5 element at-
tribute contenteditable=true, individual HTML elements in a webstrate can be made interactive by
adding this attribute from the developer tools. A different approach was demonstrated by Klokmose
et al. (2015) in which one webstrate was provided with the capability to alter another one through
transclusion. Importantly, the malleability of WebstRates does not extend into its infrastructural
aspects (i.e., the server and database), as only the individual webstrates can be changed.

Finally, computability designates the ability of the medium to run program code from within itself.
Built from web technologies, WebstRates natively runs JavaScript in the browser’s execution en-
vironment. Using the developer tools, it is possible to write <script> tags in HTML or use the
interactive console. As a webstrate is persistent, any changes to the DOM remain over time, while
the JavaScRipt runtime environment resets on reload. While these features theoretically allow for
programming the shareable dynamic medium, using the browser’s developer tool is inconvenient
and not feasible for larger projects. Although the WebstRates File System (Antonsen et al. 2017)
provides the possibility of cloning and synchronizing a webstrate with a locally stored copy, Web-
stRates presents itself more as dynamic media than as computational media.

aaa

In the following I present three environments based on the WebstRates platform that in different
ways embody the mediating qualities of a computational medium: CodestRates, the computational
lab book, and CodestRates v2. While I have not taken part in building the systems personally, I
have been closely engaged with the research group behind them. Further, the development of the
computational lab book and CodestRates v2 is the result of research that I have been conducting in
collaboration with other members of the research group (see, e.g., inquiries 2, 3, and 4).

5.3.4 CodestRates

As WebstRates proved to provide a cumbersome user experience with poor capabilities for editing
and programming, CodestRates was developed on top of WebstRates, providing an abstraction
of code through the adherence to the literate computing paradigm (see section 5.4). This would ide-
ally provide a structured and semantic interface for working with the computational and infrastruc-
tural possibilities of WebstRates. CodestRates13 is therefore an implementation of a computational
medium that allows for literate computing (Perez and Granger 2007). In contrast to popular literate
computing software at the time such as JupyteR NotebooK, CodestRates was intended not only to
enable programming for interaction or computation, but to provide a computational medium for pro-
gramming for software development. Section 5.4 explores CodestRates’ literate computing charac-
teristics further, including a fuller discussion of the benefits and drawbacks of the literate computing
paradigm that ultimately led to the subsequent development of CodestRates into CodestRates v2.
For the present purpose, I will briefly present CodestRates and how the principles were realized.

CodestRates, built on WebstRates, employs the same web technologies for its construction and ex-
tensibility. Drawing on a document metaphor, a user can create sections with paragraphs containing
either data (JSON), content (HTML), or functionality (JavaScRipt). Figure 5.17 shows a grocery list
being created in CodestRates.

The principles of computational media are realized in CodestRates in the following ways. Since
CodestRates is built upon the infrastructural properties provided byWebstRates, they share many
aspects of the principles. However, CodestRates expands on the user interface by providing new
interactional qualities. For instance, while WebstRates is built around transclusion, CodestRates
expands on and mediates this experience through packages, essentially reified, reusable webstrates
containing functionality, data, or content (Borowski, Rädle, and Klokmose 2018). With the intro-

13https://webstrates.net/project/a-brief-overview/#codestrates (visited Jun. 8 2023)

66

https://webstrates.net/project/a-brief-overview/#codestrates

5.3. Computational media

FiguRe 5.17: CodestRates

duction of packages, CodestRates became modular in its construction, providing a more nuanced
shareability. With CodestRates also came different views. Through a full screen “application” mode,
the user-programmer can essentially switch between modes of development and use. This extends to
distributability where one device can show the development view while another shows a use view,
allowing for a different kind of distribution.

The functionality of Codestrates is, importantly, completely bootstrapped, meaning that it has been
written in itself. This conflation of use and development provided an extreme degree of malleability,
much like the one envisioned in the BoxeR environment. However, as will become clear in sec-
tion 5.5.3, this freedom to reprogram anything in the medium often led to unintended consequences.
Finally, while individual paragraphs can be written containing JavaScRipt, the runtime is not truly
live or reactive. If a user-programmer programs interactivity through the use of, e.g., event listeners,
the runtime environment needs to be reloaded to prevent multiple listeners stacking.

5.3.5 Computational lab book

With peers, I used CodestRates as a malleable prototype to investigate how a computational lab
book might be realized. Figure 5.18 shows the final prototype. The prototype was based on the
idea of instrumental interaction (Beaudouin-Lafon 2000) and essentially builds upon the interface of
CodestRates. Instead of structuring sections and paragraphs around web languages (HTML, CSS,
JavaScRipt), the lab book is constructed as a series of domain-specific steps, where each step can
be dragged and dropped from a toolbox of instruments. These instruments are, in practice, reified
elements of the nanoscientists’ existing pipeline of work. For instance, one of the instruments—the
pattern editor—is nothing more than a plaintext editor. In the nanoscientists’ previous practices, they
would create and curate personalized libraries of patterns for reuse in loosely assembled plaintext files
using a general-purpose plaintext editor (such as TextEdit) on their “dry” machine14. By providing
an instrument to store and retrieve these patterns, the computational lab book makes managing
auxiliary files and data easier. Further, by providing a library of oft-used patterns, the practice of
editing patterns was brought closer to the actual work domain of the scientists.

We didn’t execute a whole bunch of codes in our previous lab. I was more using pretty well
established software with a nice-ish GUI (…) I was still doing RNA work, but I wasn’t doing
any design of RNA sequence or anything like that. So depending on the research you’ll have
either really well-supported workflows …or nothing …or homebrew scripts. (N10, inq. 3).

Each lab book built on CodestRates is web-based and completely self-contained. To accommodate
the computationally heavy work that the scientists need to perform, and to allow for other program-
ming languages than JavaScRipt, the lab book was designed to be able to delegate code to a more

14As the lab is sterile, the scientists each have a more powerful office computer for their “dry” work (i.e., planning and
analysis) and a less powerful device in the lab for “wet” work

67

5. SoftwaRe and computational media

powerful server. The central WebstRates server was equipped with DocKeR containers to be able
to execute other programming languages, e.g., PeRl, and to return the results of these computations
to the lab book requesting them. Through the enrollment of the central server, a different type of dis-
tribution comes into play. Whereas distributability in previous iterations of WebstRates concerned
the distribution of software across devices, the type of distribution at stake in the lab book is also
about delegation of computation.

FiguRe 5.18: The computational lab book built on CodestRates

The computational lab book is based on the principles of computational media. While e-Science and
similar fields have for a long time experimented with enhancing the conventional lab book with
digital capabilities, these existing examples are largely digitized versions of conventional lab books
rather than truly computational software. For instance, the nanoscientists had already migrated their
research activities to Confluence15, an electronic lab notebook. While Confluence and similar
electronic lab notebooks allow for wiki-like functionality and collaboration, they do not allow one to
run computations directly inside. The computational lab book, embodying the scientists’ scripts that
were previously scattered and foraged, allows computations to be run. However, to the nanoscientists
who are domain experts and “not concerned with the tool per se, but in doing their job” (Fischer and
Giaccardi 2006), the computational lab book is probably seen as yet another tool. Good, but not
qualitatively different from other tools and scripts.

Obviously, if you want to run a lot of RevolvR16 in your computer, it’s going to collapse. You
can just run it nice in the server and just forget about it, that’s really nice. (N11, inq. 3).

Another important aspect of the computational lab book is that the scientists work both in and
through the artifact simultaneously. When creating, analyzing, and visualizing RNA structures, al-
though still represented virtually in the lab book, these structures exist both in and beyond the sys-
tem at the same time. The computational capabilities of the artifact are thus also used to operate on
a world beyond the interface (at least conceptually).

Interviewer: “How crucial is the PDB viewer really?” N10: “It’s not. It’s just a check to see
if there are any obvious problems like folding wrong. It’s our best estimate of what a 3D
structure would look like. And if the best estimate shows there is clashing going on, then it’s
probably not a good design (…) it’s also pretty to look at.” (N10, inq. 3).

15https://www.atlassian.com/software/confluence (visited Jun. 8 2023)
16The name of a custom script

68

https://www.atlassian.com/software/confluence

5.3. Computational media

Themediating qualities of the lab book concern issues of translation and thinking through themedium
in the spirit of Kay’s vision. The computational lab book therefore embodies a certain “carrying ca-
pacity of ideas” (Kay 2013a). The lab book mediates both epistemologically, by magnifying particular
aspects of the world (RNA structures), and ontologically (the RNA structures are purely representa-
tional and potential and do not exist outside the medium). Interestingly, it seems as if the mediation
has aesthetic qualities as well, as evidenced by N10’s statement above.

Finally, through the introduction of an external server for offloading computation, another degree
of mediation is introduced. When offloading code to the server, a textual representation of potential
code is sent along and a textual response is received back. There are processes of translation and black
boxing at play. For the scientists, it appears that scripts are “magically” run faster than previously,
while the fact is that the seemingly self-contained lab book now depends on networks of translation
and mediation to function properly.

The lab book was built on CodestRates, which worked well as a prototyping tool for us. However, it
turned out that the literate computing paradigm was not immediately well-suited for programming
for software development, despite its enormous popularity in the data sciences. This issue is unfolded
in section 5.4. As the literate computing paradigm proved lacking, a second iteration of CodestRates
took place, leading to the aptly named CodestRates v2.

5.3.6 CodestRates v2

In contrast to CodestRates, CodestRates v2 was designed to be a computational meta-medium
that serves as an authoring environment for other computational media. CodestRates v217 repre-
sents the newest iteration of the *-stRates software family. As the literate computing paradigm and
complete commitment to malleability of CodestRates v1 proved insufficient, the second iteration
of the platform was developed. The unbound malleability was unfortunately negatively realized mul-
tiple times, for example when people accidentally overwrote or deleted the interface or the built-in
functionalities. CodestRates v2 introduced a series of changes from the first version on both techni-
cal and conceptual levels. Some technical changes involved a new relationship between the textual
representation of markup and their rendered counterparts as well as the introduction of a more re-
stricted sharing model. This had consequences for how things are shared between clients, which
was an unwelcome surprise to some people who were already familiar with the sharing model of
WebstRates:

I also felt lightly betrayed by the tools because I felt like the very fact that you didn’t have
to do anything to persist [and share] stuff was the key value of WebstRates. (P1, inq. 5).

Another change of a both technical and conceptual nature was the separation of editor and appli-
cation. In CodestRates v1, the editor was part of the application on an equal level to other code,
but in CodestRates v2 the editor was placed outside the document18, preventing accidental break-
age of the system. Further, the editor does not exist in the application until a button is pressed, at
which point it is loaded into existence from an external server. Finally, the loose coupling of editor
and application made it possible to have multiple editors that could be used depending on needs and
wants. The default editor is named CauldRon (see figure 5.19). For a more in-depth explanation of
the technical foundation of CodestRates v2, please see Borowski, Kristensen, et al. (2021).

On a more conceptual level, an important change is the metaphor. Whereas CodestRates v1 was
built on the popular notebook format prevalent among literate computing environments, Code-
stRates v2 draws its inspiration from conventional IDEs: A separate editor representing all code
fragments in a hierarchy with open fragments shown in a tabbed view (see figure 5.19). Finally, the
concept of fragments was introduced as a catch-all term for textual representation of both program
code and markup. However, as will be illustrated in section 5.5, it quite quickly became apparent
that the idea of fragments was not well-received. Similarly, some user-programmers had conceptual
issues with the relationship between HTML fragments and the DOM. In CodestRates v2, HTML

17https://codestrates.projects.cavi.au.dk/ (visited Jun. 8 2023)
18Technically, this was achieved by placing the editor outside the <body> of the DOM

69

https://codestrates.projects.cavi.au.dk/

5. SoftwaRe and computational media

FiguRe 5.19: A multiplayer tank game implemented using CodestRates v2 and edited through CauldRon

fragments are the primary entities, only rendered as DOM elements when running the software in
the browser, but this was not clear to all user-programmers in inquiry 5.

In summary, CodestRates v2 has essentially stepped away from diSessa’s vision of computational
media as reconstructible and extensible. By implementing the CauldRon editor outside the docu-
ment, the system has in practice been separated into hot and cold spots, respectively. In this termi-
nology, a cold spot designates code that is frozen in place, not malleable, while hot spots are alive in
the sense that they can become the objects of actions. This means that not everything is malleable in
CodestRates v2 in contrast with the visions of WebstRates and the first iteration of CodestRates.

Interestingly, CodestRates v2 has shifted the locus of the computational medium. CodestRates
v2 is a meta-medium in which one can create other computational media. By providing the ability
to expose editable and executable code in the created computational media, user-programmers can
provide hot spots for reconfiguring the codestrate. Less a computational medium itself and more
akin to an authoring environment for other computational media, CodestRates v2 is reminiscent of
the user interface software tools for creating other interfaces as discussed by, e.g., B. Myers, Hudson,
and Pausch (2000).

The fact that not all parts of the medium is malleable means that CodestRates v2 is no longer a
truly reconfigurable system. The conceptual and technical separation between application and editor
provides stability and flexibility but has the side effect that the system takes on the uncanny role of
looking like, but not being, an IDE. In the rest of the chapter I dig more deeply into the mediating
qualities of computational media and how they shape and are shaped by the people using them. First,
as the literate computing paradigm of CodestRates proved lacking, this programming modality is
given special attention.

5.4 The unfulfilled promise of literate computing

I previously hinted at how the shortcomings of CodestRates led to the subsequent development of
the platform into CodestRates v2. While these shortcomings are probably attributable to several as-
pects of CodestRates, there are indications frommy empirical work that the programming paradigm
had a large role to play. In the following, I therefore address the literate computing paradigm theo-
retically and empirically by drawing on Fog and Klokmose (2019), Nouwens, Borowski, et al. (2020),
and Borowski, Fog, et al. (2022) as well as preliminary findings from ongoing research.

aaa

This section first explores the broader issues and potentials of literate computing, a human-computer
interaction paradigm made popular by the now omnipresent JupyteR software systems (Pérez and

70

5.4. The unfulfilled promise of literate computing

Granger 2015). The literate computing paradigm presented a new way of authoring computational
media and enabled alternative human-computer mediation (see figure 5.23) which could ideally sup-
port the development of computational literacy. By leveraging the familiar narrative structure of
text and allowing for the co-production of executable code and other media forms, the literate com-
puting paradigm should ideally inscribe the user-programmer as author more than developer (ibid.).
This would in theory let people draw on their existing material and cultural competencies as also
manifested in the consistent use of a notebook metaphor. Combined with the inherent opportunities
for feedback (i.e., confirmations) from the “interactive computing” (Granger and Pérez 2021) environ-
ment, the literate computing paradigm seemed promising as a foundation for computational literacy
development.

5.4.1 An overview of literate computing

To begin, I find it necessary to draw some lines. More specifically, a good starting point is to define
what literate computing is in contrast to what it is not. The term was coined by Pérez (2013), who
in turn drew upon Knuth’s literate programming paradigm (Knuth 1984; Knuth 1992). However, the
distinction between these two is not just a matter of semantics. While both paradigms are character-
ized by the coupling of two otherwise separate activities—programming and textual production—and
a focus on writing programs as human-friendly explanations, they differ fundamentally on their on-
tologies. For instance how people are conceptualized, what materialities are involved, and what
the purpose of the activities is. Concretely, literate computing is an activity in which programming
and computation is mixed with the production and manipulation of rich media such as prose, images,
video, and other digital media. The associated output from such an activity can be computational nar-
ratives, interactive documents, or even full-blown applications. The archetypical case can be found
in the ubiquitous JupyteR NotebooK (see figure 5.20).

FiguRe 5.20: JupyteR NotebooK. Image souRce: “Jupyter Notebook” by Project Jupyter. Retreived from https:
//jupyter.org/. License: Fair use

Literate computing is at its core a different human-computer interaction paradigm than what is af-
forded by most of the software presented so far in this chapter. More specifically, literate computing
environments represent a type of software modality in which the boundaries between application
and document blend together. In that sense, they have a lot in common with computational media.
In one extreme, the software can even afford meta-programmatic capabilities, allowing for modifica-
tions to the software itself in situ and in vivo. If the history of modern software for programming has
been characterized by an ongoing black boxing and translation of formerly human capacities, literate
computing environments can be seen as a counterweight to this movement. The popularity of the
particular software genre (Konzack 1999) called computational notebooks is a clear example of the
potential afforded by these types of environments. It became apparent in CodestRates, however,
that literate computing is not equally well-suited for all forms of programming. The type of program-
ming activity matters deeply: For instance, computational notebooks, the main literate computing
software genre, are mainly used to do programming for computation. One of the key findings from

71

https://jupyter.org/
https://jupyter.org/
https://ogc.harvard.edu/pages/copyright-and-fair-use

5. SoftwaRe and computational media

the retrospective autoethnography of computational media (Borowski, Fog, et al. 2022) was that the
literate computing paradigm was ill-suited for programming for system development. It turned out
that creating one system for multiple types of programming resulted in something less than ideal.

At the time of my study of literate computing (Fog and Klokmose 2019), the paradigm was still com-
paratively new as both phenomenon and research subject. Figure 5.21 shows an overview of both the
number of articles published per year (blue line) and the types of systems investigated in each article
(orange lines). As can be seen, the software genre was still being established at the time, although
some fundamental work on literate computing had been done prior, e.g., Kery, Radensky, et al. (2018),
Kery and B. A. Myers (2018), Rule, Tabard, and Hollan (2018), and Rule, Drosos, et al. (2018).

A key finding in my study was that popular literate computing environments largely draw on a
notebook metaphor (e.g., JupyteR NotebooK), and that these systems mainly provide means for pro-
gramming for computation, not for system development. This was further cemented in the empirical
findings from studies on CodestRates, which showed that the notebook format was not immediately
suitable for software development. Further, the landscape of literate computing in 2019 was charac-
terized by the dominance of software that did not allow for liveness and transparency. For instance,
the hidden states of JupyteR-based notebooks are a source of divergence between live code and the
textual representation of code (Singer 2020), due to the ability to run and re-run parts of the notebook
in isolation from the rest. Another related issue is the clash between the non-linear execution model
of the computer and the linear narrative presented in most literate computing systems. These issues
are potential sources of distrust and alienation.

An important finding concernsmalleability: Early visions of computational media such as DynabooK
and BoxeR emphasized the ability to alter one’s software in-place. Even though the source code
of popular environments like JupyteR NotebooK and Live notebooK is open source and freely
accessible, the skills and tools needed to alter the software are beyond those required to use it. This
issue is further addressed in section 6.1. These findings form the basis of the subsequent analyses of
literate computing and the mediating qualities of computational media.

FiguRe 5.21: Types of systems in literate computing research. Orange lines represent research on the systems
noted on the right, while the blue lines represent the total number of studies published on literate computing.

The terms literate computing and literate programming are often used interchangeably in research.
This is less than ideal as the vision of literate computing presented by Pérez and Granger (2015)
showed great promise in building upon prior explorations of computational media such as diSessa’s
BoxeR environment. This, too, was the ideal goal of CodestRates. However, conflating the terms
runs the risk of diluting the unique position of the medium and reduce it to a mere tool. Finally,
literate programming specifically denotes programming as the key activity, configuring certain kinds

72

5.4. The unfulfilled promise of literate computing

of possible roles for the individual engaged in the activity, while possibly barring others in the process.
One might argue that the terminology does not matter as long as we are in agreement on what we
are talking about. However, I would argue that these are two different paradigms, and that we must
treat them as such, lest we risk diluting a still promising computating paradigm. Table 5.1 shows
selected differences between the paradigms.

Literate programming Literate computing

People Experienced programmers Non-system programmers

Materialities Textual documents Interactive media

Temporality Serial Recursive

Purpose Programming for system development Programming for computation

Table 5.1: Key differences between literate programming and literate computing

Literate computing as a unique activity is further complicated by the fact that the meaning of the
term was never really stable from the outset. In my current research I have found clear signs that
the discourse of not only the activity itself, but also of the associated people, media, and outputs is
in a state of flux and has been for quite some time. This is not expanded further here, but will serve
as a reminder that discourses matter. Literate computing and literate programming are different pro-
gramming modalities, and their mediating qualities are similarly unequal (see figures 5.22 and 5.23).
I make the argument, in accordance with the original vision by Pérez and Granger (ibid.), that the
central aspect of literate computing is the activity itself. It is a mediating and “intellectual computing
activity” (Galey and Ruecker 2010) that ties together the capabilities of the software itself, the per-
son engaged in the activity, and the resulting product of the activity. As such, literate computing is a
highly mediated activity that both depends on and recreates particular user-computer configurations.
This is succinctly captured by O’hara, Blank, and J. Marshall (2015):

The focus of literate programming is to document a program. In this manner, it is an
inward-facing document, designed to explain itself. On the other hand, literate comput-
ing is meant to focus on the computational goals, rather than on the specific details of the
program. The goal of literate computing is not to explain the workings of a program to
programmers, but to explain a computational problem to a wide audience. Literate com-
puting does not subsume literate programming—it is something altogether different.

Author

Weave

Tangle

FiguRe 5.22: Literate programming is textual production that is translated into new conceptual spaces.

Author

Write

Compute

FiguRe 5.23: Literate computing where code, prose, and multimedia lives in the same conceptual space.

5.4.2 Literate computing and computational media

In brief, literate computing environments are those types of software that enable literate computing
activities. This is not a binary true or false but rather points on a continuum. Even though both

73

5. SoftwaRe and computational media

kinds of software seek to blend development and use, literate computing environments are not (nec-
essarily) computational media. Computational media are, as defined in section 5.3, characterized by
a close coupling between use and development and by blending the application and document. A
salient feature of computational media is the ability to alter the software itself. Despite the JupyteR
environment not being easilymalleable, the resulting notebooks do exhibit computationalmedia char-
acteristics by allowing (some degree of) shareability, distributability, malleability, and computability.
A distinction can further be made in the terminology: Computational media are descriptions of soft-
ware artifacts, while literate computing describes a computing modality. It is a small, yet important
difference.

To better understand the characteristics, variations, and potentials of literate computing environ-
ments, I selected and analyzed twelve systems that in some way embodied the literate computing
paradigm. Three of these are historically important and were selected for their visions and the ways
they (re)imagined the mediating qualities of software: BoxeR, HypeRCaRd, and SmalltalK. Another
four are contemporary systems that are either commercial or otherwise officially supported and pub-
lically available: Mathematica, JupyteR NotebooK, ObseRvable, and Notion. Finally, the latter
five are environments that are either experimental or results of ongoing research projects: iodide,
Live NotebooK, CodestRates, Eve, and Capstone. Importantly, not all of these environments are
literate computing environments as such, but they each exhibit characteristics of the literate comput-
ing paradigm. Referencing my workshop paper, Lau et al. (2020) also included all of these in their
large-scale study of literate computing software.

Based on this analysis, I have provided a conceptual space for both understanding literate computing
systems and providing directions to other researchers. This consisted of a number of themes such as
system metaphor, intention, threshold and ceiling, liveness, malleability, community, and collabora-
tion. The themes are both relevant by themselves and in the broader question of the development of
computational literacy through literate computing. For instance, the focus on threshold and ceiling is
also captured in the design mantras of the Lifelong Kindergarten research group at MIT who further
emphasize the “wide walls” (Resnick et al. 2009). That is, to support the development of computa-
tional literacy for novices, software environments must ideally be easy to use, capable of complex
activities, and support multiple ways of using and interpreting them.

It is worth noticing that literate computing environments do not by necessity need to be for novices
to be useful. The Emacs ORg mode is, for example, clearly oriented towards people with computing
experience, not least because of the possibility of reprogramming the system itself in real-time using
Lisp commands. In its commitment to liveness, malleability, and transparency, this major editing
mode for Emacs provides a literate computing environment that aims to erase the difference between
use and development. SmalltalK and HypeRCaRd similarly provided capabilities for being altered
and extended (Justice 2021).

5.4.2.1 Literate computing in CodestRates

As stated in the introduction to CodestRates in section 5.3.4, the environment was introduced as a
computational medium built around the literate computing paradigm. Drawing from Kay’s Dyna-
booK, the system was presented as a “shareable, dynamic medium” (Rädle et al. 2017). In contrast
to the file-based computing paradigm dominant in most contemporary software, including JupyteR,
CodestRates employed a document-centric software approach. This means that the distinction be-
tween application and document was more a matter of activity than a matter of ontology. Even
though I was not part of the development of CodestRates, I have been involved in the subsequent
analysis and evaluation of the platform.

While computational notebook environments like JupyteR lend themselves mainly to programming
for computation, the vision behind CodestRates was the provision of an authoring environment for
software development. However, it still used the vertical metaphor from computational notebooks
which proved challenging for some:

(…) the problem with [CodestRates] was that it sort of had that computational notebook
format. Which is really practical when you need to be processing some data linearly down-

74

5.4. The unfulfilled promise of literate computing

wards, but as soon as it’s sort of event-based and different functionalities, then it just becomes
a hell to have a wall of code. (P4, inq. 5).

Further, the design decisions behind CodestRatesmade it browser-based. Providing a computational
medium in a browser environment unfortunately meant blending genres in an unfamiliar way:

For users, the unconventional way of programming in a notebook environment could
cause confusion: Being able to run JavaScript code inside an application that is already
running is contrary to how web applications are usually developed. But also the intro-
duction of the run-on-load feature of paragraphs caused confusion, e.g., when users were
not sure how to execute something after the page was loaded. (Borowski, Fog, et al. 2022)

Related to the design choices of CodestRates and its infrastructural foundation, we also found a se-
ries of issues with employing the literate computing paradigm in a web-based, collaborative environ-
ment. One of the key properties of contemporary computational media is, as stated, their shareability.
In CodestRates, being a literate computing environment in which there is no distinction between
development and use, at least parts of the system state was inadvertently distributed across the net-
work. This caused issues such as paragraphs and sections suddenlymoving, much like in collaborative
writing software such as Google Docs and OveRleaf. Further, it turned out that CodestRates as a
literate computing medium suffered frommany of the same issues as those computational notebooks
that it took inspiration from: Cell execution order, “Schrödinger’s notebook” (i.e., the uncertainty of
state), no concurrency, and no introspection (Singer 2020).

Using literate computing to create a computational lab book, on the other hand, turned out to be
surprisingly well-received. The computational lab book was in essence a set of domain-specific ab-
stractions built on CodestRates. The lab book was, by definition, a literate computing environment,
but it allowed for multiple levels of abstraction through the provision of “instruments”, i.e., reified
functionality (Beaudouin-Lafon 2000). This was a deliberate design decision based on findings from
inquiry 2 that programming was a necessary, but not primary, part of nanoscience. In doing so, the
computational lab book can be seen as an instrumental interaction literate computing environment that
was able to scaffold the scientists’ computational activities. Even though they still took advantage of
the same custom scripts for doing their work, these scripts could be abstracted away in the interface,
further allowing collaborators with different skills to relate to the code in multiple ways depending
on their needs and wants.

This suggests that literate computing was and is a viable programming paradigm for computational
media, but it demands the right circumstances to be meaningful. The nanoscientists appreciated the
linear notebook structure and the reified instruments which seemed to be familiar to them as natural
scientists, which is not surprising, given the popularity of computational notebooks (Granger and
Pérez 2021). The difference from generalized notebooks like JupyteR is that our computational lab
book provided a domain-specific, instrument-based interface. It therefore seems as if the literate
computing paradigm is well-suited for building prototypes and bespoke software. Second, literate
computing environments demand the right competencies (i.e., literacy). This is addressed in the
following section which, like this one, specifically discusses the first version of CodestRates unless
otherwise stated.

5.4.3 Literate computing and computational literacy

“Beware of the Turing tar-pit in which everything is possible but nothing of interest is easy.” (Perlis
1982)This quote describes one of the main issues with the CodestRates literate computing platform,
i.e., CodestRates v1, which is just referred to as CodestRates throughout the dissertation. Com-
putational notebooks like JupyteR are scaffolding devices, clearly demarcating possible user roles
and the actions that they are allowed to take. CodestRates, on the other hand, suffered from an in-
betweenness: Not quite notebook, not quite web application, and not quite computational medium.

One reason that CodestRates never seemed to hit the right mark as a computational medium can
likely be chalked down to people having no way of drawing on their previous experiences. Even ex-
perienced programmers had not developed any substantial material intelligence with CodestRates,

75

5. SoftwaRe and computational media

and so they struggled to make sense of their existing competencies in this new medium. In fact, as is
made clear in chapter 6, people with less programming experience seemingly had a lower entry level
into computational media. In the game design challenge, one participant noted: “And then I didn’t
want to sacrifice the tool set I already knew” (P3, inq. 5). Although not particular to literate com-
puting, it does point to a significant issue when introducing people to new media and programming
paradigms.

Another issue is the very loose coupling of process and product in literate computing. As laid out
in chapter 4, an important aspect of mediation is trust. This is, however, one of the downsides to
literate computing. There are two main issues at stake here: One is inherent to the malleability of
some literate computing systems, e.g., CodestRates, while the other is related to the free-form way
of authoring and combining data, executable code, and textual descriptions.

Knuth’s vision of literate programming emphasized the construction of “comprehensible” programs
by introducing concepts in “an order that is best for human understanding” (Knuth 1984, p. 99). This
decree is suitable for literate programming as software development, where the authoring medium
and its resultant files are separate from each other. The same could in principle be said about any kind
of functional programming paradigm. In literate computing, however, such an imperative does not
work. In those systems, the medium and the output is both temporally, spatially, and conceptually
entangled.

Finally, most dominant literate computing environments do not support the wide walls and high
ceiling advocated by computing education researchers. The floors are low—indeed, one of the benefits
of computational notebooks, which was also discovered to be the case with the computational lab
book, is the ease of entry. The infrastructural element of these systems provides a plug-and-play
experience for most users. In computational notebooks, the wide walls and high ceilings mainly
open up for increasingly sophisticated data work and visualizations. They are largely intended for
computation and data processing. In contrast, CodestRates presented a vision of literate computing
in which the walls were very wide and the ceiling tall. The medium could be interpreted and used in
many ways and for a variety of complexities. Unfortunately, the floors were also too high.

These findings illustrate a few important aspects of the relationship between literate computing and
computational literacy. Because of the required competencies and the material intelligence needed,
computational notebooks and CodestRates demand different types or modes of computational liter-
acy. They are tied to their ideologies. Computational notebooks are created as tools for work, and
they are not to be reasoned with. They are black boxes that make it possible to work with data. In
contrast, literate computational media are oriented towards software as executable, extensible code
and are recursive in the sense that they make it possible to work on themselves.

Just as CodestRates moved on to CodestRates v2, it seems that other researchers of literate com-
puting have similarly abandoned the idea that the programming paradigm has any bearing outside
computational notebooks (see, e.g., figure 5.21 earlier this chapter). Despite this, there are still re-
searchers who argue for opening up the field again and designing for diverse user groups outside
computational data science (Lau et al. 2020). In the same vein, these authors suggest returning to the
visions of BoxeR, HypeRCaRd, and SmalltalK which are computational media par excellence. This
rest of this chapter is a mediation analysis of contemporary computational media in the *-stRates
family.

5.5 Findings, or how computational media mediates

This final part of the chapter presents findings and reflections on computational media based on my
empirical work. I have sectioned these into a number of themes that are of particular importance or
interest with regard to the mediating qualities of computational media. These do not correspond one-
to-one with the aspects presented in table 4.1. For instance, the question of use and development
in the following section is not confined to the interactional aspect of mediation alone. The use of
an artifact is, naturally, deeply connected to other concepts such as trust and empowerment. To
contextualize and show the richness of people’s experiences, the following contains a substantial
amount of quotes drawn both from my published work and the original data. These help illustrate
exactly how the mediating qualities of software influence computational literacy in practice.

76

5.5. Findings, or how computational media mediates

5.5.1 Use and development

As software for programming, computational media by definition seek to blend and diffuse the use
and the development of an artifact. The visions of computational media speak highly of this ef-
fort (diSessa and Abelson 1986), but the case is not so clear-cut in practice. In fact, apart from the
odd research prototype and small communities based around languages like SmalltalK, computa-
tional media never seemed to have gained any proper traction. Why? One answer could, in fact,
lie precisely in the conflation of use and development. An oft-cited software artifact in end-user
programming research, MicRosoft Excel, in which people can easily switch between use, computa-
tion, and programming19, is still used by three-quarters of a billion people (Jamieson 2021). Similarly,
literate computing environments such as JupyteR are hugely popular (Granger and Pérez 2021).

There are probably multiple issues at play. One of them likely concerns the role of programming in
the activity: In Excel and literate computing environments, the purpose of programming is mainly to
compute, to transform data. This is unfolded in the next chapter. In the visions of computational me-
dia, programming concerns not only computation but also (re)programming the systems themselves.
I return to this point in section 5.5.3 below.

Another is in terms of breakdowns. Breakdowns in computational media seem to be caused largely
by context-switching between use and development. P12 explained how reloading the page threw
him out of context:

(…) you’re insanely dependent on that, this thing of jumping back into the development
environment, well, then you’re in the context that you were right before (…) You become
completely confused when you’re programming, sometimes. “Where am I? What the hell
was it that I was doing?” I’ve experienced that more times in this than I normally do. (P12,
inq. 5).

In fact, this kind of workflow disruptions might more accurately be called breakasides. The ability to
easily switch between activities of programming and use is supported in most popular IDEs for web
development, but CodestRates v2, despite being web-based, presented new challenges:

(…) so usually when I’m working on the web, I have a live environment where whatever
changes I make to the files, automatically propagated to the website and refreshes. So the
experience was quite similar. However, when I worked with Cauldron, this meant that
whenever I refresh the page, I would have to open the IDE again and go to the file that I was
working at (…) it was annoying. (P8, inq. 5).

Similar comments were made by other participants. It is not a full-on breakdown, but an “annoying”
breakaside that hinders fluency. The cause of these kinds of disruptions can be found in the fact that
our implementation of a contemporary computational medium lives purely on the web. Web-based
computational media thus present their own challenges. A web browser embodies many different
possible interpretations for its use. However, it seems as if programming is not readily a part of these
possible interpretations, at least for some people:

(…) it’s just as much the fact that it’s in a browser, that then I kind of stop thinking in
architecture (…) normally, you wouldn’t sit and write an entire application or something
inside the browser. (…) so I think “now I’m developing inside an IDE, and now I’m running
it in the browser”. And here it’s been sort of weirdly mixed. (P9, inq. 5).

Interestingly, in the original vision of the web presented by Berners-Lee, the web was just as much
a space to create as a space to read (Bouvin and Klokmose 2016). Granted, the type of creation con-
cerned writing documents rather than programming, but the idea of the web as a hypertext system
for both reading and creating seemingly died off years ago. For some people, however, the multista-
bility of CodestRates v2 is seen as beneficial and empowering, providing capabilities in the spirit
of the original web vision:

19Using VBA (Visual Basic foR Applications)

77

5. SoftwaRe and computational media

(…) because it’s one thing to see that in particular, how it works, I mean just, like, the end
result (…) But it also gives you something, the fact that you can just go in and see “okay,
how is this implemented?” (P4, inq. 5).

It is difficult to say exactly what causes these two different interpretations of the use-programming
conflation. Likely, it is a result of the mediation itself in which both the technical capabilities of
the software and the self-concept of the user-programmer shape the interpretation. This is explored
further in chapter 6.

Computationalmedia authoring software such as CodestRates v2 is not only a type of computational
media itself. It is also a computational meta-medium as it can be used to produce other forms of web-
based computational media. This further muddles the boundary between use and development as
user-programmers must also take into consideration future user-programmers of the finished artifact:

(…) maybe for some parts I don’t need to expose it, but then for the bird part, I can sort of
expose it to the outside. Then the idea is to just make it simpler for non-programmers to,
like, sort of understand what’s going on (P5, inq. 5).

By exposing code in the form of hot spots, P5 successfully completed the final tier of the game chal-
lenge. Interestingly, P5 was the only participant to use the meta-programmatic aspects of Code-
stRates v2 in this way: While others created interactive games with dynamic rules, P5 seemed to be
the only one to see and appropriate the possibility of exposing fragments to future user-programmers.
In fact, CodestRates v2 is itself structured around cold and hot zones. In the first version, Code-
stRates v1, everything was unified with no special privileges given to any part of the code, editor or
otherwise. This meant that user-programmers could accidentally break the system by, e.g., acciden-
tally removing DOM elements belonging to the editor. By moving the CauldRon editor outside the
body of the DOM, CodestRates v2 would more clearly separate these conceptual areas. The separa-
tion between hot and cold zones seemingly solved some issues related to accidental breakage of the
system. Still, at least one group in inquiry 5 ended up with a nonworking program state that they
could not recover from. It also turns out that the close integration of use and programming presented
some users with unintended consequences related to the instability of the artifact.

5.5.2 Semantic shift

As explained in section 2.1, one would be hard-pressed to define the essence of artifacts in general.
Postphenomenological researchers might call this the multistability of artifacts: They mean different
things to different people across different times and contexts. This is likely even more true in the
case of software, particularly the kinds of software that belong in the category of computational
media. Indeed, one could argue that a defining characteristic of computational media is their ability
to bemore-than-one-thing-at-once. Borrowing a term fromMol (2002), this ontological multiplicity of
computational media mean that they at times are in flux, balancing between meaning. For instance,
when interviewed about the use of CodestRates v2 and CauldRon for game development, one
participant remarked,

So, we had this WASD mapping and that means when you press that your tank moves around.
But that also meant that if you didn’t click out of CauldRon, it would write into the text
file that you were working on, the W-A-A-A-A-S-D and so on (P8, inq. 5).

This is a kind of breakdown, but it is not a breakdown of workflow. Rather, it is a semantic breakdown
in which the meaning of the software changes abruptly. I term this a semantic shift. It is different
from the breakdowns and context-switching presented in section 5.5.1, as the breakdowns related
to semantic shifts are caused by the unstable nature of the artifact, not by a purposeful context-
switching initiated by the user-programmer. We can see how CodestRates v2 enacts a technological
intentionality that is unpredictable. There seems to be an additional component to the instability of
the artifact. For some participants in the study, it was difficult to reason about the state and behavior
of the software: “(…) there is no reason why [the editor] disappears if it had been open the last time”
(P11, inq. 5).

78

5.5. Findings, or how computational media mediates

This kind of unintentional semantic shift likely influences both feelings of trust in the artifact and the
individual’s feelings of competence. Interestingly, the collaborative nature of contemporary compu-
tational media can even delegate semantic shifts across the network:

I think it was primarily the aspect of one person being in the process of developing something
and two other who would like to run something, and then it fucked up quite a lot. (P11,
inq. 5).

While the person currently developing did not experience any shifts as theywere intentionally switch-
ing activities, the two others were caught in an unanticipated and unwelcome disturbance to their
current activity. Two design choices of CodestRates v2 seemed to be causing many of the semantic
shifts experienced by user-programmers in the study. One is, as mentioned by P11, the fact that all
changes to the textual code is immediately shared across all connected clients. Another is the fact
that the web-based foundation of computational media by necessity shares program state between
the editor and the application. Multiple participants reported issues in which the shared JavaScRipt
runtime environment affected the editor:

(…) we were running something insanely heavy inside the browser which made it freeze up
several times. And that then has the consequence that the entire development process freezes,
too, because it’s part of the application. (P12, inq. 5).

This was mirrored by other user-programmers, too. One of these, P4, discussed how the editor would
not break, but rather become incredibly slow, sometimes taking half a minute to register keystrokes.
The inscribed plans of the artifact, whether intended or not, thus run counter to the notions of fluency
and empowerment emphasized in visions of computational media.

5.5.3 Malleability is a double-edged sword

Malleability is one of the principles of contemporary computational media. It is, however, not purely
a feature of the software, but is rather an opening that reveals itself in the meeting between user-
programmer and software. It is a property of both the technical possibilities of the software and the
user-programmer’s perception of both the software and their own self-image and competencies.

One of the challenges in CodestRates v1 which led to the development of its second iteration was
that the software was “one thing”. By programming, one could edit, amplify, and break not only
the document, but also the infrastructure that supports the editing itself. In effect, this could render
the codestrate useless. diSessa’s original vision of computational media emphasized the ability to
reconfigure themedium, but in the case of CodestRates v1 this could have unintended consequences
and breakdowns that user-programmers had a hard time recovering from.

One way to recover from this type of breakdown was to use the built-in versioning system. Code-
stRates v2, inheriting these capabilities from WebstRates, has a very granular versioning system
down to each character input. While this theoretically provides for a very direct and engaging ex-
perience with the medium, the conflation between use and programming turned out to leak into the
versioning:

We took the kind of bad choice that we also saved where every player[’s camera feed] was,
we also saved their position in a JSON fragment. And that had the effect that every time a
playermoved, a new version appeared. […]Wewere up in like 30,000 or something [versions].
And that actually made it kind of useless to roll back. (P4, inq. 5).

Since there is no inherent distinction between use and programming in the CodestRates v2 envi-
ronment, at least from an infrastructural point of view, the versioning system proved useless for at
least some participants in the study.

Although the editor and the application is both technically and conceptually separated in Code-
stRates v2, some issues still remain. First, since the technical capabilities for reprogramming and

79

5. SoftwaRe and computational media

reconfiguring the computational medium have changed, it is no longer possible to, for instance, make
desired changes to the editor itself. While this is arguably not an issue to most users in practice, it
does represent a move away from the visions represented in diSessa’s reconfigurable computational
medium and the live reprogrammability of SmalltalK. The issue of discerning liveness of code in
CodestRates v2 was experienced by a participant in the game design challenge who tried to dy-
namically alter the code on-the-fly but could not do so due to the execution model of JavaScRipt.
Malleability thus leads to uncertain state and begs the question: What is being mediated? If both del-
egated code (the textual representation) and prescriptive code (the runtime) co-exists in the medium
simultaneously, what exactly is the “object” of the mediation?

Unknown states can also be caused by other people acting on the artifact at a distance:

No, well, I think we would have had greater challenges if we had been working at the same
time and not sitting together. I mean, because here we could at least, like “Are you running
it now? Stop that!” [*laughs*] Sit and shout a little at each other or something like that.
“Don’t refresh, because it fucks up everything” [*laughs again*] (P11, inq. 5).

Malleability as a principle marks an unsolved issue with regard to computational media. Unknown
states represent ongoing acts of translation not immediately transparent to the user-programmer,
while the collaborative nature of CodestRates v2 further erodes the flow of activities, demanding
an adaptation of workflow and sociotechnical arrangements to support its idiosyncrasies.

There is, then, technological intentionality embedded in the artifact that forces or suggests particular
ways of engaging with the medium. However, this intentionality is never absolute, as evidenced by
P3 who managed to counteract the plans of the software.

For example, something that happened when we modified- we were doing some weird things.
My UI was on top of the CauldRon UI, so the edit button wasn’t reachable anymore. (…)
So, I destroyed the whole …and I knew, because I talked with some developers that you can
go to the console and write cauldronEditor, and that will open it. But if was a normal user
it’s like, okay, I’m done (P3, inq. 5).

P3 points to a central element of the relationship. By breaking the software, some level of trust is
broken, too, and only by drawing on his existing literacy is he able to mend this relationship.

5.5.4 Roles and inscription

The technological intentionality inscribed into software clearly does something. For one thing, the
intentionality creates a set of possible roles that an individual can fit into. This is not determined
in advance but happens in the meeting between person and software in a complex manner, drawing
also from existing self-perception: “A deep consequence of ‘The medium is the message’ is role and
identity change.” (Kay 2013a) This was discussed in chapter 3.

It is impossible to define all possible roles, but it is clear that computational media create a sort
of hybrid between the role of user and the role of developer. An established branch of HCI research
calls this hybrid relationship by various names such as “end-user developers” (Fischer, Giaccardi, et al.
2004) or “co-developers” (Mackay 1990), but these terms are not appropriate here. For one, they imply
that the software is the final artifact that can be adapted for the individual’s own wishes. Second,
there is also the implication that the “user” is the primary category and “developer” a secondary
one that can be appropriated as needed (or vice versa). While this might be true for some uses of
computational media, I would argue that—for contemporary computational media—development is
use and vice versa. I use the word user-programmer to illustrate that there exists a continuum of
various roles between the activities of use and of programming.

Some people can easily inhabit different roles, switching between them fluently:

(…) one of the good things about this is that you can just put it out there and anyone can
edit it. With basically no effort, or no other technical preparation. (P5, inq. 5).

80

5.5. Findings, or how computational media mediates

Although P5 emphasizes how effortless it is to edit the medium, others do not readily share this view.
Another participant in the game design inquiry, despite already being familiar with programming,
did not feel as comfortable doing so:

(…) this is the first time that I’m using that kind of complex programming tool. (…) The
platform in itself wasn’t that much self-explanatory. (…) But this platform for me is like,
really, you have to know a little bit how to program (P2, inq. 5).

This user-programmer did not readily experience a role for themselves in CodestRates v2:

As a non-programmer, let’s say, as a non-computer science person (…) it [the artifact] should
promise me that you don’t have to be very much knowledgeable about programming. (P2,
inq. 5).

In fact, they are longing for the artifact to prescribe them a role that they feel comfortable with. The
participant looked through the instructions, but ultimately did not finish the game design challenge,
probably to a large degree due to CodestRates v2 configuring the user in a particular way:

And in the instructions, for instance, that PDF, some of the wordings, some of the terminology
that you have used I wasn’t even familiar with. (…) And then I realized that it’s a very
computer science terminology. (P2, inq. 5).

This is somewhat in contrast with the nanoscientists from inquiry 3 who—despite not being com-
putationally competent—were able to find a role for themselves in the use of the computational lab
book. This is likely also caused by the extra “layer” of the interface that abstracts away the concrete
code from their area of concern. For the nanoscientists, there seemed to be a different kind of role
available that allowed them to use computational media and scripts without being able to program.
The configuration of the user happens in the interface:

It’s more complex than children’s toys. But it’s simpler than its equivalents in, like, for adult
ones. But I am not knowledgeable about those examples for the adults (…) perhaps this is a
little simpler. That’s what I mean, the interface looks less …intimidating. (P2, inq. 5).

Despite the fact that P2 never managed to complete the challenge, her immediate impression of the
software is that it casts a possible role between playful child and serious adult. As the computational
medium is inscribed with particular intentionalities, some participants seemed to be quite deliberate
in switching roles to adapt to the medium:

So you can say that it was quite important that we were sitting together [so we] could have
these iterations between “now we do something,” and “now we test something” (P12, inq. 5).

The intentionality inscribed into an artifact further shapes the ethical aspects of its use, which goes
beyond a discussion of an ethics of technology. Rather, it is an ethics of mediation and interaction. In
line with other participants like P11 and P12, one participant in the game design study experienced
this as the medium taking control, forcing their hand:

Why is it forcing me to think in HTML fragments? Why is it forcing me to think in code
fragments? Why is it not simpler? (P3, inq. 5).

5.5.5 Trust and alienation

The ethical qualities of mediation most clearly show themselves in terms of trust and alienation (or
estrangement). We can distinguish between two modes of trust that come into view in my research
on computational media. One of themwe can call trust in the software, while the other can be termed

81

5. SoftwaRe and computational media

trust through the software. In the case of the computational lab book, even if participants felt trust
in the software itself, there were still issues regarding the mutability of both software and data. The
conventional paper-based lab books (and to some degree their digital counterparts, e.g., Conflu-
ence) have certain properties that lend themselves well to research. Most prominent is probably
their immutability. Several participants expressed concerns that since everything is editable in com-
putational media, the conventional ways of resolving issues of, e.g., data provenance and intellectual
ownership had potentially been eroded. While WebstRates’ descendants all have a versioning sys-
tem that could in theory solve this issue, not even experienced programmers trusted the versioning
system. One group in inquiry 5 resorted to manually copying their code to a document in Google
Docs to create a safe space for their code. Another participant in inquiry 5, P3, mentions how they
missed git as a safeguard for their code.

These issues of trust are likely a consequence of the distribution and delegation inherent in contem-
porary computational media. Since the entire medium is persisted and self-contained at a distance,
participants seemingly experienced a lack of control. N11 of inquiry 3 extended this trust issue to
remote servers in general:

The thing is …if one of these computers break down, maybe all the data is gonna …if it’s
stored in some kind of server. That’s a problem I can think of. Maybe it’s stored somewhere
else. Probably, yes, but I have no clue. (N11, inq. 3).

This is supported by N10 who discussed the safety of having “local files”. Probably, this is not a prop-
erty of computational media per se, but a consequence of delegating data storage and computation
to an (untrusted) actor, for instance the computational lab book. However, as computational media
strive for the unification of data, computation, interaction, and interface, this problem clearly extends
into their concrete work domain.

An interesting counterpoint came from another participant in the same study. It seems that trust in
a person can be delegated into the material itself:

Interviewer: “(…) and the [script] is one of the scripts that the lab provides?” N10: “Yeah,
it’s one of [remote coworker’s] scripts” Interviewer: “And you don’t do PERL, I’m assuming,
so they just gave it to you, and that’s just what you’re using?” N10: “Exactly.” (N10, inq. 3).

The scientist had previously explained how he does not understand the script, but the fact that it was
written by a trusted coworker gives it legitimacy and fosters trust. Sometimes, the lack of trust is a
product of past expectations not being fulfilled:

And that can be a little counter-intuitive because I think, like, well, my basic thought is
“okay, I have this DOM that just synchronizes”. And then all of a sudden, then it doesn’t
actually do that. (P4, inq. 5).

This does not necessarily lead to breakdown and resignation, but it may subvert their expectations
of the artifact based on previous experiences with CodestRates v1. Another user-programmer, in
contrast, discussed this subversion of expectations in a more antagonistic way: “Why to add this new
thing? What is it giving me? It’s like I’m fighting with the tool” (P3, inq. 5).

P3 seemingly experienced some form of estrangement from the software. It is not just a matter of
trust, it’s a matter of fighting. The estrangement from the software and the subversion of expectations
can potentially lead to negative self-concepts:

we lost a lot of time on the fact that it doesn’t provide any help. I mean, if a variable is wrong
or something. And also that we happened to create something stupid where we accidentally
swallowed some of our errors (…) And any other editor would indeed catch that and say
“hey”, but there wasn’t anything to help with that here. (…) I mean, we had error messages
that didn’t make sense at all. (P4, inq. 5).

82

5.5. Findings, or how computational media mediates

P4 mentions that they did something “stupid”. It is not clear if they extend this to mean that they are
stupid, but they clearly expected an editor to be able to catch a syntax error. In this sense, the com-
putational medium enters the uncanny valley of being an-IDE-but-not-really. In the more extreme
cases, the alienation of software might even lead to resignation:

So now I’m following this tutorial on how to use this other script, and it doesn’t work and
that’s it. I have no idea what to do. I don’t understand how it works at all. (N11, inq. 3).

While this quote does not address computational media but scripts, it nonetheless perfectly illustrates
the ultimate consequence of alienation from software: a dead end. This kind of computational disem-
powerment are elaborated in the next chapter. One way of overcoming resignation in the design of
computational media is to allow for different levels of engagement.

5.5.6 Levels of abstraction

The lab book introduced a level of black boxing to the computational medium. By providing layers
of abstraction and mediation, different modes of interaction was made possible. For instance, one
could use the lab book without programming at all by dragging and dropping reified instruments
onto the conceptual workflow represented in the medium. The object of work is, then, the RNA
representation itself. However, it is also possible to alter the scripts embedded in themedium, moving
into the territory of programming for computation. Finally, if one has the capabilities, it is possible
to change the medium itself, reprogramming its interface and behavior to suit one’s needs. Through
the composition of scientist, medium, scripts, and server, an empowered scientist emerges.

The extra abstractions provided in CauldRon and CodestRates v2, however, were not solely posi-
tively received:

Because in every other aspect, a traditional editor is better than the CodestRates editor (…)
Because it’s adding abstractions that I don’t need. (P3, inq. 5).

First, it is quite clear that P3 did not readily distinguish between the editor and the medium as a
whole. Second, the introduction of fragments as a conceptual entity did not sit well with P3 who was
familiar with both previous iterations of the *-stRates family and conventional IDEs.

Another participant in inquiry 5 seemed to appreciate the easy setup provided by the black boxing
of the infrastructure:

(…) for these, sort of, little prototypes because it’s just easily accessible and such. I think
that is really nice, and also because I hate setting things up. I just don’t want to spend my
life on that kind of things. And just the fact that it just runs. (P11, inq. 5).

In fact, one could argue that this is an example of delegation of complexity. By abstracting away some
infrastructural complexities for user-programmers, the creators of the medium have dealt with com-
plexity and delegated these concerns to a central server. The central server is similarly responsible
for the ease of sharing and the possibility of CodestRates to be multiple things at once.

5.5.7 Computational media as shared artifacts

Computational media are not shared artifacts. At least, not in the same way that, for instance, a
whiteboard is. A whiteboard has an ontological unity: It is one thing, one area of concern, that
inhabits the world in a certain way. In contrast, there is a particular multiplicity to WebstRates-
based computational media. The artifact can be shared between multiple clients, yet some parts are
not fully shared.

And at one point we were trying to use a JSON fragment to share things (…) but it didn’t
work, and I don’t remember exactly for what. (…) and that’s not the model of CodestRates.
You don’t share state, yes, you only share view. (P3, inq. 5).

83

5. SoftwaRe and computational media

At the same time, having a shared object of work was hailed by the same participant: “(…) you open
a fragment, and you can see who is touching it, that was nice.” (P3, inq. 5). This is an example of medi-
ated collaborative action, perceived through hints in the interface. However, the same collaborative
feature of CodestRates v2 turned out to be less than ideal for another user-programmer: “(…) it
would have been difficult to sit and develop in two places in the file at the same time” (P4, inq. 5).

This way of remotely sharing a medium across the web can be conceptualized as a complex mediation
in which multiple artifacts and humans are enrolled. Not only are there two or more people involved,
but protocols, programming languages, servers, databases, web browsers, and a multitude of other
things are necessary to cocreate the illusion that everything works seamlessly. Sometimes, though,
the illusion was broken, and the distribution of activity across the network failed:

(…) and I mean, it’s really cool that everything is collaborative and that everyone can change
the code and such, but it also makes it necessary to coordinate in quite a tough way. I mean,
it was actually almost necessary for us to be sitting in the same room. (P4, inq. 5).

This is not by necessity a purely technical issue, nor is it a human error. Rather, the breakdowns
happen in the multiple, complex mediation between remote user-programmers and the medium that
is at once both one and more entities. Another participant argued against P4, saying that the benefits
of CodestRates v2 are most clear when collaborating remotely. Evidently, the complex mediation
is unstable, and its meaning is contested across user-programmers.

Only rarely was the difference between final and interim media verbalized by participants. One
exception is P3 who liked,

the immediacy, how easy it is to share a link and let the other person experience the final
thing … that was much better in CodestRates than with traditional code. (P3, inq. 5).

P3’s comment further points to an interesting insight about themultistability of computational media.
The same medium is, simultaneously, a work in progress and an artifact to be shared and used. There
is no inherent ontological difference between them, as a simple click of a button enables the switch
between two modalities that both coexist in the same conceptual and visual space. This is likely
one of those characteristics that allows computational media to land in the uncanny valley between
development and use.

5.5.8 The uncanny valley of computational media

The contemporary computational medium seems to sit squarely in the thing-but-not-quite domain.
As people engage with the medium, they try to make sense of it through previous experience and
mental models. The look and feel of CodestRates v2, for instance, lends itself to be interpreted as a
conventional IDE:

It has significant enough functionality that I begin to be annoyed at “Oh, but why isn’t this
like VS Code?” Which it looks exactly like, but except for this and this. (P1, inq. 5).

Clearly, the semiotic aspects of the meeting between user-programmer and software draws from
both human expectations and the meaning inscribed into the system by the developers. Yet things
do not seem to properly fit. The software’s inscription leads to estrangement. Other concepts from
CodestRates v2 present different issues, because they have no existing basis for their conceptual
blend. For instance, both P11 and P12 in inquiry 5 emphasize their difficulty with making sense of
the notion of fragments. P12 later draws an analogy to fragments from web technologies and the
desktop metaphor: “‘Insert DOM element’ (…) it’s really just a folder with some files inside” (P12,
inq. 5).

This mental model seemingly works for P12, even if the actual code fragments are neither pure DOM
elements, folders, nor files. The abstraction of code snippets into fragments both represents a con-

84

5.6. Computational media as technical imaginaries

ceptual breakdown and leads to a remapping of the software’s inscription. In this way, P12 manages
to align his mental model with the metaphor of the medium.

In the history of WebstRates towards CodestRates v2, I see a development from software-as-
document towards software-as-IDE-but-not-quite. The different media are inscribed with particular
narratives that seek to make sense of the system. Sometimes, though, the narratives fall short:

(…) we didn’t quite know what autorun20 does and what’s, kind of, the connection between
the editor and the whole, kind of, like- yeah, what’s different about programming here and
programming in other editors. (P5, inq. 5).

Another user-programmer, P3, did rationally understand what the same autorun functionality does.
It just does not align with his expectations of either a computational medium or an IDE, between
which CodestRates v2 sits uncomfortably:

For example, all the auto on run …completely bananas to me. Even if I understand the
concept (…) It is out of my execution model (P3, inq. 5).

The computational medium thus presents itself as something in between. Not quite one thing, but
also not quite another. It is simultaneously a website, an infrastructure, a document, an application,
a medium, a development environment, and a runtime environment. It both embodies an ontological
multiplicity and semantic instability, switching between possible interpretations. The computational
lab book, on the other hand, was never really problematized by the scientists in the same way. The
seemingly uncanny valley of computational media is likely the cause of trust issues and semantic
shifts. But what is the cause of this uncanniness? I would argue that many of the issues experienced
by user-programmers of CodestRates v2 are caused by imaginaries. As experienced developers, the
participants in the game design challenge drew from experience and expectations to understand the
medium, but this sometimes led to user-programmers inscribing visions into the artifact. These are
not “sociotechnical imaginaries” on a grand scale in the sense presented by Jasanoff and Kim (2015).
Rather, they are impromptu imaginaries, created by user-programmers presented with a vision of
computational media made real.

5.6 Computational media as technical imaginaries

Superimposing a vision onto an artifact leads to technical imaginaries. Some imaginaries are probably
drawn from a collective, cultural memory, whereas other things are likely made up in action by the
user-programmer. For instance, the issue of synchronizing state across clients presented some user-
programmers with conceptual issues:

(…) because we probably thought, like, “ah, this is super easy, this part about synchronizing
state, because it’s practically solved for us” (P4, inq. 5).

The self-contained, persistent, and collaborative nature of WebstRates, inherited by its descendants,
represents novel ways of interacting with, and programming through, a web-based computational
medium. P12 even stated that CodestRates v2 mimics “classic web development”. Interestingly,
it seems as if the vision of computational media might lead user-programmers to think that Code-
stRates v2 is “magical”:

(…) it was also the fact that, when you’re sitting in this tool where the application is the
same as the editor and such, then you can really have this idea, or get this sort of feeling,
that “oh, then you can just sit and do all kinds of things and do things and build things
superfast and such” But when things are, like, asynchronous, and it’s an event system and
stuff, then you actually still have to think quite a lot if you want to end up with something

20A built-in feature that toggles if a script fragment is automatically executed upon page load or only when pressing the
“run” button in the editor

85

5. SoftwaRe and computational media

that works in the end. (…) You could get the sense that it’s a bit more free play than it is.
(P4, inq. 5).

Several user-programmers also believed that CauldRon would let them access and edit the runtime
environment in situ, even though the execution model of JavaScRipt does not allow this, or that
an HTML fragment would synchronize with changes to the DOM21. This is in spite of the fact that
the documentation clearly says otherwise. P10 and P12, in different cases, had a conceptual misun-
derstanding of how the runtime environment of JavaScRipt actually worked in CodestRates v2,
despite both of them having ample web programming experience. Contemporary computational me-
dia therefore not only embody multiple possible interpretations as discussed in section 5.5.8, but also
sit uneasily between ideal visions and concrete artifacts. What this means for questions of literacy
and empowerment is discussed in the next chapter.

5.7 Conclusion

While the concept of a breakdown is commonly used to designate events in which a workflow is
broken, I have pointed to several types of breakdown in the preceding chapter. Some of these are
caused by deliberate actions from the user-programmer, while others are an effect of the ontological
instability of the software. A third group is characterized by being caused by the collaborative and
shared nature of contemporary computational media, while yet another comes from expectations not
being met. In the following chapter, I address these computational crises, as I call them, and show
how people engage in various types of recovery strategies, and how literacy and empowerment feeds
into this dynamic.

A conventional postphenomenological analysis would probably draw upon Heidegger’s hammer and
argue that breakdowns are caused by the tool that stops working. Breakdowns are, then, unintended
switches from working through to working on an artifact. However, an important characteristic
of the mediation of computational media is that the technology and the world blend together. In
“conventional” programming, as illustrated in section 5.2, the mediating technology is the IDE, the
punch card, or the wires that are separate from the world, that is, the object being worked upon. In
computational media, however, the mediating technology is the object itself. This has consequences
for multiple elements of mediation such as the ethical, semiotic, and transformative aspects. In the
realization of a vision of computational media, programming the medium has taken on recursive
qualities. CodestRates v2 is a computational meta-medium that can, in principle, be used to create
other forms of computational media. There is, however, a crucial difference between visions of a
medium and the practical implementations of those visions. The coming chapter begins with an
elaboration of computational media as both vision and reality before presenting the full view of
computational literacy and software in action.

21Fragments, as the primary entities, are unidirectionally translated to the DOM

86

Interactive qualities, software mediation, computational literacy 6

In computing, turning the obvious
into the useful is a living definition
of the word “frustration”

Perlis (1982)

aaa

In the preceding chapters, I have answered my research question through an engagement with com-
putational literacy in theory and practice, an elaborate and holistic model of technological mediation,
and mediation analyses of programming modalities in various human-computer configurations. This
chapter will tie these closer together through an empirically grounded investigation of their relation-
ships. This provides an answer to my research question:

Research question How do the mediating qualities of software for programming contribute to the
development of computational literacy?

Based on what I have presented in the previous chapters (chapters 3, 4, and 5), this chapter merges
my research findings to provide a high-level analysis of how computational literacy is enacted and
experienced. Or, in some cases, how it is not. The chapter is sectioned into the following points.

Computational media, visions, and literacy addresses the relationship between computational
media as visions and as practical implementations and how this influences computational lit-
eracy development.

Computational culture is about the importance of sociocultural foundations and how they emerge
in people’s experience with software for programming.

Crises, disempowerment, and recovery strategies are those instances where things fall apart.
Where people’s skills or self-concepts are insufficient, or where the software causes everything
to go awry. Here, more concretely, I provide a view of computational disempowerment where
people are estranged by the software. In the same vein, I present an overview of the ways that
people overcome such obstacles.

Computational empowerment and programming as a craft is about the contrasting instances
in which empowerment is created and sustained through the mediating qualities of software
for programming. The craftmanship of programming is in this vein addressed as a viable path
towards literacy.

A taxonomy of the foundations for computational literacy draws together my research find-
ings and provides a sociotechnical model of computational literacy that takes into account not
only the formal definitions of literacy, but also the mediating experiences and those qualities
deemed important in the software.

Finally, the chapter—and the dissertation—ends with a discussion of the broader implications of my
research for two central fields: HCI and computing education.

aaa

87

6. InteRactive alities, softwaRe mediation, computational liteRacy

6.1 Computational media, visions, and literacy

Computational media are, to reiterate, those software expressions that seek to narrow the gap be-
tween development and use, between application and document. In my research, I have studied how
both non-technical researchers and experienced programmers have used, experimented with, and
developed forms of computational literacies with these tools.

One immediately interesting finding relates to how the nanoscientists experienced the computational
lab book. They quite quickly grasped the environment and became fluid with it. Part of this can likely
be explained by its domain specificity—after all, it was tailored directly to them and modelled on their
existing practices. In general, they seemed to struggle a lot less than with their previous amalgama-
tion of scripts and loose environments, indicating an alignment in their self-concepts between self-
conceptions, prescriptions, and expectations. By bringing the document and the application closer
together in one computational medium, we also brought their tools closer to the object of work:

I think just all this opening and closing of the text editor, the terminal, the folders. Not have
to save it in a folder and the script in the folder. And having a bunch of files. (N8, inq. 3).

N8 vividly discussed the messiness of their existing workflows, tools, and materials. In terms of
the distributional aspect of mediation, our computational lab book was able to gather rather than
distribute. Or, more correctly, the lab book was distributing different aspects of the mediation than
their existing digital tools. Bymoving away from the complex mediation (Bødker and Andersen 2005)
of their previous technical assemblages and limiting the conceptual space of their work, the lab book
would instead come to distribute and black box the executable code of their scripts. In short, the com-
putational empowerment that the nanoscientists experienced was scaffolded by an abstraction from
the concrete code, substituting it for reified instruments in a domain-specific computational medium.
This was illustrated by N11, reminiscing about a previous experience: “I tried to use [OveRleaf], but
sometimes it’s also like …coding. And I don’t understand. I just want a title.” (N11, inq. 3).

N11’s previous experiences with OveRleaf were clearly disconfirmations of his abilities and knowl-
edge. In contrast, the lab book is an example of a medium that allowed them to gain positive con-
firmations as computational users. Were the scientists empowered by our computational lab book?
Most likely, yes, but not as an emancipatory literacy. They most likely did not develop the compu-
tational literacy to really understand, much less modify, the computational lab book. For them, the
lab book’s most important quality was by all accounts its ability to fluently black box the scripts that,
while being integral to their work, were seen as nuisances. The fluency that, according to Kay (1984),
is a key element of literacy, was evident only in their use of the medium as an application, not as a re-
configurable, dynamic, computational medium. This is not inherently bad, though. A good medium
for thinking should ideally allow people with various skill levels and backgrounds to participate on
equal foot (if not on equal level) (see, e.g., Badam et al. 2018). In this perspective, the nanoscientists
can be considered adaptively functionally literate, if not critically literate or empowered. For the sci-
entists, literacy meant being able to work with adequate tools for their actual work. These adequate
tools are successful insofar as they are able to align the scientists’ self-descriptions with their expec-
tations of the tools. In contrast, an interviewee in the CodestRates v2 study discussed her feeling
of agency and control as an integral part of feeling empowered and computationally literate:

(…) for me, the inspirational one for changing, having some alternatives, and have the free-
dom to change your practices, change your routines, is the key in that kind of activity. (P2,
inq. 5).

A related insight comes from my engagement with the students. While they used a CodestRates v2-
based implementation of their weekly programming exercises, none of them seemed to realize that
they were working in a computational medium. For them, the computational medium was just an-
other application: “It’s really a confirmation from the application [CodestRates exercises] with those
checkmarks. I miss that so much” (S3 (pre), inq. 7). These findings suggest that a certain level of
literacy is needed to even distinguish the medium from other applications, much less being able to
understand the vision and its possibilities.

88

6.1. Computational media, visions, and literacy

The vision of computational media is based on the idea that by providing mechanisms for easily
switching between development and use—or even blurring those lines completely—people are em-
powered to change their own tools and develop computational literacy. In practice, it turns out, this
is not enough. As pointed out by Kato and Shimakage (2020), one of the biggest pitfalls of “live
programming environments” is the fact that they “still require the user to have the same level of
expertise in programming as the original program developer” (ibid.). By live programming envi-
ronments they specifically refer to environments such as CodestRates, although CodestRates was
never inherently made for live reprogramming, nor is it a “literate programming environment” as the
authors define it. Nevertheless, extrapolating their arguments to computational media more broadly,
they bring forward an important point: The floors are too high. While the infrastructural aspects of
the *-stRates family are largely plug-and-play-oriented, to actually program the software requires
a certain level of computational literacy. In contrast, the nanoscientists found the floors to be ap-
propriately low, as their computational lab books were mainly being used as infrastructural artifacts:
“Being able to run any language and not have to set up an environment is super useful.” (N11, inq. 3).
Similarly, as we also experienced when constructing the lab book itself, another participant was able
to see the benefit of such an ease of engagement: “It worked really well as sort of a prototyping tool”
(P4, inq. 5).

Another issue is presented when turning the conversation from computability to reprogrammability.
The findings from the retrospective study of *-stRates agree with Kato and Shimakage (ibid.), and
it became clear that “reprogrammable software written by others can be intractable, hard to reason
about, and daunting to change” (Borowski, Fog, et al. 2022). There were also clear examples of par-
ticipants being acutely aware of the need to reorient and rebuild their material intelligence into this
unfamiliar medium, implicitly feeding back into their self-concept, e.g.,

(…) unfortunately, I didn’t have time, too much time, to explore and prepare myself, get
warmed up with the programming tools, etc. And in that sense I am not sure if you are
interested in this level of user for your platform (P2, inq. 5).

And while just giving access to and providing the possibility of manipulating source code does not
guarantee that people actually possess the competencies to do so, a related issue arises around what
kind of interaction is made possible. As sharply captured by P1 when using CodestRates v2: Repro-
grammability is not the same as malleability. Providing access to the code is not enough. Malleability
is an emergent property of technical possibilities, personal motivation, competencies and capabilities,
and trust. Malleability is, therefore, the product of a particular mediation between human and com-
puter.

There is a final point to be addressed regarding the potentials of computational media, particularly
concerning the support for literacy development. Computational media are largely accompanied by
specific visions, prescriptions of what and how software ought to be. The visions can be based on
ideals related to pedagogy (e.g., Logo and BoxeR), empowering users (CodestRates), or transparency
(Eve) In that sense, all visions represent a break with what is and a look towards what could be.
This unfortunately has consequences when it comes to computational literacy. First, computational
media are often one-off software built by individuals or small groups to pursuit said vision. There is no
guarantee of sustained maintenance and development of the system. As argued in chapter 3, a central
aspect of computational literacy is material intelligence (diSessa 2001), the embodied knowledge-in-
action and tool familiarity that people build individually and collectively over time. Computational
media as one-off systems neither offer people the chance to reuse their existingmaterial competencies
nor to transfer any material intelligence to new systems. One participant in inquiry 5 phrased this
criticism of the medium and vision in terms of investment:

For me, it’s not a technical barrier (…) It was a value proposition. I will explain. What I
mean is what is this editor giving me (…) In terms of anything. Compared to my current
tools. (P3, inq. 5).

In this statement we see how P3 addresses his frustration in terms of value and comparison. There
is no new language to learn. The person already knew JavaScRipt and web programming. He was

89

6. InteRactive alities, softwaRe mediation, computational liteRacy

familiar with the vision and the previous iterations of the platform. His competencies as a software
developer are, however, deeply connected to the tools that he uses, and one does not simply substi-
tute for another tool without good reason. His computational literacy is both intellectual capacities
and material intelligence. Even staying within the same software family, participants struggled to
make sense of CodestRates v2 despite their experience with CodestRates v1. One could argue
that the medium itself is not overly important, and that it is instead the underlying concepts that
computational thinking addresses that are important for computational literacy (e.g., Wing 2006).
However, my research suggests that computational literacy is in fact deeply entangled with and
inseparable from the concrete materiality. In my study with experienced knitters (inquiry 8), for ex-
ample, it became evident how they were able to transfer embodied material intelligence from knitting
to programming. Of course, one could argue that the knitters had merely internalized computational
concepts such as loops and variables, but my preliminary findings indicate that they were able to
draw on their knitting experience precisely because it was an embodied material intelligence, not an
abstract cognitive one.

Second, the vision of a computational medium not only defines a scope of possibilities and ideals
of the system. It also carries an implicit promise of what the system can do. It carries particular
expectations for the potential user-programmers. As such, the vision is capable of suspending even
experienced programmers’ understanding of software. In inquiry 5, we saw multiple times how
participants expected the software to take care of, for instance, synchronization of code, even if they
logically knew that the medium was incapable of that. Even those that had become familiar with the
“old” vision were taken aback by the changes in CodestRates v2:

(…) overall this gave me a sort of sense that this set of tools, these CodestRates [v2] and
(…) CauldRon, that they were designs with the standards of programmers in mind, rather
than the vision of WebstRates (P1, inq. 5).

As has become very clear in my inquiries of computational media, the fact remains that no matter
the vision behind a computational medium, the actual software will almost always represent a dis-
torted manifestation of the vision. This, in turn, can cause breakdowns when people’s identities as,
e.g., programmers are disturbed by the disconfirming experiences of unfulfilled expectations. For
instance, the vision behind the WebstRates platform entailed the complete blurring of any lines
between development and use: Whether you are developing or using the medium is an emergent
property of your current activity. In practice, however, most people seem to need a conceptual and
material distinction between those modalities. The transition from WebstRates to CodestRates v2
is characterized by an increasing compartmentalization of use and development.

The in-between materiality of computational media is a double-edged sword. The promise of the
vision and the practicalities of software saw the emergence of two important challenges to literacy
transfer. Some participants embraced the vision and were frustrated when it did not hold, while oth-
ers held on to their existing competencies and were frustrated with the introduction of unfamiliar
concepts and practices, for instance P3 who complained that “(…) it wasn’t compatible with Code-
stRates at the end, so we had a dead end there” (P3, inq. 5). Interestingly, in my research computa-
tional media seemed most promising for those without prior knowledge of or interest in the vision
like the students and the nanoscientists. This can likely be attributed to the importance of having and
sustaining a certain level of computational self-concept among those who already see themselves as
computationally literate. At least part of this finding can probably also be interpreted in the context
of computational cultures which is addressed in the next section.

6.2 Computational culture

The following addresses a condition for fostering computational literacy: The sociocultural environ-
ments of people. Often, particularly in discussions of literacy as computational thinking, compu-
tational literacy is at risk of being seen as an individual feat. Even if we acknowledge the role of
the material, computational literacy tends to be considered in isolation from the broader communi-
ties in which people take part. For instance, Kay’s definition of literacy as fluency is the individual
working on software (Kay 1984). diSessa, in contrast, points to the social as an important pillar of

90

6.2. Computational culture

literacy (diSessa 2001). Computational culture is not limited to discussions of groupware and col-
laboration, either. Rather, computational cultures designate the broader social and cultural condi-
tions for the development of literacy. These cultures can be bound to specific work domains (e.g.,
nanoscience), institutions (e.g., universities), or societies more broadly (e.g., emancipatory versus
utilitarian views of computational literacy). Vee’s perspective on literacy captures this quite well. By
her definition, computational literacy grows from both individual competencies and broader socio-
cultural concerns (Vee 2013). For a historical example of the importance of computational cultures,
consider the so-called Lisp curse that illustrates how social and technological issues feed into each
other:

Lisp is so powerful that problems which are technical issues in other programming lan-
guages are social issues in Lisp. (…)The moral of this story is that secondary and tertiary
effects matter. Technology not only affects what we can do with respect to technological
issues, it also affects our social behavior. This social behavior can loop back and affect
the original technological issues under consideration. (Winestock 2017)

The Lisp curse addresses a computational culture for people who are already computationally literate,
much in the same spirit as Kelty’s concept of the recursive publics (Kelty 2005). However, even for
those who are not as computationally literate, the computational cultures matter deeply, albeit dif-
ferently. For instance, in the case of the nanoscientists from inquiry 3, the computational culture is
very different from the ones found among professional programmers. One participant, for instance,
stated that biomolecular nanoscientists with the computational literacy to produce or modify scripts
are “pretty rare” (N10, inq. 3). Computational culture is not purely social; it is a sociomaterial phe-
nomenon. It frames how people understand themselves as well as the computational artifacts in
accord with values, norms, descriptions, and prescriptions. For instance, one of the nanoscientists
managed to alter a UNIX-based script to make it run on hisWindowsmachine which does, in fact, re-
quire some competencies and knowledge about operating systems and programming languages. Yet
at the same time, he say that he does not have the computational skills to manage his workflows (N10,
inq. 3). There are seemingly cultural norms at play which define what counts as real programming.
We can speculate that the nanoscientists are so used to feeling disempowered with regard to their
computational artifacts that they never feel computationally literate as a result, thus not being able
to see themselves as “real” programmers in the process. This is at least partly backed up by N11, who
argues that programming is a “whole other career”. The consequence is that the scientists’ computa-
tional culture is characterized by a dependency on cutting-edge computational tools such as scripts
to do their job, yet without a tradition for training scientists to have these skills and competencies.

Whereas the participants in the game design study were largely all experienced programmers, the
students and nanoscientists could more accurately be described as belonging to quasi-programming
communities than part of a programming community proper: They are not programmers and do not
see themselves as such on a cultural level. According to Tissenbaum, Sheldon, Seop, et al. (2017),
computational identities develop from learners seeing themselves as programmers and feeling that
they are engaged in the authentic practices of programmers. This is evidently not even happening
for the programming students: “I don’t think I would ever see myself as a real programmer, even if I
could do everything” (S2 (pre), inq. 7).

Even the experienced programmers saw the need for more established spaces and communities for
helping each other: “So maybe some kind of community where people put their problems …could be
something that solves [technical issues]” (P3, inq. 5). Likely, this can be attributed to them being
used to having a community of peers (if not in physical form, then on StackOverflow). The students,
in contrast, engaged in the formation of a classroom culture in which students shared successes and
failures and helped each other: “we ride together, we die together” (S1 (pre), inq. 7). This is elaborated
further in section 6.4.1. The computational culture of the nanoscientists seems to have stagnated in
a resignation that they can do just enough (using whatever workarounds necessary), but will not be
able to become truly literate:

And I think [head of research center] is really keen on getting everyone more up to speed
on the basics, enough so they can troubleshoot the error on line 2765 or whatever it was (…)
[head of research center] wants to put the scripts online on a server and go further with this

91

6. InteRactive alities, softwaRe mediation, computational liteRacy

database. And that’s some advanced programming that we as basic users cannot do. (N10,
inq. 3).

This clash between their self-concepts and others’ expectations is reflected by N8: “Yeah, we don’t
code much in this lab. We should, but…” (N8, inq. 3). The pedagogy of formal computing education
often advocates the use-modify-create progression (Lee et al. 2011). Yet it seems as if this progression
is not a given outside formal education and without an associated pedagogy and didactics. An inter-
esting perspective to this comes from a study of Danish information workers, where it was found
that more people know how to program than to modify existing software (Nouwens and Nylandsted
Klokmose 2021). Section 6.8.1 discusses this further.

A much more concrete aspect of computational culture comes down to collaboration. When the
programmers from the game design study had to work together in an unfamiliar environment, they
needed to establish a culture of collaboration through in-group negotiation, as stated by P4. Similarly,
P12 mentions how:

It’s not quite in the same way as Google Docs where you can, like, have your own territory
inside Google Docs. Here it is verymuch in a waywhere you are dependent upon one another.
Otherwise, it won’t compile, and it doesn’t run. (P12, inq. 5).

This is an interesting contrast to the more established structures that programmers are often used to,
for instance versioning systems like git and SubveRsion. The findings presented in this section are
indicative of the need to create sociotechnical cultures in order for computational literacy to develop
and flourish. This is discussed further in section 6.7. In the following section we see what happens
when people’s computational competencies are insufficient and how they engage in various strategies
to mend.

6.3 Computational crises

As argued by Hertzum and Hornbæk (2023), frustrations are still important challenges in HCI re-
search. This section explores frustrations and crises as products of computational literacy, material
intelligence, and themediating qualities of software artifacts. As a starting point, we can, for instance,
see frustrations grow from the lack of control over software as experienced by nanoscientists. N11,
for example, says that,

if you change the script for some reason, and then it just keeps lying around there. With so
many copies of these scripts around, you get confused in the end (N3, inq. 3).

The accumulation of what could be called residual artifacts creates feelings of confusion and annoy-
ance, as also evident from another scientist:

So I would get a folder with my sequences and that was really convenient [with the old
script]. All my sequences wrapped up in one folder. (…) But with the new tool [script], they
just give you too many subfolders, one folder for each. So the output is this really tedious…
(N8, inq. 3).

These frustrations are not due to computational media. In fact, they were largely solved by the
computational lab book as shown in chapter 5. Nonetheless, the examples illustrate the importance
of control which is addressed further in section 6.7. They also exemplify computational crises, albeit
of a mild character. Sometimes, though, these frustrations escalate into feelings of disempowerment
by not being able to reasonwith or work through those frustrations. When that happens, people seem
to resort to a few distinct strategies. The following section presents key examples of computational
disempowerment and an investigation of the strategies used to counter them.

92

6.3. Computational crises

6.3.1 Computational disempowerment

In the meeting between software and human, it seems as if some people blame themselves for their
difficulties. One programmer, P2, who never finished the game design challenge and struggled to
make sense of the unfamiliar environment, stated that,

there would have been quite a few things where I would just have thought “it’s probably
because I’m super stupid and don’t know how to program” (P2, inq. 5).

P2 created a new potential identity as “stupid” which could perhaps be attributed to low self-efficacy.
She did not, however, blame the software and the design decisions behind it but herself. Several
students similarly talked about the frustrations of programming:

I was ill all of last week and had to, for the first time, sit and do, like, a full week’s curriculum
and the assignment at home by myself. And it was awful, and I didn’t understand it at all
(…) But I think it was frustrating to feel that way, that I really did everything I could to try
and understand it, but I couldn’t (…) (S2 (post), inq. 7).

This sense of being stuck was mirrored by another student who emphasized the lack of material
intelligence: “when you have to sit and do it, then it’s just like, then it’s just a black screen” (S3 (pre),
inq. 7). The lack of computational literacy turns programming into a difficult task that cannot be
reasoned about. This lack of literacy similarly affected several of the nanoscientists who were also
not capable of helping themselves:

So now I’m following this tutorial on how to use this other script, and it doesn’t work and
that’s it. I have no idea what to do. I don’t understand how it works, at all. (N11, inq. 3).

Despite enrolling a more capable peer as delegated knowledge in the form of a tutorial, N11 is not
capable of moving on. This feeling is echoed by N10 who tried looking at a faulty script, and “that’s
about as far as I got. Because this means nothing to me” (N10, inq. 3). N11 had issues with installing
a virtual environment, was not able to figure out why it did not work, and described it vividly:

I don’t really know why. So at the end, I think I managed to install it in some other way.
But it was just painful. More pain. (N11, inq. 3).

Even those participants with programming experience were challenged through a disruption of com-
petencies. Several people from the game design study experienced this in a variety of ways, whether
in the form of mental models, skills, or habits. P3 acknowledged that a lot of the issues that he ex-
perienced were “actually minimal things” (P3, inq. 5). Yet, he was still affected in the development
process to such a degree that it outweighed the perceived benefits of a new system. One of P3’s
issues was, for instance, a mismatch between the software patterns that he knew and the affordances
of CodestRates v2. This was echoed by P4:

(…) so the patterns that you’d normally use (…) I mean, you don’t have a sort of basic
architecture to fall back on. (P4, inq. 5).

Especially debugging and reasoning about code proved difficult in an unfamiliar environment. A
programmer, P6, explains how he experienced bugs that he could not pin down and were not sure
whether they originated in their own code, in the CodestRates platform, or their externally loaded
libraries. P12 similarly explained how the lack of line numbers presented significant challenges to
existing skills, which was also discussed by P1: “(…) and [CodestRates v2] completely removes my
ability to use the debugging practices that I’ve learned as a semi-professional programmer” (P1, inq. 5).
Even in the computational lab book, at least one scientist was missing his usual terminal environment
for debugging practices. Although not a programmer, he had seemingly developed a “sense” for
errors: “sometimes for [scripts], I understand because I faced [the errors] multiple times” (N11, inq. 3).

93

6. InteRactive alities, softwaRe mediation, computational liteRacy

6.4 Strategies for workarounds and recovery

Having presented a variety of computational crises, the following section presents workarounds,
recovery strategies, or other ways of handling a lack of computational literacy in practice. As beauti-
fully phrased by N8: “But then I found a workaround. Because that’s what you do.” (N8, inq. 3). The
strategies presented here are not equally distributed; some, like the enrollment of a more capable
peer or giving up, are more prevalent than others. This is not a ranked list, either, but it serves to
illustrate the ways that people make sense of and navigate the situation when challenged on their
computational literacies by the material conditions.

6.4.1 More capable peer

One quite common strategy for all participants is the enrollment of a more capable peer (Vygotsky
and Cole 1978, p. 86). For instance, P3 of the game design challenge enrolled not just any peer, but
the actual developers of the medium:

Well, we were trying a lot of ideas on how to overcome this, sharing the model (…) we talked
with the developers. They gave us a little code that was stripping the protected mode, so we
could share (P3, inq. 5).

Whereas P3 enrolled developers to teach him how to fish (as per the idiom), N11 instead asked the
more capable peer to give him a fish. The nanoscientists had access to an HCP1 cluster for heavy
computations, yet this was not an option in practice for N11:

I ask [external collaborator] to do it. I just needed to do it once, and he just did it for me, so
I don’t really know how to do it. (Interviewer: “So you need to run something, you send it to
a person, and they send the output back?”) Yep. So it would be nice if I could do that myself.
(N11, inq. 3).

This not only happened when faced with HPC computation, but also when he was working with
those scripts that are so important for their work:

(…) and it works for him, but it doesn’t work for me. (…) So what I do is, I try to design the
pattern that I think is going to fold in the way we expect, and I send it to him, and he runs
it, and he’s like “no”. And then I go like, “ok” [*laughs*] (N11, inq. 3).

In the original study, we found that the nanoscientists expressed a great deal of computational dis-
empowerment. As their work depended on state-of-the-art computational tools without having the
expertise to operate them properly, the scientists were often left to their own devices, unless they
were able to enroll a more capable peer to help them. These were just two different ways of enrolling
a peer. The first was knowledge sharing between programmers with different experiences; the sec-
ond was the total delegation of programming to a peer. There are, of course, other ways. Enrollment
of a more capable peer through textual documents is one such option:

[Coworker] wrote a basic tutorial on how to execute these scripts and what kind of output
they like and that kind of stuff. (N10, inq. 3).

Especially the students brought up the need for enrolling more capable peers. S4, for instance, called
them her “safety nets” and even places them in a tiered hierarchy, between study group and class. S2
and S1 agreed with this and address the necessity of working with others to overcome being locked
into “a certain way of thinking” (S2 (post), inq. 7). Interestingly, several students were highly aware
of their particular situation as students and the ambiguous effect of enrolling a peer:

1High-performance computer

94

6.4. Strategies for workarounds and recovery

There is always someone you can get help to assignment from, but then I just don’t feel that
I learn it. I mean, at least I don’t. I need to sit with it at home, and then I need to sit with it
on my own (S3 (post), inq. 7).

This was clearly a very loaded situation for the students, one that demanded balancing amore capable
peer with the development of their own literacy. S4 explicitly discussed how it “sucks” to be the one
who always needs help, while S3 said that it’s a “give and take situation” (S3 (pre), inq. 7). A different
experience was recounted by S2:

And I think I have slowly started to realize, like, it doesn’t necessarily have to be that way.
That it’s acceptable to, like, need help with programming (S2 (post), inq. 7).

All of these statements clearly indicate that the relationship between their self-concepts, their com-
petencies, and their social worlds were complex and evolving. Only a few times did the students
mention the teacher as a source of help, and then typically phrased as someone who is able to cast
the runes: “[The teacher] presses something (…) or puts the right semicolon, and then it works all of a
sudden” (S1 (pre), inq. 7).

Despite their intentions, the inclusion of a more capable peer is not always helpful. It could be the
case that the capable peer is not that capable after all, as recounted by N8:

(…) and then sometimes it just gets stuck. Like this one. (…) I asked [coworker who wrote
the script], and he doesn’t know either what’s going on. (N8, inq. 3).

Or, it may be the case that just the physical presence of a more capable peer might present difficulties:

I mean, it made sense for me, I would easily be able to do it myself, but when I sort of sat
there about to do it together with my dad, I was just like “is this right?” (S2 (pre), inq. 7).

While this might also be attributed purely to their interpersonal relationship, it does point to a central
finding. A more capable peer is often necessary to develop computational literacy, but the enrollment
needs to happen in a way that aligns with the expectations, self-concept, and competencies of both
parties.

6.4.2 Documentation

As a bespoke, one-off computational lab book, the nanoscientists did not have any written documen-
tation of the system. Interestingly enough, none of them seemed to need it. This can perhaps be
attributed to our instrumental interaction approach and the fluency of interaction that they experi-
enced. Their existing patchwork of scripts and environments mainly consisted of custom software,
so it might also be the case that documentation was simply never a part of their lifeworld.

The programmers in the game design study only rarely turned to the documentation for Code-
stRates v2. They were explicitly asked in the interviews, and only two of the 12 participants had
used it (P3 and P9). This is in spite of the fact that all of them had programming experience. The be-
havior is therefore difficult to explain purely from an experience point of view. What is more likely
is that many of them relied on their existing material intelligence, being able to reason their way
through by drawing on competencies that they developed with other software.

6.4.3 Replaying steps

An interesting strategy was employed by a group in the game design challenge (P6 and P8), who took
advantage of the fact that the computational medium allowed for cloning existing work.

So, at some point we produced a state that didn’t run anymore and again didn’t work, and
we couldn’t recover from that. (…) But what we did instead was just, since we’re working

95

6. InteRactive alities, softwaRe mediation, computational liteRacy

with this tank game that was already out there, we just cloned another webstRate and then
added our code, checked if this part works, and if it did, we added the next part. So basically
replayed all our changes up until we ran into the bug again. (P8, inq. 5).

While seemingly challenged on their competencies, they were able to reason their way out by us-
ing the affordances of the medium in a truly mediating experience of actions and feedback, i.e., an
ongoing conversation with the material (Schön 1983).

6.4.4 Incorporation of other artifacts

Another strategy seems to be the incorporation of other artifacts, whether physical or virtual. For
example, to be able to run the software needed for his workflow, N11 used two different laptops; one
running macOS and another running Windows. Had N11 been more computationally literate, he
could perhaps have managed to run a virtual operating system through, e.g., Wine, which he tried
and could not:

So it’s something I can’t run on here unless I have a virtual machine and when I tried to
install it, obviously problems as well. So, I don’t know, it didn’t work (N11, inq. 3).

Yet his current workaround was seemingly adequate for his competencies. A related move was acted
out by N8 who had a script that was running in JupyteR. When his Python installation stopped
working, he switched to a different script that was less good rather than figuring out how to reinstall
Python:

It’s just convenience, just a matter of convenience. (…) you have to take some time and
reinstall it. Or just use another tool. So far. I’ve just been using another tool. (N8, inq. 3).

It seems that N8 felt confident enough in his own competencies to be able to reinstall an environment,
and that it was more a question of convenience. He did not, however, seem similarly confident in his
programming competencies:

Yes, if I had the skills [to edit scripts] that would be nice. But now, I either try a different
script, or I hack the structure a bit. (…) [coworker] wrote different versions, so you can just
go back a version, and it helps. (N8, inq. 3).

The incorporation of other artifacts is perhaps a subcategory of a larger strategy of adaption of work
to the concrete material circumstances. This can happen through the recruitment and use of known
and trusted technologies N11, for example, enrolled other familiar artifacts for sharing files, even
though he was aware of the potential issues that this could bring:

I think the issues usually arise because we try to share files in an old school kind of way,
sending it by email. Or maybe using a USB. Or maybe uploading them in the lab book
[Confluence], and then the other person kind of downloads them. (N11, inq. 3).

Even more experienced programmers adapted this strategy. P9 and P10 enrolled Google Docs as
an improvised versioning system, copying and pasting code as a safe backup. This was likely a
consequence of the ethical aspects of the mediation—a lack of trust and confidence in the new and
unfamiliar medium presented to them. A very interesting type of workaround happened when P5
enrolled the medium itself:

So what I ended up doing and becoming happy about, it was this [*shows two tabs with the
same codestRate*]. It then has other consequences, but I did that a lot. Then I used this
“edit”, where you can maintain your context over here, right? And then you can refresh over
here, right? (P12, inq. 5).

96

6.4. Strategies for workarounds and recovery

By playing along with the affordances of the medium, P5 managed to enroll a different modality of
the same software by exploiting the shareability of CodestRates v2. These “other consequences”
recounted by P12 were, among other, an erosion of the server’s ability to count and manage clients.
This hack is a very clear example of the multistability of computational media. There is not “one” ar-
tifact which might change over time (as in traditional software development) or a distributed process
(as in git), but a strange, simultaneous doubling in which the artifact can literally be several things
at once.

6.4.5 Fall back on manual workarounds

N10 manually added an inordinate amount of spaces to a textual molecule representation by hand:

I think this is one of those things where it’s definitely not the most efficient way of doing
this, but it’d take me longer to find a more efficient way, so this is what I do. (Interviewer:
“Does anyone do something different in the lab?”) I don’t think so. (N10, inq. 3).

He knew that it was inefficient, yet the lack of competencies and not having a more capable peer
around made it necessary to get the work done in whatever way he could. In extension of this, N10
also had a faulty script that was supposed to check the validity of an RNA structure. When that did
not work, he used the textual representation of the structure to reason his way around the structure,
in effect playing computer in his head. Sometimes, however, there are seemingly no solutions to
people’s issues, and one way out is to simply give up.

6.4.6 Give up and move on

The examples presented here are not directly related to the act of programming but are more infras-
tructural. As argued by Vee (2013), this infrastructural aspect is also central to computational literacy.
N8 had, for example, issues with a script that kept getting stuck in an infinite loop. Lacking the com-
petencies to investigate, debug, and fix the problem, “I just give up. This way, at least, it takes up less
of my computer” (N8, inq. 3). Further, N8, just like N11 mentioned earlier, had trouble with using
multiple operating systems on the same machine. He was also not able to make it work, but instead
of incorporating another machine, he once again coped by giving up:

(…) and I couldn’t get it to work at that time. Probably because it’s for, like, Linux, and my
Windows just didn’t. So I had to either do a virtual machine, get Linux, and do it from
there. But then I just gave up and didn’t do it. (N8, inq. 3).

Resignation seems to be a very common strategy, at least for thosewho are not part of a computational
culture with peers that can help. People seemingly also adapt their work practices to account for their
missing competencies like N10 did:

I tried to get it to work on my home computer and ran into some difficulties and decided to
just give up and that it’s better not to work from home (N10, inq. 3).

6.4.7 “The ostrich”

Finally, this strategy is one I have humorously called “the ostrich”. N11 had some problems with his
computational environment, i.e., his Python installation. And even though he knows that something
is wrong with the environment, he argues that,

(…) every time I open [the terminal] it tries to do it, and it doesn’t work. Everything seems
to be working fine, so I’m not going to worry about it, but … (N11, inq. 3).

97

6. InteRactive alities, softwaRe mediation, computational liteRacy

aaa

It is very likely that at least some of these findings are specific to computational media. Due to
the bespoke nature of most computational media, there are often limited ways of recovering from
breakdowns, as there might be a lack of documentation and no community of more capable peers,
which, combined with the unfamiliarity of the medium, provides a recipe for breakdowns. Especially
regarding the enrollment of more capable peers, it is interesting to note that these people are often
researchers who are not permanently present. Researchers leaving the site and stoppingmaintenance
of their artifacts is a well-known challenge in HCI (Hayes 2011; Taylor et al. 2013), and this problem
is likely exacerbated by the dual roles of researchers as observers and researchers as more capable
peers. As illustrated, there are plenty of times when the mediating qualities of software and people’s
competencies clash, leading to disempowerment and crises. In the following section, on the other
hand, the opposite situations are elaborated.

6.5 Computational literacy in action

Sometimes, people’s perceived and actual competencies align with their tasks and goals. In the fol-
lowing, I use the term computational empowerment in the sense of mastery, competence, and literacy.
I am especially interested in those moments where people experience confirmations from the medi-
ating experience that feed back into their self-concepts. While the knitters were not always aware
of it, in first decode and recreate activity (inquiry 8), for instance, some participants realized that they
could improve their knitting recipe by introducing loops, indicating in situ development of their com-
petencies through confirmations from the environment. Unsurprisingly, many of these confirming
experiences are associated with the students interviewed in inquiry 7. For example, S1 literally talked
about a digital epiphany in which he suddenly realized both his own potential and the importance of
programming as a literacy. This was supported by S2 who had previously used math software in high
school: “There were some things in Maple that suddenly made sense to me” (S2 (pre), inq. 7). This is
a sign of computational literacy as materially grounded competencies; not as abstract concepts but
linked with concrete materiality and practice. We see a similar development happening with S4 who
reflected on the material intelligence that she was in the process of developing:

I have already started to think a little about, like, what goes on behind a website that I’m
visiting, or what exactly happens when I click this (…) “Well, I wonder if it’s an array that
comes here?” (S4 (pre), inq. 7).

S4 was not thinking about abstract computational concepts, but a reified data structure that made
sense to her. Empowerment is arguably, like computational literacy, tied to the concrete materiality.
S2 similarly focused on the material conditions when stating how

Just this thing about the screen turning black [i.e., using the terminal], just that made it feel
more real or something (…) Being able to access folders from our file systems. It became a
little more real, I felt (S2 (pre), inq. 7).

For computational literacy to develop, as argued in chapter 3, it requires the development of a being-
in-the-world that is able to align competencies, practices, and material conditions. It must feel “au-
thentic” as also emphasized by (Tissenbaum, Sheldon, Seop, et al. 2017). Empowerment is the condi-
tion of being able to align these aspects and feel competent. One participant in the knitting workshop,
for example, expressed her surprise that programming was “really this simple”. This was supported
by other participants, e.g., “if you can knit you can also program”, and the realization that—at least
for them—the programming interface was more user-friendly than a knitting recipe.

Even if the students or the nanoscientists did not express any sense of being “true” programmers,
the students were able to see themselves as becoming something else than their “normal” peers. For
instance, S2 mentioned how she thought it was cool to be able to “open people’s eyes a little” (S2 (post),
inq. 7). Although not a true programmer by her own account, she had seemingly still taken on an
identity of someone with more knowledge and skills than others, apparently beginning to develop an
emancipatory computational literacy. An important aspect of computational literacy as Bildung and

98

6.6. Embodiment and programming as a craft

empowerment is the ability to reflect on one’s own capabilities. S4 and S5, for example, emphasized
the importance of being able to read code found online and reuse it for their own purposes. Here, the
students conceptualized their literacy as digital literacy, the ability to find and decode information. It
seems that for learners, different literacies (e.g., digital literacy, computer literacy, and computational
literacy) are indistinguishable from each other. The same image was painted by nanoscientists who
did not readily discuss the differences between, e.g., programming, setting up environments, and
using other tools. To them, these activities are more like points on a scale than different modalities.
It further became quite clear that the nanoscientists did not necessarily lack programming skills.
Rather, they lacked the competencies to manage the complex computational environments necessary
to run the scripts and software that they amassed to do their work.

One key aspect of computational literacy as mastery and empowerment is the ability to feel in control
and express agency. A student, S1, had a previous image of programmers as being “nerdy”. According
to him, at some point he suddenly realized that you can “make it what you want to” (S1 (pre), inq. 7).
Whereas S1’s feeling of agency comes down to the larger goal and activity of programming, a similar
expression of agency regarding thematerial conditions was expressed by a nanoscientist, N8. A script
he used has clearly inscribed plans of use, but N8 ignored these due to a combination of personal
preference, contextual knowledge, and, very likely, a need for ownership and agency:

Yeah, it’s because [coworker] has this, like, “forbidden” written in, where you can’t have
duplicates of the same sequence. (…) like, RNA-wise, it makes sense. But for some of these,
it doesn’t. I kind of like having duplicates. So it’s like, I put them in, anyway. (N8, inq. 3).

An experienced programmer, on the other hand, felt a lack of control due to the idiosyncrasies of the
computational medium, in particular the encapsulation and black boxing of parts of the medium:

But also the CauldRon sort of relative sophistication sucked a bunch of my work, a bunch
of my labor into this context that I don’t have full control over (P1, inq. 5)).

Agency and empowerment as tied to literacy also emphasizes the importance of enjoyment. Not
as a feeling of fun, but of being in control. As Kay (1984) argues, literacy is (also) about fluency.
Going back to section 6.3, Hertzum and Hornbæk (2023) found that frustration in computing was
correlated with task importance and lost time, but not with computer experience or computer self-
efficacy. This indicates that fluency and control rather than expertise are important to avoid those
feelings of frustration which can hinder literacy development.

6.5.1 Fluency and enjoyment

Among the participants involved in my research, enjoyment was attributed to feelings of competence
and meaning-making in the activity and to fluency in the interaction itself. Regarding programming,
a student mentioned how she prioritized the programming course over other courses, seemingly not
due to any perceptions of its importance for future job prospects but simply because of the enjoyment
of the activity: “(…) maybe I’m spending a lot of time on [programming], but it makes sense and I
actually think it’s awesome” (S5 (pre), inq. 7). The ability to find joy points to a key consideration for
fostering computational literacy as will be unfolded in section 6.7.

Another perspective on fluencywas directed towards the interactive qualities of computational media
and the perceived fluency and smoothness of the internal processes of the artifact itself: “Hey, this
[lab book] went pretty quickly. Nice! Niiice!” (N8, inq. 3). This was likewise stated by P5 in the game
design study who “personally quite like[s] this environment [CodestRates v2]” (P5, inq. 5). Fluency
can also be experienced as a mediating quality. Such is the case of P12 who liked the immediacy and
liveness of the computational medium. In fact, not as an abstract knowledge of liveness but directly
experiencing “all kinds of styling being changed on the codestrate in the background” (P12, inq. 5).

6.6 Embodiment and programming as a craft

Fluency, as a core element of literacy, can also be considered an embodied, interactive experience,
for instance when drawing on a repertoire of keyboard shortcuts or using a computer mouse with

99

6. InteRactive alities, softwaRe mediation, computational liteRacy

a certain resolution and speed. This leads to a notion of programming as a craft, which highlights
the development of a growing familiarity of techniques, tools, and knowledge about the domain. An
example of this is the enrollment of design patterns to solve tasks as was emphasized by P3 and P4 (see
section 6.3.1). While the embodiment of programming is a poor version of the full human capabilities,
it nonetheless matters deeply. For example, it is quite clear that S2’s burgeoning computational
literacy depended on her embodied relationship with the material. Here, she reflected on a written
multiple-choice test from the course:

I mean, we were used to, like, I can declare a variable, it is sort of in my fingers (…) But
then when you get four different [options], where you are, like “oh, I don’t remember if there
needs to be– Oh, each one could all be correct”. Yeah, that’s really, really frustrating. (…)
My fingers can just remember how to declare a variable, but it’s not given that my brain
can, when I just have to look at it. (S2 (pre), inq. 7).

Related to this embodied programming experience are the keyboard shortcuts that become part of
the physical vocabulary of actions in literacy.

Like, I don’t know how many times I pressed CTRL-S to save. Or I don’t know how many
times I just click once to select the editor and the thing I was editing, it was still a previous
tab, so I need to double-click. (P3, inq. 5).

This is a case where CodestRates v2 went against the interaction language so deeply engrained in
the bodily movements of P3. This was also reported by P8 who added that—apart from the built-in
keyboard shortcuts—he was also missing “some macros that I’ve made for myself when developing for
the web” (P8, inq. 5). This is an interesting point, as macros represent a series of actions being dele-
gated to the system. By missing those macros, P8 was forced to manually perform those interactions
previously distributed into the environment. This latter point is a reminder that people shape and
navigate their environments, forming their competencies around those environments. The concept
of affordances has been used extensively in HCI research to understand the room for action offered
by software. In the case of P3 and P8, it likely has less to do with software affordances and more to
do with embodied action. Or, as in the following case of P5, familiarity and trust:

Especially in the beginning, we really wanted to go out in an editor that we already know,
and then write in that and then copy it to CodestRates (P5, inq. 5).

In the KnitxCode study (inquiry 8) we sought to investigate this craft-oriented approach to comput-
ing. While results from the study are preliminary, it seems that treating computing as an embodied
craft allows people to transfer competencies from other kinds of embodied craftsmanship. This is
supported by Curzon et al. (2019, p. 521). One participant mentioned how, according to her, “a pro-
grammer would not be able to make sense of a knitting recipe”, while she could now do both. She
was feeling empowered through the ability to transfer her craft.

Our findings are generally in line with other research on craftsmanship-driven approaches to comput-
ing that emphasize mastery, aesthetics, and the emotional value of creation as driving forces (Buech-
ley et al. 2008; Hyllegard, Ogle, and Diddi 2019). Further, by considering the craftsmanship-oriented
aspects of computing, tacit knowledge becomes clear. P3 explains, for instance, the sort of blissful
ignorance of those who have not developed materially grounded competencies: “I think people with-
out training, they wouldn’t see the versioning problem.” (P3, inq. 5). Interestingly, the same person
later says that he does not “see a person without programming knowledge using this tool” (P3, inq. 5).
This perspective is elaborated further in section 6.8.1.

Finally, by understanding computational literacy as a craft, we can see how this craftsmanship allows
people to reflect-in-action and act accordingly, relying on competencies to manage unforeseen com-
plexities. Being computationally literate means being fluent enough with the material, techniques,
and tools to act with, not against, the environment and its idiosyncrasies. P11 explained how they
accidentally had “autorun”2 activated, and “everything crashed completely”. This breakdown did not

2A feature of the web-based CodestRates v2 environment

100

6.7. A taxonomy of the foundations of computational literacy

affect them as they had the competencies to understand and work around the issue. Later, the same
participant had issues with uploading assets in CodestRates v23 and was able to reflect in action
and handle the unintended complexities:

I struggled a bit with that, and I was, like, “Damn it, did I delete that?” (…) right at the
time, I was, like, “okay, then, workaround [*laughs*], and then just give them 1, 2, 3” (P11,
inq. 5).

Computational literacy in practice seems to rely not only on a material intelligence (i.e., thinking
through and with the material), but also on a much more embodied and tacit set of competencies that
can be expressed as craftsmanship. In chapter 3 I presented computational literacy in theory and
practice. In the following section, I provide a taxonomy of the foundations of computational literacy
based on my research.

6.7 A taxonomy of the foundations of computational literacy

Based on my results presented throughout the dissertation, this final section provides an interim
taxonomy of the foundations of computational literacy. With inspiration from diSessa’s three pillars
of literacy and the definition presented in section 3.3.4, I here lay out a number of themes that any
researcher on computational literacy ought to consider.

6.7.1 Material

The successful development of computational literacy requires adequate material conditions. While
computational literacy is a product of multiple factors, having the appropriate material conditions
goes a long way. I use the term material conditions rather than medium or software, as material con-
ditions are more than just the individual software. They also include, for example, operating systems,
development environments, and loosely organized files, not to speak of the physical materiality such
as screens, keyboards, and other devices (which are outside the scope of this dissertation).

One of the findings from the retrospective trioethnography of the *-stRates evolution was that the
imperative paradigm of JavaScRipt was insufficient. The use of an imperative language demands
that people play computers in their head. JavaScRipt in particular proved confusing in a web-based
environment where everything shares state. It is important for computational literacy that the pro-
gramming language provides the right level of abstraction and expressiveness. This is an ongoing
discussion with plenty of viewpoints (see, e.g., Kelleher and Pausch 2005; Noone and Mooney 2018).
An alternative is the use of declarative or reactive programming languages that allow for a more
direct mediation. Similarly, the medium itself should allow for multiple levels of abstraction to allow
for growing literacy and the enrollment of peers.

There are furthermore mediating qualities related to trust and conviviality that are necessary to be
aware of. The ideals of absolute transparency (Eve Team n.d.) and naïve realism (diSessa and Abel-
son 1986) still deserve consideration. These should not only be clear during the actual interaction,
but also in people’s expectations of the software. The infrastructural aspect of setting up a devel-
opment environment is similarly seen to be a potential obstacle to inexperienced programmers, so
the medium must support low floors (as also emphasized by Resnick et al. (2009)), not only in terms
of programming competencies but also for the circumstantial conditions. A final consideration is
the support for transferring competencies from other domains, ideally leveraging people’s existing
material intelligence such as textual literacy or knitting experience.

6.7.2 Self-concept

For computational literacy to develop, it is important to support the development of an appropri-
ate self-concept. If people cannot see themselves as being and acting competently in the world, no
medium will alleviate those feelings. The self-concept must further be aligned with their competen-
cies which necessitates the availability of appropriate identities for the individuals in question. A

3When deleting an asset (e.g., an image file) from CodestRates v2, the environment keeps a cached copy by the same
name. Thus, when uploading a new asset with the same name, the old asset is loaded from cache

101

6. InteRactive alities, softwaRe mediation, computational liteRacy

part of this identity development is also the ability to separate actions from identity like P4: “I also
just think it was because we did dumb stuff. But you just have to think carefully” (P4, inq. 5). Just
because you do “dumb stuf” does not mean you are, in fact, “dumb”.

Literacy development requires confirmations that let learners know if they are on the right track. This
is hardly a new insight, but computational artifacts are interesting since they allow for interactive
and mediating experiences in which the artifacts themselves can talk back to learners:

In the very beginning it’s important for me to get those “okay, am I on the right track?” I
mean, like, yeah, there is a green checkmark (…) and also want to play with it a little more
broadly and not necessarily have a single answer, but just kind of play with it, but it sort of
demands that you are able to do something before it’s fun (S2 (post), inq. 7).

These confirmations help cement basic competencies that can then develop into a more playful en-
gagement. It is likewise important for computational literacy development to let people take owner-
ship, feel in control, and find motivation in projects that are close to their lifeworld.

I’ve never become really great at programming because I don’t know how to do the things
that others do, where they say “I will write my own [thing]”, but a perfectly good alarm
clock already exists, so why should I, like …I’m not able to create a good one, and then I
don’t want to. (24df, inquiry 5).

6.7.3 Computational culture

Thedevelopment of computational literacy also necessitates a broader sociotechnical culture inwhich
to embed this literacy. For instance, by providing access to more capable peers; by fostering a cul-
ture of not only gaining but maintaining competencies; and by providing people with enough basic
literacy to be able to help themselves. In formal education, the continued maintenance of competen-
cies can ideally be ensured by integrating computing into other courses, and providing a basic set of
competencies can allow people to help themselves:

Yeah, but where now I think it’s rare that something comes up where I don’t understand it,
like, if I don’t understand it then I know where to look it up. So in that way you have gotten
a foundation that you can build on. (…) Yeah, so I’d say that [that makes you] competent,
and then that it’s not so frightening, like, and just build on that if you want to (S4 (post),
inq. 7).

A different aspect of computational culture is establishing a space in which people can comfortably
navigate and find help. Through the enrollment of more capable peers, people can leverage other,
more experienced peers’ competencies which can shape how people see themselves as part of their
computational cultures:

And I think I have slowly started to realize, like, it doesn’t necessarily have to be that way.
That it’s acceptable to, like, need help with programming (S2 (post), inq. 7).

6.7.4 Beyond programming

Computational literacy can, in principle, develop from working in a fully self-contained environ-
ment such as CodestRates v2. In practice, though, the development of computational literacy also
requires competencies beyond programming. Competencies in operating systems, programming en-
vironments, file systems, and other abstractions can be considered part of a more adaptive functional
computer literacy. Managing two separate computers with different operating systems, as done by
N11, functions as a workaround and allows work to be done. The same participant also had issues
with some software: “Maybe it’s Linux, I have no clue” (N11, inq. 3). However, these makeshift
workarounds seemingly do not provide for an emancipatory literacy. File management and sharing
is another aspect of computer literacy that appears to be foundational for computational literacy. A

102

6.8. Implications

final point concerns programming languages and environments. It seems that people need basic liter-
acy to even be able to differentiate programming languages. People like N11, who cannot distinguish
shell scripts from Python, or the students who confuse HTML, CSS, and JavaScRipt lack the basic
comprehension of the textuality of programming languages to even be able to move on without a
more capable peer to help them.

aaa

The findings presented in this chapter represent various insights into computational literacy in prac-
tice. They are reminiscent of diSessa’s concept of social niches (diSessa 2001, pp. 27–28) which—
despite being written more than twenty years ago—is as relevant as ever. Computing educators and
HCI researchers interested in new media and literacy should therefore pay particular attention to
the implications for their fields. In this second-to-last section of the dissertation, I present these
implications.

6.8 Implications

6.8.1 Implications for computing education

Although most of my research has not been conducted in formal educational settings, I would ar-
gue that my results are relevant for computing education research. The main reason for this is that
formal education is likely where most people would encounter computational technologies beyond
use-oriented practices. Even outside computer science, fields such as statistics, biology, economics,
political science, and more recently humanities increasingly rely on computational tools as a core
part of curricula and didactics.

The main implication that educators in computing education (and other fields) should care about
is the importance of the material conditions. Even in computing education, there seems to be the
idea that the materiality should be interchangeable. Of course, discussions abound about the best
tools for teaching programming, but the underlying notion often seems to be that the tools are less
important than developing abstract concept knowledge and associated cognitive effects. This is evi-
dent in the numerous calls for computational thinking efforts in all levels of education (Wing 2006;
Denning 2017). The right materiality is, of course, no substitute for pedagogy, didactics, and en-
gaged teachers, but we absolutely cannot ignore the role that materiality plays in the development
of computational literacy. This was already pointed out in Waltz’ criticism of the sociocentrism of
educational research (Waltz 2004). Computational literacy develops in an intimate, embodied, and
mediated relationship with the concrete materiality.

Second, contemporary computational media seems a particularly promising software paradigm for
teaching. The ease of sharing assignments, the possibilities for collaboration, and the low infras-
tructural floors provide a useful learning environment in the vein of the PLATO system from the
’60s (Kaiser 2023). P6 captured this quite accurately:

(…) for example, in some teaching scenario, I think it would be very useful. For, kind of,
people to follow or even collaborate together on, kind of, coding. Yeah, and also afterwards
the student will still have the link and have the access. (…) But instead, you can actually
focus on what they’re trying to say and why they’re doing this. So you actually have a
deeper understanding of the code. (…) Especially I think, for someone who is new to web
programming, it will be very useful, ’cause they don’t need to learn, like, that much about
different setups and shortcuts first. (P6, inq. 5).

Third, computing education must keep in mind the identities and self-concepts of students, especially
non-CS students who are not necessarily going to work as software developers or similar computing-
centric professions. There must be appropriate identities available to them, and their particular iden-
tities must be in alignment with their expectations, the material conditions, and the kinds of commu-
nities of practice that they are becoming members of. A focus on student experiences in the form of
confirmations seems important, as does the formation of and support for computational cultures in
which students can interpret and appropriate programming under different guises such as creativity,
fun, motivation, drive, and societal benefit.

103

6. InteRactive alities, softwaRe mediation, computational liteRacy

6.8.2 Implications for HCI

My research also brings forward a number of implications for HCI research. One of them is di-
rected towards the way we as researchers relate to previous projects. Constructive HCI research on
artifacts for empowerment and sustainable change often focuses on short-term evaluation and nov-
elty (Balestrini, Rogers, and P. Marshall 2015). One solution is, of course, to conduct more long-term
in-the-wild engagement. Another counterweight to the focus on novelty is to consider research ar-
tifacts not as single inquiries, but as a series of continued engagements that can reasoned with as
a processual phenomenon. As part of my research, the group of computational media collectively
known as the *-stRates family in my dissertation was reviewed through a retrospective trioethno-
graphic lens. Simply put, I would argue that looking back at former research projects and assessing
them in an honest light enables us to be better researchers tomorrow. By reviewing our contribu-
tions as a continuous learning process in the spirit of participatory design (Bødker, Dindler, et al.
2022), we can pay our due respects to previous prototypes and the people who were involved in their
construction and evaluation.

The second implication concerns computational media more specifically. Despite being a subject
of research for at least forty years (and drawing their visions even further back), their concrete im-
plementations are not yet realized in any full capacity. In their vision of meta-design, Fischer and
Giaccardi (2006) argue that the problem of computational media (what they call “interactive program-
ming environments”) is the Turing tar pit:

These tools provide the ultimate level of openness and flexibility (…) they by themselves
are insufficient for meta-design. The essential problem with these systems is that they
provide the incorrect level of representation for most problems (ibid.)

Combinedwithmy previous findings (see section 6.1) that people need the same level of competencies
as the developers of the medium, and that people have a hard time reasoning about and working with
other people’s code, future research on computationalmediamust address these challenges to support
any kind of general uptake and sustainability. Ways of countering these issues are, for instance, to
allow people to engage with the medium on different levels of abstraction or by providing alternative
programming paradigms such as reactive or declarative languages. An inspirational framework for
concrete design dimensions of computational media can be found in Jakubovic, Edwards, and Petricek
(2023).

Third, HCI research can benefit frommore engagement with fields like technology of philosophy and
software studies. While their epistemological and methodological foundations vary, their engage-
ments with digital artifacts provide a fruitful supplement to HCI’s existing repertoire. For instance,
the postphenomenological view of technological mediation benefits from HCI’s empirical methods,
while HCI can benefit from the larger discussions of what technology does for the human condition.
In chapter 4 I have sought to make the coupling between mediation and interaction which are es-
sentially two conceptualizations of the human-computer relationship that inform each other well.
Finally, along that line I would encourage my fellow HCI researchers to be mindful of how we talk
about computational artifacts and the people who use them. By referring to the artifacts as “tools”
and the people as “users”, which is not atypical for HCI research, we implicitly paint an image of
the user (who is not a developer) as a goal-oriented person who just needs the right tool to do the
task that they already set out to do (Fuchsberger, Murer, and Tscheligi 2013). Where does that leave
chance, serendipity, and the mutual relationship between person and artifact?

104

Conclusion 7

In the preceding six chapters, I have answered the following research question:

Research question How do the mediating qualities of software for programming contribute to the
development of computational literacy?

I have presented computational literacy as a set of competencies that is oriented beyond the indi-
vidual itself. Computational literacy is different from computer literacy and digital literacy due to
the focus on the actual computational capabilities of the medium rather than the ability to use and
navigate a computer. This qualifies computational literacy to have the potential for emancipation,
the empowering and Bildung-oriented competencies that allow people to not only fill a role, but to
reflect and critique. Computational literacy is also about fluency and the development of material
intelligence. This is contrasted with the new school of computational thinking as a mainly cognitive
phenomenon and thus provides an alternative to the dominant paradigm of learning and doing. To
better understand the components that lead to identity formation and, ultimately, literacy, I have
created a model of self-concept which provides a series of subcomponents necessary to take into
consideration when understanding computational literacy development. Split into descriptions, pre-
scriptions, and expectations, themodel also emphasizes the importance of experiences, confirmations,
and disconfirmations in such a development.

As computational literacy develops in close relationship with the material, it is necessary to have an
understanding of this relationship. To this end, I have provided an integrated model of technologi-
cal mediation that bridges theory from HCI, science and technology studies, and the philosophy of
technology. A particular contribution is the interdisciplinary approach that combines use-oriented
aspects with, e.g., emancipation, ethical considerations, and user inscriptions. Following the develop-
ment of this integrated model of mediation, my analyses of selected human-computer configurations
showed how the mediating qualities of programming can be understood through degrees of media-
tion, abstraction, and translation. In my work on computational media, I have examined historical
visions and contrasted them with contemporary visions and implementations. Part of this is a pre-
sentation and critique of literate computing for computational media in which I have shown that
literate computing did not fulfill its promise for computational literacy development. This served as
the backdrop for the subsequent analysis of computational media in action. Here, I showed how the
mediating qualities are realized in practice through a number of themes such as use, development,
semantic shifts, malleability, roles, trust, abstractions, and shared artifacts. The analysis concludes
that a significant challenge for computational media is that they largely fall in between visions, imag-
inations, and practicalities. This has a number of consequences for computational literacy. First, it
seemed that a computational medium was able to provide an appropriate level of abstraction for
people who are still in the process of developing their competencies. On the other hand, more expe-
rienced programmers seemed to get caught in the gap between the visions of the medium and the
practicalities of the actual implementation.

Another foundation for the development of computational literacy is the sociotechnical cultures in
which people find themselves, what I called computational cultures. This points to the necessity of
being embedded in communities of norms, values, peers, and potential identities for the formation
of computational literacy. An important finding is that not all communities are equal: Nanoscien-
tists and humanities students do not align themselves with professional programmers but create and
belong to what can be called quasi-programmatic cultures.

As people’s competencies are sometimes insufficient, they experience various forms of crises that
might lead to computational disempowerment. That can be due to, e.g., not having the competen-
cies to help themselves or having their existing competencies challenged by unfamiliar media. To
counteract those experiences of disempowerment, people engage in a variety of strategies to regain
control of their material conditions. One of the more used strategies is the enrollment of other actors,

105

7. Conclusion

whether human or technical. A more capable peer is one example of this, while the enrollment of
known and trusted artifacts is another. A different group of strategies is giving up or deciding to
ignore potential issues.

Other times, however, people’s competencies are sufficient, leading to second-order effects such as
computational epiphanies, in which previous experiences suddenly “make sense” to them, or feelings
of control and mastery. Literacy might also be experienced as a sense of fluency and enjoyment in
working with their material. This latter point can in some circumstances be attributed to the embodi-
ment of programming—the intimate bodily engagementwith themedium. Considering programming
and computing as crafts, as embodied and material activities, seems to be a promising alternative to
the cognitive view of computing advocated by the new school of computational thinking initiatives.
My research indicates that computing education research can benefit from this reorientation from
thinking towards doing in materially grounded experiences.

The development of computational literacy must therefore be conceptualized with serious consid-
eration for the material, social, and cognitive pillars. Part of this perspective consists of taking into
account the mediating qualities of software for programming and how they shape, create, hinder, and
support various forms of engagement between user-programmers and their material conditions. Fi-
nally, computational literacy is a complex phenomenon which requires alignment between people’s
self-concepts, their embodied and material competencies, and their outlook on the world in terms
of empowerment, agency, and identity formation. This demands the support of communities, com-
puting cultures, and adequate material conditions which can support emancipatory computational
literacy. After all, everyone should be able to cast and parse the runes of contemporary life.

106

Bibliography 7

Aagaard, Jesper (2017). “Introducing postphenomenological research: a brief and selective sketch of
phenomenological research methods”. In: International Journal of Qualitative Studies in Education
30.6, pp. 519–533. doi: 10.1080/09518398.2016.1263884.

Aagaard, Jesper and Noomi Matthiesen (2016). “Methods of materiality: participant observation and
qualitative research in psychology”. In: Qualitative Research in Psychology 13.1, pp. 33–46. doi:
10.1080/14780887.2015.1090510.

Abbate, J. (2018). “Code Switch: Alternative Visions of Computer Expertise as Empowerment from
the 1960s to the 2010s.” In: Technology and Culture 59.4, pp. 134–159. doi: 10.1353/tech.2018.0152.

Aho, Alfred V. (2011). “Ubiquity symposium: Computation and ComputationalThinking”. In:Ubiquity
2011 (January). doi: 10.1145/1922681.1922682.

Andersen, Peter Bøgh (1991). “Computer semiotics”. In: Scandinavian Journal of Information Systems
3.1.

— (2001). “What Semiotics can and cannot do for HCI”. In: Knowledge-Based Systems 14.8, pp. 419–
424. doi: 10.1016/S0950-7051(01)00134-4.

Anderson, Nate (Nov. 2018). First encounter: COMPUTE! magazine and its glorious, tedious type-in code.
Ars Technica. uRl: https://arstechnica.com/staff/2018/11/first-encounter-compute-magazine-
and-its-glorious-tedious-type-in-code/ (visited on 12/22/2022).

Anderson, Terry and Julie Shattuck (2012). “Design-Based Research: A Decade of Progress in Educa-
tion Research?” In: Educational Researcher 41.1, pp. 16–25. doi: 10.3102/0013189X11428813.

Antonsen, Kristian B., Michel Beaudouin-Lafon, James Eagan, ClemensNylandsted Klokmose,Wendy
E. Mackay, and Roman Rädle (2017). “Webstrates for the Future Web?” In: ProWeb 2017 - Program-
ming Technology for the Future Web. uRl: https://hal.inria.fr/hal-01614236.

Auerbach, David (May 9, 2014). “The Oldest Rivalry in Computing”. In: Slate. uRl: https : / / slate .
com/technology/2014/05/oldest- software- rivalry- emacs- and-vi- two- text- editors-used-by-
programmers.html (visited on 12/22/2022).

Badam, Sriram Karthik, Andreas Mathisen, Roman Rädle, Clemens Nylandsted Klokmose, and Niklas
Elmqvist (2018). “Vistrates: A Component Model for Ubiquitous Analytics”. In: IEEE Transactions
on Visualization and Computer Graphics 25.1, pp. 586–596. doi: 10.1109/TVCG.2018.2865144.

Balestrini, Mara, Yvonne Rogers, and Paul Marshall (2015). “Civically engaged HCI: tensions between
novelty and social impact”. In: Proceedings of the 2015 British HCI Conference. Lincoln, Lincolnshire,
United Kingdom: ACM, pp. 35–36. doi: 10.1145/2783446.2783590.

Bannon, Liam, Susanne Bødker, et al. (1991). “Beyond the interface: Encountering artifacts in use”. In:
Designing interaction: Psychology at the human-computer interface, pp. 227–253.

Barnes, Susan B. (2007). “Alan Kay: Transforming the Computer into a Communication Medium”. In:
IEEE Annals of the History of Computing 29.2, pp. 18–30. doi: 10.1109/MAHC.2007.17.

Barnett, Ronald (2009). “Knowing and becoming in the higher education curriculum”. In: Studies in
Higher Education 34.4, pp. 429–440. doi: 10.1080/03075070902771978.

Beaudouin-Lafon, Michel (2000). “Instrumental interaction”. In: Proceedings of the SIGCHI conference
on Human factors in computing systems - CHI ’00. ACM Press. doi: 10.1145/332040.332473.

Beaudouin-Lafon, Michel, Susanne Bødker, and Wendy E. Mackay (2021). “Generative Theories of
Interaction”. In: ACM Transactions on Computer-Human Interaction 28.6, pp. 1–54. doi: 10.1145/
3468505.

Bergin, T.J. (2006). “The Proliferation and Consolidation of Word Processing Software: 1985-1995”. In:
IEEE Annals of the History of Computing 28.4, pp. 48–63. doi: 10.1109/MAHC.2006.77.

107

https://doi.org/10.1080/09518398.2016.1263884
https://doi.org/10.1080/14780887.2015.1090510
https://doi.org/10.1353/tech.2018.0152
https://doi.org/10.1145/1922681.1922682
https://doi.org/10.1016/S0950-7051(01)00134-4
https://arstechnica.com/staff/2018/11/first-encounter-compute-magazine-and-its-glorious-tedious-type-in-code/
https://arstechnica.com/staff/2018/11/first-encounter-compute-magazine-and-its-glorious-tedious-type-in-code/
https://doi.org/10.3102/0013189X11428813
https://hal.inria.fr/hal-01614236
https://slate.com/technology/2014/05/oldest-software-rivalry-emacs-and-vi-two-text-editors-used-by-programmers.html
https://slate.com/technology/2014/05/oldest-software-rivalry-emacs-and-vi-two-text-editors-used-by-programmers.html
https://slate.com/technology/2014/05/oldest-software-rivalry-emacs-and-vi-two-text-editors-used-by-programmers.html
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1145/2783446.2783590
https://doi.org/10.1109/MAHC.2007.17
https://doi.org/10.1080/03075070902771978
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/3468505
https://doi.org/10.1145/3468505
https://doi.org/10.1109/MAHC.2006.77

BibliogRaphy

Berners-Lee, Tim (1996). “The World Wide Web-past, present and future”. In: Journal of Digital infor-
mation 1.1.

Berry, David M. (2011). “What Is Code?” In: The Philosophy of Software. London: Palgrave Macmillan
UK, pp. 29–63. isbn: 978-1-137-49027-8. doi: 10.1057/9780230306479_2.

Bertelsen, OlavW. (2004). “Transparency by TertiaryArtefactness”. In:Aesthetic Approaches to Human-
Computer Interaction.

Bertelsen, Olav W. and Susanne Bødker (2003). “Activity theory”. In: HCI models, theories, and frame-
works: Toward a multidisciplinary science, pp. 291–324.

Bertelsen, Olav W. and Marx Wartofsky (1999). “Mediation and Heterogeneity in Design”. In: Social
Thinking–Software Practice, p. 16.

Bevir, Mark (2008). “What is Genealogy?” In: Journal of the Philosophy of History 2.3, pp. 263–275.
doi: 10.1163/187226308X335958.

Bier, Eric A. (1991). “EmbeddedButtons: documents as user interfaces”. In: Proceedings of the 4th an-
nual ACM symposium on User interface software and technology - UIST ’91. Hilton Head, South
Carolina, United States: ACM Press, pp. 45–53. doi: 10.1145/120782.120787.

Bjørndahl, Johanne Stege, Riccardo Fusaroli, Svend Østergaard, and Kristian Tylén (2014). “Thinking
together with material representations: Joint epistemic actions in creative problem solving”. In:
Cognitive Semiotics 7.1, pp. 103–123. doi: 10.1515/cogsem-2014-0006.

Bødker, Susanne (2006). “When second wave HCI meets third wave challenges”. In: Proceedings of the
4th Nordic conference on Human-computer interaction changing roles - NordiCHI ’06. Oslo, Norway:
ACM Press, pp. 1–8. doi: 10.1145/1182475.1182476.

Bødker, Susanne and Peter Bøgh Andersen (2005). “Complex Mediation”. In: Human-Computer Inter-
action 20.4, pp. 353–402. doi: 10.1207/s15327051hci2004_1.

Bødker, Susanne, Christian Dindler, Ole S. Iversen, and Rachel C. Smith (2022). Participatory Design.
Synthesis Lectures on Human-Centered Informatics. Cham.: Springer International Publishing.
isbn: 978-3-031-01107-8. doi: 10.1007/978-3-031-02235-7.

Bødker, Susanne and Clemens Nylandsted Klokmose (2012). “Dynamics in artifact ecologies”. In: Pro-
ceedings of the 7th Nordic Conference onHuman-Computer InteractionMaking SenseThroughDesign
- NordiCHI ’12. Copenhagen, Denmark: ACM Press, p. 448. doi: 10.1145/2399016.2399085.

Borenstein, Nathaniel S. and James Gosling (1988). “UNIX Emacs: a retrospective (lessons for flexible
system design)”. In: Proceedings of the 1st annual ACM SIGGRAPH symposium on User Interface
Software. Alberta, Canada: ACM, pp. 95–101. doi: 10.1145/62402.62417.

Borowski, Marcel, Bjarke Vognstrup Fog, Carla F. Griggio, James R. Eagan, and Clemens Nylandsted
Klokmose (2022). “Between Principle and Pragmatism: Reflections on Prototyping Computational
Media with Webstrates”. In: ACM Transactions on Computer-Human Interaction. doi: 10 . 1145 /
3569895.

Borowski, Marcel, Janus Bager Kristensen, Rolf Bagge, and Clemens Nylandsted Klokmose (2021).
Codestrates v2: A Development Platform for Webstrates. Tech. rep. Aarhus University. uRl: https://
pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-
27da-4f6b-85b3-19b0993caf22).html.

Borowski, Marcel and Ida Larsen-Ledet (2021). “Lessons Learned from Using Reprogrammable Proto-
types with End-User Developers”. In: End-User Development. Ed. by Daniela Fogli, Daniel Tetteroo,
Barbara Rita Barricelli, Simone Borsci, Panos Markopoulos, and George A. Papadopoulos. Cham.:
Springer International Publishing, pp. 136–152. doi: 10.1007/978-3-030-79840-6_9.

Borowski, Marcel, Roman Rädle, and Clemens Nylandsted Klokmose (2018). “Codestrate Packages”.
In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. ACM.
doi: 10.1145/3170427.3188563.

Bouvin, Niels Olof and Clemens Nylandsted Klokmose (2016). “Classical Hypermedia Virtues on the
Web with Webstrates”. In: Proceedings of the 27th ACM Conference on Hypertext and Social Media.
Halifax, Nova Scotia, Canada: ACM, pp. 207–212. doi: 10.1145/2914586.2914622.

108

https://doi.org/10.1057/9780230306479_2
https://doi.org/10.1163/187226308X335958
https://doi.org/10.1145/120782.120787
https://doi.org/10.1515/cogsem-2014-0006
https://doi.org/10.1145/1182475.1182476
https://doi.org/10.1207/s15327051hci2004_1
https://doi.org/10.1007/978-3-031-02235-7
https://doi.org/10.1145/2399016.2399085
https://doi.org/10.1145/62402.62417
https://doi.org/10.1145/3569895
https://doi.org/10.1145/3569895
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://doi.org/10.1007/978-3-030-79840-6_9
https://doi.org/10.1145/3170427.3188563
https://doi.org/10.1145/2914586.2914622

Bibliography

Bowen, Glenn A. (2006). “Grounded theory and sensitizing concepts”. In: International journal of qual-
itative methods 5.3, pp. 12–23.

Braun, Virginia and Victoria Clarke (2006). “Using Thematic Analysis in Psychology”. In: Qualitative
Research in Psychology 3.2, pp. 77–101.

Brennan, Karen and Mitchel Resnick (2012). “New frameworks for studying and assessing the devel-
opment of computational thinking”. In: Proceedings of the 2012 annual meeting of the American
educational research association, Vancouver, Canada.

Brown, Trent (2016). “Sustainability as Empty Signifier: Its Rise, Fall, and Radical Potential”. In: An-
tipode 48.1, pp. 115–133. doi: 10.1111/anti.12164.

Bruce, Christine Susan (2004). “Information Literacy as a Catalyst for Educational Change: A Back-
ground Paper”. In: Keynote address, for “Lifelong Learning: Whose responsibility and what is your
contribution?”, the 3rd International Lifelong Learning Conference, Yeppoon, 13-16 June 2004.

Buechley, Leah, Mike Eisenberg, Jaime Catchen, and Ali Crockett (2008). “The LilyPad Arduino: using
computational textiles to investigate engagement, aesthetics, and diversity in computer science
education”. In: Proceeding of the twenty-sixth annual CHI conference on Human factors in computing
systems - CHI ’08. Florence, Italy: ACM Press, p. 423. doi: 10.1145/1357054.1357123.

Bundsgaard, Jeppe (2017). Digital dannelse. Pædagogisk rækkevidde 1. Aarhus: Aarhus Universitets-
forlag. 69 pp. isbn: 978-87-7184-246-3.

Burns, Ryan andGraceWark (2020). “Where’s the database in digital ethnography? Exploring database
ethnography for open data research”. In: Qualitative Research 20.5, pp. 598–616. doi: 10 . 1177 /
1468794119885040.

Bush, Vannevar et al. (1945). “As we may think”. In: The atlantic monthly 176.1, pp. 101–108.

Callon, Michel (1984). “Some Elements of a Sociology of Translation: Domestication of the Scallops
and the Fishermen of St Brieuc Bay”. In: The Sociological Review 32.1, pp. 196–233. doi: 10.1111/j.
1467-954X.1984.tb00113.x.

Campbell-Kelly, Martin, William Aspray, Nathan Ensmenger, and Jeffrey R. Yost (2018). Computer:
A History of the Information Machine. 3rd ed. Routledge. isbn: 978-0-429-49537-3. doi: 10.4324/
9780429495373.

Carrington, Victoria (2018). “The changing landscape of literacies: Big data and algorithms”. In:Digital
Culture and Education 10.1, pp. 67–76. uRl: https://ueaeprints.uea.ac.uk/id/eprint/68380.

Christensen, Kasper Skov, Mikkel Hjorth, Ole Sejer Iversen, and Paulo Blikstein (2016). “Towards a
formal assessment of design literacy: Analyzing K-12 students’ stance towards inquiry”. In:Design
Studies 46, pp. 125–151. doi: 10.1016/j.destud.2016.05.002.

Coiro, Julie, ed. (2008). Handbook of research on new literacies. New York: Lawrence Erlbaum Asso-
ciates/Taylor & Francis Group. 1367 pp. isbn: 978-0-8058-5651-4.

Creswell, John W. (2014). Research Design. SAGE. 273 pp. isbn: 978-1-4522-2609-5.

Curzon, Paul, Tim Bell, JaneWaite, and Mark Dorling (2019). “ComputationalThinking”. In:The Cam-
bridge Handbook of Computing Education Research. Cambridge University Press, pp. 513–546. isbn:
978-1-108-65455-5.

Dalsgaard, Peter (2010). “Research in and through design: an interaction design research approach”.
In: Proceedings of the 22nd Conference of the Computer-Human Interaction Special Interest Group
of Australia on Computer-Human Interaction - OZCHI ’10. Brisbane, Australia: ACM Press, p. 200.
doi: 10.1145/1952222.1952265.

Davis, Jenny L. and James B. Chouinard (2016). “Theorizing Affordances: From Request to Refuse”. In:
Bulletin of Science, Technology & Society 36.4, pp. 241–248. doi: 10.1177/0270467617714944.

Denning, Peter J. (2017). “Remaining trouble spots with computational thinking”. In: Communications
of the ACM 60.6, pp. 33–39. doi: 10.1145/2998438.

Dirckinck-Holmfeld, Lone, Jørgen Lerche Nielsen, and Thomas W. Webb (1988). “Almendannelse og
informationsteknologisk fantasi i et højteknologisk samfund”. In: Datamatbeherskelse og almen

109

https://doi.org/10.1111/anti.12164
https://doi.org/10.1145/1357054.1357123
https://doi.org/10.1177/1468794119885040
https://doi.org/10.1177/1468794119885040
https://doi.org/10.1111/j.1467-954X.1984.tb00113.x
https://doi.org/10.1111/j.1467-954X.1984.tb00113.x
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://ueaeprints.uea.ac.uk/id/eprint/68380
https://doi.org/10.1016/j.destud.2016.05.002
https://doi.org/10.1145/1952222.1952265
https://doi.org/10.1177/0270467617714944
https://doi.org/10.1145/2998438

BibliogRaphy

dannelse. Ed. by Oluf Danielsen and Benny Karpatschof. Aarhus, Denmark: Aarhus Universitets-
forlag, pp. 9–37. isbn: 87-7288-207-7.

diSessa, Andrea A. (2001). Changing Minds: Computers, Learning, and Literacy. MIT Press. 271 pp.
isbn: 978-0-262-54132-9.

diSessa, Andrea A. and Hal Abelson (1986). “Boxer: a reconstructible computational medium”. In:
Communications of the ACM 29.9, pp. 859–868. doi: 10.1145/6592.6595.

Dourish, Paul (1999). “Embodied interaction: Exploring the foundations of a new approach to HCI”.
In: Work, pp. 1–16.

— (2014a). “No SQL: The Shifting Materialities of Database Technologies”. In: Computational cul-
ture 4. uRl: http : / /computationalculture .net /no- sql - the- shifting-materialities - of - database-
technology/.

— (2014b). “Reading and interpreting ethnography”. In: Ways of Knowing in HCI. Ed. by Judith S.
Olson and Wendy A. Kellogg. Springer, pp. 1–23.

— (2022). STUFF OF BITS: an essay on the materialities of information. MIT Press. isbn: 978-0-262-
54652-2.

Ducasse, Stéphane, Dmitri Zagidulin, Nicolai Hess, and Dimitris Chloupis (2016). Pharo by Example
5.0. Lille, France: Stéphane Ducasse. isbn: 978-1-365-65459-6.

Engeström, Yrjö (2015). Learning by expanding. Cambridge University Press.

Eve Team (n.d.). Eve: Programming designed for humans. uRl: http://witheve.com/.

Fallman, Daniel (2007). “Why Research-Oriented Design Isn’t Design-Oriented Research: On the Ten-
sions Between Design and Research in an Implicit Design Discipline”. In: Knowledge, Technology
& Policy 20.3, pp. 193–200. doi: 10.1007/s12130-007-9022-8.

Fallman, Daniel and Erik Stolterman (2010). “Establishing criteria of rigour and relevance in interac-
tion design research”. In: Digital Creativity 21.4, pp. 265–272. doi: 10.1080/14626268.2010.548869.

Finley, Klint (Mar. 26, 2014). “Microsoft Finally Gave Away MS-DOS. Now It Should Open Source
Everything Else”. In: Wired. uRl: https://www.wired.com/2014/03/msdos-source-code/ (visited
on 12/22/2022).

Fischer, Gerhard and Elisa Giaccardi (2006). “Meta-design: A Framework for the Future of End-User
Development”. In: End User Development. Ed. by Henry Lieberman, Fabio Paternò, and Volker
Wulf. Red. by John Karat and Jean Vanderdonckt. Vol. 9. Human-Computer Interaction Series.
Dordrecht: Springer, Netherlands, pp. 427–457. isbn: 978-1-4020-4220-1. doi: 10 .1007/1 - 4020-
5386-X.

Fischer, Gerhard, Elisa Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev (2004). “Meta-design: a
manifesto for end-user development”. In: Communications of the ACM 47.9, pp. 33–37. doi: 10 .
1145/1015864.1015884.

Fog, Bjarke Vognstrup and Clemens Nylandsted Klokmose (2019). “Mapping the Landscape of Literate
Computing”. In: Proceedings of the 30th AnnualWorkshop of the Psychology of Programming Interest
Group. Newcastle, UK. uRl: https://www.ppig.org/papers/2019-ppig-30th-fog/.

Fog, Bjarke Vognstrup, Blanka Pálfi, Alberte Uhre Mortensen, and Line Have Musaeus (2023). “Com-
putational self-concept: Towards an understanding of students’ identities, attitudes, and beliefs”.
Submitted to Education and Information Technologies.

Frayling, Christopher (1993). “Research in art and design”. In: Royal College of Art research papers,
pp. 1–5.

Free Software Foundation, Inc. (n.d.). Introduction (GNU Emacs Manual). uRl: https://www.gnu.org/
software/emacs/manual/html_node/emacs/Intro.html.

Fritz, W.B. (1996). “The women of ENIAC”. In: IEEE Annals of the History of Computing 18.3, pp. 13–28.
doi: 10.1109/85.511940.

Fuchsberger, Verena, Martin Murer, and Manfred Tscheligi (2013). “Materials, materiality, and media”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Paris France:
ACM, pp. 2853–2862. doi: 10.1145/2470654.2481395.

110

https://doi.org/10.1145/6592.6595
http://computationalculture.net/no-sql-the-shifting-materialities-of-database-technology/
http://computationalculture.net/no-sql-the-shifting-materialities-of-database-technology/
http://witheve.com/
https://doi.org/10.1007/s12130-007-9022-8
https://doi.org/10.1080/14626268.2010.548869
https://www.wired.com/2014/03/msdos-source-code/
https://doi.org/10.1007/1-4020-5386-X
https://doi.org/10.1007/1-4020-5386-X
https://doi.org/10.1145/1015864.1015884
https://doi.org/10.1145/1015864.1015884
https://www.ppig.org/papers/2019-ppig-30th-fog/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Intro.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Intro.html
https://doi.org/10.1109/85.511940
https://doi.org/10.1145/2470654.2481395

Bibliography

Fuegi, J. and J. Francis (2003). “Lovelace & Babbage and the creation of the 1843 ’notes’”. In: IEEE
Annals of the History of Computing 25.4, pp. 16–26. doi: 10.1109/MAHC.2003.1253887.

Galey, A. and S. Ruecker (2010). “How a prototype argues”. In: Literary and Linguistic Computing 25.4,
pp. 405–424. doi: 10.1093/llc/fqq021.

Gaver, William (2012). “What should we expect from research through design?” In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. Austin Texas, USA: ACM, pp. 937–
946. doi: 10.1145/2207676.2208538.

Granger, Brian and Fernando Pérez (2021). “Jupyter: Thinking and Storytelling with Code and Data”.
In: Computing in Science & Engineering 23 (2), pp. 7–14. doi: 10.1109/MCSE.2021.3059263.

Große-Bölting, Gregor, DietrichGerstenberger, LaraGildehaus, AndreasMühling, andCarsten Schulte
(2021). “Identity in K-12 Computer Education Research: A Systematic Literature Review”. In: Pro-
ceedings of the 17th ACM Conference on International Computing Education Research. ACM. doi:
10.1145/3446871.3469757.

Grudin, Jonathan (2017). From Tool to Partner:The Evolution of Human-Computer Interaction. Synthesis
Lectures on Human-Centered Informatics. Cham.: Springer International Publishing. isbn: 978-3-
031-02218-0. doi: 10.1007/978-3-031-02218-0.

Guo, Philip J. (2018). “Non-Native English Speakers Learning Computer Programming: Barriers, De-
sires, and Design Opportunities”. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. Montreal, QC, Canada: ACM, pp. 1–14. doi: 10.1145/3173574.3173970.

Guzdial, Mark (2008). “Education: Paving the way for computational thinking”. In: Communications
of the ACM 51.8, pp. 25–27. doi: 10.1145/1378704.1378713.

— (2019). “Computing Education as a Foundation for 21st Century Literacy”. In: Proceedings of the
50th ACM Technical Symposium on Computer Science Education. ACM. doi: 10 . 1145 / 3287324 .
3290953.

Hanington, Bruce (2022). “Methods in the Making: A Perspective on the State of Human Research in
Design”. In: Design Issues 19.4, pp. 9–18. uRl: https://www.jstor.org/stable/1512087.

Haraway, Donna (1988). “Situated Knowledges: The Science Question in Feminism and the Privilege
of Partial Perspective”. In: Feminist Studies 14.3, p. 575. doi: 10.2307/3178066.

Hattie, John A. (1992). Self-concept. Psychology Press. 307 pp.

Hayes, Gillian R. (2011). “The relationship of action research to human-computer interaction”. In:
ACM Transactions on Computer-Human Interaction 18.3, pp. 1–20. doi: 10.1145/1993060.1993065.

— (2014). “Knowing by doing: action research as an approach to HCI”. In: Ways of Knowing in HCI.
Ed. by Judith S. Olson and Wendy A. Kellogg. Springer, pp. 49–68.

Heintz, Fredrik, Linda Mannila, and Tommy Farnqvist (2016). “A review of models for introducing
computational thinking, computer science and computing in K-12 education”. In: 2016 IEEE Fron-
tiers in Education Conference (FIE). Erie, PA, USA: IEEE, pp. 1–9. doi: 10.1109/FIE.2016.7757410.

Hertzum, Morten and Kasper Hornbæk (2023). “Frustration: Still a Common User Experience”. In:
ACM Transactions on Computer-Human Interaction. doi: 10.1145/3582432.

Hoffman, Mark E. and David R. Vance (2005). “Computer literacy”. In: ACM SIGCSE Bulletin 37.1,
p. 356. doi: 10.1145/1047124.1047467.

Hollan, James, Edwin Hutchins, and David Kirsh (2000). “Distributed cognition: toward a new foun-
dation for human-computer interaction research”. In: ACM Transactions on Computer-Human In-
teraction (TOCHI) 7.2, pp. 174–196. doi: 10.1145/353485.353487.

Holtzblatt, Karen and Sandra Jones (2017). “Contextual inquiry: A participatory technique for system
design”. In: Participatory design: Principles and practice. Ed. by Douglas Schuler and Aki Namioka.
CRC Press, pp. 177–210.

Höök, Kristina, Jeffrey Bardzell, Simon Bowen, Peter Dalsgaard, Stuart Reeves, and Annika Waern
(2015). “Framing IxD knowledge”. In: Interactions 22.6, pp. 32–36. doi: 10.1145/2824892.

111

https://doi.org/10.1109/MAHC.2003.1253887
https://doi.org/10.1093/llc/fqq021
https://doi.org/10.1145/2207676.2208538
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1145/3446871.3469757
https://doi.org/10.1007/978-3-031-02218-0
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/1378704.1378713
https://doi.org/10.1145/3287324.3290953
https://doi.org/10.1145/3287324.3290953
https://www.jstor.org/stable/1512087
https://doi.org/10.2307/3178066
https://doi.org/10.1145/1993060.1993065
https://doi.org/10.1109/FIE.2016.7757410
https://doi.org/10.1145/3582432
https://doi.org/10.1145/1047124.1047467
https://doi.org/10.1145/353485.353487
https://doi.org/10.1145/2824892

BibliogRaphy

Hornbæk, Kasper, Aske Mottelson, Jarrod Knibbe, and Daniel Vogel (2019). “What Do We Mean by
“Interaction”? An Analysis of 35 Years of CHI”. In: ACM Transactions on Computer-Human Inter-
action 26.4, pp. 1–30. doi: 10.1145/3325285.

Hornbæk, Kasper and Antti Oulasvirta (2017). “What Is Interaction?” In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. Denver, Colorado, USA: ACM, pp. 5040–5052.
doi: 10.1145/3025453.3025765.

Howell, Noura, AudreyDesjardins, and Sarah Fox (2021). “Cracks in the Success Narrative: Rethinking
Failure in Design Research through a Retrospective Trioethnography”. In: ACM Transactions on
Computer-Human Interaction 28.6, pp. 1–31. doi: 10.1145/3462447.

Hsu, Yu-Chang, Natalie Roote Irie, and Yu-Hui Ching (2019). “Computational Thinking Educational
Policy Initiatives (CTEPI) Across the Globe”. In: TechTrends 63.3, pp. 260–270. doi: 10.1007/s11528-
019-00384-4.

Hyllegard, Karen, Jennifer Ogle, and Sonali Diddi (2019). “’Making’ as a Catalyst for Engaging Young
Female Adolescents in STEM Learning”. In: Theorizing STEM Education in the 21st Century. Inte-
chOpen. isbn: 978-1-78985-702-3. doi: 10.5772/intechopen.87036.

Ihde, Don (1975). “The Experience of Technology: Human-Machine Relations”. In: Cultural Hermeneu-
tics 2.3, pp. 267–279. doi: 10.1177/019145377500200304.

— (1990). Technology and the lifeworld: from garden to earth. The Indiana series in the philosophy of
technology. Bloomington: Indiana University Press. 226 pp. isbn: 978-0-253-20560-5.

Iversen, Ole Sejer, Rachel Charlotte Smith, and Christian Dindler (2018). “From computational think-
ing to computational empowerment”. In: Proceedings of the 15th Participatory Design Conference:
Full Papers - Volume 1. ACM. doi: 10.1145/3210586.3210592.

Jacobsen, Bo, Lene Tanggaard, and Svend Brinkmann (2020). “Fænomenologi”. In: Kvalitative metoder:
en grundbog. Ed. by Svend Brinkmann and Lene Tanggaard. Hans Reitzels Forlag, pp. 281–308.

Jakubovic, Joel, Jonathan Edwards, and Tomas Petricek (2023). “Technical Dimensions of Program-
ming Systems”. In: The Art, Science, and Engineering of Programming 7.3, p. 13. doi: 10 .22152/
programming-journal.org/2023/7/13. uRl: https://tomasp.net/techdims/ (visited on 05/30/2023).

Jamieson, Andrew (Mar. 1, 2021). Excel Won’t Go Away. Medium. uRl: https://towardsdatascience.
com/excel-wont-go-away-fb856378151d (visited on 06/17/2023).

Jansen, K. and S. Vellema (2011). “What is technography?” In: NJAS: Wageningen Journal of Life Sci-
ences 57.3, pp. 169–177. doi: 10.1016/j.njas.2010.11.003.

Jasanoff, Sheila and Sang-Hyun Kim (2015). Dreamscapes of modernity: Sociotechnical imaginaries and
the fabrication of power. University of Chicago Press. isbn: 0-226-27666-X.

Johnson, J., T.L. Roberts, W. Verplank, D.C. Smith, C.H. Irby, M. Beard, and K. Mackey (1989). “The
Xerox Star: a retrospective”. In: Computer 22.9, pp. 11–26. doi: 10.1109/2.35211.

Justice, Josh (2021). “Modifiable Software Systems: Smalltalk and HyperCard”.The SeventhWorkshop
on Live Programming (LIVE 2021). uRl: https://2021.splashcon.org/details/live-2021-papers/9/
Modifiable-Software-Systems-Smalltalk-and-HyperCard.

Kafle, Narayan Prasad (2013). “Hermeneutic phenomenological researchmethod simplified”. In: Bodhi:
An Interdisciplinary Journal 5.1, pp. 181–200. doi: 10.3126/bodhi.v5i1.8053.

Kaiser, Cameron (Mar. 17, 2023). PLATO: How an educational computer system from the ’60s shaped the
future. Ars Technica. uRl: https://arstechnica.com/gadgets/2023/03/plato-how-an-educational-
computer-system-from-the-60s-shaped-the-future/ (visited on 05/30/2023).

Kaptelinin, Victor and Bonnie A. Nardi (2006). Acting with technology: Activity theory and interaction
design. MIT press. isbn: 0-262-11298-1.

— (2012). “Affordances in HCI: Toward a Mediated Action Perspective”. In: Proceedings of the 2012
ACM annual conference on Human Factors in Computing Systems - CHI ’12. ACM Press, pp. 967–
976. doi: 10.1145/2207676.2208541.

Kato, Jun and Keisuke Shimakage (2020). “Rethinking programming “environment”: technical and
social environment design toward convivial computing”. In: Conference Companion of the 4th

112

https://doi.org/10.1145/3325285
https://doi.org/10.1145/3025453.3025765
https://doi.org/10.1145/3462447
https://doi.org/10.1007/s11528-019-00384-4
https://doi.org/10.1007/s11528-019-00384-4
https://doi.org/10.5772/intechopen.87036
https://doi.org/10.1177/019145377500200304
https://doi.org/10.1145/3210586.3210592
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://tomasp.net/techdims/
https://towardsdatascience.com/excel-wont-go-away-fb856378151d
https://towardsdatascience.com/excel-wont-go-away-fb856378151d
https://doi.org/10.1016/j.njas.2010.11.003
https://doi.org/10.1109/2.35211
https://2021.splashcon.org/details/live-2021-papers/9/Modifiable-Software-Systems-Smalltalk-and-HyperCard
https://2021.splashcon.org/details/live-2021-papers/9/Modifiable-Software-Systems-Smalltalk-and-HyperCard
https://doi.org/10.3126/bodhi.v5i1.8053
https://arstechnica.com/gadgets/2023/03/plato-how-an-educational-computer-system-from-the-60s-shaped-the-future/
https://arstechnica.com/gadgets/2023/03/plato-how-an-educational-computer-system-from-the-60s-shaped-the-future/
https://doi.org/10.1145/2207676.2208541

Bibliography

International Conference on Art, Science, and Engineering of Programming. Porto, Portugal: ACM,
pp. 149–157. doi: 10.1145/3397537.3397544.

Kay, Alan (1972). “A Personal Computer for Children of All Ages”. In: Proceedings of the ACM Annual
Conference - Volume 1. ACM ’72. ACM. doi: 10.1145/800193.1971922.

— (1984). “Computer Software”. In: Scientific American 251.3, pp. 52–59. doi: 10.1038/scientificamerican0984-
52.

— (2013a). Afterword: What is a Dynabook? uRl: https://tinlizzie.org/VPRIPapers/hc_what_Is_a_
dynabook.pdf.

— (2013b). “The Future of Reading Depends on the Future of Learning Difficult to Learn Things”. In:
VPRI Related Writings.

Kay, Alan and Adele Goldberg (1977). “Personal Dynamic Media”. In: Computer 10.3, pp. 31–41. doi:
10.1109/C-M.1977.217672.

Kelleher, Caitlin and Randy Pausch (2005). “Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers”. In:ACMComputing Surveys
(CSUR) 37.2, pp. 83–137. doi: 10.1145/1089733.1089734.

Kelty, Christopher (2005). “Geeks, Social Imaginaries, and Recursive Publics”. In: Cultural Anthropol-
ogy 20.2, pp. 185–214. doi: 10.1525/can.2005.20.2.185.

Kery, Mary Beth and Brad A. Myers (2018). “Interactions for Untangling Messy History in a Compu-
tational Notebook”. In: 2018 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE. doi: 10.1109/vlhcc.2018.8506576.

Kery, Mary Beth, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad Myers (2018). “The
Story in the Notebook”. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM. doi: 10.1145/3173574.3173748.

Kien, Grant (2008). “Technography = Technology + Ethnography: An Introduction”. In: Qualitative
Inquiry 14.7, pp. 1101–1109. doi: 10.1177/1077800408318433.

Kinnula,Marianne, Netta Iivari, TonjaMolin-Juustila, EinoKeskitalo, Topi Leinonen, EetuMansikkamäki,
Toni Käkelä, and Martti Similä (2017). “Cooperation, Combat, or Competence Building-What Do
We Mean When We Are ’Empowering Children’ in and through Digital Technology Design?” In:
Thirty-eighth International Conference on Information Systems. Seoul. uRl: http://jultika.oulu.
fi/files/nbnfi-fe2018121150380.pdf (visited on 05/24/2023).

Kiran, Asle H. (2015). “Four Dimensions of Technological Mediation”. In: Postphenomenological Inves-
tigations. Ed. by Robert Joseph Rosenberger and Peter-Paul Verbeek. London: Lexington Books,
pp. 123–140. isbn: 978-0-7391-9436-2.

Kiran, Asle H. and Peter-Paul Verbeek (2010). “Trusting Our Selves to Technology”. In: Knowledge,
Technology & Policy 23.3, pp. 409–427. doi: 10.1007/s12130-010-9123-7.

Klokmose, Clemens Nylandsted, James R. Eagan, Siemen Baader, Wendy E. Mackay, and Michel
Beaudouin-Lafon (2015). “Webstrates: Shareable Dynamic Media”. In: Proceedings of the 28th An-
nual ACM Symposium on User Interface Software & Technology. Charlotte, NC, USA: ACM, pp. 280–
290. doi: 10.1145/2807442.2807446.

Knobel, Michele and Colin Lankshear (2014). “Studying New Literacies”. In: Journal of Adolescent &
Adult Literacy 58.2, pp. 97–101. doi: 10.1002/jaal.314.

Knuth, Donald Ervin (1984). “Literate Programming”. In: The Computer Journal 27.2, pp. 97–111. doi:
10.1093/comjnl/27.2.97.

— (1992). Literate Programming. CSLI Lecture Notes. Stanford, Calif.: Center for the Study of Lan-
guage and Information. 368 pp. isbn: 978-0-937073-80-3.

Konzack, Lars (1999). Softwaregenrer. Århus: Aarhus Universitetsforlag. isbn: 978-87-7288-765-4.

Koskinen, Ilpo Kalevi, John Zimmerman, Thomas Binder, Johan Redström, and Stephan Wensveen
(2011). Design Research Through Practice: From the Lab, Field, and Showroom. Waltham, MA: Mor-
gan Kaufmann/Elsevier. 204 pp. isbn: 978-0-12-385502-2.

113

https://doi.org/10.1145/3397537.3397544
https://doi.org/10.1145/800193.1971922
https://doi.org/10.1038/scientificamerican0984-52
https://doi.org/10.1038/scientificamerican0984-52
https://tinlizzie.org/VPRIPapers/hc_what_Is_a_dynabook.pdf
https://tinlizzie.org/VPRIPapers/hc_what_Is_a_dynabook.pdf
https://doi.org/10.1109/C-M.1977.217672
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1525/can.2005.20.2.185
https://doi.org/10.1109/vlhcc.2018.8506576
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1177/1077800408318433
http://jultika.oulu.fi/files/nbnfi-fe2018121150380.pdf
http://jultika.oulu.fi/files/nbnfi-fe2018121150380.pdf
https://doi.org/10.1007/s12130-010-9123-7
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1002/jaal.314
https://doi.org/10.1093/comjnl/27.2.97

BibliogRaphy

Kuutti, Kari (1995). “Activity Theory as a Potential Framework for Human-Computer Interaction
Research”. In: Context and Consciousness: Activity Theory and Human-Computer Interaction. Ed.
by Bonnie A. Nardi, pp. 9–22. isbn: 9780262280419. doi: 10.7551/mitpress/2137.003.0006.

Latour, Bruno (1992). “Where Are theMissingMasses?The Sociology of a FewMundane Artifacts”. In:
Shaping Technology/Building Society: Studies in Sociotechnical Change. Ed. by John Bijker Wiebe
E. & Law. Cambridge, Mass.: MIT Press, pp. 225–258.

— (1994). “On Technical Mediation”. In: Common Knowledge 3.2, pp. 29–64.
— (2004). “Why Has Critique Run out of Steam? From Matters of Fact to Matters of Concern”. In:

Critical Inquiry 30.2, pp. 225–248. doi: 10.1086/421123.

Lau, Sam, Ian Drosos, Julia M. Markel, and Philip J. Guo (2020). “The Design Space of Computational
Notebooks: An Analysis of 60 Systems in Academia and Industry”. In: 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). Dunedin, New Zealand: IEEE, pp. 1–
11. doi: 10.1109/VL/HCC50065.2020.9127201.

Lave, Jean and Etienne Wenger (1991). Situated learning: Legitimate peripheral participation. Cam-
bridge university press.

Lee, Irene, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce Malyn-Smith, and
LindaWerner (2011). “Computational thinking for youth in practice”. In: ACM Inroads 2.1, pp. 32–
37. doi: 10.1145/1929887.1929902.

Li, Yeping, Alan H. Schoenfeld, Andrea A. diSessa, Arthur C. Graesser, Lisa C. Benson, Lyn D. English,
and Richard A. Duschl (2020a). “Computational Thinking Is More about Thinking than Comput-
ing”. In: Journal for STEM Education Research 3.1, pp. 1–18. doi: 10.1007/s41979-020-00030-2.

— (2020b). “On Computational Thinking and STEM Education”. In: Journal for STEM Education Re-
search 3.2, pp. 147–166. doi: 10.1007/s41979-020-00044-w.

Light, Jennifer S. (1999). “When Computers Were Women”. In: Technology and Culture 40.3, pp. 455–
483. doi: 10.1353/tech.1999.0128.

Löwgren, Jonas and Erik Stolterman (2007).Thoughtful interaction design: a design perspective on infor-
mation technology. 1. paperback ed. Cambridge, Mass.: MIT Press. 198 pp. isbn: 978-0-262-62209-7.

Lubar, Steven (1992). ““Do Not Fold, Spindle or Mutilate”: A Cultural History of the Punch Card”. In:
The Journal of American Culture 15.4, pp. 43–55. doi: 10.1111/j.1542-734X.1992.1504_43.x.

Lund-Larsen, Michael (Sept. 13, 2017). E-læringschef: Diskussionen om it som fag er ikke død. Altinget.
uRl: https://www.altinget.dk/uddannelse/artikel/e-laeringschef-diskussion-om-it-som-fag-er-
ikke-doed (visited on 12/27/2022).

Mackay,Wendy E. (1990). “Users and customizable software: A co-adaptive phenomenon”. PhD thesis.
Massachusetts Institute of Technology.

Mackay, Wendy E. and Anne-Laure Fayard (1997). “HCI, natural science and design”. In: Proceedings
of the conference on Designing interactive systems processes, practices, methods, and techniques - DIS
’97. ACM Press. doi: 10.1145/263552.263612.

Madsen, Kim Halskov (1988). “Breakthrough by breakdown: Metaphors and structured domains”. In:
DAIMI Report Series 243.

Malmi, Lauri, Judy Sheard, Päivi Kinnunen, Simon, and Jane Sinclair (2019). “Computing Education
Theories: What Are They, and How Are They Used?” In: Proceedings of the 2019 ACM Conference
on International Computing Education Research. Toronto, ON, Canada: ACM, pp. 187–197. doi:
10.1145/3291279.3339409.

Marwan, Samiha, Ge Gao, Susan Fisk, Thomas W. Price, and Tiffany Barnes (2020). “Adaptive Imme-
diate Feedback Can Improve Novice Programming Engagement and Intention to Persist in Com-
puter Science”. In: Proceedings of the 2020 ACM Conference on International Computing Education
Research. Virtual Event New Zealand: ACM, pp. 194–203. doi: 10.1145/3372782.3406264.

Mateas, Michael (2005). “Procedural literacy: educating the new media practitioner”. In: On the Hori-
zon 13.2. Ed. by Drew Davidson, pp. 101–111. doi: 10.1108/10748120510608133.

McCarthy, John and Peter Wright (2004). “Technology as experience”. In: Interactions 11.5, pp. 42–43.
doi: 10.1145/1015530.1015549.

114

https://doi.org/10.7551/mitpress/2137.003.0006
https://doi.org/10.1086/421123
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00044-w
https://doi.org/10.1353/tech.1999.0128
https://doi.org/10.1111/j.1542-734X.1992.1504_43.x
https://www.altinget.dk/uddannelse/artikel/e-laeringschef-diskussion-om-it-som-fag-er-ikke-doed
https://www.altinget.dk/uddannelse/artikel/e-laeringschef-diskussion-om-it-som-fag-er-ikke-doed
https://doi.org/10.1145/263552.263612
https://doi.org/10.1145/3291279.3339409
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1108/10748120510608133
https://doi.org/10.1145/1015530.1015549

Bibliography

McDonald, Nora, Sarita Schoenebeck, and Andrea Forte (2019). “Reliability and Inter-rater Reliability
in Qualitative Research: Norms and Guidelines for CSCW and HCI Practice”. In: Proceedings of
the ACM on Human-Computer Interaction 3 (CSCW), pp. 1–23. doi: 10.1145/3359174.

McHugh,Mary L. (2012). “Interrater reliability: the kappa statistic”. In: BiochemiaMedica 22.3, pp. 276–
282.

Microsoft, Inc. (n.d.). Microsoft software license terms: Microsoft Visual Studio Code. uRl: https://code.
visualstudio.com/license.

Mol, Annemarie (2002). The body multiple: Ontology in medical practice. Duke University Press.

Myers, Brad, Scott E. Hudson, and Randy Pausch (2000). “Past, present, and future of user interface
software tools”. In: ACM Transactions on Computer-Human Interaction 7.1, pp. 3–28. doi: 10.1145/
344949.344959.

Naur, Peter (1967). “Datalogi — læren om data”. Lecture. Lecture. The second of five Rosenkjær Lec-
tures in Danish Broadcasting Corporation 1966-67 (published as Datamaskinerne og Samfundet,
Munksgaard). (Visited on 05/23/2023).

Nelson, Greg L. and Amy J. Ko (2018). “On Use of Theory in Computing Education Research”. In:
Proceedings of the 2018 ACM Conference on International Computing Education Research. Espoo,
Finland: ACM, pp. 31–39. doi: 10.1145/3230977.3230992.

Nelson, Theodor Holm (2003). “Computer Lib / Dream Machines”. In: The New Media Reader. Red. by
Noah Wardrip-Fruin and Nick Montfort. Cambridge, Mass.: MIT Press, pp. 301–338. isbn: 978-0-
262-23227-2.

Noone, Mark and Aidan Mooney (2018). “Visual and textual programming languages: a systematic
review of the literature”. In: Journal of Computers in Education 5.2, pp. 149–174. doi: 10 .1007/
s40692-018-0101-5.

Nouwens, Midas, Marcel Borowski, Bjarke Vognstrup Fog, and Clemens Nylandsted Klokmose (2020).
“Between Scripts and Applications: Computational Media for the Frontier of Nanoscience”. In:
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM. doi: 10.
1145/3313831.3376287.

Nouwens, Midas and Clemens Nylandsted Klokmose (2018). “The Application and Its Consequences
for Non-Standard Knowledge Work”. In: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. ACM. doi: 10.1145/3173574.3173973.

Nouwens, Midas and Clemens Nylandsted Klokmose (2021). “A Survey of Digital Working Condi-
tions of Danish Knowledge Workers”. In: Proceedings of 19th European Conference on Computer-
Supported Cooperative Work. European Society for Socially Embedded Technologies (EUSSET).

O’hara, Keith, Douglas Blank, and James Marshall (May 2015). “Computational Notebooks for AI Ed-
ucation”. In: Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research
Society Conference, FLAIRS 2015. doi: 10.13140/2.1.2434.5928.

Osler, Audrey (2000). “The Crick Report: difference, equality and racial justice”. In: The Curriculum
Journal 11.1, pp. 25–37. doi: 10.1080/095851700361375.

Oudshoorn, Nelly and Trevor J. Pinch (2008). “User-Technology Relationships: Some Recent Devel-
opments”. In: The Handbook of Science and Technology Studies. Ed. by Edward J. Hackett, Olga
Amsterdamska, Michael Lynch, and Judy Wajcman. 3rd. Cambridge, Mass.: MIT Press, pp. 541–
565.

Oulasvirta, Antti and Kasper Hornbæk (2016). “HCI Research as Problem-Solving”. In: Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems. San Jose, California, USA: ACM,
pp. 4956–4967. doi: 10.1145/2858036.2858283.

Overgaard, Søren and Dan Zahavi (2009). “Phenomenological sociology”. In: Encountering the every-
day: An introduction to the sociologies of the unnoticed, pp. 93–115.

Papert, Seymour (1993). Mindstorms: children, computers, and powerful ideas. 2nd edition. New York,
NY: Basic Books.

115

https://doi.org/10.1145/3359174
https://code.visualstudio.com/license
https://code.visualstudio.com/license
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/3230977.3230992
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3173574.3173973
https://doi.org/10.13140/2.1.2434.5928
https://doi.org/10.1080/095851700361375
https://doi.org/10.1145/2858036.2858283

BibliogRaphy

Perez, Fernando and Brian Granger (2007). “IPython: A System for Interactive Scientific Computing”.
In: Computing in Science & Engineering 9.3, pp. 21–29. doi: 10.1109/mcse.2007.53.

Pérez, Fernando (2013). “Literate computing” and computational reproducibility: IPython in the age
of data-driven journalism. uRl: http : / / blog . fperez . org / 2013 / 04 / literate - computing - and -
computational.html.

Pérez, Fernando and Brian Granger (2015). Project Jupyter: Computational Narratives as the Engine of
Collaborative Data Science. uRl: http://archive.ipython.org/JupyterGrantNarrative-2015.pdf.

Pérez-Escoda, Ana and Ma José Rodríguez-Conde (2015). “Digital literacy and digital competences
in the educational evaluation”. In: Proceedings of the 3rd International Conference on Technological
Ecosystems for Enhancing Multiculturality - TEEM ’15. ACM Press. doi: 10.1145/2808580.2808633.

Perlis, Alan J. (1982). “Special Feature: Epigrams on programming”. In: ACM SIGPLAN Notices 17.9,
pp. 7–13. doi: 10.1145/947955.1083808.

Petrick, Elizabeth R. (2020). “A Historiography of Human-Computer Interaction”. In: IEEE Annals of
the History of Computing 42.4, pp. 8–23. doi: 10.1109/MAHC.2020.3009080.

Pinch, Trevor J. and Wiebe E. Bijker (1984). “The Social Construction of Facts and Artefacts: or How
the Sociology of Science and the Sociology of Technology might Benefit Each Other”. In: Social
Studies of Science 14.3, pp. 399–441. doi: 10.1177/030631284014003004.

Rädle, Roman, Midas Nouwens, Kristian Antonsen, James R. Eagan, and Clemens N. Klokmose (2017).
“Codestrates: Literate Computing with Webstrates”. In: Proceedings of the 30th Annual ACM Sym-
posium on User Interface Software and Technology. ACM. doi: 10.1145/3126594.3126642.

Raymond, Eric S. (1999).The cathedral & the bazaar: musings on Linux and open source by an accidental
revolutionary. 1st ed. Beijing; Cambridge, Mass.: O’Reilly. 268 pp. isbn: 978-1-56592-724-7.

Regmi, Krishna, Jennie Naidoo, and Paul Pilkington (2010). “Understanding the Processes of Transla-
tion and Transliteration in Qualitative Research”. In: International Journal of Qualitative Methods
9.1, pp. 16–26. doi: 10.1177/160940691000900103.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen
Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin Kafai (2009).
“Scratch: programming for all”. In: Communications of the ACM 52.11, pp. 60–67. doi: 10.1145/
1592761.1592779.

Rosenberger, Robert Joseph and Peter-Paul Verbeek (2015). “A Field Guide to Postphenomenology”.
In: Postphenomenological Investigations. Ed. by Robert Rosenberger and Peter-Paul Verbeek. Lex-
ington Books, pp. 9–42. isbn: 978-0-7391-9436-2.

Rule, Adam, Ian Drosos, Aurélien Tabard, and James Hollan (2018). “Aiding Collaborative Reuse of
Computational Notebooks with Annotated Cell Folding”. In: Proceedings of the ACM on Human-
Computer Interaction 2 (CSCW), pp. 1–12. doi: 10.1145/3274419.

Rule, Adam, Aurélien Tabard, and James Hollan (2018). “Exploration and Explanation in Computa-
tional Notebooks”. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM. doi: 10.1145/3173574.3173606.

Rychen, Dominique Simone and Laura Hersh Salganik (2003). “A holistic model of competence”. In:
Key competencies for a successful life and a well-functioning society. Ed. by Laura Hersh Salganik
and Dominique Simone Rychen. Cambridge, MA; Toronto: Hogrefe & Huber, pp. 41–62. isbn:
978-0-88937-272-6.

Salovaara, Antti, Antti Oulasvirta, and Giulio Jacucci (2017). “Evaluation of Prototypes and the Prob-
lem of Possible Futures”. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. Denver, Colorado, USA: ACM, pp. 2064–2077. doi: 10.1145/3025453.3025658.

Satchell, Christine and Paul Dourish (2009). “Beyond the user”. In: Proceedings of the 21st Annual
Conference of the Australian Computer-Human Interaction Special Interest Group on Design: Open
24/7 - OZCHI ’09. ACM Press. doi: 10.1145/1738826.1738829.

“Sayings of the High One” (2014). In: The poetic Edda. Trans. by Carolyne Larrington. Revised edition.
Oxford world’s classics. Oxford: Oxford University Press, pp. 13–35. isbn: 978-0-19-967534-0.

116

https://doi.org/10.1109/mcse.2007.53
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
https://doi.org/10.1145/2808580.2808633
https://doi.org/10.1145/947955.1083808
https://doi.org/10.1109/MAHC.2020.3009080
https://doi.org/10.1177/030631284014003004
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1177/160940691000900103
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3274419
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3025453.3025658
https://doi.org/10.1145/1738826.1738829

Bibliography

Schneider, Hanna, Malin Eiband, Daniel Ullrich, and Andreas Butz (2018). “Empowerment in HCI - A
Survey and Framework”. In: Proceedings of the 2018 CHI Conference on Human Factors in Comput-
ing Systems. Montreal, QC, Canada: ACM, pp. 1–14. doi: 10.1145/3173574.3173818.

Schön, Donald A. (1983). The reflective practitioner: how professionals think in action. New York: Basic
Books. 374 pp. isbn: 978-0-465-06878-4.

Schulte, Carsten and Lea Budde (2018). “A Framework for Computing Education: Hybrid Interaction
System: The need for a bigger picture in computing education”. In: Proceedings of the 18th Koli
Calling International Conference on Computing Education Research. Koli, Finland: ACM, pp. 1–10.
doi: 10.1145/3279720.3279733.

Schulte, Eric, Dan Davison, Thomas Dye, and Carsten Dominik (2012). “A Multi-Language Comput-
ing Environment for Literate Programming and Reproducible Research”. In: Journal of Statistical
Software 46.3, pp. 1–24. doi: 10.18637/jss.v046.i03.

Schuurman, Nadine (2008). “Database Ethnographies Using Social Science Methodologies to Enhance
Data Analysis and Interpretation”. In: Geography Compass 2.5, pp. 1529–1548. doi: 10.1111/j.1749-
8198.2008.00150.x.

Shavelson, Richard J., H.W. Marsh, and B.M. Byrne (1992). “A multidimensional, hierarchical self-
concept”. In: SUNY Press, pp. 44–95.

Singer, Jeremy (2020). “Notes on notebooks: is Jupyter the bringer of jollity?” In: Proceedings of the
2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. Virtual, USA: ACM, pp. 180–186. doi: 10.1145/3426428.3426924.

Song, F., S. Parekh, L. Hooper, Y. K. Loke, J. Ryder, A. J. Sutton, C. Hing, C. S. Kwok, C. Pang, and I.
Harvey (2010). “Dissemination and publication of research findings: an updated review of related
biases”. In: Health Technology Assessment 14.8. doi: 10.3310/hta14080.

Sørensen, Marie-Louise Stisen Kjerstein, Bjarke Vognstrup Fog, Line Have Musaeus, and Marianne
Graves Petersen (2022). “KnitxCode: Exploring a Craftsmanship-driven Approach to Computa-
tional Thinking”. In: Adjunct Proceedings of the 2022 Nordic Human-Computer Interaction Confer-
ence. Aarhus, Denmark: ACM, pp. 1–5. doi: 10.1145/3547522.3547680.

Spangsberg, Thomas Hvid and Martin Brynskov (2017). “Towards a dialectic relationship between
the implicit and explicit nature of computational thinking”. In: Proceedings of the 17th Koli Calling
Conference on Computing Education Research - Koli Calling ’17. ACM Press. doi: 10.1145/3141880.
3144591.

Stallman, RichardM. (1981). “EMACS— the extensible, customizable self-documenting display editor”.
In: Proceedings of the ACM SIGPLAN SIGOA symposium on Text manipulation, pp. 147–156.

— (2015). Free Software, Free Society: Selected Essays of Richard M. Stallman. 3. ed. Boston, MA: Free
Software Foundation. uRl: https://www.gnu.org/doc/Press-use/fsfs3-hardcover.pdf.

Star, Susan Leigh (1999). “The Ethnography of Infrastructure”. In: American Behavioral Scientist 43.3,
pp. 377–391. doi: 10.1177/00027649921955326.

Stigler, George J. (1970). “The case, if any, for economic literacy”. In:The Journal of Economic Education
1.2, pp. 77–85.

Straube, Till (2016). “Stacked spaces: Mapping digital infrastructures”. In: Big Data & Society 3.2. doi:
10.1177/2053951716642456.

Streeck, Jürgen, Charles Goodwin, and Curtis LeBaron (2011). “Embodied interaction in the material
world: An introduction”. In: Embodied interaction: Language and body in the material world 1, p. 26.

Suchman, Lucille Alice (1987). Plans and situated actions: the problem of human-machine communica-
tion. Cambridge [Cambridgeshire]; NewYork: Cambridge University Press. isbn: 978-0-521-33739-
7.

Taylor, Nick, Keith Cheverst, PeterWright, and Patrick Olivier (2013). “Leaving the wild: lessons from
community technology handovers”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. Paris, France: ACM, pp. 1549–1558. doi: 10.1145/2470654.2466206.

117

https://doi.org/10.1145/3173574.3173818
https://doi.org/10.1145/3279720.3279733
https://doi.org/10.18637/jss.v046.i03
https://doi.org/10.1111/j.1749-8198.2008.00150.x
https://doi.org/10.1111/j.1749-8198.2008.00150.x
https://doi.org/10.1145/3426428.3426924
https://doi.org/10.3310/hta14080
https://doi.org/10.1145/3547522.3547680
https://doi.org/10.1145/3141880.3144591
https://doi.org/10.1145/3141880.3144591
https://www.gnu.org/doc/Press-use/fsfs3-hardcover.pdf
https://doi.org/10.1177/00027649921955326
https://doi.org/10.1177/2053951716642456
https://doi.org/10.1145/2470654.2466206

BibliogRaphy

Tedre, Matti (2020). “From a Black Art to a School Subject”. In: Proceedings of the 2020 ACMConference
on Innovation and Technology in Computer Science Education. ACM. doi: 10.1145/3341525.3394983.

Tedre, Matti and Peter J. Denning (2016). “The long quest for computational thinking”. In: Proceedings
of the 16th Koli Calling International Conference on Computing Education Research. Koli, Finland:
ACM, pp. 120–129. doi: 10.1145/2999541.2999542.

The Org Mode Community (n.d.). Org Mode. uRl: https://orgmode.org/.

Thurmond, Veronica A. (2001). “The Point of Triangulation”. In: Journal of Nursing Scholarship 33.3,
pp. 253–258. doi: 10.1111/j.1547-5069.2001.00253.x.

Tissenbaum, Mike, Josh Sheldon, and Hal Abelson (2019). “From computational thinking to compu-
tational action”. In: Communications of the ACM 62.3, pp. 34–36. doi: 10.1145/3265747.

Tissenbaum, Mike, Josh Sheldon, Lissa Seop, Clifford H. Lee, and Natalie Lao (2017). “Critical com-
putational empowerment: Engaging youth as shapers of the digital future”. In: 2017 IEEE Global
Engineering Education Conference (EDUCON). Athens, Greece: IEEE, pp. 1705–1708. doi: 10.1109/
EDUCON.2017.7943078.

Tracy, Sarah J. (2010). “Qualitative Quality: Eight “Big-Tent” Criteria for Excellent Qualitative Re-
search”. In: Qualitative Inquiry 16.10, pp. 837–851. doi: 10.1177/1077800410383121.

— (2013). Qualitative Research Methods. John Wiley & Sons. 368 pp. isbn: 978-1-4051-9203-3.

Trois, Celio,MarcosD. Del Fabro, Luis C. E. de Bona, andMagnosMartinello (2016). “A Survey on SDN
Programming Languages: Toward a Taxonomy”. In: IEEECommunications Surveys& Tutorials 18.4,
pp. 2687–2712. doi: 10.1109/COMST.2016.2553778.

Tuhkala, Ari, Marie-Louise Wagner, Ole Sejer Iversen, and Tommi Kärkkäinen (2019). “Technology
Comprehension — Combining computing, design, and societal reflection as a national subject”. In:
International Journal of Child-Computer Interaction 20, pp. 54–63. doi: 10.1016/j.ijcci.2019.03.004.

Vee, Annette (2013). “Understanding computer programming as a literacy”. In: Literacy in Composition
Studies 1.2, pp. 42–64. uRl: http://d-scholarship.pitt.edu/id/eprint/21695.

— (2017). Coding literacy: how computer programming is changing writing. Software studies. Cam-
bridge, MA: The MIT Press. 361 pp. isbn: 978-0-262-03624-5.

Veenman, Marcel V. J., Bernadette H. A. M. Van Hout-Wolters, and Peter Afflerbach (2006). “Metacog-
nition and learning: conceptual and methodological considerations”. In: Metacognition and Learn-
ing 1.1, pp. 3–14. doi: 10.1007/s11409-006-6893-0.

Verbeek, Peter-Paul (2001). “Don Ihde: The Technological Lifeworld”. In: American philosophy of tech-
nology: the empirical turn. Ed. by Hans Achterhuis. The Indiana series in the philosophy of tech-
nology. Bloomington: Indiana University Press, pp. 119–146. isbn: 978-0-253-21449-2.

— (2005). “Artifacts in Design”. In: What Things Do: Philosophical Reflections on Technology, Agency,
and Design. Penn State University Press, pp. 203–236. isbn: 978-0-271-03322-8. doi: 10 . 1515 /
9780271033228.

— (2015). “Beyond interaction: a short introduction tomediation theory”. In: Interactions 22.3, pp. 26–
31. doi: 10.1145/2751314.

Vista, Alvin (2020). “Teaching coding as a literacy: Issues, challenges, and limitations”. In: Academia
Letters. doi: 10.20935/AL5.

Vygotsky, Lev Semenovich and Michael Cole (1978). Mind in society: Development of higher psycho-
logical processes. Harvard University Press. isbn: 0-674-57629-2.

Waltz, Scott B. (2004). “Giving artifacts a voice? Bringing into account technology in educational
analysis”. In: Educational theory 54.2, pp. 157–172.

Weintrop, David, Nathan Holbert, and Mike Tissenbaum (2020). “Considering alternative endpoints:
An exploration in the space of computing educations”. In: Proceedings of the Constructionism Con-
ference, Dublin, Ireland.

Winestock, Rudolph (Oct. 6, 2017).TheLisp Curse.WinestockWebdesign. uRl: http://www.winestockwebdesign.
com/Essays/Lisp_Curse.html (visited on 05/12/2023).

118

https://doi.org/10.1145/3341525.3394983
https://doi.org/10.1145/2999541.2999542
https://orgmode.org/
https://doi.org/10.1111/j.1547-5069.2001.00253.x
https://doi.org/10.1145/3265747
https://doi.org/10.1109/EDUCON.2017.7943078
https://doi.org/10.1109/EDUCON.2017.7943078
https://doi.org/10.1177/1077800410383121
https://doi.org/10.1109/COMST.2016.2553778
https://doi.org/10.1016/j.ijcci.2019.03.004
http://d-scholarship.pitt.edu/id/eprint/21695
https://doi.org/10.1007/s11409-006-6893-0
https://doi.org/10.1515/9780271033228
https://doi.org/10.1515/9780271033228
https://doi.org/10.1145/2751314
https://doi.org/10.20935/AL5
http://www.winestockwebdesign.com/Essays/Lisp_Curse.html
http://www.winestockwebdesign.com/Essays/Lisp_Curse.html

Bibliography

Wing, Jeannette M. (2006). “Computational thinking”. In: Communications of the ACM 49.3, pp. 33–35.
doi: 10.1145/1118178.1118215.

Yeung, Alexander Seeshing, Dennis M. McInerney, and Deirdre Russell-Bowie (2001). “Hierarchical,
multidimensional creative arts self-concept”. In: Australian Journal of Psychology 53.3, pp. 125–
133. doi: 10.1080/00049530108255134.

Zimmerman, John and Jodi Forlizzi (2014). “Research through design in HCI”. In: Ways of Knowing
in HCI. Ed. by Judith S. Olson and Wendy A. Kellogg. Springer, pp. 167–189. doi: 10.1007/978-1-
4939-0378-8_8.

Zimmerman, John, Erik Stolterman, and Jodi Forlizzi (2010). “An analysis and critique of Research
through Design: towards a formalization of a research approach”. In: Proceedings of the 8th ACM
Conference on Designing Interactive Systems - DIS ’10. Aarhus, Denmark: ACM Press. doi: 10.1145/
1858171.1858228.

119

https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1080/00049530108255134
https://doi.org/10.1007/978-1-4939-0378-8_8
https://doi.org/10.1007/978-1-4939-0378-8_8
https://doi.org/10.1145/1858171.1858228
https://doi.org/10.1145/1858171.1858228

List of Figures 7

2.1 A map showing the development of inquiries . 15
2.2 An overview of inquiry 2 & 3 . 19
2.3 Workshop activity: Decode and recreate . 24
2.4 Workshop activity: KnitxCode . 24
5.1 Ruth Teitelbaum and Marlyn Meltzer wiring the ENIAC 53
5.2 Mediation model of the ENIAC . 53
5.3 Woman operating an IBM 711 card reader in 1957 . 54
5.4 Mediation model of punchcards . 55
5.5 Woman interacting with a FRiden FlexowRiteR in 1966 55
5.6 Mediation model of teleprinters and mainframes . 56
5.7 BASIC code . 56
5.8 Mediation model of program languages . 57
5.9 DOS running on an Ampex . 58
5.10 Mediation model of personal computer operating systems 58
5.11 Emacs . 59
5.12 Mediation model of Emacs . 59
5.13 Visual Studio Code . 60
5.14 Mediation model of the contemporary IDE . 61
5.15 Applications (left) versus computational media (right) . 63
5.16 A timeline of the WebstRates software family . 65
5.17 CodestRates . 67
5.18 The computational lab book built on CodestRates . 68
5.19 A multiplayer tank game implemented using CodestRates v2 70
5.20 JupyteR NotebooK . 71
5.21 Types of systems in literate computing research . 72
5.22 Mediation model of literate programming . 73
5.23 Mediation model of literate computing . 73

121

List of Tables 7

1 Published and submitted research articles . iii
2 Other research dissemination . iii

2.1 An overview of my research inquiries . 16
2.2 Overview of the participants’ self-assessed programming knowledge 20
2.3 Students’ background information . 22
2.4 Participants’ self-reported computer competencies (1–100) and programming competen-

cies (1–100) . 23

3.1 An overview of self-concept components . 35

4.1 The aspects of technological mediation . 46

5.1 Key differences between literate programming and literate computing 73

123

	Acknowledgements
	List of publications included in the dissertation
	Abstract
	Dansk resumé
	Overview article
	Introduction
	Research question and contributions
	Overview of the dissertation
	A short reflection on the development of the research design
	Brief summary of the articles

	Methodology and research design
	Epistemological reflections
	Positioning the research methodology
	Research design and strategy

	Computational literacy and how it is formed
	Tracing literacy broadly
	Why computational literacy?
	What is computational about computational literacy?
	Self-concept: How computational literacy is formed
	Discussion
	Conclusion

	Mediation and interaction in HCI and beyond
	Interaction
	Mediation
	A definition of mediating qualities

	Software and computational media
	A few conceptual clarifications
	Programming and mediation
	Computational media
	The unfulfilled promise of literate computing
	Findings, or how computational media mediates
	Computational media as technical imaginaries
	Conclusion

	Interactive qualities, software mediation, computational literacy
	Computational media, visions, and literacy
	Computational culture
	Computational crises
	Strategies for workarounds and recovery
	Computational literacy in action
	Embodiment and programming as a craft
	A taxonomy of the foundations of computational literacy
	Implications

	Conclusion
	Bibliography
	List of Figures
	List of Tables

