
Ole Østerby

Monograph

Numerical Solution of
Parabolic Equations
Department of Computer Science

ISBN 978-87-7507-313-9

DOI 10.7146/aul.5.5

Department of Computer Science April 30, 2014
Aarhus University

Numerical Solution of

Parabolic Equations

Ole Østerby

April 2014

Preface

These lecture notes are designed for a one semester course (10 ECTS). They
deal with a rather specific topic: finite difference methods for parabolic partial
differential equations as they occur in many areas such as Physics (diffusion, heat
conduction), Geology (ground water flow), and Economics (finance theory).

The reader is supposed to have a basic knowledge of calculus (Taylor’s formula),
complex analysis (exp(it)), linear algebra (eigenvalues and eigenvectors for matri-
ces), and some familiarity with programming. A deeper knowledge in the theory
of partial differential equations is, however, not required.

The text is divided into 16 chapters and 3 appendices, some long, some short,
and some very short – which does not necessarily reflect the importance. If one is
planning a shorter (5 ECTS) course one possibility is to omit Chapters 6, 7, and
8 and stop at (or after) Chapter 12. The interconnection between the various
chapters and appendices is illustrated in the reading pattern:

 1 2 3 4 5

 6

 7

 8

 9 10 11 12 13

14 15 16A�

B�

C�

Chapter 1 contains the basic introduction to parabolic equations (existence,
uniqueness, well-posedness) and to the finite difference schemes which the book
is all about. Two sections deal with the solution of (almost) tridiagonal lin-
ear systems of equations, and the Lax-Richtmyer equivalence theorem is briefly
mentioned.

In Chapter 2 we discuss stability using the Fourier (or von Neumann) method, and
in Chapter 3 we define the local truncation error as a means to discuss accuracy of
the finite difference schemes. In Chapter 4 we look closely at boundary conditions
which, if they contain derivatives, deserve special attention.

i

In Chapter 5 we study equations with a significant first order (convection) term.
These equations are somewhat related to the one-way wave equation which is dis-
cussed in Appendix A. The next three Chapters can be omitted if time requires.
Chapter 6 studies an alternate approach to stability analysis using matrix eigen-
values. Chapter 7 explains why we seldom use two-step methods, and Chapter 8
gives various suggestions on how to fight the adverse effects of discontinuities in
the initial and/or boundary conditions.

A very important – and difficult – topic is to estimate the global error, i.e. the
difference between the true and the computed solution. Chapter 9 provides one
method to study this global error including the effect of boundary conditions
(with a derivative).

The method of Chapter 9 gives some answers but is not ideal in practice. In
Chapter 10 we introduce a practical way of estimating error which works in
many cases – and issues warning signals when the results may not be trustworthy.
Having a reliable error estimate enables us to choose a reasonable set of step sizes,
small enough to meet a given error tolerance, but not excessively small such that
we waste computer time. A reliable error estimate also opens possibilities for
extrapolation thereby gaining extra accuracy at a minimal effort. This chapter is
probably the most important one, containing material which is not readily found
elsewhere.

In Chapter 11 we take up problems with two space variables. We want to take
advantage of the good stability properties of implicit methods but not pay the
price incurred by solving large systems of equations. The answer is ADI-methods
where we solve for one space variable at a time using tridiagonal systems. ADI-
methods cannot be used directly on equations with a mixed derivative term. We
show in Chapter 12 how to modify our methods to take care of this without
sacrificing stability or efficiency. Chapter 13 is devoted to two examples from
Finance Theory involving two-factor models.

One should stay away from ill-posed problems. What may happen if we don’t is
illustrated in Chapter 14.

Chapter 15 treats the Stefan problem, an example of a moving boundary problem
where the solution region is not known beforehand, but a boundary curve must be
found together with the solution. For this particular problem we can avoid (some
of the) interpolation problems by varying the time step size. Another example
of a moving boundary problem is the American option of Chapter 16 where the
exercise boundary is not known in advance but must be determined together with
the solution.

In Appendix A we evaluate a number of difference schemes for the one-way
wave equation which is related to the convection-diffusion equation of Chapter 5.

ii

Apendix B introduces two classes of test problems with two space variables and
in Appendix C we discuss some side effects of interpolation with importance for
our methods for moving boundary problems.

Among the special features in this book we can mention

• An efficient way of estimating the order and accuracy of a method on a
particular problem.

• The possibility of extrapolating to get higher order and better accuracy.

• An efficient way of determining (near-)optimal step sizes to meet a pre-
scribed error tolerance (Chapter 10).

• A systematic way of incorporating inhomogeneous terms and boundary con-
ditions in ADI-methods (Chapter 11).

• A systematic way of incorporating mixed derivative terms in ADI-methods
(Chapter 12).

I should like to express my thanks to colleagues at the Danish Technical University
and to several students at Aarhus University in Computer Science, Geology, and
especially Finance Theory who have been exposed to more or less preliminary
versions of these lecture notes. The questions that arose in various discussions
have been the inspiration for many of the topics I have taken up and where
answers are not readily found in common text books.

iii

iv

Contents

1 Basics 1

1.1 Differential equations . 1

1.2 Main types of PDEs . 2

1.3 Separation of variables . 2

1.4 Side conditions . 3

1.5 Well-posed and ill-posed problems 4

1.6 Two test problems . 4

1.7 Difference operators . 5

1.8 Difference schemes . 7

1.8.1 The explicit method . 7

1.8.2 The implicit method . 8

1.8.3 Crank-Nicolson . 8

1.8.4 The general θ-method 9

1.8.5 The operators P , Pk,h and Rk,h 9

1.9 Two-step schemes . 10

1.10 Error norms . 11

1.11 Tridiagonal systems of equations 11

1.12 Almost tridiagonal systems . 13

1.13 Convergence . 14

1.14 Exercises . 16

v

2 Stability 19

2.1 Fourier analysis . 19

2.2 Two examples . 21

2.3 Fourier analysis and differential equations 22

2.4 Von Neumann analysis . 23

2.5 Implicit methods . 27

2.6 Two kinds of stability . 27

2.7 Exercise . 28

3 Accuracy 29

3.1 Taylor expansions . 29

3.2 Order . 30

3.3 Symbols of operators . 32

3.4 The local error . 34

4 Boundary Conditions 35

4.1 A Dirichlet condition . 35

4.2 Derivative boundary conditions 36

4.3 A third test problem . 36

4.4 The explicit method . 37

4.4.1 First order approximation 37

4.4.2 Asymmetric second order 37

4.4.3 Symmetric second order 38

4.5 The implicit method . 38

4.5.1 First order approximation 38

4.5.2 Asymmetric second order 38

4.5.3 Symmetric second order 39

4.6 The θ-method . 39

vi

4.7 Exercises . 39

5 The Convection-Diffusion Equation 41

5.1 Introduction . 41

5.2 Maximum principle . 42

5.3 The explicit method . 42

5.4 The upwind scheme . 44

5.5 The implicit method . 47

5.6 Crank-Nicolson . 48

5.7 Comparing the methods . 48

5.8 Exercises . 49

6 The Matrix Method 51

6.1 Notation . 51

6.2 The explicit method . 51

6.3 The implicit method . 53

6.4 The θ-method . 53

6.5 Stability by the matrix method 54

6.6 Eigenvalues of tridiagonal matrices 55

6.7 The influence of boundary values 58

6.8 A derivative boundary condition 59

6.9 Exercises . 60

7 Two-step Methods 61

7.1 The central-time central-space scheme 61

7.2 The DuFort-Frankel scheme . 62

7.3 Exercise . 63

8 Discontinuities 65

vii

8.1 Stability and damping . 65

8.2 The growth factor . 66

8.3 Reducing the Crank-Nicolson oscillations 67

8.3.1 AV – the moving average 67

8.3.2 IM1 – One step with IM 68

8.3.3 SM – Small steps at the beginning 68

8.3.4 Pearson . 68

8.3.5 EI – Exponentially increasing steps 68

8.4 Discussion . 69

8.5 A discontinuous corner . 69

8.6 Exercises . 70

9 The Global Error – Theoretical Aspects 71

9.1 The local error . 71

9.2 The global error . 71

9.3 The explicit method . 72

9.4 The initial condition . 73

9.5 Dirichlet boundary conditions 74

9.6 The error for the explicit method 74

9.7 The implicit method . 75

9.7.1 An example . 76

9.8 Crank-Nicolson . 76

9.8.1 Example continued . 78

9.9 Upwind schemes . 78

9.10 Boundary conditions with a derivative 79

9.10.1 First order approximation 80

9.10.2 Asymmetric second order 80

viii

9.10.3 Symmetric second order 81

9.10.4 Test problem 3 revisited 82

9.11 Exercise . 84

10 Estimating the Global Error and Order 85

10.1 Introduction . 85

10.2 The global error . 85

10.3 Can we trust these results? . 88

10.4 Further improvements of the error estimate 90

10.5 Two independent variables . 92

10.6 Limitations of the technique. 94

10.7 Test problem 3 – once again . 96

10.8 Which method to choose . 99

10.9 Literature . 100

10.10 Exercises . 101

11 Two Space Dimensions 103

11.1 Introduction . 103

11.2 The explicit method . 104

11.3 Implicit methods . 105

11.4 ADI methods . 106

11.5 The Peaceman-Rachford method 107

11.6 Practical considerations . 108

11.7 Stability of Peaceman-Rachford 110

11.8 D’Yakonov . 111

11.9 Douglas-Rachford . 111

11.10 Stability of Douglas-Rachford 113

11.11 The local truncation error . 113

ix

11.12 The global error . 116

11.13 Exercises . 120

12 Equations with Mixed Derivative Terms 121

12.1 Practical considerations . 122

12.2 Stability with mixed derivative 123

12.3 Stability of ADI-methods . 126

12.4 Summary . 130

12.5 Exercises . 131

13 Two-Factor Models – two examples 133

13.1 The Brennan-Schwartz model 133

13.2 Practicalities . 136

13.3 A Traditional Douglas-Rachford step 139

13.4 The Peaceman-Rachford method 140

13.5 Fine points on efficiency . 141

13.6 Convertible bonds . 142

14 Ill-Posed Problems 143

14.1 Theory . 143

14.2 Practice . 144

14.3 Variable coefficients – An example 148

15 A Free Boundary Problem 149

15.1 The Stefan problem . 149

15.2 The Douglas-Gallie method . 150

15.3 The global error . 153

15.4 Estimating the global error . 157

x

16 The American Option 161

16.1 Introduction . 161

16.2 The mathematical model . 161

16.3 The boundary condition at infinity 164

16.4 Finite difference schemes . 168

16.5 Varying the time steps . 171

16.6 The implicit method . 172

16.7 Crank-Nicolson . 177

16.8 Determining the order . 182

16.9 Efficiency of the methods . 185

A The One-Way Wave Equation 187

A.1 Forward-time forward-space . 187

A.2 Forward-time backward-space 188

A.3 Forward-time central-space . 189

A.4 Central-time central-space or leap-frog 189

A.5 Lax-Friedrichs . 190

A.6 Backward-time forward-space 191

A.7 Backward-time backward-space 191

A.8 Backward-time central-space 192

A.9 Lax-Wendroff . 193

A.10 Crank-Nicolson . 193

A.11 Overview of the methods . 194

B A Class of Test Problems 197

C Interpolation and the Order Ratio 199

C.1 Introduction . 199

xi

C.2 Linear interpolation . 199

C.3 Three-point interpolation . 201

Bibliography 203

xii

Chapter 1

Basics

1.1 Differential equations

An ordinary differential equation (ODE) is a relation between a function, y, of
one independent variable, x, and its derivative, and possibly derivatives of higher
order, e.g.

d3y

dx3
+ a

d2y

dx2
+ b

dy

dx
= f(x).

A solution to the differential equation is a differentiable function y(x) which
satisfies this equation.

A partial differential equation (PDE) is the generalization to functions of two or
more independent variables, e.g.

∂u

∂t
− b

∂2u

∂x2
+ a

∂u

∂x
− κu = ν(t, x).

A solution is a differentiable function u(t, x) which satisfies the equation.

Notation We shall in the following use subscripts to denote partial derivatives,
e.g.

ut =
∂u

∂t
, ux =

∂u

∂x
, uxx =

∂2u

∂x2
, etc.

The partial differential equation above now reads

ut − buxx + aux − κu = ν(t, x)

The coefficients a, b, κ may be functions of t and x but in most of our theoretical
investigations we shall treat them as constants.

1

1.2 Main types of PDEs

The most commonly occurring PDEs are divided into three groups:

type simple example
Elliptic uxx + uyy = 0 Laplace’s equation
Parabolic ut − uxx = 0 Heat equation
Hyperbolic utt − uxx = 0 Wave equation

Parabolic and hyperbolic equations describe phenomena which evolve in time
whereas elliptic equations describe steady state situations. In physics the elliptic
equations model an electrostatic field, the parabolic equations model diffusion or
heat conduction problems, and the hyperbolic equations model wave motion. In
recent years parabolic equations have been used increasingly to model systems in
mathematical economy and finance theory. The remainder of this book will be
aimed exclusively at methods for solving parabolic equations.

1.3 Separation of variables

Some of the simpler PDEs such as the simple heat equation:

ut = uxx (1.1)

can be solved using separation of variables, i.e. we assume the solution u(t, x)
can be written as a product of a function of t and a function of x:

u(t, x) = T (t)X(x). (1.2)

Inserting in the differential equation we get

T ′(t)X(x) = T (t)X ′′(x).

If X(x) ≡ 0 then u(t, x) ≡ 0 which is a (trivial) solution to (1.1). Since we are
interested in non-trivial solutions we can assume that there is an x1 such that
X(x1) 6= 0 and therefore X(x) 6= 0 in a neighbourhood around x1. Similarly we
can find a t1 such that T (t) 6= 0 in a neighbourhood around t1. In a neighbourhood
around (t1, x1) we can therefore divide by T (t)X(x) and get

T ′(t)

T (t)
=

X ′′(x)

X(x)
,

but since the left-hand-side is only a function of t and the right-hand-side is only
a function of x the result must be a constant which could be either positive or

2

negative. Taking the latter case first and setting the constant equal to −ω2 where
ω is a real number we end up with two ODEs, one for T and one for X . The
general solutions are

T (t) = ct exp(−ω2t), X(x) = cx cos(ωx+ ϕ).

Combining these we find that

u(t, x) = c exp(−ω2t) cos(ωx+ ϕ) (1.3)

is a general solution to the simple heat equation. As this equation is linear and
homogeneous any linear combination of two or more solutions (e.g. with different
values of ω) is also a solution. We need extra information to determine the values
of c, ω, and ϕ. If for instance the initial value at t = 0 is a cosine or a linear
combination of cosines then we get a solution by multiplying each cosine by the
appropriate exponential factor. We shall return to this in sections 1.4 and 1.6.

If the constant above is positive we put it on the form +ω2 and we are in a similar
manner led to a general solution of (1.1) in the form

u(t, x) = c exp(ω2t) cosh(ωx+ ϕ) (1.4)

Functions of type (1.4) grow without bound with increasing x and t. If we are
interested in bounded solutions, functions of this type must have zero weight.

1.4 Side conditions

As illustrated by (1.3) solutions to differential equations are not unique unless we
impose extra conditions. For parabolic equations it is customary to specify an
initial condition, i.e. to specify the solution at some initial time, usually t = 0:

u(0, x) = u0(x) (1.5)

where u0(x) is a given function. If this is supposed to hold for −∞ < x <∞ then
we speak of an initial value problem (IVP). More typical in practical situations,
however, is to specify the initial value on a finite interval X1 ≤ x ≤ X2 in which
case we must also specify boundary conditions for x = X1 and x = X2. On the
left boundary such a boundary condition may be of the general form

α1u(t, X1)− β1ux(t, X1) = γ1, t > 0 (1.6)

where α1, β1, and γ1 may depend on t. If β1 = 0 we speak of a Dirichlet condition
(J.P.G.L. Dirichlet, 1805 – 1859). If α1 = 0 we speak of a Neumann condition
(Carl Neumann, 1832 – 1925). If both α1 and β1 are different from 0 we speak

3

of a boundary condition of the third kind or a Robin condition (Gustave Robin,
1855 – 1897). On the right boundary we have a similar condition:

α2u(t, X2) + β2ux(t, X2) = γ2, t > 0. (1.7)

In this case we speak of an initial-boundary value problem (IBVP).

The choice of signs in (1.6) and (1.7) may seem a bit strange at first sight. If β1
and β2 are non-zero then we can assume without loss of generality that they are
equal to 1. In this case positive values for α1 and α2 will ensure that the solutions
of the differential equation are not exponentially growing. We refer the reader
to [7], [18], and [25] for a further discussion of the effect of derivative boundary
conditions on the qualitative nature of the solutions, but here it shall be our
general assumption that α1, α2, β1, and β2 are all non-negative.

1.5 Well-posed and ill-posed problems

If in an IVP we change the initial function by a small amount we hope and
expect that the effect on the solution function at some later time will also be
small. This is indeed the case for the simple heat equation and is related to
the fact that a maximum principle (cf. section 5.2) exists for this equation. We
say that the problem is well-posed and we shall discuss this property in more
detail in Chapter 2. If on the other hand we would attempt to solve the heat
equation in the opposite time direction – or what amounts to the same – would
consider the equation ut = −uxx, then arbitrarily small changes in the initial
condition (e.g. with large values of ω) would imply large deviations in the solution
at later times. We say that this problem is ill-posed. Such problems are not
well suited as mathematical models and attempts to solve them numerically are
doomed to disaster. The reason for this is that when we attempt to solve a
differential equation numerically we invariably introduce small (rounding) errors,
typically with large frequencies (ω) already in the first time step. In an ill-posed
problem these perturbations will be amplified in the following time steps thereby
distorting the solution function beyond recognition. We shall discuss this further
in Chapters 2 and 14.

1.6 Two test problems

The following two test problems will be used extensively in examples and exercises
to demonstrate the behaviour of various techniques and methods.

4

Problem 1

ut = uxx, −1 ≤ x ≤ 1, t > 0,
u(0, x) = u0(x) = cosx, −1 ≤ x ≤ 1,

u(t,−1) = u(t, 1) = e−t cos 1, t > 0.

This is an IBVP with boundary conditions of Dirichlet type. It is easily seen
from formula (1.3) that the true solution is u(t, x) = e−t cosx.

Problem 2

ut = uxx, −1 ≤ x ≤ 1, t > 0,

u(0, x) = u0(x) =

1,
0,

−1,

|x| < 1
2
,

|x| = 1
2
,

|x| > 1
2
.

We now have a discontinuous initial condition. The solution will, however, be
continuous and infinitely often differentiable for t > 0. The true solution can be
found by taking the Fourier cosine series for the initial function and appending
the corresponding exponential factors as given by formula (1.3):

u(t, x) =
4

π

∞∑

j=0

(−1)j
cos((2j + 1)πx)

2j + 1
e−(2j+1)2π2t. (1.8)

If we take the boundary values at x = −1 og x = 1 from this series we obtain a
Dirichlet problem.

Note that we only need rather few terms in the infinite sum in order to achieve
any specific finite accuracy when t > 0 (cf. Exercise 2).

1.7 Difference operators

In most practically occurring cases an analytical solution to an IBVP for a
parabolic equation cannot be obtained and we must resort to numerical tech-
niques.

We choose a step size in the t-direction, k, and a step size in the x-direction, h,
usually chosen as h = (X2 − X1)/M for some integer M , and we wish to find
approximations

vnm = v(nk,X1 +mh)

5

to the true solution u(t, x) at all grid points (cf. Fig. 1.1)

(t, x) = (nk,X1 +mh), m = 0, 1, . . .M, n = 1, 2, . . . , N

where T = Nk is the maximum time. We do this by approximating the partial
derivatives with difference quotients.

T

X Xh

k

1 2

Figure 1.1: The (t, x) grid.

We first introduce the shift operator in the x-direction, E:

Evnm = vnm+1

and the mean value operator, µ̃:

µ̃ = (E1/2 + E−1/2)/2.

Remark. In the literature the mean value operator usually appears without the
tilde. We have introduced the tilde here to avoid confusion with another µ to be
introduced in the next section. ✷

We now have three different approximations to D, the operator which denotes
the partial derivative w.r.t. x:

Forward difference: ∆ = (E − 1)/h,
Backward difference: ∇ = (1− E−1)/h,
Central difference: δ = (E1/2 −E−1/2)/h.

6

δ and µ̃ refer to half-way points and are most useful in combinations such as:

µ̃δ = (E −E−1)/(2h),

δ2 = (E − 2 + E−1)/h2.

The former is another approximation to D, the latter is an approximation to D2,
the second partial derivative w.r.t. x.

To approximate Dt =
∂
∂t

we have a choice between

∆t = (Et − 1)/k,

∇t = (1− E−1
t)/k,

and
µ̃tδt = (Et − E−1

t)/(2k)

where the shift operator in the t-direction is

Etv
n
m = vn+1

m .

1.8 Difference schemes

1.8.1 The explicit method

To approximate the heat equation

ut − buxx = 0 (1.9)

we can thus suggest

∆tv
n
m − b δ2vnm = 0 (1.10)

or written out

vn+1
m − vnm

k
= b

vnm+1 − 2vnm + vnm−1

h2
. (1.11)

Introducing the step ratio

µ =
k

h2
(1.12)

this equation can be rewritten as

vn+1
m = vnm + bµ(vnm+1 − 2vnm + vnm−1) (1.13)

7

and thus provides a value for vn+1
m explicitly from values at the previous time

level. The method is therefore called the explicit method. In Fig. 1.1 we have
marked the stencil for the explicit method, i.e. the geometric pattern describing
the points which enter into the basic formula (1.11). If values for the solution
function are given at the initial time level, v0m, m = 0, 1, . . . ,M , then (1.13) can
be used to provide values for v1m form = 1, 2, . . . ,M−1, i.e. for all internal points
at time level 1. If Dirichlet boundary values are given for x = X1 and x = X2

then we have values for v1m also for m = 0 and m =M . We now have a complete
set of values at time level 1 and can proceed from here to time level 2, 3, etc.

1.8.2 The implicit method

Another numerical formula for (1.9) is

∇tv
n+1
m − b δ2vn+1

m = 0 (1.14)

or written out

vn+1
m − vnm

k
− b

vn+1
m+1 − 2vn+1

m + vn+1
m−1

h2
= 0 (1.15)

or

vn+1
m − bµ(vn+1

m+1 − 2vn+1
m + vn+1

m−1) = vnm. (1.16)

This formula expresses an implicit relation between three neighbouring function
values at the advanced time level and is therefore generally known as the implicit
method [19] although strictly speaking it is not a method until we have specified
a technique for solving the resulting tridiagonal set of linear equations. We shall
do this in the next section.

1.8.3 Crank-Nicolson

A third important formula is Crank-Nicolson [8]:

∆tv
n
m − 1

2
b(δ2vnm + δ2vn+1

m) = 0. (1.17)

Remark. Another way of writing Crank-Nicolson which better expresses the
symmetric nature of the formula is

(δt−bµ̃tδ
2)v

n+ 1

2
m = 0. ✷

8

1.8.4 The general θ-method

The three formulae above are special cases of the general θ-method:

∆tv
n
m − b((1− θ)δ2vnm + θδ2vn+1

m) = 0 (1.18)

corresponding to θ = 0, 1, and 1
2
, respectively. The linear equations in the general

case look like

vn+1
m − θbµ(vn+1

m+1 − 2vn+1
m + vn+1

m−1) = (1.19)

vnm + (1− θ)bµ(vnm+1 − 2vnm + vnm−1).

Table 1.1: Stencils for the methods

Method Stencil

Explicit ••••
Implicit ••••
Crank-Nicolson ••••••
Richardson

•••••
DuFort Frankel

•• ••

In Table 1.1 we have given the stencils for the methods we have just defined
together with two more which we shall discuss in Chapter 7.

1.8.5 The operators P , Pk,h and Rk,h

For the general parabolic equation

Pu ≡ ut − buxx + aux − κu = ν

the θ-method approximates the differential operator P by the difference operator
Pk,h:

Pk,hv
n
m = ∆tv

n
m − ((1− θ)I + θEt)(bδ

2 − aµ̃δ + κ)vnm

where I denotes the identity, and for the right-hand-side we suggest

Rk,hν
n
m = ((1− θ)I + θEt)ν

n
m.

So the differential equation

Pu = ν (1.20)

9

is approximated by the difference scheme

Pk,hv = Rk,hν. (1.21)

We mention in passing that there are other options for approximating the ux-
term. We shall return to these in Chapter 5.

Since the operator Rk,h is an approximation to the identity it has a well-defined
inverse R−1

k,h and if we apply this to (1.21) we get

R−1
k,hPk,hv = ν. (1.22)

Comparing (1.20) and (1.22) we see that

R−1
k,hPk,h ≈ P

or, since we really don’t want to work with the inverse:

Pk,h − Rk,hP ≈ 0.

We shall return to this operator in section 1.13 and Chapter 3.

1.9 Two-step schemes

All the above-mentioned difference schemes are examples of one-step schemes in
the sense that they span one time step. They take data from one time level (n)
in order to compute values for the succeeding time level (n+ 1). As an example
of a two-step scheme for (1.9) we mention

µ̃tδtv
n
m = bδ2vnm

or

vn+1
m − vn−1

m

2k
= b

vnm+1 − 2vnm + vnm−1

h2
. (1.23)

This scheme spans two time steps taking data from both time level n and n− 1
in order to compute values at time level n+ 1. We shall return to this scheme in
Chapter 7 and here just mention that two-step methods require a special starting
procedure since initial values are usually only specified at one time level (n = 0).

10

1.10 Error norms

The difference between the true solution u(t, x) and the numerical solution vnm
(t = nk, x = X1 + mh) is the error. It is only defined at the points where we
have a numerical solution, i.e. at the grid points as defined by the step sizes k
and h, although we shall find ways to extend the error function as a differentiable
function between the grid points in Chapter 9.

To study the behaviour of the error as a function of the step sizes k and h (and
the time t) we shall use various norms. It may be important for the user that
the error at any specific (grid-)point does not exceed a given tolerance. The user
will therefore be interested in the max-norm (or sup-norm or ∞-norm) at time
t = nk:

e∞(t) = ||un − vn||∞ = max
0≤m≤M

|u(nk,X1 +mh)− vnm|. (1.24)

The max-norm is rather difficult to analyze mathematically and we shall therefore
often study the 2-norm:

e2(t) = ||un − vn||2 =

[
h

M∑

m=0

(u(nk,X1 +mh)− vnm)
2

] 1

2

. (1.25)

Remark. Notice the difference from the usual vector 2-norm in that we in (1.25)
have a factor h = (X2−X1)/M in front of the summation. This factor originates
from the Fourier transform (cf. Chapter 2) but comes in handy because we shall
wish to compare the errors corresponding to different values of h, and therefore
the norms from vector spaces of different dimensions. ✷

Remark. The max-norm and the 2-norm of the error will usually exhibit the
same behaviour when the solution is a smooth function in the closed region
{0 ≤ t ≤ T,X1 ≤ x ≤ X2} but they will often differ considerably when there is
a discontinuity in the initial function. ✷

Remark. When we have Dirichlet boundary conditions the error for m = 0 and
m = M are 0, and the max and the summation only apply to the internal grid
points. ✷

1.11 Tridiagonal systems of equations

When θ > 0 the formula (1.18) is implicit. For each internal point (i.e. m = 1, 2,
. . . ,M − 1) we have a linear expression involving the unknowns vn+1

m−1, v
n+1
m , and

vn+1
m+1. We have thus M − 1 equations in the M + 1 unknowns vn+1

m , m = 0, 1,

11

. . . , M . If Dirichlet boundary values are specified then vn+1
0 and vn+1

M are given
and we are left with M − 1 equations in M − 1 unknowns (or M + 1 equations
where the first and the last are trivial).

Systems of linear equations are often solved using Gaussian elimination. For a
general set of M − 1 equations in M − 1 unknowns the computational cost is
about 1

3
M3 additions and multiplications, but the coefficient matrix of systems

resulting from using the θ-method is tridiagonal, i.e. the only non-zero coefficients
appear in the diagonal and the immediate neighbours above and below, and this
implies a considerable reduction in computing time.

The general equation is written

amv
n+1
m−1 + bmv

n+1
m + cmv

n+1
m+1 = dm, m = 1, 2, . . . ,M − 1. (1.26)

Example. For the implicit method on ut = buxx we have

am = cm = −bµ, bm = 1+2bµ, dm = vnm. ✷

In the first equation (for m = 1) the value of vn+1
0 on the left-hand-side is known

from the Dirichlet boundary condition. We can therefore move the corresponding
term to the right-hand-side:

d′1 = d1 − a1v
n+1
0

and similarly for vn+1
M in the last equation.

The system of equations now looks like

b1 c1
a2 b2 c2

. . .
aM−2 bM−2 cM−2

aM−1 bM−1

vn+1
1

vn+1
2

.
vn+1
M−2

vn+1
M−1

=

d′1
d2
.

dM−2

d′M−1

(1.27)

Using Gaussian elimination we zero out the am thereby modifying the bm and the
dm:

z = am/b
′
m−1; b′m = bm − zcm−1; d′m = dm − zd′m−1. (1.28)

Starting with b′1 = b1 and executing (1.28) for m = 2, 3, . . . , M − 1 we end up
with a triangular set of equations which can be solved from the bottom up (the
back substitution):

vn+1
M−1 = d′M−1/b

′
M−1, vn+1

m = (d′m − cmv
n+1
m+1)/b

′
m, m =M − 2, . . . , 1. (1.29)

12

The process will break down if any of the calculated b′m become equal to 0 and
will be numerically unstable if they come close to 0, but this cannot happen for
the systems we consider here.

Example. For the implicit method on ut = buxx we have

b′2 = b2 −
a2
b1
c1 = 1 + 2bµ− (bµ)2

1 + 2bµ
≥ 1 + 2bµ− (bµ)2

2bµ
= 1 +

3

2
bµ ≥ 1 + bµ

b′3 = b3 −
a3
b′2
c2 = 1 + 2bµ− (bµ)2

b′2
≥ 1 + 2bµ− (bµ)2

1 + bµ
≥ 1 + bµ

By induction we can show that b′m ≥ 1 + bµ for m > 3.

The result for the general θ-method is the topic of Exercise 13. ✷

Remark. The process will break down on ut = buxx + κu if κk = 1+ 2bµ, so we
must be careful when κ > 0. ✷

Altogether the computational cost of solving the system is roughly
3M additions, 3M multiplications, and 2M divisions
for a total of 8M simple arithmetic operations (SAO).

The computational cost of advancing the solution one time step with the implicit
formula is therefore linear in the number of unknowns and actually comparable
to the cost of using the explicit method which is roughly 5M SAO for a trivial
set of equations with a complicated right-hand-side.

For the general θ-method, 0 < θ < 1, (and in particular θ = 1/2) we have both
a system to solve and a complicated right-hand-side so the cost amounts to 13M
SAO per time step. We shall see later that Crank-Nicolson is well worth this
extra cost.

The main observation is that the computational cost for all these schemes,
whether explicit or implicit, is linear in the number of grid points

1.12 Almost tridiagonal systems

In some cases we encounter systems of equations which are not completely tridi-
agonal but still easy to solve. This happens for example in connection with
derivative boundary conditions to be discussed in Chapter 4.

13

A typical system may look like

b0 c0 e0
a1 b1 c1

. . .
aM−1 bM−1 cM−1

fM aM bM

vn+1
0

vn+1
1

.
vn+1
M−1

vn+1
M

=

d0
d1
.

dM−1

dM

(1.30)

Using Gaussian elimination we notice that when zeroing out a1 we must also
change c1 using

c′1 = c1 − ze0 where z = a1/b0.

Likewise before zeroing out aM we must eliminate fM using equationM−2 which
causes a change in aM (and dM):

a′M = aM − zcM−2 where z = fM/b
′
M−2.

The back substitution is performed as in the tridiagonal case except for the last
step (equation 0) where an extra term involving e0 appears:

vn+1
0 = (d0 − c0v

n+1
1 − e0v

n+1
2)/b0.

These extra calculations will complicate the programming slightly; but they do
not affect the overall computational cost which is still 8M SAO for the implicit
method and 13M for the general θ-method.

1.13 Convergence

The calculated values vnm are supposed to be approximations to the true solution
function u(t, x) at t = nk and x = X1 +mh. As we make the step sizes k and
h smaller we should like these approximations to become better and better. But
this will not always be the case.

Using Taylor series it is fairly easy to verify that our various difference expres-
sions become better and better approximations to the partial derivatives as the
step sizes become smaller. But at each time level we base our computations on
previously computed values with inherent errors. And as h and k become smaller
we must take more steps to get to a specific point (t, x).

And it is not obvious – and indeed not always the case – that the net effect is a
better approximation. But for a numerical method to be useful this must be the
case. This property is captured in the definition of convergence:

14

Definition. A difference scheme is called convergent if when applied to a well-
posed IBVP it produces approximations vh,k(t, x) which converge to the true
solution u(t, x) for any point (t, x) in the region when h→ 0, k → 0. ✷

We shall of course assume that the side conditions are applied correctly. It is
not required that vh,k(0, x) coincides exactly with u(0, x) for all h and k but only
that lim vh,k(0, x) = u(0, x) where the limit is for h→ 0, k → 0 (and similarly for
boundary conditions).

It is often a difficult task to prove that a numerical scheme converges for any
well-posed IBVP. Luckily it is not necessary either. An important theorem by
Peter Lax [21], [31] breaks the task into two much easier ones:

• to show that the numerical scheme is consistent with the differential equa-
tion and

• to show that the numerical scheme is stable i.e. that errors are not amplified
(too much).

Definition. A difference scheme Pk,hv = Rk,hν is consistent with a differential
equation Pu = ν iff

Pk,hψ − Rk,hPψ → 0 as h→ 0, k → 0

for all smooth functions ψ. ✷

Since the solution to a parabolic equation is infinitely often differentiable for t > 0
it is not unreasonable to invoke smooth functions here. Since we prefer our results
to have wide applicability we shall require the above convergence to 0 to happen
for any smooth function ψ and not just for particular solution functions u(t, x)
where cancellations may occur and secure a convergence which is not generally
available. We shall return to discuss the concept of consistency in Chapter 3.

Definition. A one-step difference scheme Pk,hv = 0 is stable iff

∀T, ∃CT ||vn||2 ≤ CT ||v0||2, nk ≤ T (1.31)

for h ≤ h0 and k ≤ k0. ✷

We note that the inhomogeneous term does not play any role for the question of
stability, and neither does the differential operator. Since the difference between
two solutions to the difference scheme also satisfies the homogeneous scheme, the
stability condition implies that errors do not grow without bound.

Remark If (1.31) is satisfied for all h ≤ h0 and k ≤ k0 then we talk of uncondi-
tional stability. In many cases (1.31) is only satisfied in a subset, e.g. character-
ized by k ≤ h2/2. For a method to be useful there must be a path in this subset

15

leading all the way from (h0, k0) to (0, 0). In such a case we talk of conditional
stability.

1.14 Exercises

1. Solve problem 1 on page 5 with the explicit method (1.13) from t = 0 to
t = 0.5 with h = 1

10
, 1

20
, and 1

40
, and with µ(= k/h2) = 0.5.

Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

2. How many terms are needed in the sum (1.8) of problem 2 to make the
remainder less than 10−6 when t = 1

200
?

And when t = 1
3200

?

3. Solve problem 2 with the explicit method from t = 0 to t = 0.5 with h = 1
10

and k = 1
200

.
Draw the true solution and the numerical solution as functions of x for
t = 0.005, 0.01, 0.015, 0.02, 0.025.
Draw the error as a function of x for t = 0.005, 0.01, . . . , 0.025.
Draw the error as a function of t for x = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

4. Solve problem 2 with the explicit method from t = 0 to t = 0.5 with
h = 1

10
, 1

20
, and 1

40
, and with µ(= k/h2) = 0.5.

Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

5. Solve problem 1 with the implicit method (1.15) from t = 0 to t = 0.5 with
h = 1

10
, 1

20
, and 1

40
, and with µ(= k/h2) = 0.5.

Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

6. Solve problem 2 with the implicit method from t = 0 to t = 0.5 with h = 1
10

and k = 1
200

.
Draw the error as a function of x for t = 0.005, 0.01, . . . , 0.025.
Draw the error as a function of t for x = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

7. Solve problem 2 with the implicit method from t = 0 to t = 0.5 with
h = 1

10
, 1

20
, and 1

40
, and with µ(= k/h2) = 0.5.

Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

8. Solve problem 1 with Crank-Nicolson (1.17) from t = 0 to t = 0.5 with
h = 1

10
, 1

20
, and 1

40
, and with µ(= k/h2) = 0.5.

16

Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

9. Solve problem 2 with Crank-Nicolson from t = 0 to t = 0.5 with h = 1
10

and k = 1
200

.
Draw the error as a function of x for t = 0.005, 0.01, . . . , 0.025.
Draw the error as a function of t for x = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

10. Solve problem 2 with Crank-Nicolson from t = 0 to t = 0.5 with
h = 1

10
, 1

20
, and 1

40
, and with µ(= k/h2) = 0.5.

Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

11. Solve problem 1 with the explicit method from t = 0 to t = 0.5 with
h = k = 1

10
.

Draw the error as a function of x for t = 0.1, 0.2, 0.3, 0.4, 0.5.
Draw the error as a function of t for x = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

12. Solve problems 1 and 2 with Crank-Nicolson and the implicit method from
t = 0 to t = 0.5 with h = k = 1

10
, 1

20
, and 1

40
.

Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

13. Show that b′m ≥ 1 in the tridiagonal system of equations (cf. section 1.11)
which arises when we use the general θ-method (1.18) on ut = buxx.

17

18

Chapter 2

Stability

2.1 Fourier analysis

A very important tool in the study of stability of difference schemes as well
as the behaviour of differential equations is Fourier analysis. We begin with the
continuous case. If u(x) is a real function defined on the real line then the Fourier
transform of u is

û(ω) =
1√
2π

∫ ∞

−∞
e−iωx u(x) dx. (2.1)

It is possible to recreate u(x) from û(ω) by the inversion formula

u(x) =
1√
2π

∫ ∞

−∞
eiωx û(ω) dω. (2.2)

û(ω) is a function of a real variable ω but it may assume complex values. From
the inversion formula we may deduce that û(ω) is uniquely determined by u(x)
and vice versa. û(ω) is just an alternate representation of u(x) just like a Fourier
series is an alternate representation of a periodic function.

If v is a grid function, i.e. vm is defined for all integers m then we define the
discrete transform

v̂(ξ) =
1√
2π

∞∑

−∞

e−imξ vm

where ξ ∈ [−π, π]. The inversion formula reads

vm =
1√
2π

∫ π

−π
eimξ v̂(ξ) dξ.

19

The more useful case is where the distance between grid points is h. We change
variable and define

v̂(ξ) =
1√
2π

∞∑

−∞

e−imhξ vm h (2.3)

where hξ ∈ [−π, π]. The inversion formula now reads

vm =
1√
2π

∫ π/h

−π/h
eimhξ v̂(ξ) dξ. (2.4)

The L2-norm of u(x) is defined by

||u||2 =
(∫ ∞

−∞
|u(x)|2 dx

)1/2

(2.5)

and is equal to the L2-norm of û:

||û||2 =
(∫ ∞

−∞
|û(ω)|2 dω

)1/2

. (2.6)

This relation which is named after Parseval (Marc-Antoine Parseval des Chênes,
1755 – 1836) is proved by the following calculations:

||u||22 =
∫ ∞

−∞
u(x) u(x) dx =

∫ ∞

−∞
u(x)

1√
2π

∫ ∞

−∞
eiωx û(ω)dω dx

=
∫ ∞

−∞
u(x)

1√
2π

∫ ∞

−∞
e−iωx û(ω) dω dx

=
∫ ∞

−∞
û(ω)

1√
2π

∫ ∞

−∞
e−iωx u(x) dx dω

=
∫ ∞

−∞
û(ω) û(ω) dω = ||û||22.

The crucial point of this derivation is the interchange of the order of integration.
This is allowed if and only if u (and û) are L2-functions, and this is also the
condition for the Fourier transform to be well-defined.

The 2-norm of vm was defined in section 1.10:

||v||2 =

(
h

∞∑

−∞

|vm|2
)1/2

(2.7)

and also here we have a Parseval relation which states that

||v||2 = ||v̂||2. (2.8)

Remark. Comparing (2.7) with the usual definition of the 2-norm we note an
extra factor h. This is introduced because we shall wish to compare grid functions
with different values of h with each other and with the continuous function which
they are supposed to be approximations to. ✷

20

2.2 Two examples

Example 1: The square. We should like to compute the Fourier transform of
the grid function defined by

vm =

1
1
2

0

if |m| < M
if |m| =M
if |m| > M

where Mh = 1

For ξ 6= 0 we have

v̂(ξ) =
1√
2π

∞∑

−∞

e−imhξvmh =
h√
2π

1

2
(e−iξ + eiξ) +

M−1∑

−M+1

e−imhξ

=
h√
2π

{
cos(ξ) + ei(M−1)hξ 1− e−i(2M−1)hξ

1− e−ihξ

}

=
h√
2π

{
cos(ξ) +

sin(ξ − 1
2
hξ)

sin(1
2
hξ)

}
=

h√
2π

sin(ξ) cot(
1

2
hξ).

For ξ = 0 we have

v̂(ξ) =
h√
2π

(1 + 2M − 1) =
2√
2π

which is also the limit of the first expression as ξ → 0.

In Fig. 2.1 we have to the left shown the Fourier transform of the square for
M = 11. The abscissa is hξ and we have only shown the interval 0 ≤ hξ ≤ π as
the function is symmetric around 0. We notice a substantial weight near 0. ✷

 0.0 1.0 2.0 3.0

 0.0

 0.2

 0.4

 0.6

 0.8

 0.0 1.0 2.0 3.0

 0.0

 0.2

 0.4

 0.6

 0.8

Figure 2.1: Fourier transform of square (left) and oscillation (right).

Example 2. The oscillation. We next consider an oscillating grid function

vm =

{
(−1)m

0
if |m| < M
if |m| ≥M

where Mh = 1

21

We now have

v̂(ξ) =
h√
2π

M−1∑

−M+1

e−imhξe−imπ =
h√
2π

M−1∑

−M+1

e−im(π+hξ)

=
h√
2π

sin(M − 1
2
)(π + hξ)

sin(1
2
(π + hξ))

=
(−1)M−1h√

2π

cos(ξ − 1
2
hξ)

cos(1
2
hξ)

=
(−1)M−1h√

2π
(cos(ξ) + sin(ξ) tan(

1

2
hξ)).

In Fig. 2.1 we have to the right shown the Fourier transform of the oscillation for
M = 11. The abscissa is hξ and we have only shown the interval 0 ≤ hξ ≤ π as
the function is symmetric around 0. We notice a substantial weight near π. ✷

From Example 1 we see that the Fourier transform of the discrete function which
is equal to 1 in an interval around 0 has a significant contribution for hξ close
to 0. The remaining wiggles originate from the sudden drop to 0 which must
happen somewhere for the function to have a finite norm.

From Example 2 we see that the Fourier transform of the oscillation has a signif-
icant contribution near hξ = π (and −π). We therefore talk about values around
hξ = π as corresponding to high-frequency components and values around hξ = 0
as corresponding to low-frequency components of the function in question.

2.3 Fourier analysis and differential equations

If we differentiate (2.2) w.r.t. x we get

du

dx
=

1√
2π

∫ ∞

−∞
eiωx iω û(ω) dω. (2.9)

From this and the uniqueness of the Fourier transform it follows that the Fourier
transform of the derivative is obtained by multiplication with iω:

(
d̂u

dx
)(ω) = iωû(ω). (2.10)

If we now consider functions, u(t, x), of two variables we can still perform the
Fourier transform in the x-variable. Applying this to the IVP for the simple heat
equation

ut = buxx, u(0, x) = u0(x) (2.11)

22

we obtain

ût(t, ω) = b(iω)2û(t, ω) = −bω2û(t, ω). (2.12)

Using the fact that the Fourier transform of the time derivative is the same as the
time derivative of the Fourier transform we have obtained an ordinary differential
equation in t for the Fourier transform of u with initial condition û(0, ω) = û0(ω).
Since the solution to the IVP

y′ = −bω2y, y(0) = y0

is
y(t) = y0e

−bω2t

we deduce that

û(t, ω) = e−bω2t û0(ω). (2.13)

Using Parseval we can now get a bound for the L2-norm of u(t, .) at an arbitrary
time t > 0:

||u(t, .)||22 =
∫ ∞

−∞
|u(t, x)|2 dx =

∫ ∞

−∞
|û(t, ω)|2 dω (2.14)

=
∫ ∞

−∞
e−2bω2t|û0(ω)|2 dω ≤

∫ ∞

−∞
|û0(ω)|2 dω = ||u0(x)||2

provided b > 0.

We note that for positive b we have a bound on the norm of the solution for
t > 0: the IVP is well-posed. On the other hand, if b < 0 (or t < 0) the problem
is ill-posed and we may expect unbounded growth. When û0(ω) 6= 0 for some
value of ω 6= 0 then these components will be amplified with the factor e−bω2t.
The higher the frequency ω the higher the amplification factor.

2.4 Von Neumann analysis

Consider the explicit method (1.11) on the simple heat equation ut = buxx.
Solving for vn+1

m we get

vn+1
m = (1− 2bµ)vnm + bµ(vnm+1 + vnm−1). (2.15)

We now take the Fourier inversion formula

vnm =
1√
2π

∫ π/h

−π/h
eimhξ v̂n(ξ) dξ (2.16)

23

and apply it on the right-hand-side of (2.15) for m, m+ 1, and m− 1 to get

vn+1
m =

1√
2π

∫ π/h

−π/h
eimhξ

[
1− 2bµ + bµ(eihξ + e−ihξ)

]
v̂n(ξ) dξ. (2.17)

Using the uniqueness of the Fourier transform we deduce

v̂n+1(ξ) = g(hξ)v̂n(ξ) (2.18)

where the amplification factor or growth factor, g(hξ), is given by the square
bracket above:

g(hξ) = 1− 2bµ + bµ(eihξ + e−ihξ) = 1− 2bµ+ 2bµ cos(hξ)

= 1− 4bµ sin2 hξ

2
. (2.19)

So when we advance the numerical solution from one time step to the next the
Fourier transform of the solution is multiplied by g(hξ). By induction we then
have

v̂n(ξ) = (g(hξ))n v̂0(ξ). (2.20)

Looking at the norms we have

||vn||22 = h
∑

m

|vnm|2 =
∫ π/h

−π/h
| v̂n(ξ)|2 dξ

=
∫ π/h

−π/h
|g(hξ)|2n |v̂0(ξ)|2 dξ. (2.21)

For stability we would like ||vn||2 to be bounded in relation to ||v0||2. We see
that we can achieve this if |g(hξ)2n| is suitably bounded. In the considerations
to follow, the variable, ξ, will usually appear together with the step size, h, so to
simplify the notation we introduce ϕ = hξ.

For the explicit method on ut = buxx the growth factor now reads

g(ϕ) = 1− 4bµ sin2 ϕ

2
, −π ≤ ϕ ≤ π. (2.22)

We note that g(ϕ) is always real and ≤ 1. If 2bµ ≤ 1 then 4bµ sin2 ϕ
2
≤ 2 and

g(ϕ) ≥ −1. In this case |g(ϕ)| ≤ 1 and therefore |g(ϕ)|2n ≤ 1 showing that we
have stability with CT = 1 for all T :

||vn||2 ≤ ||v0||2.

If 2bµ > 1 then g(ϕ) < −1 in an interval around π. Therefore |g(ϕ)|2n will grow
without bound in this interval. We can provide no bound for ||vn||2 and if v̂0 6= 0

24

somewhere in this interval the corresponding components of the solution will be
magnified: we have instability.

We conclude that the explicit method (2.15) for the heat equation ut = buxx is
stable iff 2bµ ≤ 1 or k ≤ h2/(2b). We also note that instability shows up first in
the high frequency components of the solution.

Remark. This technique for analyzing the stability of finite difference schemes
is named after John von Neumann (or Neumann János Lajos, 1903 – 1957). ✷

It is not necessary to invoke the Fourier transform and equate integral expres-
sions every time we want to investigate the stability properties of a difference
scheme for a differential equation. Looking at equations (2.17) and (2.20) we
conclude that the essential features are captured if we replace vnm by gneimϕ in
the difference scheme and this is also the way the technique was first presented in
[5]. This is sometimes interpreted in the way that we are seeking solutions to the
difference scheme on the form vnm = gneimϕ with obvious parallels to the solution
by separation of variables for PDEs as discussed in section 1.3. This is also fine
for memorizing as long as we keep in mind that through the Fourier transform
we have the sound mathematical basis for our arguments.

Example. Consider now the explicit method on the equation ut = buxx + κu.
The difference equation is

vn+1
m − vnm

k
= b

vnm+1 − 2vnm + vnm−1

h2
+ κvnm. (2.23)

Replacing vnm by gneimϕ and dividing by gneimϕ gives

g − 1

k
= −4b

h2
sin2 ϕ

2
+ κ, −π ≤ ϕ ≤ π

or

g(ϕ) = 1− 4bµ sin2 ϕ

2
+ κk, −π ≤ ϕ ≤ π. (2.24)

✷

If κ > 0 then we have g(ϕ) > 1 for small ϕ and so it seems that we may have
problems with stability for κ > 0 (and stricter bounds on bµ for κ < 0). But note
the following three points:

• u(t, x) = (α + βx)eκt is a solution to the differential equation and if κ > 0
then this solution exhibits exponential growth. We should expect the same
from a good numerical solution.

• As k → 0 (which it does when we consider convergence) g will approach
the usual value from when κu was not present in the equation.

25

• The condition |g(ϕ)| ≤ 1 actually gave more than we demanded. We wanted
bounded growth and we got CT = 1 for all T .

We may allow |g(ϕ)| > 1 under certain conditions as the following theorem shows:

Theorem. A one-step difference scheme is stable if

∃K, h0, k0 such that |g(ϕ, h, k)| ≤ 1 +Kk, ∀ϕ, 0 < k ≤ k0, 0 < h ≤ h0.

Proof:

|g(ϕ, h, k)|2n ≤ (1 +Kk)2n < (eKk)2n = e2Knk = e2Kt ≤ e2KT = C2
T

so for nk = t ≤ T the norm of vn is bounded by CT = eKT times the norm of the
initial function. ✷

Example. Now consider the explicit method on the equation ut = buxx − aux.
The difference equation is

vn+1
m − vnm

k
= b

vnm+1 − 2vnm + vnm−1

h2
− a

vnm+1 − vnm−1

2h
. (2.25)

Replacing vnm by gneimϕ and dividing by gneimϕ gives

g − 1

k
= −4b

h2
sin2 ϕ

2
− a

eiϕ − e−iϕ

2h
, −π ≤ ϕ ≤ π

or

g(ϕ) = 1− 4bµ sin2 ϕ

2
− ia

k

h
sinϕ, −π ≤ ϕ ≤ π. (2.26)

Now the growth factor is a complex number and we find the square of the absolute
value

|g(ϕ)|2 = (1− 4bµ sin2 ϕ

2
)2 + a2

k2

h2
sin2 ϕ. (2.27)

If 2bµ ≤ 1 then the first parenthesis is ≤ 1 and we have

|g(ϕ)|2 ≤ 1 + a2µk, −π ≤ ϕ ≤ π

and therefore

|g(ϕ)| ≤ 1 +
1

2
a2µk +O(k2), −π ≤ ϕ ≤ π.

Once again the stability condition is the same as for the simple heat equation
(2bµ ≤ 1) irrespective of the lower order terms. ✷

26

2.5 Implicit methods

The implicit method for ut = buxx − aux + κu is

vn+1
m − vnm

k
= b

vn+1
m+1 − 2vn+1

m + vn+1
m−1

h2
− a

vn+1
m+1 − vn+1

m−1

2h
+ κvn+1

m . (2.28)

Replacing vnm by gneimϕ and dividing by gneimϕ gives

g − 1

k
= −g 4b

h2
sin2 ϕ

2
− ag

eiϕ − e−iϕ

2h
+ κg

or

g(ϕ) =
1

1 + 4bµ sin2 ϕ
2
+ iak

h
sinϕ− κk

. (2.29)

If κ ≤ 0 then already the real part of the denominator is ≥ 1 and therefore
|g(ϕ)| ≤ 1 irrespective of bµ and a. If κ > 0 then |g(ϕ)| may be greater than
1 for small values of ϕ but by no more than O(k) so we can conclude that the
implicit method is unconditionally stable. If a = κ = 0 then 0 ≤ g(ϕ) ≤ 1
and the smallest values are attained when ϕ ≈ π implying that high frequency
components are damped most.

For the Crank-Nicolson method the growth factor becomes

g(ϕ) =
1− 2bµ sin2 ϕ

2
− ia k

2h
sinϕ+ 1

2
κk

1 + 2bµ sin2 ϕ
2
+ ia k

2h
sinϕ− 1

2
κk
. (2.30)

Once again we have unconditional stability with |g(ϕ)| ≤ 1 in all cases except
possibly when κ > 0 in which case we still have |g(ϕ)| ≤ 1 + O(k). If a = κ = 0
then −1 ≤ g(ϕ) ≤ 1 and values close to −1 are attained when ϕ ≈ π implying
that high frequency components are damped little when bµ ≫ 1. So a solution
or error component which oscillates in the x-direction will also oscillate in the
t-direction with a slowly diminishing amplitude.

2.6 Two kinds of stability

As indicated in the theorem in section 2.4 a certain growth is allowed for a stable
difference scheme. This is in accordance with the definition of stability which
allows a growth in the norm with a factor CT times the norm of the initial
function. This kind of stability is what is needed in the Lax equivalence theorem
where stability is needed to ensure convergence as the step sizes tend to 0. This
kind of stability is sometimes called numerical stability [35] or pointwise stability

27

[25] or with a term borrowed from ODEs 0-stability. In practice we shall often be
concerned with problems with decaying solutions and we shall use a numerical
scheme with fixed positive step sizes and for many steps. In this case any kind of
growth is unwanted. We shall in these cases want the condition |g(ϕ)| ≤ 1 and
we speak of dynamic stability [35] or stepwise stability [25] or with a term from
ODEs absolute stability.

2.7 Exercise

1. Prove formula (2.30).

28

Chapter 3

Accuracy

In Chapter 1 we introduced the concept of consistency which together with sta-
bility implies convergence of the numerical solution to the true solution as the
step sizes tend to 0. In this chapter we shall also be concerned with how fast
this convergence is as a means to compare various difference schemes. In other
words we shall study the local truncation error: Pk,hψ − Rk,hPψ and how fast it
converges to 0 as the step sizes h and k tend to 0. We shall use Taylor expansions
in this study of the difference schemes.

3.1 Taylor expansions

If f(x) is a smooth function of x then it can be expanded in a Taylor series

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) + · · ·+ 1

p!
hpf (p)(x) +O(hp+1). (3.1)

That f is smooth will in this case mean that f is p times continuously differen-
tiable in an interval around x. If ψ(t, x) is a smooth function of t and x, meaning
that it possesses continuous partial derivatives of a suitable high order, then it
likewise can be expanded in a Taylor series with two variables. We shall usually
refrain from doing so because less complicated expressions are produced, and
cancellations easier detected, when we expand first in one coordinate and later
in the other. The end result will be the same but the risk of committing errors
is greatly reduced this way. The basic expansions are the following

ψn+1
m = ψn

m + kψt +
1

2
k2ψtt + · · ·+ 1

p!
kpψpt +O(kp+1), (3.2)

ψn
m+1 = ψn

m + hψx +
1

2
h2ψxx + · · ·+ 1

q!
hqψqx +O(hq+1). (3.3)

29

The common expansion point for the function and all derivatives is indicated in
the leading term on the right-hand-side but otherwise omitted. The expansion
for ψn

m−1 is easily obtained from (3.3) by changing sign for all the odd terms. For
symmetric expressions we can exploit cancellations such as

ψn
m+1 + ψn

m−1 = 2ψn
m +

2

2
h2ψxx + · · ·+ 2

q!
hqψqx +O(hq+2), (3.4)

ψn
m+1 − ψn

m−1 = 2hψx +
2

6
h3ψxxx + · · ·+ 2

q!
hqψqx +O(hq+2), (3.5)

where q is even and odd, respectively.

3.2 Order

We shall illustrate the use of Taylor expansions with the explicit method on the
simple heat equation ut − buxx = ν. The differential operator is P = Dt − bD2,
the difference operator is Pk,h = ∆t − bδ2, and the right-hand-side operator Rk,h

is the identity. Using Taylor expansions we get

∆tψ
n
m = ψt +

1

2
kψtt +O(k2),

δ2ψn
m = ψxx +

1

12
h2ψxxxx +O(h4),

and

Pk,hψ − Rk,hPψ =
1

2
kψtt −

1

12
bh2ψxxxx +O(k2 + h4) (3.6)

As the step sizes tend to 0 the whole expression on the right-hand-side tends to
0, so we immediately conclude that the explicit method is consistent. But the
expression also reveals the rate of convergence.

Definition. A difference scheme Pk,hv = Rk,hν which is consistent with the
equation Pu = ν is accurate of order p in time and order q in space iff

Pk,hψ − Rk,hPψ = O(kp) +O(hq) (3.7)

for smooth functions ψ. We say that the scheme is accurate of order (p, q). ✷

Remark. If p = q we say that the method is of order p. ✷

Using this definition we say that the explicit method on the simple heat equation
is accurate of order (1, 2) meaning that it is first order in time and second order
in space.

30

We have already seen that the explicit method requires 2bµ ≤ 1 or equivalently
k ≤ h2/(2b) to be stable. It is therefore customary with the explicit method to
use a step size k which is proportional to h2. Therefore the following

Definition. A difference scheme Pk,hv = Rk,hν with k = Λ(h) is accurate of
order r iff

Pk,hψ −Rk,hPψ = O(hr) (3.8)

for smooth functions ψ. ✷

If we use the explicit method with k = h2/(2b) then it is accurate of order 2.

Example. For the implicit method on the simple heat equation we have Pk,h =
∇t − bδ2, where the evaluation point now is at the advanced time level, and

∇tψ
n
m = ψt −

1

2
kψtt +O(k2) (3.9)

and therefore

Pk,hψ −Rk,hPψ = −1

2
kψtt −

1

12
bh2ψxxxx +O(k2 + h4). (3.10)

We note that the implicit method is accurate of order (1, 2) just like the explicit
method. Since the implicit method is unconditionally stable we are free to choose
k proportional to h as far as stability is concerned. For reasons of accuracy this
might not be such a great idea since the first order term in k will probably
dominate the error.

Note also that we in (3.9) and (3.10) implicitly have assumed that we evaluate
the inhomogeneous term at the advanced time level. This will probably not cause
any problems since the right-hand-side function is supposed to be known, but if
for some reason we want to evaluate ν(t, x) at the time level where we know the
solution function, i.e. ν(t − k, x) then the right-hand-side operator Rk,h is no
longer the identity but an inverse time shift: Rk,h = E−1

t such that

Rk,hPψ
n
m = E−1

t (ψt − bψxx)

= ψt − bψxx − kψtt + bkψxxt +O(k2)

and therefore

Pk,hψ −Rk,hPψ =
1

2
kψtt − bkψxxt −

1

12
bh2ψxxxx +O(k2 + h4).

The order is still (1, 2). ✷

31

3.3 Symbols of operators

The result of using Taylor expansions on the various (combinations of) differen-
tial and difference operators are polynomials or power series in k and h whose
coefficients in addition to numerical constants contain partial derivatives w.r.t. t
and x of the smooth function ψ. Any smooth function will do as long as none
of its partial derivatives vanish. We can simplify our investigations by a suitable
choice of ψ, a choice inspired by our considerations in section 1.3 and the test
functions we introduced for stability in section 2.4 where we used the product
of an exponential function in time and a trigonometric (or complex exponential)
function in space. So we choose

ψ(t, x) = esteiξx = esnkeiξmh (3.11)

the first expression to be used with differential operators, the second one with
difference operators.

Example.

ψt = sψ, ψx = iξψ, ψxx = −ξ2ψ

Eψ = esnkeiξ(m+1)h = eiξhψ = (1 + iξh− 1

2
ξ2h2 + · · ·)ψ

∆ψ =
1

h
(E−1)ψ = (iξ− 1

2
ξ2h+· · ·)ψ ✷

When we apply a differential operator P on ψ the result is a polynomial p(s, ξ) in
s and ξ times ψ. This polynomial is called the symbol of the differential operator.
Similarly when we apply a difference operator Pk,h on ψ the result is a power
series pk,h(s, ξ) times ψ. pk,h(s, ξ) is called the symbol of the difference operator
Pk,h.

Example. Since ψt − bψxx = (s + bξ2)ψ the symbol of the differential operator
P = Dt − bD2 for the simple heat equation is p(s, ξ) = s+ bξ2. ✷

The definitions of order can now be reformulated in terms of the symbols of the
operators:

Theorem. A difference scheme Pk,hv = Rk,hν which is consistent with the
equation Pu = ν is accurate of order p in time and order q in space iff

pk,h(s, ξ)− rk,h(s, ξ)p(s, ξ) = O(kp) +O(hq) (3.12)

where p(s, ξ), pk,h(s, ξ), and rk,h(s, ξ) are the symbols of the operators P , Pk,h,
and Rk,h, respectively. ✷

32

Theorem. A difference scheme Pk,hv = Rk,hν with k = Λ(h) is accurate of order
r iff

pk,h(s, ξ)− rk,h(s, ξ)p(s, ξ) = O(hr). (3.13)

✷

Example. Crank-Nicolson’s method on the simple heat equation ut − buxx = ν
can be written

(δt − bµ̃tδ
2)v

n+ 1

2
m = µ̃tν

n+ 1

2
m

with the evaluation point located midway between the present and the advanced
time level. The symbol of the differential operator is p(s, ξ) = s+bξ2 as mentioned
above. The symbol of the left-hand-side difference operator Pk,h = δt − bµ̃tδ

2 is

pk,h(s, ξ) =
1

k
(e

1

2
sk − e−

1

2
sk)− b

2h2
(e

1

2
sk + e−

1

2
sk)(eiξh − 2 + e−iξh)

= s+
1

24
s3k2 +O(k4)− b(1 +

1

8
s2k2 +O(k4))(−ξ2 + 1

12
ξ4h2 +O(h4))

= s+ bξ2 +
1

24
s3k2 +

b

8
s2ξ2k2 − b

12
ξ4h2 +O(h4 + h2k2 + k4)

and the symbol for the right-hand-side operator is

rk,h(s, ξ) =
1

2
(e

1

2
sk + e−

1

2
sk) = 1 +

1

8
s2k2 +O(k4)

such that

rk,h(s, ξ)p(s, ξ) = s+ bξ2 +
1

8
s3k2 +

b

8
s2ξ2k2 +O(k4)

and

pk,h(s, ξ)− rk,h(s, ξ)p(s, ξ) = − 1

12
s3k2 − b

12
ξ4h2 +O(h4 + h2k2 + k4)

showing that Crank-Nicolson is second order accurate in both time and space. ✷

Remark. The contribution of the right-hand-side operator Rk,h is important
in producing second order accuracy. If we only evaluate the right-hand-side func-
tion ν at time t = nk or t = (n + 1)k the method will be first order accurate in
time. ✷

Remark. If the right-hand-side function is known for intermediate values of t
then it is O.K. to evaluate it for t = (n + 1

2
)k. In this case rk,h(s, ξ) = 1, since

this is the evaluation point, and the local truncation error becomes

pk,h(s, ξ)− rk,h(s, ξ)p(s, ξ) =
1

24
s3k2 +

b

8
s2ξ2k2 − b

12
ξ4h2 +O(h4 + h2k2 + k4)

and the method retains second order accuracy. ✷

33

3.4 The local error

The local truncation error was defined earlier in this chapter as Pk,hψ−Rk,hPψ.
Another important concept is the local error which is defined as the difference
between the true solution u(t, x) and the computed solution v(t, x), calculated
from correct initial values at time t−k and boundary values at (t, X1) and (t, X2).
If we consider the explicit method on ut = buxx we have

vn+1
m = unm + bµ(unm−1 − 2unm + unm+1)

= unm + bkuxx +
1

12
bkh2uxxxx + · · ·

= unm + kut +
1

12b
kh2utt + · · · (3.14)

un+1
m = unm + kut +

1

2
k2utt + · · · (3.15)

such that the

local error = (
1

2
k2 − 1

12b
kh2)utt + · · · = O(k2 + kh2). (3.16)

Comparing with (3.6) we notice that the local error contains an extra factor k
on each term compared to the local truncation error. This is a general result
although trickier to show for implicit methods.

34

Chapter 4

Boundary Conditions

As mentioned in section 1.4 boundary conditions are necessary in order to specify
a unique solution to a parabolic differential equation on a finite space interval.
They also come in handy in supplying the extra equations needed to solve for the
numerical solution. In the sections below we shall specify these extra equations
for the various difference schemes we have introduced. Dirichlet conditions are
easy to accomodate whereas conditions involving a (normal) derivative present
new challenges. We shall often just treat conditions at the left end point, x = X1,
since the considerations for x = X2 are quite similar.

4.1 A Dirichlet condition

A Dirichlet boundary conditon

u(t, X1) = γ(t), t > 0. (4.1)

is straightforward to apply.

For the explicit method the formulae (1.13) specify the values for the numerical
solution, vn+1

m , at all internal points, m = 1, 2, . . . ,M −1 at time level n+1. The
boundary condition (4.1) is then used to supply the boundary value, vn+1

0 , and
the boundary condition at x = X2 is used in a similar fashion to provide vn+1

M ,
such that we have determined the solution at all points at time level n+ 1.

For the general θ-method the formulae (1.20) provide a set of M − 1 equations
in the M + 1 unknowns vn+1

0 , vn+1
1 , . . . , vn+1

M . From the Dirichlet conditions we
have values for vn+1

0 and vn+1
M and we are ready to solve for the remaining M − 1

unknowns.

35

4.2 Derivative boundary conditions

If one of the boundary conditions involves a derivative then the discretization of
this has an effect on the accuracy and stability of the numerical solution as well
as on the solution process. Assume that the condition on the left boundary is

αu(t, X1)− βux(t, X1) = γ, t > 0 (4.2)

where α, β and γ may depend on t. A similar condition might be imposed on
the other boundary (cf. section 1.4) and the considerations would be completely
similar so we shall just consider a derivative condition on one boundary. We shall
in turn study three different discretizations of the derivative in (4.2):

vn1 − vn0
h

(first order) (4.3)

−vn2 + 4vn1 − 3vn0
2h

(second order, asymmetric) (4.4)

vn1 − vn−1

2h
(second order, symmetric) (4.5)

We have similar expressions for ux on the right boundary. (4.3) and (4.5) are
easily adapted while (4.4) is slightly more tricky and is therefore given here:

vnM−2 − 4vnM−1 + 3vnM
2h

These approximations and their respective orders are easily determined using
Taylor series. The effects of the discretization on the overall accuracy of the
computed solution will be considered in Chapter 9. The effects on the stability
of the overall method will be treated in Chapter 6. In the subsequent sections
we shall focus on the practical considerations around the sets of linear equations
to be solved at each time step.

4.3 A third test problem

As an example of a problem with a derivative boundary condition at one of the
boundaries we consider the following which is closely related to test problem 1
on page 5:

Problem 3

ut = uxx, 0 ≤ x ≤ 1, t > 0,

36

u(0, x) = u0(x) = cosx, 0 ≤ x ≤ 1,
u(t, 1) = e−t cos 1, t > 0,
ux(t, 0) = 0, t > 0.

It is easily seen that the true solution is the same as for test problem 1:
u(t, x) = e−t cos x.

4.4 The explicit method

4.4.1 First order approximation

Using the first order approximation (4.3) to ux in (4.2) results in

αvn+1
0 − β

vn+1
1 − vn+1

0

h
= γ

or

(hα + β)vn+1
0 = hγ + βvn+1

1 (4.6)

or

vn+1
0 =

hγ + βvn+1
1

hα + β
(4.7)

which is used to compute vn+1
0 . Since we have assumed that α and β have the

same sign there are no problems with a zero denominator.

4.4.2 Asymmetric second order

The approximation (4.3) is only first order accurate and this will have an adverse
effect on the overall accuracy of the method as we shall see in Chapter 9. Using
the second order approximation (4.4) in (4.2) we get

αvn+1
0 − β

−vn+1
2 + 4vn+1

1 − 3vn+1
0

2h
= γ

or

(2hα + 3β)vn+1
0 = 2hγ − βvn+1

2 + 4βvn+1
1 (4.8)

or

vn+1
0 =

2hγ − βvn+1
2 + 4βvn+1

1

2hα + 3β
(4.9)

which is used to compute vn+1
0 . Once again a zero denominator is not possible.

37

4.4.3 Symmetric second order

Symmetric difference approximations are often more accurate than asymmetric
ones so we should like to investigate the merits of such a formula. The symmet-
ric second order approximation (4.5) refers to a point outside the region where
the differential equation is defined. We call this point a fictitious point and no
physical significance should be attached to the value assigned to it. It is merely
a computational quantity. The basic assumption is that the solution function
can be extended slightly beyond the boundary as a smooth function obeying the
same differential equation as in the interior. We then apply the difference scheme
also at the boundary. In order to calculate vn+1

0 we need information on vn1 , v
n
0 ,

and the fictitious value vn−1. This is obtained by applying (4.5) to (4.2):

αvn0 − β
vn1 − vn−1

2h
= γ

or

β(vn−1 − vn1) = 2hγ − 2hαvn0 . (4.10)

If β = 0 we have a Dirichlet condition, vn0 is defined from (4.10), and there is no
reason to incorporate vn−1 in the first place. If β 6= 0 we get

vn−1 = vn1 +
2h

β
(γ − αvn0). (4.11)

4.5 The implicit method

4.5.1 First order approximation

The system of linear equations for vn+1 contains M − 1 equations in M + 1
unknowns. One extra equation at the beginning is supplied by (4.6):

(hα + β)vn+1
0 − βvn+1

1 = hγ (4.12)

and a similar one is supplied at the other end from the boundary condition at
X2.

4.5.2 Asymmetric second order

The extra equation is now supplied by (4.8):

(2hα+ 3β)vn+1
0 − 4βvn+1

1 + βvn+1
2 = 2hγ. (4.13)

38

The resulting system of equations is no longer tridiagonal because of the extra
coefficient in the first (and possibly the last) equation but a Gaussian elimination
can still be done without introducing new non-zero values in the coefficient matrix
and without affecting the linear complexity of the solution (cf. section 1.12).

4.5.3 Symmetric second order

We apply the difference scheme at the boundary point arriving at a linear equation
involving vn+1

−1 , vn+1
0 , and vn+1

1 . The extra equation is obtained from (4.10):

βvn+1
−1 + 2hαvn+1

0 − βvn+1
1 = 2hγ. (4.14)

Once again the system of equations is almost tridiagonal in the terminology of
section 1.12, and a Gaussian elimination can be performed without any real
difficulties.

4.6 The θ-method

For the general θ-method and in particular for Crank-Nicolson we use the formulas
of the preceding sections to give the extra equations needed.

4.7 Exercises

1. Solve problem 3 with the implicit method from t = 0 to t = 1
2
with

h = k = 1
10
, 1

20
, and 1

40
.

Use each of the three approximations (4.3) – (4.5) to approximate the
derivative at the boundary.
Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

2. Solve problem 3 with Crank-Nicolson from t = 0 to t = 1
2
with

h = k = 1
10
, 1

20
, and 1

40
.

Use each of the three approximations (4.3) – (4.5) to approximate the
derivative at the boundary.
Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

39

40

Chapter 5

The Convection-Diffusion
Equation

5.1 Introduction

The simplest convection-diffusion equation is

ut = buxx − aux (5.1)

or as we sometimes prefer

ut + aux = buxx. (5.2)

If we begin with

ut + aux = 0 (5.3)

we can easily see that the solution can be written

u(t, x) = u0(x− at) (5.4)

where u0(x) is the initial value at t = 0. (5.3) is called the one-way wave equation
and according to (5.4) describes transport in the x-direction with velocity a.
Inspired by (5.4) we introduce

w(t, y) = u(t, y + at) = u(t, x) (5.5)

and find that

wt = ut + aux = buxx = bwyy. (5.6)

So w(t, y) is the solution to the simple heat equation and

u(t, x) = w(t, x− at). (5.7)

The equation (5.1) thus describes simultaneous transport and diffusion.

41

5.2 Maximum principle

The solutions to the simple heat equation

ut = buxx (5.8)

satisfy a maximum principle:

max
Ω

|u(t, x)| ≤ max
∂Ω

|u(t, x)| (5.9)

where Ω is the open region Ω = {(t, x)| 0 < t < T, X1 < x < X2} and ∂Ω is the
parabolic boundary of Ω consisting of the three straight lines

{t = 0, X1 ≤ x ≤ X2}, {0 ≤ t ≤ T, x = X1}, {0 ≤ t ≤ T, x = X2}.

To see this assume that u(t0, x0) is a local maximum for some (t0, x0) satisfying
0 < t0 ≤ T, X1 < x0 < X2. Since it is a maximum in the x-direction we must
have ux = 0, uxx < 0 and since it is a maximum in the t-direction (possibly at
T) we must have ut ≥ 0 which is incompatible with (5.8).

Remark. We might have uxx = 0 in which case ut = 0 and some higher order
even derivative, e.g. uxxxx, must be negative and all lower order derivatives w.r.t.
x must be 0. By differentiating (5.8) we get utt = (buxx)t = butxx = b2uxxxx and
a similar contradiction arises. ✷

Since the solutions to (5.8) satisfy a maximum principle so do the solutions to
(5.1) by the relations (5.6) and (5.7).

In Appendix A we study a number of difference schemes which can be proposed for
the solution of the one-way wave equation. Here we continue with the convection-
diffusion equation

5.3 The explicit method

For the convection-diffusion equation we would prefer to use a central difference
approximation to ux such that our method can remain of order 2 in x:

vn+1
m − vnm

k
− b

vnm+1 − 2vnm + vnm−1

h2
+ a

vnm+1 − vnm−1

2h
= 0 (5.10)

or

vn+1
m = (bµ +

1

2
aλ)vnm−1 + (1− 2bµ)vnm + (bµ− 1

2
aλ)vnm+1

= bµ(1 + α)vnm−1 + (1− 2bµ)vnm + bµ(1− α)vnm+1 (5.11)

42

where we have introduced

λ =
k

h
, µ =

k

h2
, α =

aλ

2bµ
=

ah

2b
. (5.12)

As we noticed in section 2.4 the low order term has no influence on 0-stability so
we still have the well-known condition

2bµ ≤ 1. (5.13)

For this problem it might be relevant to ask for absolute stability, i.e. |g(ϕ)| ≤ 1.
From section 2.4 we have

g(ϕ) = 1− 4bµ sin2 ϕ

2
− iaλ sinϕ, −π ≤ ϕ ≤ π. (5.14)

and

|g(ϕ)|2 = (1− 4bµ sin2 ϕ

2
)2 + a2

k2

h2
sin2 ϕ (5.15)

= 1− 8bµ sin2 ϕ

2
+ 16b2µ2 sin4 ϕ

2
+ 4a2kµ sin2 ϕ

2
cos2

ϕ

2
.

|g(ϕ)| ≤ 1

⇔ a2k cos2
ϕ

2
+ 4b2µ sin2 ϕ

2
≤ 2b, −π ≤ ϕ ≤ π

⇔ k ≤ 2b

a2
= k0 and 2bµ ≤ 1. (5.16)

We see that for absolute stability we have in addition to the usual condition
(5.13) an upper bound k0 on the allowable time step, a bound which might be
rather strict if we have convection dominated diffusion (a > b).

Since the true solution obeys a maximum principle we might consider a similar re-
quirement on the numerical solution. The condition for this is that all coefficients
in (5.11) be non-negative, i.e.

α ≤ 1 and 2bµ ≤ 1. (5.17)

That the conditions are sufficient follows from the fact that vn+1
m is a weighted

average of values from time step n.
That α ≤ 1 is necessary is seen by assuming α > 1 and taking
v0m = 1 for m ≤ 0 and v0m = 0 for m > 0. Then

v10 = bµ(1 + α) + 1− 2bµ = 1 + (α− 1)bµ > 1.

The condition α ≤ 1 is equivalent to

h ≤ 2b

a
= h0 (5.18)

43

so for a discrete maximum principle we have a bound on the maximum allowable
x-step. If we choose h = h0 then we must have

k ≤ h20
2b

=
2b

a2
= k0

where k0 is the same as in the condition for absolute stability.

0-stability

Absolute stability

max. pr.

Upwind

k

k

h
ho

o

Figure 5.1: Regions for maximum principle, absolute and 0-stability
for the explicit and upwind schemes

We have illustrated the three conditions in an h-k-diagram in Fig. 5.1 for the
case b = 0.1 and a = 10. In this case h0 = 0.02 and k0 = 0.002. For 0-stability
k must be below the parabola h2/2b. For absolute stability k must also be smaller
than k0, and for a maximum principle to hold h must be smaller than h0. If h is
larger then the solution will display (bounded) oscillations.

Remark. If we choose h = h0 (i.e. α = 1) and k = k0 (i.e. 2bµ = 1) then (5.11)
degenerates into

vn+1
m = vnm−1.

In this case we represent the transport part perfectly (because ak0 = h0) and
neglect the diffusion part completely. ✷

The ratio a/b is called the Reynolds number in fluid dynamics literature and the
Peclet number in heat conduction literature. If this number is large it imposes
strict limits on the step size h to avoid oscillations with the explicit method. One
way to circumvent this problem is to use a first order approximation to ux.

5.4 The upwind scheme

When a > 0 then it is possible to approximate ux with a backward difference
leading to

vn+1
m − vnm

k
− b

vnm+1 − 2vnm + vnm−1

h2
+ a

vnm − vnm−1

h
= 0 (5.19)

44

or

vn+1
m = (bµ+ aλ)vnm−1 + (1− 2bµ− aλ)vnm + bµvnm+1

= bµ(1 + 2α)vnm−1 + (1− 2bµ(1 + α))vnm + bµvnm+1. (5.20)

The approximation will only be first order accurate in x and may thus require
small values of h, but this was necessary anyway to avoid oscillations, so this
scheme may be worth a try.

For the growth factor we find

g(ϕ) = 1− 4bµ sin2 ϕ

2
− aλ(1− e−iϕ) (5.21)

= 1− 2(2bµ+ aλ) sin2 ϕ

2
− iaλ sinϕ, −π ≤ ϕ ≤ π.

The condition for 0-stability is now

2bµ+ aλ ≤ 1. (5.22)

For absolute stability we consider

|g(ϕ)|2 = 1− 8bµ sin2 ϕ

2
+ 16b2µ2 sin4 ϕ

2
(5.23)

−4aλ sin2 ϕ

2
(1− 4bµ sin2 ϕ

2
− aλ sin2 ϕ

2
) + a2λ2 sin2 ϕ

and

|g(ϕ)| ≤ 1 ⇔
2bµ(1− (2bµ+ aλ) sin2 ϕ

2
) + aλ(1− 2bµ sin2 ϕ

2
− aλ) ≥ 0. (5.24)

This inequality must hold for ϕ = π so we must have

(2bµ+ aλ)(1− 2bµ− aλ) ≥ 0

so (5.22) is a necessary condition. That it is also sufficient is easily seen.

From (5.20) we see that when 2bµ+ aλ ≤ 1 then all coefficients are non-negative
and vn+1

m is a weighted average of values at time n, so the condition (5.22) also
guarantees a discrete maximum principle.

So how does condition (5.22) compare to our previous requirements for the explicit
method. First we observe that there is no upper limit on h. Once we have decided
on the step size h then (5.22) puts a limit on k:

k ≤ 1
2b
h2 +

a
h

=
h2

2b(1 + α)
=

h20α
2

2b(1 + α)
=

α2

1 + α
k0. (5.25)

45

Table 5.1: Step size limits for the upwind scheme

α 2bµ h/h0 k/k0 assessment
1 1/2 1 1/2 worse
3 1/4 3 9/4 better
9 1/10 9 81/10 ‘very good’

This limit is shown with the dashed curve in Fig. 5.1. For a given value of h
the bound on k is stricter, but on the other hand we have a numerical maximum
principle without restrictions on h. In Table 5.1 we show the upper limit for 2bµ
and k for various choices of α = h/h0 for the special case b = 0.1 and a = 10
where h0 = 0.02 and k0 = 0.002.

Formula (5.19) can be rewritten as

vn+1
m − vnm

k
− (b+

ah

2
)
vnm+1 − 2vnm + vnm−1

h2
+ a

vnm+1 − vnm−1

2h
= 0 (5.26)

showing that the upwind scheme is an O(h2) approximation to a convection-
diffusion equation with diffusion coefficient

b+
ah

2
= b(1 + α) (5.27)

The upwind difference scheme (5.19) is consistent with equation (5.1) and also
with the modified convection-diffusion equation where the diffusion coefficient b
is replaced by b(1 + α). It is a first order approximation to (5.1) but a second
order (in x) approximation to the modified equation. In the limit when h (and
k) tend to 0, α will tend to 0 and the two equations become equal.

When using the upwind scheme we introduce numerical diffusion or artificial
viscosity into the system, and even with α = 1 this extra contribution is of the
same magnitude as the original. The effect is that the upwind scheme will tend to
smoothe everything too much and the assessment very good in Table 5.1 should
be taken with a fair amount of irony. This issue has been addressed by Gresho
and Lee in a paper entitled: ‘Don’t suppress the wiggles. They are telling you
something’ [13].

46

5.5 The implicit method

In order to avoid the stability limitations of the explicit method we might instead
consider the implicit method

vn+1
m − vnm

k
− b

vn+1
m+1 − 2vn+1

m + vn+1
m−1

h2
+ a

vn+1
m+1 − vn+1

m−1

2h
= 0 (5.28)

or

−bµ(1 + α)vn+1
m−1 + (1 + 2bµ)vn+1

m − bµ(1− α)vn+1
m+1 = vnm. (5.29)

For the growth factor we now get

g − 1 + 4gbµ sin2
ϕ

2
+ igaλ sinϕ = 0, −π ≤ ϕ ≤ π (5.30)

or

g(ϕ) =
1

1 + 4bµ sin2 ϕ
2
+ iaλ sinϕ

, −π ≤ ϕ ≤ π (5.31)

from which we immediately deduce that |g(ϕ)| ≤ 1, i.e. we have absolute and
unconditional stability.

If α = 1, i.e. h = h0, then (5.29) reduces to

−2bµvn+1
m−1 + (1 + 2bµ)vn+1

m = vnm (5.32)

which can be solved from left to right:

vn+1
m =

vnm + 2bµvn+1
m−1

1 + 2bµ
(5.33)

showing that vn+1
m is a weighted average of vnm and vn+1

m−1 and therefore no larger
than the largest of these, thus proving that a maximum principle holds for the
numerical solution.

For other values of α we must solve a tridiagonal system of equations with
(cf. section 1.11)

am = −bµ(1 + α), bm = 1 + 2bµ, cm = −bµ(1 − α).

This system can be solved using the procedure of section 1.11 with no fear of
numerical instability since

b′2 = b2 −
a2
b1
c1 = 1 + 2bµ − bµ(1 + α)

1 + 2bµ
bµ(1− α) = 1 + 2bµ− bµ

1 + 2bµ
bµ(1− α2).

If α ≥ 1 then b′2 ≥ b2 and in general b′m ≥ bm.
If α < 1 the b′2 > 1 + bµ and in general b′m > 1 + bµ.

47

5.6 Crank-Nicolson

The Crank-Nicolson method can be written

vn+1
m − vnm

k
− b

vn+1
m+1 − 2vn+1

m + vn+1
m−1

2h2
+ a

vn+1
m+1 − vn+1

m−1

4h
= (5.34)

b
vnm+1 − 2vnm + vnm−1

2h2
− a

vnm+1 − vnm−1

4h

or

−1

2
bµ(1 + α)vn+1

m−1 + (1 + bµ)vn+1
m − 1

2
bµ(1− α)vn+1

m+1 = (5.35)

1

2
bµ(1 + α)vn+1

m−1 + (1− bµ)vn+1
m − 1

2
bµ(1− α)vn+1

m+1.

For the growth factor we now get

g(ϕ) =
1− 2bµ sin2 ϕ

2
− 1

2
iaλ sinϕ

1 + 2bµ sin2 ϕ
2
+ 1

2
iaλ sinϕ

, −π ≤ ϕ ≤ π (5.36)

and it is easily seen that |g(ϕ)| ≤ 1, proving absolute and unconditional stability.

If α = 1, i.e. h = h0, then (5.35) reduces to

−bµvn+1
m−1 + (1 + bµ)vn+1

m = bµvnm−1 + (1− bµ)vnm (5.37)

which can be solved from left to right:

vn+1
m =

bµvnm−1 + (1− bµ)vnm + bµvn+1
m−1

1 + bµ
(5.38)

showing that a maximum principle holds for the numerical solution if and only if
bµ ≤ 1 or k ≤ 2k0.

For other values of α we must again solve a tridiagonal system of equations and
also here there is no fear of numerical instability (cf. exercise 1).

5.7 Comparing the methods

We have compared the various methods on two test examples based on the equa-
tion ut−buxx+aux = 0 with b = 0.1 and a ≥ 0 and with an initial function either
a sawtooth which increases linearly from 0 to 1 on [−1, 0] and decreases linearly
to 0 on [0, 1] or a smooth bump defined as (1 + cos(πx))/2 on [−1, 1]. Outside
[−1, 1] the initial function is set to 0 and the interval is chosen large enough that
we can use 0 as boundary values. The time interval was chosen to [0, 0.5].

48

As time passes the amount of matter represented by the bump will diffuse and be
transported to the right with velocity a, but nothing will disappear so the area
under the curve will remain constant. Numerically the area is defined as h

∑
m vm

and it is easy to show that all methods considered here will conserve the area
(up to rounding errors and as long as the bump does not reach the boundaries,
cf. exercise 3).

Because of the diffusion term the maximum value of the bump will become smaller
and the half-width (measured as the width of the bump at half the maximum
value) will widen. Because of the transport term the top of the bump will move
with a velocity close to a.

We have used x-steps around h0 and time steps equal to k0, 5k0, and 25k0. a = 0
was chosen to get a reference value for the maximum and the half-width and
a = 9 for the real computation. With the smaller values of k Crank-Nicolson
meets these values quite well. The implicit method tends to smoothe too much,
and the explicit method too little. Time steps of 25k0 cannot be recommended
as the implicit method gives a very wide and low maximum and Crank-Nicolson
tends to produce waves with negative function values upstream. In no case does
the upwind scheme produce acceptable results.

5.8 Exercises

1. Show that we have numerical stability when solving the linear equations
for Crank-Nicolson’s method by showing that b′m > 1 + 1

2
bµ.

2. Take a single step with the explicit method, the implicit method, and
Crank-Nicolson with h = h0 and k = k0, 2k0 and 3k0 from an initial func-
tion which is equal to 1 when x ≤ 0 and equal to 0 when x > 0. Compare
the results.

3. Show that the explicit and the implicit methods preserve the area under
the curves in the two test examples in section 5.7.

49

50

Chapter 6

The Matrix Method

6.1 Notation

The process of advancing the solution from one time step to the next can be
formulated in linear algebra terms. We arrange the function values at time step
n, {vn0 , vn1 , . . . , vnM−1, v

n
M} as an (M + 1)-dimensional column vector, vn, and the

internal function values {vn1 , . . . , vnM−1} as an (M−1)-dimensional column vector,
vn. We shall also use this underline convention for matrices such that a matrix
name with no underline shall refer to an (M − 1) × (M − 1) matrix such as
the one representing the operator which takes vn into vn+1, whereas a matrix
name with an underline refers to an (M + 1)× (M + 1) matrix which also takes
boundary values into account. A double underline shall signify a rectangular
(M − 1) × (M + 1) matrix. We shall return to the precise definition of these
matrices in the following sections.

It should be stressed here that we never in practice construct the matrices which
we are about to introduce. They are used in the analysis of the computational
process and serve merely as a means to study and understand the general be-
haviour of our numerical solutions.

6.2 The explicit method

A time step with the explicit method on the simple heat equation ut = buxx can
be written

vn+1 = A vn (6.1)

51

where

A =

c d e
c d e

. . .
c d e

c d e

(6.2)

with c = e = bµ and d = 1− 2bµ. We shall also write A = I − bµ T introducing

I =

0 1 0
0 1 0

. . .
0 1 0

0 1 0

and T =

–1 2 –1
–1 2 –1

. . .
–1 2 –1

–1 2 –1

.(6.3)

We prefer to work with square matrices, so we usually treat the boundary values
separately thus removing the first and last column from A to form A = I − bµ T
where

I =

1 0
0 1 0

. . .
0 1 0

0 1

and T =

2 –1
–1 2 –1

. . .
–1 2 –1

–1 2

(6.4)

and the explicit time step now reads

vn+1 = Avn + qn (6.5)

where qn is the (M − 1)-dimensional vector qn = bµ{vn0 , 0, . . . , 0, vnM}T .

Remark. qn is really (M − 1)-dimensional. Component number 1 is bµvn0 and
component number M − 1 is bµvnM . ✷

Using relation (6.5) repeatedly from n = 0 we get

vn = Anv0 + An−1q0 + · · ·+ qn−1. (6.6)

Remark. The superscripts on the vectors v and q are indices referring to the
step number whereas the superscripts on A indicate powers of A. ✷

The behaviour of the solution at time n is thus to a large extent governed by the
behaviour of the powers of matrix A. We shall return to this in section 6.6.

52

6.3 The implicit method

For the implicit method on ut = buxx we can in a similar way express the step
from time n to time n+ 1 as

B vn+1 = vn (6.7)

where B = I + b µ T .

In case of Dirichlet boundary conditions the known values of vn+1
0 and vn+1

M can
be inserted and we arrive at

Bvn+1 = vn + qn (6.8)

where B = I + b µ T and qn is the (M − 1)-dimensional vector

qn = bµ{vn+1
0 , 0, . . . , 0, vn+1

M }T .

Equation (6.8) can be reformulated as

vn+1 = Avn + Aqn (6.9)

where A = B−1.

6.4 The θ-method

The general θ-method can be formulated as

B vn+1 = C vn (6.10)

where B = I + θ b µ T and C = I − (1− θ) b µ T .

Taking the (Dirichlet) boundary values separately we can remove the first and
the last columns of B and C and arrive at

Bvn+1 = Cvn + qn (6.11)

where B = I+θ b µ T and C = I−(1−θ) b µ T and qn is the (M−1)-dimensional
vector

qn = bµ{θvn+1
0 + (1− θ)vn0 , 0, . . . , 0, θv

n+1
M + (1− θ)vnM}T

or

vn+1 = Avn +B−1qn (6.12)

where A = B−1C.

53

6.5 Stability by the matrix method

If we have homogeneous boundary conditions we have qn = 0 and the transfor-
mation from time step n to n+ 1 is in all cases

vn+1 = Avn (6.13)

and from the beginning to time step n

vn = Anv0 (6.14)

where the superscript on v indicates the step number and the superscript on A
indicates a power.

Introducing a vector norm, ||.||, and a compatible matrix norm (for which we
shall use the same symbol) we then have

||vn+1|| ≤ ||A|| ||vn|| (6.15)

and

||vn|| ≤ ||A||n ||v0||. (6.16)

We note that ||A|| ≤ 1 implies absolute stability in the given vector norm.

Example. If we choose the ∞-norm for vectors

||v||∞ = max
m

|vm|

a compatible matrix norm is the maximum row sum

||A||∞ = max
i

∑

j

|aij |.

For the explicit method we have

|c|+ |d|+ |e| = 2bµ+ |1− 2bµ| = 1 if 2bµ ≤ 1.

We therefore conclude that the explicit method on ut = buxx is absolutely stable
in the ∞-norm provided 2bµ ≤ 1. ✷

There are many different norms to choose from. What happens if one matrix
norm measures ||A|| less than 1 and another greater than 1? Since any two
vector norms in a finite-dimensional space are equivalent in the sense that there
exist constants γ and δ such that

γ||v||α ≤ ||v||β ≤ δ||v||α (6.17)

54

it follows that if a scheme is 0-stable in one norm it is 0-stable in any other norm.

Remark. But it is not necessarily true that a scheme is absolutely stable in one
norm if it is absolutely stable in another since the constants γ and δ allow for a
(limited) growth (cf. Exercise 1). ✷

So it becomes interesting to look for matrix norms which produce small values
when applied to matrix A. And to search for the smallest possible value of ||A||.
We have the following two results from matrix theory:

1. ||A|| ≥ ρ(A)

where ||.|| is any matrix norm and ρ(A) is the spectral radius of A, i.e. the maxi-
mum absolute value of the eigenvalues of A. ✷

2. For any matrix A and any ε > 0 there is a matrix norm such that

||A|| ≤ ρ(A) + ε

For a proof of 2 see [34, p. 284]. ✷

As a consequence we have the following stability results:

A. ρ(A) < 1 =⇒ 0-stability.

B. ρ(A) > 1 =⇒ instability.

C. ρ(A) ≤ 1 and A symmetric =⇒ absolute stability in the 2-norm.

Remark. If A is not symmetric and ρ(A) = 1 the situation is undecided. ✷

Remark. When ρ(A) < 1 we might still encounter considerable (although
bounded) error growth when measured in one of the norms we should like to
use such as the 2-norm or the ∞-norm. ✷

6.6 Eigenvalues of tridiagonal matrices

In order to investigate the stability of numerical solutions of ut = buxx it is thus
important to study the eigenvalues and eigenvectors of Toeplitz matrices of the
form A = I + αT of dimension M − 1. If w is an eigenvector with correspond-
ing eigenvalue τ for T then w is also an eigenvector for A with corresponding
eigenvalue λ = 1 + ατ .

For a vector w = {w1, w2, . . . , wM−1} to be an eigenvector for T with correspond-
ing eigenvalue τ we must have

−wm−1 + 2wm − wm+1 = τwm, m = 2, . . . ,M − 2. (6.18)

55

It is usually not easy to find eigenvalues and eigenvectors for a matrix, but if we
have a candidate then it is very easy to check whether it fits. A good suggestion
for w is to take

wm = sin(mϕ), m = 1, . . . ,M − 1. (6.19)

Since

wm−1 + wm+1 = sin(m− 1)ϕ+ sin(m+ 1)ϕ (6.20)

= 2 sin(mϕ) cosϕ = 2wm cosϕ

(6.18) now gives

τ = 2− 2 cosϕ = 4 sin2 ϕ

2
. (6.21)

In addition to the M −3 equations (6.18) we must also have the similar relations
for m = 1 and m =M − 1:

2w1 − w2 = τw1,

−wM−2 + 2wM−1 = τwM−1.

These are fulfilled automatically if we can manage to have w0 = wM = 0.
w0 = 0 comes naturally out of (6.19). For wM we must require

wM = sin(Mϕ) = 0

or

Mϕ = pπ, p = 1, 2, . . . (6.22)

We therefore define

ϕp =
pπ

M
, p = 1, 2, . . . ,M−1 (6.23)

and with these M−1 values of ϕ we have a set of M−1 orthogonal eigenvectors
and corresponding eigenvalues for T :

τp = 4 sin2 pπ

2M
, p = 1, 2, . . . ,M−1. (6.24)

For the explicit method on ut = buxx stability is governed by the eigenvalues of
matrix A = I − b µ T such that

λp = 1− 4bµ sin2 ϕp

2
, p = 1, 2, . . . ,M−1. (6.25)

and the condition for stability is that all eigenvalues are ≤ 1 in absolute magni-
tude.

56

 0 1 2 3 4 5 6 7 8 9 10

 0

 0 1 2 3 4 5 6 7 8 9 10

 0

Figure 6.1: Eigenvectors corresponding to p = 1 and p =M−1 = 9

Notice the close similarity between (6.25) and (2.22). The extra information we
get out of (6.25) is that with a given choice of h (or M) only a discrete and
finite set of frequencies, ϕp, are applicable. In Fig. 6.1 we show the components
of the eigenvectors corresponding to the lowest (p = 1) and the highest (p = 9)
frequency for the case M = 10.

Remark. We have absolute stability iff |λp| ≤ 1, p = 1, 2, . . . ,M−1. If we choose
M = 10, h = 0.1 then ϕ9 = 9π/10 and sin2(ϕ9/2) ≈ 0.97553. If b = 1 we can
actually have absolute stability with k = 0.005125, even though bµ = 0.5125 >
0.5.
But for the explicit method to be absolutely stable for arbitrary h (or M) we
must still require bµ ≤ 0.5. ✷

For the implicit method on ut = buxx the eigenvalues of A = B−1 are the recip-
rocals of the eigenvalues of matrix B = I + b µ T . We therefore have

λp =
1

1 + 4bµ sin2 ϕp

2

, p = 1, 2, . . . ,M−1. (6.26)

Once again there is a close similarity between (6.26) and (2.29) (with a = κ = 0)
with the former emphasizing the discrete nature of a finite-dimensional problem.

For the general θ-method we use the fact that the eigenvectors for matrices B
and C in (6.11) are the same, such that the eigenvalues of A = B−1C in (6.12)
are the ratios of corresponding eigenvalues from C and B.

If we apply the explicit method on ut = buxx−aux then matrix A has components
c = bµ + 1

2
ak/h, e = bµ − 1

2
ak/h, and d = 1 − 2bµ (cf. (6.2)). The matrix is no

longer symmetric, but as long as e > 0, i.e. a < 2b
h
then c and e have the same

sign and A has real eigenvalues which are given by:

λp = 1− 2bµ+ 2
√
ce cosϕp. (6.27)

57

The condition on a is equivalent to (5.18) which together with (5.13) secures a
discrete maximum principle in accordance with the fact that λp in (6.27) are less
than 1 in absolute magnitude.

Remark. But the analogy with the von Neumann results is not complete since
the eigenvalues of A remain real for 0 < a < 2b/h where the growth factors are
complex. ✷

6.7 The influence of boundary values

The stability considerations so far have disregarded the boundary conditions (or
assumed them to be homogeneous) and can therefore in certain cases be slightly
deceiving. One might for instance get the impression that all numerical solutions
to the simple heat equation are decreasing in time if the scheme is stable.

To study the effect of Dirichlet boundary conditions on the explicit scheme for the
simple heat equation we first look at equation (6.6) which can be interpreted to
state that the effect of the initial function will diminish in time. If the boundary
function is increasing with time then the effect of the latter terms will tend to
dominate the expression for vn.

To put it in matrix terms we add two rows to the rectangular matrix A to form
the quadratic matrix

A =

an00
c d e

c d e
. . .
c d e

c d e
anMM

(6.28)

where c, d, and e are as in (6.2) and an00 = vn+1
0 /vn0 and anMM = vn+1

M /vnM . The
step from time n to n+ 1 now reads

vn+1 = A vn (6.29)

Remark. Since the first and last component of A depend on n there really ought
to be a superscript, n, on A. We have chosen to omit it because superscripts on
matrices indicate powers of the matrix. ✷

Remark. If we have Dirichlet boundary conditions then we know the values of
v0 and vM . If these values happen to be 0 at one or more points this analysis
must be modified. ✷

58

Since we know the eigenvalues and eigenvectors of matrix A it is easy to find
the eigenvalues and eigenvectors of A. If we augment the previous eigenvectors
with w0 = wM = 0 we have a set of M−1 eigenvectors and corresponding eigen-
values for A. The remaining two eigenvalues for A are a00 and aMM and the
corresponding two eigenvectors are shown graphically in Fig. 6.2 for the case
M = 10. The main observation here is that when vn0 is increasing with n the
eigenvalue a00 is greater than 1, meaning that we have an increasing solution com-
ponent, and from Fig. 6.2 we see that the effect at the internal points diminishes
as we get further into the region.

 0 2 4 6 8 10

 0

 0 2 4 6 8 10

 0

Figure 6.2: Eigenvectors corresponding to a00 and aMM for M = 10.

Remark. The above analysis holds only for exponentially increasing boundary
functions such that a00 is constant throughout the computation. But it gives an
idea of the kind of linear transformation which takes the numerical solution from
one time step to the next. ✷

6.8 A derivative boundary condition

When the boundary condition involves a derivative we use one of the formulas
from Chapter 4 to give the necessary extra equation for vn+1

0 and/or vn+1
M .

As a simple example we consider the Neumann condition ux = 0 at the left
boundary and assume that we want to use the implicit method. If we use the
first order approximation to the derivative we get vn+1

0 = vn+1
1 which can be used

in the first equation which then reads

(1 + bµ)vn+1
1 − bµvn+1

2 = vn1

We see that that matrix B is changed to B′ = I − b µ T ′ where T ′ is obtained
from T by changing the first diagonal element from 2 to 1. T ′ is still symmetric

59

and therefore has real eigenvalues which by Gerschgorin’s theorem still lie in the
interval (0, 4).

If we instead use the symmetric second order approximation we get vn+1
−1 = vn+1

1

which can be used to eliminate vn+1
−1 from the equation at m = 0 which now reads

(1 + 2bµ)vn+1
0 − 2bµvn+1

1 = vn0

Now the transformation matrix is B′′ = I − b µ T ′′ where T ′′ (which now has
dimension M) is obtained from T by changing the second element in the first
row from −1 to −2. T ′′ is no longer symmetric but since it is similar to a
symmetric matrix (by the similarity transformation usingD = diag{

√
2, 1, 1, . . .})

the eigenvalues are still real, and by Gershgorin’s theorem they are also still in
the interval (0, 4).

For a further analysis of problems involving the general θ-method and general
boundary conditions we refer to [25] and [18].

6.9 Exercises

1. Prove that if a scheme is 0-stable in the α-norm then it is 0-stable in the
β-norm (cf. (6.17)).
If the scheme is absolutely stable in the α-norm how much can ||vn||β grow.

2. Prove that ||A|| ≥ ρ(A) for any matrix norm.

3. Prove that 2bµ ≤ 1 and a < 2b/h imply |λp| ≤ 1 for λp in (6.27).

4. Show that the (skewsymmetric) matrix with 1 in the upper bidiagonal, −1
in the lower bidiagonal, and 0 everywhere else, has an eigenvalue

λp = 2 i cosϕp

corresponding to the eigenvector with components

wk = ik+1 sin(kϕp)

with ϕp given by (6.23).

60

Chapter 7

Two-step Methods

All the methods we have considered so far have been one-step methods in the
sense that they take information from one time step in order to produce values
for the succeeding time step. Many of these methods are second order accurate
in space but only first order accurate in time.

7.1 The central-time central-space scheme

In order to balance things better we might consider the scheme

µ̃δtv
n
m − b δ2vnm = 0 (7.1)

or written out

vn+1
m − vn−1

m

2k
= b

vnm+1 − 2vnm + vnm−1

h2
(7.2)

or

vn+1
m − vn−1

m − 2bµ(vnm+1 − 2vnm + vnm−1) = 0. (7.3)

This scheme which is also known as leap-frog has been used by Richardson [29]
and is expected to be second order accurate in both space and time (cf. Exercise
1). It will require a special starting procedure since we only have information
available at one beginning time level.

We shall begin with an analysis of the stability properties of the scheme. We
proceed as in section 2.4 using the Fourier inversion formula (2.16) on (7.3) ob-
taining
∫ π/h

−π/h
eimhξ

[
v̂n+1(ξ)− v̂n−1(ξ)− 2bµ(eihξ − 2 + e−ihξ)v̂n(ξ)

]
dξ = 0. (7.4)

61

By uniqueness of the Fourier transform the integrand must be 0 leading to

v̂n+1(ξ)− v̂n−1(ξ) + 8bµ sin2 hξ

2
v̂n(ξ) = 0. (7.5)

This reminds us very much of a second order difference equation and we are
therefore lead to suggest a solution of the form

v̂n(ξ) = gn (7.6)

where the right-hand-side is the n-th power of the growth factor g which is sup-
posed to be a function of ϕ = hξ. Inserting in (7.5) and dividing by gn−1 we
arrive at the quadratic equation.

g2 + 8bµ sin2 ϕ

2
g − 1 = 0. (7.7)

We note that the suggestion on page 25 on how to avoid invoking the Fourier
transform by expressing vnm as gneimϕ also applies in the two-step case and leads
us directly to (7.7).

The main difference is that for a two-step scheme we have two growth factors
and they must both be ≤ 1 or 1+O(k) for the method to be (0-)stable. The two
growth factors are the two roots of the quadratic (7.7):

g = −4bµ sin2 ϕ

2
±
√
1 + 16b2µ2 sin4 ϕ

2
. (7.8)

The two values for g in (7.8) are real and their product is −1. Therefore if one
root is less than 1 in absolute magnitude the other must be larger than 1. The
only exception is for ϕ = 0 where the roots are +1 and −1. We conclude that
the difference scheme is always unstable and therefore not useful in practice.

Remark. Richardson used the method with success in [29] but only for a very
small number of time steps. Since the high frequency components are spawned
from rounding errors they are very small in the beginning and it takes a number
of steps for them to build up to an appreciable size. ✷

7.2 The DuFort-Frankel scheme

In order to remedy this lack of stability, DuFort and Frankel [11] suggested re-
placing vnm in (7.2) by an average leading to

vn+1
m − vn−1

m

2k
= b

vnm+1 − vn+1
m − vn−1

m + vnm−1

h2
(7.9)

62

or

(1 + 2bµ)vn+1
m − 2bµ(vnm+1 + vnm−1)− (1− 2bµ)vn−1

m = 0. (7.10)

Replacing vnm by gneimϕ and dividing by gn−1eimϕ we get

(1 + 2bµ)g2 − 4bµ cosϕ g − (1− 2bµ) = 0 (7.11)

with roots

g =
4bµ cosϕ±

√
16b2µ2 cos2 ϕ+ 4(1− 4b2µ2)

2(1 + 2bµ)
(7.12)

=
2bµ cosϕ±

√
1− 4b2µ2 sin2 ϕ

1 + 2bµ
.

If the discriminant is negative the product of the (absolute values of the complex
conjugate) roots is (1−2bµ)/(1+2bµ) which is less than 1 in absolute magnitude
implying the same for the roots. If the discriminant is positive the roots are real
and satisfy

|g| ≤ 2bµ| cosϕ|+ 1

1 + 2bµ
≤ 1 + 2bµ

1 + 2bµ
= 1

so we conclude that the DuFort-Frankel scheme is unconditionally stable. This
is unusual for an explicit scheme so something else must be wrong.

In order to check the accuracy of the scheme we determine the symbol of the
difference operator. So we write esnkeimhξ for vnm in (7.9) and get after division

pk,h(s, ξ) =
esk − e−sk

2k
− b

h2
(eiξh + e−iξh − (esk + e−sk))

= s+
1

6
s3k2+O(k4)− b

h2
(2−ξ2h2+ 1

12
ξ4h4+O(h6)−(2+s2k2+

1

12
s4k4+O(k6)))

= s+ bξ2 +
1

6
s3k2 − 1

12
bξ4h2 + bs2

k2

h2
+O(h4 + k4 +

k4

h2
).

We recognize the symbol of ut − buxx in the first two terms. For the scheme to
be consistent the remaining terms must tend to 0, but for this to happen k must
tend to 0 faster than h. In particular, if k = αh2 then the scheme is second
order accurate but then we are back to restrictions on the time step which are
comparable to those for the explicit method.

7.3 Exercise

1. Show that the central-time central-space scheme is second order accurate
in both time and space.

63

64

Chapter 8

Discontinuities

The solutions to the simple heat equation and related parabolic equations are
smooth, i.e. infinitely often differentiable in the interior of the region where the
equation applies. But it happens frequently in the mathematical model that there
is a jump discontinuity between the initial function and a boundary function at
a corner point such as (0, X1) or (0, X2), or that there is a discontinuity in the
initial function or in one of its derivatives (cf. problem 2 on page 5). If we
exclude a small neighbourhood around the singular point(s) the solution will still
be smooth in the remaining region. But our numerical methods may respond in
various ways to such discontinuities.

8.1 Stability and damping

When we study absolute stability our principal object is that the growth factor
satisfies |g| ≤ 1 and we are not particularly concerned about whether g is positive
or negative or close to +1 or −1. This is fine for smooth initial conditions where
our main concern is that the (small) errors we commit, be they rounding or
truncation errors, stay small. Rounding errors often have considerable high-
frequency parts but since their absolute magnitude is small we can even allow
a certain growth as long as it is bounded. The situation is different with a
discontinuous initial function where significant high-frequency components are
present from the beginning. In the continuous problem these components are
damped effectively. The higher the frequency the more effective the damping.
Not necessarily so for the numerical schemes which we shall study in the following
sections when applied to the simple heat equation ut = buxx.

65

8.2 The growth factor

Recall that the growth factor (damping factor might be a more appropriate name
here) for the explicit method is

g(ϕ) = 1− 4bµ sin2 ϕ

2
, −π ≤ ϕ ≤ π. (8.1)

The explicit method is absolutely stable when 2bµ ≤ 1 because we then have
|g(ϕ)| ≤ 1 for all ϕ. But for high frequency components ϕ is close to π, and if
2bµ = 1 then g will be negative and close to −1. These components will give
rise to slowly damped oscillations in time. Because of the discrete nature of the
problem for a given choice of step sizes there is a limit to how close ϕ can get
to π (cf. section 6.5) and there is a guaranteed minimum damping per time step.
And since there is a strict bound on the time step, the oscillations will usually
not be a serious problem.

The growth factor for the implicit method (IM) is

g(ϕ) =
1

1 + 4bµ sin2 ϕ
2

, −π ≤ ϕ ≤ π (8.2)

and we immediately notice that 0 ≤ g ≤ 1 independently of bµ and ϕ. We see
furthermore that g becomes smaller when ϕ approaches π so we are in the ideal
situation where the numerical method mimics the continuous case rather closely.
But the implicit method is only first order accurate in time and although the
solution looks good and smooth it might be rather inaccurate.

For Crank-Nicolson (CN) the growth factor is

g(ϕ) =
1− 2bµ sin2 ϕ

2

1 + 2bµ sin2 ϕ
2

, −π ≤ ϕ ≤ π (8.3)

and |g| ≤ 1 for all values of bµ and ϕ. If k ≈ h then bµ may be rather large
and when ϕ ≈ π, g can be very close to −1. The consequence is that high
frequency components are damped very slowly and we observe oscillations in
time at certain points in space. Crank-Nicolson produces solutions which are
quite accurate when measured in the 2-norm, but these oscillations which occur
near the points of discontinuity can be rather annoying as also noted by Wood
and Lewis [38]. We shall in the next sections discuss ways of damping these
oscillations.

66

8.3 Reducing the Crank-Nicolson oscillations

8.3.1 AV – the moving average

A device for coping with damped oscillations known from physics and used by
Lindberg [23] for a system of ordinary differential equations is the moving average.
If the numerical solution, vnm is oscillating in time then we might instead use

wn
m =

vn+1
m + 2vnm + vn−1

m

4
. (8.4)

as an approximation to the solution at (t, x) = (nk,mh). A main difference
between our approach and Lindberg’s is that he proposes to continue the calcu-
lations based on the average. If (8.4) is used in connection with Crank-Nicolson
the growth factor becomes

gav =
g + 2 + g−1

4
=

1

1− 4b2µ2 sin4 ϕ
2

(8.5)

indicating that this method must never be used when bµ is small but that it
will have good performance for oscillatory components when bµ is large. It is
also seen that we may encounter difficulties with small (or even zero) values in
the denominator for small values of ϕ. These unfavourable growth phenomena
for slowly varying components is our reason for not continuing the calculations
with the average value. Instead we propose to compute with a straight Crank-
Nicolson to the end (and one step beyond) and perform the average only at the
points where a solution value shall be recorded.

Table 8.1: Growth factors for IM, CN, and AV at ϕ = π and various bµ.

bµ IM CN AV
0.1 0.7143 0.6667 1.0417
0.5 0.3333 0.0000 –
1 0.2000 −0.3333 −0.3333
10 0.0244 −0.9048 −0.0025
100 0.0025 −0.9900 −0.000025

In Table 8.1 we have given the growth factors for the implicit method, Crank-
Nicolson, and the moving average method for ϕ = π and for various values of bµ
illustrating the good damping effect of AV for large values of bµ and the possible
problems for small values of bµ and/or small values of ϕ.

67

8.3.2 IM1 – One step with IM

As bµ gets bigger the high-frequency components receive less and less damp-
ing from CN but more and more from IM as seen in Table 8.1. At bµ = 100
the damping is only 1% per Crank-Nicolson step but one step with the implicit
method will reduce the amplitude of the high frequency component by 0.0025.
Furthermore since the local error of the implicit method is second order in time
(cf. section 3.4) a single step with IM (one ping only) will not affect the second
order accuracy of CN (cf. section 9.8). It will affect the magnitude of the global
truncation error so it is a matter of balancing the effects.

8.3.3 SM – Small steps at the beginning

As seen in Table 8.1 Crank-Nicolson itself can eliminate high frequency compo-
nents if bµ is small enough. So we propose an initial time step k1 such that the
corresponding bµ1 becomes equal to 0.5 and the high frequency component is
annihilated altogether. In practice we should not expect a dramatic effect since
there are also other solution components corresponding to values of ϕ smaller
than π and these will not be reduced to zero. We might therefore consider taking
more than one small step, say s small steps where s could be 5 or 10 or 20. In
this way other solution components will be reduced by the appropriate growth
factor raised to the s-th power. In order to get back to the ’normal’ step size, k,
we may have to take an extra step of length k − sk1.

8.3.4 Pearson

It is not necessary to aim at a complete annihilation of the oscillations in one step.
If the first step is subdivided into s equal steps of length k1 = k/s as suggested
by Pearson [28] then the cumulative damping will be g∗ = gs and a larger value
of bµ1 such as 2 or 5 is acceptable.

8.3.5 EI – Exponentially increasing steps

One problem with both SM and Pearson is that the change in time step from
k1 to k may itself produce unwanted high frequency effects. We might therefore
suggest another way of subdividing the first interval, namely by exponentially
increasing subintervals (cf. [6]) where the subintervals are given by ki = βki−1,
i = 2, . . . , s for some β > 1 and with

∑s
1 ki = k. This gives a smoother transition

68

from the subintervals to the regular intervals, especially when β is large, i.e. near
2. The Pearson method can be viewed as a special case when β = 1.

8.4 Discussion

We refer the reader to [41] for a more detailed treatment and comparison of the
five different proposals. Here we shall just summarize the results by mentioning
that AV and IM1 are very economical but also limited in how large a reduc-
tion of the oscillations they can achieve. Furthermore they perform worse for
other than the highest frequency component and therefore show results which
are poorer than what theory predicts. If the reduction achieved with AV or
IM1 is not sufficient we must resort to one of the other three methods where
any amount of reduction is theoretically possible but at a higher computational
expense. The latter two methods perform better for lower frequency components
and are therefore better than what theory predicts.

The implicit method avoids the problem with oscillations completely but was
ruled out because it is only first order accurate in time. Using the extrapolation
techniques of Chapter 10 we can raise the order of the implicit method and thus
get the better of both worlds as reported in [20] and [12].

8.5 A discontinuous corner

Consider the following example

ut = uxx, 0 ≤ x ≤ 1, t > 0,
u(0, x) = 1, 0 ≤ x ≤ 1,
u(t, 0) = 0, t > 0,
u(t, 1) = 1, t > 0.

There is a jump discontinuity between the initial value and the boundary value
at (0,0), and we are faced with a decision about which value to choose for v00, a
decision which depends on which numerical method we have chosen.

If we use the explicit method the corner point enters in a second difference of
initial value points, and it would seem natural to use the initial value also at the
corner point, but in fact this only delays the effect one time step.

If we use the implicit method the corner point is not used at all and the problem
disappears. This makes the implicit method seem like an ideal choice despite the
fact that it is only first order accurate in time.

69

The behaviour of Crank-Nicolson is studied in exercise 1. With the considerations
of the previous sections in mind the best option might be to begin with one
implicit step and then switch to Crank-Nicolson in order to keep the overall
second order accuracy.

8.6 Exercises

1. Solve the problem in the previous example with the implicit method and
Crank-Nicolson (with various choices of v00) with h = k = 0.1 up to t = 0.5.

2. Solve problem 2 with h = k = 1
10
, 1

20
, and 1

40
using Crank-Nicolson and AV

and IM1 (cf. section 8.3).
Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

70

Chapter 9

The Global Error – Theoretical
Aspects

9.1 The local error

Information about the error of a finite difference scheme for solving a partial
differential equation is often stated in terms of the local error which is the error
committed in one step given correct starting values, or more frequently as the
local truncation error expressed in terms of a Taylor expansion, again for a single
step and with presumed correct starting values. Rather than giving numerical
values one often resorts to giving the order of the scheme in terms of the step size
such as O(h) or O(h2). The interesting issues, however, are the magnitude of the
global error, i.e. the difference between the true solution and the computed value
at a specified point, in a sense the cumulated value of all the local errors up to
this point, and the order of this error in terms of the step size used.

9.2 The global error

We study the linear, parabolic equation

ut = buxx − aux + κu+ ν (9.1)

or as we prefer to write it here

Pu = ut − buxx + aux − κu = ν (9.2)

using the partial differential operator P . The coefficients b, a, κ, and ν may
depend on t and x. We produce a numerical solution v(t, x) and our basic as-
sumption is that the global error can be expressed in terms of a series expansion

71

in the step sizes k and h

v(t, x) = u(t, x)− hc− kd− hke− h2f − k2g − · · · (9.3)

The auxiliary functions c, d, e, f , and g are functions of t and x but do not
depend on the step sizes h and k. They need not all be present in any particular
situation. Often we shall observe that c or e or d are identically zero such that
the numerical solution is second order accurate in one or both of the step sizes.

Strictly speaking v(t, x) is only defined on a discrete set of grid points but it is
possible to extend it in a differentiable manner to the whole region. Actually
this can be done in many ways. The same considerations apply to the auxiliary
functions and we shall in the following see a concrete way of extending these.

The formula (9.3) expresses an assumption or a hypothesis and as such can not be
proved, but it leads to predictions which can be verified computationally, thereby
identifying those situations where the hypothesis can be assumed to hold. The
hypothesis expresses the notion that the computed solution contains information,
not only about the true solution, but also about the truncation error.

We can get information on the auxiliary functions by studying the difference
equations and by using Taylor expansions. We first look at the explicit scheme.

9.3 The explicit method

We use the difference operators from section 1.7

δ2vnm =
vnm+1 − 2vnm + vnm−1

h2
, (9.4)

µ̃δvnm =
vnm+1 − vnm−1

2h
. (9.5)

The explicit scheme for (9.2) can now be written as

vn+1
m − vnm

k
− bnmδ

2vnm + anmµ̃δv
n
m − κnmv

n
m = νnm. (9.6)

We apply (9.3) and Taylor expand around (nk,X1 +mh):

vn+1
m − vnm

k
= ut +

1

2
kutt +

1

6
k2uttt − hct −

1

2
hkctt − kdt −

1

2
k2dtt

− hket − h2ft − k2gt +O(k3 + k2h+ kh2 + h3) (9.7)

δ2vnm = uxx +
1

12
h2u4x − hcxx − kdxx − hkexx (9.8)

− h2fxx − k2gxx +O(· · ·)

72

µ̃δvnm = ux +
1

6
h2uxxx − hcx − kdx − hkex (9.9)

− h2fx − k2gx +O(· · ·)
vnm = u− hc− kd− hke− h2f − k2g +O(· · ·) (9.10)

We insert (9.7) – (9.10) in (9.6) and equate terms with the same powers of h and
k:

1 : Pu = ν (9.11)

h : Pc = 0 (9.12)

k : Pd =
1

2
utt (9.13)

hk : Pe = −1

2
ctt (9.14)

h2 : Pf = − 1

12
bu4x +

1

6
auxxx (9.15)

k2 : Pg =
1

6
uttt −

1

2
dtt (9.16)

The first thing we notice is that we in (9.11) recover the original equation for u
indicating that the difference scheme (and our assumption (9.3)) is consistent.
The auxiliary functions are actually only defined on the grid points but inspired
by (9.12) – (9.16) it seems natural to extend them between the gridpoints such
that these differential equations are satisfied at all points in the region. We note
that each of the auxiliary functions should satisfy a differential equation very
similar to the original one, the only difference lying in the inhomogeneous terms.

9.4 The initial condition

In order to secure a unique solution to (9.1) we must impose some side conditions.
One of these is an initial condition, typically of the form

u(0, x) = u0(x), X1 ≤ x ≤ X2, (9.17)

where u0(x) is a given function of x. It is natural to expect that we start our
numerical solution as accurately as possible, i.e. we set v0m = v(0, X1 + mh) =
u0(X1 + mh) for all grid points between X1 and X2. But we would like to
extend v between grid points as well, and the natural thing would be to set
v(0, x) = u0(x), X1 ≤ x ≤ X2. With this assumption we see from (9.3) that

c(0, x) = d(0, x) = e(0, x) = f(0, x) = g(0, x) = · · · = 0, X1 ≤ x ≤ X2. (9.18)

73

In section 8.3.2 we discussed the positive effects on discontinuities which we can
achieve by using the implicit method for one step and then switch to Crank-
Nicolson. To study the effects on accuracy we note that we shall be solving
with Crank-Nicolson for t > k with an initial condition at t = k given by the
values from the implicit method. Since the local error for the implicit method is
O(k2 + kh2) (cf. section 3.4) we have

c(k, x) = d(k, x) = e(k, x) = f(k, x) = 0, X1 ≤ x ≤ X2 (9.19)

in addition to a nonzero value for g(k, x). As we shall see in section 9.8 this has
no effect on the order of the global error for Crank-Nicolson since the differential
equation (9.41) for g is inhomogeneous anyway. It might have an effect on the
magnitude of the global error though.

9.5 Dirichlet boundary conditions

In order to secure uniqueness we must in addition to the initial condition impose
two boundary conditions which could look like

u(t, X1) = u1(t), u(t, X2) = u2(t), t > 0, (9.20)

where u1(t) and u2(t) are two given functions of t. Just like for the initial condition
it is natural to require v(t, x) to satisfy these conditions not only at the grid points
on the boundary but on the whole boundary and as a consequence the auxiliary
functions will all assume the value 0 on the boundary:

c(t, X1) = d(t, X1) = e(t, X1) = f(t, X1) = g(t, X1) = · · · = 0, t > 0, (9.21)

c(t, X2) = d(t, X2) = e(t, X2) = f(t, X2) = g(t, X2) = · · · = 0, t > 0. (9.22)

9.6 The error for the explicit method

If we have an initial-boundary value problem for (9.1) with Dirichlet boundary
conditions, and if we use the explicit method for the numerical solution then we
have the following results for the auxiliary functions:

The differential equation (9.12) for c(t, x) is homogeneous and so are the side
conditions according to (9.18), (9.21), and (9.22). c(t, x) ≡ 0 is a solution, and
by uniqueness the only one. It follows that c(t, x) ≡ 0 and therefore that there
is no h-contribution to the global error in (9.3).

The differential equation (9.14) for e(t, x) is apparently inhomogeneous, but since
c(t, x) ≡ 0 so is ctt and the equation is homogeneous after all. So are the side
conditions and we can conclude that e(t, x) ≡ 0.

74

The global error expression (9.3) for the explicit method therefore takes the form

v(t, x) = u(t, x)− kd− h2f − k2g − · · · (9.23)

and we deduce that the explicit method is indeed first order in time and second
order in space.

For d we have from (9.13) that Pd = 1
2
utt so we must require the problem to

be such that u is twice differentiable w.r.t. t. This is usually no problem except
possibly in small neighbourhoods around isolated points on the boundary.

9.7 The implicit method

We write the implicit method as

vnm − vn−1
m

k
− bnmδ

2vnm + anmµ̃δv
n
m − κnmv

n
m = νnm. (9.24)

where time step n− 1 now contains the known values and time step n the values
we are about to calculate. Equations (9.8) – (9.10) still hold while equation (9.7)
is replaced by:

vnm − vn−1
m

k
= ut −

1

2
kutt +

1

6
k2uttt − hct +

1

2
hkctt − kdt +

1

2
k2dtt

− hket − h2ft − k2gt +O(k3 + k2h+ kh2 + h3) (9.25)

Equating terms as before we get a set of equations rather similar to (9.11) –
(9.16). (9.11) and (9.12) are unchanged, there is a single sign change in (9.14)
and we can still conclude that c(t, x) ≡ e(t, x) ≡ 0. The remaining equations are

k : Pd = −1

2
utt (9.26)

h2 : Pf = − 1

12
bu4x +

1

6
auxxx (9.27)

k2 : Pg =
1

6
uttt +

1

2
dtt (9.28)

and the error expansion for the implicit method has the same form as (9.23).
Since there is a sign change in (9.26) as compared to (9.13) we can conclude that
dIm(t, x) = −dEx(t, x). The right-hand-side of (9.27) is the same as in (9.15)
and the sign change in the right-hand-side of (9.28) is compensated by d being
of opposite sign. We therefore have that f(t, x) and g(t, x) are the same for the
explicit and the implicit method.

75

9.7.1 An example

Consider test problem 1:

ut = uxx, −1 ≤ x ≤ 1, t > 0,
u(0, x) = u0(x) = cosx, −1 ≤ x ≤ 1,

u(t,−1) = u(t, 1) = e−t cos 1, t > 0.

with the true solution u(t, x) = e−t cosx.

For the explicit method we have

Pd = dt − dxx =
1

2
utt.

For f we have similarly

Pf = ft − fxx = − 1

12
u4x.

Since ut = uxx we have utt = utxx = u4x such that d(t, x) = −6f(t, x).

For the explicit method we must have k = µh2 with µ ≤ 1
2
. Keeping µ fixed the

leading terms in the error expansion are

kd+ h2f = −6µh2f + h2f = (1− 6µ)h2f.

If we choose µ = 1
2
as is common we get the leading term of the error to be

−2h2f(t, x). There is an obvious advantage in choosing µ = 1
6
in which case we

obtain fourth order accuracy in h.

If we use the implicit method f stays the same and d changes sign and the leading
terms of the error expansion become

6µh2f + h2f = (1 + 6µ)h2f.

With µ = 1
2
the error becomes 4h2f(t, x) i.e. twice as big (and of opposite sign)

as for the explicit method (cf. the solutions to exercises 1 and 5 of Chapter 1).
There is no value for µ that will secure a higher order accuracy.

9.8 Crank-Nicolson

The Crank-Nicolson method can be written as

vn+1
m − vnm

k
− 1

2
bn+1
m δ2vn+1

m − 1

2
bnmδ

2vnm (9.29)

+
1

2
an+1
m µ̃δvn+1

m +
1

2
anmµ̃δv

n
m − 1

2
κn+1
m vn+1

m − 1

2
κnmv

n
m =

1

2
(νn+1

m + νnm).

76

The optimal expansion point is now ((n + 1
2
)k,mh). To take full advantage of

the even/odd cancellations we split the expansion in two stages. First we do the
expansions (9.8) and (9.9) for time step n and n + 1 and then we combine the
results using the formula

1

2
un+1 +

1

2
un = un+

1

2 +
1

8
k2utt +O(k4) (9.30)

on all the individual terms. The resulting equations are

vn+1
m − vnm

k
= ut +

1

24
k2uttt − hct − kdt − hket (9.31)

− h2ft − k2gt +O(k3 + k2h+ kh2 + h3)
1

2
(bn+1

m δ2vn+1
m + bnmδ

2vnm) = b
n+ 1

2
m {uxx +

1

12
h2u4x − hcxx − kdxx − (9.32)

hkexx − h2fxx − k2gxx}+
1

8
k2(buxx)tt +O(· · ·)

1

2
(an+1

m µ̃δvn+1
m + anmµ̃δv

n
m) = a

n+ 1

2
m {ux +

1

6
h2uxxx − hcx − kdx − hkex (9.33)

− h2fx − k2gx}+
1

8
k2(aux)tt +O(· · ·)

1

2
(κn+1

m vn+1
m + κnmv

n
m) = κ

n+ 1

2
m {u− hc− kd− hke− h2f − k2g} (9.34)

+
1

8
k2(κu)tt +O(· · ·)

1

2
(νn+1

m + νnm) = ν +
1

8
k2νtt +O(· · ·) (9.35)

We insert (9.31) – (9.35) in (9.29) and equate terms with the same powers of h
and k:

1 : Pu = ν (9.36)

h : Pc = 0 (9.37)

k : Pd = 0 (9.38)

hk : Pe = 0 (9.39)

h2 : Pf = − 1

12
bu4x +

1

6
auxxx (9.40)

k2 : Pg =
1

24
uttt −

1

8
(buxx)tt +

1

8
(aux)tt −

1

8
(κu)tt −

1

8
νtt (9.41)

The right-hand-side in (9.41) looks rather complicated but if the solution to (9.1)
is smooth enough such that we can differentiate (9.1) twice w.r.t. t then we can
combine the last four terms in (9.41) to −1

8
uttt and the equation becomes

k2 : Pg = − 1

12
uttt (9.42)

77

If the inhomogeneous term ν(t, x) in the equation (9.1) can be evaluated at the

mid-points ((n+ 1
2
)k,mh) then it is tempting to use ν

n+ 1

2
m instead of 1

2
(νn+1

m +νnm)
in (9.29). We shall then miss the term with 1

8
νtt in (9.41) and therefore not have

complete advantage of the reduction leading to (9.42). Instead we shall have

k2 : Pg = − 1

12
uttt +

1

8
νtt.

It is impossible to say in general which is better, but certainly (9.42) is simpler.

Looking at equations (9.36) – (9.42) we again recognize the original equation for
u in (9.36), and from (9.37) – (9.39) we may conclude that c(t, x) ≡ d(t, x) ≡
e(t, x) ≡ 0 showing that Crank-Nicolson is indeed second order in both k and h.
We also note from (9.40) that f(t, x) for Crank-Nicolson is the same function as
for the explicit and the implicit method.

9.8.1 Example continued

For our example we have

Pg = gt − gxx = − 1

12
uttt.

For this particular problem we have uttt = −utt = −u4x such that
f(t, x) = −g(t, x) and that the leading terms of the error are

h2f + k2g = (h2 − k2)f.

There is a distinct advantage in choosing k = h in which case the second order
terms in the error expansion will cancel (cf. the answer to exercise 12 of Chapter
1), but we must stress that this holds for this particular example and is not a
general result for Crank-Nicolson.

9.9 Upwind schemes

When |a| is large compared to b we occasionally observe oscillations in the nu-
merical solution. One remedy is to reduce the step sizes but this costs computer
time. Another option is to use an upwind scheme such as in the explicit case (for
a > 0):

vn+1
m − vnm

k
− bnmδ

2vnm + anm
vnm − vnm−1

h
− κnmv

n
m = νnm. (9.43)

78

To analyze the effect on the error we use

vnm − vnm−1

h
= ux −

1

2
huxx +

1

6
h2uxxx − hcx +

1

2
h2cxx (9.44)

− kdx +
1

2
hkdxx − hkex − h2fx − k2gx +O(· · ·)

together with (9.7), (9.8), and (9.10). Equating terms with the same powers of
h and k now gives

1 : Pu = ν (9.45)

h : Pc = −1

2
auxx (9.46)

k : Pd =
1

2
utt (9.47)

hk : Pe = −1

2
ctt +

1

2
adxx (9.48)

From (9.46) and (9.48) we conclude that c(t, x) and e(t, x) are no longer identically
zero and that the method is now first order in both k and h. A similar result
holds for the implicit scheme. For Crank-Nicolson the order in h is also reduced
to 1 but we keep second order accuracy in k.

9.10 Boundary conditions with a derivative

If one of the boundary conditions involves a derivative then the discretization of
this has an effect on the global error of the numerical solution. Assume that the
condition on the left boundary is

αu(t, X1)− βux(t, X1) = γ, t > 0 (9.49)

where α, β and γ may depend on t. A similar condition might be imposed on the
other boundary and the considerations would be completely similar so we shall
just consider a derivative condition on one boundary. We shall in turn study
three different discretizations of the derivative in (9.49):

vn1 − vn0
h

(first order) (9.50)

−vn2 + 4vn1 − 3vn0
2h

(second order, asymmetric) (9.51)

vn1 − vn−1

2h
(second order, symmetric) (9.52)

79

9.10.1 First order approximation

We first use the approximation (9.50) in (9.49). If the coefficients α, β and γ
depend on t they should be evaluated at t = nk:

αvn0 − β
vn1 − vn0

h
= γ, t > 0. (9.53)

We now use the assumption (9.3) and Taylor-expand vn1 around (nk,X1):

α{u− hc− kd− hke− h2f − k2g} − β{ux +
1

2
huxx +

1

6
h2uxxx − hcx

− 1

2
h2cxx − kdx −

1

2
hkdxx − hkex − h2fx − k2gx} − γ = O(· · ·) (9.54)

Collecting terms with 1, h, k, hk, h2, and k2 as before we get

1 : αu− βux = γ (9.55)

h : αc− βcx = −1

2
βuxx (9.56)

k : αd− βdx = 0 (9.57)

hk : αe− βex =
1

2
βdxx (9.58)

h2 : αf − βfx = −1

6
βuxxx +

1

2
βcxx (9.59)

k2 : αg − βgx = 0 (9.60)

We recognize the condition (9.49) for u in (9.55). As for c the boundary condition
(9.56) is no longer homogeneous and we shall expect c to be nonzero. This holds
independently of which method is used for the discretization of the equation (9.1).
So if we use a first order boundary approximation we get a global error which is
first order in h.

9.10.2 Asymmetric second order

We now apply the approximation (9.51) in (9.49):

αvn0 − β
−vn2 + 4vn1 − 3vn0

2h
= γ, t > 0. (9.61)

We again use the assumption (9.3) and Taylor-expand vn1 and vn2 around (nk,X1):

α{u− hc− kd− hke− h2f − k2g} − β{ux −
1

3
h2uxxx − hcx

− kdx − hkex − h2fx − k2gx} − γ = O(h3 + h2k + hk2 + k3) (9.62)

80

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t

 0.0

 0.1

 0.2

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
 0.9

 1.0

 x

Figure 9.1: c(t, x).

Collecting terms with 1, h, k, hk, h2, and k2 as before we get

1 : αu− βux = γ (9.63)

h : αc− βcx = 0 (9.64)

k : αd− βdx = 0 (9.65)

hk : αe− βex = 0 (9.66)

h2 : αf − βfx =
1

3
βuxxx (9.67)

k2 : αg − βgx = 0 (9.68)

We recognize the condition (9.49) for u in (9.63). We now have a homogeneous
condition (9.64) for c and this will assure that c(t, x) ≡ 0 when we combine
(9.61) with the explicit, the implicit, or the Crank-Nicolson method. We also
have e(t, x) ≡ 0, but in order to have d(t, x) ≡ 0 we must use the Crank-Nicolson
method. One disadvantage with this asymmetric approximation which does not
show in equations (9.63) – (9.68) is that the next h-term is third order and
therefore can be expected to interfere more than the fourth order term which is
present in the symmetric case below.

9.10.3 Symmetric second order

We finally apply the symmetric approximation (9.52) in (9.49):

αvn0 − β
vn1 − vn−1

2h
= γ, t > 0. (9.69)

81

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t

0.00

0.01

0.02

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
 0.9

 1.0

 x

Figure 9.2: g(t, x).

We again use the assumption (9.3) and Taylor-expand vn1 and vn−1 around (nk,X1):

α{u− hc− kd− hke− h2f − k2g} − β{ux +
1

6
h2uxxx − hcx

− kdx − hkex − h2fx − k2gx} − γ = O(h3 + h2k + hk2 + k3) (9.70)

Collecting terms with 1, h, k, hk, h2, and k2 as before we get

1 : αu− βux = γ (9.71)

h : αc− βcx = 0 (9.72)

k : αd− βdx = 0 (9.73)

hk : αe− βex = 0 (9.74)

h2 : αf − βfx = −1

6
βuxxx (9.75)

k2 : αg − βgx = 0 (9.76)

All the same conclusions as for the asymmetric case will hold also in this sym-
metric case.

9.10.4 Test problem 3 revisited

To illustrate the above analyses let us look at test problem 3 on page 36:

ut = uxx, 0 ≤ x ≤ 1, t > 0,

82

u(0, x) = u0(x) = cosx, 0 ≤ x ≤ 1,
u(t, 1) = e−t cos 1, t > 0,
ux(t, 0) = 0, t > 0.

with the true solution u(t, x) = e−t cosx.

We wish to solve numerically using Crank-Nicolson and want to study the be-
haviour of the global error using various discretizations of the derivative boundary
condition.

Using the first order boundary approximation we have d = e = 0 and the global
error will be on the form

h c+ h2f + k2g + · · ·
We have solved the initial-boundary value problems for the functions c(t, x) and
g(t, x) (using Crank-Nicolson and h = k = 0.025) and show the results graphically
in Fig. 9.1 and Fig. 9.2.

It is clear from the figures that the first order contribution to the error is consid-
erable. The values of c(t, x) lie between 0 and 0.28 and those of g(t, x) between 0
and 0.022 and from this we could estimate the truncation error for given values
of the step sizes h and k. Or we could suggest step sizes in order to make the
truncation error smaller than a given tolerance.

With the second order boundary approximations c(t, x) is expected to be identi-
cally 0 and the accuracy correspondingly better. The derivative boundary con-
dition for f reduces to fx(t, 0) = 0 for this particular case since uxxx(t, 0) =
e−t sin 0 = 0. We can therefore again conclude that f(t, x) = −g(t, x).

In more general situations it is not so easy to gain information about the auxiliary
functions in this way. In the next chapter we shall see how we can let the computer
do the work and verify our assumptions about the order of the error and at the
same time gain information about the magnitude of the error.

83

9.11 Exercise

1. Solve problem 1 on page 5 with the explicit method, the implicit method
and Crank-Nicolson from t = 0 to t = 0.5 with h = 1

10
, 1
20
, and 1

40
, and with

µ(= k/h2) = 1/6.
Compute the max-norm and the 2-norm of the error for each method for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

84

Chapter 10

Estimating the Global Error and
Order

10.1 Introduction

In the previous chapter we introduced the basic hypothesis that the global error
could be expressed as a power series in h and k and with the auxiliary functions
c, d, . . . , and we found differential equations defining these functions. In this
chapter we shall see how we can get the computer to help us acquiring information
on the order of the method and the magnitude of the auxiliary functions at the
grid points.

10.2 The global error

We shall begin our analysis in one dimension and later extend it to functions of
two or more variables. We shall first define what we mean by the global error
being of order say O(h). Let u(x) be the true solution, and let v(x) be the
computed solution. Our basic hypothesis is (as in Chapter 9) that the computed
solution can be written as

v(x) = u(x)− hc(x)− h2d(x)− h3f(x)− h4g(x)− · · · (10.1)

where c(x), d(x), f(x), and g(x) are differentiable functions of x alone, the de-
pendence of v on the step size h being expressed through the power series in h.
This is a hypothesis and as such can not be proved, but it leads to predictions
which can be verified computationally, thereby identifying those situations where
the hypothesis can be assumed to hold.

85

If the function c(x) happens to be identically 0 then the method is (at least) of
second order, otherwise it is of first order. Even if c(x) is not identically 0 then it
might very well have isolated zeroes. At such places our analysis might give results
which are difficult to interpret correctly. Therefore the analysis should always be
performed for a substantial set of grid points in order to give trustworthy results.

In the following we shall show how we by performing calculations with various
values of the step size, h, can extract information not only about the true solution
but also about the order and magnitude of the error.

A calculation with step size h will yield

v1 = u− hc− h2d− h3f − h4g − · · · (10.2)

A second calculation with twice as large a step size gives

v2 = u− 2hc− 4h2d− 8h3f − 16h4g − · · · (10.3)

We can now eliminate u by subtraction:

v1 − v2 = hc+ 3h2d+ 7h3f + 15h4g + · · · (10.4)

A third calculation with 4h is necessary to retrieve information about the order

v3 = u− 4hc− 16h2d− 64h3f − 256h4g − · · · (10.5)

whence

v2 − v3 = 2hc+ 12h2d+ 56h3f + 240h4g + · · · (10.6)

and a division gives the order-ratio:

q =
v2 − v3
v1 − v2

= 2
c+ 6hd+ 28h2f + 120h3g + · · ·
c + 3hd+ 7h2f + 15h3g + · · · . (10.7)

This ratio can be computed in all those points where we have information from all
three calculations, i.e. all grid points corresponding to the last calculation with
step size 4h.

If c 6= 0 and h is suitably small we shall observe numbers in the neighbourhood of
2 in all points, and this would indicate that the method is of first order. If c = 0
and d 6= 0, then the quotient will assume values close to 4 and if this happens for
many points and not just at isolated spots then we can deduce that c is identically
0 and that the method is of second order. The smaller h the smaller influence for
the next terms in the numerator and the denominator, and the picture should
become clearer.

86

The error in the first calculation, v1, is given by

e1 = u− v1 = hc+ h2d+ h3f + h4g + · · · (10.8)

If we observe many values of the order-ratio (10.7) in the neighbourhood of 2
indicating that |c| is substantially larger than h|d|, and that the method therefore
is of first order, then e1 is represented reasonably well by v1 − v2:

e1 = v1 − v2 − 2h2d− 6h3f − · · · (10.9)

and v1 − v2 can be used as an estimate of the error in v1.

One could choose to add v1 − v2 to v1 and thereby get more accurate results.
This process is called Richardson extrapolation and can be done for all grid points
involved in the calculation of v2.

v′1 = v1 + (v1 − v2) = u+ 2h2d+ 6h3f + 14h4g + · · · (10.10)

If the error (estimate) behaves nicely we might even consider interpolating to the
intermediate points and thus get extrapolated values with spacing h. Interpola-
tion or not, we cannot at the same time, i.e. without doing some extra work, get
a realistic estimate of the error in this improved value. The old estimate can of
course still be used but it is expected to be rather pessimistic.

If in contrast we observe many numbers in the neighbourhood of 4 then |c| is
substantially less than h|d| and is probably 0. At the same time |d| will be larger
than h|f |, and the method would be of second order with an error

e2 = u− v1 = h2d+ h3f + h4g + · · · (10.11)

This error will be estimated nicely by (v1 − v2)/3:

e2 =
1

3
(v1 − v2)−

4

3
h3f − 4h4g − · · · (10.12)

It is thus important to check the order before calculating an estimate of the error
and certainly before making any corrections using this estimate. If in doubt it
is usually safer to estimate the order on the low side. If the order is 2 and the
correct error estimate therefore (v1 − v2)/3, then misjudging the order to be 1
and using v1 − v2 for the error estimate would not be terribly bad, and actually
on the safe side. But if we want to attempt Richardson extrapolation it is very
important to have the right order.

If our task is to compute function values with a prescribed error tolerance then the
error estimates can also be used to predict a suitable step size which would satisfy
this requirement and in the second round to check that the ensuing calculations
are satisfactory.

87

How expensive are these extra calculations which are needed to gain information
on the error? We shall compare with the computational work for v1 under the
assumption that the work is proportional to the number of grid points. Therefore
v2 costs half as much as v1, and v3 costs one fourth. The work involved in
calculating v1 − v2, v2 − v3 and their quotient which is done for 1/4 of the grid
points will not be considered since it is assumed to be considerably less than the
fundamental difference calculations.

The work involved in finding v1, v2 and v3 is therefore 1.75, i.e. an extra cost
of 75%, and that is actually very inexpensive for an error estimate. Getting
information on the magnitude of the error enables us to choose a realistic step
size and thus meet the requirements without performing too many unnecessary
calculations. If the numbers allow an extrapolation then the result of this is
expected to be much better than a calculation with half the step size and we are
certainly better off. If the computational work increases faster than the number
of grid points then the result is even more in favour of the present method.

 -1 1

 2

 4

Figure 10.1: The function w(y) = 21+2y
1+y

.

10.3 Can we trust these results?

Yes, if we really observe values of the order-ratio (10.7) between say 1.8 and 2.2
for all relevant grid points then the method is of first order and the first term in
the remainder series dominates the rest. Discrepancies from this pattern in small
areas are also allowed. They may be due to the fact that c(x) has an isolated

88

zero. This can be checked by observing the values of v1 − v2 in a neighbourhood.
These numbers which are usually dominated by the term hc will then become
smaller and display a change of sign indicating that c(x) has a zero somewhere in
the neighbourhood. The zero of c(x) and that of v1−v2 will usually not coincide,
since the latter will correspond to c(x) ≈ −3hd(x). The global error itself will also
display a sign change and thus be small and pass through zero somewhere close.
We don’t know precisely where, and the exact location is also of academic interest
only, since we only have information on the computed solution at a discrete set
of points. In a small neighbourhood around this zero the error estimate, v1 − v2
may not even reproduce the sign of the error correctly, but as long as the absolute
value is small this is of lesser significance. The important thing is that the error
estimate is reliable in sign and magnitude when the error is large, and this will
be the case as long as the order ratio stays close to 2.

If a method is of first order and we choose to exploit the error estimate to adjust
the calculated value (i.e. to perform Richardson extrapolation) then it might be
reasonable to assume that the resulting method is of second order as indicated in
(10.10). This of course can be tested by repeating the above process. We shall
need a fourth calculation v4 (with step size 8h), such that we can compute three
extrapolated values, v′q = vq + (vq − vq+1), q = 1, 2, 3, on the basis of which
we can get information about the (new) order. We of course expect the order
to be at least 2, but it is important to have this extra assurance that our basic
hypothesis is valid. If the results do not confirm this then it might be an idea to
review the calculations.

What will actually happen if we perform a Richardson extrapolation based on
a wrong assumption about the order? Usually not too much. If we attempt to
eliminate a second order term in a first order calculation then the result will still
be of first order; and if we attempt to eliminate a first order term in a second
order process then the absolute value of the error will double but the result will
retain its high order.

If we want to understand in detail what might happen to the order-ratio (10.7) in
the strange areas, i.e. how the ratio might vary when h|d| is not small compared
to |c|, then we can consider the behaviour of the function

w(y) = 2
1 + 2y

1 + y
(10.13)

where y = 3hd
c
(see Fig. 10.1).

If y is positive, then 2 < w(y) < 4, and w(y) → 4, when y → ∞.
This corresponds to c and d having the same sign.
If y is small then w(y) ≈ 2.
If y is large and negative then w(y) > 4, and w(y) → 4 when y → −∞.

89

The situation y → ±∞ corresponds to c = 0, i.e. that the method is of second
order.
The picture becomes rather blurred when y is close to −1, i.e. when c and d have
opposite sign and c ≈ −3hd:

y ↑ −1 ⇒ w → +∞
y ↓ −1 ⇒ w → −∞

−1 < y < −1

2
⇒ w < 0

But in these cases we are far away from |c| ≫ h|d|.

Reducing the step size by one half corresponds to reducing y by one half.

If 0 < w(y) < 4 then w(y
2
) will be closer to 2.

If w(y) < 0 then 0 < w(y
2
) < 2.

If 6 < w(y) then w(y
2
) < 0.

If 4 < w(y) < 6 then w(y
2
) > w(y).

If c and d have opposite sign and c is not dominant, the picture will be rather
chaotic, but a suitable reduction of h will result in a clearer picture if the funda-
mental assumptions are valid.

We have been rather detailed in our analysis of first order methods with a non-
vanishing second order term. Quite similar analyses can be made for second and
third order, or for second and fourth order or for higher orders. If the ratio (10.7)
is close to 2p then our method is of order p.

10.4 Further improvements of the error estimate

The error estimates we compute are just estimates and not upper bounds on the
magnitude of the error. They will often be very realistic, but they may sometimes
underestimate the error, and it would be useful to identify those situations. The
following analysis will show that this happens when the order ratio is consistently
smaller than 2p. On the other hand, if the order ratio is larger than 2p then the
error estimate is usually a (slight) overestimate.

If the method is first order (c 6= 0) we expect the next term in the error expansion
to be second order (d 6= 0) and we have

q =
v2 − v3
v1 − v2

≈ 2
1 + 2y

1 + y
≈ 2(1 + y) with y = 3hd

c
(10.14)

If we observe values q = 2(1 + ε) then we have y ≈ ε = q−2
2
.

90

From (10.4) and (10.9) we have

v1 − v2 = hc(1 + 3h
d

c
+ · · ·) = hc(1 + y + · · ·) (10.15)

and

e1 = (v1 − v2)(1−
2hd

c
+ · · ·

1 + y + · · ·) ≈ (v1 − v2)(1−
2

3
y). (10.16)

If ε > 0 (i.e. q > 2) then the error is smaller than the estimate v1 − v2, and if
ε < 0 (i.e. q < 2) then the error is larger than the estimate.

Since y ≈ ε = (q − 2)/2 we can even compensate for the effect taking as our
improved error estimate the value

est12 = (v1 − v2)(1−
2

3
ε) = (v1 − v2)(1−

q − 2

3
). (10.17)

A direct calculation reveals that

est12 = e1 − 8h3f − · · · (10.18)

showing that this improved estimate takes both the first and the second order
term into account.

We must of course be careful with these calculations. They should only be used
when ε is small and varies slowly over the region in question.

If the method is second order (c = 0, d 6= 0) then the next term in the error
expansion might be third order (f 6= 0) or fourth order (f = 0, g 6= 0). In any
case

q =
v2 − v3
v1 − v2

≈ 4
1 + 2y + 4z

1 + y + z
(10.19)

with

y =
7

3
h
f

d
, z = 5h2

g

d
(10.20)

From (10.4) and (10.12) we have

v1 − v2 = 3h2d(1 +
7

3
h
f

d
+ 5h2

g

d
+ · · ·) = 3h2d(1 + y + z + · · ·) (10.21)

and

e2 =
v1 − v2

3
(1− 4h3f + 12h4g + · · ·

3h2d+ · · ·) ≈ v1 − v2
3

(1− 4

7
y − 4

5
z). (10.22)

91

If we have a second and a third order term then y will probably dominate z and

q ≈ 4
1 + 2y

1 + y
≈ 4(1 + y)

and if we observe values q = 4(1 + ε) then we have ε ≈ y and the error estimate
should be

est23 =
v1 − v2

3
(1− 4

7
ε) =

v1 − v2
3

(1− 4

7

q − 4

4
). (10.23)

If the next term is fourth order then y = 0 and

q ≈ 4
1 + 4z

1 + z
≈ 4(1 + 3z)

and if we observe values q = 4(1+ ε) then we have ε ≈ 3z and the error estimate
should be

est24 =
v1 − v2

3
(1− 4

15
ε) =

v1 − v2
3

(1− 4

15

q − 4

4
). (10.24)

Although we might have our suspicions it is not easy to know whether the next
term is third or fourth order and this is important in order to decide which
correction to apply. We can therefore not recommend using (10.23) or (10.24)
directly for error estimation or extrapolation. To be on the safe side we instead
suggest the following guidelines for error estimation:
If ε > 0 (i.e. q > 4) then (v1 − v2)/3 is probably larger than the error and can
safely be used as an error estimate.
If ε < 0 (i.e. q < 4) then the error is larger than (v1 − v2)/3 and we recommend
using (1 − 4

7
ε)(v1 − v2)/3 as the error estimate. If the next term is fourth order

we shall be on the safe side; if it is third order the estimate will probably be more
realistic, but it might be a slight underestimate.

10.5 Two independent variables

If u is a function of two or more variables then we can perform similar analyses
taking one variable at a time. If say u(t, x) is a function of two variables, t and
x, and v is a numerical approximation based on step sizes k and h then our basic
hypothesis would be

v1 = u− hc− kd− hke− h2f − k2g − · · · (10.25)

A calculation with 2h and k gives

v2 = u− 2hc− kd− 2hke− 4h2f − k2g − · · ·

92

such that

v1 − v2 = hc+ hke + 3h2f + · · · (10.26)

To check the order (in h) we need a third calculation with step sizes 4h and k:

v3 = u− 4hc− kd− 4hke− 16h2f − k2g − · · ·

and we have
v2 − v3 = 2hc+ 2hke + 12h2f + · · ·

and the order-ratio

v2 − v3
v1 − v2

= 2
c+ ke+ 6hf + · · ·
c+ ke+ 3hf + · · · . (10.27)

For the k-dependence we compute with h and 2k:

v4 = u− hc− 2kd− 2hke− h2f − 4k2g − · · ·

and with h and 4k:

v5 = u− hc− 4kd− 4hke− h2f − 16k2g − · · ·

such that

v1 − v4 = kd+ hke+ 3k2g + · · · (10.28)

and

v4 − v5
v1 − v4

= 2
d+ he + 6kg + · · ·
d+ he + 3kg + · · · . (10.29)

Using (10.27) and (10.29) we can check the order in h and k of our approximation
and through (10.26) and (10.28) we can get information on the leading error
terms.

If the method is first order in h we can estimate the h-component of the error by
v1 − v2 and if the method is first order in k we can estimate the k-component of
the error by v1 − v4. We can use this information to reduce either or both the
step sizes in order to meet specific error tolerances or we can use Richardson-
extrapolation in order to get higher order and (hopefully) more accurate results.
More specificly

v1 + (v1 − v2) + (v1 − v4) = u+ hke + 2h2f + 2k2g + · · · (10.30)

If the method is first order in k and second order in h as is typical for the implicit
method then the h-component of the error is estimated by (v1 − v2)/3 and the

93

k-component by v1− v4. The latter will often be dominant and it will be natural
to perform Richardson-extrapolation in the k-direction only, arriving at

v1 + (v1 − v4) = u− h2f + 2k2g + · · · (10.31)

In order to check that these extrapolations give the expected results, it is again
necessary to supplement with further calculations (and with a more advanced
numbering system for these v′s).

When u is a function of two variables with two independent step sizes then the
cost of the five necessary calculations is 2.5 times the cost of v1. This is still a
reasonable price to pay. Knowing the magnitude of the error and its dependence
on the step sizes enables us to choose near-optimal combinations of these and
thus avoid redundant calculations, and a possible extrapolation might improve
the results considerably more than halving the step sizes and quadrupling the
work.

Table 10.1: h-ratio for first order boundary condition.

t \ x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.1 2.05 2.05 2.06 2.07 2.07 2.08 2.08 2.08 2.09 2.09
0.2 2.03 2.03 2.04 2.04 2.04 2.04 2.05 2.05 2.05 2.05
0.3 2.02 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03
0.4 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02
0.5 2.01 2.01 2.01 2.02 2.02 2.02 2.02 2.02 2.02 2.02
0.6 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01
0.7 2.00 2.00 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01
0.8 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
0.9 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1.0 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

10.6 Limitations of the technique.

It is essential for the technique to give satisfactory results that the leading term
in the error expansion is the dominant one. This will always be the case when
the step size is small, but how can we know that the step size is small enough?

This will be revealed by a study of the order-ratio and how it behaves in the
region in question. A picture like the one seen in Table 10.1 is a clear witness of
a first order process where the first order term clearly dominates the rest. The

94

Table 10.2: k-ratio for first order boundary condition.

t \ x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.1 1.89 14.69 3.87 1.20 4.30 5.25 4.52 3.42 2.81 2.76
0.2 1.82 17.13 2.65 4.11 4.16 3.99 3.96 4.00 4.03 4.02
0.3 1.68 6.15 3.63 4.13 4.00 3.98 4.01 4.01 4.00 4.00
0.4 1.51 4.19 3.98 4.05 3.98 4.00 4.00 4.00 4.00 4.00
0.5 1.33 3.65 4.06 4.01 3.99 4.00 4.00 4.00 4.00 4.00
0.6 1.15 3.50 4.07 3.99 4.00 4.00 4.00 4.00 4.00 4.00
0.7 1.00 3.49 4.06 3.99 4.00 4.00 4.00 4.00 4.00 4.00
0.8 0.88 3.54 4.05 3.99 4.00 4.00 4.00 4.00 4.00 4.00
0.9 0.82 3.60 4.03 3.99 4.00 4.00 4.00 4.00 4.00 4.00
1.0 0.84 3.67 4.02 4.00 4.00 4.00 4.00 4.00 4.00 4.00

error estimate will be very reliable (and a slight overestimate) and we can expect
good results from an extrapolation.

A behaviour like in Table 10.2 is more difficult to interpret. For x > 0.1 and
t > 0.1 the method is clearly second order (in k) and we should be able to
trust the estimate of the corresponding error component. For small values of t
and especially x our basic hypothesis (10.25) does not seem to quite capture the
situation. A reduction of the step size, k, might help, but the problems may
partly be due to the fact that the contribution to the error from k is so much
smaller than the contribution from h. A comparison of the differences (10.26)
and (10.28) will shed light on this.

Isolated deviations from the pattern such as seen in Table 16.3 at (t, x) =
(1.2, 175) and (0.8, 150) and (0.4, 130) are allowed and can be explained by re-
ferring to Fig. 10.1. The second order term in (10.26) has opposite sign and
the same absolute magnitude as the next in line on a curve in (t, x)-space, and
small values, negative values, and very large values of the order ratio will occur
depending on how close the grid points lie to this curve. A study of the dif-
ferences (10.26) will reveal very small numbers because of this cancellation. An
extrapolation will have little effect because of these small differences. An error
estimate based on these small differences cannot be trusted. It is safer to assume
that the error is about the same as in surrounding points where the order ratio
warrants a better determination. (The error is probably very small somewhere
in the neighbourhood, but we don’t know exactly where.)

The oscillations which often occur when using Crank-Nicolson (cf. Chapter 8) can
also confuse the picture. These oscillations typically have a period of 2 times the
step size such that for example the values at odd steps are large and the values

95

Table 10.3: h-ratio for asymmetric second order.

t \ x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.1 3.24 3.43 3.60 3.71 3.80 3.86 3.90 3.93 3.95 3.96
0.2 3.44 3.54 3.63 3.69 3.75 3.79 3.82 3.85 3.87 3.88
0.3 3.51 3.58 3.64 3.69 3.73 3.76 3.78 3.80 3.82 3.83
0.4 3.54 3.60 3.65 3.68 3.72 3.74 3.76 3.78 3.80 3.81
0.5 3.56 3.61 3.65 3.68 3.71 3.73 3.75 3.77 3.78 3.79
0.6 3.57 3.62 3.65 3.68 3.71 3.73 3.74 3.76 3.77 3.78
0.7 3.58 3.62 3.65 3.68 3.70 3.72 3.74 3.75 3.76 3.77
0.8 3.59 3.63 3.66 3.68 3.70 3.72 3.73 3.74 3.76 3.76
0.9 3.59 3.63 3.66 3.68 3.70 3.72 3.73 3.74 3.75 3.76
1.0 3.60 3.63 3.66 3.68 3.70 3.71 3.73 3.74 3.75 3.76

at even steps are small. If we use all values with step size 4k they are alternately
large and small. At step size 2k and k we only use values at even step numbers,
i.e. small values, and the order ratios will tend to oscillate. It may be a good idea
to use every other value to get a smoother picture.

If the order ratios do not show any easily explainable pattern (cf. Table 16.3 for
x ≤ 100), then a reduction of the step size(s) may solve the problem. If not the
necessary conclusion is that our basic hypothesis (10.25) does not hold in this
region for this problem.

How much can we expect to gain from extrapolations? If we assume that the
auxiliary functions have roughly the same magnitude then going from a first
order to a second order result may almost double the number of correct decimals.
A similar gain can be expected going from second to fourth order (when there is
no third order term present). Going from second to third order will ‘only’ give
50 % more and only if the corresponding auxiliary function is well-behaved. So
the main area of application is to first (and second) order methods, but of course
here the need is also the greatest.

10.7 Test problem 3 – once again

We shall illustrate the techniques on test problem 3:

ut = uxx, 0 ≤ x ≤ 1, t > 0,
u(0, x) = u0(x) = cosx, 0 ≤ x ≤ 1,

u(t, 1) = e−t cos 1, t > 0,

96

Table 10.4: k-ratio for asymmetric second order.

t \ x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.1 3.99 3.99 3.99 3.99 4.00 4.02 4.07 4.18 4.40 4.86
0.2 4.01 4.01 4.02 4.03 4.04 4.05 4.04 4.01 3.94 3.85
0.3 4.02 4.02 4.02 4.02 4.02 4.01 4.01 4.01 4.04 4.17
0.4 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.00 3.94
0.5 4.02 4.02 4.02 4.02 4.02 4.01 4.01 4.01 4.02 4.08
0.6 4.01 4.01 4.01 4.01 4.01 4.01 4.02 4.02 4.01 3.96
0.7 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.05
0.8 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01 3.98
0.9 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.00 4.03
1.0 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01 3.98

Table 10.5: h-ratio for symmetric second order with h = k.

t \ x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.1 15.94 15.94 15.94 15.95 15.98 16.05 16.21 16.55 17.22 18.58
0.2 16.02 16.03 16.05 16.07 16.11 16.13 16.12 16.03 15.84 15.53
0.3 16.07 16.06 16.06 16.05 16.04 16.03 16.02 16.03 16.12 16.47
0.4 16.05 16.05 16.05 16.05 16.05 16.06 16.07 16.06 16.00 15.82
0.5 16.05 16.05 16.05 16.05 16.05 16.04 16.03 16.03 16.05 16.22
0.6 16.04 16.04 16.04 16.04 16.04 16.04 16.05 16.06 16.03 15.91
0.7 16.04 16.04 16.04 16.04 16.04 16.04 16.03 16.03 16.03 16.14
0.8 16.04 16.04 16.04 16.04 16.04 16.04 16.04 16.05 16.04 15.95
0.9 16.03 16.03 16.03 16.03 16.03 16.03 16.03 16.02 16.02 16.10
1.0 16.03 16.03 16.03 16.03 16.03 16.03 16.03 16.04 16.04 15.96

ux(t, 0) = 0, t > 0.

We solve the problem numerically using Crank-Nicolson and begin with the first
order boundary approximation. Using formulas (10.27) and (10.29) we check the
order of the method calculating the ratios on a 10× 10 grid using step sizes that
are 16 times smaller. The results are shown in Table 10.1 and Table 10.2 for h
and k respectively.

The method is clearly first order in h with only few values deviating slightly from
2.0. We deduce that the first order contribution to the error clearly dominates
the other h-terms and we conclude that using a first order boundary approxima-
tion degrades the performance of Crank-Nicolson. The picture is more confusing
for k where the second order is only convincing for larger values of t or x. The

97

Table 10.6: h-ratio for asymmetric second order with h = k.

t \ x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.1 9.91 9.10 7.55 6.97 6.86 7.00 7.30 7.67 8.04 8.30
0.2 7.90 7.68 8.28 8.54 8.45 8.19 7.89 7.63 7.44 7.32
0.3 8.41 8.12 7.83 7.91 8.03 8.13 8.20 8.24 8.25 8.25
0.4 7.95 7.86 8.17 8.16 8.06 8.01 8.00 8.02 8.05 8.07
0.5 8.19 8.03 7.91 7.98 8.04 8.07 8.07 8.05 8.03 8.02
0.6 7.97 7.91 8.11 8.05 8.00 7.99 8.01 8.03 8.04 8.05
0.7 8.10 8.00 7.94 7.99 8.03 8.03 8.02 8.01 8.00 8.00
0.8 7.97 7.93 8.07 8.01 7.98 7.99 8.00 8.01 8.02 8.02
0.9 8.06 7.99 7.95 7.99 8.01 8.01 8.00 7.99 7.99 7.99
1.0 7.97 7.94 8.05 7.99 7.98 7.99 8.00 8.00 8.00 8.00

h-component of the error estimate is two orders of magnitude larger than the
k-component and thus dominates the error. A comparison with the actual er-
ror shows that the estimate is less than 3 % over the actual error which has a
maximum value of about 0.002.

Table 10.1 indicates that Richardson extrapolation is possible and the dominance
of the h-component of the error estimate promises that it will be useful. The
maximum error after extrapolation is 0.00003.

The k-component of the error estimate exhibits a strange behaviour for small x
where also the order ratio indicated trouble. With a maximum value of 0.000005
this of no real concern, but it still indicates that we are doing something wrong.
This something is probably the first order boundary approximation which not
only reduces the h-order to 1 but also introduces a discontinuity in cx(t, x) at
(0, 0) since c(0, x) = 0 according to (9.18) and cx(t, 0) = −1

2
e−t according to

(9.56) for our example. This will have an effect on some of the higher auxiliary
functions such that v1 − v4 in (10.28) is not dominated by kd when x is close to
0.

The values for c(t, x) as determined by v1 − v2 (see 10.26) with h = k = 0.00625
agree within 7 % with those obtained from solving the differential equation for
c (which we did in Chapter 9) and a better agreement can be obtained using
smaller step sizes. The corresponding determination of g(t, x) is reasonably good
when t and x are not too close to 0. In the regions where we have difficulty
determining the order (see Table 10.2) we can of course have little trust in an
application of formula (10.28) but in regions where the ratio (10.29) is between
3.0 and 5.0 the agreement is within 8 % with the step sizes chosen.

98

For the asymmetric second order boundary approximation (9.61) the second order
in k is clearly detectable on the 10×10 grid using h = 0.00625 and k = 0.025 (see
Table 10.4) and reasonably so for h (see Table 10.3). The values obtained here
for g(t, x) agree within 1 % with those previously obtained whereas the values for
f(t, x) are 10 - 20 % too small in agreement with the h-ratio being determined
consistently 10 - 20 % too small. The presence of an interfering h3-term in the
error expansion is clearly noticeable here. The error estimate is dominated by
the k-term (because of the larger step size) and the maximum error is now less
than 0.000013. The number of grid points and thus the number of arithmetic
operations is four times smaller than before and yet the error is much smaller
(even after extrapolation of the foremr result).

For the symmetric second order approximation (9.69) we also expect second order
accuracy. The order ratio (10.27) for h gives values between 3.99 and 4.01 and for
k between 3.8 and 4.8 when using h = k = 0.025. These good results are due to
the fact that the next terms in the error expansion (10.25) are h4 and k4 because
of the symmetry and therefore interfere little with the second order terms. The
number of grid points is again reduced by a factor 4 and the two components
of the error estimate are both smaller than 0.000013. We know that f = −g in
theory. In practice they agree within 2 % with each other and with the values
obtained from the independent solution of the differential equation.

Since the two error components thus almost cancel out the results are better
than the estimates tell us. To check this we try equal step sizes with the second
order boundary approximations. Using h = k = 0.025 we can confirm that
the symmetric approximation now leads to a method which is fourth order (see
Table 10.5) and that the asymmetric approximation (9.61) leads to a method
which is third order in the common step size (see Table 10.6). The error estimate
(and the error) is less than 2.2 × 10−6 for the asymmetric approximation and
0.6× 10−9 for the symmetric one.

10.8 Which method to choose

This is a difficult one to answer because there is no method which is best in all
situations; but we can issue some general guidelines. Usually the choice is be-
tween the explicit method, the implicit method, and Crank-Nicolson. The explicit
method is the easiest one to program, but the stability condition,
2bµ ≤ 1, will often imply such restrictions on the time step, as to render this
option impractical. Crank-Nicolson seems optimal, being unconditionally stable
and second order accurate. But in some cases it gives rise to oscillations which
are damped very slowly. In such cases the implicit method becomes a viable al-
ternative. It is, however, only first order accurate in t and in many cases it tends

99

to produce solutions that are too smooth. Using the extrapolation techniques in
this chapter we can suggest the following alternative:
1. Use the implicit method.
2. Check the order in t, i.e. compute the order ratio.
3. If the results are first order then estimate the error.
4. Extrapolate to second order in t.
5. Check the orders in t and x.
6. Estimate the two error components.
In this way we can take advantage of the very stable behaviour of the implicit
method and still get a second order result, provided the order ratio allows it.

As for boundary conditions with a derivative the theory in Chapter 9 as well as
the previous example shows that we should prefer second order approximations
to first order and symmetric approximations to asymmetric ones whenever pos-
sible. The work as measured by the number of arithmetic operations only grows
marginally and the extra programming effort is well rewarded in better accuracy.

10.9 Literature

The idea to perform extrapolation and thus achieve a higher order goes back to
the british mathematician Lewis F. Richardson who introduced it for the special
case of p = 2 [30]. An application to parabolic equations is reported by Hartree
and Womersley [16]. Extrapolation has also been used in [20] and [12] but they
propose to extrapolate step by step and continue the difference scheme with the
extrapolated values. The formula for determining or checking the order is given
in lecture notes from the Technical University of Denmark [2] but the idea is
probably older. The history of extrapolation processes in numerical analysis is
given in the survey paper [17] which also contains an extensive bibliography.

100

10.10 Exercises

1. Solve problem 1 with the implicit method from t = 0 to t = 0.5 with
h = k = 1

10
, 1

20
, 1

40
.

For each point in the grid corresponding to the largest step size compute
the order-ratio (10.7) and produce a table similar to Table 10.1.
Deduce the order of the method.
Estimate the leading term of the error for each point in the above grid and
compare to the actual error.

2. Same as exercise 1 but with Crank-Nicolson’s method.

3. Solve problem 1 with the implicit method from t = 0 to t = 0.5 with
h = k = 1

40
.

Using calculations with (2k, h), (4k, h), (k, 2h) and (k, 4h) you should gain
information about the order in k and h as well as about the first terms in
the expression for the error in all grid points corresponding to 4k and 4h.

What can we do to obtain an error which in every grid point is less than
10−6?

4. Same as exercise 3 but with Crank-Nicolson’s method.

5. Same as exercise 3 but with problem 2.

6. Same as exercise 5 but with Crank-Nicolson’s method.

7. Using the results from exercise 3 perform Richardson extrapolation in k.
Under the assumption that the order in time is now 2, what is the k-
contribution to the error.
How small should k be to reduce this error term to less than 1

2
10−6 in every

grid point?

8. Same as exercise 7 but with problem 2.

101

102

Chapter 11

Two Space Dimensions

11.1 Introduction

A general, linear, parabolic equation in two space dimensions:

ut = b1uxx + 2b12uxy + b2uyy − a1ux − a2uy + κu+ ν (11.1)

is well-posed (cf. page 23) if

b1 > 0 and b1b2 > b212. (11.2)

The solution u(t, x, y) is a function of t, x, and y, and the coefficients may also
depend on t, x, and y.

To ensure a unique solution (11.1) must be supplemented by an initial condition

u(0, x, y) = u0(x, y), X1 ≤ x ≤ X2, Y1 ≤ y ≤ Y2 (11.3)

and boundary conditions which might be of Dirichlet type such as

u(t, X1, y) = u11(t, y), t > 0 (11.4)

or involving a normal derivative such as

αu(t, X1, y)− βux(t, X1, y) = γ, t > 0 (11.5)

and similar relations for x = X2, y = Y1, and y = Y2.

We shall begin treating the case where there is no mixed derivative term in (11.1),
i.e. that b12 = 0. We can then write the equation as

ut = P1u+ P2u+ ν (11.6)

103

where

P1u = b1uxx − a1ux + θκu, (11.7)

P2u = b2uyy − a2uy + (1− θ)κu, (11.8)

and 0 ≤ θ ≤ 1. While symmetry considerations might speak for an even distri-
bution of the κu-term (θ = 1

2
) it is computationally simpler to use θ = 0 or θ = 1

i.e. to include the κu-term fully in one of the two operators.

For the numerical solution of (11.1) we choose a step size k in the t-direction and
step sizes h1 = (X2−X1)/L and h2 = (Y2−Y1)/M in the x- and the y-direction,
respectively, and seek the numerical solution vnlm on the discrete set of points
(nk,X1 + lh1, Y1 +mh2), (l = 0, 1, . . . , L; m = 0, 1, . . . ,M ; n = 1, 2, . . . , N).

11.2 The explicit method

In the simplest case P1u = b1uxx and P2u = b2uyy such that

ut = b1uxx + b2uyy. (11.9)

The explicit method for (11.9) looks like

vn+1
lm − vnlm

k
= b1δ

2
xv

n
lm + b2δ

2
yv

n
lm. (11.10)

To study the stability of (11.10) we take vnlm on the form

vnlm = gneiξ1lh1eiξ2mh2 = gneilϕ1eimϕ2 (11.11)

and insert in (11.10):

g = 1 + b1µ1(e
iϕ1 − 2 + e−iϕ1) + b2µ2(e

iϕ2 − 2 + e−iϕ2)

= 1− 4b1µ1 sin
2 ϕ1

2
− 4b2µ2 sin

2 ϕ2

2
(11.12)

where µ1 = k/h21 and µ2 = k/h22. The stability requirement is |g| ≤ 1 and since
g is real and clearly less than 1 the critical condition is g ≥ −1 or

2b1µ1 sin
2 ϕ1

2
+ 2b2µ2 sin

2 ϕ2

2
≤ 1. (11.13)

Since this must hold for all ϕ1 and ϕ2 the requirement for stability is

b1µ1 + b2µ2 ≤ 1

2
. (11.14)

104

11.3 Implicit methods

Formula (11.14) puts severe restrictions on the step size k and it is very tempting
to study generalizations of the implicit or the Crank-Nicolson methods to two
space dimensions. A similar analysis will show that they are both unconditionally
stable, i.e. they are stable for any choice of k, h1, and h2 (cf. exercise 1).

The use of an implicit method requires the solution of a set of linear equations
for each time step. In one space dimension the coefficient matrix for these equa-
tions is tridiagonal, and the equations can be solved with a number of simple
arithmetic operations (SAO) proportional to the number of internal grid points.
The situation is less favourable in two or more space dimensions.

If we have L − 1 internal points in the x-direction and M − 1 internal points in
the y-direction then we have (L − 1)(M − 1) grid points and the same number
of equations per time step. There are at most 5 non-zero coefficients in each
equation. If the grid points are ordered lexicographically then the coefficient
matrix will have a band structure such as shown to the left in Fig. 11.1 where
the non-zero coefficients are marked with squares. During a Gaussian elimination
the region between the outer bands will fill in as shown to the right in Fig. 11.1
resulting in a number of non-zeroes which is approximately L2 ·M and a number
of SAO proportional to L3 ·M .

Figure 11.1: A coefficient matrix before and after elimination.

Example.
Consider ut = uxx + uyy on the unit square with h1 = h2 = 0.01, L = M = 100.
If we want to integrate to t = 1 using the explicit method then stability requires
k ≤ 1

4·1002
and a number of time steps at least K = 4 · 1002. The number

of SAO is proportional to the number of grid points which is approximately
K · L ·M = 4L4 = 4 · 108.

If we want to use an implicit method we may choose k = h1 = h2, K = L =M so
the number of grid points is equal to L3 but the number of SAO is proportional
to K · L3 ·M = L5 = 1010.

We can conclude that there is no advantage in using implicit methods directly

105

since the time involved in solving the linear equations outweighs the advantage of
using larger step sizes in time. There are more elaborate ways to order the equa-
tions and to perform the solution process, but none that will make a significant
difference in favour of implicit methods.

11.4 ADI methods

When the differential operator can be split as in (11.6) – (11.8) there are ways to
avoid the L3-factor. Such methods are called time-splitting methods or Locally
One-Dimensional (LOD) or Alternating Direction Implicit (ADI) and the general
idea is to split a time step in two and to take one operator or one space coordinate
at a time.

Taking our inspiration from the Crank-Nicolson method we begin discretizing
(11.6) in the time-direction:

ut((n +
1

2
)k, x, y) =

un+1 − un

k
+O(k2), (11.15)

P1u+ P2u+ ν =
1

2
P1(u

n+1 + un) +
1

2
P2(u

n+1 + un) (11.16)

+
1

2
(νn+1 + νn) +O(k2).

Insert in (11.6), multiply by k, and rearrange:

(I − 1

2
kP1 −

1

2
kP2)u

n+1 = (I +
1

2
kP1 +

1

2
kP2)u

n (11.17)

+
1

2
k(νn+1 + νn) +O(k3).

If we add 1
4
k2P1P2u

n+1 on the left side and 1
4
k2P1P2u

n on the right side then we
commit an error which is O(k3) and therefore can be included in that term:

(I − 1

2
kP1)(I −

1

2
kP2)u

n+1 = (I +
1

2
kP1)(I +

1

2
kP2)u

n (11.18)

+
1

2
k(νn+1 + νn) +O(k3).

We now discretize in the space coordinates replacing P1 by P1h, P2 by P2h, and
u by v:

(I − 1

2
kP n+1

1h)(I − 1

2
kP n+1

2h)vn+1 = (I +
1

2
kP n

1h)(I +
1

2
kP n

2h)v
n

+
1

2
k(νn+1 + νn) (11.19)

106

and this gives rise to the Peaceman-Rachford method [27]:

(I − 1

2
kP n+1

1h)ṽ = (I +
1

2
kP n

2h)v
n + α, (11.20)

(I − 1

2
kP n+1

2h)vn+1 = (I +
1

2
kP n

1h)ṽ + β. (11.21)

The operators P1h and P2h involve the respective coefficients of the differential
equation and may therefore depend on time. This dependence is indicated by
superscripts n and n + 1. The intermediate value, ṽ, has no special relation to
any particular intermediate time value. It has been introduced for reasons of
computational efficiency and has no particular significance otherwise.

We have introduced the values α and β to take into account the inhomogeneous
term ν because it is not evident how this term should be split. We shall attend
to this matter shortly.

11.5 The Peaceman-Rachford method

In order to check whether the solution vn+1 to (11.20) and (11.21) is also the
solution to (11.19) we start with vn+1 from (11.21) and apply the difference
operators from the left side of (11.19):

(I − 1

2
kP n+1

1h)(I − 1

2
kP n+1

2h)vn+1 = (I − 1

2
kP n+1

1h){(I + 1

2
kP n

1h)ṽ + β}

= (I +
1

2
kP n

1h)(I −
1

2
kP n+1

1h)ṽ + (I − 1

2
kP n+1

1h)β

= (I +
1

2
kP n

1h)(I +
1

2
kP n

2h)v
n + (I +

1

2
kP n

1h)α (11.22)

+ (I − 1

2
kP n+1

1h)β

The first equal sign follows from (11.21), the third one from (11.20), and the
second one requires that the operators P n+1

1h and P n
1h commute.

This is not always the case when the coefficients depend on t and x. A closer
analysis reveals that we have commutativity if the coefficients b1, a1, and κ are
either constant or only depend on t and y or only depend on x and y. If κ depends
on all of t, x, and y we may incorporate it in the operator P2. If a1 and κ are 0
then b1 may depend on both t and x (and y) if it can be written as a product of
a function of t (and y) and a function of x (and y).

The operators P1 and P2 do not enter in a symmetric fashion. Therefore it may
happen that we do not have commutativity for one but we do for the other. In
this case we may switch freely between the x- and y-coordinates.

107

The main consequence of non-commutativity is that the ADI method (11.20) –
(11.21) becomes first order in time instead of the expected second order.

Once commutativity is established we take a closer look at the inhomogeneous
term. From (11.19) and (11.22) we have the requirement that

(I +
1

2
kP n

1h)α + (I − 1

2
kP n+1

1h)β =
1

2
k(νn+1 + νn) (11.23)

where a discrepancy of order O(k3) may be allowed with reference to a similar
term in (11.18). There are three possible choices for α and β that will satisfy
this:

α =
1

2
kνn, β =

1

2
kνn+1, (11.24)

α = β =
1

4
k(νn+1 + νn), (11.25)

α = β =
1

2
kνn+

1

2 . (11.26)

11.6 Practical considerations

The system of equations (11.20) for ṽ contains one equation for each interior grid
point in the xy-region. The operator P1h refers to neighbouring points in the
x-direction and the resulting coefficient matrix becomes tridiagonal and we can
therefore solve the system with a number of SAO proportional to the number
of interior grid points. Similarly the system of equations (11.21) for vn+1 is
effectively tridiagonal and can be solved at a similar cost irrespective of whether
we reorder the grid points or not.

We shall now take a detailed look at how we set up and solve the two systems
(11.20) and (11.21).

1. To compute the right-hand-side of (11.20) we need the values of vn at all
interior grid points and at all interior grid points on the boundaries y = Y1 and
y = Y2. If we have Dirichlet conditions on these boundaries we know these values
directly. If the boundary conditions involve the y-derivative on one or both of
these boundary line segments then we use a (preferably second order) difference
approximation to the derivative.
Cost: ∼ 5LM SAO.

2. To complete the system (11.20) we need information on ṽ for interior grid
points on the boundary line segments x = X1 and x = X2. If P1h does not
depend on time then rearranging (11.21) and adding to (11.20) gives

2ṽ = (I +
1

2
kP n

2h)v
n + (I − 1

2
kP n+1

2h)vn+1 + α− β. (11.27)

108

If we have Dirichlet boundary conditions on x = X1 and x = X2 then we have
information on vn and vn+1 here and we can apply P2h.
If the boundary conditions on one or both these lines involve the x-derivative
but those on y = Y1 and y = Y2 are of Dirichlet type, then we might consider
interchanging P1 and P2.
If the boundary conditions, however, are on the form ux(t, Xj, y) = fj(t),
(j = 1 and/or 2) where fj does not depend on y then we can differentiate (11.27)
w.r.t. x, and since the terms with P2h vanish we end up with

ṽx =
1

2
(f(tn) + f(tn+1)) (11.28)

plus possible α- and β-terms.

Remark. Since ṽ is an intermediate value it is sometimes suggested to use

ṽ =
1

2
(vn + vn+1) (11.29)

on the boundary. We cannot in general recommend this since ṽ has no particular
relation to the intermediate time level n + 1

2
, but we note that it is after all

an O(k2) approximation to (11.27) and although this is not quite good enough
(11.29) might still come in handy in special cases. ✷

3. Solve system (11.20).
Cost: ∼ 8LM SAO.

4. To compute the right-hand-side of (11.21) we need the same values of ṽ for
x = X1 and x = X2 as we discussed in 2.
Cost: ∼ 5LM SAO.

5. To complete the system (11.21) we need information on vn+1 for y = Y1 and
y = Y2. As in 1. if we have Dirichlet boundary conditions we know these values
directly. Otherwise we include equations involving difference approximations to
the derivatives.

6. Solve system (11.21).
Cost: ∼ 8LM SAO.

Total cost: ∼ 26LM SAO per time step.

1. 2. 3. 4. 5. 6.

In the figure above we have visualized the considerations. The horizontal or
vertical lines indicate which operator we are concerned with (P1h or P2h) and the

109

bullets indicate which function values we are considering. In 1. we are computing
right-hand-side values based on vn. In 2. and 3. we are computing ṽ-values and
in 4. right-hand-side values based on these. Finally in 5. and 6. we compute
values for vn+1.

11.7 Stability of Peaceman-Rachford

We have derived the Peaceman-Rachford method on the basis of ideas from
Crank-Nicolson so we expect unconditional stability, but we have also made a
few minor alterations along the way so it is probably a good idea to perform an
independent check. We shall do this for the special case ut = b1uxx + b2uyy with
constant coefficients b1 and b2. Inserting

vnlm = gneilϕ1eimϕ2 and ṽlm = g̃vnlm (11.30)

in (11.20) and (11.21) gives

(1 + 2b1µ1 sin
2 ϕ1

2
)g̃ = 1− 2b2µ2 sin

2 ϕ2

2
, (11.31)

(1 + 2b2µ2 sin
2 ϕ2

2
)g = (1− 2b1µ1 sin

2 ϕ1

2
)g̃, (11.32)

such that

g =
1− 2b1µ1 sin

2 ϕ1

2

1 + 2b1µ1 sin
2 ϕ1

2

· 1− 2b2µ2 sin
2 ϕ2

2

1 + 2b2µ2 sin
2 ϕ2

2

. (11.33)

For simplicity we introduce

x1 = b1µ1 sin
2 ϕ1

2
, x2 = b2µ2 sin

2 ϕ2

2
(11.34)

and the formula for the growth factor now takes the simpler form

g =
(1− 2x1)(1− 2x2)

(1 + 2x1)(1 + 2x2)
. (11.35)

Since x1 ≥ 0 and x2 ≥ 0 it is easily seen that −1 ≤ g ≤ 1 such that we indeed
have unconditional stability. We also note that components with high frequency
in both directions ϕ1 ∼ π, ϕ2 ∼ π will have g ∼ 1 (if b1µ1 and b2µ2 are large)
so these components will not be damped very much and they will not alternate
from one time step to the next. The growth factor might still take values close
to −1 due to components with high frequency in one direction and low frequency
in the other, and the well-known Crank-Nicolson oscillations will be observed
when Peaceman-Rachford is used on problems with discontinuities in the initial
condition.

110

11.8 D’Yakonov

There are other ways of splitting equation (11.19). D’Yakonov [39] has suggested

(I − 1

2
kP n+1

1h)ṽ = (I +
1

2
kP n

1h)(I +
1

2
kP n

2h)v
n + α, (11.36)

(I − 1

2
kP n+1

2h)vn+1 = ṽ + β. (11.37)

To check the equivalence we take the solution vn+1 from (11.37) and apply the
difference operators from the left side of (11.19):

(I − 1

2
kP n+1

1h)(I − 1

2
kP n+1

2h)vn+1 = (I − 1

2
kP n+1

1h)(ṽ + β) (11.38)

= (I +
1

2
kP n

1h)(I +
1

2
kP n

2h)v
n + α + (I − 1

2
kP n+1

1h)β

In this case we have no problem with commutativity of the operators. As for the
inhomogeneous term an obvious choice is

β = 0, α =
1

2
k(νn+1 + νn). (11.39)

When calculating the right-hand-side of (11.36) we must know vn on all grid
points including the boundaries and the corners. In addition we have in general
a sum of 9 terms for each equation possibly with different coefficients so the cost
for step 1. is ∼ 17LM SAO.

Setting up system (11.36) requires ṽ on the interior points on the boundary
segments x = X1 and x = X2. These values can be found by solving (11.37) from
right to left if we have Dirichlet conditions on these boundary segments.

Solving equations (11.36) now costs ∼ 8LM SAO.

The right-hand-side of (11.37) is easy and so are the necessary boundary values
of vn+1 on y = Y1 and y = Y2. The solution of (11.37) then costs another ∼ 8LM
SAO, and the total cost of a time step with D’Yakonov amounts to ∼ 33LM
SAO making D’Yakonov slightly more expensive than Peaceman-Rachford.

11.9 Douglas-Rachford

Other ADI methods can be derived from other basic schemes. If we for example
take our inspiration from the implicit method and discretize in time we get

un+1 − un

k
= P1u

n+1 + P2u
n+1 + νn+1 +O(k) (11.40)

111

or

(I − kP1 − kP2)u
n+1 = un + kνn+1 +O(k2) (11.41)

or

(I − kP1)(I − kP2)u
n+1 = (I + k2P1P2)u

n + kνn+1 +O(k2) (11.42)

where we in the last equation have incorporated k2P1P2(u
n+1−un) in the O(k2)-

term. (11.42) is now discretized in the space directions to

(I − kP n+1
1h)(I − kP n+1

2h)vn+1 = (I + k2P n
1hP

n
2h)v

n + kνn+1 (11.43)

and this formula can be split into the following two which are known as the
Douglas-Rachford method [10]:

(I − kP n+1
1h)ṽ = (I + kP n

2h)v
n + α (11.44)

(I − kP n+1
2h)vn+1 = ṽ − kP n

2hv
n + β (11.45)

To check that vn+1 in (11.45) is also the solution to (11.43) we take vn+1 from
(11.45) and apply the difference operators from (11.43):

(I − kP n+1
1h)(I − kP n+1

2h)vn+1 = (I − kP n+1
1h){ṽ − kP n

2hv
n + β}

= (I + kP n
2h)v

n + α− (I − kP n+1
1h)(kP n

2hv
n − β)

= (I + k2P n+1
1h P n

2h)v
n + α + (I − kP n+1

1h)β. (11.46)

The term with vn on the right-hand-side is not exactly what it should be if P1

depends on time, but the difference is O(k3) which is allowed.

In order to match the inhomogeneous term in (11.43) a natural choice for α and
β would be α = kνn+1, β = 0.

One could question the relevance of the first order terms on the right-hand-side of
(11.44) and (11.45). Actually the k2-term in (11.42) could easily be incorporated
in the O(k2)-term and the result would be a simpler version of formula (11.43)
which could be split into

(I − kP n+1
1h)ṽ = vn + α (11.47)

(I − kP n+1
2h)vn+1 = ṽ + β (11.48)

where we again would suggest α = kνn+1, β = 0 in order to match a possible
inhomogeneous term.

The practical considerations are dealt with as for Peaceman-Rachford or D’Yako-
nov. We just summarize the results for the computational work which is similar
to Peaceman-Rachford for (11.44) – (11.45) and slightly less (∼ 18LM SAO) for
the simpler scheme (11.47) – (11.48).

112

11.10 Stability of Douglas-Rachford

Again we expect to inherit the unconditional stability of the implicit method
but we had better check it directly. We again look at the special case ut =
b1uxx + b2uyy, and we use (11.30) and (11.34). From (11.44) – (11.45) we get

(1 + 4x1)g̃ = 1− 4x2, (1 + 4x2)g = g̃ + 4x2, (11.49)

such that

g =
1− 4x2 + (1 + 4x1)4x2
(1 + 4x1)(1 + 4x2)

=
1 + 16x1x2

1 + 4x1 + 4x2 + 16x1x2
. (11.50)

Since x1 > 0 and x2 > 0 we have 0 < g < 1 just like we hoped. For the simpler
scheme (11.47) – (11.48) the result is

g =
1

(1 + 4x1)(1 + 4x2)
(11.51)

which also ensures 0 < g < 1. We mention in passing that the original implicit
method would have given

g =
1

1 + 4x1 + 4x2
(11.52)

For large values of x1 and x2, i.e. large values of biµi and ϕi ≈ π, formula
(11.50) gives g ≈ 1 corresponding to weak damping whereas (11.51) gives g ≈ 0
corresponding to strong damping and even stronger than with the implicit scheme
(11.52). This may speak in favour of the simpler scheme (11.47) – (11.48).

11.11 The local truncation error

In order to check the local truncation error we use the symbols of the differential
and difference operators (cf. section 3.3). We consider the simple equation

ut − b1uxx − b2uyy = ν (11.53)

with constant coefficients and use the test functions

vnlm = esnkeilh1ξ1eimh2ξ2 = esteixξ1eiyξ2 , ṽlm = g̃vnlm. (11.54)

The symbol for the differential operator in (11.53) is

p(s, ξ1, ξ2) = s+ b1ξ
2
1 + b2ξ

2
2. (11.55)

113

We first look at the simple scheme (11.47) – (11.48) where we get

(1 + 4b1
k

h21
sin2 h1ξ1

2
)g̃ = 1 + kνn+1, (11.56)

(1 + 4b2
k

h22
sin2 h2ξ2

2
)esk = g̃ (11.57)

or

(1 + 4b1
k

h21
sin2 h1ξ1

2
)(1 + 4b2

k

h22
sin2 h2ξ2

2
)esk − 1 = kνn+1. (11.58)

The left-hand-side contains the terms which originate from the operator Pk,h and
the right-hand-side refers to Rk,h. Since Douglas-Rachford is derived from the
implicit method the natural expansion point is at t = (n+ 1)k. With this choice
the right-hand-side operator Rk,h becomes the identity and the corresponding
symbol

rk,h(s, ξ1, ξ2) = 1. (11.59)

This also means that we should divide the left-hand-side of (11.58) by esk before
Taylor expansion which then gives

(1 + kb1ξ
2
1 +O(kh21))(1 + kb2ξ

2
2 +O(kh22))− (1− sk +

1

2
s2k2 +O(k3)). (11.60)

Before we begin checking orders we should remember that we have multiplied by
k in order to get formula (11.41) and the following formulae. Therefore we must
divide (11.60) by k in order to get back to the standard form and we now get

pk,h(s, ξ1, ξ2) = b1ξ
2
1 + b2ξ

2
2 + kb1b2ξ

2
1ξ

2
2 + s− 1

2
s2k +O(k2 + h21 + h22). (11.61)

We now combine (11.55), (11.59) and (11.61) in

pk,h − rk,hp = k(b1b2ξ
2
1ξ

2
2 −

1

2
s2) +O(k2 + h21 + h22). (11.62)

Formula (11.62) shows that the Simple Douglas-Rachford (SDR) scheme (11.47)
– (11.48) is indeed first order in time and second order in the space variables
as we would expect for a scheme derived from the implicit method. We note
that w.r.t. the order of the local truncation error it is not important whether we
compute the inhomogeneous term at t = (n+1)k or at t = nk. It might have an
effect on the size of the error, though.

For the Traditional Douglas-Rachford (TDR) scheme we have instead of (11.58)

(1 + 4b1
k

h21
sin2 h1ξ1

2
)(1 + 4b2

k

h22
sin2 h2ξ2

2
)esk − (1− 4b2

k

h22
sin2 h2ξ2

2
)

− (1 + 4b1
k

h21
sin2 h1ξ1

2
) · 4b2

k

h22
sin2 h2ξ2

2
= kνn+1. (11.63)

114

With the expansion point at t = (n+1)k we again get rk,h = 1 and using a Taylor
expansion of the left hand side:

(1 + kb1ξ
2
1 +O(kh21))(1 + kb2ξ

2
2 +O(kh22)) (11.64)

− (1 + (kb1ξ
2
1 +O(kh21))kb2ξ

2
2 + O(kh22))(1− sk +

1

2
s2k2 +O(k3)).

The symbol of the difference operator becomes

pk,h(s, ξ1, ξ2) = s+ b1ξ
2
1 + b2ξ

2
2 + k(b1b2ξ

2
1ξ

2
2 −

1

2
s2 − b1b2ξ

2
1ξ

2
2) (11.65)

+ O(k2 + h21 + h22)

and the local truncation error is

pk,h − rk,hp = −1

2
ks2 +O(k2 + h21 + h22). (11.66)

This result looks more elegant than (11.62) but whether the error becomes smaller
is quite a different matter.

For Peaceman-Rachford (PR) and D’Yakonov the formula corresponding to
(11.60) and (11.64) is

(1 +
1

2
kb1ξ

2
1 +O(kh21))(1 +

1

2
kb2ξ

2
2 +O(kh22))(1 + sk +

1

2
s2k2 +O(k3))

− (1− 1

2
kb1ξ

2
1 +O(kh21))(1−

1

2
kb2ξ

2
2 +O(kh22)) (11.67)

such that

pk,h(s, ξ1, ξ2) = s+
1

2
b1ξ

2
1 +

1

2
b2ξ

2
2 +

1

2
b1ξ

2
1 +

1

2
b2ξ

2
2 (11.68)

+ k(
1

2
b1sξ

2
1 +

1

2
b2sξ

2
2 +

1

4
b1b2ξ

2
1ξ

2
2 +

1

2
s2 − 1

4
b1b2ξ

2
1ξ

2
2)

+ O(k2 + h21 + h22).

The exact expression for rk,h(s, ξ1, ξ2) depends on which one of the choices (11.24)
– (11.26) we select, but up to O(k2), and O(h21) in case of (11.24), we get

rk,h(s, ξ1, ξ2) = 1 +
1

2
sk +O(k2 + h21). (11.69)

We now combine (11.55), (11.68), and (11.69):

pk,h − rk,hp = s+ b1ξ
2
1 + b2ξ

2
2 +

1

2
k(b1sξ

2
1 + b2sξ

2
2 + s2)

− (1 +
1

2
sk)(s+ b1ξ

2
1 + b2ξ

2
2) +O(k2 + h21 + h22) (11.70)

= O(k2 + h21 + h22)

115

showing that Peaceman-Rachford is indeed second order accurate at least for
the simple equation (11.53) with constant coefficients. Extending the result to
lower order terms presents no problem but if the coefficients are allowed to vary
with space and time we have a more complicated picture as mentioned in the
discussion on page 107.

11.12 The global error

In order to study the global error we introduce a set of auxiliary functions which
may depend on (t, x, y) but not on (k, h1, h2), and we assume that the numerical
solution can be written as

v = u− h1c1 − h2c2 − kd− h1ke1 − h2ke2 − h21f1 − h22f2 − k2g − · · · (11.71)

We need a similar assumption for the intermediate values

ṽ = ũ− h1c̃1 − h2c̃2 − kd̃− h1kẽ1 − h2kẽ2 − h21f̃1 − h22f̃2 − k2g̃ − · · · (11.72)

and we shall seek information on these auxiliary functions. We shall assume
Dirichlet boundary conditions and therefore have homogeneous side conditions
for all the auxiliary functions. Beginning with the simple version of Douglas-
Rachford (11.47) – (11.48) we have

(I − kP n+1
1h)ṽ = vn + kνn+1 (11.73)

(I − kP n+1
2h)vn+1 = ṽ (11.74)

where P1h and P2h are discretized versions of P1 and P2 from (11.7) – (11.8).
Using Taylor expansion we have

P2hu = (b2δ
2
y − a2µ̃δy + (1− θ)κ)u

= b2uyy − a2uy + (1− θ)κu+
1

12
b2h

2
2u4y −

1

6
a2h

2
2uyyy +O(h42)

= P2u+
1

12
b2h

2
2u4y −

1

6
a2h

2
2uyyy +O(h42) (11.75)

and similarly for the auxiliary functions and for P1.
Inserting (11.71) on the left-hand-side of (11.74) and applying (11.75) we have
with t = (n+ 1)k as expansion point

(I − kP2h)v
n+1 = (I − kP2h)(u− h1c1 − · · · − k2g) +O(· · ·)

= (I − kP2)(u− h1c1 − · · · − k2g) (11.76)

− 1

12
b2kh

2
2u4y +

1

6
a2kh

2
2uyyy +O(· · ·).

116

O(· · ·) shall here and in the following indicate third order terms in k, h1, and h2
and will therefore include the two terms with u4y and uyyy.
Inserting (11.72) on the right-hand-side of (11.74) and equating terms we get

ũ = u, c̃1 = c1, c̃2 = c2, f̃1 = f1, f̃2 = f2 (11.77)

together with

d̃ = d + P2u, (11.78)

ẽ1 = e1 − P2c1, (11.79)

ẽ2 = e2 − P2c2, (11.80)

g̃ = g − P2d. (11.81)

Next we insert (11.72) on the left-hand-side of (11.73)

(I − kP1h)ṽ = (I − kP1h)(ũ− h1c̃1 − · · · − k2g̃) +O(· · ·)
= (I − kP1)(ũ− h1c̃1 − · · · − k2g̃) (11.82)

− 1

12
b1kh

2
1u4x +

1

6
a1kh

2
1uxxx +O(· · ·)

For the right-hand-side of (11.73) we must remember that the expansion point is
at t = (n+ 1)k and that vn therefore is one time step earlier:

vn + kνn+1 = (u− h1c1 − · · · − k2g) + kν (11.83)

− kut + h1kc1t + h2kc2t + k2dt +
1

2
k2utt +O(· · ·)

Equating terms in (11.82) and (11.83) confirms (11.77) and adds

d̃+ P1ũ = d + ut − ν, (11.84)

ẽ1 − P1c̃1 = e1 − c1t, (11.85)

ẽ2 − P1c̃2 = e2 − c2t, (11.86)

g̃ − P1d̃ = g − dt − 1

2
utt. (11.87)

Comparing (11.78) and (11.84) and remembering that ũ = u we have

d+ P2u = d+ ut − P1u− ν

or

ut − P1u− P2u = ν (11.88)

confirming the consistency of our assumptions.
(11.79) and (11.85) together with (11.77) gives

e1 − P2c1 = e1 − c1t + P1c

117

or

c1t − P1c1 − P2c1 = 0. (11.89)

From (11.80) and (11.86) we get a similar equation for c2 and since the side
conditions are also homogeneous we may conclude that c1 ≡ c2 ≡ 0.
From (11.81) and (11.87) we get using (11.78)

g − P2d = g − dt + P1d̃−
1

2
utt = g − dt + P1d−

1

2
utt + P1P2u

or

dt − P1d− P2d = −1

2
utt + P1P2u (11.90)

showing that d(t, x, y) is not identically 0 and that the error therefore is first
order in k. If we continue in this way we shall see that f1 and f2 are also different
from 0 and that the error therefore is O(k + h21 + h22) as we would expect.

We might note here that we have multiplied by k in order to get to equations
(11.73) – (11.74) and this is the reason why we only get information about the
auxiliary functions corresponding to the first order terms in (11.71) even though
we compare terms up to and including second order.

For the traditional Douglas-Rachford scheme (11.44) – (11.45) the equations are

(I − kP1h)ṽ = (I + kP2h)v
n + kνn+1, (11.91)

(I − kP2h)v
n+1 = ṽ − kP2hv

n. (11.92)

The extra term which has been added in (11.91) and subtracted in (11.92) is

kP2hv
n = kP2h(u

n − h1c1 − h2c2 − kd) +O(· · ·)
= kP2(u

n − h1c1 − h2c2 − kd) +O(· · ·)
= kP2(u

n+1 − h1c1 − h2c2 − kd)− k2P2ut +O(· · ·) (11.93)

where the last term is due to the expansion point being at t = (n+ 1)k.
Equating terms in (11.92) gives the equalities (11.77) together with

d̃ = d, ẽ1 = e1, ẽ2 = e2, g̃ = g + P2ut (11.94)

and from (11.91) we get

d̃ + P1ũ = d + ut − P2u− ν, (11.95)

ẽ1 − P1c̃1 = e1 − c1t + P2c1, (11.96)

ẽ2 − P1c̃2 = e2 − c2t + P2c2, (11.97)

g̃ − P1d̃ = g − dt + P2d−
1

2
utt + P2ut. (11.98)

118

The first three imply (11.88), (11.89), and its analogue such that we again can
conclude that c1 ≡ c2 ≡ 0.
From (11.94) and (11.98) we finally deduce that

dt − P1d− P2d = −1

2
utt (11.99)

in accordance with our expectations that Douglas-Rachford is first order in time.
We note that ṽ now is a rather good approximation to vn+1, but whether vn+1

now is a better or worse approximation to u is impossible to decide.

A similar analysis can be performed for Peaceman-Rachford and D’Yakonov to
show that these methods are indeed second order in all three step sizes.

In practice we can check the orders and estimate the various contributions to the
error using the methods from Chapter 10 taking each step size separately.

119

11.13 Exercises

1. Calculate the growth factor, g, for the implicit method and Crank-Nicolson
on (11.9) and show that both methods are unconditionally stable.

2. Investigate the stability of D’Yakonov’s method (11.36) – (11.37) when
applied to (11.9).

3. Solve (11.9) with b1 = b2 = 1 on the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and
for 0 ≤ t ≤ 0.5 using the Simple Douglas-Rachford (SDR) method (11.47)
– (11.48) with h1 = h2 = k = 1

10
, 1

20
, and 1

40
.

Initial and boundary values are taken from the true solution
u(t, x, y) = e−4t sin(x− y) cos(x+ y).
Compute the max-norm and the 2-norm of the error for
t = 0.1, 0.2, 0.3, 0.4, 0.5.

4. Solve the problem from the previous exercise using the Traditional
Douglas-Rachford (TDR) method (11.44) – (11.45).

5. Solve the problem from the previous exercise using the Peaceman-Rachford
(PR) method.

6. Solve the problem from exercise 3 with SDR and with h1 = h2 = k = 1
40
.

Using calculations with 2h1, 4h1, resp. 2h2 and 4h2, resp. 2k, 4k you should
gain information about the order in h1, h2, and k as well as about the first
terms in the expression for the error in all grid points corresponding to 4h1,
4h2, 4k at t = 1.

7. Same as above with TDR.

8. Same as above with PR.

9. Using the results from exercise 6 perform Richardson extrapolation in k.
Under the assumption that the order in time is now 2, what is the
k-contribution to the error.

10. Same as above but with TDR.

120

Chapter 12

Equations with Mixed Derivative
Terms

We now return to the general equation (11.1). As a difference approximation to
uxy we shall use

δ2xyvlm = µ̃xδx(µ̃yδyvlm) = µ̃xδx(
vl,m+1 − vl,m−1

2h2
)

=
1

4h1h2
(vl+1,m+1 − vl−1,m+1 − vl+1,m−1 + vl−1,m−1) (12.1)

= µ̃yδy(µ̃xδxvlm) = δ2yxvlm.

There is no obvious way of splitting the mixed derivative or difference operator
between the two operators P1 and P2 in (11.6) so we shall instead treat the mixed
derivative term in a way analogous to what we did for the inhomogeneous term.

The first scheme we consider is the Simple Douglas-Rachford scheme (11.47) –
(11.48) where α and β now should be chosen to take care of the mixed derivative
term (in addition to a possible inhomogeneous term which we shall disregard
here).

Following the analysis on page 112 we shall select α and β such that

α+ (I − kP n+1
1h)β = 2kb12δ

2
xyv

n+1 +O(k2). (12.2)

There are three straightforward choices for α and β which will satisfy (12.2):

α = β = kb12δ
2
xyv

n, (12.3)

α = kb12δ
2
xyv

n, β = kb12δ
2
xyṽ, (12.4)

α = 2kb12δ
2
xyv

n, β = 0. (12.5)

121

For the Traditional Douglas-Rachford scheme the condition is the same so the
same three possibilities for α and β apply.

For the Peaceman-Rachford scheme (11.20) – (11.21) we would aim at

(I +
1

2
kP n

1h)α + (I − 1

2
kP n+1

1h)β = kb12δ
2
xy(v

n+1 + vn) +O(k3). (12.6)

This is a bit more difficult to achieve. Two obvious suggestions are (12.3) and
(12.4) but they are not quite accurate enough and the resulting method becomes
only first order in time.

Formula (12.3) would be good enough if we could replace vn by an intermediate

value vn+
1

2 . An approximation to a value at time t = (n + 1
2
)k can be obtained

by extrapolation from values at t = (n− 1)k and t = nk:

v̂n+
1

2 = vn +
1

2
(vn − vn−1) (12.7)

and a good suggestion for α and β is now

α = β = kb12δ
2
xyv̂

n+ 1

2 . (12.8)

In the same manner (12.4) would be good if we could replace ṽ by vn+1. An
extrapolated value would here be vn + (vn − vn−1) such that we have

α = kb12δ
2
xyv

n, β = kb12δ
2
xy(2v

n − vn−1) (12.9)

and both (12.8) and (12.9) would lead to schemes which are second order in time.

12.1 Practical considerations

We now have about a dozen different combinations but they are not all equally
good. The first point to consider is how to get boundary values at x = X1 and
x = X2 for ṽ. For the Simple Douglas-Rachford scheme (11.47) – (11.48) we solve
(11.48) to get

ṽ = (I − kP n+1
2h)vn+1 − β (12.10)

If we choose formula (12.5) then β = 0 and (12.10) can be used as it stands.

If we choose formula (12.3) then the β-term involves δ2xyv
n which cannot be

calculated at the boundary points. There are two ways around this.

1. Take the difference at the nearest neighbour point, e.g.

δ2xyv
n
0m := δ2xyv

n
1m

122

This will introduce an O(h1)-error and that is not ideal.

2. Use a linear extrapolation in the x-direction, e.g.

δ2xyv
n
0m := 2δ2xyv

n
1m − δ2xyv

n
2m.

Formula (12.4) presents even bigger problems since we cannot calculate δ2xyṽ at
the neighbouring points to any of the boundaries. We suggest either to use
extrapolation as above or to use (11.29) which is accurate enough here.

For the Traditional Douglas-Rachford scheme (11.44) – (11.45) the formula for ṽ
at the x-boundaries is

ṽ = (I − kP n+1
2h)vn+1 + kP n

2hv
n − β (12.11)

and the same considerations apply.

For the Peaceman-Rachford scheme (11.20)-(11.21) the formula for ṽ is (11.27)
and this clearly favours the case where α = β so that (12.3) and (12.8) are ideal
choices. (12.4), (12.5), and (12.9) can be tackled using the suggestions above.

12.2 Stability with mixed derivative

We shall study stability requirements in relation to the differential equation

ut = b1uxx + 2b12uxy + b2uyy (12.12)

with the discretization

vn+1
lm − vnlm

k
= (1− θ)(b1δ

2
x + 2b12δ

2
xy + b2δ

2
y)v

n
lm (12.13)

+θ(b1δ
2
x + 2b12δ

2
xy + b2δ

2
y)v

n+1
lm

where θ = 0, 0.5, and 1 corresponds to the explicit, the Crank-Nicolson, and the
implicit method, respectively. We put the discretized solution on the form

vnlm = esnkeiξ1lh1eiξ2mh2 = gneilϕ1eimϕ2 (12.14)

and use the abbreviations

x1 = b1µ1 sin
2 ϕ1

2
, (12.15)

x2 = b2µ2 sin
2 ϕ2

2
, (12.16)

x12 = b12µ12 sinϕ1 sinϕ2. (12.17)

123

Remember that the condition for (12.12) to be well-posed is

b212 < b1b2 (12.18)

together with b1 > 0 and b2 > 0. It follows that

b212µ
2
12 = b212

k2

h21h
2
2

< b1b2
k2

h21h
2
2

= b1µ1b2µ2 (12.19)

or

|b12|µ12 <
√
b1µ1b2µ2. (12.20)

We also have

0 ≤ (
√
b1µ1 −

√
b2µ2)

2 = b1µ1 + b2µ2 − 2
√
b1µ1b2µ2. (12.21)

Combining (12.20) and (12.21) we get

2|b12|µ12 < 2
√
b1µ1b2µ2 ≤ b1µ1 + b2µ2. (12.22)

Similarly we have

0 ≤ (

√
b1
h1

sin
ϕ1

2
−

√
b2
h2

sin
ϕ2

2
)2 (12.23)

=
b1
h21

sin2 ϕ1

2
+
b2
h22

sin2 ϕ2

2
− 2

√
b1b2
h1h2

sin
ϕ1

2
sin

ϕ2

2
.

Use (12.18), multiply by k and rearrange

2|b12| µ12 | sin
ϕ1

2
sin

ϕ2

2
| ≤ b1µ1 sin

2 ϕ1

2
+ b2µ2 sin

2 ϕ2

2
. (12.24)

Now multiply by 4| cos ϕ1

2
cos ϕ2

2
| ≤ 4 and get

2|b12| µ12 | sinϕ1 sinϕ2| ≤ 4b1µ1 sin
2 ϕ1

2
+ 4b2µ2 sin

2 ϕ2

2
(12.25)

or

2|x12| ≤ 4x1 + 4x2. (12.26)

Furthermore we have

x212 = b212µ
2
12 sin

2 ϕ1 sin
2 ϕ2

≤ 16b1b2µ1µ2 sin
2 ϕ1

2
cos2

ϕ1

2
sin2 ϕ2

2
cos2

ϕ2

2

= 16x1x2 cos
2 ϕ1

2
cos2

ϕ2

2
≤ 16x1x2. (12.27)

124

For the explicit scheme the growth factor becomes

g = 1− 4x1 − 4x2 − 2x12 (12.28)

and for stability we require −1 ≤ g ≤ 1. g ≤ 1 is equivalent to (12.26) and is
therefore satisfied for a well-posed problem. g ≥ −1 is equivalent to

2x1 + 2x2 + x12 ≤ 1 (12.29)

This inequality must be fulfilled for all ϕ1 and ϕ2, in particular for ϕ1 = ϕ2 = π
where it reduces to

2b1µ1 + 2b2µ2 ≤ 1 (12.30)

so this relation which we recognize from the equation without the mixed term is a
necessary condition for stability. The mixed term is significant for ϕ1 = ϕ2 = π/2
where (12.29) reduces to

b1µ1 + b2µ2 + b12µ12 ≤ 1 (12.31)

This inequality follows from (12.30) and (12.22) (cf. exercise 1).

If we put ϕ1 = π − ε1 and ϕ2 = π − ε2 then sinϕ1 = sin ε1 and

sin2 ϕ1

2
= cos2

ε1
2

= 1− sin2 ε1
2

and similarly with index 2. We therefore have

2x1+2x2+x12 = 2b1µ1+2b2µ2−2b1µ1 sin
2 ε1
2
−2b2µ2 sin

2 ε2
2
+b12µ12 sin ε1 sin ε2.

Since by (12.30) the sum of the first two terms on the right-hand-side is ≤ 1 we
just need to show that the sum of the last three terms is non-positive, which is
seen by the following

0 ≤ (2
√
b1µ1 sin

ε1
2
− 2

√
b2µ2 sin

ε2
2
)2

= 4b1µ1 sin
2 ε1
2
+ 4b2µ2 sin

2 ε2
2
− 8

√
b1µ1b2µ2 sin

ε1
2
sin

ε2
2

≤ 4b1µ1 sin
2 ε1
2
+ 4b2µ2 sin

2 ε2
2
− 2b12µ12 sin ε1 sin ε2.

For the last inequality we have used (12.19) and

sin ε1 = 2 sin
ε1
2
cos

ε1
2

≤ 2 sin
ε1
2
.

We conclude that (12.30) is also a sufficient condition for stability of the explicit
method applied to (12.12).

125

For the implicit scheme the growth factor is

g =
1

1 + 4x1 + 4x2 + 2x12
(12.32)

and because of (12.26) we always have 0 ≤ g ≤ 1.
For Crank-Nicolson we have

g =
1− 2x1 − 2x2 − x12
1 + 2x1 + 2x2 + x12

(12.33)

and because of (12.26) we always have −1 ≤ g ≤ 1.

Altogether the mixed derivative term does not alter the basic stability properties
of the explicit, Crank-Nicolson, or the implicit method. But in practice we do
not wish to use any of these. We would rather prefer an ADI-method.

12.3 Stability of ADI-methods

We first look at the Simple Douglas-Rachford scheme (11.47)-(11.48) together
with α = β as given by (12.3). The equations for the growth factor are

(1 + 4x1)g̃ = 1− x12, (12.34)

(1 + 4x2)g = g̃ − x12, (12.35)

g =
1− x12

(1 + 4x1)(1 + 4x2)
− x12

1 + 4x2
=

1− 2x12 − 4x1x12
(1 + 4x1)(1 + 4x2)

. (12.36)

A necessary condition for stability is g ≤ 1 or

−x12(1 + 2x1) ≤ 2x1 + 2x2 + 8x1x2

or

−x12 ≤ 2x2 + 2x1
1 + 2x2
1 + 2x1

.

Comparing with (12.26) we suspect that we may be in trouble when x2 < x1
and µ is large. Actually the inequality is violated when b1 = b2 = 1, b12 = 0.9,
h1 = h2, ϕ1 = π/2, µ > 10, and ϕ2 is small and negative.

If we combine the Simple Douglas-Rachford scheme with (12.4) the equations for
the growth factor are

(1 + 4x1)g̃ = 1− x12,

(1 + 4x2)g = g̃(1− x12),

g =
1− x12
1 + 4x2

· 1− x12
1 + 4x1

. (12.37)

126

We notice immediately that g ≥ 0 and the condition g ≤ 1 is equivalent to

2|x12|+ x212 ≤ 4x1 + 4x2 + 16x1x2

which follows from (12.26) and (12.27). We conclude that this combination is
unconditionally stable.

If we combine the Simple Douglas-Rachford scheme with (12.5) the equations for
the growth factor are

(1 + 4x1)g̃ = 1− 2x12,

(1 + 4x2)g = g̃,

g =
1− 2x12

(1 + 4x1)(1 + 4x2)
. (12.38)

From (12.26) it follows readily that −1 ≤ g ≤ 1 and that we therefore have
unconditional stability which makes this scheme very interesting indeed.

If we combine the Traditional Douglas-Rachford scheme (11.44) – (11.45) with
(12.3) the equations for the growth factor are

(1 + 4x1)g̃ = 1− 4x2 − x12,

(1 + 4x2)g = g̃ + 4x2 − x12,

g =
1− 4x2 − x12

(1 + 4x1)(1 + 4x2)
+

4x2 − x12
1 + 4x2

=
1− 2x12 − 4x1x12 + 16x1x2

(1 + 4x1)(1 + 4x2)
. (12.39)

Comparing with Simple Douglas-Rachford it is apparent that we have even
greater problems with the stability condition g ≤ 1.

If we combine the Traditional Douglas-Rachford scheme with (12.4) the equations
for the growth factor are

(1 + 4x1)g̃ = 1− 4x2 − x12,

(1 + 4x2)g = g̃(1− x12) + 4x2,

g =
1− x12
1 + 4x2

· 1− x12 − 4x2
1 + 4x1

+
4x2

1 + 4x2

=
(1− x12)

2 + 4x2x12 + 16x1x2
(1 + 4x1)(1 + 4x2)

. (12.40)

If we supplement our earlier counterexample with ϕ2 = π/2, and µ > 10 then we
have g > 1 violating the stability requirement.

127

If we combine the Traditional Douglas-Rachford scheme with (12.5) the equations
for the growth factor are

(1 + 4x1)g̃ = 1− 4x2 − 2x12,

(1 + 4x2)g = g̃ + 4x2,

g =
1− 4x2 − 2x12

(1 + 4x1)(1 + 4x2)
+

4x2
1 + 4x2

=
1 + 16x1x2 − 2x12
(1 + 4x1)(1 + 4x2)

. (12.41)

From (12.26) it follows readily that −1 ≤ g ≤ 1 and once again we have a useful
combination.

If we combine the Peaceman-Rachford scheme (11.20)-(11.21) with (12.3) the
equations for the growth factor are

(1 + 2x1)g̃ = 1− 2x2 − x12,

(1 + 2x2)g = g̃(1− 2x1)− x12,

g =
(1− 2x1)(1− 2x2 − x12)

(1 + 2x1)(1 + 2x2)
− x12

1 + 2x2

=
(1− 2x1)(1− 2x2)− 2x12

(1 + 2x1)(1 + 2x2)
. (12.42)

g ≤ 1 follows directly from (12.26), and g ≥ −1 is equivalent to

1 + 4x1x2 − 2x12 ≥ −1− 4x1x2

or
1 + 4x1x2 − x12 ≥ 0.

If ϕ1 and ϕ2 have different signs or if b12 < 0 then x12 < 0 and we are done. We
can therefore assume 0 < ϕ1, ϕ2 < π and b12 > 0.

0 ≤ (1− 2
√
b1b2

k

h1h2
sin

ϕ1

2
sin

ϕ2

2
)2

= 1 + 4b1µ1b2µ2 sin
2 ϕ1

2
sin2 ϕ1

2
− 4

√
b1b2µ12 sin

ϕ1

2
sin

ϕ2

2

≤ 1 + 4x1x2 − 4b12µ12 sin
ϕ1

2
sin

ϕ2

2
cos

ϕ1

2
cos

ϕ2

2
= 1 + 4x1x2 − x12

thus proving stability.

If we combine the Peaceman-Rachford scheme with (12.4) the equations for the
growth factor are

(1 + 2x1)g̃ = 1− 2x2 − x12,

128

(1 + 2x2)g = g̃(1− 2x1 − x12),

g =
(1− 2x1 − x12)(1− 2x2 − x12)

(1 + 2x1)(1 + 2x2)
. (12.43)

If x12 > 2 which can easily happen when µ is large, then it is clear that the
numerator is greater than the denominator, implying g > 1 and thus instability.
A specific example is b1 = b2 = 1, b12 = 0.5,
k = h1 = h2 = 0.1 ⇒ µ1 = µ2 = µ12 = 10, ϕ1 = ϕ2 = π/2
leading to x1 = x2 = x12 = 5 and g = (14/11)2 > 1.

If we combine the Peaceman-Rachford scheme with (12.5) the equations for the
growth factor are

(1 + 2x1)g̃ = 1− 2x2 − 2x12,

(1 + 2x2)g = g̃(1− 2x1),

g =
(1− 2x1)(1− 2x2 − 2x12)

(1 + 2x1)(1 + 2x2)
. (12.44)

Taking the same example as above we get g = (9 ·19)/112 > 1 proving instability.

If we combine the Peaceman-Rachford scheme with (12.8) the equations for the
growth factor are

(1 + 2x1)g̃ = 1− 2x2 − x12(
3

2
− 1

2
g−1),

(1 + 2x2)g = g̃(1− 2x1)− x12(
3

2
− 1

2
g−1),

(1 + 2x1)(1 + 2x2)g = (1− 2x1)(1− 2x2 − x12(
3

2
− 1

2
g−1))

−x12(
3

2
− 1

2
g−1)(1 + 2x1)

= (1− 2x1)(1− 2x2)− x12(3− g−1).

We thus have a quadratic equation for g:

(1 + 2x1)(1 + 2x2)g
2 − ((1− 2x1)(1− 2x2)− 3x12)g − x12 = 0. (12.45)

With b1 = b2 = 1, b12 = 0.9, µ1 = µ2 = µ12 = 10, ϕ1 = ϕ2 = π/5 one of the
roots of this equation is −1.29 and this scheme is therefore only conditionally
stable. When b12 ≤ 0.5 it appears that the roots are always ≤ 1 (independent of
µ) in absolute value, and we propose that this scheme can be used whenever the
mixed term has a small weight.

If we combine the Peaceman-Rachford scheme with (12.9) the equations for the
growth factor are

(1 + 2x1)g̃ = 1− 2x2 − x12,

129

(1 + 2x2)g = g̃(1− 2x1)− x12(2− g−1),

(1 + 2x1)(1 + 2x2)g
2 − ((1− 2x1)(1− 2x2)− x12(3 + 2x1))g − (1 + 2x1)x12 = 0.

The product of the two roots is

x12
1 + 2x2

=
b12µ12 sinϕ1 sinϕ2

1 + 2b2µ2 sin
2 ϕ2

2

.

With b2 = 1, b12 = 0.5, µ2 = µ12 = 10, ϕ1 = π/2, ϕ2 = 0.5 we get
|g1 · g2| ≈ 1.486 > 1. If the product of the roots is greater than one then at least
one of the roots must be greater than one in absolute magnitude thus implying
instability.

12.4 Summary

Table 12.1: A comparison of methods with mixed derivative

SDR TDR PR PR
12.3 − − ++ 12.8 (+)
12.4 + − − 12.9 −
12.5 ++ ++ −

An assessment of the various combinations of ADI-schemes with suggestions for
treating the mixed derivative term is given in Table 12.1. A − indicates con-
ditional stability, a + indicates unconditional stability, and a ++ indicates a
recommended combination where the practicalities also can be solved. Formula
(12.5) is recommended with either the simple or the traditional Douglas-Rachford
method. Experiments indicate that SDR together with (12.4) is stable provided
(11.29) is used, but not together with extrapolation. The Peaceman-Rachford
method plays well together with (12.3) although the result will only be first or-
der in t. For a second order method we recommend (12.8) when the mixed term
is suitably small.

130

12.5 Exercises

1. Show that (12.30) and (12.22) imply (12.31).

2. Equation (12.12) with b1 = 1, b2 = 1, b12 = 0.5 has the solution
(cf. Appendix B)

u(t, x, y) = e−t sin(2x− 2y) cosh(x+ y).

Solve the equation for 0 < t, x, y < 1 with SDR and one or more of (12.3)
– (12.9). Initial and boundary conditions are taken from the true solution.
Use h1 = h2 = k = 1

10
, 1

20
, 1

40
, and 1

80
and compute the 2-norm of the error

at t = 1.

3. Same as above with TDR.

4. Same as above with PR.

131

132

Chapter 13

Two-Factor Models – two
examples

13.1 The Brennan-Schwartz model

A model for the determination of prices for bonds suggested by Brennan og
Schwartz [3] can be formulated in the following way:

ut = (µr − λβr)ur + (
β2
l

l
+ (l − r)l)ul − ru+

1

2
β2
rurr + ρβrβlurl +

1

2
β2
l ull

where
u is the price of the bond, r is the short interest, l is the long interest, and
µr = ar + br(l − r), βr = rσr, and βl = lσl.
The coefficients have been estimated to
ar = −0.00622, br = 0.2676, σr = 0.10281, σl = 0.02001, ρ = −0.0022, λ = −0.9.

We transform the r-interval [0,∞) to (0, 1] using

x =
1

1 + πrr
, r =

1− x

πrx
,

and similarly for l:

y =
1

1 + πll
, l =

1− y

πly
,

where the transformation coefficients πr and πl are chosen properly, often between
10 and 13. An interest interval from 10% to 1% will with π = 10 be transformed
into [0.5, 0.91] and with π = 13 into [0.43, 0.88].

133

We now have

∂u

∂r
=

∂u

∂x

dx

dr
=

−πr
(1 + πrr)2

∂u

∂x
= −πrx2ux

∂u

∂l
= −πly2uy

∂2u

∂r2
= − ∂

∂x
(πrx

2ux)
dx

dr
= 2π2

rx
3ux + π2

rx
4uxx

∂2u

∂l2
= 2π2

l y
3uy + π2

l y
4uyy

∂2u

∂r∂l
= − ∂

∂x
(πly

2uy)
dx

dr
= πrπlx

2y2uxy

and the differential equation becomes

ut = b1uxx + 2b12uxy + b2uyy − a1ux − a2uy + κu,

where

b1 = b1(x) =
1

2
β2
rπ

2
rx

4 =
1

2
σ2
r(1− x)2x2

b12 = b12(x, y) =
1

2
ρβrβlπrπlx

2y2 =
1

2
ρσrσl(1− x)(1− y)xy

b2 = b2(y) =
1

2
β2
l π

2
l y

4 =
1

2
σ2
l (1− y)2y2

a1 = a1(x, y) = −β2
rπ

2
rx

3 + (µr − λβr)πrx
2

= −x((1 − x)(σ2
r (1− x) + br + λσr)− arπrx− br

πr
πl

x

y
(1− y))

a2 = a2(x, y) = (σ2
l + l − r)lπly

2 − σ2
l (1− y)2y

= y(1− y)(σ2
l y +

1− y

πly
− 1− x

πrx
)

κ = κ(x) = −r = −1 − x

πrx

We note in passing that the differential equation is well-posed since

b1b2 − b212 =
1

4
σ2
rσ

2
l (1− x)2(1− y)2x2y2(1− ρ2) > 0.

134

The initial condition at t = 0 is the value of the bond at expiry, i.e.

u(0, x, y) = 1

The boundary condition at x = 0 is found by multiplying the differential equation
by x and then let x→ 0, which gives

0 = (1− y)
y

πr
uy −

1

πr
u

or

(1− y)y
du

dy
= u

or
1

u
du =

1

(1− y)y
dy = (

1

1− y
+

1

y
)dy.

Integration gives

ln u− ln u0 = ln y − ln y0 − ln(1− y) + ln(1− y0)

or

u = u0
y

1− y

1− y0
y0

.

We wish u to be bounded, also when y → 1, and therefore we must have u0 = 0,
and thus

u(t, 0, y) = 0.

This is a so-called natural boundary condition, i.e. a condition which follows
naturally from the equation (when we are interested in bounded solutions). It
also fits well to our intuitive understanding that if r → ∞ then the back value of
the bond will not be particularly high.

The boundary condition at y = 0 is found in a similar way by multiplying with
y and then letting y → 0. We then find

0 = −br
πr
πl
x2ux

i.e. u must be constant, and since u(t, 0, 0) = 0 according to the first boundary
condition we must have

u(t, x, 0) = 0;

but this is also in agreement with our intuition about the case l → ∞.

135

The boundary condition at y = 1 is found by inserting y = 1 in the differential
equation. We then have

b12(x, 1) = b2(1) = a2(x, 1) = 0

and

ut =
1

2
σ2
r (1− x)2x2uxx + ((1− x)(σ2

r(1− x) + br + λσr)− arπrx)xux −
1− x

πrx
u.

This is a parabolic equation in one space dimension which can be solved before-
hand, or concurrently with the solution in the interior. This equation has the
initial condition u(0, x, 1) = 1 from the general initial condition and the boundary
conditions u(t, 0, 1) = 0 from the boundary condition for x = 0, and u(t, 1, 1) = 1
from the argument that when both the interests are 0, then the bond will retain
its value.

In order to find a boundary condition at x = 1 we likewise put x = 1 in the
differential equation and find

b1(1) = b12(1, y) = κ(1) = 0

and

ut =
1

2
σ2
l (1− y)2y2uyy − (arπr + br

πr
πl

1− y

y
)ux − (1− y)(σ2

l y
2 +

1− y

πl
)uy

This is in principle a parabolic differential equation in t and y with an extra term
involving ux and therefore referring to u-values in the interior. This equation
cannot be solved beforehand but must be solved concurrently with the solution
in the interior.

The initial condition is as before u(0, 1, y) = 1, and the boundary conditions are
u(t, 1, 0) = 0 and u(t, 1, 1) = 1.

13.2 Practicalities

We should like to implement an ADI method for the solution of this problem.
One small detail in the practical considerations is that we need values for ṽ on
two of the boundaries of the region. Because of the difficulties mentioned above
getting boundary values at x = 1 it seems convenient to reverse the order of the
operators P1 and P2 from the usual order in Chapter 11. Thus we wish to solve
for ṽ in the y-direction and therefore we shall need information on ṽ at y = 0 and
y = 1 where information is more readily available.

136

We select a step size, h1, in the x-direction, or rather we select an integer, L,
and set h1 = 1/L. Similarly the step size in the y-direction is given through the
integer, M , by h2 = 1/M , and the time step by k = 1/N . Including boundary
nodes we thus have (L + 1)(M + 1)N function values to compute. With small
step sizes we might not have storage space for all these numbers at the same
time, but then again we don’t need to. At any particular time step we only need
information corresponding to two consecutive time levels (or three for Peaceman-
Rachford) and we can therefore make do with two (or three) (L + 1)(M + 1)
arrays. If solution values are needed at intermediate times these can be recorded
along the way. Such values are usually only required at coarser intervals, h̄1 > h1,
h̄2 > h2, and k̄ > k, and therefore require smaller arrays.

Because of the discontinuity between the initial values and the boundary values
at x = 0 and y = 0 it may be convenient to use or at least begin with the
Douglas-Rachford method. Using the simple version (11.47 – 11.48) and (12.5)
for the mixed derivative term the equations become

(I − kP2h)ṽ = vn + 2kb12(x, y)δ
2
xyv

n (13.1)

(I − kP1h)v
n+1 = ṽ (13.2)

The time step from nk to (n + 1)k is now divided into a number of subtasks
numbered like in section 11.6 except that we have added one subtask at the
beginning.

0. Advance the solution on y = 1 using

ut = b1(x)uxx − a1(x, 1)ux + κ(x)u (13.3)

discretized using the implicit method

vn+1
l,M − vnl,M = b1µ1(v

n+1
l+1,M − 2vn+1

l,M + vn+1
l−1,M)− a1

2
λ1(v

n+1
l+1,M − vn+1

l−1,M) + κkvn+1
l,M

or

−(b1µ1 +
1

2
a1λ1)v

n+1
l−1,M + (1 + 2b1µ1 − κk)vn+1

l,M (13.4)

−(b1µ1 −
1

2
a1λ1)v

n+1
l+1,M = vnl,M

where we have introduced λ1 = k/h1.

This tridiagonal system of equations supplemented with the boundary conditions
vn+1
0,M = 0 and vn+1

L,M = 1 can now be solved using Gaussian elimination.

1. The right-hand-side of (13.1) requires vn at all interior points which is no
problem and δ2xyv

n at the same points which means vn at all points including

137

those on the boundary. The only problem arises at the first time step because
of the discontinuity between the initial condition and the boundary conditions
at x = 0 and y = 0. We recommend using the initial value throughout and
thereby avoid divided differences of the order 1/h1h2. In the present case the
b12-coefficient is rather small because of the small numerical value of ρ so the
effect of a different choice is minimal.

2. We next compute ṽ for y = 0 and y = 1 using (13.2) and get ṽl,0 = 0 and

ṽl,M = (I − kP1h)v
n+1
l,M . (13.5)

Comparing (13.5) with (13.3) and (13.4) we note that there might be an advantage
in including the κu-term in the P1-operator because then (13.5) takes the simpler
form of

ṽl,M = vnl,M . (13.6)

In the general case with θκu in P1 and (1− θ)κu in P2 the formula for ṽ becomes

ṽl,M = vnl,M + (1− θ)κkvn+1
l,M (13.7)

3. The system of equations (13.1) can now be solved for ṽ at all interior points.
The system consists of L − 1 tridiagonal systems of M−1 unknowns each and
they can be solved independently of each other.

4. The right-hand-side of system (13.2) consists of ṽ at all interior points which
we have just computed in 3.

5. On each horizontal line (13.2) gives rise to one equation for each internal node,
i.e. a total of L− 1 equations in L+ 1 unknowns, the extra unknowns being the
values of vn+1 at x = 0 and x = 1. The former is equal to 0, and for the latter
we must resort to the boundary equation

ut = b2(y)uyy − a2(1, y)uy − a1(1, y)ux (13.8)

An implicit discretization of (13.8) could be

vn+1
L,m − vnL,m = b2µ2(v

n+1
L,m+1 − 2vn+1

L,m + vn+1
L,m−1)−

1

2
a2λ2(v

n+1
L,m+1 − vn+1

L,m−1)

−1

2
a1λ1(v

n+1
L−2,m − 4vn+1

L−1,m + 3vn+1
L,m) (13.9)

where we have used the asymmetric second order difference approximation for
ux on the boundary. A simpler formula would result from replacing the last
parenthesis in (13.9) by (−2vn+1

L−1,m + 2vn+1
L,m) but since this is only a first order

approximation of ux the resulting vn+1 would be only first order correct in x.

138

Figure 13.1: The coefficient matrix corresponding to L =M = 5.

Equation (13.9) supplies the extra information we need about vn+1
L,m , but now the

various rows are no longer independent of each other.

6. The total system which is outlined in Fig. 13.1 in the case L = M = 5 is
tridiagonal with three exceptions all due to equation (13.9): In each block there
is an element two places left of the diagonal in the last row (the coefficient of
vn+1
L−2,m). In each block but the first there is an element L places left of the diagonal

in the last row (the coefficient of vn+1
L,m−1). In each block but the last there is an

element L places right of the diagonal in the last row (the coefficient of vn+1
L,m+1).

On the right-hand-side of the system we must remember the effect of the boundary
value at (1,1) in the last equation. The other boundary value at (1,0) is 0 so no
correction is needed here.

Although the system of linear equations is not tridiagonal it still can be solved
using Gaussian elimination without introducing new non-zero elements, and the
solution process requires a number of simple arithmetic operations which is linear
in the number of unknowns and only marginally larger than that of a tridiagonal
system.

13.3 A Traditional Douglas-Rachford step

If one prefers to use the Traditional Douglas-Rachford method then the equations
to be solved instead of (13.1) and (13.2) are

(I − kP2h)ṽ = (I + kP1h)v
n + 2kb12(x, y)δ

2
xyv

n (13.10)

(I − kP1h)v
n+1 = ṽ − kP1hv

n (13.11)

Most of the considerations of the preceding section are still applicable so we shall
just focus our attention on the differences which occur in 1. and 4.

1. The right-hand-side of (13.10) now also includes P1hv
n which means that it

requires knowledge of vn not only at all interior points but also for x = 0 and

139

x = 1. The only difficulty lies at the very first time step where we still prefer to
settle the discontinuity issue by adopting the initial value throughout.

4. Similar considerations apply for the P1h-term on the right-hand-side of (13.11).

13.4 The Peaceman-Rachford method

The Douglas-Rachford method is only first order in time and therefore we might
prefer to use Peaceman-Rachford, possibly after an initial DR step.

The Peaceman-Rachford equations, augmented with (12.8) are

(I − 1

2
kP2h)ṽ = (I +

1

2
kP1h)v

n + kb12(x, y)δ
2
xyv̂

n+ 1

2 (13.12)

(I − 1

2
kP1h)v

n+1 = (I +
1

2
kP2h)ṽ + kb12(x, y)δ

2
xyv̂

n+ 1

2 (13.13)

where

v̂n+
1

2 = vn +
1

2
(vn − vn−1) n ≥ 1. (13.14)

Formula (13.14) can not be used in the first step but here it is OK to replace it
by

v̂n+
1

2 = vn. (13.15)

Since b12(x, y) in this example is so small there is actually little difference between
the results obtained with (13.14) and with (13.15).

Once again we divide the time step from nk to (n + 1)k into subtasks with the
same numbering as before.

0. On the boundary y = 1 it is now appropriate to discretize (13.3) using Crank-
Nicolson:

−(
1

2
b1µ1 +

1

4
a1λ1)v

n+1
l−1,M + (1 + b1µ1 −

1

2
κk)vn+1

l,M − (
1

2
b1µ1 −

1

4
a1λ1)v

n+1
l+1,M =

(
1

2
b1µ1 +

1

4
a1λ1)v

n
l−1,M + (1− b1µ1 +

1

2
κk)vnl,M + (

1

2
b1µ1 −

1

4
a1λ1)v

n
l+1,M .

This is a system of the same structure as (13.4) although with a more complicated
right-hand-side where previous considerations concerning the jump between the
initial and boundary values at (t, x) = (0, 0) apply at the first step.

1. The right-hand-side of (13.12) is very similar to that of (13.10) and previous
comments apply.

140

2. ṽ for y = 0 and y = 1 are now given by (11.27) which gives ṽl,0 = 0 and

ṽl,M =
1

2
(I +

1

2
kP1h)v

n
l,M +

1

2
(I − 1

2
kP1h)v

n+1
l,M . (13.16)

Again there is a computational advantage in including the κu-term in the P1-
operator in which case (13.16) reduces to

ṽl,M = (I +
1

2
kP1h)v

n
l,M . (13.17)

In the general case with θκu in P1 and (1− θ)κu in P2 the formula for ṽ becomes

ṽl,M = (I +
1

2
kP1h)v

n
l,M +

1

4
(1− θ)κk(vn+1

l,M − vnl,M). (13.18)

3. The system of equations (13.12) can now be solved for ṽ at all interior points.
The system consists of L − 1 tridiagonal systems of M−1 unknowns each and
they can be solved independently of each other.

4. The right-hand-side of system (13.13) requires knowledge of ṽ at all interior
points in addition to the boundary values from 2. The values needed for v̂ are
the same as in 1.

5. Equation (13.13) now gives rise to a set of tridiagonal equations which must
be supplemented by the Crank-Nicolson equivalent of (13.9) to form a system of
equations with the same pattern of nonzeroes as before.

6. This system is now solved for vn+1 at all interior grid points as well as at all
interior points on the boundary line x = 1.

13.5 Fine points on efficiency

Efficiency often amounts to a trade-off between storage space and computation
time. Readability of the program can also tip the scale in favour of one partic-
ular strategy. Since the coefficients do not depend on time many things can be
computed once and reused in each time step. Also the Gaussian elimination can
be performed once and the components of the LU factors stored for later use.

The coefficient functions (b1, . . . , κ) may be supplied as subroutines or they may
be computed ahead of time at all grid points and stored in arrays. b12(x, y),
a1(x, y), and a2(x, y) require two-dimensional (L + 1) · (M + 1) arrays, b1(x),
κ(x), and b2(y) need one-dimensional vectors with L+ 1, resp. M + 1 elements.

141

13.6 Convertible bonds

In a model by Longstaff and Schwartz [24] the two independent variables are the
interest, r, and the volatility, V . The differential equation can be written as

ut =
1

2
V urr + ((α + β)V − αβr)urV +

1

2
((α2 + αβ + β2)V − αβ(α+ β)r)uV V

+(αγ + βη +
ξα− δβ

β − α
r +

δ − ξ

β − α
V)ur

+(α2γ + β2η +
αβ(ξ − δ)

β − α
r +

αδ − βξ

β − α
V)uV − ru,

where the parameters have been estimated to
α = 0.001149, β = 0.1325, γ = 3.0493, δ = 0.05658, η = 0.1582, ξ = 3.998.

The conditions for this problem to be well-posed are

V > 0

and
V ((α2 + αβ + β2)V − αβ(α+ β)r)− ((α+ β)V − αβr)2 > 0.

The last condition can be rewritten to

αβV 2 + α2β2r2 − αβ(α+ β)rV < 0

or
V 2 − (α + β)rV + αβr2 < 0

or
αr < V < βr

since α < β in our case.

The equation is therefore only well-posed in part of the region (r > 0, V > 0)
and ill-posed in the rest. If an equation is ill-posed, then the norm of the solution
at any particular time is not guaranteed to be bounded in terms of the initial
condition (cf. section 2.3). Or, small changes in the initial condition may produce
large changes in the solution at a later time. In principle the solution can become
very large in a very short time although in practice we may be able to retain a
limited accuracy for small time intervals. And it doesn’t help much that the
problem is well-posed in part of the region. The disturbances which originate in
the ill-posed part will quickly spread to the rest (cf. section 14.3).

The main advice for ill-posed problems is not to touch them. It is far better to
search for another model with reasonable mathematical properties. If an ill-posed
problem must be solved then approach it very carefully. And be prepared that
our numerical methods may deceive us when they are used outside their usual
area of application. A more detailed analysis is given in the next chapter.

142

Chapter 14

Ill-Posed Problems

14.1 Theory

For the simple parabolic problem

ut = buxx (14.1)

it is essential that b is positive.

From Fourier analysis (cf. Chapter 2) we know that

ût(t, ω) = −bω2û(t, ω) (14.2)

and therefore that the Fourier transform of u can be written

û(t, ω) = e−bω2tû(0, ω) (14.3)

and by Parseval’s theorem we have that

∫
|u(t, x)|2 dx =

∫
|û(t, ω)|2 dω =

∫
|e−2bω2t| |û(0, ω)|2dω. (14.4)

When b > 0 we know that the exponential factor is ≤ 1 for t > 0 and therefore
that the norm of the solution at any time t is bounded by the norm of the initial
value function. It also follows that small changes in the initial value will produce
small changes in the solution at later times.

If b < 0, or if we try to solve the heat equation backwards in time, the situation
is quite different. Since −2bω2t > 0 we shall now observe a magnification of the
various components of the solution, and the higher the frequency, ω, the higher
the magnification.

143

If the initial condition is smooth, consisting only of low frequency components
then the effect of the magnification is limited for small values of t. But if the
initial function contains high frequency components, or equivalently that û(0, ω)
is different from 0 for large values of ω, then the corresponding components of
the solution will exhibit a large magnification. The solution will be extremely
sensitive to small variations in the initial value if these variations have high
frequency. In mathematical terms the solution will not depend continuously on
the initial data.

The main advice is: Stay away from such problems.
Even if the initial function is smooth, the unavoidable rounding errors connected
with numerical computations will introduce high frequency perturbations and
although small at the beginning they will by nature of the equation be magnified.

14.2 Practice

But it is difficult to restrain our curiosity. How will our difference schemes react
if we try to solve such a problem numerically with a finite difference method.

The components of the numerical solution are governed by the growth factor
which for the general θ-method is (cf. section 2.4)

g(ϕ) =
1− 4(1− θ)bµ sin2 ϕ

2

1 + 4θbµ sin2 ϕ
2

. (14.5)

For a given step size, h = (X2 − X1)/M , not all frequencies, ϕ, will occur.
Because of the finite and discrete nature of the problem, only a finite number of
frequencies are possible, given by (6.23):

ϕp =
pπ

M
, p = 1, 2, . . .M−1. (14.6)

For the explicit method we have

g(ϕ) = 1− 4bµ sin2 ϕ

2
. (14.7)

When bµ < 0 we notice immediately that g(ϕ) > 1 for all ϕ. All components will
be magnified, and the high frequency components will be magnified most. This
is fine for it reflects the behaviour of the true solution, at least qualitatively.

The largest magnification at time t = nk is

(1 + 4|bµ|)n = (1 + 4
|bk|
h2

)n ≈ e4
|bnk|

h2 = e4
|bt|

h2 ,

144

so with a given step size h there is a limit to the magnification at a given time, t,
independent of the time step k. This is also in accordance with the mathematical
properties of the solution since the value of h defines an upper limit on the possible
frequencies.

For the Crank-Nicolson method the growth factor is

g(ϕ) =
1− 2bµ sin2 ϕ

2

1 + 2bµ sin2 ϕ
2

. (14.8)

We may experience infinite magnification at the finite frequency ϕ given by

sin2 ϕ

2
= − 1

2bµ
,

a situation which is possible if bµ < −1/2. We may not observe infinite magni-
fication in practice if the corresponding frequency is not among those given by
(14.6).

The largest magnification is given by the value of ϕp which maximizes (14.8). On
the other hand it is easily seen from (14.8) that all components are magnified,
just as for the explicit method, but the magnification becomes rather small for
high frequency components when |bµ| is large.

For the implicit method the growth factor is

g(ϕ) =
1

1 + 4bµ sin2 ϕ
2

. (14.9)

Again we may experience infinite magnification when bµ < −1/4 but we may not
observe it in practice because of the discrete set of applicable frequencies. If |bµ|
is large we observe from (14.9) that high frequency components of the numerical
solution will be damped. This may result in a pleasantly looking solution, but it
is a deception. Since all components of the true solution are magnified, a damping
of some is really an unwanted effect.

A further complication associated with negative values of bµ is that we may
encounter zeroes in the diagonal in the course of the Gaussian elimination, even in
cases where the tridiagonal matrix is non-singular. It may therefore be necessary
to introduce pivoting.

145

 1 -1

 1

EX

 1 -1

 1

CN

 1 -1

 1

IM

Figure 14.1: The growth factors for EX, CN, and IM
as functions of x = 2bµ sin2 ϕ

2
.

The behaviour of the explicit method (EX), Crank-Nicolson (CN), and the im-
plicit method (IM) is visualized in Fig. 14.1 using the graphs of 1 − 2x for EX,
(1 − x)/(1 + x) for CN, and 1/(1 + 2x) for IM, where x = 2bµ sin2 ϕ

2
. We have

stability (damping) when the respective functions lie in the strip between −1 and
1, so for positive bµ, (positive x), we have unconditional stability with CN and
IM, and we require 2bµ ≤ 1, (x ≤ 1) with EX. For negative bµ we always have
instability with EX and CN, but we note that the magnification is rather small
for large |bµ| with CN. For IM we have stability for large |bµ| (and ϕ). These
observations should be compared with the fact that the true solution exhibits
large growth for large values of ω.

When bµ < −1/2 the numerical results from CN and IM will not be influenced
most by the high frequency components. Larger growth factors will appear due
to the singularity of g(ϕ) for intermediate values of ϕp = pπ/M . The dominant
factor will occur for the value of p which makes 2bµ sin2(ϕp/2) closest to −1,
respectively −1/2, and the behaviour will be somewhat erratic when we vary the
step sizes.

146

Table 14.1: Error growth for the negative heat equation.

k bµ n t g p
EX 0.1 −10 4 0.4 40 19

0.01 −1 11 0.11 5 19
0.005 −0.5 16 0.08 3 19
0.0025 −0.25 27 0.0675 2 19
0.00125 −0.125 47 0.05875 1.5 19

CN 0.1 −10 7 0.7 −23 3
0.01 −1 2 0.02 ∞ 10
0.005 −0.5 4 0.02 300 19
0.0025 −0.25 19 0.0475 3 19
0.00125 −0.125 39 0.04875 1.7 19

IM 0.1 −10 10 1.0 45 2
0.01 −1 3 0.03 −10 7
0.005 −0.5 2 0.01 ∞ 10
0.0025 −0.25 5 0.0125 150 19
0.00125 −0.125 31 0.03875 2 19

Example. The equation ut = −uxx has the solution u(t, x) = et cosx and
this is used to define initial and boundary values. We have solved the equation
numerically using EX, CN, and IM on x ∈ [−1, 1] with M = 20 corresponding
to h = 1/10 and a range of time steps from k = 1/10 to k = 1/800 giving values
of bµ from −10 to −1/8. We have continued the numerical solution until the
error exceeded 5 and have recorded the number of time steps, the final value of
t, and the observed growth which in most cases was in good agreement with the
theoretical value from (14.5) and (14.6).

The results are given in Table 14.1. For small values of bµ the growth factor
approaches 1 and the worst growth is always associated with the highest frequency
component. As the reduction in g is coupled with a reduction in the time step we
notice that the time interval of integration becomes smaller as the time step is
reduced. As bµ gets larger (in absolute value) we may observe significant growth
with CN and IM for low frequency components because of the singularity in the
expression for g. ✷

147

14.3 Variable coefficients – An example

What happens when an equation is ill-posed in part of its domain. Can we trust
the solution in the rest of the domain where the equation is well posed. This
question can be illustrated by the following

Example. Consider the equation

ut =
1

2
xuxx. (14.10)

The coefficient of uxx is negative when x < 0 and the equation is therefore ill-
posed here. A solution to (14.10) is

u(t, x) = tx+ x2

and this is used to define initial and boundary values. If we solve (14.10) on
an interval such that 0 becomes a grid point then the system of equations will
decouple in two, because of zeroes in the side diagonal, and bad vibrations from
the negative part will have no influence on the positive side. To avoid this decou-
pling we therefore choose to solve in the interval x ∈ [−0.983, 1.017]. We have
solved the equation numerically using CN and IM with M = 20 corresponding
to h = 1/10, and a range of time steps from k = 1/10 to k = 1/200. We have
continued the numerical solution until the error exceeded 5 and have recorded
the number of time steps and the final value of t and give the results in Table
14.2.

In all cases we observed severe error growth originating from the negative part
of the interval and eventually spreading to the whole interval. ✷

Table 14.2: Range of integration until error exceeds 5.

k n t
CN 1/10 7 0.7

1/40 14 0.35
1/100 25 0.25
1/200 56 0.28

IM 1/10 8 0.8
1/40 22 0.55
1/100 10 0.1
1/200 34 0.17

148

Chapter 15

A Free Boundary Problem

15.1 The Stefan problem

Free boundary problems arise in the mathematical modelling of systems involving
heat conduction together with a phase change such as the freezing of a liquid or
the melting of a solid. The original paper by J. Stefan [33] was a study of the
thickness of ice in arctic waters, and since then these problems have often been
called Stefan problems.

To illustrate the one-dimensional one-phase Stefan problem consider the following
system: A horisontal rod of ice, enclosed in an insulated tube, is kept initially at
the freezing point, 0◦ C. We now supply heat to one end of the rod. The problem
is to determine the position of the ice-water interface as a function of time and to
find the temperature distribution in the water as a function of time and distance
from the heat source. Mathematically this can be formulated as

ut − uxx = 0, t > 0, 0 < x < y(t), (15.1)

ux(t, 0) = −1, t > 0, (15.2)

u(t, y(t)) = 0, t ≥ 0, (15.3)

ux(t, y(t)) = −y′(t), t > 0, (15.4)

y(0) = 0. (15.5)

y(t) denotes the position of the ice-water interface at time t, and u(t, x) is the
temperature of the water at time t and distance x. At time t = 0 there is no water,
(15.5), the supply of heat is constant in time, (15.2), the temperature of the water
at the interface is 0◦ C (15.3), and the rate of melting of ice is proportional to the
heat flux at the interface (15.4). The temperature of the water is governed by the
simple heat equation (15.1), and by suitable linear transformations all physical
constants are set equal to 1.

149

If all the heat supplied was used to melt ice, the interface would be at y(t) = t.
But some of it is used to heat the water, so at time t we have

y(t) = t−
∫ y(t)

0
u(t, x)dx, t > 0 (15.6)

a relation which is equivalent to (15.4), given (15.1) – (15.3) and often used
instead of (15.4) in the numerical calculations.

The first question one should be concerned with is that of existence and unique-
ness of a solution to (15.1) – (15.5). We shall not address this question here but
be content with the fact that our numerical schemes seem to converge as the step
sizes become smaller, and this might be used as a basis of an existence proof.

It is intuitively clear that as time passes more and more ice will melt, and the
temperature of the water at any particular point will increase, and also that
the temperature of the water at any particular time will decrease with x. We
shall therefore expect to find that y′(t) > 0 for t > 0 and that ut(t, x) > 0 and
ux(t, x) < 0 for t > 0 and 0 < x < y(t).

We shall first note some immediate consequences of equations (15.1) – (15.6).
From (15.2), (15.4), and the continuity of y(t) and y′(t) at t = 0 we get

y′(0) = 1. (15.7)

From (15.3) and (15.2) and the maximum principle for (15.1) we deduce that

u(t, x) > 0, t > 0, 0 < x < y(t), (15.8)

and

ux(t, y(t)) < 0, t > 0 (15.9)

and from (15.4) we then have

y′(t) ≥ 0, t > 0 (15.10)

and from (15.6)

y(t) < t, t > 0. (15.11)

15.2 The Douglas-Gallie method

Among the various numerical methods proposed for the Stefan problem we have
chosen the difference scheme of Douglas and Gallie [9]. They choose a fixed step

150

 0.5 1.0

 0.5

 1.0

t

x

h
h

k k
1 2

Figure 15.1: The Douglas-Gallie grid

size, h, in the x-direction and a variable step size in the t-direction with steps k1,
k2, . . . determined such that the computed boundary curve y(t) passes through
grid points and such that there is precisely one extra grid point when going from
time tn−1 to tn. In Fig. 15.1 we have shown how the grid might look.

We shall use the following notation

xm = mh; tn =
n∑

i=1

ki; vnm = v(tn, xm); m = 0, 1, . . . , n; n = 0, 1, . . .

v(tn, xm) is the numerical approximation to the temperature distribution u(t, x)
and xn is the numerical approximation to y(tn).

Since we have one extra grid point at time tn compared to the previous time tn−1,
the implicit formula looks like an ideal choice. Douglas and Gallie propose the
following equations at time n:

vnm − vn−1
m

kn
=

vnm+1 − 2vnm + vnm−1

h2
, m = 1, 2, . . . , n− 1, (15.12)

vn0 − vn1 = h, (15.13)

vnn = 0, (15.14)

kn = h
n−1∑

m=1

vnm + nh− tn−1. (15.15)

These equations are straightforward discretizations of (15.1), (15.2), (15.3), and
(15.6). They comprise n+2 equations in the n+2 unknowns, vnm, (m = 0, 1, . . . , n)
plus kn. However, the equations are non-linear so the solution process is not
completely straightforward.

151

Remark. A simpler alternative to (15.15) is to discretize (15.4) to

kn = h2/vnn−1 (15.16)

which then can be used to correct the time step kn. ✷

We shall first see how to get the process started. For n = 0 we get from (15.14)
that

v00 = 0 (15.17)

and this is the only value for n = 0. For n = 1 we have two values. From (15.14),
(15.13), and (15.15) (or (15.16)) we get

v11 = 0, v10 = h, k1 = h. (15.18)

For n = 2 (15.14), (15.13), and (15.12) reduce to

v21
k2

=
h− v21
h2

and (15.15) gives together with (15.18)

k2 = hv21 + h.

Combined we have a quadratic equation for v21 where the positive root is

v21 = −1

2
+

√
1

4
+ h ⇒ k2 = h(

1

2
+

√
1

4
+ h). (15.19)

Remark. The same solution is obtained if we use (15.16) instead of (15.15). ✷

Remark. The superscript ‘2’ on v indicates the time step, The same superscript
on h indicates the second power. ✷

For n ≥ 3 we solve the equations (15.12) – (15.15) iteratively, guessing a starting
value k(0)n , solving (15.12) – (15.14) for vn(0)m , m = 0, 1, . . . , n and then using
(15.15) (or possibly (15.16)) to produce an improved value k(1)n . The process is
then repeated until k(r)n − k(r−1)

n is smaller than some predetermined tolerance, ε.

Several questions can be raised at this point:
Is there a (useful) solution to (15.12) – (15.15)?
Does the iteration converge to this solution?
Does it converge fast enough to be useful?
How do we get good starting values for kn?
And more specificly:
Should we include vn0 in the sum in (15.15)?

152

Or maybe with weight 0.5 (the trapezoidal rule)?
Should we use second order approximations instead of (15.13) (and (15.16))?
Possibly symmetric ones with fictitious points?
Is it possible to use Crank-Nicolson?

We observe convergence in practice and this assures us that the equations have
a solution. The convergence (in r) appears to be linear and can therefore be
accelerated using Aitken’s device [1]. A good starting value for kn is the previous
time step, kn−1, and an even better value is obtained by extrapolation from the
previous two time steps: k(0)n = 2kn−1−kn−2. The iterations using (15.16) appears
to have slower convergence than those using (15.15) but after one or two Aitken
extrapolations the difference is minimal. The limit value appears to be the same.

We have only one independent stepsize (h), since the time steps are determined
from h. The implicit method is first order in k and we shall therefore expect the
overall method to be first order in h. Therefore there seems to be no immediate
demand for second order approximations to the derivative boundary conditions
(15.13) and (15.16), or the integral (15.15).

The boundary curve y(t) is an increasing function of t and therefore has an inverse
function which we shall call t(x). The computed value of t(x) for x = n · h is the
sum of the first n time steps. It is therefore straightforward to experimentally
determine the order of the method w.r.t. the determination of t(x).

Computer experiments confirm our assumptions. They also seem to indicate that
use of the trapezoidal rule instead of (15.15) (i.e. adding vn0 /2 to the sum) give
more, and use of (15.16) less, accurate results, although still first order. After two
Richardson extrapolations the results differ by less then 0.0000005. The results
in Section 15.4 were computed using (15.16).

15.3 The global error

Along the lines of Chapter 9 we shall assume that the computed solution v(t, x)
can be expressed in a power series in h:

v(t, x) = u(t, x)− hc− h2d− h3f − · · · (15.20)

where u(t, x) is the true solution and c, d, and f are auxiliary functions of t and
x. Likewise we shall assume that the computed boundary function Y (t) can be
expressed as

Y (t) = y(t)− hγ − h2δ − h3ϕ− · · · (15.21)

where y(t) is the true boundary function and γ, δ, and ϕ are auxiliary functions
of t.

153

The functions, v(t, x) and Y (t), are actually known only at grid points t = tn,
x = xm, but we shall assume (as we have done previously) that they can be
extended in a differentiable manner to all t > 0 and x ∈ (0, Y (t))

The computed step sizes, kn, can be viewed as instances of a step size function
k(t) which also can be written as a power series

k(t) = hκ+ h2λ+ h3µ+ · · · (15.22)

where κ, λ, and µ are auxiliary functions of t. These functions are closely related
to the functions y, γ, δ, and ϕ above since

h = Yn − Yn−1 = Y (tn)− Y (tn − kn)

= knY
′(tn)−

1

2
k2nY

′′ +
1

6
k3nY

′′′ − · · ·

= (hκ+ h2λ)(y′ − hγ′ − h2δ′)− 1

2
h2κ2y′′ + · · ·

= hκy′ + h2(λy′ − κγ′ − 1

2
κ2y′′) + · · ·

using (15.21) and (15.22). Equating terms with equal powers of h we get

1 = κy′

0 = λy′ − κγ′ − 1

2
κ2y′′

When we know y(t) and have established that y′ > 0 we have

κ(t) =
1

y′(t)
(15.23)

and when we also know γ(t) then we find

λ(t) = (κγ′ +
1

2
κ2y′′)/y′

=
γ′

(y′)2
+

1

2

y′′

(y′)3
(15.24)

From the left-hand-side of (15.12) we get using (15.20) and (15.22)

vnm − vn−1
m

kn
= ut − hct − h2dt −

1

2
knutt +

1

2
knhctt +

1

6
k2nuttt + · · ·

= ut − hct − h2dt −
1

2
(hκ + h2λ)(utt − hctt) +

1

6
h2κ2uttt + · · ·

= ut − h(ct +
1

2
κutt)− h2(dt +

1

2
λutt −

1

2
κctt −

1

6
κ2uttt) + · · ·

154

From the right-hand-side we get

uxx − hcxx − h2dxx +
1

12
h2u4x + · · ·

Equating terms with equal powers of h we get the differential equations to be
satisfied by the auxiliary functions:

ut − uxx = 0, (15.25)

ct − cxx = −1

2
κutt, (15.26)

dt − dxx = −1

2
λutt +

1

2
κctt +

1

6
κ2uttt −

1

12
u4x. (15.27)

From (15.13) we get

h = vn0 − vn1 = −hux −
1

2
h2uxx −

1

6
h3uxxx + h2cxx +

1

2
h3cxx + h3dx + · · ·

and equating terms we get the following boundary conditions at x = 0 for the
auxiliary functions

ux(t, 0) = −1, (15.28)

cx(t, 0) =
1

2
uxx(t, 0), (15.29)

dx(t, 0) =
1

6
uxxx −

1

2
cxx. (15.30)

The boundary condition (15.14) involves v(tn, nh) whereas we have information
about u at (tn, y(tn)). The difference in the x-coordinate is

y(tn)− nh = y(tn)− Y (tn) = hγ + h2δ + h3ϕ+ · · ·

and we therefore have

0 = vnn = v(tn, y(tn)) + (nh− y(tn))vx +
1

2
(nh− y(tn))

2vxx + · · ·

= u(tn, y(tn))− hc− h2d− (hγ + h2δ)(ux − hcx) +
1

2
h2γ2uxx + · · ·

leading to

u(tn, y(tn)) = 0, (15.31)

c(tn, y(tn)) = −γux = γ(t)y′(t), (15.32)

d(tn, y(tn)) = −δux + γcx +
1

2
γ2uxx. (15.33)

155

As the second condition at y(t) we take (15.16) which we rewrite to

−h = −kn
vnn−1 − vnn

h
= kn[vx(tn, nh)−

1

2
hvxx +

1

6
h2vxxx + · · ·]

= (hκ + h2λ)[ux(tn, y(tn))− hcx − h2dx − (hγ + h2δ)(uxx − hcxx)

+
1

2
h2γ2uxxx −

1

2
h(uxx − hcxx − hγuxxx) +

1

6
h2uxxx] + · · ·

= hκux + h2(λux − κ(cx + (γ +
1

2
)uxx)) + · · ·

Equating powers of h we get

κ(t)ux(t, y(t)) = −1, (15.34)

λ(t)ux(t, y(t)) = κ(cx + γuxx +
1

2
uxx). (15.35)

At t = 0 we have y(0) = 0 and u(0, 0) = 0 and since we begin with Y (0) = 0 and
v(0, 0) = 0 we have the initial values

γ(0) = δ(0) = c(0, 0) = d(0, 0) = 0. (15.36)

From (15.25), (15.28), (15.31), (15.23), and (15.34) we recover the original Stefan
problem indicating that our difference scheme is consistent and that our basic
assumptions (15.20), (15.21), and (15.22) are not completely unrealistic. We now
assume u(t, x) and y(t) known such that the upcoming problems are with a fixed
boundary. In equation (15.35) we have κ, λ, and γ appearing and they must first
be eliminated using (15.23), (15.24), and (15.32). Differentiating (15.32) we get

ct(t, y(t)) + cx(t, y(t))y
′(t) = γ′y′ + γy′′ (15.37)

and using this in (15.35) we end up with

2y′(t)cx(t, y(t)) + ct(t, y(t)) + (y′(t)2 − y′′(t)

y′(t)
)c(t, y(t)) = −1

2
y′′(t)− 1

2
y′(t)2.

(15.38)

(15.38), together with (15.26), (15.29), and (15.36), defines a boundary value
problem for the auxiliary function c(t, x). The boundary condition (15.38) is
unusual since it involves ct in addition to c and cx and standard existence and
uniqueness theorems do not apply. Uniqueness of solutions is not difficult to
prove, and convergence of a difference scheme can be used to establish existence
of a solution function c(t, x). Once c(t, x) is known, (15.37) supplies an ordinary
differential equation for the determination of γ(t).

The differential equation for c(t, x) is inhomogeneous and so are the boundary
conditions, so we expect c to be different from 0 and our difference approximation
accordingly to be first order in h.

156

15.4 Estimating the global error

In practice we do not wish to solve extra differential equations in order to gain
information on the order and discretization error of our difference schemes. In-
stead we would use the techniques of Chapter 10 and let the computer do the
work.

We only have one independent step size, h, so we perform calculations with three
values, h, 2h, and 4h and compare results.

The inverse function t(x) to the boundary function y(t) is the easier one. The
calculated values are:

t(xn) = t(nh) = tn =
n∑

1

ki.

Based on h-values of 1/80, 1/40, 1/20, and 1/10 we have calculated values for
x = 0.1, 0.2, . . . , 1.0 . In Table 15.1 we supply in column 2 and 3 the order
ratios corresponding to the three small step sizes and the three large step sizes,
respectively. It is clearly seen that the results are first order and furthermore that
they follow the scheme of 2 + ε and 2 + 2ε as formula (10.14) would prescribe.
Richardson extrapolation can be performed and the order ratios in column 4
indicate, that the extrapolated results are indeed second order. In columns 5 and
6 we give extrapolated values for t(x) to second and third order, respectively.
The error estimate on the values in column 6 indicate that the error is positive
and at most 2 units in the last figure.

Table 15.1: Order ratios and extrapolated values for t(x).

x Order ratios Extrapolated
0.1 2.016 2.035 4.442 0.1047219 0.1047188
0.2 2.011 2.023 4.268 0.2180340 0.2180301
0.3 2.008 2.017 4.193 0.3390453 0.3390411
0.4 2.006 2.013 4.150 0.4671460 0.4671419
0.5 2.005 2.010 4.122 0.6018826 0.6018785
0.6 2.004 2.008 4.102 0.7428988 0.7428949
0.7 2.003 2.007 4.086 0.8899047 0.8899009
0.8 2.003 2.006 4.074 1.0426579 1.0426543
0.9 2.003 2.005 4.064 1.2009517 1.2009482
1.0 2.002 2.004 4.056 1.3646068 1.3646035

Because of the variable step sizes in the t-direction we have little control over
the t-values where we calculate approximations to u(t, x) and y(t). In order to

157

get function values for specific values of t which we must for order and error
estimation, we resort to interpolation.

Since our basic approximations are first order it would seem that linear interpola-
tion would be adequate. For reasons to be elaborated in Appendix C we prefer to
go one step further and use 3-point interpolation in order to minimize the effect
of the erratic error components introduced by interpolation.

We first look at the boundary function, y(t). Like before we calculate with four
h-values from 1/80 and up to 1/10 and supply in Table 15.2 in column 2 and 3
the order ratios corresponding to the three small step sizes and the three large
step sizes, respectively. It is clearly seen that the results are first order but the
(2+ ε)-effect is sometimes drowned by the interference of the interpolation error.
Richardson extrapolation can be performed and the order ratios in column 4 indi-
cate, that the extrapolated results are probably second order although the effect
of the interpolation error blurs the picture. In column 5 we give extrapolated
values for y(t) and based on the error estimates we claim that the error is at
most one unit in the last figure.

Table 15.2: Order ratios and extrapolated values for y(t).

t Order ratios y(t)
0.1 2.045 2.103 4.697 0.09567
0.2 2.018 2.076 8.538 0.18454
0.3 2.042 2.021 1.025 0.26840
0.4 2.027 2.028 2.049 0.34825
0.5 2.019 2.073 7.905 0.42483
0.6 2.022 2.047 4.281 0.49864
0.7 2.017 2.039 4.680 0.57003
0.8 2.019 2.028 3.050 0.63932
0.9 2.018 2.038 4.246 0.70673
1.0 2.014 2.033 4.587 0.77244

For u(t, x) the picture is similar. We refer to Appendix C for sample values of
the order ratio and to Table 15.3 for extrapolated values which according to the
error estimate are correct up to one unit in the last figure.

158

Table 15.3: Extrapolated values of u(t, x) using 3-point interpolation.

u(t, x)
t \ x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 0.0918
0.2 0.1717 0.0755
0.3 0.2437 0.1472 0.0575
0.4 0.3099 0.2131 0.1226 0.0384
0.5 0.3715 0.2745 0.1834 0.0982 0.0188
0.6 0.4294 0.3322 0.2407 0.1547 0.0741
0.7 0.4843 0.3869 0.2950 0.2083 0.1268 0.0505
0.8 0.5365 0.4391 0.3467 0.2594 0.1771 0.0998 0.0272
0.9 0.5865 0.4889 0.3963 0.3085 0.2254 0.1472 0.0736 0.0045
1.0 0.6345 0.5368 0.4439 0.3556 0.2720 0.1929 0.1183 0.0481

159

160

Chapter 16

The American Option

16.1 Introduction

Another free boundary problem arises when modeling the price of an American
option. Because of the early exercise property we do not know beforehand the
extent of the region where the differential equation must be solved. The position
of the boundary must be calculated along with the solution. The following is
joint work with Asbjørn Trolle Hansen as presented in [15] which is also part of
Asbjørn’s Ph.D.-thesis [14].

16.2 The mathematical model

The differential equation for the price function for an American put option is

ut =
1

2
σ2x2uxx + rxux − ru, t > 0, x > y(t) (16.1)

where t is the time to expiry and x is the price of the underlying risky asset.
The initial condition is

u(0, x) = 0, x ≥ K (16.2)

and the boundary conditions are

lim
x→∞

u(t, x) = 0, t > 0, (16.3)

u(t, y(t)) = K − y(t), t > 0, (16.4)

ux(t, y(t)) = −1, t > 0. (16.5)

161

The function y(t) is called the exercise boundary and this function is not known
beforehand except for the information that

lim
t→0

y(t) = K (16.6)

where K is the exercise price. The region

C = {(t, x) | t > 0, x > y(t)} (16.7)

is called the continuation region. It is in this region we seek the solution of (16.1),
and it is characterized by the condition that u(t, x) > K − x. The region

S = {(t, x) | t > 0, x < y(t)} (16.8)

is called the stopping region. We can assign the price

u(t, x) = K − x, (t, x) ∈ S (16.9)

but we must emphasize that this is not a solution to (16.1).

 0

 K

t

y(t)

C

S

Figure 16.1: The continuation region and the stopping region.

The initial condition is only given for x ≥ K because the American option will
never expire in the money due to the early exercise feature. If one wishes, one
can extend (16.9) to t = 0.

The boundary condition (16.3) expresses that the value of the option approaches
0 as the price of the underlying asset approaches infinity.

The boundary condition (16.4) expresses that we are at the exercise boundary,
and (16.5) is the smooth fit condition expressing that the partial derivative of u

162

with respect to x is continuous across the boundary if we assume the price from
(16.9) in the stopping region.

In [26] the above problem has been studied extensively, and the existence, unique-
ness, and differentiability of u(t, x) and y(t) has been shown. We shall now study
the behaviour near the boundary further.

Theorem.
a. y(t) < K for t > 0.
b. y′(t) < 0 for t > 0.
c. ut is continuous across the boundary. More specifically

lim
s↓t

ut(s, y(t)) = lim
s↑t

ut(s, y(t)) = 0. (16.10)

d. uxx is discontinuous across the boundary. More specifically

lim
s↓t

uxx(s, y(t)) =
2rK

(σy(t))2
(16.11)

whereas
lim
s↑t

uxx(s, y(t)) = 0.

Proof. If y(t) > K for some t > 0 then u(t, y(t)) < 0 by (16.4) which is
counterintuitive.
If y(t) = K for some t > 0 then u(t, y(t)) = 0 and because of (16.5) we would
have u(t, y(t) + ε) < 0 for small, positive ε which again is counterintuitive.
Now consider for k > 0

u(t+ k, y(t))− u(t, y(t))

= u(t+ k, y(t+ k))− u(t+ k, y(t+ k)) + u(t+ k, y(t))− u(t, y(t))

= K − y(t+ k)−K + y(t)− (y(t+ k)− y(t))ux(t + k, z)

for some z between y(t) and y(t+ k). If we also use the mean value theorem on
the very first expression then there is a θ ∈ (0, 1) such that

kut(t+ θk, y(t)) = (y(t)− y(t+ k))(1 + ux(t + k, z)).

From the definition of the continuation region we know that u(t, x) > K − x for
x > y(t) and it follows that ux(t, x) > −1 for x − y(t) small and positive. It
also follows that ut(t, x) > 0 for x − y(t) small and positive. We therefore must
have y(t) > y(t+ k) and therefore y′(t) < 0 for t > 0. Applying the mean value
theorem to y, dividing by k, and letting k → 0 gives

lim
s↓t

ut(s, y(t)) = 0.

163

The limit from the other side is also 0 since u(t, x) is independent of t in the
stopping region and we have established (16.10).
We therefore have

lim
s↓t

{1
2
σ2x2uxx(s, y(t)) + rxux(s, y(t))− ru(s, y(t))} = 0.

By (16.4) and (16.5) and the continuity of u and ux in C (16.11) follows. That
the limit from the other side is 0 follows from the fact that u is a linear function
in S. ✷

We conclude from (16.1) and (16.2) that

lim
t↓0

ut(t, x) = 0, x > K

but we note that limt→0 ut(t,K) is undefined. For reasons of monotonicity we
expect to have

ut(t, x) > 0, ux(t, x) < 0, uxx(t, x) > 0, for (t, x) ∈ C.

16.3 The boundary condition at infinity

A boundary condition at infinity is impractical when implementing a finite dif-
ference method. A commonly used technique to avoid it is to pick some large
L > K and replace (16.3) by

u(t, L) = 0, t > 0. (16.12)

Since the solution u(t, x) is usually very small for large x the error in using (16.12)
instead of (16.3) should be small. But how small is it and what is the effect on
the boundary curve.

Let us first look at the steady-state solution to the original problem, i.e. u(x) =
limt→∞ u(t, x). Since limt→∞ ut(t, x) = 0 we have the following ordinary differen-
tial equation problem for u(x)

1

2
σ2x2u′′ + rxu′ − ru = 0, y ≤ x <∞, (16.13)

lim
x→∞

u(x) = 0, (16.14)

u(y) = K − y, (16.15)

u′(y) = −1. (16.16)

where y = limt→∞ y(t).
To find the general solution to (16.13) we try with the power function u(x) = xz

164

and get the characteristic equation

1

2
σ2z(z − 1) + rz − r = 0

or
1

2
σ2z2 + (r − 1

2
σ2)z − r = 0.

The discriminant of this quadratic is

disc = (r − 1

2
σ2)2 + 2rσ2 = (r +

1

2
σ2)2

such that

z =
−(r − 1

2
σ2)± (r + 1

2
σ2)

σ2

and the two roots are z = 1 and z = −γ = − 2r
σ2 . The general solution can

therefore be written

u(x) = A
x

K
+B(

x

K
)−γ . (16.17)

The boundary condition at infinity gives A = 0, and from (16.15) and (16.16) we
get

u(y) = B(
y

K
)−γ = K − y ⇒ B = (K − y)(

y

K
)γ,

u′(y) = −γ B
K

(
y

K
)−γ−1 = −γK − y

K

K

y
= −1

⇒ −γK + γy = −y ⇒ y =
γ

γ + 1
K

⇒ B = K
1

γ + 1
(

γ

γ + 1
)γ. (16.18)

If we replace the upper boundary condition (16.14) with u(L) = 0 the general
solution is still (16.17) but the determination of A and B becomes a bit more
complicated.

u(L) = 0 ⇒ A
L

K
+B(

L

K
)−γ = 0 ⇒ B = −A(L

K
)γ+1.

The boundary conditions (16.15) and (16.16) now give

A
y

K
− A(

L

K
)γ+1(

y

K
)−γ = K − y,

A

K
+ γ

A

K
(
L

K
)γ+1(

y

K
)−γ−1 = −1.

165

The second equation gives

(
y

L
)−γ−1 =

K + A

−γA ⇒ y = L(
−γA
K + A

)1/(γ+1)

and the first equation now gives

A

K
(1 +

A

K
)γ = −1

γ
(

γ

γ + 1

K

L
)γ+1 = −α. (16.19)

We cannot give a closed form solution for A from (16.19) but when α is small,
A/K will also be small, and (1 + A/K)γ will be close to 1, and an approximate
value is A(1) = −αK. A better value can be obtained by Newton-iteration where
the next iterate will be

A(2) = −(α + β)K

with

β = α
(1− α)((1− α)−γ − 1)

1− α(γ + 1)
.

Table 16.1: Corresponding values of L, α, β, A, B, and y.

L α β A B y
120 0.022 431 0.003 044 −2.5527 7.6224 85.516
140 0.008 896 0.000 426 −0.9322 7.0191 84.117
200 0.001 047 0.000 006 −0.1052 6.7333 83.421
∞ 6.6980 83.333

In Table 16.1 we supply values for α, β, A, B, and y for various values of L and
corresponding to K = 100, σ = 0.2, r = 0.1 and therefore γ = 5.

Denote the solution function and the boundary function corresponding to a finite
value of L by uL(t, x) and yL(t), respectively. We note that the limit value
limt→∞ yL(t) moves upwards as the value for L decreases and we conclude that
this holds for the whole boundary curve since otherwise the boundary curves for
two different values of L would intersect.

We want to estimate the error in u and y when we use a finite value, L, so we
define the error function

w(t, x) = u(t, x)− uL(t, x).

166

 0

 K

 L

t

y(t)

y (t)L

Figure 16.2: y(t) and yL(t).

It is defined in the same region as uL since yL(t) > y(t) and here it satisfies the
same differential equation:

wt =
1

2
σ2x2wxx + rxwx − rw, t ≥ 0, yL(t) ≤ x ≤ L. (16.20)

The initial condition is

w(0, x) = 0, K ≤ x ≤ L, (16.21)

and the boundary conditions are

w(t, L) = u(t, L), t ≥ 0, (16.22)

w(t, yL(t)) = u(t, yL(t))−K + yL(t), t > 0, (16.23)

wx(t, yL(t)) = ux(t, yL(t)) + 1, t > 0. (16.24)

Using Taylor expansion we get

u(t, yL(t)) = u(t, y(t)) + (yL(t)− y(t))ux +
1

2
(yL(t)− y(t))2uxx + · · ·

= K − y(t)− yL(t) + y(t) +
1

2
(yL(t)− y(t))2

2rK

σ2y(t)2
+ · · ·

= K − yL(t) + (
yL(t)

y(t)
− 1)2

rK

σ2
+ · · · ,

ux(t, yL(t)) = −1 + (
yL(t)

y(t)
− 1)

2rK

σ2y(t)
+ · · ·

167

so the conditions (16.23) and (16.24) read

w(t, yL(t)) = (
yL(t)

y(t)
− 1)2

rK

σ2
+ · · · , t > 0,

wx(t, yL(t)) = (
yL(t)

y(t)
− 1)

2rK

σ2y(t)
+ · · · , t > 0.

We note that w(t, L) > 0, w(t, yL(t)) > 0, wx(t, yL(t)) > 0, wt(t, yL(t)) > 0, and
wt(t, L) > 0. This suggests that w(t, x) > 0 and is increasing with t and x. We
therefore have

0 ≤ w(t, x) < lim
t→∞

w(t, x) = u(x)− uL(x) ≤ u(L) = B(
K

L
)γ

with B given by (16.18). With the above parameter values K = 100, σ = 0.2,
r = 0.1, and L = 200, the error for at the money options is bounded by u(K)−
uL(K) = 0.07, and the maximum error for any x is bounded by u(L) = 0.21.

 0 1 2 3 4 5

 85

 90

 95

 100

Figure 16.3: The boundary curve calculated with Brennan-Schwartz.

16.4 Finite difference schemes

If we introduce a traditional grid with fixed step sizes k and h then we face
the problem that the boundary curve, y(t), typically passes between grid points.
There are various ways to deal with this difficulty.

168

Table 16.2: The price function calculated with Brennan-Schwartz.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 4.0
195 0.000 0.000 0.001 0.002 0.005 0.008 0.011 0.014 0.019
190 0.000 0.000 0.002 0.005 0.011 0.018 0.024 0.031 0.042
185 0.000 0.000 0.003 0.009 0.019 0.029 0.040 0.050 0.068
180 0.000 0.001 0.005 0.014 0.028 0.044 0.059 0.074 0.099
175 0.000 0.001 0.008 0.022 0.041 0.062 0.083 0.103 0.136
170 0.000 0.002 0.012 0.032 0.058 0.086 0.113 0.139 0.181
165 0.000 0.004 0.019 0.047 0.081 0.117 0.152 0.184 0.237
160 0.000 0.007 0.031 0.069 0.113 0.159 0.202 0.241 0.305
155 0.000 0.012 0.048 0.100 0.158 0.214 0.267 0.313 0.390
150 0.001 0.022 0.076 0.146 0.219 0.288 0.351 0.407 0.497
145 0.002 0.041 0.119 0.211 0.303 0.387 0.462 0.528 0.632
140 0.006 0.073 0.185 0.306 0.419 0.521 0.609 0.685 0.805
135 0.016 0.129 0.287 0.442 0.580 0.700 0.803 0.890 1.025
130 0.040 0.226 0.442 0.636 0.803 0.943 1.060 1.158 1.308
125 0.097 0.390 0.676 0.915 1.111 1.271 1.402 1.511 1.675
120 0.223 0.661 1.026 1.311 1.535 1.714 1.859 1.977 2.154
115 0.488 1.101 1.545 1.872 2.122 2.316 2.471 2.596 2.781
110 1.009 1.795 2.306 2.665 2.931 3.135 3.295 3.423 3.611
105 1.962 2.868 3.411 3.780 4.048 4.252 4.410 4.535 4.718
100 3.519 4.456 4.988 5.340 5.591 5.780 5.926 6.040 6.207
95 6.142 6.836 7.249 7.530 7.731 7.885 8.004 8.096 8.232
90 10.222 10.430 10.589 10.708 10.803 10.877 10.934 11.022

At a given time level we can artificially move the boundary curve to the nearest
grid point. We hereby introduce an error in the x-direction of order h and this
is undesirable.

We can also introduce difference approximations to ux and uxx based on uneven
steps. This is a viable approach when the boundary curve is known beforehand,
but things become complicated when y(t) has to be determined along with u(t, x).

A third method was proposed by Brennan & Schwartz in 1977 [4]. They start
with the initial values from (16.2) augmented with values from (16.9) for t = 0
and x < K. They choose a step size k in the time direction and a step size h
in the x-direction such that K/h is an integer, and a value L = Mh where M is
another integer. They then perform a Crank-Nicolson step to t = k computing a
set of auxiliary values ν1m, m = 0, 1, . . . ,M = L/h with boundary values ν10 = K
and ν1M = 0. The solution values are now determined as v1m = max(K −mh, ν1m)
and the position of the exercise boundary is given by ȳL(k) = h · max{m|ν1m ≤
K − mh}. Once v1 has been determined we can move on to v2, v3, etc. This

169

Table 16.3: Order ratios corresponding to h.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
195 4.7 2.8 3.5 3.7 3.7 3.8 3.9 3.8
190 4.1 4.9 2.9 3.5 3.7 3.8 3.8 3.9 3.8
185 4.1 5.1 3.1 3.5 3.7 3.8 3.8 3.9 3.8
180 4.1 6.0 3.2 3.6 3.7 3.8 3.8 3.9 3.8
175 4.2 12.7 3.3 3.6 3.7 3.8 3.8 3.9 3.8
170 4.2 0.5 3.4 3.6 3.7 3.8 3.9 3.8 3.8
165 4.0 4.4 2.5 3.5 3.6 3.7 3.8 3.9 3.8 3.8
160 4.0 4.6 3.1 3.5 3.7 3.7 3.8 3.9 3.8 3.8
155 4.0 5.5 3.3 3.6 3.7 3.8 3.8 3.9 3.8 3.8
150 4.0 -2.4 3.4 3.6 3.7 3.8 3.9 3.9 3.8 3.8
145 4.0 2.8 3.5 3.7 3.7 3.8 3.9 3.9 3.8 3.8
140 4.1 3.3 3.6 3.7 3.8 3.8 3.9 3.8 3.8 3.8
135 4.3 3.5 3.6 3.7 3.8 3.8 3.9 3.8 3.8 3.9
130 -4.0 3.6 3.7 3.8 3.8 3.9 3.9 3.8 3.8 3.9
125 3.4 3.6 3.7 3.8 3.8 4.0 3.9 3.7 3.8 4.0
120 3.6 3.7 3.7 3.8 3.8 4.1 3.8 3.7 3.8 4.1
115 3.6 3.7 3.7 3.9 3.8 4.2 3.7 3.7 3.9 4.2
110 3.6 3.7 3.7 3.8 3.9 4.3 3.4 3.7 3.9 4.5
105 3.6 3.7 3.7 3.6 4.1 4.4 3.2 3.9 4.0 4.9
100 2.7 2.0 1.4 1.1 0.8 0.6 0.5 0.4 0.3 0.2
95 -2.5 -30.2 11.4 5.2 4.3 2.4 2.3 2.4 2.6 3.0
90 -1.1 -1.1 -0.8 -1.1 -0.5 -0.7 -1.3 -1.9 -1.4

may seem like a rather harsh treatment of the problem, but the results seem
reasonable at a first glance.

In Fig. 16.3 we show a plot of the computed boundary curve for the parameter
values K = 100, σ = 0.2, r = 0.1, and L = 200, and calculated with h = 0.25
and k = 0.0625. In Table 16.2 we give values for the price function for a selection
of points in the continuation region.

In order to estimate the error we apply the techniques of chapter 10. In Table
16.3 we supply the order ratios which should be close to 4.0 if the method is
second order in h. This looks fairly reasonable for x > K. Occasional isolated
deviations correspond to small values of the associated error estimate which is
shown in Table 16.4. For x ≤ K the order determination is far from reliable and
the error estimate due to the x-discretisation is unfortunately also much larger
here, close to the exercise boundary.

170

Table 16.4: Error estimate *1000 corresponding to h.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
195 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
190 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
185 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
180 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
175 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
170 -0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01
165 -0.00 -0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
160 -0.00 -0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
155 -0.00 -0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
150 -0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02
145 -0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02
140 -0.00 0.00 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.03
135 -0.00 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03
130 0.00 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04
125 0.01 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05
120 0.03 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
115 0.07 0.08 0.08 0.08 0.08 0.07 0.08 0.07 0.07 0.08
110 0.13 0.12 0.11 0.10 0.10 0.09 0.09 0.08 0.09 0.09
105 0.15 0.17 0.15 0.13 0.12 0.10 0.11 0.09 0.12 0.11
100 -6.74 -8.53 -9.31 -9.57 -9.52 -9.30 -8.98 -8.59 -8.12 -7.71
95 -0.50 -0.06 0.18 0.30 0.42 0.50 0.45 0.47 0.51 0.40
90 -1.90 -1.72 -1.57 -1.43 -1.07 -1.17 -0.91 -0.81 -0.91

In Table 16.5 we supply the similar ratios corresponding to the time discretisa-
tion. Values close to 2.0 indicate that the method is first order in k contrary
to our expectations of a method based on Crank-Nicolson. Also here the order
determination leaves a lot to be desired for x ≤ K, and the error estimate due to
the time discretisation is also much larger here as seen in Table 16.6. We must
conclude that the Brennan-Schwartz approach is not ideal.

16.5 Varying the time steps

For the American option problem where the boundary curve is known to be mono-
tonic we can suggest an alternate approach. Since the finite difference methods
which we are usually considering for parabolic problems are one-step methods
there is no need to keep the step size in time constant throughout the calcu-

171

Table 16.5: Order ratios corresponding to k.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
195 5.8 3.6 0.7 2.2 2.1 2.0 1.9 1.9 1.9 1.9
190 5.5 3.7 1.0 2.2 2.1 2.0 1.9 1.9 1.9 1.9
185 4.9 3.9 1.3 2.2 2.1 2.0 1.9 1.9 1.9 1.9
180 4.4 4.3 1.7 2.2 2.1 2.0 1.9 1.9 1.9 1.9
175 4.0 5.1 1.9 2.2 2.0 2.0 1.9 1.9 1.9 1.9
170 3.6 7.7 2.1 2.1 2.0 1.9 1.9 1.9 1.9 1.9
165 3.3 -25.1 2.2 2.1 2.0 1.9 1.9 1.9 1.9 1.9
160 3.0 -0.3 2.2 2.1 2.0 1.9 1.9 1.9 1.9 1.9
155 2.9 1.5 2.2 2.0 1.9 1.9 1.9 1.9 1.9 1.9
150 3.0 2.2 2.2 2.0 1.9 1.9 1.9 1.9 1.9 1.9
145 3.5 2.6 2.1 1.9 1.9 1.9 1.9 1.9 1.9 1.9
140 6.0 2.7 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9
135 -2.7 2.5 2.0 1.9 1.8 1.8 1.9 1.9 1.9 1.9
130 1.0 2.2 1.9 1.8 1.8 1.8 1.8 1.9 1.9 1.9
125 2.4 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9
120 4.3 1.6 1.7 1.8 1.8 1.9 1.9 1.9 1.9 1.9
115 5.5 2.2 1.7 1.7 1.8 1.8 1.9 1.9 1.9 1.9
110 -0.1 2.4 2.3 2.0 1.9 1.9 1.8 1.8 1.9 1.9
105 -11.0 -0.6 0.6 1.3 1.7 2.0 2.1 2.1 2.1 2.1
100 1.8 1.9 2.0 2.0 1.9 1.9 1.9 1.9 1.8 1.8
95 -5.4 -1.5 -0.5 -0.0 0.3 0.5 0.6 0.7 0.8 0.9
90 1.2 1.2 1.2 1.3 1.4 1.4 1.4 1.5

lation. Instead we propose to choose the step sizes kn such that the boundary
curve will pass exactly through grid points. This idea was proposed for the orig-
inal Stefan Problem by Douglas & Gallie [9]. In our case the boundary curve is
decreasing so we shall choose kn such that there is precisely one extra grid point
at the next time level, see Fig. 16.4. This will imply that the initial time steps
will be very small and then keep increasing, but as we shall see that is not such
a bad idea from other points of view as well.

16.6 The implicit method

Since there is exactly one extra grid point on the next time level the situation
is ideally suited for the implicit method which will never have to refer to points
outside the continuation region.

172

Table 16.6: Error estimate *100 corresponding to k.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 4.0
195 -0.00 -0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02
190 -0.00 -0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.04
185 -0.00 -0.00 0.00 0.01 0.02 0.03 0.04 0.05 0.06
180 -0.00 -0.00 0.01 0.02 0.03 0.05 0.06 0.07 0.09
175 -0.00 -0.00 0.01 0.03 0.05 0.07 0.08 0.10 0.12
170 -0.00 -0.00 0.02 0.04 0.07 0.09 0.11 0.13 0.15
165 -0.00 0.00 0.03 0.06 0.09 0.12 0.15 0.17 0.20
160 -0.01 0.01 0.05 0.09 0.12 0.16 0.19 0.22 0.26
155 -0.01 0.02 0.07 0.12 0.17 0.21 0.25 0.28 0.33
150 -0.02 0.04 0.11 0.17 0.23 0.28 0.32 0.36 0.41
145 -0.02 0.08 0.16 0.24 0.30 0.36 0.42 0.46 0.52
140 -0.02 0.13 0.23 0.33 0.41 0.48 0.54 0.59 0.66
135 0.03 0.22 0.34 0.45 0.55 0.63 0.70 0.75 0.83
130 0.15 0.34 0.49 0.63 0.74 0.83 0.91 0.96 1.05
125 0.36 0.51 0.71 0.87 1.00 1.10 1.18 1.24 1.33
120 0.54 0.77 1.01 1.21 1.35 1.46 1.54 1.60 1.69
115 0.66 1.15 1.48 1.68 1.83 1.94 2.02 2.08 2.16
110 1.67 1.65 2.06 2.33 2.49 2.59 2.66 2.70 2.77
105 0.60 3.36 3.56 3.48 3.43 3.43 3.45 3.48 3.54
100 19.86 15.82 13.94 12.90 12.22 11.72 11.32 10.99 10.46
95 4.33 7.09 7.09 6.94 6.86 6.82 6.81 6.80 6.77
90 9.50 9.30 9.07 8.85 8.63 8.50 8.45 8.36

Like Brennan and Schwartz we choose a step size in the x-direction, h = K/M0,
where M0 is a positive integer, and such that M = L/h is also an integer. The
step size h is kept fixed during the computation. The number of grid points above
the exercise boundary is thus M −M0 at time t = 0 which corresponds to the
expiration time. For each time step we add one extra grid point in the x-direction
such that at the end of the n-th time step we have M −Mn grid points above the
boundary where Mn =M0−n. The time steps will be denoted k1, k2, . . . and we
define tn =

∑n
i=1 ki. We now compute a grid function

vnm = v(tn, mh) ≈ u(tn, mh)

satisfying

vnm − vn−1
m

kn
=

σ2

2
m2(vnm+1 − 2vnm + vnm−1) (16.25)

+
r

2
m(vnm+1 − vnm−1)− rvnm, m =Mn + 1, . . . ,M − 1,

173

 K

t

Figure 16.4: The first few grid lines.

v0m = 0, m =M0, . . . ,M, (16.26)

vnM = 0, (16.27)

vnMn
= K −Mnh = nh, (16.28)

−1 =
−vnm+2 + 4vnm+1 − 3vnm

2h
, m =Mn, (16.29)

n = 1, 2, The first order approximation to the boundary derivative vnm+1 −
vnm = −h is abandoned in favour of (16.29) for reasons of accuracy and because
of problems with the initial steps.

The equations (16.25) – (16.29) are non-linear so we propose an iterative ap-
proach. We guess a value for kn, solve the linear tridiagonal system (16.25),
(16.27), and (16.28), and use formula (16.29) to correct the time step. Alter-
natively we could solve the (almost) tridiagonal system determined by (16.25),
(16.27), and (16.29), and use formula (16.28) to correct the time step. Numerical
experiments, however, suggest that the former method is computationally more
efficient in that it requires fewer iterations when searching for the size of the next
time step.

Getting Started

For n = 1 equations (16.28) and (16.29) give

−v1m+2 + 4v1m+1 = h, (m =M1 =M0 − 1).

174

When h is small we expect v1m+2 to be very small. We put v1m+2 = εh and get

v1m+1 =
h

4
(1 + ε), m =M1.

Applying (16.25) with m =M1 + 1 =M0 = K/h we then get

h(1 + ε)

4k1
=

σ2K2

2h2
(ε− 1 + ε

2
+ 1)h+

rK

2h
(ε− 1)h− r

h

4
(1 + ε)

⇒ 1

k1
=

σ2K2

h2
− 1− ε

1 + ε

2rK

h
− r

⇒ k1 =
h2

σ2K2 − 2rKh1−ε
1+ε

− rh2
≈ h2

σ2K2 − 2rKh− rh2
(16.30)

and we have a good initial guess for the size of the first time step. Note further
that

k1 ≈
h2

σ2K2

so it appears that the boundary curve y(T) starts out from (0, K) with a vertical
tangent and with a shape much like a parabola with its apex at (0, K).

For n > 1 we could as a starting value for kn use kn−1, but for n > 2 it turns out
to be more efficient to use

k1n = 2kn−1 − kn−2 (16.31)

based on the assumption that the second derivative of yL(t) is small. Given the
initial value k1n, a good second value can be obtained as follows. First we solve
equations (16.25) – (16.28) and obtain tentative values for vnm, m = Mn, . . . ,M .
We then evaluate the accuracy of k1n by calculating the error term

e = −1− −vnMn+2 + 4vnMn+1 − 3vnMn

2h
. (16.32)

If e = 0 then k1n is the right size of the time step. Otherwise we would like to
change kn such that e = 0. First notice that

∆e = −4∆vnMn+1 −∆vnMn+2

2h
≈ −3∆vnMn+1

2h
≈ −3

∂vn
Mn+1

∂t
∆t

2h
.

An approximation to the time derivative at grid point (n,Mn+1) can be obtained
by

∂vnMn+1

∂t
≈ vnMn+1 − vn−1

Mn+1

k1n
and since we want ∆e = −e our second value for kn becomes

k2n = k1n +
2

3

hk1ne

vnMn+1 − vn−1
Mn+1

. (16.33)

175

Iterating kn

With a proposed value for kn we can rewrite equation (16.25) as

vnm − αmkn(v
n
m+1 − 2vnm + vnm−1)− βmkn(v

n
m+1 − vnm−1) + rknv

n
m = vn−1

m

with αm = 1
2
σ2m2 and βm = 1

2
rm. Collecting terms we get

(βm − αm)knv
n
m−1 + (1 + (2αm + r)kn)v

n
m − (βm + αm)knv

n
m+1 = vn−1

m , (16.34)

m =Mn + 1, . . . ,M − 1. With the two boundary conditions (16.27) and (16.28)
we have as many equations as unknowns and we can solve the resulting system of
equations. The calculated values are then checked with equation (16.29). If they
do not fit, and they seldom do the first time around, the value for kn is adjusted,
and the equations are solved again until a satisfactory agreement with (16.29) is
achieved.

The first and the second value for kn have been discussed above. The general
way of calculating ki+1

n from ki−1
n and kin for i > 1 is by using the secant method

on formula (16.32):

ki+1
n = kin − ei

kin − ki−1
n

ei − ei−1
(16.35)

where ei is calculated from (16.32) with v-values calculated with kin. The iteration
is continued until two successive values of kin differ by less than a predetermined
tolerance.

Table 16.7 illustrates the time step iterations corresponding to the usual set of
parameter values K = 100, σ = 0.2, r = 0.1, and L = 200, and calculated with
h = 1. We note that the initial guess for k1 from (16.30) is reasonably good, and
so is the second guess from (16.33). k1 is a reasonable initial guess for k2 which
turns out to be only slightly larger than k1, thus not supporting the parabola
hypothesis. For the subsequent steps (16.31) is a reasonable first guess although
it always undershoots. In all cases the subsequent secant method displays rapid
convergence. We have chosen a tolerance of 10−10 because even when only a
limited accuracy is demanded in the final results it is important that the time
steps are correct. And since the secant method has superlinear convergence the
last decimals are inexpensive (cf. Table 16.14).

Because the boundary curve has a horizontal asymptote the time steps must
eventually increase without bound as we approach the magical value of yL. We
stop the calculations when the proposed time step exceeds a predetermined large
value (or becomes negative).

176

Table 16.7: Time step iterations with the implicit method.

n 1 2 3 4 5 6
1 0.00263227 0.00262001 0.00261359 0.00261361 0.00261361
2 0.00261361 0.00290627 0.00305600 0.00306050 0.00306055 0.00306055
3 0.00350749 0.00387369 0.00404826 0.00404955 0.00404955
4 0.00503856 0.00595513 0.00624391 0.00624057 0.00624058
5 0.00843160 0.01026408 0.01041317 0.01041053 0.01041053
6 0.01458048 0.01695680 0.01683730 0.01683827 0.01683827
7 0.02326601 0.02603689 0.02574487 0.02574540
8 0.03465253 0.03849420 0.03797056 0.03796966 0.03796966
9 0.05019391 0.05598995 0.05510357 0.05509914 0.05509915
10 0.07222864 0.08125947 0.07982226 0.07980969 0.07980971
11 0.10452027 0.11917606 0.11686413 0.11683260 0.11683268
12 0.15385565 0.17916186 0.17537148 0.17529225 0.17529254
13 0.23375241 0.28168447 0.27523543 0.27502091 0.27502202
14 0.37475150 0.47960268 0.46820027 0.46753680 0.46754150 0.46754149
15 0.66006096 0.95513540 0.93700802 0.93475183 0.93476999 0.93476997
16 1.40199846 2.89947139 2.99960311 3.04665061 3.04805724 3.04807080

16.7 Crank-Nicolson

When attempting to use the Crank-Nicolson method on this problem there is a
minor complication. Since the boundary curve is decreasing, the first interior grid
point at a particular time level corresponds to a boundary point at the previous
time level. If we want to use a Crank-Nicolson approximation here we shall refer
to a point outside the continuation region at the previous time level. Such a point
is usually called a fictitious point and it must be treated separately. There are
(at least) three suggestions:

1. Use the value K−x at the fictitious point. This is not correct but reasonably
close.

2. Extrapolate from the boundary point and its neighbour using the central
difference approximation to ux which we know is −1.

3. Replace the difference approximations to ux and uxx on the boundary by the
‘exact’ values of −1 and 2rK

σ2y(t)2
from (16.5) and (16.11).

In practice these three approaches perform equally well. We shall therefore con-
centrate on the method described in 3. and note that the details in implementing

177

1. and 2. can be filled in similarly. We do make one exception from the method-
ology described in 3. At the initial step neither ux(0, K) nor uxx(0, K) is defined
so we need to deal with the initial step differently. Instead we look at suggestion
1. and approximate

ux(0, K) by
u(0, K + h)− u(0, K − h)

2h
= −1

2
and

uxx(0, K) by
u(0, K + h)− 2u(0, K) + u(0, K − h)

h2
=

1

h
.

With notation as in the previous section we compute a grid function

vnm = v(tn, mh) ≈ u(tn, mh)

satisfying

v1m − v0m
kn

=
σ2

4
m2(v1m+1 − 2v1m + v1m−1 + h) (16.36)

+
r

4
m(v1m+1 − v1m−1 − h)− r

2
v1m, m =M0, n = 1,

vnm − vn−1
m

kn
=

σ2

4
m2(vnm+1 − 2vnm + vnm−1) +

rK

2
(16.37)

+
r

4
m(vnm+1 − vnm−1 − 2h)− r

2
(vnm + vn−1

m), m =Mn−1, n > 1,

vnm − vn−1
m

kn
=

σ2

4
m2(vnm+1 − 2vnm + vnm−1 + vn−1

m+1 − 2vn−1
m + vn−1

m−1) (16.38)

+
r

4
m(vnm+1 − vnm−1 + vn−1

m+1 − vn−1
m−1)−

r

2
(vnm + vn−1

m),

m =Mn + 2, . . . ,M − 1,

v0m = 0, m =M0, . . . ,M, (16.39)

vnM = 0, (16.40)

vnMn
= K −Mnh = nh, (16.41)

−1 =
−vnm+2 + 4vnm+1 − 3vnm

2h
, m =Mn, (16.42)

n = 1, 2, Just as for the implicit method we guess a value for kn, solve the
tridiagonal system of equations given by (16.36) – (16.41), and use (16.42) to
correct the time step. Alternatively (16.42) could be incorporated in the system
of equations and (16.41) be used for the correction. We prefer the former since
it appears to lead to fewer iterations.

Getting Started

For n = 1 equations (16.41) and (16.42) give

−v1m+2 + 4v1m+1 = h, (m =M1 =M0 − 1).

178

When h is small we expect v1m+2 to be very small. We put v1m+2 = εh and get

v1m+1 =
h

4
(1 + ε), m =M1.

Applying (16.36) with m =M1 + 1 =M0 = K/h we then get

h(1 + ε)

4k1
=

σ2m2

4
(ε− 1 + ε

2
+ 2)h+

rm

4
(ε− 2)h− r

2

h

4
(1 + ε)

⇒ 1

k1
= σ2m2(

1

2
+

1

1 + ε
)− 2− ε

1 + ε
rm− 1

2
r

⇒ k1 =
h2

σ2K2(1
2
+ 1

1+ε
)− rKh2−ε

1+ε
− 1

2
rh2

and we have a good initial guess for the size of the first time step. Note further
that

k1 ≈ h2

3
2
σ2K2 − 2rKh− 1

2
rh2

≈ h2

3
2
σ2K2

(16.43)

Table 16.8: Time step iterations with Crank-Nicolson.

n 1 2 3 4 5 6
1 0.00172429 0.00181050 0.00176141 0.00176115 0.00176116
2 0.00528347 0.00534501 0.00575238 0.00575488 0.00575490
3 0.00974864 0.00803102 0.00654763 0.00659399 0.00659352 0.00659352
4 0.00743214 0.00779111 0.00804438 0.00804408 0.00804408
5 0.00949463 0.01017074 0.01067041 0.01066699 0.01066699
6 0.01328991 0.01456567 0.01543735 0.01542461 0.01542468
7 0.02018236 0.02222535 0.02337563 0.02335643 0.02335653
8 0.03128838 0.03377432 0.03489219 0.03488019 0.03488023
9 0.04640393 0.04936500 0.05056048 0.05055332 0.05055333
10 0.06622644 0.07076255 0.07257623 0.07256957 0.07256957
11 0.09458581 0.10195371 0.10499982 0.10499678
12 0.13742398 0.14955464 0.15495471 0.15496947 0.15496949
13 0.20494220 0.22635535 0.23713380 0.23722496 0.23722525
14 0.31948101 0.36112641 0.38639870 0.38687650 0.38688015
15 0.53653504 0.63033291 0.70622891 0.70946632 0.70953139 0.70953144
16 1.03218273 1.30246815 1.65738437 1.70025643 1.70343860 1.70346436

179

Table 16.9: Order ratios for the implicit method.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
195 6.9 1.7 2.0 1.9 1.5 - 5.7 2.0 1.7 1.6
190 6.4 1.7 2.0 1.9 1.5 - 5.6 2.0 1.7 1.6
185 5.8 1.7 2.0 1.9 1.5 6.6 5.3 2.0 1.7 1.7
180 5.2 1.7 2.0 1.9 1.5 4.5 5.1 2.0 1.7 1.7
175 4.5 1.6 2.0 1.9 1.5 3.4 4.8 2.0 1.7 1.7
170 4.0 1.6 2.0 1.9 1.3 2.7 4.5 2.0 1.7 1.7
165 3.5 1.6 1.9 1.8 0.9 2.3 4.3 2.1 1.8 1.7
160 3.1 1.5 1.9 1.7 7.1 2.1 4.1 2.1 1.8 1.7
155 2.8 1.5 1.9 1.3 2.5 1.9 3.9 2.1 1.8 1.8
150 2.5 1.5 1.9 -2.4 2.2 1.8 3.7 2.1 1.8 1.8
145 2.3 1.5 1.9 3.7 2.1 1.7 3.6 2.2 1.9 1.9
140 2.1 1.5 1.8 2.9 2.1 1.7 3.5 2.2 1.9 1.9
135 2.0 1.5 2.2 2.7 2.1 1.6 3.5 2.2 2.0 1.9
130 1.9 1.6 2.1 2.7 2.1 1.6 3.5 2.3 2.0 2.0
125 1.8 1.5 2.2 2.7 2.2 1.6 3.4 2.3 2.1 2.0
120 1.6 1.6 2.2 2.7 2.2 1.6 3.4 2.4 2.1 2.1
115 2.3 1.7 2.3 2.7 2.3 1.6 3.4 2.4 2.1 2.1
110 2.1 1.7 2.3 2.7 2.3 1.6 3.4 2.5 2.2 2.2
105 2.1 1.8 2.3 2.8 2.3 1.6 3.4 2.5 2.2 2.2
100 2.2 1.8 2.4 2.8 2.3 1.6 3.4 2.5 2.2 2.2
95 2.1 1.8 2.3 2.7 2.3 1.7 3.4 2.5 2.2 2.2
90 1.6 1.7 2.1 2.5 2.2 1.7 3.3 2.4 2.2 2.2
85 8.0 0.6 0.7 1.0 1.1
y 2.1 1.6 2.3 2.8 2.3 1.5 3.5 2.5 2.2 2.2

so just like for the implicit method it appears that the boundary curve y(T) starts
out from (0, K) with a vertical tangent and with a shape much like a parabola
with its apex at (0, K), although this time a slightly different parabola.

For n = 2 practical experience shows that it is efficient to exploit the fact that the
boundary curve at the beginning looks like a parabola with its apex at (0, K).
When f(x) = αx2 then f(2h)/f(h) = 4 so that f(2h) − f(h) = 3f(h). This
indicates that it might be a good idea to put k12 = 3k1. This is in contrast to
the implicit method where the second step turns out to be of the same order
of magnitude as the first. Thus it looks like the parabola conjecture fits better
to Crank-Nicolson than to the implicit method, at least for the first two steps.
The third step with Crank-Nicolson is, however, not large enough to fit the same
pattern.

180

For n > 2 we proceed like with the implicit method and put

k1n = 2kn−1 − kn−2. (16.44)

For the second guess we use (16.33) and for subsequent values the secant method
(16.35) is used just as with the implicit method producing better and better
values for the time step until the tolerance is met.

Table 16.8 illustrates the time step iterations corresponding to the usual set of
parameter values K = 100, σ = 0.2, r = 0.1, and L = 200, and calculated with
h = 1. Most comments from the previous table can be taken verbatim to this
one. The main differences are that k2 now is close to 3k1 whereas k3 is close
to k2. The initial guess for k3 therefore overshoots. So much for the parabola
hypothesis.

Table 16.10: Error estimate *10 for the implicit method.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 4.0
195 -0.000 -0.001 -0.002 -0.003 -0.002 0.000 0.002 0.008 0.013
190 -0.000 -0.002 -0.005 -0.006 -0.004 0.001 0.005 0.017 0.027
185 -0.000 -0.003 -0.007 -0.009 -0.006 0.002 0.008 0.028 0.044
180 -0.000 -0.005 -0.011 -0.013 -0.008 0.004 0.013 0.041 0.064
175 -0.000 -0.007 -0.014 -0.016 -0.009 0.008 0.019 0.057 0.087
170 -0.001 -0.010 -0.018 -0.018 -0.008 0.015 0.028 0.077 0.115
165 -0.001 -0.014 -0.022 -0.019 -0.005 0.026 0.040 0.102 0.147
160 -0.002 -0.018 -0.025 -0.018 0.001 0.041 0.056 0.132 0.185
155 -0.004 -0.024 -0.027 -0.013 0.012 0.063 0.078 0.170 0.230
150 -0.007 -0.030 -0.027 -0.003 0.029 0.093 0.106 0.215 0.283
145 -0.012 -0.035 -0.021 0.014 0.055 0.134 0.141 0.269 0.343
140 -0.020 -0.037 -0.009 0.041 0.090 0.185 0.184 0.333 0.411
135 -0.031 -0.031 0.015 0.079 0.136 0.249 0.236 0.406 0.486
130 -0.042 -0.011 0.052 0.132 0.195 0.326 0.296 0.486 0.566
125 -0.044 0.028 0.107 0.199 0.264 0.412 0.361 0.571 0.648
120 -0.024 0.094 0.179 0.277 0.341 0.502 0.428 0.654 0.726
115 0.040 0.185 0.261 0.359 0.417 0.588 0.489 0.726 0.790
110 0.152 0.287 0.342 0.432 0.481 0.655 0.535 0.776 0.830
105 0.279 0.370 0.399 0.477 0.514 0.683 0.551 0.785 0.830
100 0.333 0.391 0.403 0.468 0.498 0.651 0.523 0.735 0.770
95 0.242 0.312 0.330 0.386 0.411 0.535 0.432 0.604 0.633
90 0.043 0.134 0.174 0.218 0.242 0.319 0.267 0.376 0.399
85 0.002 0.024 0.040 0.057
y -0.579 -0.654 -0.642 -0.734 -0.765 -1.003 -0.772 -1.092 -1.127

181

16.8 Determining the order

As usual we should like to determine the order of the methods and to estimate
the error. There is only one independent step size, h, and we can easily perform
calculations with h, 2h, and 4h, but now we are faced with the same problem as
in Chapter 15. The step sizes in the t-direction are determined in the course of
the calculations, and there is no way of ensuring that we have comparable grid
function values at the same point in time corresponding to two different values
of h.

Table 16.11: Order ratios for Crank-Nicolson.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
195 - 4.0 - 3.8 5.1 5.5 7.1 4.2 6.8 3.1
190 - 4.0 - 3.8 5.1 5.5 7.1 4.2 7.0 3.2
185 - 4.0 -0.2 3.8 5.2 5.5 7.1 4.2 7.3 3.4
180 - 4.1 3.5 3.9 5.2 5.5 7.2 4.2 8.0 3.5
175 3.9 4.1 4.4 3.9 5.2 5.5 7.2 4.2 - 3.7
170 3.9 4.2 4.8 3.9 5.2 5.6 7.2 4.2 - 3.8
165 3.9 4.5 5.0 4.0 5.2 5.6 7.3 4.3 -5.7 3.9
160 4.0 - 5.1 4.0 5.2 5.6 7.5 4.4 1.1 3.9
155 4.0 3.5 5.2 4.0 5.2 5.7 7.7 7.0 2.6 4.0
150 4.1 3.8 5.3 4.1 5.2 5.8 8.8 3.8 3.3 4.0
145 4.3 3.9 5.3 4.1 5.2 6.2 1.6 4.0 3.7 4.0
140 5.9 3.9 5.3 4.1 5.2 - 6.0 4.0 3.9 4.1
135 3.5 4.0 5.2 4.2 4.4 5.0 6.5 4.1 4.1 4.1
130 3.7 4.0 5.0 4.2 5.5 5.3 6.7 4.1 4.2 4.1
125 3.8 3.9 4.2 4.1 5.4 5.4 6.8 4.1 4.3 4.1
120 3.8 3.8 - 4.1 5.4 5.5 6.8 4.1 4.3 4.1
115 3.7 2.0 6.6 4.2 5.4 5.5 6.9 4.1 4.4 4.1
110 3.4 4.8 6.2 4.2 5.4 5.6 6.9 4.1 4.4 4.1
105 2.4 4.5 6.0 4.2 5.4 5.6 6.9 4.1 4.4 4.1
100 - 4.4 5.9 4.2 5.3 5.5 6.8 4.1 4.4 4.1
95 -0.2 4.3 5.7 4.1 5.3 5.4 6.7 4.1 4.4 4.1
90 3.8 4.2 4.7 4.1 4.9 5.1 6.2 4.1 4.3 4.1
85 1.5 - -3.3 3.7 2.2 3.9
y 7.5 4.2 5.3 4.1 5.0 5.2 6.2 4.1 4.4 4.1

The solution is again to interpolate between the time values that we actually
compute. In Table 16.9 we give the order ratios and in Table 16.10 the error
function multiplied by 10 for a computation with the parameter values K = 100,

182

Table 16.12: Error function *1000 for Crank-Nicolson.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 4.0
195 - -0.000 - 0.001 0.002 0.003 0.002 0.003 -0.001
190 - -0.000 - 0.002 0.004 0.006 0.005 0.005 -0.002
185 - -0.001 0.000 0.003 0.006 0.009 0.008 0.008 -0.004
180 - -0.001 0.000 0.005 0.009 0.012 0.010 0.010 -0.006
175 -0.000 -0.001 0.001 0.007 0.011 0.015 0.013 0.012 -0.011
170 -0.000 -0.001 0.002 0.009 0.014 0.017 0.014 0.012 -0.017
165 -0.000 -0.001 0.003 0.012 0.017 0.019 0.015 0.011 -0.025
160 -0.000 -0.000 0.005 0.014 0.018 0.020 0.014 0.008 -0.037
155 -0.001 0.001 0.008 0.017 0.019 0.019 0.011 0.001 -0.052
150 -0.001 0.003 0.011 0.019 0.019 0.016 0.006 -0.009 -0.072
145 -0.001 0.007 0.014 0.020 0.016 0.010 -0.002 -0.024 -0.096
140 -0.000 0.011 0.016 0.018 0.011 0.000 -0.014 -0.044 -0.125
135 0.002 0.015 0.016 0.013 0.002 -0.013 -0.029 -0.068 -0.160
130 0.007 0.019 0.014 0.004 -0.011 -0.031 -0.048 -0.097 -0.198
125 0.014 0.019 0.008 -0.010 -0.028 -0.052 -0.069 -0.129 -0.238
120 0.022 0.014 -0.003 -0.028 -0.048 -0.076 -0.092 -0.162 -0.278
115 0.026 0.003 -0.017 -0.049 -0.070 -0.100 -0.115 -0.193 -0.313
110 0.021 -0.013 -0.033 -0.069 -0.089 -0.120 -0.133 -0.217 -0.337
105 0.009 -0.028 -0.046 -0.084 -0.102 -0.132 -0.142 -0.228 -0.343
100 0.001 -0.034 -0.050 -0.086 -0.102 -0.129 -0.138 -0.218 -0.323
95 0.003 -0.027 -0.041 -0.070 -0.085 -0.108 -0.116 -0.181 -0.267
90 0.005 -0.008 -0.021 -0.037 -0.049 -0.064 -0.072 -0.111 -0.168
85 -0.001 -0.009 -0.008 -0.022
y 0.007 0.121 0.159 0.231 0.256 0.302 0.311 0.443 0.598

σ = 0.2, r = 0.1, and L = 200, and calculated with h = 0.25, 0.5, and 1.0
and using linear interpolation. The last line in each table refers to the boundary
curve. We expect the implicit method to be of first order and have therefore
elected to use linear interpolation. Furthermore 3-point interpolation produces
bad results for large values of t because of the large time steps here. The first
order is clearly demonstrated by the order ratios. which vary slowly with x (with
occasional deviations which can be explained by small values of the auxiliary
function). But the effect of the interpolation error is evident in the t-dependence
which displays a somewhat erratic behaviour. As discussed in Chapter 15 and
Appendix C we can still have confidence in the error estimates.

In contrast to Brennan-Schwartz the order ratios behave nicely around x = K
and the error function does not have an excessive maximum there. The behaviour
is much smoother with a ‘soft’ maximum attained near x = K.

183

Table 16.13: The price function computed with Crank-Nicolson.

x \ t 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 4.0
195 0.000 0.000 0.001 0.002 0.005 0.008 0.011 0.014 0.020
190 0.000 0.000 0.002 0.005 0.011 0.018 0.025 0.031 0.042
185 0.000 0.000 0.003 0.009 0.019 0.030 0.041 0.051 0.069
180 0.000 0.001 0.005 0.015 0.029 0.044 0.060 0.075 0.100
175 0.000 0.001 0.008 0.022 0.041 0.063 0.084 0.104 0.138
170 0.000 0.002 0.012 0.033 0.059 0.087 0.115 0.140 0.183
165 0.000 0.004 0.020 0.048 0.082 0.119 0.154 0.186 0.239
160 0.000 0.007 0.031 0.070 0.115 0.161 0.204 0.243 0.308
155 0.000 0.012 0.049 0.102 0.160 0.217 0.269 0.317 0.394
150 0.001 0.023 0.077 0.148 0.221 0.291 0.355 0.411 0.502
145 0.002 0.041 0.121 0.214 0.306 0.391 0.467 0.533 0.638
140 0.006 0.074 0.188 0.310 0.424 0.526 0.615 0.692 0.812
135 0.016 0.132 0.291 0.447 0.587 0.708 0.811 0.898 1.034
130 0.041 0.230 0.448 0.644 0.812 0.953 1.070 1.169 1.320
125 0.100 0.396 0.684 0.925 1.122 1.283 1.416 1.525 1.690
120 0.229 0.671 1.038 1.325 1.551 1.731 1.877 1.995 2.173
115 0.498 1.116 1.563 1.892 2.143 2.339 2.494 2.620 2.806
110 1.026 1.818 2.332 2.693 2.960 3.164 3.325 3.454 3.642
105 1.992 2.901 3.447 3.818 4.087 4.290 4.449 4.574 4.758
100 3.636 4.528 5.047 5.394 5.644 5.831 5.977 6.091 6.258
95 6.234 6.911 7.320 7.599 7.800 7.952 8.070 8.163 8.299
90 10.068 10.320 10.526 10.681 10.799 10.892 10.965 11.023 11.110
85 15.000 15.006 15.014 15.022 15.038
y 88.528 86.792 85.875 85.294 84.891 84.597 84.374 84.201 83.953

Crank-Nicolson is expected to be of second order and we therefore switch to 3-
point interpolation. Table 16.11 gives the order ratios and Table 16.12 gives the
error function multiplied by 1000 for a computation with the same parameter
values as before but now with step sizes h = 0.0625, 0.125, and 0.25. The last
line in each table refers to the boundary curve. The general picture is that of a
second order method but it is clear that 3-point interpolation is not really good
enough for the order ratios. On the positive side we notice that the behaviour
on the line x = K is pretty much like in the rest of the region and that the error
function is very small, and again with a ‘soft’ maximum in the neighbourhood of
x = K. That the singularity at (0, K) has no significant effect on the numbers
is explained by the fact that the time steps in the beginning are very small,
leading to small values of bµ and therefore efficient damping of high frequency
components by the Crank-Nicolson method.

184

We conclude this section by giving in Table 16.13 the values of the price function
and the boundary curve as calculated by Crank-Nicolson with h = 0.0625.

Table 16.14: Average number of iterations per time step,
and total number (N) of time steps.

Tolerance
h 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12 N
1/1 3.06 3.19 3.75 4.19 4.56 4.81 5.06 5.19 5.56 5.69 16
1/2 1.94 3.12 3.21 3.58 4.12 4.36 4.58 4.82 5.12 5.27 33
1/4 1.44 2.08 2.79 3.20 3.36 3.62 4.20 4.30 4.36 4.61 66
1/8 1.33 1.50 2.21 2.58 3.16 3.23 3.36 3.69 4.17 4.21 132
1/16 1.26 1.34 1.51 2.18 2.48 3.11 3.15 3.23 3.39 3.94 265
1/32 - 1.27 1.36 1.48 2.14 2.38 3.07 3.09 3.15 3.34 530
1/64 - 1.27 1.30 1.35 1.55 2.12 2.31 3.05 3.07 - 1061
1/128 - 1.30 1.31 1.32 1.36 1.57 2.10 2.24 2.88 - 2122

16.9 Efficiency of the methods

Comparing Brennan-Schwartz to Crank-Nicolson with variable time steps we note
that the latter is a second order method with error estimates that can be trusted,
also in the interesting region where x ≤ K. The price we have to pay to achieve
this is very small time steps in the beginning and several iterations per time
step. To take the last point first we supply in Table 16.14 the average number
of iterations per time step as a function of h and the tolerance as well as the
total number (N) of time steps for a given value of h. As expected the number
of iterations increase with decreasing values of the tolerance but not very much.
On the other hand the number of iterations decrease with decreasing values of h.
Typically we can expect 3-4 iterations per time step for small h. For comparison
we should remember that Brennan-Schwartz computes all the way down to 0
which amounts to 1.7-2 times the number of valid grid points.

When discussing the time step variations it is essential to point out that we
use very small time steps for t close to 0 (time close to expiry) where most of
the ‘action’ is, as measured by large values of the time derivatives of u near
x = K. One property to strive for is a constant value of kn · ut(tn, K) as tn
increases. In Table 16.15 we have given values of vnm−vn−1

m which can be taken as
approximations of kn ·ut(tn, mh) for values of x = mh around K and for all the 16
time steps we take when h = 1. It is seen that for constant x, kn ·ut(tn, x) displays

185

Table 16.15: Values of kn · ut near x = K.

n \ x 93 94 95 96 97 98 99 100 101 102 103 104
1 0.26 0.03 0.00 0.00 0.00
2 0.16 0.36 0.22 0.08 0.03 0.01
3 0.10 0.24 0.21 0.21 0.14 0.07 0.03
4 0.07 0.17 0.18 0.22 0.19 0.16 0.11 0.07
5 0.05 0.13 0.16 0.22 0.22 0.21 0.18 0.14 0.10
6 0.04 0.11 0.15 0.22 0.24 0.26 0.25 0.23 0.19 0.15
7 0.03 0.10 0.15 0.22 0.25 0.29 0.30 0.30 0.28 0.25 0.22
8 0.03 0.10 0.15 0.22 0.26 0.31 0.33 0.35 0.35 0.34 0.31 0.28
9 0.09 0.15 0.21 0.26 0.31 0.34 0.37 0.38 0.39 0.38 0.36 0.34
10 0.15 0.21 0.26 0.31 0.34 0.38 0.40 0.42 0.42 0.42 0.41 0.39
11 0.21 0.26 0.31 0.35 0.39 0.41 0.43 0.44 0.45 0.45 0.45 0.44
12 0.26 0.31 0.35 0.39 0.42 0.45 0.46 0.48 0.49 0.49 0.49 0.49
13 0.31 0.35 0.40 0.43 0.46 0.48 0.50 0.51 0.53 0.53 0.53 0.53
14 0.36 0.40 0.43 0.47 0.49 0.52 0.54 0.56 0.57 0.58 0.58 0.58
15 0.41 0.44 0.48 0.51 0.54 0.56 0.58 0.60 0.61 0.62 0.63 0.64
16 0.46 0.49 0.52 0.56 0.58 0.61 0.63 0.65 0.66 0.68 0.69 0.70

a slow increase, possibly after some initial fluctuations. With this behaviour in
mind we can of course modify Brennan-Schwartz and incorporate varying time
steps, possibly making this method more competitive.

186

Appendix A

The One-Way Wave Equation

In this appendix we shall analyze various difference schemes for the one-way wave
equation

ut + aux = 0 (A.1)

using the tools developed in Chapters 2 and 3.

To ensure uniqueness we must impose an initial condition at t = 0, and a bound-
ary condition at one end of the interval in question. Which end depends on the
sign of the coefficient a. If a is positive, such that the movement is from left
to right, the boundary information should be supplied at the left end. If a is
negative the boundary condition should be given at the right end. Some of the
numerical schemes below come in pairs, such as A.1 and A.2, or A.6 and A.7,
where one can be used for negative a, the other for positive a.

In order to check the accuracy (and other properties) of the difference schemes
we note that the symbol of the differential operator in (A.1) is

p(s, ξ) = s+ iaξ. (A.2)

A.1 Forward-time forward-space

As suggested by the name this method can be written

(∆t + a∆)v = ν

or

vn+1
m − vnm

k
+ a

vnm+1 − vnm
h

= νnm (A.3)

187

or

vn+1
m = vnm − aλ(vnm+1 − vnm) + kνnm (A.4)

using the step ratio

λ =
k

h
.

The growth factor is

g(ϕ) = 1− aλ(eiϕ − 1) (A.5)

= 1 + aλ(1− cosϕ)− iaλ sinϕ.

The condition for stability is −1 ≤ aλ ≤ 0, so this method should only be used
with negative a.

The symbol (cf. section 3.3) for the difference operator is

pk,h(s, ξ) =
1

k
(esk − 1) +

a

h
(eiξh − 1)

= s+
1

2
s2k + iaξ − 1

2
aξ2h+ · · · (A.6)

showing that this method is first order accurate in both k and h.

A.2 Forward-time backward-space

This method can be written

(∆t + a∇)v = ν

or

vn+1
m − vnm

k
+ a

vnm − vnm−1

h
= νnm (A.7)

or

vn+1
m = vnm − aλ(vnm − vnm−1) + kνnm. (A.8)

The growth factor is

g(ϕ) = 1− aλ(1− e−iϕ) (A.9)

= 1− aλ(1− cosϕ)− iaλ sinϕ.

188

The condition for stability is 0 ≤ aλ ≤ 1 and this condition also guarantees a
maximum principle.

The symbol for the difference operator is

pk,h(s, ξ) =
1

k
(esk − 1) +

a

h
(1− e−iξh)

= s +
1

2
s2k + iaξ +

1

2
aξ2h+ · · · (A.10)

showing that this method is first order accurate in both k and h.
Better accuracy is obtained using

A.3 Forward-time central-space

This method can be written

(∆t + aµ̃δ)v = ν

or

vn+1
m − vnm

k
+ a

vnm+1 − vnm−1

2h
= νnm (A.11)

or

vn+1
m = vnm − 1

2
aλ(vnm+1 − vnm−1) + kνnm. (A.12)

The growth factor is

g(ϕ) = 1− 1

2
aλ(eiϕ − e−iϕ)

= 1− iaλ sinϕ. (A.13)

The method is 0-stable if k = O(h2) but it is never absolutely stable. We shall
therefore disregard it in favour of

A.4 Central-time central-space or leap-frog

This method can be written

(µ̃tδt + aµ̃δ)v = ν

189

or

vn+1
m − vn−1

m

2k
+ a

vnm+1 − vnm−1

2h
= νnm (A.14)

or

vn+1
m = vn−1

m − aλ(vnm+1 − vnm−1) + 2kνnm. (A.15)

For the growth factor we have

g2 + 2iaλ sinϕ · g − 1 = 0 (A.16)

and the condition for stability is |aλ| ≤ 1.

The symbol for the difference operator is

pk,h(s, ξ) =
1

2k
(esk − e−sk) +

a

2h
(eiξh − e−iξh)

= s+ iaξ +
1

6
s3k2 − 1

6
iaξ3h2 + · · · (A.17)

showing that this method is second order accurate in both k and h. The main
drawback is that it is a two-step method. The following modification results in a
similar one-step method:

A.5 Lax-Friedrichs

This method can be written

vn+1
m − 1

2
(vnm+1 + vnm−1)

k
+ a

vnm+1 − vnm−1

2h
= νnm (A.18)

or

vn+1
m =

1

2
(vnm+1 + vnm−1)−

1

2
aλ(vnm+1 − vnm−1) + kνnm. (A.19)

For the growth factor we have

g(ϕ) = cosϕ− iaλ sinϕ (A.20)

and the condition for stability is again |aλ| ≤ 1 and this condition also guarantees
a maximum principle.

The symbol for the difference operator is

pk,h(s, ξ) =
1

k
(esk − cos ξh) +

a

2h
(eiξh − e−iξh)

= s+ iaξ +
1

2
s2k − 1

6
iaξ3h2 +

1

2
ξ2
h2

k
+ · · · (A.21)

If µ = k/h2 is constant then Lax-Friedrichs is not consistent with (A.1), but if
λ = k/h is constant which is more customary for this problem and in line with
the stability condition above, then the method is first order accurate.

190

A.6 Backward-time forward-space

This method can be written

vnm − vn−1
m

k
+ a

vnm+1 − vnm
h

= νnm (A.22)

or

vnm(1− aλ) = vn−1
m − aλvnm+1 + kνnm. (A.23)

The growth factor is

g(ϕ) =
1

1− aλ(1− eiϕ)
(A.24)

showing that this method is stable for aλ ≤ 0 and thus can be used when a is
negative.

The method is implicit but since a is negative we have a boundary condition on
the right boundary and we can arrange the calculations in an explicit manner as
shown in (A.23), since we always know the value to the right at the advanced
time step (which is here step n):

Remark. We also have |g(ϕ)| ≤ 1 when aλ ≥ 1 but this is less useful. ✷

The symbol for the difference operator is

pk,h(s, ξ) =
1

k
(1− e−sk) +

a

h
(eiξh − 1)

= s− 1

2
s2k + iaξ − 1

2
aξ2h + · · · (A.25)

showing that this method is first order accurate in both k and h.

A.7 Backward-time backward-space

This method can be written

vnm − vn−1
m

k
+ a

vnm − vnm−1

h
= νnm (A.26)

or

vnm(1 + aλ) = vn−1
m + aλvnm−1 + kνnm. (A.27)

191

The growth factor is

g(ϕ) =
1

1 + aλ(1− e−iϕ)
(A.28)

showing that this method is stable for aλ > 0 and this condition also guarantees
a maximum principle.

This method is also implicit but again we can arrange the calculations in an
explicit manner (as shown) since we always know the value to the left at the
advanced time step.

The symbol for the difference operator is

pk,h(s, ξ) =
1

k
(1− e−sk) +

a

h
(1− e−iξh)

= s− 1

2
s2k + iaξ +

1

2
aξ2h+ · · · (A.29)

showing that this method is first order accurate in both k and h.

A.8 Backward-time central-space

This method can be written

vnm − vn−1
m

k
+ a

vnm+1 − vnm−1

2h
= νnm. (A.30)

This method is truly implicit and we must solve the tridiagonal system of equa-
tions

−1

2
aλvnm−1 + vnm +

1

2
aλvnm+1 = vn−1

m + kνnm. (A.31)

This may present some problems since we usually only have one boundary con-
dition in the one-way wave equation.

The growth factor is

g(ϕ) =
1

1 + iaλ sinϕ
(A.32)

showing that this method is unconditionally stable.

The symbol for the difference operator is

pk,h(s, ξ) = s− 1

2
s2k + iaξ − 1

6
iaξ3h2 + · · · (A.33)

showing that this method is first order accurate in k and second order accurate
in h.

192

A.9 Lax-Wendroff

This method can be viewed as a modification of forward-time central-space

vn+1
m − vnm

k
+ a

vnm+1 − vnm−1

2h
− a2k

2

vnm+1 − 2vnm + vnm−1

h2
(A.34)

=
1

2
(νn+1

m + νnm)−
ak

4h
(νnm+1 − νnm−1)

or

vn+1
m = vnm − aλ

2
(vnm+1 − vnm−1) +

1

2
a2λ2(vnm+1 − 2vnm + vnm−1) (A.35)

+
k

2
(νn+1

m + νnm)−
ak2

4h
(νnm+1 − νnm−1).

The growth factor is

g(ϕ) = 1− iaλ sinϕ− 2a2λ2 sin2 ϕ

2
. (A.36)

and the method is therefore stable if |aλ| ≤ 1, but it does not satisfy a maximum
principle.

The symbol for the difference operator is

pk,h(s, ξ) =
1

k
(esk − 1) + ia

sin ξh

h
+ 2a2

k

h2
sin2 ξh

2

= s+ iaξ +
1

2
s2k +

1

6
s3k2 − 1

6
iaξ3h2 +

1

2
a2ξ2k + · · · (A.37)

and for the right-hand-side operator

rk,h(s, ξ) =
1

2
(esk + 1)− 1

2
iak

sin ξh

h

= 1 +
1

2
sk +

1

4
s2k2 − 1

2
iaξk + · · · (A.38)

such that

pk,h − rk,hp = − 1

12
s3k2 − 1

4
iaξs2k2 − 1

6
iaξ3h2 + · · · (A.39)

showing that this method is second order accurate in both k and h.

A.10 Crank-Nicolson

This method can be written

vn+1
m − vnm

k
+ a

vn+1
m+1 − vn+1

m−1 + vnm+1 − vnm−1

4h
=

νn+1
m + νnm

2
. (A.40)

193

Crank-Nicolson is also implicit and the tridiagonal system of equations now looks
like

−1

4
aλvn+1

m−1 + vn+1
m +

1

4
aλvn+1

m+1 (A.41)

=
1

4
aλvnm−1 + vnm − 1

4
aλvnm+1 + k

νn+1
m + νnm

2
.

The growth factor is

g(ϕ) =
1− 1

2
iaλ sinϕ

1 + 1
2
iaλ sinϕ

(A.42)

showing that the method is unconditionally stable.

The symbol for the difference operator is

pk,h(s, ξ) =
1

k
(esk − 1) + ia

esk + 1

2

sin ξh

h
(A.43)

and for the right-hand-side operator

rk,h(s, ξ) =
1

2
(esk + 1) (A.44)

such that

pk,h − rk,hp = − 1

12
s3k2 − 1

6
iaξ3h2 + · · · (A.45)

showing that this method is second order accurate in both k and h.

A.11 Overview of the methods

Method Stencil Order Stability Comments

1 ••• 1,1 −1 ≤ aλ ≤ 0 a < 0

2 ••• 1,1 0 ≤ aλ ≤ 1 a > 0

3 •••• 1,2 −
4

•• •• 2,2 −1 ≤ aλ ≤ 1 2-step

5 LF •• • 1,1 −1 ≤ aλ ≤ 1

6 ••• 1,1 aλ ≤ 0 a < 0

7 ••• 1,1 aλ ≥ 0 a > 0

8 •••• 1,2 + bdry.

9 LW •••• 2,2 −1 ≤ aλ ≤ 1 –max

10 CN •••••• 2,2 + bdry.

194

Method A.3 is never stable and is disregarded in the following. Method A.4 is a
two-step method and methods A.8 and A.10 require an extra boundary condition
in order to solve the system of linear equations. Of the remaining methods, only
A.9 is second order, but it does not satisfy a maximum principle. If we use a first
order method together with Richardson extrapolation we can often get second
order results anyway.

Remark. A stability condition of the form |aλ| ≤ 1 requires k ≤ |a|h but this
is not unreasonable for a method which has the same order in t and x, where we
for reasons of accuracy probably should choose k proportional to h anyway. ✷

It should be mentioned here that if a is constant and if we choose k = ah, i.e.
aλ = 1 then methods A.2, A.4, A.5, A.6, and A.9 are all exact in the sense that
they all reduce to vn+1

m = vnm−1 and thus reproduce the transport with no error. In
this special case the methods do not exhibit their more general behaviour which
usually includes a certain amount of dissipation.

We have compared the various methods on the two test examples from section
5.7, now with b = 0 and a = 9. It is again easy to show that all methods consid-
ered will conserve the area. The true solution is just a translation of the initial
function with velocity a. The numerical solution will exhibit various degrees of
dissipation, which means that certain components will be damped (|g(ϕ)| < 1),
and dispersion, which means that some components will travel with a velocity
different from a. As a result sharp corners will be rounded, the maximum will be
lowered, and the half-width will be wider.

Since a > 0 we do not test methods A.1 and A.6. Method A.3 is disregarded
because of instability and method A.4 because it is a 2-step method.

For the remaining six methods we have checked the height of the maximum, the
position of the maximum (using 3-point interpolation around the maximum v-
value) and the half-width of the bump. We have used h = 0.02 together with
k = 0.002, and h = 0.1 together with k = 0.01 and k = 0.05. The two former
combinations give aλ = 0.9, the latter aλ = 0.45. The general conclusion from
this limited test is that method A.7 always shows a large amount of dissipa-
tion/dispersion (low max, large half-width), closely followed by A.8. Methods
A.5 and A.2 perform reasonably well for aλ = 0.9 but not for the smaller value.
Methods A.9 and A.10 always perform well except that A.10 sometimes has prob-
lems with the right speed. The tests also show that methods A.8, A.9, and A.10
produce ‘waves’ with occasional negative function values upstream.

195

196

Appendix B

A Class of Test Problems

When testing algorithms it is useful to have a number of test problems for
which we know the true solution. Two such sets are introduced here for the
two-dimensional equation

ut = b1uxx + 2b12uxy + b2uyy. (B.1)

This equation has solutions of the form

u(t, x, y) = eαt sin(βx− γy) cosh(δx+ ǫy) (B.2)

provided the constants α, β, γ, δ, and ǫ satisfy some simple relations. Differen-
tiating (B.2) we get

uxx = (δ2 − β2)u+ 2βδeαt cos(βx− γy) sinh(δx+ ǫy), (B.3)

uyy = (ǫ2 − γ2)u− 2γǫeαt cos(βx− γy) sinh(δx+ ǫy), (B.4)

uxy = (βγ + δǫ)u+ (βǫ− δγ)eαt cos(βx− γy) sinh(δx+ ǫy). (B.5)

If we choose β, γ, δ, and ǫ such that

b1βδ − b2γǫ+ b12(βǫ− δγ) = 0 (B.6)

then the last terms on the right-hand-side of (B.3) - (B.5) will cancel, and if we
furthermore define

α = b1(δ
2 − β2) + b2(ǫ

2 − γ2) + 2b12(βγ + δǫ) (B.7)

then (B.2) is a solution to (B.1).

We should avoid combinations with βγ + δǫ = 0 and βǫ − δγ = 0 because this
leads to uxy = 0 and we shall not see the effect of the mixed term.

197

If we try solutions of the form

u(t, x, y) = eαt sin(βx− γy) cos(δx+ ǫy) (B.8)

then we get

uxx = − (δ2 + β2)u− 2βδeαt cos(βx− γy) sin(δx+ ǫy), (B.9)

uyy = − (ǫ2 + γ2)u+ 2γǫeαt cos(βx− γy) sin(δx+ ǫy), (B.10)

uxy = (βγ − δǫ)u− (βǫ− δγ)eαt cos(βx− γy) sin(δx+ ǫy). (B.11)

If (B.6) is satisfied then (B.8) is a solution to (B.1) when

α = − b1(δ
2 + β2)− b2(ǫ

2 + γ2) + 2b12(βγ − δǫ). (B.12)

Here we should avoid βγ − δǫ = 0 and βǫ− δγ = 0 if we want to see the effect of
the mixed term.

198

Appendix C

Interpolation and the Order
Ratio

C.1 Introduction

When we use variable step sizes in the t-direction as we do in the moving boundary
problems of Chapters 15 and 16 it becomes necessary to interpolate to get values
of the computed solution function at specified time values. When choosing an
interpolation formula we should have in mind that the interpolation error does
not interfere too much with the order ratios and the error estimation. If we use
the implicit method we expect to have first order results and a linear interpolation
should suffice, but as we shall see in the following section this might not be quite
enough.

C.2 Linear interpolation

If we want a function value v(t) at a specific value t, and tn < t < tn+1 then we
shall interpolate between tn and tn+1 and the result is a function value

w(t) =
tn+1 − t

tn+1 − tn
v(tn) +

t− tn
tn+1 − tn

v(tn+1)

=
tn+1 − t

tn+1 − tn
v(tn) +

t− tn
tn+1 − tn

(v(tn) + (tn+1 − tn)v
′ +

1

2
(tn+1 − tn)

2v′′ + · · ·)

= v(tn) + (t− tn)v
′ +

1

2
(tn+1 − tn)(t− tn)v

′′ + · · ·

= v(t) +
1

2
(t− tn)(tn+1 − t)v′′ + · · ·

199

= v(t) +
1

2
α(1− α)k2n+1v

′′ + · · · (C.1)

with

kn+1 = tn+1 − tn and α =
t− tn

tn+1 − tn
(C.2)

Since kn = κh+ · · · we see that the difference between w(t) and v(t) is of second
order, and linear interpolation is accurate enough because the interpolation error
is of higher order than the truncation error.

Table C.1: Order ratios for y(t) and u(t, x) using linear interpolation.

y(t) u(t, x)
t \ x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 2.174 2.287
0.2 2.131 2.193 2.192
0.3 2.048 2.096 2.077 2.062
0.4 1.862 1.917 1.870 1.825 1.787
0.5 1.991 2.032 2.016 2.001 1.989 1.982
0.6 2.013 2.046 2.038 2.030 2.023 2.018 2.016
0.7 2.072 2.094 2.094 2.095 2.095 2.096 2.096
0.8 1.921 1.957 1.941 1.927 1.914 1.903 1.897 1.897
0.9 2.011 2.035 2.030 2.026 2.021 2.018 2.015 2.014 2.014
1.0 2.066 2.082 2.083 2.084 2.084 2.085 2.085 2.084 2.083

But there is another consideration. The truncation error and the various terms
in the error expansion (15.20) tend to vary smoothly with the independent vari-
ables. The interpolation error on the other hand depends on the position of the
interpolation point relative to the calculated tn-values and will therefore exhibit
an erratic behaviour as t varies. The effect is seen most clearly in the order ratios.
Since they are ratios of differences of nearly equal quantities they are especially
sensitive to erratic changes. In Table C.1 we show the order ratios for y(t) (the
second column) and u(t, x) (the triangular scheme) when linear interpolation has
been used in connection with numerical solution of the Stefan problem (cf. section
15.4). There is no doubt about the first order behaviour but we notice that as t
varies the ratio is sometimes bigger, sometimes smaller than 2. The variation in
x for a fixed value of t is much smoother because we use the same interpolation
coefficients for all x.

In our basic assumptions (15.20) and (15.21) about the truncation error it is
understood that the auxiliary functions depend only on t and x but not on the

200

step size. The interpolation error, however, depends on the step size, not only
through the k2-factor in (C.1) but implicitly through α which most likely takes
on different values as h is varied. We use calculations with three different values
of h in order to determine the order and it is necessary to keep the interpolation
error small relative to the relevant components of the truncation error in order
to get a reliable error determination.

Table C.2: Error estimates*1000 for y(t) and u(t, x) using linear interpolation.

y(t) u(t, x)
t \ x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 -1.048 -1.946
0.2 -1.706 -2.917 -2.007
0.3 -2.235 -3.606 -2.770 -2.114
0.4 -2.834 -4.343 -3.565 -2.923 -2.418
0.5 -3.154 -4.662 -3.931 -3.316 -2.815 -2.425
0.6 -3.592 -5.128 -4.436 -3.839 -3.337 -2.928 -2.608
0.7 -3.827 -5.323 -4.665 -4.091 -3.600 -3.191 -2.862
0.8 -4.240 -5.734 -5.105 -4.545 -4.057 -3.640 -3.291 -3.007
0.9 -4.421 -5.861 -5.258 -4.718 -4.242 -3.830 -3.480 -3.191 -2.957
1.0 -4.632 -6.025 -5.444 -4.920 -4.454 -4.046 -3.695 -3.399 -3.154

The interpolation error will on the average increase by a factor 4 when we double
the step size, although the actual value also depends on α. Therefore the interpo-
lation error will tend to be largest when the step size is 4h (and it increases with
a higher rate than the truncation error). Since results with all three step sizes
enter in the calculation of the order ratio, this result is very sensitive. The dif-
ference between function values corresponding to h and 2h which we use as error
estimate or correction term in the extrapolation is less sensitive as demonstrated
in Table C.2.

C.3 Three-point interpolation

We now propose a more accurate interpolation formula. For a given value t we
use three consecutive time-values tn−1, tn, and tn+1 with tn being the closer to t:

|t− tn| < min{t− tn−1, tn+1 − t}.

Repeating the calculations of the previous section we arrive at

w(t) = v(tn) + (t− tn)v
′ +

1

2
(t− tn)

2v′′ +O(k3n)v
′′′ = v(t) +O(h3).

201

Table C.3: Order ratios for y(t) and u(t, x) using 3-point interpolation.

y(t) u(t, x)
t \ x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 2.103 2.217
0.2 2.076 2.144 2.124
0.3 2.021 2.062 2.038 2.019
0.4 2.028 2.064 2.050 2.038 2.031
0.5 2.073 2.112 2.112 2.111 2.110 2.046
0.6 2.047 2.077 2.073 2.070 2.067 2.065 2.051
0.7 2.039 2.065 2.062 2.058 2.056 2.053 2.052
0.8 2.028 2.051 2.047 2.043 2.040 2.038 2.037 2.037
0.9 2.038 2.059 2.057 2.055 2.053 2.052 2.050 2.049 2.039
1.0 2.033 2.053 2.051 2.049 2.047 2.045 2.044 2.043 2.042

Table C.4: Error estimates*1000 for y(t) and u(t, x) using 3-point interpolation.

y(t) u(t, x)
t \ x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 -1.062 -1.973
0.2 -1.801 -3.067 -2.156
0.3 -2.410 -3.871 -3.034 -2.367
0.4 -2.878 -4.405 -3.626 -2.982 -2.473
0.5 -3.277 -4.824 -4.093 -3.473 -2.965 -2.564
0.6 -3.642 -5.191 -4.500 -3.901 -3.396 -2.983 -2.653
0.7 -3.949 -5.473 -4.815 -4.238 -3.741 -3.325 -2.986
0.8 -4.237 -5.731 -5.102 -4.543 -4.055 -3.638 -3.289 -3.005
0.9 -4.497 -5.952 -5.348 -4.806 -4.327 -3.912 -3.557 -3.262 -3.016
1.0 -4.726 -6.132 -5.550 -5.025 -4.556 -4.144 -3.788 -3.485 -3.234

The interpolation will still introduce some disturbance but smaller and in a higher
order term and therefore hardly visible. The order ratios of Table C.3 exhibit a
much smoother variation than those of Table C.1 although the erratic components
in the t-direction can be seen faintly. The error estimates given in Table C.4 agree
reasonably well with those from linear interpolation indicating that these were
quite adequate.

202

Bibliography

[1] A. C. Aitken, On Bernoulli’s numerical solution of algebraic equations,
Proc. Roy. Soc. Edinburgh, 46 (1926), pp. 289–305.

[2] V. A. Barker, Extrapolation,
Hæfte 31, Numerisk Institut, DtH, Lyngby, 1974.

[3] M. J. Brennan and E. S. Schwartz, A continuous time approach to the pricing
of bonds, Journal of Banking and Finance, 3 (1979), pp. 133–155.

[4] M. J. Brennan and E. S. Schwartz, The valuation of American put options,
Journal of Finance, 32 (1977), pp. 449–462.

[5] G. G. O’Brien, M. A. Hyman, and S. Kaplan,
A Study of the Numerical Solution of Partial Differential Equations,
J. Math. Phys., 29 (1951), pp. 223–251.

[6] D. Britz and O. Østerby, Some numerical investigations of the stability of
electrochemical digital simulation, particularly as affected by first-order ho-
mogeneous reactions, J. Electroanal. Chem., 368 (1994), pp. 143–147.

[7] E. T. Copson and P. Keast, On a boundary-value problem for the equation
of heat, J. Inst. Maths. Applics, 2 (1966), pp. 358–363.

[8] J. Crank and P. Nicolson, A practical method for numerical evaluation of
solutions of partial differential equations of the heat-conduction type,
Proc. Cambridge Philos. Soc., 43 (1947), pp. 50–67.
Reprinted in Adv. Comput. Math., 6 (1996), pp. 207–226.

[9] J. Douglas and T. M. Gallie, On the numerical integration of a parabolic
differential equation subject to a moving boundary condition,
Duke Math. J., 22 (1955), pp. 557-571.

[10] J. Douglas and H. H. Rachford, On the numerical solution of heat conduction
problems in two and three space variables,
Trans. Amer. Math. Soc., 82 (1956), pp. 421–439.

203

[11] E. C. Du Fort and S. P. Frankel, Stability Conditions in the Numerical Treat-
ment of Parabolic Differential Equations,
Math. Tables Aid Comput., 7, (1953), pp. 135–152.

[12] A. R. Gourlay and J. Ll. Morris, The extrapolation of first order methods for
parabolic partial differential equations II,
SIAM J. Numer. Anal., 17, (1980), pp. 641–655.

[13] P. M. Gresho and R. L. Lee, Don’t suppress the wiggles – they’re telling you
something, Computers and Fluids, 9 (1981), pp. 223–253.

[14] Asbjørn Trolle Hansen, Martingale Methods in Contingent Claim Pricing
and Asymmetric Financial Markets,
Ph.D. thesis, Dept. Oper. Research, Aarhus University, 1998.

[15] Asbjørn Trolle Hansen and Ole Østerby,
Accelerating the Crank-Nicolson method in American option pricing,
Dept. Oper. Research, Aarhus University, 1998.

[16] D. R. Hartree and J. R. Womersley, A Method for the Numerical or Mechan-
ical Solution of Certain Types of Partial Differential Equations,
Proc. Royal Soc. London, Ser. A, 161 (1937), pp. 353–366.

[17] D. C. Joyce, Survey of extrapolation processes in numerical analysis,
SIAM Review, 13 (1971), pp. 435–490.

[18] P. Keast and A. R. Mitchell, Finite difference solution of the third boundary
problem in elliptic and parabolic equations,
Numer. Math., 10, (1967), pp. 67–75.

[19] P. Laasonen, Über eine Methode zur Lösung der Wärmeleitungsgleichung,
Acta Math., 81 (1949), pp. 309–317.

[20] J. D. Lawson and J. Ll. Morris, The extrapolation of first order methods for
parabolic partial differential equations I,
SIAM J. Numer. Anal., 15, (1978), pp. 1212–1224.

[21] P. D. Lax and R. D. Richtmyer, Survey of the Stability of Linear Finite
Difference Equations, Comm. Pure Appl. Math., 9, (1956), pp. 267–293.

[22] P. D. Lax and B. Wendroff, Systems of conservation laws,
Comm. Pure Appl. Math., 13, (1960), pp. 217–237.

[23] B. Lindberg, On smoothing and extrapolation for the trapezoidal rule,
BIT, 11 (1971), pp. 29–52.

204

[24] F. A. Longstaff and E. S. Schwartz, Interest rate volatility and the term
structure: A two-factor general equilibrium model,
J. Finance, 47 (1992), pp. 1259–1282.
See also Journal of Fixed Income (1993), pp. 7–14.

[25] A. R. Mitchell and D. F. Griffiths, The Finite Difference Method in Partial
Differential Equations, John Wiley, Chichester, 1980.

[26] P. L. J. van Moerbeke, On optimal stopping and free boundary problems,
Arch. Rational Mech. Anal., 60 (1976), pp. 101–148.

[27] D. W. Peaceman and H. H. Rachford, The numerical solution of parabolic
and elliptic differential equations, J. SIAM, 3 (1955), pp. 28–41.

[28] C. E. Pearson, Impulsive end condition for diffusion equation,
Math. Comp., 19 (1965), pp. 570–576.

[29] Lewis F. Richardson, The Approximate Numerical Solution by Finite Differ-
ences of Physical Problems Involving Differential Equations,
Phil. Trans. Roy. Soc. London, Series A, 210 (1910), pp. 307–357.

[30] Lewis F. Richardson and J. Arthur Gaunt,
The Deferred Approach to the Limit I - II,
Phil. Trans. Roy. Soc. London, Series A, 226 (1927), pp. 299–361.

[31] Robert D. Richtmyer, Difference Methods for Initial-Value Problems,
Interscience, New York, 1957.

[32] Werner Romberg, Vereinfachte Numerische Integration,
Norske Vid. Selsk. Forh., Trondheim, 28 (1955), pp. 30–36.

[33] J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung
im Polarmeere, Akad. Wiss. Wien, Mat. Nat. Classe, Sitzungsberichte, 98
(1889), pp. 965–983.

[34] G. W. Stewart, Introduction to Matrix Computations,
Academic Press, New York, 1973.

[35] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equa-
tions, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1989.

[36] Øystein Tødenes, On the numerical solution of the diffusion equation,
Math. Comp., 24, (1970), pp. 621–627.

[37] J. H. Wilkinson, Rounding Errors in Algebraic Processes,
HMSO, London, 1963.

205

[38] W. L. Wood and R. W. Lewis, A comparison of time marching schemes for
the transient heat conduction equation,
Int. J. Num. Meth. Engrg., 9, (1975), 679–689.

[39] Y. G. D’Yakonov, On the application of disintegrating difference operators,
USSR Comp. Math., 3 (1963), 511–515.
See also vol. 2 (1962), pp. 55–77 and pp. 581–607.

[40] O. Østerby, Stability of finite difference formulas for linear parabolic equa-
tions, 2nd Int. Coll. on Numerical Analysis, Plovdiv, D. Bainov and V.
Covachev (eds.), VSP Press, Utrecht (1994), pp. 165–176.

[41] O. Østerby, Five ways of reducing the Crank-Nicolson oscillations,
BIT, 43 (2003), pp. 811–822.

206

	forside
	minusforside
	Ole Østerby
	ISBN 978
	5-99Z_Book Manuscript-34-1-6-20150409

