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Preface 
The present dissertation, entitled “Conceptual Design Tool for Structural Layout Optimization in 

the Early Design Phase” was written as part of an industrial Ph.D. program at the Tectonic Design 

research group within the Design and Construction Department at Aarhus University in Denmark. 

The research was conducted between January 15, 2020, and April 11, 2023.  

 

The Ph.D. project has been developed in collaboration between hamiconsult a/s, Innovation Fund 

Denmark, and Aarhus University and is part of a long-term strategy developed by hamiconsult a/s. 

One of the main objectives of this strategy is to ensure that the company is adapted to a consulting 

market with increasingly disruptive technologies and design methodologies where architects are 

taking advantage of several data streams available to them during design. The methodology of the 

design tool developed in this project can be applied generally. However, it is based on the Danish 

construction culture and specifically for using precast reinforced concrete elements.  

 

The accepted Ph.D. project description was formulated back in 2019, at which time sustainability 

was already on the agenda. However, much can happen in just a few years. In January 2023, it 

became a legal requirement that all new construction projects in Denmark shall document the 

building’s sustainability through an LCA (Life-Cycle Assessment) analysis. In the originally defined 

constraints, LCA was not intended to be part of the design objectives the tool would incorporate into 

its optimization process. This decision was made due to time limitations and to focus on the other 

defined objectives. However, it can be argued that by minimizing the mass of the building, the 

conditions for a successful LCA analysis are implicitly improved. It is also intended to incorporate 

LCA into the tool in the next planned version, as it is highly relevant commercially. However, it is 

also relevant from a scientific perspective to see the effect this inclusion will have on the algorithm’s 

idea of an optimal design. 

 

 The author would like to take this opportunity to express my gratitude to all those who have 

contributed to the successful completion of this Ph.D. thesis.  

A special thanks go to Professor Poul Henning Kirkegaard, the main supervisor whose guidance 

was instrumental in developing the design methodology. The author is also profoundly grateful to 

Associate Professor Umberto Alibrandi for contributing with insightful and inspiring discussions.  

Thanks to co-supervisor Carsten Rabjerg Terp who acted as a sparring partner throughout the 

project. Our discussions on all the structural theories and aspects were of great value. A special 

mention goes to Gerner Klærke and Christian Ohn for making the project possible and contributing 

to formulating the initial idea. The author thanks Jacob Güldner from NCC, Jens Erik Rasmussen, 
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and Nicolai Fuglsang Torp from Ginnerup Architects. Your input and feedback were of great value 

and improved the final result. 

The author would also like to acknowledge the valuable collaboration of Markus Hudert, 

Assistant Professor. Hopefully, this collaboration can continue in the future. Thanks to Niels Martin 

Larsen, Associate professor, and Anders Kruse Aagaard, Associate Professor from Aarhus School of 

Architecture, for their collaboration. 

Thanks to Kasper Fey Hansen, Martin Kristensen, and all my colleagues at hamiconsult for 

contributing to a good work environment.  

 

Lastly, a special thanks go to my wife. Thank you for listening, being patient and supportive, and 

giving me three wonderful children, two of whom came into this world during this time. I sincerely 

could not have completed this project without you.  
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Reading guide 
This Ph.D. thesis is submitted in partial fulfillment of the Ph.D. degree in accordance with the 

rules and regulations of the Graduate School of Technical Sciences, Aarhus University, and the 

Ministerial Order on the Ph.D. Degree Program. It takes the form of a monograph.  

 

Figures and tables are numbered according to the chapter in which they appear. A list of 

references, figures, and tables can be found at the end of the thesis. References to literature, papers, 

and websites will be noted with a number in the order in which they are mentioned.  

 

The following academic publications have been produced during this Ph.D. program:  

• L. W. Rahbek, P. H. Kirkegaard og U. Alibrandi, »Parametric grid mapping design tool 

for freeform surfaces using a genetic algorithm« Proceedings of the IASS Annual Symposium 

2020/21 and the 7th International Conference on Spatial Structures Inspiring the Next 

Generation, 2021. 

• L. W. Rahbek, C. R. Terp, U. Alibrandi og P. H. Kirkegaard, »Stock optimization of 

naturally curved wood logs on freeform,« Proceedings of the IASS 2022 Symposium affiliated 

with APCS 2022 conference, September 2022. 

• N. M. Larsen, A. K. Aagard, M. Hudert og L. W. Rahbek, »Timber structures made of 

naturally curved oak wood: prototypes and processes,« Architecture, Structures and 

Construction, 2022. 

 

It is noted that these papers are not directly related to this dissertation, though they still contribute 

to the scholarly output of the research.  
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Summary in English  
This thesis develops a conceptual design tool capable of generating optimized structural layout 

suggestions for building design in the early design phase. The structural layout of a building is the 

arrangement and design of the load-bearing elements that support the weight of the building and 

resist external forces. The structural layout in this project solely consists of prefabricated reinforced 

(RC) elements. The use of prefabricated RC elements is embedded in the Danish construction 

industry and will likely remain so in the foreseeable future. Therefore, there is great potential for 

more effective use of concrete in terms of sustainability and decreasing cost. The proposed design 

tool can help fulfill this potential.  

Action Research (AR) is used to create the conceptual framework of the design tool. The AR 

analysis consists of semi-structured interviews and a co-creation workshop where architects, 

engineers, and contractors contribute to the development of the design tool to ensure that the final 

tool conforms to real-world practice. The final design tool is based on this framework and developed 

using four core principles: optimization, interactivity, dissemination, and automation.  

A novel parametric modeling method is developed in the design tool called Adjacent Polygon 

(APoly) representation. The APoly method creates a dynamic parametric representation of a given 

building plan to generate diverse yet feasible structural layout suggestions. 

The evaluation modules of different structural typologies are constructed using surrogate models 

in the form of Neural Networks. The surrogate models are combined in a hierarchical structure to 

create an algorithm capable of predicting the optimized geometry and corresponding cost for a 

structural element based on the external conditions inputted into the algorithm.  

The entire network of prediction models is then combined with a meta-heuristic optimization 

algorithm in the form of a Genetic Algorithm (GA) to create a surrogate-assisted optimization 

framework. A repair algorithm is incorporated into the GA to increase the number of valid solutions 

generated during each optimization iteration to decrease the convergence time.  

The performance and reliability of the design tool are validated through two groups of local and 

global case studies. The first group consists of parameter sensitivity studies on the local 

approximation modules for each structural typology. The second group of validation studies 

examines the design tool’s effectiveness across relevant building plans and scenarios. The 

corresponding results demonstrate that the tool can effectively adapt to these different settings and 

produce optimized structural layout suggestions. It is also demonstrated that the design tool can 

conduct multi-objective optimization and produce a front of Pareto optimal solutions.   
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Summary in Danish 
Denne afhandling udvikler et konceptuelt designværktøj, der er i stand til at generere optimerede 

strukturelle layoutforslag til den tidlige design fase. Det strukturelle layout er defineret som 

placeringen af bærelinjer med en tilhørende dimensionering af de bærende og stabiliserende 

elementer. I dette projekt vil det strukturelle layout udelukkende bestå af præfabrikerede armerede 

beton elementer. Brugen af betonelementer er en fast integreret del af den danske byggeindustri, 

hvilket formentlig ikke vil ændre sig i den nærmeste fremtid. Der er derfor et stort potentiale for at 

anvende beton mere effektivt af hensyn til de miljømæssige omkostninger, men der er også et 

økonomisk incitament i at optimere i forbruget af beton. Designværtøjet i dette projekt kan være 

med til at indfri dette potentiale ved at generere strukturelt optimerede layout forslag.  

Action Research (AR) bruges til at skabe et konceptuelt framework af designværktøjet. AR-

analysen består af semistrukturerede interviews og en co-creation workshop, hvor arkitekter, 

ingeniører og entreprenører bidrager til udviklingen af designværktøjet for at sikre at værktøjet er 

tilpasset de behov der er i reel praksis. Det endelige designværktøj er baseret på dette konceptuelle 

design framework og er udviklet ud fra fire kerneprincipper: optimering, interaktivitet, formidling 

og automatisering.  

En ny parametrisk modelleringmetode er udviklet til designværktøjet kaldet Adjacent Polygon 

(APoly) repræsentation. APoly-metoden benyttes til at generere en dynamisk parametrisk 

repræsentation af et vilkårligt bygningsplan således at der kan dannes varierede men bygbare 

strukturelle layout forslag.  

De forskellige strukturelle evalueringsmoduler er generet ved brug af surrogat modellering i 

form af neurale netværk. Surrogatmodellerne opsættes i en hierarkisk struktur for at skabe en 

algoritme, der er i stand til at forudsige den optimerede geometri, og approksimere de tilhørende 

materialeomkostninger. Hele systemet af surrogat modeller kombineres herefter med en meta-

heuristisk optimeringsalgoritme i form af en genetisk algoritme, i en proces der er kendt som 

surrogat assisteret optimering. Den genetiske algoritme modificeres med en reparations procedure 

der øger antallet af valide løsninger ved brug af brugerinduceret viden. Værktøjets performance og 

pålidelighed er valideret gennem lokale og globale case-studier. De lokale undersøgelser består af 

en parameterfølsomhedsstudier på de lokale surrogatmodeller for at undersøge om de reagere som 

forventet på ændringen af input. Derefter undersøges designværktøjet i sin helhed på forskellige 

scenarier og bygningsgeometri. Resultaterne viste at programmet er i stand til at generere 

optimerede logiske løsninger der er tilpasset de forskellige omgivelser og laster der påvirker den. 

Til sidst eftervises det at værktøjet også er i stand til at udføre en multi-objektiv optimering of 

producere en front af Pareto-optimale løsninger.  
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Chapter 1 – Introduction  
  

“There is never just one answer to a design problem, or even just one satisfactory answer – 

 there are many” 
  – Peter Debney [1]  

 

1.1 Background and motivation 
The concept of optimized building design is hard to define as it requires multi-disciplinary 

collaboration between several relevant stakeholders. Some building design objectives are 

quantifiable, such as energy efficiency, cost, structural performance, and durability. Other 

objectives, such as aesthetics, adaptability, and function requirements, are more subjective in 

nature. These objectives will also be weighted differently for every new building project. These 

aspects make building design a very complex endeavor where there will be many acceptable 

solutions.  

As building designers, we should strive to achieve a fully optimized holistic building 

design even though the concept may be unattainable because of the infinite number of 

variables and the many design objectives that are often contradictory. Also, the concept of an 

ideal building design may change over time. One of the most important contemporary 

challenges today is climate change, and the construction sector is responsible for nearly 40 

percent of the annual CO2 emissions [2]. This CO2 contribution can roughly be divided into 

operational energy and embodied carbon. The embodied carbon is defined as the sum of CO2 

emitted to produce and transport every building component [3]. For many years the focus has 

been on reducing the operational energy as this aspect was the main contributor to CO2. This 

effort has resulted in a significant decrease in operational energy, while the embodied energy 

from materials has long been an overlooked aspect in the discussion of sustainable 

construction [4]. This focus has shifted in recent years as embodied energy now exceeds 

operational energy for new constructions.  

This shift is also reinforced politically in the Danish building regulation; a limit on CO2 

emissions pr m2 for buildings with more than 1000 m2 is introduced as of January 1. 2023, for 

any new building structure [5]. Therefore, it can be argued that minimizing embodied carbon 

is one of the most essential design objectives in building design. From the structural engineer’s 

perspective, it is, therefore, essential to optimize the load-bearing structure where the majority 

of embodied carbon is contained in new buildings. This project focuses on solving this issue 
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by introducing a new design methodology incorporated into a design tool that optimizes the 

structural layout in the initial design phase. The structural layout is defined as the 

arrangement and design of the load-bearing elements that support the weight of the building 

and resist external forces. The structural layout can consist of different structural typologies, 

but this project solely focuses on prefabricated reinforced concrete (RC) elements. The 

remaining part of section 1.1 introduces some of the themes relevant to this project, while 

section 1.2 provides an overview of state-of-the-art research in this field. Finally, section 1.3 

defines the scope of the project and outlines the research questions, aims, and objectives.  

 

1.1.1 Prefabricated RC elements 

The most used building material globally is concrete [6]. This popularity is due to concrete’s 

many beneficial properties, such as availability, affordability, high compressive strength, and 

the fact that concrete can be shaped into any form needed [7].  

Reinforced concrete (RC) was first used in Denmark in 1891 to cast a slab, and the technique 

was adopted into the construction sector. Reinforced concrete was cast on-site in the first half 

of the twentieth century. This construction method is defined as in-situ concrete. After World 

War II, the construction sector had to adapt to become more efficient and began to use 

industrialized manufacturing methods to create prefabricated RC elements [8]. Prefabricated 

or precast RC elements are produced in a controlled environment, improving cost-

effectiveness, quality control, safety, and construction speed. Different elements, such as 

beams, columns, walls, and slabs, can be produced and transported to the construction site, 

where they are assembled in a structural layout. An efficient structural layout takes 

architectural considerations, functional- and building code requirements into account, but the 

primary objective is to support and distribute the acting forces effectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.1 – Examples of RC buildings. (a) image by Ricardo Gomez Angel. (b) image by Flickr user 

ACME. (c) image by Matt Reames. 
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Prefabricated RC elements can be used to create production halls or commercial buildings 

and are predominantly used to construct low and medium-rise housing buildings in Denmark 

[8]. The construction method is so embedded in the Danish construction culture that Denmark 

is the leading user of prefabricated concrete in Europe [9].  

However, concrete is not the most sustainable material as it significantly contributes to 

carbon emissions, especially during manufacturing [10]. Despite the introduction of new, more 

sustainable materials, such as cross-laminated timber, it is projected that the global need for 

concrete will only increase in future years, as illustrated in Figure 1.2.  

 

The growth of concrete production is more significant in developing countries than in the 

OECD countries, which primarily consist of Western countries. However, concrete will still be 

used in OECD countries because of the previously mentioned benefits and the existing culture 

in the construction sector. Therefore, it is vital to adopt a pragmatic approach to concrete as a 

building material and use it as effectively as possible to reduce the environmental 

consequences and comply with the legal requirements. There is also an economic incentive to 

reduce the building material used, which often can be a catalyst for change.  

In continuation of the previously mentioned legal requirements in the building regulation, 

the concrete industry association released a guideline [11] for a series of measures to ensure 

that concrete structures are optimized to meet the specified functional requirements with the 

lowest possible carbon footprint. Some of the most relevant points regarding design 

optimization from the guideline are listed as follows:  

Figure 1.2 – Projected concrete production [12] 
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 Assess the optimal choice for the statical system. 

 Assess the calculation method (elastic or plastic). 

 Optimize the reinforcement in conjunction with the geometry and material 

properties to achieve the lowest possible CO2 footprint.  

 Asses the load directions and the corresponding structural system 

 

Other relevant points include materials reuse, topology optimization, and LCA. However, 

an important point in the guideline is to examine alternative structural layouts, and this 

analysis should be supported by involving the contractor and structural engineer in the early 

design phase to better integrate their knowledge and experience in the design [11], which can 

be done using an Integrated Design Process (IDP).  

 

1.1.2 Integrated design process  

Contemporary building design is a very complex endeavor, with many specialized 

disciplines such as HVAC, geotechnical engineering, fire-safety engineering, architecture, 

dynamic analysis, and more. Furthermore, due to this complexity, building design today is a 

strictly sequential process where the different disciplines work as separate entities without 

much cooperation across their respective fields. This approach is defined as a conventional 

design process (CDP). Despite the recent rise in digital tools and collaboration platforms, this 

is still the most common practice today [12]. Architects determine the building’s geometry, 

massing, and overall form during the initial design phase. This task also includes placing the 

loadbearing and stabilizing elements. They typically carry out this task without involving 

engineering consultants [13] [14]. 

After the project has taken shape, structural engineers and other consultants start to carry 

out detailed calculations to realize the system provided by the architectural team. This 

approach is not ideal because a lot of the engineer’s knowledge and know-how are not utilized 

to help create a more optimal form. The geometry of a building’s structure directly determines 

the distribution and magnitude of the forces it must resist [15]. Therefore, the global 

configuration of the geometry holds the most significant impact on the structural performance 

of the building. So to achieve more effective designs, we need more collaboration among all 

participants [16].  

This increased collaboration could be achieved by utilizing an IDP approach to building 

design. IDP can be understood as a collaborative building design method that emphasizes 

holistic design development [17]. This collaboration has to start early in the design process to 

have any beneficial impact. The basic concept of CDP and IDP is illustrated in Figure 1.3 and 

Figure 1.4, respectively.  
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It is noted that an IDP approach does not necessarily require more time but that the 

stakeholders are involved in the early design process in a joint collaboration to contribute their 

specialized knowledge to create a more cohesive design. This approach to building design is 

also supported by the MacLeamy curve, illustrated in Figure 1.5. It is noted that B. Paulson 

first introduced the concept of the MacLeamy curve in 1976 [18]. However, the concept is best 

known as the MacLeamy curve, and this notation will be used going forward. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 – The basic concept of a conventional design process (CDP) 

Figure 1.4 – The basic concept of an integrated design process (IDP) 

 

Figure 1.5 – Illustration of the MacLeamy curve  
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The MacLeamy curve is based on a pretty self-evident observation: An architectural project 

becomes more difficult to change the more developed it becomes [19]. While the MacLeamy 

curve is created from an architect’s perspective, it can be argued that it is symptomatic for the 

whole building design phase and is, therefore, highly relevant to the structural engineers’ 

work process. MacLeamy argued that increased focus on the initial design phase would benefit 

the project as a whole, as it is here that we have the most significant impact on the project. This 

phase in the construction process is often neglected because it is highly time-consuming, and 

therefore expensive [20]. MacLeamy stated that the shift to an IDP approach should be possible 

by increasing the use of automation [21].  

This project also states that the use of computational design (CD) methods would support 

an IDP approach, as CD can facilitate more informed decision-making and enable 

collaboration among stakeholders. The concept of computational design is elaborated upon in 

the subsequent section.  

 

1.1.3 Computational design 

Computational design refers to the use of digital tools and techniques to generate, 

manipulate, and analyze design solutions. CD have rapidly gained popularity in the last 

couple of decades as a building design paradigm, which is also apparent in Figure 1.6. CD 

encapsulates a lot of methods, sub-categories, and terms. However, some terms are used 

inconsistently, and some overlap [22]. There is no commonly recognized taxonomy in CD, but 

the most used terms are parametric-, generative- and algorithmic design [23] [22]. CD also 

incorporates performance-based- performative- and evolutionary design and methods such as 

simulation analysis, repetitive task automation, and more.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 – Frequency of selected keywords in literature between 1978 and 2018. The x-axis defines the timeline 

and the circles and y-axis define the frequency use of the CD-related key word [20]. 
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CD methods can generate more optimized-, sustainable- and aesthetically pleasing designs 

and provide real-time responses to design change, thus informing the designer of the potential 

consequence of each design variation. CD can also be used to create early design tools that 

facilitate collaboration between relevant stakeholders in the design process, such as architects, 

engineers, and contractors. These tools can generate efficient and robust design solutions 

optimized for the defined design objectives and go well beyond human intuition. All these 

aspects indicate that CD methods are well-suited for an IDP approach to building design. This 

strategy contrasts the CDP approach, where designers use their knowledge, experience, and 

intuition to create design solutions, often supported by computer-aided design (CAD) 

programs. This approach can only explore minimal design variations due to time- and 

resource restrictions [24].  

 

1.1.4 Performance-based generative design.   

Performance-based generative design (PBGD) can be defined as the generation of design 

solutions based on performance criteria and design restrictions [22]. PBGD is a sub-category 

within the field of generative design and CD.  

 

 

 

 

 

 

 

 

This concept of PBGD enables a building designer to explore highly optimized design 

solutions that otherwise would have been near impossible to find through a manual trial-and-

error procedure. PBGD of structural design in the context of optimization is a very complex 

task because of the many design variables, objectives, and constraints. These optimization 

problems can often be categorized as non-linear, non-continuous, and non-differentiable, 

excluding analytical solutions and numerical methods. However, these problems are well 

suited for machine learning (ML) methods often used in the PBGD models.  

Generative design does not provide the exact answer, only better and worse ones. The user 

is still the principal designer, and the PBGD should be used as a support tool to inform the 

user of the advantages and disadvantages of different design options [1] [25]. The concept of 

PBGD is illustrated in Figure 1.8. Design variations are created from some base- geometry, 

settings, and constraints. The resulting design variations are denoted as phenotypes, 

Figure 1.7 – The inherent terminology of performance based generative design. 
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represented as gridshells in Figure 1.8. Each solution is associated with performance metrics 

to highlight their specific characteristics, in this example, using a radar graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PBGD is not unanimously praised and recognized as the future of building design, and 

several blogs and articles present a case against the methodology [26] [27]. Some of the most 

relevant points are listed as follows:  

 

1. Limited flexibility of design.  

2. Optimization regarding a single load case.  

3. Quantity over quality when generating solutions.  

4. The methods do not adequately incorporate constructability and therefore generate 

impractical solutions.  

5. PBGD only considers quantifiable metrics.  

6. The process does not fit real-world design practice. 

7. PBGD requires significant time and resources to set up and implement.  

 

These points are all valid and should not be disregarded. However, these points should not 

necessarily be regarded as “deal-breakers” but rather a list of aspects to consider when 

designing a PBGD tool. Some of these issues are relatively easy to integrate, and others require 

much consideration and thought to solve—especially the three last points. PBGD is a data-

driven process and therefore needs quantifiable metrics to run. For the most part, this is okay, 

Figure 1.8 - The concept of PBGD 
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as many important metrics in building design are quantifiable, such as mass, cost, energy 

efficiency, and strain energy. There are also ways to incorporate the more subjective objectives 

into the design process, for example, through constraints and user-defined alterations to the 

design. There are also examples of aesthetic design objectives which have been quantified and 

incorporated into a PBGD algorithm to produce more uniform and aesthetic-looking designs 

[28] [29]. 

As to the issue of fitting into real-world practice, many PBGD tools indeed work more as a 

proof of concept. Instead of a design tool tailored to the need of the actual user. As stated in 

[26]: “While it is trivial to show that generative design is possible, it is much harder to take the next 

step and show that generative design is useful.” Some research focuses on this problem [30] and 

suggests the problem could be solved by applying a research methodology such as Action 

Research to identify the end user’s needs and how to incorporate the defined features 

properly. The issue of creating a generalized PBGD model is discussed in the following section 

1.1.5 

 

1.1.5 Generalized parametric models. 

The use of parametric- or PBGD modeling is increasing, but we have still not seen a broad 

breakthrough in practical engineering. It requires skill, expertise, and time to develop a 

parametric or PBGD model, and sometimes it would be faster to solve the issue without CD 

methods. CD methods are, therefore, not always relevant, and the use of CD should be 

considered from case to case. Also, many parametric- and generative models for structural 

optimization are created for unique designs and cannot be applied generally. Examples 

include the Twist in Jevnaker, Norway, the Active Energy building, the European Central 

Bank in Frankfurt am Main, and the Forest Tower in Gisselfeld Monastery forest, Denmark. 

Therefore, it is argued that a greater economic perspective exists in creating PBGD models that 

work on more common design typologies without an increased setup time.  

However, it is not easy, as a PBGD model operates on parameters. Therefore, creating a 

parameterization method that can be used generally on any design is necessary. This 

parameterization should also ideally consist of as few variables as possible to reduce the size 

of the solution space the optimization algorithm has to search through.  

The complexity can be reduced by not creating a model that needs to encompass 100 percent 

of all possible design inputs. Instead, the aim should be to create a model that works for 

around 80 percent of all cases. The 80 percent limit is somewhat arbitrary, but the point is that 

it will often require more resources to incorporate the last 20 percent than the first 80 percent, 

and it is therefore not cost-effective to use resources on the last 20 percent.  
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A promising application for a generalized PBGD model in Denmark would be the 

development of a structural layout tool capable of generating optimized design proposals for 

the structural layout of prefabricated concrete elements. This statement is supported by all the 

reasons established in section 1.1:  

 The use of prefabricated RC elements is an integral part of the Danish building culture 

and is likely to continue being so.  

 The concrete industry association has released a series of recommendations to reduce 

concrete consumption, including exploring different structural layouts to a greater 

extent. 

 The concrete industry association also recommended better and earlier collaborations 

between stakeholders, which could be supported using an IDP approach and an early 

design tool to enhance such collaboration.  

 The construction industry is responsible for approximately 40 percent of the total CO2 

emissions, and because concrete is one of the most widely used construction materials, 

then there is a significant potential in reducing the consumption of concrete by using 

it more effectively. 

 There is a legal incentive to reduce the amount of concrete as the Danish building 

regulation introduced a limit on CO2 emissions per m2 for new buildings. 

 A tool that generates optimized structural layouts could reduce the total building cost.  
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1.2 State of the art 

1.2.1 Literature review strategy 

A literature search was conducted to 

supplement the set of already known papers 

relevant to developing conceptual design 

tools for layout optimization of RC elements. 

The purpose of this search was twofold.  

Firstly, the search strategy focuses on 

finding relevant research on developing 

structural shear-wall layout optimization. 

This search focused on finding papers 

containing the term: “concrete shear-wall 

layout optimization” somewhere in the entire 

text. This approach was applied because too 

few potential papers emerged if this search 

focused on the title, abstract, or author-

specified keywords. Paradoxically this 

resulted in too many results. Therefore, the 

search was adjusted with a “cut-off” date of 

January 2016. First, a preliminary screening 

identifies and removes irrelevant papers, such 

as review articles, because they do not include any methods. Book chapters and encyclopedia 

text are also removed. Then every paper that was not categorized as engineering was removed. 

This exclusion also involved papers in irrelevant subject areas. Then two review rounds were 

conducted to reduce the number of papers to a more reasonable amount. The first round 

reviewed papers based on their title alone. This review round was conducted as an inclusion 

process rather than an exclusion, meaning the title must be considered relevant to proceed to 

the second round. In the second review round, the abstract was read, and the paper’s text was 

screened to determine its relevance to the project. The review procedure is shown in Figure 

1.9.  

The second primary literature search strategy focused on exploring all the themes that could 

be relevant for the development of a generative design tool for structural layout optimization. 

There are many different relevant theories and methods, and the search focused on, though 

not limited to, the following search terms:  

 Conceptual design, parameterization, performance-based design, Surrogate assisted 

optimization, automation in structural engineering, interactive optimization strategies.  

 

 
 

Figure 1.9 – 1st literature review procedure. 
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1.2.2 Related work 

Creating a tool to generate structural layout suggestions have been the subject of previous 

research. A. Retik [31] created such a tool in 1994. Many valuable properties were 

incorporated, such as cost estimation, user interactivity, and 3d illustrations. Though the tool 

also had some severe limitations. The tool generated suggestions based on a deterministic 

ruleset, so no performance-based optimization was involved. The tool also does not consider 

the lateral stability of the given structure, which, especially for taller buildings, can 

significantly impact the structural performance. The tool also only processes orthogonal-

shaped buildings and a unidirectional load span.  

Throughout the last two decades, there has been increased research on this topic. M. Jinjie 

combined FE analysis with an expert algorithm [32]. P. Zhao used a deep neural network 

(DNN) trained on existing data to generate a beam-slab layout [33]. S. Talatahari used a 

quantum-charged system search to optimize the shear wall layout of tall buildings [34]. T. 

Takada, Y. Kohama, and A. Miyamura created a proof of concept using a branch-and-bound 

method and combinatorial optimization to find the optimal allocation of shear walls in a 3d 

multi-story frame [35]. The objective was to minimize the total amount of shear walls while 

subjected to displacement-, torsional- and up-lift constraints. The method only works on 

rectangular planes and orthogonal lines and does not incorporate the slab into the design 

process.  

 

 

 

 

 

 

Figure 1.10 – Examples of alternative layout suggestions. Image by A. Retik and A. Warszawski [27]. 

Figure 1.11 – Optimal allocation of shear walls. Image by T. Takada et al. [28]. 
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Zhang and C. Mueller used the ground structure approach and a modified genetic 

algorithm to generate optimized shear wall layout designs [36]. They emphasized the 

importance of reducing the gap between architect and engineer with a tool that supports an 

IDP approach. Though the tool still had simplifications, such as being limited to orthogonal 

lines and simplified calculations, and it only considered shear walls in the structural system. 

H. P. Lou et al. developed their shear-wall layout optimization tool using a tabu-search 

algorithm [37]. They utilized a surrogate model (SU) in the form of a support vector machine 

to reduce the cost of the model’s evaluation. 

  

 

 

 

 

 

 

 

 

 

However, the method only optimizes the shear wall placement and does not incorporate 

structural elements such as beams and slabs into the design process. Furthermore, the method 

operates on a rigid set of module lines which limits the flexibility and variations of the design 

solutions. This issue is common within the addressed related work, and it reduces the 

flexibility of the design process when the solution space is confined to a predetermined set of 

potential lines. Furthermore, these lines must be orthogonal or at least linear in almost every 

reviewed project. Another issue is that the proposed methodologies do not incorporate all 

structural elements into one cohesive optimization process. These methodologies are also 

primarily created as a proof-of-concept and, therefore, not adapted for the need of real-world 

building design practitioners. Incorporating constructability is vital if the tool should be able 

to assist an IDP approach. H.P. Lou et al., Zhang, and Mueller does recognize and write about 

the potential of a more integrated design approach. They do, however, focus more on the 

barriers instead of on how to resolve them [37] [36]. 

This issue was the subject of P.B. Purup and S. Petersen. They proposed a research 

framework to develop building performance simulation (BPS) tools conformed to the design 

practices in the early design stage [30]. They also stated that, to their knowledge, no early 

HVAC design tools had been adopted in professional design practices.  

This statement is partly also the case for structural engineering, though some exceptions 

exist. Søren Jensen a/s, BIG, Ramboll, and Arup use CD methodologies in their work. This 

Figure 1.12 – Potential shear wall layout. Image by H.P. Lou et al. [33]. 
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exception is also the case for Bolllinger+Grohmann. They utilize genetic algorithms to search 

through several constellations to find a solution that conforms to the given objective and 

constraints. This use of ML is evident in projects such as the Active Energy Building, 

Skybridge, and the European Central Bank in Frankfurt am Main. Common for all these 

projects was that the problem representation used was a simplification driven by the available 

technique.  

 

1.3 Scope of the project  
The objective of this Ph.D. project is to create a conceptual design tool to generate a catalog 

of optimized layouts of the load-bearing structures in the initial design phase. It is noted that 

the project’s output is denoted as a design tool. In reality, it is more comparable to a framework 

featuring several design tool modules. This framework structure is necessary to accommodate 

the complexity of creating a tool containing all the required features. The definition of “design 

tool” is still telling, and this wording will be used interchangeably with “framework” and 

“design methodology” throughout the thesis. 

The design tool is intended to inform the design with several relevant data streams such as 

cost, material type, and more. The tool is not intended to drive the design process but to 

support the design team in creating more successful designs that perform well regarding the 

defined design objectives and constraints. The tool is intended for real-world application, and 

in a real-world application, the design is often restricted to fit given criteria. These restrictions 

could be architecturally motivated. Therefore, the tool must be interactive and flexible to 

maximize design freedom. Another important aspect is the dissemination of the results.  

If the tool is to achieve broad recognition, then the tool’s procedure and output must be 

transparent to obtain the necessary credibility for real-world application. The responsibility 

relies solely on the engineer in collaboration with the architect. Therefore, the engineer needs 

to be able to obtain an overview and verify the static calculation results. Also, great 

dissemination of the results and calculations can be used directly in final static documentation, 

provided the calculation contains the required fidelity level. Thus, reducing the amount of 

work that an engineer would have carried out manually. This feature is also important as it is 

required for an industrial Ph.D. project to contain a commercial prospect. The commercial 

prospect resides in different aspects of the project. Automating engineering tasks enables 

hamiconsult to increase their capacity without increasing the need for “manpower.” 

Automation is especially relevant when considering the report from “Engineer the Future” 

which states that there will be a high deficiency of engineers in the future [38]. Therefore, the 

tool would provide a possible way to reduce the workload while increasing the quality of the 

design solutions. The use of ML and optimization algorithms could reduce the amount of 

building material needed significantly. This reduction will decrease the cost of a given design 
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project and therefore increase hamiconsult’s competitiveness. The tool is also an opportunity 

to reduce the risk of calculation errors. Engineers make mistakes, and not every mistake is 

found during the quality assurance process. A structural engineer will always verify the 

conceptual design tool’s results, but the possibility of certain mistakes is eliminated (or at least 

reduced). The research generated from this project will also benefit the building industry as a 

whole since it explores the possibility of applying state-of-the-art methods as a complementing 

tool for the engineer. 

 

1.3.1 Design limitations 

The project has to introduce certain limitations to realize all these features due to practical 

constraints such as time and resources. Therefore, it is important to prioritize which features 

to incorporate by evaluating their influence on the final design and the resources required to 

implement them, as well as determining whether a particular feature will excessively increase 

the computational burden of the design tool in relation to its value.  

This section outlines some of the most notable features that have not yet been integrated 

into the design tool: 

 

 The tool will only focus on structures using precast RC elements. 

 The tool does not consider other relevant building design disciplines, such as HVAC 

and LCA. 

 Fire load calculations are not incorporated as the building’s geometry changes in each 

iteration, making it difficult to assess the person load and the usage category. 

Moreover, conservative assumptions of fire conditions would result in oversizing the 

structural elements, leading to an imprecise representation of the building’s geometry. 

 Robustness in the context of a building’s ability to resist unexpected failures or damage 

is not included. The necessary calculations to document a building’s robustness vary 

based on its consequence class, which can change for each design iteration depending 

on the global geometry. In addition, assessing robustness requires an evaluation of the 

consequences of the failure of a given element [39], which is an iterative process that 

must be carried out for each element. These requirements make robustness 

considerations too resource intensive to include. 

 Seismic load is not included in this version of the tool. In Denmark, seismic loads rarely 

govern the sizing of the stabilizing system. It would computationally be expensive to 

include these calculations in an optimization process as the structures change for each 

iteration.   
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 Certain limitations have been imposed on the geometric flexibility of the tool due to 

time constraints. The most apparent limitations are the absence of concrete cores and 

considerations for non-regular plan elevations. 

 

Despite the absence of these features, the tool’s ability to identify optimized structural 

layouts is not diminished, and it still serves as a proof of concept for the design methodology. 

The exclusion of these parameters is also not necessarily permanent, and section 6.3 reflects on 

how some of these features could be incorporated in future versions.   

However, in an idealized scenario, the building design would be parameterized 1:1, every 

relevant building design discipline incorporated, and the evaluation time would be nearly 

instant. This goal is unrealistic, but this does not mean we should not strive for a truly holistic 

building design tool. Because the knowledge and experience for each research project 

accumulate and the design tools available improve with time. Hopefully, this project will add 

to this accumulated knowledge, and future research or versions of this tool will pick up the 

thread and incorporate the limitations defined in this project.  
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1.3.2 Research questions, aims, and objectives 

All the aspects and considerations presented and discussed in Chapter 1 lead to the 

following research questions, aim, and objectives.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Research questions 

 What features in an early design tool would support building designers real-world 

work practice?  

 How can a parameterization method be designed to generate a range of diverse 

and practical solutions? 

 What are the potential design strategies for generating optimized structural layout 

suggestions that incorporate all relevant structural elements within a single 

optimization process? 

Research aim 

 Identify the barriers for implementing early-stage design tools and features that 

would help building designer in their everyday work practice. 

 Asses what parameterization- or combinations of parameterization encoding 

technique best fitted for the needs of the design tool.  

 Assess the use of hierarchical surrogate modelling for rapid evaluation response.   

  

Research objective 1 

 Use action research as a structured approach to the concept development of the 

design tool. 

 Use action research to identify features which will contribute with better user-

interactivity and dissemination. 

  

Research objective 2 

 Develop a parameterization technique that can generate varied and relevant 

structural layouts on any given building plane.  

 Incorporate user-interactivity into the parameterization methodology. 

  

Research objective 3 

 Develop a conceptual design tool that utilizes surrogate modeling to generate 

optimized structural layouts for prefabricated RC elements.  

 Demonstrate the effectiveness of the design tool on relevant cases using different 

settings and constraint.    
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1.4 Organization of the Dissertation 
The thesis is organized into six chapters. The outline of the chapters is summarized as follows: 

 

Chapter 1 – Introduction 

The background and motivation for this Ph.D. project are presented. Additionally, some of 

the design methodologies the project is based upon are discussed. Furthermore, a state-of-the-

art is presented with a focus on related work. Lastly, the project’s research questions, aim, and 

objectives are presented.  

 

Chapter 2 – Methodological framework 

The most relevant methods and theories that form the basis for the development of the tool 

are presented. This presentation is not extensive but focuses on the core principles and how 

they relate to the design tool. For a more in-depth review, reference is made to supplementary 

literature.  

 

Chapter 3 – Action research analysis 

Chapter 3 introduces the principles of action research (AR). The subsequent AR analysis 

was used as a structured framework for developing the overall concept of the design tool. The 

result of this analysis is presented with a focus on the final framework of the design tool.  

 

Chapter 4 – The design tool  

A thorough description of the finalized mechanism of the design tool is presented. Alterations 

from the original framework in Chapter 3 are discussed and displayed.    

 

Chapter 5 – Validation studies 

The tool’s effectiveness and robustness in producing structural layout suggestions are 

validated through relevant case examinations. The analysis is split into two main sections, 

which can essentially be defined as a local- and global analysis of the design tool. First, the 

effectiveness of the separate modules is presented and analyzed. Secondly, the tool’s ability as 

a unified unit to produce structurally optimized layouts is demonstrated and evaluated.  

 

Chapter 6 – Conclusion  

The primary results and conclusions of the project are presented. The main findings are 

discussed and reflected upon. A subsection in this chapter is dedicated to present future work 

and prospects concerning short- and long-term goals.  
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Chapter 2 - Methodological Framework 
  

“All exact science is dominated by the idea of approximation.” 
  – Bertrand Russell 

 

Every scientific theory, -model, and -method is based on the idea of approximation. They 

are constructed to represent the observable physical phenomena occurring in the world. The 

theories are formulated using the scientific method through systematic observations, 

measurement, and experiments and then formulated into a theory that can be tested. The 

theory is then accepted or rejected based on its prediction accuracy, which can be measured 

using statistical methods. In time these may be replaced with newer theories that better 

represent the world. A quote attributed to George E.O. Box states: “… All models are wrong; 

some, though, are more useful than others…” [40]. We use these models in almost every aspect of 

modern life, and in structural engineering, they are used to getting the answer near enough, 

with failure not being an option [1].  

Chapter 2 presents some of the most relevant theories used in this project to develop a 

conceptual design tool capable of generating optimized structural layouts for a building 

design. Section 2.1 discusses the topic of parametric modeling, including some of the key 

aspects in this field. Section 2.2 introduces optimization on a general level, while section 2.3 

explains the mechanics of a Genetic Algorithm, a meta-heuristic optimization algorithm. 

Section 2.4 introduces the topic of surrogate modeling.  

Not all discussed methods were incorporated into the final design tool, though they were 

all considered. The inclusion and exclusion of these methods were determined through 

prototype testing. Finally, Chapter 2 establishes some of the terminology used in later 

chapters. 

 

2.1 Parametric design  
Defining parametric design or parametric modeling can be challenging, even for experts in 

the field, as noted by D. Davis [19]. Davis also outlines various definitions that have been 

utilized in parametric design. Therefore, it is important to state the definition used in the 

particular project’s context. This principle also applies to any subcategories and concepts 

within the field of parametric design. This section will elaborate on relevant concepts, 

approaches, and definitions used in parametric design which are relevant for developing the 

design tool in this project.  



Chapter 2 - Methodological Framework   

 

20 

 

In this project, parametric design is defined as the process of using algorithms to generate 

and manipulate geometric shapes, material properties, and other parameters that define the 

properties of a building design.  

Parameters can be understood as values or variables that define the geometry, functional 

characteristics, or even the aesthetic expression of a building. This segmentation can occur in 

different ways. Parameters can represent dimensions, loads, materials, constraints, and other 

relevant aspects of building design. Manipulating these parameters enables the engineer or 

architect to explore different options and optimize the performance of a building or structure.  

There is, in theory, no limit to how detailed a parametric model can be. However, this 

should not be the goal because the solution space becomes so vast that it will be impossible to 

navigate. It is important to reflect on the essential parameters and incorporate them into the 

model. A balanced parametric model is flexible and can generate varied solutions while still 

sustaining a manageable solution space.  

Parametric modeling also requires a degree of upfront planning and reflection. A 

parametric model can vary and change effortlessly within the scope of its parameters. It is 

much harder to accommodate a requested change that was not anticipated when creating the 

model. This model adjustment can potentially mean a total rewrite of the parametric model 

[26]. 

 

Parametric design can be categorized based on different classifications or approaches, such as:  

 Problem type, e.g., structural design, product design, landscape.  

 Available software, e.g., Rhino + Grasshopper, Dynamo, Revit. 

 Approach, e.g., Top-down, bottom-up. 

 Encoding, e.g., binary encoding, permutation encoding, value encoding. 

 Level of complexity, e.g., many variables, few variables. 

 Shape grammar-based parameterization.  

 

Numerous other categorizations and approaches to parameterization exist, as discussed in  

[41] [19] and [13]. Determining the correct categorization can aid in identifying appropriate 

methods for constructing the most efficient parametric model. The classifications listed in this 

section are emphasized since they are relevant to developing the design tool in this project. 

Sections 2.1.1 to 2.1.6 will further elaborate on these categories. 

 

Finally, it is necessary to define the concept of parameterization. In the context of this 

project, parameterization of a building is essentially defining the design domain in which a 

building can change. It should not be confused with parametric modeling or encoding. 

Encoding in computing is defined as the process of converting one data format into another 
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[42]. Encoding and parameterization are closely related concepts. In this project, the following 

distinction is used to supplement the already established definitions: encoding is the process 

of converting design parameters into a machine-readable format, while parameterization is 

the process of linking these parameters together to create a parametric model.  

 

2.1.1 Problem type 

Parametric modeling based on the problem type refers to the industry in question, as 

parametric design is widely applied in everything from product design to building design. 

The nature of the problem significantly influences the parametric approach to solve it best. For 

example, when developing a parametric model for structural design, it is essential to consider 

the local and global geometry, material properties, connection types, and external forces.  

In product design, it may be more important to ensure that the parametric model is highly 

geometrically flexible, enabling the exploration of a wide variety of solutions in terms of 

aesthetic and functional qualities.  

Other relevant areas that use parametric design include aerodynamics, urban design, 

landscaping, and lighting design. Whatever the case, the problem at hand greatly affects the 

design and approach of parametric modeling. Examples of parametric design for different 

industries are shown in Figure 2.2 and Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Parametric software 

Parametric design can also be categorized based on the software platform used to 

implement the parametric model. Different software programs offer different capabilities and 

may have a unique approach to parametric modeling. One of the most popular software 

products is Rhinoceros3d + Grasshopper3d [43], also referred to as Rhino and Grasshopper, 

respectively. Rhino is 3D CAD software developed by Robert McNeel & associates and is used 

Figure 2.2 – Example of a parametrically designed structure in the Aliyev 

Cultural Center in Baku. Image by Flickr user Anton VG. 

 Figure 2.1 – Parametrically 

designed product. Image by 

Flickr user Sharan Sharma.  
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in many different industries, such as architecture, engineering, and product design. The 3d 

graphical abilities in Rhino can manipulate, render, and animate NURBS representations, 

polygon meshes, and several other geometrical constructs, making it a versatile tool for 

complex 3d analysis.  

Grasshopper is a visual-based programming language that runs within Rhino. Grasshopper 

is very intuitive and works by creating connections between different components with nodes 

in flowchart-style. The input then runs downstream and affects the following components 

until the final output is reached. This parametric approach allows for the fast creation of 

complex designs that can be easily manipulated, and is also known as Directed Acyclic Graph 

(DAG) [41]. 

Other relevant parametric software tools include Revit + Dynamo [44] and SolidWorks + 

DriveWorks [45].  

 

 

2.1.3 Top-down or bottom-up parameterization  

The approach category refers to the chosen parameterization strategy of a given problem. 

In building design, a top-down approach starts with a high-level concept or overall building 

form. This form is then broken down into smaller, more detailed components. The 

relationships and parameters define the overall structure; these relationships are then used to 

create and refine the smaller elements. This method contrasts with the bottom-up approach. 

Here the initial parameters are used as input to define individual elements or modules which 

are used to build up the overall structure. 

The design of a gridshell can be used to illustrate the difference between these two 

strategies. In a top-down approach, the gridshell’s overall shape is defined first, and the grid 

topology is projected into it, then dimensioning the individual grid elements and their 

connections. In a bottom-up approach, the process starts in reverse by defining the 

connections’ capacity and gradually adding grid elements until a complete configuration is 

achieved. Dynamic relaxation is used to define the final shape of the gridshell.  

While both approaches result in a gridshell design, the approach is vastly different and 

impacts the final outcome. 

Another factor in parametric modeling that can significantly impact the final design is the 

choice of parameter encoding. The subsequent section will further elaborate on this topic. 
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2.1.4 Encoding types  

As earlier defined, a parametric model uses a set of parameters to represent a given solution 

or design. This set is often denoted as a chromosome, with an apparent reference to biology, 

where a chromosome carries the genetic information representing an animal. This concept is 

illustrated in Figure 2.3.  

 

 

 

 

 

 

 

Each parameter in the chromosome represents an input that has been encoded into a data 

structure the algorithm can understand and operate. These encoded variables can then be used 

in one of the CD representations shown in Figure 1.7 to generate and manipulate different 

solutions. There are different types of encoding related to the nature of the problem it 

represents, and some of the most common types are illustrated in Figure 2.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binary encoding represents a solution through a set of “one” and “zero” values. This 

encoding method is often used in structural engineering, as it is simple, and the values can 

represent the existence or nonexistence of structural elements. Permutation encoding is 

 Figure 2.3 – Conceptual illustration of how parameter information is stored in a chromosome. 

 Figure 2.4 – Examples on the different encoding types. 
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utilized in problems where the order of variables is used to represent a given problem. This 

encoding type is relevant in problem areas such as stock optimization and bin packing 

problem and can be used to solve the traveling salesman problem. Value encoding, or real 

parameter encoding, is an array of values representing any possible property of elements, for 

example, real values, characters, or colors. For other encoding types, see [46] [47].  

Figure 2.5 illustrates an example of how to represent a given grid structure through binary- 

and real-number variables. This encoding can turn the elements “on” and “off” and move the 

vertices of the structure; other parameters could have been added to represent each element’s 

cross-section or color. The principle can be used to represent any given structure.  

There are in principle no limitations on the number of parameters and encoding types used 

to represent a given structure. However, increasing the complexity can give rise to issues, 

which is discussed in the subsequent section.  

 

 

 

 

 

 

 

2.1.5 Level of complexity 

Complex problems can sometimes require a high number of parameters; this is an issue as 

the solution space increases exponentially with each added variable. This complexity can make 

it very hard for an optimization algorithm to navigate a solution space and converge toward 

optimum solutions. Also, the high number of parameters often correlates with an increased 

evaluation time, reducing the optimal conditions for the optimization algorithm. Specific 

measures can be implemented to deal with these issues:  

 The first and most simple measure to consider is the possibility of a simpler 

representation of the problem with fewer variables.  

 Surrogate models can also be implemented to construct approximation models of the 

problem to reduce the evaluation time significantly [48] [49]. 

 Dimensionality reduction techniques such as Principal Component Analysis (PCA) can 

simplify the problem. These techniques aim to reduce the number of parameters by 

identifying the most influential ones [50]. 

 Many-variable problems are well suited for meta-heuristic algorithms, such as genetic 

algorithms and particle swarm optimization. These algorithms have mechanisms that 

balance exploration and exploitation of the solution space [51] [52]. 

 

Figure 2.5 – Example of how to represent a grid structure through parameters. 



Chapter 2 - Methodological Framework   

 

25 

 

2.1.6 Shape grammar 

Shape grammar or grammar-based design refers to the use of geometric rules to represent 

a structure or design. The methods operate on a set of initial shapes. These shapes are then 

manipulated and combined into more complex shapes; this process is recursive and can 

continue indefinitely. Shape grammars have the potential to produce more diverse solutions 

than using more traditional methods in parametric design and can be used to explore 

possibilities across typological boundaries [13] [53].  

Rules in shape grammar can consist of different principles. Figure 1.1 illustrates how an 

initial shape can transform into new variations using different types of transformation, such 

as addition, subtraction, rotation, and reflection.  

 

 

 

 

 

 

 

 

 

 

 

2.2 Optimization 
Optimization is the act of obtaining the best result under given circumstances. Another 

relevant definition states that: optimization is the process of finding the variables that will 

provide the maximum or minimum goal value [52]. The general mathematical formulation of 

this statement can be formulated as:  

 

 

 Find ��= �x1

x2⋮
xn

� which minimize or maximize f(X)    (2.1) 

Subjected to the constraints: 

 
 

�j����≤0      j=1,2,…,m

l	����=0      k=1,2,…,p
 (2.2) 

Where: �� n-dimensional design vector 

g
j
(��) j-dimensional inequality constraint 

l
(��) k-dimensional equality constraint 

Figure 2.6 – Conceptual example of how shape grammar rules can create variations from an initial shape. 
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The aim of structural design has always been to find optimal solutions. However, only the 

simplest problems can be solved analytically using differential calculus, which originated with 

Newton and Leibniz. More complex problems can be solved using numerical methods 

primarily developed in the middle of the twentieth century [52]. Even so, these methods also 

fall short when dealing with non-linear, non-continuous, and non-differentiable problems, 

which often is the case in structural engineering and CD. Conversely, these problems may be 

well suited for meta-heuristic optimization algorithms, which also can be combined with 

Machine learning methods to provide an effective approach to finding optimal solutions. Both 

concepts will be introduced in the following section.  

 

2.2.1 Machine learning and optimization algorithms 

Machine learning (ML) is a subfield of Artificial Intelligence (AI), and the terms are often 

used interchangeably. ML is defined as the ability of computers to learn and to find 

approximate functions without explicitly being programmed to do so [54]. ML can be divided 

into different categorizations, two of which are relevant to define concerning this project:  

 

 Supervised learning vs. Unsupervised learning 

 Classification vs. Regression 

 

Supervised learning refers to the use of labeled data to train the algorithm to predict new 

data. In contrast, unsupervised learning involves finding patterns and relationships in 

unlabeled data without guidance [51]. Regression- and classification algorithms are both 

defined as supervised learning algorithms within the field of machine learning. The main 

difference between these two types of algorithms is the output they produce. A regression 

algorithm will output a real number representing a price, fitness value, size, and more. A 

classification algorithm, on the other hand, produces a categorial output. This output could be 

a simple binary, for example, “true” or “false,” or a multi-categorical output, such as “dog," 

“cat,” or “horse” [51]. 

 

In structural engineering, regression and classification ML models can be combined with 

meta-heuristic optimization algorithms to enhance the optimization process. This process is 

done by creating ML models that can approximate the response of computationally expensive 

objective functions. This concept is also known as surrogate modeling and is further detailed 

in section 2.4. The optimization algorithm can then use these ML models for fast evaluation 

and therefore achieve an increased exploration of the solution space with reduced 

computational cost.  
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Optimization algorithms can be divided into numerous categories based on their 

characteristics and approaches to optimization, as detailed in [55] [52] [51]. Specific 

categorizations will even intersect. The most relevant categorizations for this project are: 

 

 Classical vs. Meta-heuristic 

 Heuristic vs. Meta-heuristic 

 Deterministic vs. Stochastic  

 Population-based vs. Non-population based 

 

Classical optimization refers to the numerical methods that originated with Newton and 

Leibniz. These methods are useful in finding the optimum solution for continuous and 

differentiable functions. Since most complex problems do not confine to these requirements, 

the classical optimization techniques have limited scope in practical application [52].  

In contrast, meta-heuristic algorithms can be applied to optimization problems with little 

to no knowledge of the underlying problem. They can therefore be regarded as black-box 

solvers, also known as a general-purpose algorithms [51]. There are different properties that 

characterize metaheuristic algorithms [52] [56]: (i) they use stochastic principles to guide the 

search process. (ii) they all tend to find the global optimum solution and are most likely to find 

an optimum solution, but not necessarily all the time. (iii) they use strategies that imitate the 

behavior of natural phenomena like evolution, annealing in metallurgy, or imitating the 

behavior of certain species like ants, bees, or birds. (iv) They use higher-level heuristics to 

guide the search.  

A heuristic can be defined as a rule or process used to approximate an answer. In contrast 

to a meta-heuristic algorithm, a heuristic algorithm is problem-dependent, meaning the 

algorithm exploits the underlying patterns of a given problem type. Also, a heuristic algorithm 

does not provide any information on the quality of an answer. The advantages of heuristic 

algorithms lie in their speed in reaching an approximate solution.  

Meta-heuristic algorithms use higher-level strategies to provide a general framework of 

rules or heuristics to guide the search for a solution. Hence the name meta-heuristic, as it 

combines multiple heuristics into an iterative strategy that improves the answer by using a 

ranking procedure [57] [51]. 

 

A deterministic algorithm refers to an algorithm that uses predefined and rigid rules to 

navigate a solution space. A deterministic algorithm will always produce the same output 

given the same input as parameters. On the other hand, a stochastic algorithm uses 

randomness in its search process, making it effective in searching for solutions in complex 

non-linear, non-differentiable solutions spaces.  
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Non-population-based algorithms search the local region around an initial starting point in 

the solution space and will quickly converge toward a solution. However, these methods are 

unlikely to find the global optimum if the initial starting point is far from the initial starting 

point.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conversely, population-based algorithms are designed with mechanisms that enable them 

to escape local optima areas and are thus more likely to find the global optimum. However, 

they are more computationally expensive than local optimization algorithms and, therefore, 

slower. 

Thus, the choice of strategy depends on a trade-off between computational cost and the 

accuracy of the final solution. This concept of global and local extrema is illustrated in Figure 

2.7.  

 

There are several other possible categorizations based on the nature of the optimization 

algorithm, and the categorization can also be based on the specific optimization problem, such 

as:  

 Continuous vs. Discrete  

 Single-objective vs. multi-objective 

 Constrained vs. Unconstrained. 

 Binary-, Permutation-, Value-encoding 

 

Figure 2.7 – Illustration of global and local extrema 
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Many more categories exist within the optimization algorithms, and they are sometimes 

even intersecting. This variety of options makes it nearly impossible to construct one cohesive 

overview. Figure 2.8 provides a simplified overview with examples of relevant algorithms. It 

is noted that many of these algorithms also contain different sub-versions. Combining 

optimization algorithms or parts of them into a larger optimization framework is also possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 Multi-objective optimization 

Optimizing multiple objectives on a given problem is often relevant in structural 

engineering. The general mathematical formulation of optimizing with multiple objectives can 

be described as [52]: 

 

 ���� �� �  �����⋮��
� �ℎ��ℎ �������� �� � ������ � � ⎩⎨

⎧$�����$�����⋮$	����⎭⎬
⎫    (2.3) 

Subjected to the constraints: 

  �(���� ) 0      + � 1,2, … , � (2.4) 

Where: �� n-dimensional design vector 01���� inequality constraint 

 

 

Figure 2.8 – Simplified overview of relevant optimization algorithms 
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The objectives can often be conflicting, meaning that an improvement in one objective leads 

to a deterioration in another. The presence of conflicting goals makes it impossible to choose 

a solution that satisfies all the objectives in the best possible way. Thus, choosing a solution 

will require the definition of a satisfying trade-off between them.  

In Multi-objective optimization, this task is defined as ranking, and the ranking methods can 

be categorized based on how they evaluate a solution. The most common ranking categories 

are dominance-based, aggregation-based, and indicate-based. Dominance based-ranking is 

the most widely used [55], and some of the most representative algorithms in this field are the 

Strength Pareto Evolutionary Algorithm 2 (SPEA2) [58], the Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) [59] and the Fast Hypervolume-Based-Many-Objective Optimization 

Algorithm (HypeE) [60]. The dominance-based approach uses the concept of Pareto optimal 

solutions, also known as a Pareto front. A solution is Pareto optimal if it dominates all other 

solutions in at least one objective category. In other words, a feasible solution �� is called Pareto 

optimal, if there exists no other non-dominant solution 2� such that: $3�2�� ) $3���� $�� �, + � 1,2, ⋯ , 5 with $(�2�� 6 $3���� for at least one j [52], where k denotes the 

number of objectives.  

 

A Pareto front can visualize the trade-off between objectives and help the user make 

informed decisions. Figure 2.9 visualizes the concept of the Pareto front.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Using a Pareto front to select a solution can also be described as ideal-based multi-objective 

optimization [55]. This approach contrasts with a preference-based multi-objective 

optimization strategy, simplifying the problem into a single-objective optimization problem 

by summarizing the different objectives with predefined weights. This method is known as 

the weighted sum method, or scalarization, and can be described mathematically as 

Figure 2.9 – Four Pareto-optimal solutions and one non-optimal solution. Recreated from [41]. 
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  �789 � �� ∙ �� + �� ∙ �� ⋯ + �� ∙ �� (2.5) 

Where:  <= Objective function  >= Weighting factor <?@A Summarized objective function 

 

This simplification is a common strategy; however, there are multiple problems related to 

this approach. The main issue is the loss of information. Multi-objective optimization will often 

consist of conflicting goals, and there will not exist an optimal solution but a series of Pareto 

optimal solutions with each their advantage. Reducing multiple objectives into a single scalar 

value will make assessing the trade-offs between solutions hard. Moreover, the weighting of 

the objectives will be arbitrary and subjective as there is no precise way to evaluate the optimal 

trade-off between the objectives [55]. The resulting solution may not accurately reflect the 

preference or priorities of the decision-maker, and it may not even be Pareto-optimal. While a 

preference-based approach is not necessarily inappropriate, this project will employ an ideal-

based approach for multi-objective optimization problems because of the aspects mentioned 

earlier and because it is deemed essential to engage the user in the decision-making process.  

 

2.3 Genetic algorithm 
A Genetic Algorithm (GA) is a meta-heuristic optimization algorithm inspired by the theory 

of evolution. It imitates the concepts of natural selection, crossover, and mutation, first 

proposed by Charles Darwin in his book On the Origin of Species [61]. The GA was developed 

by John Holland in 1975 [62] and is part of the evolutionary algorithm family. Other strategies 

include evolutionary programming and evolutionary strategies. They are based on the same 

principles, and in practice, it is hard to distinguish between them [63] [52]. The terminology 

used in GAs is derived from biology and defined in Table 2.1. 

 

 

Terminology Definition  

individual a representation of a candidate solution.  

population set of individuals.  

gene a feature of information describing an individual. 

chromosome set of genes representing an individual.  

parent individual selected for reproducing.  

child the offspring of two selected parents.  

fitness a measurement of an individual’s quality in relation to defined performance 

objectives.  

Table 2.1 – Basic terminology used in GA. 
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mating pool a set of individuals selected for reproducing.  

genotype genetic representation of a solution. 

phenotype visual representation of a solution. 

 

Genetic algorithms are very flexible and robust and accept almost any problem, as they can 

operate as a black box optimization algorithm, which means that the algorithm only operates 

with the input and corresponding output of a given function.  A GA can be applied for multi-

objective optimization. Unlike a gradient descent algorithm that can quickly get stuck in a local 

extrema point, a GA’s stochastic mechanisms will balance exploitation and exploration in its 

search process. The basic framework of a GA is visualized in Figure 2.10. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

The basic procedure in a GA starts with the initialization of the first population, which is most 

often randomly generated. Every individual in the population is evaluated, and the “fittest” 

individuals are selected to reproduce. These individuals are then paired up, and their genetic 

data are merged to form the next generation of solutions. To add some randomness, a certain 

percentage of the solutions will have part of their genes mutated. The “elite” mechanism will 

retain a fixed number of the best-performing individuals for each generation to save their 

genetic data from any alterations due to the crossover or mutation mechanisms. These elite 

individuals are copied directly into the next generation, and this initiative will avoid 

decreasing the quality of the best solutions during the process. Generally, an elitism scheme 

will improve the algorithm’s efficiency significantly [64] [65], and studies have shown that 

algorithms with elitism outperform algorithms without [58].  

 

Figure 2.10 – The basic procedure of a GA 
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2.3.1 Selection 

There are various selection methods in genetic algorithms, but their common purpose is to 

ensure the survival of genetic data, which will lead to optimal solutions. The selection process 

involves ranking the solutions based on their fitness. The individuals with the highest fitness 

are more likely to be selected for reproduction, while individuals with lower fitness are more 

likely to be discarded. This process can gradually improve the fitness of the solutions over 

multiple generations and will eventually result in convergence toward optimum solutions.  

The simplest strategy involves an elitist ranking, where a certain percentage of the best 

solutions are selected for the mating pool. This method will quickly converge, but it comes at 

the cost of exploration. Most strategies involve a certain degree of randomness, and some of 

the most common strategies are roulette wheel selection and tournament selection.  

The concept of roulette wheel selection is illustrated in Figure 2.11 (a). The wheel will spin 

randomly and collect the individuals needed for the mating pool. A fitter individual will 

demand a larger proportion of the wheel; this increases its chances of being selected. At the 

end of the selection process, some individuals will have been selected several times, and others 

will not have been chosen at all [65]. The selection probability p for a given individual i can be 

defined as: 

 B��3� � $��3�∑ $D�(E�(F�  (2.6) 

Where n denotes the number of individuals in one generation, and f denotes the fitness of 

a given function. This method does not exclude any individuals from ever being selected but 

gives them a chance for survival proportional to their fitness value. Thus, this roulette selection 

prioritizes search space exploration at the expense of convergence time.  

 

 

 

 

Figure 2.11 – (a) illustration of roulette wheel selection. The percentage illustrates the selection probability based 

on the fitness value. (b) Illustration of the tournament selection procedure. 
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The concept of tournament selection is illustrated in Figure 2.11 (b). The method works by 

randomly selecting x number of individuals from the population to participate in the 

tournament. The y number of best individuals is then selected for the mating pool. This process 

is repeated until the desired number of individuals in the next generation is reached. Adjusting 

the number of participants and winners will change the selection pressure. Decreasing the 

number of participants and increasing the number of winners will improve weaker 

candidates’ chances of getting selected, so the selection pressure can be used to adjust the 

balance between exploration and exploitation.   

 

2.3.2 Crossover 

Following the selection phase, the crossover process, also known as recombination, can 

commence by randomly pairing individuals from the designated mating pool. Crossover 

involves the combination of chromosomes from the selected parents to produce offspring that 

exhibit traits of both predecessors. The crossover rate determines the probability of a pair 

reproducing, with pairs not selected for reproduction being transferred to the subsequent 

generation. Selecting an appropriate crossover rate requires a delicate balance between 

preserving the traits of successful solutions and enabling the exploration of the search space 

[65]. The crossover operator is traditionally considered as the “core” of the GA because it is 

the leading cause of variation and innovation of candidate solutions [64]. There are several 

methods for utilizing the crossover mechanism; two of the most commonly used for binary- 

and real-value encoding are One Point Crossover and Two Point Crossover. Other methods, 

such as Ring Crossover, Uniform Crossover, and simulated binary crossover, are defined in 

[17] [63] [66] [67]. 

One point Crossover works by randomly defining a position between the first- and the last 

gene in the chromosome. The process results in the creation of two new chromosomes by 

exchanging all the elements between the selected position. The concept of the One Point 

Crossover method is illustrated in Figure 2.12. 

 

 

 

 

 

 

 

 

 

Figure 2.12 – The concept of One Point Crossover 
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Two Point Crossover operates similarly but with two division points instead of one. Two 

Point Crossover works roughly the same but with two division points. The two division points 

define a subset of the chromosomes, which is then exchanged between the two parent 

solutions to create the offspring. The concept of Two Point Crossover is illustrated in Figure 

2.13.  

 

 

 

 

 

 

 

Crossover operations in permutation encoding problems are more complicated than in 

binary- and real-value encoding. The exchange of genetic sequences must be performed 

intelligently, promoting diversity while maintaining a valid permutation structure. Standard 

crossover methods in permutation encoding include Ordered Crossover (OX), Partially 

Matched Crossover (PMX). Other methods, such as Edge Recombination and the Cycle 

Crossover Rule, are defined in [68] [46].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 – The concept of Two Point Crossover 
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OX operates by selecting a random crossover point in the first parent. The subset left of the 

crossover point is then placed in the offspring without alterations. The remaining elements 

from the second parent are then placed in the offspring in the order in which they appear. This 

process is illustrated in Figure 2.14 (b). The process is then repeated to create a second offspring 

but with the roles of the parents reversed.  

 

PMX operates by selecting a subset of elements in parent B and transferring it to the 

offspring. Then each value replaced in parent A is moved to the corresponding location of the 

value in which it was replaced with. The remaining elements in parent A are then moved 

directly to the offspring. The process is again repeated to create offspring A but with the roles 

of the parents reversed. The process is best illustrated graphically as in Figure 2.14 (a). 

 

Figure 2.14 – (a) Illustrative example of the PMX procedure. (b) Illustrative example of the OX procedure. 
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2.3.3 Mutation 

Sometimes the diversity generated through the crossover operator may prove insufficient, 

putting the process at risk of converging at a local optimum. The mutation operator is 

introduced to counteract this problem by enhancing the diversity of the population by 

introducing genetic variations to the chromosomes of different individuals. This 

diversification is achieved by substituting specific entries in the chromosome with random 

values that fall within the permissible range of the relevant variables. A simple concept of 

mutation in binary- and real-value encoding is illustrated in Figure 2.15. The mutation process 

can be regulated through the adjustment of two mutation parameters. The mutation 

probability determines the likelihood of a gene undergoing a mutation and is generally set to 

a low value. The mutation rate determines the extent to which the value could vary within a 

given interval. A low mutation rate results in minimal alterations, while a high mutation rate 

results in more substantial changes [65]. The mutation- probability and rate can also be 

adjusted according to the fitness using Adaptive Mutation. The average fitness is calculated, 

and the default mutation parameters of a given chromosome are then adjusted to provide a 

higher mutation rate for low-performing individuals and vice versa for high-performing 

individuals.  

Additionally, the mutation probability and rate can be dynamically adjusted according to 

the fitness value through Adaptive Mutation. This adjustment involves the calculation of the 

average fitness, which is then used to modify the default mutation parameters for a given 

chromosome. High-performing individuals receive a lower mutation rate, while low-

performing individuals receive a higher mutation rate, thus promoting greater diversity and 

potential for improvement.   

 

 

 

 

 

 

 

 

There are specific mutation operators for permutation encoding problems. Some of the 

most populator mutation operators are Swap Mutation and Scramble Mutation. Swap 

mutation works by selecting two random genes in the chromosome and then swapping the 

values, so they exchange places. This procedure can be done more than once. The concept of 

Swap mutation is illustrated in Figure 2.16. 

 

Figure 2.15 – Principle of mutation in binary- and real value encoding 
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Scramble Mutation operates by identifying a subset of values within a chromosome, which 

are then randomly shuffled to promote diversity. The concept of Scramble Mutation is 

illustrated in Figure 2.17. Other notable mutation methods include Displacement Mutation, 

Insertion Mutation, and Inversion Mutation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 – The concept of Swap Mutation 

 

Figure 2.17 – The concept of Scramble Mutation 



Chapter 2 - Methodological Framework   

 

39 

 

2.4 Surrogate modelling 
Structural engineering is often a complex endeavor due to the frequent requirement for 

computationally heavy simulations such as finite element modeling, computational fluid 

dynamics simulations, and other resource-demanding tasks. Consequently, the optimization 

process becomes increasingly complex and may require numerous simulations to converge 

toward optimal results. Surrogate modeling (SU) offers a possible solution to reduce the 

computational burden as discussed in section 2.2.1. Surrogate modeling is a sub-field within 

ML and can be defined as constructing an approximation of the response of a given function or model 

based on a limited number of expensive simulations. A surrogate model is basically a “model of a 

model.” It describes the relationship between inputs and outputs and works without any 

knowledge of the inner mechanism of the model it is trying to emulate [48]. The concept of a 

surrogate model is illustrated in Figure 2.18. 

 

 

 

 

 

 

 

 

 

 

 

Surrogate modeling is well suited for various applications in structural engineering, for 

example, in the conceptual design phase, as it can support the rapid-fire brainstorming 

sessions that are typical for conceptual design [13]. In this phase, there is no need for high-

fidelity calculations which prevents any effective use of optimization algorithms.  

Surrogate models, also known as metamodels, response surface models, and 

approximation models, is a field within ML that contains many sub-categories. Some common 

types of surrogate models include:  

 

 Artificial Neural Network (ANN)  

 Kriging 

 Polynomial Regression (PRG) 

 Radial Basis Function (RBF) 

 Multivariate Adaptive Regression Splines (MARS) 

 Gaussian Process (GP) 

Figure 2.18 – Illustration of a one-variable surrogate model 
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 Random Forest (RF) 

 Support Vector Machines (SVM)  

 

Surrogate models can also be categorized based on their different characteristics, such as:  

 Interpolating- and non-interpolating models 

 Regression- and classification models 

 Global- and local models 

 Single-output- and multiple-output models 

 

Each SU method has its specific strength and limitations with regard to the simulation 

model it is trying to emulate. One of the main categories is interpolating- and non-

interpolating models [69]. Non-interpolating models, such as ANN and PRG, minimize the 

sum of squared error between some predetermined functional form and the sampled data 

points. While non-interpolating models may lead to simple and interpretable functional forms, 

they may not be flexible enough to emulate highly non-linear correlations [70]. Interpolating 

methods such as Kriging exhibit increased flexibility by incorporating different basis functions 

(or kernels) built to predict the training points [69]. Because of their flexibility and precision, 

Kriging models are used in many projects, but they still have limitations. They are sensitive to 

dense sampling as it can overfit the model [71], and most importantly, they perform poorly on 

high-dimensional problems. In this context, “high dimensional” refers to a scenario with more 

than approximately twenty variables, as there is no universally agreed-upon definition of what 

constitutes high dimensionality.  

Surrogate models can also be divided into regression- and classifications models and 

global- and local models [72]. Global models try to emulate the entire search space, while local 

models only emulate high-performing sub-regions of the search space. This concept is very 

much related to hierarchical surrogate modeling. It can be challenging to construct accurate 

Surrogate models to emulate high-dimensional, non-linear functions, especially if they 

emulate several objective values in the same surrogate model. A possible solution is splitting 

a surrogate model into different models in a hierarchical structure to simplify complexity.  
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A simplified concept of a hierarchical structure of SU models is illustrated in Figure 2.19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 (a) illustrates a single SU model that emulates the entire response spectrum and 

all three objectives. In Figure 2.19 (b), this same model is split into three separate SU models. 

This change has the advantage that a single surrogate model only needs to emulate one 

objective and therefore has better conditions for making accurate predictions. Another 

advantage is that more surrogate model types are available, as not all surrogate methods can 

generate multiple outputs in the same model.  

However, in cases where a problem is highly non-linear and complex, this may not be 

sufficient. In Figure 2.19 (c), this same model is split into a hierarchical structure with six 

models that work in series and parallel. The first SU model in the series can be created as a 

classification model with a single purpose. This model should identify if a solution is expected 

to be in the top quartile percentile. The model acts as a gatekeeper, so the following regression 

model only needs to focus on these promising regions. This approach can reduce the search 

space the model has to emulate and avoids high non-linear response areas typically found in 

low-performing areas. This concept, also known as local SU modeling, can be as refined as 

necessary.  

 

 

Figure 2.19 – (a) A simple surrogate model with multiple outputs. (b) The same surrogate model parallel surrogate 

models, each representing an objective value. (c) a hierarchical structure of surrogate models in series and in 

parallel.  
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2.4.1 Sampling 

The process of using simulations to construct a SU model is also known as sampling. 

Sampling is the initial step in any surrogate modeling framework. A set of multi-variables is 

defined, and for each sample, the corresponding objective value is computed using a high-

fidelity model. Ideally, a surrogate model should be as precise as possible with as few samples 

as possible. Therefore, numerous sampling strategies, also called sampling plans, have been 

developed to maximize the information obtained with a minimum number of samples.  These 

strategies can roughly be categorized as one-shot, sequential, exploitative, and 

exploration/space-filling, as illustrated in Figure 2.20. An exploitative strategy focuses on 

sampling in high-performing areas, while an explorative strategy samples in sparsely 

populated areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

One-shot sampling generates all the sample points in one single step. This strategy is easy to 

implement and provides good coverage of the design space [73]. However, there is no way to 

determine the optimal sample size beforehand. Common one-shot sampling strategies 

include:  

 

 Pseudo-random numbers 

 Uniformly distributed numbers 

 Random Latin hypercube 

 Best Latin hypercube 

 Sobol quasi-random  

 Halton quasi-random 

 

Figure 2.20 – The basic sampling strategies. Recreated from [59] 
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The pseudo-random numbers strategy is created using random number generator 

techniques. They are created to appear random from a statistical perspective, even though they 

are created using a deterministic algorithm. This sampling strategy tends not to perform well, 

as it is inherently not space-filling and can produce clusters in the design space. The uniformly 

distributed numbers strategy generates samples evenly spaced throughout the design space 

without any random elements, thereby maximizing the space-filling capabilities. However, 

this strategy also tends to perform poorly as the equally distanced samples can lead to 

systematic errors [48]. Typically, the most effective sampling strategies possess a combination 

of space-filling and stochastic properties, which are present in the Latin Hypercube, Sobol, and 

Halton sampling strategies. It is impossible to predict which sampling strategy will be the most 

effective for a given problem, and the choice also depends on the surrogate model. For 

instance, the Kriging model is particularly sensitive to sample clustering due to its reliance on 

Cholesky factorization. Therefore, the sampling strategy needs to consider this effect. In 

practice, the best approach is to compare the performance of each strategy through a 

comparative analysis. A more comprehensive description of these sampling methods can be 

found in [48] [71] [50] [49], which includes additional relevant sampling techniques.  

Sequential sampling also referred to as adaptive sampling, sample enrichment, active 

learning, and dynamic training of surrogate models, is based on the concept of iteratively 

identifying new sample points in the most informative regions of the design space to reduce 

the number of samples required for accurate predictions. It is noted that informative regions 

can refer to sparsely populated regions or high-performing regions, also known as a global- 

and local search. A basic framework of sequential sampling is illustrated in Figure 2.21.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 – Conceptual framework for a sequential sampling procedure 
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The process typically initiates with a one-shot sampling collection. These samples are 

evaluated and form the basis of the first training iteration of the SU model. If the accuracy of 

the model is not sufficient, the loop continues. New samples are generated through an 

adaptive sampling process. First, a weighting algorithm determines the ratio of new global 

and local samples. Different relevant weighting methods exist, as Decreasing-, Greedy- and 

Switch strategy [73] [74].  

The new global samples are generated using a space-filling method suited for adaptive 

samplings, such as the MIPT method [75]. The local samples can be generated using a meta-

heuristic optimization algorithm on the current SU model to identify high-performing regions 

and obtain samples from these regions. Another option is the Estimated Improvement method, 

explicitly designed for Kriging surrogate models. The sample collection process can be carried 

out either as a single-point or batch collection.    

The collected samples are evaluated, and the SU model is updated. This process continues 

until the SU model reaches the designated level of accuracy.   

 

2.4.2 Curse of dimensionality 

The number of samples correlates with the prediction accuracy of a given SU model, and 

for high-dimensionality problems, we need more samples to achieve the same sample density.  

The number of samples directly affects the prediction accuracy of a surrogate model. For 

problems with a more significant number of variables, a higher sample density is required to 

achieve the same level of accuracy [48]. This statement is very intuitive. However, the extent 

of the required increase in sample density may not be immediately obvious. Suppose the 

sampling density per variable is denoted n, and k is denoted as the number of variables. In 

that case, the total required number of samples for reaching the same sample density can be 

calculated as nk. For instance, only ten samples are needed in a one-dimensional problem with 

a required density of n=10. However, this number increased to 100 when adding one more 

variable to the problem, as illustrated in Figure 2.22.  

 

 

 

 

 

 

 

 

 

 Figure 2.22 – Illustration of the ”Curse of dimensionality” going from one variable to two variables 
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Adding four more samples to a total of six variables, and we need a million samples instead 

of the original ten. This phenomenon is known as the “curse of dimensionality.” 

There are only limited options available to address this issue. One of the most 

straightforward solutions is simplifying the emulated model by reducing the number of 

variables [48].  More complex measures include the utilization of dimensionality reduction 

techniques, such as PCA, as mentioned in section [50]. Another option is to apply a hierarchical 

SU approach to decrease the required sampling density, as the SU model then only has to focus 

on high-performing regions [50].  

 

2.4.3 Model validation 

The accuracy of a surrogate model is assessed through a validation process. This valuation 

is done by evaluating its ability to make reliable predictions on new input, in other words, 

how well the model generalizes. This process commonly starts by splitting the available set of 

samples into a training set, which is used to train the SU model, and a validation set which is 

input-data the model has never encountered before [76]. If only a small dataset is available, 

then validation frameworks such as cross-validation and bootstrapping are available.  

Numerous different error metrics are available to measure the prediction error, also 

denoted as the generalized error metrics. One of the most common error metrics is the 

correlation value R2 which measures how well the predicted values correlate with the actual 

values. If an R2 equals one, then there is a perfect correlation between the values and no error 

[77]. Forrester states that an R2 above 0.8 indicates good prediction capabilities [48]. 

  Table 2.2 lists some of the most common error metrics with the corresponding formula. A 

more comprehensive description and relevant error metrics can be found in [77] [78].  

 

 

Error metric  Formula 

Mean Absolute Error (MAE) 
1� G H$3 − $J3H9

3F�  

Mean Squared error (MSE) 
1� G D$3 − $J3E�9

3F�  

Root mean squared error 

(RMSE) 
K 1� G D$3 − $J3E�9

3F�  

Correlation value R2 1 − 1� ∑ D$3 − $J3E�93F�1� ∑ D$3 − $̅E�93F�  

 

 

 

Table 2.2 – Common error metrics 
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There are instances where one error metric can be misleading, and it can be hard to 

comprehend why a SU model performs as it does from just assessing quantitative data. 

Visualizing the prediction capability can provide greater insight into the mode’s strengths and 

weaknesses and offers valuable information that can be used to improve it. One of the most 

used error visualization techniques for Surrogate modeling is the scatter plot showing 

predicted values versus real values. An example of this visualization is illustrated in Figure 

2.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.4 Kriging 

The kriging model was initially developed by the South African mining engineer Danie 

Krige in 1951 [79] and further developed by Matheron and Sacks et al. [48] and is one of the 

most widely used surrogate modeling methods in Engineering [76]. The Kriging method uses 

statistical interpolation to predict new data. 

The prediction process relies on the mean and variance of the available training samples. 

These values allow the model to predict the value at a new point in the solution space by 

considering and utilizing information from all the surrounding data points.  

The estimation of new data using the Kriging model can be described as a weighted sum of 

all the available sample data. The weighting factor is determined based on the spatial 

proximity between the new prediction point and each existing sample point. The weighting 

factor is derived from a basis function, and the Kriging model can also be considered part of 

Figure 2.23 – Predicted values versus real values with a ±10% error margin. 
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the RBF family. However, the basis function in a Kriging model is more flexible and can, 

therefore easier, emulate non-linear and complex data [77]. Although Kriging is more 

complicated than other radial basis function methods, it is, nevertheless, simply a sum of 

weighted basis functions [48].  

The Kriging prediction function is formulated in equation 2.7, where a $J��� is the predicted 

value at location x [49] [48].  

 $J��� � M̂ + OPΨR��S − 1M̂� (2.7) 

 

Where y is a vector of the sample points’ function values and M̂ is the estimated mean of the 

sample points’ function value, and serves as a baseline for predicting the function value at new 

locations. 

 M̂ � 1PΨR� ∙ S1PΨR� ∙ 1 (2.8) 

 OP is a vector of weights assigned to each sample point, which depend on the spatial 

relationship between the sample points and the prediction location x. Each weighting factor in OP determines the influence of each basis function on the new prediction. The ith weight for 

the ith basis function is informed by the spatial relationship between sample points and the 

new prediction point, ultimately allowing the model to calculate a prediction as the sum of all 

sample contributions. The weighting factor is based on the spatial distance from point � to the 

new prediction point. The concept behind spatial weighting is that sample points close to the 

prediction point are more likely to provide information about the underlying pattern in the 

data and, thus, should be given more weight when making a prediction. Therefore, a minimal 

distance will result in O3 ≈ 1 and reversely, a significant distance will result in O3 ≈ 0 and 

consequently have very little influence on the final prediction. The ith basis function calculating 

this weight is formulated as follows:  

 O3 � ���U2D�3E, 2���V � ��B W− G X(H�(3 − �(HYZ	
(F� [ (2.9) 

 

Where k is the number of dimensions and  B, and X are nuisance parameters, respectively 

denoted as the smoothness- and width parameters. The nuisance parameters are adjusted 

through a meta-heuristic algorithm to maximize the prediction capability of the Kriging 

model. The nuisance parameter determines the shape of the basis function, and the effect of 

varying the parameters is best illustrated in Figure 2.24 and Figure 2.25.  
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A vector of samples can be formulated as X=\x1,x2,⋯,xn]T
 where the corresponding values 

are formulated as Y=\y1,y2,⋯,yn]T
. The correlation between all these values is then calculated 

using equation 2.8 and stored in � ^ � correlation matrix, denoted as the Gram matrix, as 

shown in equation 2.9.  

 

Figure 2.24 – Effect of varying θ values 

Figure 2.25 – Effect of varying P values 



Chapter 2 - Methodological Framework   

 

49 

 

 Ψ � W���U2D�3E, 2����V ⋯ ���U2D�3E, 2����V⋮ ⋱ ⋮���`2����, 2����a ⋯ ���`2����, 2����a[ (2.10) 

 

The optimal choice of nuisance parameters is not known beforehand. They must be found 

through a sensitivity analysis. As previously mentioned, this is typically done using a meta-

heuristic algorithm where the nuisance parameters are set as the variables, and the objective 

is to maximize the likelihood function defined in equation 2.10, which determines the 

likelihood of a given observation to be true. So, in other words, the prediction capability is 

optimized to construct a more robust SU model.   

 

 −b��c� ≈ −1 d− �2 b��ef�� − 12 b��|Ψ|�h (2.11) 

Where:  

 ef� � �S − 1M̂�PΨR��S − 1M̂��  (2.12) 

 

The Kriging model is widely recognized in literature, has shown good performance on 

different engineering problems, and can emulate highly non-linear problems. This ability is 

demonstrated in Figure 2.26, where the benchmark function Rastrigin is emulated using a 

Kriging model with 150 training samples.  

However, the Kriging model also possesses some disadvantages as it is relatively complex 

to implement and does not perform well on high-dimensional problems. Additionally, if two 

sample points are too close to each other, the model may fail due to issues with Cholesky 

factorization.  

The information presented in section 2.4.4 only provides a basic understanding of using 

Kriging as a SU model. There are additional important considerations for applying Kriging 

models, including sub-categories such as Universal Kriging. Furthermore, the prediction 

process may be enhanced by including noise parameters in the prediction process, so the 

model is not limited to solely interpolating through sample points. Adaptive sampling 

techniques have also been developed specifically designed for the Kriging mode. A more in-

depth explanation of these and other aspects can be found in [49] [80]. 
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2.4.5 Artificial Neural Network 

An artificial neural network (ANN), referred to as a Neural Network, is an adaptive system 

that mimics the structure and function of the human brain. It uses interconnected neurons 

organized in a layered structure to learn from data. These features allow the neural network 

to identify patterns, classify data, and make predictions based on past experiences. Common 

type-variants of neural networks include:   

 

 Multi-layered perceptron (MLP)   

 Convolutional Neural Network (CNN)  

 Recurrent Neural Network (RNN)  

 Generative Adversarial Network (GAN) 

 

The MLP network is also known as a feedforward network and will be explained in detail 

later. CNN is a deep-learning algorithm specifically designed for image recognition. RNN is a 

type of neural network designed to process sequential data where the output from the 

previous iteration is used as input for the current iteration [81]. GAN is a neural network that 

generates new data resembling the original data through a competition between a generator 

and a discriminator network [82]. A neural network can be categorized based on its task, 

characteristics, and structure, including:   

 

 Classification vs. Regression 

 Supervised learning vs. Unsupervised learning 

 Deep vs. Shallow 

 Generative vs. Discriminative 

Figure 2.26 – Black indicates the real Rastrigin surface, blue indicates the corresponding surface plot emulated by 

a Kriging surrogate model with 150 training points. 
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The distinction between classification and regression, as well as supervised and 

unsupervised learning, was established in section 2.2.1 and is likewise applicable in this 

context. 

Neural networks can be classified based on their number of hidden layers. Shallow neural 

networks typically only consist of one or two hidden layers, while a deep neural network can 

consist of numerous layers [1]. Incorporating many layers can help the neural network 

effectively model highly non-linear data since a shallow network may lack the necessary 

complexity to emulate the training data accurately. However, it is important to note that deep 

neural networks are not inherently superior to shallow networks; their efficiency depends on 

the particular problem and available data. If an excessively complex deep neural network is 

employed for a simple problem, then the risk of overfitting increases, and the training time 

may be unnecessarily prolonged. A generative network is designed to generate new data 

samples based on the samples used for training. In contrast, a discriminative model makes 

predictions based on the input data. These methods, along with other relevant neural network 

methods and concepts, are described in detail in [81], [83], and [84]. 

This section outlines the fundamental properties of an MLP network, which can be 

considered a basic- or vanilla version of a neural network and among the most commonly used 

variants [1]. MLP is also referred to as a feedforward neural network with one or more hidden 

layers that uses an activation function to introduce non-linearity to its output. The activation 

function, also known as the transfer function, is an essential component of the neural network. 

Without an activation function, a neural would be a linear model where the output would be 

a weighted sum of its inputs, without any non-linear transformation [85].  

The activation function determines when or to what extent a neuron will “fire.” It 

accomplishes this by converting the sum of inputs, weights, and biases into another domain. 

Various activation functions exist; some use a hard threshold, where the output is zero unless 

the value exceeds a particular threshold. Other activation functions operate in the domain of 

[-∞, ∞], but many convert the values in the domains of [0,1] or [-1,1]. These restricted domains 

are acceptable as a linear transfer function can be incorporated in the output layer to properly 

re-scale the output into the appropriate domain.   

Some relevant activation functions are listed in Table 2.3; the corresponding transfer 

functions are visualized in Figure 2.27.   
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Transfer function Formula 

Tansig – Symmetric sigmoid transfer function e��� � 21 + �R�∙i − 1 

Logsig – Logarithmic sigmoid transfer function e��� � 11 + �Ri 

Satlins – Symmetric saturating linear transfer e��� � j −1, � ) −1�, −1 ) � ) 1 1, 1 ) �  

Poslin – Positive linear transfer function e��� � k�, � l 00, � ) 0 

 

It cannot be known in advance which transfer function will be the most relevant for a given 

problem. There are certain transfer functions tailored to specific network types and issues. 

While some experiences can be drawn from similar issues, the choice of transfer function 

should be based on a sensitivity analysis. Additional transfer function methods and a more 

detailed description be found in [85].  

 

 

 

 

 

 

 

 

 

A feedforward neural network henceforth referred to as a neural network, consists of 

multiple layers that break down data into progressively simpler representations. A basic 

representation of the neural network’s architecture is illustrated in Figure 2.28. A neural 

network is composed of an input layer, one or multiple hidden layers, and an output layer. 

Each layer encompasses a specific number of neurons, and all other neurons are 

interconnected with the preceding- and subsequent layers of neurons.  

Figure 2.27 – Illustration of relevant activation functions 

Table 2.3 – Formula of relevant transfer functions 
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The behavior of the network is defined by the connections between the neurons and the 

strength of these connections, which are represented by weight values and an associated bias 

value. These values or parameters are dynamically adjusted during the training process 

according to a predefined learning rule until the neural network correctly performs the desired 

task [81] [86]. 

If a neuron has low weight and bias values, it is unlikely to “fire,” resulting in a minimal 

influence on the neurons in subsequent layers. Conversely, a neuron with a high bias and 

weight parameters will have a significant impact. A neuron can be considered an individual 

function with a simple summation of all input values multiplied by their corresponding 

weight, and finally, a bias value is added. The result of this summation is then passed to an 

activation function. This process is executed for all interconnected neurons throughout all 

layers. This process is illustrated in Figure 2.29 for one neuron.   

 

Figure 2.28 – A basic neural network architecture 

Figure 2.29 – Illustration of how input is transferred to one neuron. 
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The mathematical depiction of the summation in a single neuron is provided in equations 

(2.13) and (2.14). Expanding this methodology to all neurons between two consecutive layers 

can be described in matrix form, as shown in equation (2.15) [87], where σ represents the 

activations function determining the specific neuron's activity level.  

 

 ℎm��� � eD�m�m� ∙ ℎm�m� + ���m� ∙ ℎ��m� + ���m� ∙ ℎ��m� + nm���E (2.13) 

 

 ℎm��� � e oG �3 ∙ ℎ3�m� + nm����
3F� p (2.14) 
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⎥⎤ + ⎣⎢⎢
⎢⎡ nm���n����⋮n9���⎦⎥⎥

⎥⎤
⎠⎟
⎞

 (2.15) 

 

The training can commence after the architectural structure of the neural network has been 

established. This training process involves the utilization of all the available labeled training 

samples, similar to the training of the Kriging model or any other SU model. The process is 

initiated by randomizing the weights and biases; the prediction output is then calculated and 

compared with the actual output. The squared difference between the predicted and actual 

output is then computed, and this value represents the prediction error or cost. The prediction 

error is then used to calculate the gradients of the weights and biases via a procedure known 

as backpropagation. This method is feasible because transfer functions are differentiable, 

thereby permitting gradient descent algorithms to utilize these errors or gradients to optimize 

the weights and biases.  

This process is iterative and continues until a stopping criterion has been satisfied, such as 

convergence or completion of a predetermined number of iterations.  

There are numerous backpropagation models, also referred to as learning models, 

available, including:  

 

 Levenberg-Marquardt algorithm (LM)   

 Scaled Conjugate Gradient Algorithm (SCG)  

 Fletcher-Powell Conjugate Gradient (CGF)  

 Conjugate Gradient with Powell/Beale Restarts (CGB) 

 Polak-Ribiére Conjugate Gradient (CGP)  

 One-step secant backpropagation (OSS) 

 BFGS quasi-Newton backpropagation (BFG) 
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2.5 Summary  
Chapter 2 presented several relevant theories and methods suitable for developing a 

generative structural layout tool. The general principle of parametric modeling was 

introduced, particularly in relation to building design. Some of the most imported topics 

related to this project were explained and illustrated.  

The general principle of optimization was introduced, both for single-objective and multi-

objective optimization. The Pareto front was introduced as a method to identify and visualize 

optimal solutions for a multi-objective optimization problem. Meta-heuristic optimization 

algorithms were introduced, and their characteristics and properties were outlined. 

Subsequently, the mechanisms behind the meta-heuristic algorithm Genetic Algorithm were 

explained in detail.  

The fundamental definition of Machine Learning (ML) was introduced, focusing on how 

ML models can learn to emulate complex objective functions. This topic was further explored 

in section 2.4, which introduced surrogate modeling as a sub-field of ML. Some of the essential 

properties of surrogate modeling were introduced. It was emphasized how surrogate 

modeling can be combined with meta-heuristic algorithms to optimize complex and 

computationally intensive problems.  

It should be noted that not all of the methods mentioned have been incorporated into the 

final design tool, but they have all been considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Action Research Analysis   

 

56 

 

Chapter 3 – Action Research Analysis 
  

“Analyzing is already design.” 
  – Agostino Renna 

 

Developing an early design tool that can generate structurally optimized layout 

suggestions requires careful consideration because the task affects multiple stakeholders in the 

field of building design. It is essential to analyze the task requirements and the current needs 

of building design professionals before proceeding with the development of such a tool.  

An Action Research (AR) analysis was conducted to identify these needs and to provide a 

structural approach to develop and refine the proposed early design tool iteratively.  

Chapter 3 presents the results of this AR analysis and is divided into two main sections. 

Section 3.1 provides a summary and structure of the basic theory behind AR and how it has 

been utilized; section 3.2 presents the results of the AR analysis and the resulting framework 

of the proposed design tool.  

 

3.1 Action Research Methodology 
AR is a research methodology that is primarily based on the social sciences. It is relevant 

for this project because the research goals defined in section 1.3.2 are primarily qualitative in 

nature. In general terms, AR provides a structured approach to solving a task iteratively. 

Furthermore, it also allows for active participation from the researcher. It is suitable for 

complex problems that span multiple fields of expertise, as is often the case in building design.  

The variant that will be used for this analysis is defined as Insider Action Research (IAR). 

This variant has more or less the same methodology as AR. The main difference between IAR 

and AR is that IAR takes the role of the researcher within the organization into account and 

how that role can influence the research process. Insider action researchers must be aware of 

how their roles influence their perception of the world and must be able to decide when to 

step into and out of the multiple roles they hold within the organization [88].  

This description corresponds well with the definition of the reflective researcher that is 

aware of his or her involvement by being self-reflective and self-critical during the entire 

research [30]. Brinkmann and Tangaard [89] also underline the importance of a reflective 

approach to qualitative research, meaning that the researcher should not blindly follow 

scientific methods and procedures. These methods are typically based on an ideal process, but 

reality rarely is ideal. This statement is complemented by Greenwood [90], stating that there 
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is no ideal form of AR. It depends on the scenario and research environment. Greenwood also 

states that it is possible to integrate different scientific theories and methods, qualitative and 

quantitative, into the applied AR method.  

The typical approach to AR starts with the framing phase, where the research objectives and 

themes are concretized. This phase is followed by an iterative cycle consisting of four phases; 

the planning-, acting, observing, and reflecting phases, as illustrated in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

The initial planning phase is used as preparation for the subsequent acting phase. Here sub-

goals are defined, and relevant tasks are identified to aid in achieving the overall objective. 

The planned activities are then executed in the acting phase, followed by the observing phase, 

where data is collected and analyzed. During the reflection phase, the researcher evaluates the 

acquired results and feedback to determine how the gained knowledge can fulfill the primary 

objective. This phase is also utilized to identify areas that require improvement, which can 

then be addressed in the following cycle. This iterative process can be repeated as many times 

as necessary. Each loop allows for continuous improvement as each cycle builds on the 

knowledge gained in the previous cycle.  

 

3.1.1 Research paradigm 

Before using AR as a research methodology, it is important to define the applied research 

paradigm, as it establishes the overarching theoretical framework and perspective on which 

the research is based. A research paradigm is a set of assumptions and beliefs and can be 

formulated by addressing the three fundamental questions of research: The ontological 

question (What is reality?), the epistemological question (how can reality be examined?), and 

the methodological question (what is the relationship between the research and the subject of 

research?) [91] [92].   

It is especially relevant to establishing the research paradigm in this Ph.D. project because, 

as mentioned, the research goals are primarily qualitative and, to a certain degree, subjective. 

Figure 3.1 – Simplified concept of the Action Research iterations 
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A relativistic approach is applied to the ontological question, which means that there is not 

one defined truth. The truth is defined by context. This approach is implemented because 

relevant stakeholders (engineers, architects, contractors) have their own worldviews on what 

defines a successful building design. Regarding the epistemological question, it is important 

to realize that building design requires expertise from multiple fields, and therefore, it is 

essential to obtain input from all relevant stakeholders. 

Additionally, it is essential to acknowledge that this data is subjective. Hence, the researcher 

must maintain objectivity when analyzing the data. An interpretivism approach is therefore 

used to address the epistemological question, along with scientific methods from Participatory 

Action Research [93]. This approach implies that access to the required knowledge can only 

be obtained through social constructs. In this project, this is manifested through knowledge 

integration (understanding of needs and methods) between different disciplines rather than 

superficial knowledge sharing. For these reasons, active participation is essential to develop a 

successful tool.  

 

3.1.2 Interview methodology 

Information needs to be extracted from every building design-practitioners to construct a 

design tool that is conformed to their needs. This task is well suited for a qualitative interview 

methodology. A qualitative research interview attempts to understand the world from the 

subject’s point of view [94]. Therefore, it is essential to develop questions that give participants 

a structure to explain and elaborate their cultural understanding of the topic [95]. Therefore, 

all questions must be open-ended to force the interviewee to think and reflect on the answer. 

This approach corresponds well with the semi-structured interview format, where the 

interviewer does not strictly follow a formalized list of questions. Instead, they give the 

interviewee more opportunities to express themselves fully. The transcript of the interviews is 

then examined using thematic analysis, which is a qualitative method for identifying, 

analyzing, and reporting themes within data [96].  

 

3.2 Concept development of the design tool  
The primary purpose of the applied AR analysis was to aid the concept development of the 

proposed design tool and to identify which features would support the needs of stakeholders 

involved in everyday building design. This goal was formulated into a research objective with 

corresponding sub-goals and themes as part of the framing face outlined in the AR cycle. It is 

noted that the research objective is formulated explicitly for the AR analysis in chapter 3, 

though it is derived from the main research aim defined in section 1.3.2.  

Research objective:  
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 To develop a concept for an early design tool that generates optimized structural 

layouts and is conformed to everyday practices.  

Sub-objectives:  

 To obtain valuable input to the design tool from other representatives of the main 

stakeholders in building design (i.e., architects, engineers, constructors) 

 To obtain a better understanding of their work procedure and needs. 

 To demonstrate the benefit of an integrated design approach to building design.  

Themes:  

 Integrated design process, concept development, architectural engineering, structural 

layout optimization, and early design tools.  

 

The iterative part of the AR analysis is outlined in Figure 3.2 and consists of three AR loops. 

The first loop was planned to obtain a better understanding of the design practice from the 

architect and contractors’ perspective and to start identifying their needs in early design 

exploration. The second loop involved a co-creation workshop where structural engineers, 

architects, and contractors jointly discussed the challenges and opportunities of such a design 

tool. In the third loop, the framework of the design tool was refined and elaborated upon in 

greater detail based on prototyping and internal testing in the company.  
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Figure 3.2 – Overview of the applied Action Research cycles 
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3.2.1 Loop 1 – Semi-structured interviews 

The incremental development of the tool started with the first AR loop, which was 

dedicated to obtaining a better understanding of the design practice from an architecture- and 

contractors- perspective, but also to identifying their needs in early design exploration.  

Only participants who grasped the general concept of computational design and early 

design tools were invited. This initial insight allowed for a more engaging discussion and 

relevant input. Representatives from the architectural company Ginnerup and the 

construction company NCC participated; they are henceforth referred to as the architect and 

the contractor.  

A literature study was conducted in the planning phase focusing on early design tools, 

design practice, interview methods, and barrier analysis for using early design tools. The acting 

phase commenced with interviews in the participants’ native environment. This familiar 

setting should make the interviewee more comfortable to answer more freely and express their 

opinion. This choice also allows the interviewer to observe the local language, daily routines, 

and power structures, thus providing a sense of what the interviewees will be talking about 

[95]. The interview data was collected in the observing phase and underwent a thematic analysis 

in the reflection phase with the following themes as a result:  

 

 Integrated design process 

 Miscommunication 

 Importance of cross-disciplinary knowledge 

 Dissemination  

 Compatibility  

 Design objectives and constraints 

 Interactivity  

 Information-level  

 

During the interview, one of the first things that became evident was that the architect was 

already pursuing a more integrated design approach. They encouraged the associated 

engineers in a given project to provide their input early in the design process. This approach 

contradicts the prevailing practice observed in literature and among architectural firms. 

Typically, architects are hesitant to involve structural engineers initial design phase as they 

fear the creative process would be driven by quantifiable engineering objectives [30]. The 

architect was aware of their status as an outlier and reported that their inquiries were often 

met with resistance. The engineers attached to a given project would prefer to wait for the 

finished architectural project. C. Mueller also observed this issue “the engineering team rarely 

provides advice or feedback to the architecture team on the form” [13].  
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The architect reported that when engineers did engage in early design collaboration, it 

usually resulted in more successful designs and better communication throughout the 

remaining project period. All involved interviewees also highlighted the importance of 

communication, stating that miscommunication was the main reason for unsuccessful design 

projects. Conversely, successful designs were driven by a well-functioning communication 

channel and by the involvement of people with cross-disciplinary knowledge were involved.  

When the architect and contractor were asked about their needs and requirement for early 

design tools, both parties prioritized features such as dissemination, compatibility, and 

interactivity. The contractor also highlighted the importance of reflecting on the available 

information level when creating early design tools. To illustrate this point, the interviewee 

cited a project where a tool was developed to optimize the placement of cranes during 

construction. However, the tool had to be discarded because the required level of information 

was not available as input at the time. 

In addition, the interviews included a discussion on which design objectives should be 

incorporated into an early design tool. Various objectives were considered and debated, but 

the underlying commercial perspective was always present. Whether the objectives were 

minimization of mass, simplifying the workflow, or optimizing constructability, the 

overarching theme was to reduce costs.  

The collected data and input from the interviews were processed in the reflection phase. As 

mentioned in section 3.1.1, it was recognized that each participant’s definition of the truth 

would be influenced by their perspective of what constitutes good building design. With this 

in mind, the input collected was evaluated to determine which insights would provide the 

most value in a holistic perspective when developing an early design tool.   

 

3.2.2 Loop 2 – Co-creation workshop  

The defined sub-goals in loop two were to obtain relevant inputs for the design tool to a 

much greater extent than during the interviews and to persuade the participants to commit to 

an IDP approach. 

The loop began with a planning phase, during which the most appropriate research 

methods were selected to fulfill the research objectives. These methods included a literature 

review, prototyping, co-creation, and design games. The co-creation in the acting phase 

manifested in a workshop, where the architects and contractors interviewed in loop one would 

participate along with structural engineers from hamiconsult a/s.  
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The accumulated knowledge obtained in loop one was used to develop the first analog 

prototype of the design tool. The design tool was presented during the workshop using digital 

sketches as a starting point for further refinement and development. Some of these sketches 

are illustrated in Figure 3.3, Figure 3.4, and Figure 3.5. Design games were also employed to 

stimulate creativity and initiate a further discussion among the participants on enhancing the 

tool.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – Sketch used in the workshop to illustrate the proposed flexibility. 

Figure 3.4 – Sketch used in the workshop to illustrate how the proposed parameterization can produce diversity. 
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The discussion during the workshop brought up several interesting points, such as the fact 

that a design tool should not attempt to encapsulate every possible design option but instead 

focus on around 80 percent, as the last 20 percent would be too demanding to include.  

Another vital talking point was the dissemination of results. Several examples were given 

of promising tools that lacked adequate dissemination. The problem was not always the 

quality of the information provided but rather the quantity of data. In some cases, the 

necessary information drowned the vast amount of data provided, which resulted in the tool 

not being integrated into the work process. Therefore, the importance of reflecting on which 

information to include was highlighted because sometimes less is more.  

Other identified critical features that were identified for implementation included 

flexibility and interactivity. The setup time needed to be minimal, and the design freedom 

should be ensured through an interactive platform. Optimization algorithms should generate 

solutions that challenged the mental models that designers sometimes become fixated on. 

However, if the algorithm produced a solution that corresponded with the designer’s initial 

idea, then it would work as a confirmation of the designer’s approach.  

Though the discussion was based on a holistic approach to the design tool, some topics are 

inevitably exclusive to a particular discipline within building design. As an example, the 

contractor emphasized the need for the design tool to have the capability of selecting suppliers 

and utilizing only the RC elements that were available from these associated suppliers. 

Although this was not a priority for all parties, everyone recognized such a feature's potential 

benefits.  

Another relevant point brought up by the architect and contractor was that the engineer 

should be the primary user of the tool. However, the tool should work as a collaborative 

platform between the stakeholders and be able to facilitate communication and information 

sharing in the initial design phase.  

All the discussions, comments, and inputs were collected through audio recording and 

analog sketches in the observing phase. The data underwent the same analysis in the reflection 

phase as in the first AR-loop to sort through many relevant suggestions. The chosen inputs 

Figure 3.5 – Sketch illustrating how live loads could be applied interactively. 
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were then used to adjust and improve the proposed design tool following the first sub-

objective of AR-loop 2.  

Some of the noticeable changes that emerged from loop two were related to the global 

parametric representation. Initially, the story height for a building design was defined as a 

constant. However, this approach was deemed problematic, as a floor's interior ground 

clearance height would change depending on the applied slab type. Therefore, the story height 

parameter was changed from a constant variable to a dynamic parameter that directly depends 

on the defined minimum ground clearance. This modification means that the total floor-to-

floor height is calculated as the sum of the defined minimum clearance height, the height of 

the structural elements used, such as beams and slabs, and a defined height for installations. 

A consequence of this change is that the building’s height will dynamically change between 

each optimization iteration.  

The architect highlighted this issue because it was a real-world problem they had 

encountered. In this case, the dilemma was whether to add a support line to reduce slab height 

or use a TT-slab to cover a longer span. Calculating the consequence of this choice is very 

resource-demanding because it would affect the entire structural system. Using the TT-slab 

may intuitively seem like the most resource-effective solution. However, this would, in turn, 

have resulted in a slightly taller building, which in turn would have increased the horizontal 

wind load, and the slenderness of the supporting walls, among other factors, and thus could 

have meant more mass. The design tool could help inform the architect of the consequences of 

these two options when implementing this change.  

 

In summary, the first and second research objective is considered to be achieved. Several 

relevant inputs, both specific and general, were provided, all of which were highly relevant 

and contributed to the development of the tool. Regarding the second objective, the researcher 

noticed a growing enthusiasm as the workshop progressed. The participants expressed a 

commitment to collaborate on a relevant project where the tool could be applied.  

 

3.2.3 Loop 3 – Refinement of the design tool 

While loops one and two were executed based on a specific timeframe, loop three 

represented a more ongoing refinement process. This AR loop's goal was to further refine the 

tool through brainstorming sessions and native alpha testing of some of the tool’s modules.  

The planning phase consisted of a literature study on alpha testing in a native organization 

[97], preparing specific modules for release within the organization for testing, and organizing 

a group of alpha testers. The released modules were all related to wind force calculations. This 

decision was made because it was deemed that these modules could add value immediately 

and because the primary purpose was to assess whether the tool’s user interface was intuitive 
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enough and suited the user’s workflow. This goal could be achieved without releasing the 

entire package of modules, which at this point in the process, was not fully developed yet.  

During the acting phase, some tool modules and a user guide were released to the 

organization. In addition, sessions were arranged with personnel in the organization to discuss 

whether the current features of the tool could accommodate the requirements identified in 

loops one and two.  

The alpha testers were encouraged to provide feedback on their experience and report on 

possible improvements during the observation phase. Comments and sketches from the 

brainstorming sessions were collected, and all this data was reviewed during the reflection 

phase. It was observed that only around a third of the invited users utilized the modules 

continuously. However, those who did, integrated the modules into their workflow and 

contributed with valuable insights on potential improvements and bug reports. 

The framework of the tool was reviewed during the brainstorming sessions, and it became 

apparent that the current parameterization method, outlined in Figure 3.4, was not flexible 

enough. The method was deemed too similar to existing methods and did not adequately 

produce varied and buildable solutions. Thus, a novel global parameterization methodology 

named Adjacent Polygon (APoly) representation was developed and implemented; the 

method is explained in detail in section 4.3.  

 

3.3 Summary 
Chapter 3 introduced the concept of Action Research, including its basic theory and how it 

can be used for concept development through a cyclical process of planning, acting, observing, 

and reflection.   

The AR analysis resulted in many valuable improvements to the general methodology of 

the tool, and it also confirmed that there is a need for tools that can facilitate closer 

collaboration in the initial design phase. The inputs and data collected during the AR loops 

were evaluated based on their potential value and feasibility for implementation. The most 

relevant and requested features were identified and served as a guideline for the actual 

development. The features and requests are listed as follows:  

 

 Flexibility and exploration should be prioritized over accuracy. 

 The primary user of the tool should be the structural engineer.  

 Provide optimized solutions without overwhelming the user with too many options. 

 Solutions can be presented in 2D; a third dimension should only be added if it provides 

new information.  

 A simple geometric representation such as surfaces, lines, and points are sufficient to 

convey a solution. 
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 Interactivity is crucial; users should be able to adjust solutions and create them 

independently.  

 Dissemination is essential; the results are meaningless if they cannot be understood.  

 The solutions should consider constructability, for example, by allowing for the 

selection of suppliers and taking actual construction practices into account.  

 Dynamic constraints are preferred over static ones.  

 Users should be able to insert their constraints into the parameterization process. 

 Setup time should be minimized.  

 

The desired level of interactivity, evaluation speed, and flexibility is only possible if many 

of the resource-demanding tasks are automated. Thus, a high level of automation has to be 

incorporated into the tool.  
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Chapter 4 – The design tool 
  

“You cannot mandate productivity, you must provide the tools to let people become their best.” 
  – Steve Jobs [98] 

 

Greater collaboration and exploration in the initial design phase require more intelligent 

and flexible design tools. The first step to accomplish this goal, is to identify the key features 

that would most effectively achieve these objectives; this was the primary aim of chapter three. 

Chapter four, on the other hand, focuses on implementing these features into a design tool and 

presents the different modules in the framework. The design tool is built on four core 

principles: optimization, interactivity, dissemination, and automation, as illustrated in Figure 

4.1.  

 

 

 

 

 

 

 

 

 

 

 

These four principles are intended to add value for all stakeholders involved in the building 

design process. Optimization and ML algorithms enable the user to find high-performing 

solutions which otherwise would have been impossible through a manual trial-and-error 

procedure. The principle of Interactivity incorporates the user into the design process. This 

symbiosis of user and algorithm transforms the design tool into a supplementary tool that 

guides the design process instead of driving it. The focus on dissemination is also crucial. The 

design tool and the corresponding output are meaningless if not disseminated effectively, 

especially when the goal is to provide the user with information on high-performing building-

design alternatives. Finally, automation is the principle that facilitates all the other core 

principles. Real-time building design exploration is made possible by automating 

parameterization, load calculation, and evaluation tasks.  

 

Figure 4.1 – The four core-principles of the design tool 
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The tool is also intended to fit into a broader context, as it is important to define where it 

fits into the general design process. Given the numerous design parameters, it would be 

practically impossible for a tool to generate fully dimensioned and highly detailed solutions 

in a single design iteration. Instead, a framework of nested design cycles is proposed, which 

involves a series of design iterations with decreasing global design freedom to compensate for 

an increasing level of calculation fidelity. Ideally, by following this strategy, one can move 

from a schematic design to a finished detailed design in a short period of time. A basic 

illustration of the proposed design cycles is shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

The outer loop represents the first design cycle where the designer has the most control 

over the global geometry. As the design process advances, the geometry becomes more 

established, which is evident from the designated level of detail (LOD) associated with each 

design loop. LOD enables designers in the industry to specify the content and reliability of the 

geometrical representation and material properties at various stages in the design- and 

construction process. Visualization of the chosen LOD levels is demonstrated in Figure 4.3. A 

comprehensive overview of the entire spectrum of LOD levels can be found in [99].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – (a) Design cycle overview,  (b) Flexibility-Fidelity graph 

Figure 4.3 – Visualization of different LOD levels for a RC-wall. 
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The design loops are linked, so the output of one loop must match the following loop's 

required input. The first design cycle commences with a basic architectural shape as input, and 

the walls, slabs, and column-beam lines are generated into varied and optimized structural 

layout suggestions. The tool presented in this Ph.D. project is intended to operate the design 

iterations in design cycle one. The information level in this cycle is defined as LOD 200, where 

structural elements are defined at an expected level concerning geometry, placement, and 

corresponding material properties.  

Design cycles two and three are intended for further development; only their fundamental 

principles are explained. The structural layout and geometry are fixed in cycle one, which frees 

up parameters for the design iterations in cycle two. Recesses can be inserted into walls, and 

the horizontal distribution of forces can be optimized using heuristic algorithms. The last cycle 

is intended as a validation cycle, where standard industrial tools are used to verify the final 

geometry, reinforcement, and material properties. The plans for the last two cycles are 

elaborated upon in section 6.3.2.  

 

4.1 Software platform and user-interface  
Programming is essential for any complex problem-solving process in computational 

design. This project considered different languages, such as Python, C#, and C++, which have 

different pros and cons. Python is very flexible, popular, and intuitive to use. Python also has 

access to useful ML- and mathematical libraries such as Numpy, Scipy, and TensorFlow. 

However, it is not as fast as C#/C++, which is paramount when dealing with the many 

thousand iterations required when using meta-heuristic algorithms. For that reason, Python is 

disregarded in this project. C++ is a little faster than C#, but it lacks flexibility as memory 

management has to be done manually. This issue is not the case for C#, as it is built within the 

.NET framework, and this has automatic memory management. C# is therefore chosen as the 

primary language.  

C# provides access to many different .NET libraries, for example, ML.NET [100], which is 

a machine learning library that supports Python models when used together with NimbusML 

[101]. Word.Interop can also generate custom reports to document the static calculations. The 

GMAP API from Google [102] can also be operated using C#. This API provides different 

services, such as elevation values that can be used to calculate the orography factor used in 

wind load calculation. C# can also access Matlab's [103] substantial optimization algorithm 

library by compiling Matlab code into .dll files.  

However, the main task for C# as the chosen programing language is to interact with the 

CAD software of choice. Here Rhinoceros 3d (Rhino) is chosen. Mainly because of its abilities 

as a 3d modeling software, but Rhino also works excellently as a software platform for 

engineering analysis, visualization, and other relevant analysis tasks. Rhino is very compatible 
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with other software packages, and it is backed by a very active community that develops and 

shares a lot of open-source plugins. Rhino also comes with the RhinoCommon library, which 

contains all the methods and properties available in Rhino and can be accessed using C#. Rhino 

also ships with Grasshopper (GH), which is a built-in visual programming language.  

Various options were considered for the user interface (UI), such as text-based commands 

or a comprehensive graphical UI using Windows Presentation Foundation (WPF) or Windows 

Forms. However, as previously mentioned, the design tool is divided into separate modules 

that should be used independently of each other to maximize their usage potential. Therefore, 

it was determined that using a software-platform adapted to this approach was more 

appropriate. The decision was made to develop a GH library of custom components tailored 

to handle different stages and tasks in the design methodology. A visualization of this library 

is shown in Figure 4.4.  

 

 

 

 

 

 

In addition, building the user interface in the GH environment has the advantage that end-

users can easily expand on the functionality by utilizing native GH components or the built-

in C#/Python editor. This approach only requires a basic understanding of programming using 

an integrated development environment (IDE) such as Microsoft Visual Studio.  

The flexibility of the design tool was improved using various functionalities such as buttons 

and sliders were incorporated into the components by adapting the GHCustomComponent 

C# library [104]. In addition, features were also coded in to allow users to interact with the 

design directly in the viewport.  

The final user interface can therefore be described as a combination of a GUI and a simple 

DAG structure.  

 

 

 

 

 

 

 

 

 

Figure 4.4 – Icons illustrating the different modules in the tool’s library 
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4.2 General framework 
The framework utilized in design cycle one can be broadly divided into two main phases: 

initialization and optimization. Figure 4.6 is a simplified illustration of this framework. 

All the necessary data required for the optimization phase is computed during the 

initialization phase. These tasks include parameterization, where the building’s geometric 

degrees of freedom are defined. This process sets the overall framework for the optimization 

phase, as the solution space size is defined here. Therefore, this phase has a significant impact 

on the final design.  

Furthermore, natural loads, live and dead loads, as well as various user inputs, are defined 

in phase one. These user inputs consist of mandatory inputs, such as defining the floor height, 

voluntary inputs that can influence the optimization process, and the shape of the final design. 

All these aspects are elaborated in detail in section 4.4 to 4.5.  

The main purpose of the initialization phase is to pre-process as much data as possible to 

reduce the computational burden in the subsequent optimization phase. Here a meta-heuristic 

algorithm in the form of a modified genetic algorithm is utilized to find optimized structural 

layout suggestions. This phase is presented in detail in section 4.7.  

 

 

 

Figure 4.5 – Examples on the UI of the modules. 
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A Finite Element Method (FEM) will not be utilized to evaluate the solutions. This decision 

is based on multiple factors. Firstly, the computational expense of setting up and running a 

FEM for each iteration is significant, especially given that the genetic algorithm may require 

thousands of iterations to converge. Additionally, this approach would limit the use of the 

design tool to devices equipped with licensed FEM software. Instead, a C# evaluation module 

is developed, which utilizes well-established theories from Eurocode 0-2 and widely 

recognized theory books like [105] [39] [9].  

 

4.2.1 Design objective 

Optimization is only possible when feedback is provided. Whether the optimization 

technique is gradient-based or probabilistic, this statement is true. The objectives guide the 

optimization algorithm in the solution space to find solutions with features that satisfy the 

defined objectives. Consequently, the choice of objectives significantly influences the final 

form of the design [29]. 

 

 Minimizing cost: 

Minimizing mass is a common design objective for early-stage design tools. However, this 

objective is deemed too simplistic because the geometry of RC elements is strongly influenced 

by the amount of reinforcement used. Therefore, the optimization algorithm must consider the 

reinforcement-to-concrete ratio when designing an optimal RC element. This consideration is 

integrated into each RC evaluation module presented in section 4.6. 

Therefore, the objective of minimizing the cost of the load-bearing structure is selected as 

the primary objective. This objective is related to minimizing mass but can be applied to 

structures of different material types.  

Figure 4.6 – The general framework of design cycle one. 
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Different material prices are defined based on available data from various suppliers; the 

specific material prices are listed in Appendix A. The SU models created in this project are 

derived from these prices. The models must be retrained if the relative relationship between 

the reinforcement and concrete costs changes significantly. The actual price is irrelevant as the 

cost is only used as feedback for the algorithm to identify cost-effective solutions. It is 

emphasized that the calculated cost only includes material costs and does not factor in other 

aspects such as transportation, manufacturing, and assembly costs. Nevertheless, the objective 

still provides an excellent basis for comparison, which is exploited in the optimization process. 

The specific cost objective is calculated as the total cost for one floor in DKK divided by the 

floor area. This value is denoted as the average cost per square meter (CPM2). By using this 

definition, it becomes easier to compare different cases. Minimizing the cost will also implicitly 

lead to a reduction in embodied energy. It will be simpler to incorporate other design 

objectives, such as LCA in future versions because all material quantities are already extracted 

within the algorithm.  

 

 Minimizing the average cell size:  

Building design often has multiple objectives to consider, and they are not always based on 

material quantities or performance metrics. Sometimes objectives may be practical or aesthetic, 

and quantifying them can be challenging due to their subjective nature. This project includes 

an aesthetic objective, defined as the maximization of cell sizes as defined in equation 4.1.    

 ��� � ∑ ��bb��� 3�3Fm �  (4.1) 

Where:  

 ��������� The area in square meters for cell i.  = The total number of cells.  

 

A cell is an area enclosed by load-bearing walls. The algorithm is expected to generate 

structural layout designs with larger open areas by maximizing the ACS value. This objective 

can be considered functional and aesthetic, as the larger open spaces make it easier to model 

or re-model a floor plan area.  
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4.3 Parametric representation  

4.3.1 Global parameterization 

The parameterization process defines how the overall configuration of structural elements 

can vary, including the placement of walls, column-beam lines, and the direction and length 

of the slab spans. The process can be divided into two parts: global and local. The global 

parameterization splits the building plane into smaller components or base shapes. These 

shapes are then further refined in the local parameterization process, where walls and column-

beams lines are placed along with the direction and length of slab spans.  

This novel approach to parameterization, denoted as Adjacent Polygon (APoly) 

representation, was developed to generate diverse yet feasible structural layout suggestions. 

The method initiates by generating a set of basis shapes, denoted as  �̅, as expressed in the 

mathematical notation shown in equation 4.2, where n denotes the total number of base 

shapes.   

 �̅ � �� ∈ ℕ | 1 ) � ) �� (4.2) 

 

There are no inherent limitations on the number of base shapes a building plan can be 

divided into, but increasing the number of polygons will exponentially increase the solution 

space. Therefore, simple shape grammar rules were incorporated into an algorithm to generate 

a finite set of basis shapes. The algorithm works by extending each linear line in the building 

plane into pieces using these lines. The user can add lines to create a specific basis shape if 

desired.  

The base shapes can then be combined into APoly variations. The number of possible APoly 

shapes is calculated as the powerset of all the base shapes. A subset is then selected from these 

candidates by subjecting them to specific constraints. This concept can be illustrated using a 

simple example where a square building plane is divided into a set of four base shapes, 

denoted �̅, in equation 4.3 and illustrated in Figure 4.7.  

 

 �̅ � �1,2,3,4� (4.3) 

 

 

 

 

 

 

 

 

Figure 4.7 – A square building plane is divided into four base shapes. 
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The set of APoly candidates denoted �� , is then derived from the powerset (P) of �̅, as shown 

in equation 4.4. The set ��  encompasses all feasible combinations of the base shapes.  

 

 �� � ���̅� � 2� (4.4) 

 

The final set of APoly shapes denoted �̅ is obtained as a subset of �� , as defined in equation 4.5.  

 �̅ ∈ �� | ����� ) � �73��7 (4.5) 

Where:  <���� A function that counts the number of linear edges in the APoly candidate   A��?���? The maximum number of allowed linear edges 

 

In basic terms, the new shape formed by the union of basis shapes should contain fewer or 

an equal number of linear edges as the number specified by the user. By default, this number 

is set to four. In the case of the four simple base shapes, this process would result in nine APoly 

shapes that meet the defined conditions, as illustrated in Figure 4.8.  

 

 

 

 

 

 

 

 

 

 

 

 

It is possible to form various configurations that fill the building plane by assembling the 

set of APoly candidates. However, some APoly shapes may overlap and cannot be combined. 

Therefore, it is necessary that the combined shapes are non-intersecting and do not have more 

sides than what has been defined beforehand, hence the naming of Adjacent Polygons.  

 

Permutation encoding is used to generate variations of the APoly shapes. The technique 

utilizes a chromosome that contains a specific order of unique integers. Each number 

represents a particular APoly shape. In the case of the square building plane, a given solution 

could be represented by the following chromosome, denoted as ��. 

 �� � �5, 2, 1, 3, 8, 4, 9, 7, 6� (4.6) 

Figure 4.8 – Example of how the basic shapes are converted into valid AP shapes. 
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The sequence determines the order in which the APoly shapes are placed. However, as 

mentioned earlier, some APoly shapes are mutually exclusive and cannot coexist. Information 

on which APoly shapes can and cannot be placed together is computed and stored in a matrix, 

denoted as the incompatibility matrix. For the case in question, the incompatibility matrix is 

illustrated in Figure 4.9. Row and column numbering represents specific APoly shapes, and a 

blue cross indicates that the two given APoly shapes are incompatible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using solution �� , APoly number 5 is placed first, and the sequence is updated by removing 

all options that cannot coexist with APoly number 5 according to the incompatibility matrix. 

The following eligible number is then APoly number 3. The sequence is updated again to check 

for incompatibility with APoly number 3, and the process continues until the building plane 

has been filled. Figure 4.10 illustrates the process for the solution ��.  

 

 

 

 

 

 

 

 

 

Figure 4.9 – Example of the incompatibility matrix. 

Figure 4.10 – Demonstration of how the permutation encoding determines the sequence of adjacent polygons. 
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In Figure 4.11 (a), a more complex example is depicted, where the blue shapes illustrate the 

valid APoly shapes that can be formed from the basic shapes. Figure 4.11 (b) illustrates a series 

of examples of final solutions that can be derived from the set of APoly shapes. The approach 

can be characterized as a top-down methodology, where the overall structure is deconstructed 

into more detailed components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Local parameterization  

Every APoly shape can be further detailed by specifying its span direction and length. This 

is accomplished using real-value encoding, where four parameters are associated with each 

activated APoly shape. These four parameter types, denoted p1, p2, p3, and p4, are normalized 

in the domain of 0-1. The objectives of the parameters are defined in Table 4.1.  

 

 

Parameter name  Objective 

p1 Determines the load direction 

p2 Determines the span length 

p3 Determines the wall ratio on inner lines  

p4 Determines the wall ratio on perimeter lines 

Table 4.1 – Local parameter types 

Figure 4.11 – Visualization of the use of simple shape grammar rules to divide an arbitrary building plane into it 

basic shapes. These shapes are transformed into APoly shapes that can be recombined to produce multiple 

solutions. 
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The parameters operate in a sequential workflow from one to four, meaning that the value 

of the preceding parameter affects how the following parameter carries out its function. Each 

APoly shape possesses at least one linear edge, with each edge being assigned a number. 

Equally sized subdomains represent the number of edges within the primary domain of 

{0≤x≤1}. The p1 value can determine which edge activates by identifying the associated 

subdomain.  This concept is illustrated in Figure 4.12, where it is shown that three different p1 

values activate three distinct edges. The load direction is then calculated as the perpendicular 

vector to the activated edge.  

 

 

 

 

 

 

 

 

 

 

 

 

The p2 parameter is responsible for determining the span length. This task is accomplished 

by remapping the p2 parameter to an integer that designates the active split value within the 

specified range. The split range is a series of numbers that determines how many times the 

total span length is divided into equal lengths, and it is calculated using equation 4.7. 

Transverse support lines are placed at each split, which can then be converted into a wall, a 

column-beam line, or a combination thereof.  

 

 ������ � k� ∈ ℤ�   c¡B �9�i ¢ ) � )   c¡B �93� ¢£ (4.7) 

Where:  ¤ The total span length in meters    ?¥�=A�� The maximum slab length, set to 16.8 meters ?¥�=A�= The minimum slab length, set to 4.0 meters 

 

The properties of the strongest slab type available in the slab database constrain the 

maximum length of the slab. The minimum length is set to a reasonable value from a practical 

and economic standpoint, as it is neither profitable nor logistically feasible to have support 

lines for every meter.   

Figure 4.12 – A visual demonstration of how the p1 parameter determines the load direction. 
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To illustrate this concept, consider a case where the total span length L is defined as 15 

meters; the split range would then be calculated as ¡Bb�¦����� � �0, 1, 2�. This example is 

illustrated in Figure 4.13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before defining p3 and p4, it is necessary to establish the terminology for what constitutes 

inner lines, perimeter lines, and outer lines. This definition is best illustrated in Figure 4.14, 

which expands upon the simple example presented in Figure 4.10.  

 

 

 

 

 

 

 

 

 

 

 

It is necessary to distinguish between these three line-type variants in the design 

methodology because each line type is differently parameterized when converted into 

structural elements. The outer line represents the external wall of a building, which can only be 

converted into a RC wall. However, an external wall is rarely solid. Therefore, a single 

parameter called the recess ratio determines the proportion of the wall that consists of 

openings. This parameter will affect the stiffness and mass of the external wall. The perimeter 

Figure 4.13 – A visual demonstration of how the p2 parameter determines the span length 

Figure 4.14 – Visual terminology of the different line variants 



Chapter 4 – The design tool   

 

81 

 

line is defined as the outline of the APoly shapes that do not overlap with the outer lines. The 

inner lines are located within the APoly shape and, for practical reasons, will always be 

orthogonal.  

 

The p3 and p4 parameters have the same function but operate on different elements, 

specifically the inner and perimeter lines. These parameters determine the wall ratio, which 

indicates the proportion of the line that should be converted into a RC wall element. The 

remaining line part is converted into a column-beam line. An example of this is illustrated in 

Figure 4.15.  

 

 

 

 

 

 

 

 

 

 

 

 

As the parameter values are real numbers, solutions where the wall only fills 0.1% or 99,9% 

of the line may not make practical sense. In such cases, removing the wall entirely or letting it 

fill the entire line would be more appropriate. Therefore, the parameters are subjected to 

defined constraints that improve the constructability of the solution. The wall length defined 

as c§, and the column-beam length is defined as c¨©, are calculated using equation 4.8.  

 

 �$�� 6 �93� �� � ^ c 6 c93��: c¨© � c c§�«« � 0 

 �b¡� �$�c − � ^ c 6 c©¨¬3��: c¨© � 0 c§�«« � c 

 �b¡�: c§�«« � c ^ � c¨© � c − �c ^ �� 

(4.8) 

 

Figure 4.15 – Simple example on how the p3/p4 parameters can determine the wall ratio of a given line 
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Where:  > The wall ratio    >A�= Minimum wall ratio, defined to 0.2 ¤ Total length available ¤A�= Minimum wall length, defined as 1m ¤­�®�= Minimum column-beam length, defined to 3m  

 

 

4.3.3 APoly properties  

A C# class named AdjPoly has been created, containing all the information required for a 

fast evaluation in the optimization process. This class includes, among other things, 

preprocessing the load area for every edge and every possible variation of the p1 and p2 

parameters. The load area is calculated as an average of [m^2/m] for simplification, so it works 

independently of the p3 and p4 values. Figure 4.16 provides an example of the load area 

calculation. The black line represents a support line, the vector indicates the span direction, 

and the area is calculated for the curved edge. The load area is projected out with half a span 

length, as marked in blue, while the dark blue area indicates a contested area where the 

support line absorbs half of the area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 – Visual demonstration on how the unit area is calculated for a single side in an arbitrary APoly 

shape. 
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4.3.4 Design flexibility 

The importance of interactivity in design tools was emphasized in the AR analysis 

presented in chapter 3. Consequently, three methods have been developed for generating 

solutions:  

 

 User-defined solution 

This method allows the user to interact directly with the design methodology, to 

generate solutions fully based on user input without using any optimization algorithm. 

This is done using two modules. The first module, depicted in Figure 4.17 (a), enables 

users to customize the global parameterization process by creating custom APoly 

shapes. The second module, depicted in Figure 4.17 (b), allows users to adjust the local 

parameterization by defining slab directions and span length. This interaction occurs 

directly in the viewport by using simple mouse actions. The process is illustrated in 

Figure 4.18 (a), (b) and (c).   

 

 Hybrid solution  

This approach allows the user to define the parameterization partially. The 

optimization algorithm will then finish the design with the remaining degree of 

freedom available. This method strikes a balance between user creativity and 

algorithmic assistance, allowing the user to provide some input while still benefitting 

from the optimization capabilities of the GA. This approach also supports the ambition 

that the tool should complement the design process and not dictate it. Figure 4.18 (d) 

illustrates an example of a partially defined solution.  

 

 AI-generated solution 

This method utilizes the GA to take full control of the design process and generate 

complete efficient solutions. Besides the apparent advantage of using optimization, 

then it can sometime be beneficial for the designer to let the algorithm challenge the 

mental model that designers sometime get fixated on. Besides, the user always has the 

option to edit in the outputted solutions.   

 

Overall, the design tool provides a range of options for generating building designs, 

allowing users to choose the level of control and assistance they prefer.  

In addition to these primary options, users can also define the story height from 1 to 12, and 

the minimum ground clearance height in the range of 2.5m to 5m. It is assessed that this range 

is sufficient to meet the goal of the design tool to cover 80% of all building cases.  
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Figure 4.17 – (a) module to customize the global parameterization, (b) module to customize the local 

parameterization. 

Figure 4.18 – (a) the basis shapes, (b) custom global parameterization, (c) custom local parameterization,  

(d) partial defined parameterization. 
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4.4 Loads 
Simple unit loads are often used for proof-of-concept demonstrations. However, this is not 

viable for this project as it is intended for real-world practice. Consequently, the load 

calculation applied in this design tool must be of the highest fidelity level, equivalent to a level 

that can be used in the structural documentation. Load calculations at this level have distinct 

advantages, such as compensating for the lower fidelity level in the approximation models 

used in the evaluation models. Additionally, since the design tool is split into different 

modules, the high-fidelity load modules can be implemented even before the complete design 

tool is fully developed, thus generating value immediately.  

As described in section 1.3.1, seismic loads are currently not included in the design tool. 

Snow loads are generated using simple theory, as the current geometrical limitations do not 

allow snow accumulation. The primary load types considered are dead load, live load, and 

wind load. These load types are typically the ones that govern the design of the structural 

elements. The applied load combinations depend on the specific structural typology being 

evaluated, which is further elaborated upon in section 4.6.  

 

4.4.1 Self- and live load  

The design tool calculates the dead load automatically, while 

the user defines the live load as a uniformly distributed surface 

load. The user defines the specific categories of live loads through 

an interactive process using a load module, as shown in Figure 

4.19. The user selects the base shape to which the specific loaf 

should be assigned. The process continues until all base shapes 

have been assigned a live load category.  

During the optimization process, there may be incidents 

where an APoly shape contains different categories; in such 

cases, the critical category is used for the entire AP shape. This 

simplification reduces the computational cost and is considered 

acceptable, as elements within the same field are typically 

preferred to be uniform to improve constructability.  

 

 

 

 

 

 

 

Figure 4.19 – Live load module 
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4.4.2 Wind load  

The wind load is one of the most significant forces that affect building design, particularly 

for tall structures. Therefore, it has been prioritized to make wind load calculations 

comprehensive, precise, and automated as much as possible. The high level of automation 

ensures that the design tool can operate without significant setup time. Calculations are based 

on Eurocode 1 and the national annex for Denmark [106] [107], which is a viable approach for 

most building shapes. While more complex and taller building projects may require wind 

tunnel analyses and CFD calculations, these cases are not included in the design tool’s goal to 

handle 80% of all cases.  

The most common wind calculation procedures can be generalized without significant 

complications. However, the more complex aspects of wind calculations are incorporated into 

independent modules, some of which may require user input. The remainder of section 4.4.2 

elaborates on how these complex tasks are managed in the design tool.  

 

 Orography: 

The orography factor is an example of a wind load calculation aspect that is difficult to 

generalize. Typically, engineers manually analyze an elevation map and make an assessment 

based on the rules outlined in the national annex. In this project, this process is automated by 

utilizing an expert algorithm to find the most critical orography factor for the twelve primary 

wind directions. Additionally, the user can interact with the digital landscape and specify 

where the calculation should occur. The entire process is communicated through 3d 

environments, color gradients, and numerical values, as shown in Figure 4.21. The calculations 

underlying the analysis can be outputted for further review.   

Figure 4.20 – Visualization of how the user designate live loads to the base shapes, each color represents a 

specific live load category. 
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This approach demonstrates how the core principles of optimization, interactivity, 

dissemination, and automation, as shown in Figure 4.1, can be incorporated into the design 

tool's different modules, not just in the overall framework.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Shape factors: 

Accurately determining shape factors requires wind tunnel testing or time-consuming CFD 

simulations. However, these methods are often impractical. The calculation methods available 

in the Eurocode standards are usually sufficient but only provide form factors for elementary 

geometric shapes. As a result, a building may be divided into simpler components, resulting 

in overly conservative load estimations. Neither of these options is particularly suitable for 

generative design, which requires a rapid evaluation response time. This issue is addressed by 

developing an algorithm based on the principle of how the Eurocode calculates vertical and 

Figure 4.21 – Illustration of how the orography factor module operates. 
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horizontal shape factors. The algorithm can be applied to any arbitrary geometric shape, as 

illustrated in Figure 4.22.  

 

 

 

 

 Terrain category: 

In principle, choosing the terrain category could be automated by training a classification 

algorithm on a set of labeled radar images. However, this approach is not used as it is 

ultimately the engineer’s responsibility to determine the terrain category. Nonetheless, specific 

sub-tasks can be automated. Radar images with correctly scaled divisions are provided to the 

user. Subsequently, the user can enter the correct categorization into a module. This minor 

feature may not significantly reduce time, but it accumulates with all the other automated 

tasks and ultimately frees up the engineer’s time to focus on design tasks.  

 

 Critical wind direction: 

In computational design, evaluating every possible load scenario is often feasible. 

However, in generative design, one must constantly balance the increased computational load 

with the benefits added complexity can bring. In the case of wind calculations, it has been 

determined that evaluating the design for all 12 primary wind directions would impose too 

great a cost relative to the benefits it brings. However, using only one wind direction is not 

viable as the optimization algorithm does not have the necessary incentive to add any stiffness 

in the transverse direction, which could result in a suboptimal design. Therefore, a strategy is 

employed where a design is evaluated for two wind directions. The first direction, referred to 

as the primary direction, is the critical wind direction out of the 12 possible directions. This 

Figure 4.22 – Visualization of the horizontal and vertical shape factors. The black arrow indicates the wind 

direction.  
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design tool compares the wind load using the accumulated wind resultant instead of the local 

wind peak pressure. The secondary direction is the most significant wind load of the two 

perpendicular directions to the primary direction. Using these two wind directions as 

described, the algorithm will primarily place shear walls along these directions, and therefore 

implicitly be able to absorb horizontal wind loads in the remaining directions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that the wind directions in Figure 4.23 are depicted with equal spacing 

between them for clarity. In reality, the critical 12 wind directions are found by examining all 

wind directions with a resolution of 2° and the angles for all linear lines on the building plan. 

This examination is conducted in the preprocessing phase to reduce the computational load in 

the optimization phase. During the optimization process, the wind loads area subsequently 

updated only for the two critical wind directions, with respect to the revised total building 

height.  

Figure 4.23 – Illustration of the critical wind directions with corresponding wind pressure values. 
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4.4.3 Horizontal distribution of forces  

The distribution of horizontal forces is carried out for every optimization iteration, 

considering the individual shear walls' stiffness, placement, and orientation. It is common 

practice to set the maximum length of the shear walls to ten meters to avoid imposing 

unrealistic requirements on the joints and the internal stresses in the shear walls.  

The elastic distribution of horizontal forces is executed using a modified version of the 

generalized distribution model, as outlined in [9]. The generalized model assumes the slab is 

infinitely stiff and that the stabilizing walls deform proportionally to the applied horizontal 

load. However, the basic version of the generalized model can only handle walls parallel to 

the primary axes, i.e., the x-axis and y-axis. Therefore, a modified version is necessary to 

handle walls that are oblique to the primary axes or curved walls. This section presents the 

methodology of the modified version to illustrate the alterations made to the original theory.  

All wall elements are assigned a relative stiffness, denoted as S in the x- and y-directions. 

The general expression for this type of stiffness is defined in equation 4.9.  

 

 � � c�¦ ∙ |¯⃗§�«« ∙ ¯⃗±| (4.9) 

Where:  ¤ The total wall length in meters     ² Default thickness, set to 0.15 meters  ³⃗́́>��� The wall’s unit vector ³⃗́́< The unit vector of the horizontal force affecting the wall 

 

The stiffness is adjusted based on the force exerted on the wall. This modification is 

achieved by multiplying the base stiffness with the dot product between the wall's unit vector 

and the horizontal force's unit vector. This procedure implies that walls more aligned with the 

exerted force will absorb a more significant proportion of the overall force than walls more 

perpendicular to the total force resultant.  

As previously mentioned, all exterior walls are assigned a wall ratio parameter that 

determines the portion of the wall consisting of recesses. A differentiation is made between 

the stiffness of the interior walls, denoted as S, and the stiffness of the outer walls denoted as 

SOW. This distinction controls the proportion of the horizontal forces absorbed by the outer 

walls. The stiffness is calculated using equation 4.10.  

 

 �µ¶ � �c − ���¦|¯⃗§�«« ∙ ¯⃗±| (4.10) 

Where:  > The wall ratio for the outer wall element     ∙ The dot product  
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The method handles the curved element by dividing them into sections that are a maximum 

of 10 meters long. The curve is then divided into smaller linear segments with a maximum 

length of 1 meter and scaled with respect to the total length, so the geometry operates in the 

realm of the stiffness values. The sub-elements are subsequently projected onto the two 

primary axes. The process is illustrated in Figure 4.24 for the projection onto the x-axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The method operates with a default thickness, as the actual thickness remains unknown 

until the evaluation process commences. The thickness differentiates between linear wall 

elements and those derived from curved walls. In the case of curved wall elements, their 

projection onto the primary axes may result in overlapping; hence an adjusted thickness is 

determined for these elements. This calculation is presented in equation 4.11. Finally, the total 

stiffness for the entire set of n wall elements is computed, as expressed in equation 4.12.  

 

 ¦��( � ∑ c3 ∙ ¦c  (4.11) 

Where:  ¤� Denotes the smaller projected segment lines on a given axis     

 �� � G ��3
�

3Fm�S � G �S3
�

3Fm
 (4.12) 

 

Figure 4.24 – Visualization of how the stiffness on the x-axis is found for curved line segments. 
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Subsequently, the coordinates for the global shear center are calculated as ��·¨ , S·¨�, as 

shown in equation 4.13. 

 �·¨ � ∑ �′3�3Fm��S·¨ � ∑ S′3�3Fm�S  (4.13) 

Where:  

�′ Denotes the distance along the x-axis from a given origin to the centre point of 

wall i.       

¹′ Denotes the distance along the x-axis from a given origin to the centre point of 

wall i.       

 

The torsional stiffness IW is then calculated as  

 

 º¶ � G ��3 ∙ �3� + G �S3 ∙ S3��
3Fm

�
3Fm  (4.14) 

Where:  

 �3 � �′3 − ¡·¨S3 � S′3 − S·¨  (4.15) 

 

The torsional moment MW is calculated positively in a counterclockwise direction using 

equation 4.16 and illustrated in Figure 4.25.   

 

 »¶ � ��2 ∙ �±¼� − ��� ∙ S±½� (4.16) 

Where:  <� The wind resultant in kN along the x-axis <¾ The wind resultant in kN along the y-axis    �<¾ The distance on the x-axis from FY to the centre point of the shear centrum (SC)  ¹<� The distance on the y-axis from FX to the centre point of the shear centrum (SC) 

 

 

 

 

 

 

 

 

 
Figure 4.25 – Illustration of how the torsional moment is calculated. 
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The ideal forces are then calculated using equation 4.17.  

 

 ��3 � ��3 ∙ ¿���� + �3 ∙ »ÀºÀ Á
�23 � �S3 ∙ ¿�2�S + S3 ∙ »ÀºÀ Á  (4.17) 

Where:  <� The wind resultant in kN along the x-axis <¾ The wind resultant in kN along the y-axis    

 

When the ideal forces are exerted on a wall, they will not always perfectly align with the 

wall’s directional vector, leading to a residual force. equation 4.19 demonstrates the 

computation of this residual force, which is visualized in Figure 4.26. The calculation method 

involves converting the wall’s directional vector into a unit vector and multiplying it by a 

factor α, derived from equation 4.18. This factor α describes the relationship between the most 

significant resultant force exerted upon the wall and its corresponding reaction resultant.  

 

 

Â � � �
⎩⎪⎨
⎪⎧Âi � �½´́´́⃗À½´́´́´́⃗

ÂÄ � �¼´́´́À⃗¼´́ ´́ ´⃗
 (4.18) 

 

Where:  <�´́´́´⃗  The wind resultant along the x-axis <¾´́ ´́ ⃗ The wind resultant along the y-axis Å�´́ ´́ ´́ ⃗ The wall’s reaction along the x-axis Å¾´́ ´́ ´́⃗ The wall’s reaction along the y-axis 

 

 

 

 

 

Figure 4.26 – Visualization of how the residual force occurs. 
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The residual force ���7 is then calculated as the difference between the reaction vector and 

the force vector, as shown in equation 4.19.  

 

 ���7´́ ´́ ´́ ´⃗ � À⃗́́́ ∙ Â + �⃗ (4.19) 

 

This process is repeated for every wall element, and the total residual forces are applied 

back to the building and distributed to the different walls. Therefore, the problem is an 

iterative approximation that can be repeated until a desired level of accuracy is achieved. 

Testing has shown that the residual forces were virtually eliminated after two iterations. 

However, this project will only utilize one iteration to reduce the computational load, which 

is deemed acceptable since it was observed that the inaccuracy in the equilibrium was 

insignificant and always nearly perpendicular to the direction of the load. Thus, there will 

always be sufficient load capacity to absorb the residual forces in the transverse direction. As 

previously mentioned, the building will also be calculated for wind loads in the transverse 

direction. 

 

4.5 Constructability  
Constructability can be defined as the utilization of construction knowledge and experience 

to achieve superior designs [108]. In this project, constructability manifests itself through a 

range of different measures. As mentioned, the proposed design tool operates in design cycle 

one, which uses a low level of detail (LOD). Therefore, some constructability measures may 

be more suitable for other loops where the level of detail is 

greater. Nonetheless, constructability can still be integrated into 

the design methodology to generate more buildable designs. In 

general, incorporating constructability considerations into the 

design process reduces the risk of major changes later and 

provides a more accurate representation of the final design. 

Constructability is also interpreted as increased flexibility, 

enabling designers to consider practical and aesthetic 

requirements. Some of the constructability measures 

incorporated into the design tool are listed as follows:  

 

 Ensuring flexibility by customizing solutions as 

explained in section 4.3.4.  

 Implementing parameters to control the amount of 

horizontal force transferred to the outer walls. 
Figure 4.27 – Slab database  

module 
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 Implement parameters that incentivize the algorithm to use fewer columns in the 

beam-column lines.  

 Ensuring that no shear wall is longer than ten meters. 

 

Another important constructability aspect is the ability to choose a specific supplier of RC 

elements. This feature is especially relevant since contractors often pre-select suppliers for a 

particular project. By incorporating this information, the algorithm can generate solutions that 

solely utilize RC elements available from the chosen supplier. Figure 4.27 illustrates the 

available options, where the user may select from various slab types and two distinct 

suppliers. Future versions of the design tool incorporate additional suppliers and distinguish 

between other structural element types. These future measures are discussed in-depth in 

section 6.3.  

 

4.6 Evaluations modules 
This section presents an overview of the evaluation process for the utilized structural 

element types, along with the parameters used to construct surrogate models that predict their 

geometry and cost. The design tool is applied to a building structure comprised of four distinct 

RC element types:  

 

 RC Slabs 

 RC Beams 

 RC Columns 

 RC Walls 

 

Evaluation modules are created for all these structural types, including a beam-column 

system evaluation module built using the column- and beam evaluation modules. All 

evaluation modules serve as the basis for a range of surrogate models that can predict the 

geometry and cost of the different RC element types using a series of inputs. Surrogate 

modeling was necessary to achieve the fast response time required for a performance-based 

generative design approach.  

The surrogate models incorporated in the tool are constructed and trained using many 

optimized samples. Each sample is divided into two categories: the external parameters, which 

serve as input to the surrogate model, and the design parameters that the surrogate model 

aims to predict.  

 The external parameters describe the conditions that affect the elements, such as load 

values and geometrical constraints. These input parameters are generated using a one-shot 

sampling strategy. An adaptive sampling strategy is considered unnecessary as the evaluation 
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modules are computationally cheap to execute. The Sobol sampling strategy is chosen to 

execute a one-shot sampling approach because previous experience with sensitivity analyses 

has shown that the method is effective in producing space-filling yet stochastic samples.  

The process of generating the corresponding output parameters, denoted as the optimized 

design parameters, is more complicated. Each sample has to undergo an optimization process 

to find the optimal design parameters to create the database on which a surrogate model is 

trained. This process is illustrated in Figure 4.28. The complexity of the evaluation model 

dictates the burden of this process. A brute force algorithm can be used to find the optimized 

design parameters for simple element typologies with few design parameters.  

 

 

 

 

 

 

 

 

 

A comprehensive performance comparison analysis was conducted to identify which 

surrogate model had the best prediction capabilities. The analysis was carried out on the 

column evaluation module, and the following methods and libraries were tested:  

 

 Kriging 

 ML.NET  

 Matlab regression library 

 Convolutional Neural Networks 

 

The ML.NET and Matlab regression libraries contain methods such as Support Vector 

Machines, Decision Trees, Gaussian Models, and more. The models were tested for their ability 

to predict different design parameters, including the reinforcement size (As size), 

reinforcement level (As Lv), the width of the column (W), concrete class (Fck), and cost. The 

performance assessment was based on various metrics, such as the correlation value R2, as 

shown in Table 4.2.  

 

 

 

 

Figure 4.28 – Generalized representation of how optimized training samples are generated. 
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Model As size As Lv W Fck Cost 

NN multiple 

outputs 
0.52 0.68 0.99 0.76 0.99 

NN single 

output 
0.64 0.77 0.99 0.74 0.99 

Kriging with 

noise 
0.23 0.41 0.97 0.36 0.96 

Matlab reg. 

library 
0.23 0.42 0.97 0.40 0.96 

ML.NET 

library 
0.14 0.42 0.98 0.36 0.80 

 

During testing, it became apparent that the Kriging model was sensitive to the number and 

density of samples and often failed due to the Cholesky factorization collapsing. As a result, it 

was decided to continue working with neural networks with a single output, as these models 

had demonstrated good prediction performance and a high level of robustness. However, the 

optimal configuration also depends on the problem that the NN tries to emulate, as high 

nonlinear problems require more layers than problems that scale more linearly. Therefore, 

conducting a grid search analysis for each NN surrogate model is necessary to achieve optimal 

performance. Although this approach is computationally expensive, it is easy to set up and 

reliable for finding the best settings. The range of hyperparameters in the grid search analysis 

is differentiated for regression models and classification models as follows:  

 

Hyperparameter Range 

Learning functions for regression {SCG, CGF, CGB, CGP, LM} 

Learning functions for classification {SCG, CGF, OSS, BFG} 

Transfer functions {Tansig, Logsig, Satlins} 

Number of layers {1, 2, 3, 4} 

Number of neurons Number of parameters * {1, 2, 3, 4} 

 

 

Every grid search is conducted by finding up to ten promising neural network settings. 

These models are then executed 30 times to further examine their performance, given that the 

process is stochastic and yields fluctuating performance levels. The choice of algorithm is then 

based on the mean and variation value of the R2 and MSE error metrics. The final settings for 

each surrogate model are listed in Appendix B.  

Table 4.2 – The correlation value R2 shown for different surrogate model types and prediction objectives. 

Table 4.3 – Range of hyperparameters used for the grid search. The abbreviations are detailed in section 2.4.5 
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4.6.1 RC Slab module 

As mentioned in section 4.5, the range of available slab types is restricted to those offered 

by chosen suppliers. Therefore, a dynamic slab library is constructed based on the user’s 

selection. This comprehensive database encompasses all material, structural, and geometrical 

properties for each specific slab option. In essence, the sole design parameter is the choice of 

slab type, thereby enabling the utilization of a brute force algorithm to determine the optimal 

slab for every possible combination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The brute force sorting algorithm is illustrated in Figure 4.29. The algorithm operates on a 

set of slabs denoted as S�, and a set of valid APoly shapes denoted as AP����. The process iterates 

through every APoly shape (i) and checks every slab option (k) in the database. Firstly, it is 

verified that the current slab is less expensive than the current best option. If it is, it undergoes 

a validity check to verify compliance with all relevant constraints in the ultimate limit state 

(ULS) and serviceability limit state (SLS). If the slab satisfies the conditions, the choice of slab 

for this combination and the minimum price is updated. It should be noted that Figure 4.29 

provides a visual simplification of the process since the investigation is actually performed for 

every possible load direction and span length in the APoly shape, as depicted earlier in Figure 

4.12 and Figure 4.13.  

 

 

 

Figure 4.29 – Illustration of how the brute force algorithm finds the optimized slab(k) for every APoly shape(i). 
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The constraints examined for the slab include:  

 

 Verification of the maximum bending moment in ULS. 

 Verification of the balance load to ensure long-term deformations. 

 Verification of the cracking moment. 

 Verification of the natural frequency.  

 

It is assumed that the eigenfrequency must not be less than 5 Hz since a more detailed 

acceleration analysis is unlikely to be successful otherwise. The eigenfrequency is calculated 

based on the transformed cross-section, while the manufacturer provides the remaining 

structural properties.   

 

4.6.2 RC beam module  

Chapter 3’s AR analysis concluded that it was important that the generated elements were 

available at the chosen suppliers. In the current version of the program, only prestressed KB 

beams are available since these beam types are suitable for supporting the available slab 

variants. Unlike slab elements, KB beams can be produced in so many variations that it is 

practically impossible to examine all possible combinations. Therefore, the GA approach 

shown in Figure 4.28 is employed.  

The supplier dictates the design freedom by specifying how their structural element 

products may vary. This information was then used to construct the parametric model, where 

the degree of freedom is visualized in Figure 4.30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30 – Illustration of the variables for a KB beam, blue indicates design parameters. 
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Another important conclusion from the AR analysis was that the beam models must 

adequately account for the ULS and SLS constraints to ensure that the elements used are 

realistic in a detailed analysis. Therefore, the following verification analyses in ULS and SLS 

are included in the evaluation model:  

 

 Verification of the maximum bending moment. 

 Verification of the balance load to ensure long-term deformations. 

 Verification of deformations under short-term and long-term loads.  

 Verification of the eigenfrequency. 

 

It is worth noting that the current analysis does not account for shear reinforcement. This 

decision was made based on the assessment that including the aspect would not significantly 

impact the final geometry or cost difference.  

In addition to the listed verification procedure, it is ensured that the cross-section is neither 

over- nor under-reinforced and that cracks will not occur due to prestressing forces. These 

constraints are achieved by limiting the minimum and maximum degree of reinforcement 

available and imposing geometrical limitations. The reinforcement level parameter is then 

converted from a normalized domain to the range determined by the prementioned minimum 

and maximum reinforcement degree. The reinforcement level parameter is thereby translated 

into an actual number of prestressed reinforcement bars. This converted range varies 

depending on the external parameters. All the external parameters for the RC beam elements 

are listed in Table 4.4, along with their defined range.  

 

 

External parameters Range 

Beam Length [m] {3-12} 

Characteristic live load (q) [kN/m] {0-126} 

Characteristic dead load (g) [kN/m] {0-104} 

Live load category {A, B, C, D, E, F} 

Slab height left [mm] {180-1020} 

Slab height right [mm] {180-1020} 

 

It is important to note that the range defines the spectrum on which the surrogate model 

has been trained. Therefore, the model cannot predict a solution if an input value falls outside 

this range. The limit values were established based on experience and an analysis of the 

maximum expected values given the current geometric constraints encoded in the parametric 

Table 4.4 – External parameters for the RC beam evaluation model, with corresponding range. 
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methodology. The design parameters the GA can operate with, and their corresponding range 

are listed in Table 4.5.  

An interesting observation emerged when analyzing the optimized samples: the wide 

version of the KB was never considered cost-effective. Consequently, the SU model has never 

encountered a scenario with a wide beam during the training sessions and thus will not select 

this option. This exclusion makes sense from a static perspective as the beam height is squared 

while the width is multiplied by 0.5 when calculating the stiffness. However, other factors may 

necessitate a wider beam, such as providing sufficient bearing length for larger slab structures. 

Such considerations could be incorporated into the evaluation module in future versions.  

 

 

Design parameters Range 

Variable height [mm] {200:100:800} 

Width [mm] {500:100:600} 

Reinforcement level Depends on geometry 

 

A training set consisting of 2500 optimized samples was generated and used to construct 

two surrogate models for the KB beam model, one for predicting geometry and the other for 

predicting the cost. The prediction plots of these two models are visualized in Figure 4.31.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4.31 (a), clustering around the lower values is observed. This clustering is partly 

due to the parameter being remapped to a specific interval, thus representing the lowest and 

Table 4.5 – Design parameters for the RC beam evaluation model, with corresponding range. 

Figure 4.31 – Illustration of the prediction plots for the KB beam evaluator, (a) prediction of the variable height 

parameter, (b) prediction of the cost output 
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most common interval. Additionally, the variable height parameter only represents the height 

under the slab shelf. Therefore, the applied slab height implicitly dictates a significant portion 

of the height. Furthermore, there is a correlation between large slab heights and the need for 

high cross-sections, which explains why many training examples do not require extra height.    

Figure 4.31 (b) illustrates a uniform distribution and a high correlation value because the 

cost is almost linearly correlated to external parameters such as slab height, span length, and 

load values, making it easier to predict. Based on these observations, it is concluded that the 

surrogate models exhibit good prediction capabilities, as demonstrated by the error metrics 

and prediction plots.  

 

4.6.3 RC column module  

The parametric model developed for the RC column is also limited to generating geometry 

that the selected suppliers can provide. For the sake of simplicity, only square columns, which 

are the most common variant, are used. Due to the numerous design parameters and 

variations, a GA is again used to generate optimal samples, as shown in Figure 4.28. The 

degree of freedom is visualized in Figure 4.32.  

 

 

 

 

Table 4.6 outlines the design parameters and their corresponding ranges based on the 

selected suppliers' design options. While it would have been possible to simplify these options 

by utilizing a singular reinforcement diameter or concrete grade, it is believed that 

incorporating these additional degrees of freedom allows the algorithm to better adapt to the 

external forces that affect the column.  

Like the RC beam, the range of reinforcement degree is dependent on other parameters. By 

default, the range is determined by how many reinforcement bars can be physically inserted 

into the cross-section. However, these default values can be overridden following the rules for 

over and under-reinforced cross-sections.  

 

Figure 4.32 – Illustration of the variables for a RC column, blue indicates design parameters. 
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Design parameters Range 

Width [mm] {180:60:840} 

Reinforcement size [mm] {Y12, Y16, Y20, Y25} 

Reinforcement level Depends on geometry 

Concrete class {C35, C40, C45} 

 

Table 4.7 outlines the external parameters. The height of the column is denoted as Ls, which 

represents the buckling length of the column. The range of this parameter is based on 

experience, and it can be increased in future versions if necessary. However, any changes will 

require retraining the surrogate models. The buckling length is in the evaluation model 

defined as the story height minus the slab height, as illustrated in Figure 4.33. Hcolumn is the 

only user input and consists of the sum of the minimum ground clearance height and an 

optional extra installation height.  

 

 

 

 

 

 

 

 

 

 

 

The other external parameters are the normal axial force and the bending moment that 

affect the column in ULS. The range of forces that affect the column is based on the maximum 

loads that can occur with the current limitations in the parameterization model.  

 

 

External parameters Range 

Ls [m] {2.5-5} 

NEd [kN] {0-32000} 

MW [kNm] {0-300} 

It is considered sufficient to investigate the column in the ULS to ensure a realistic column 

design. The column is statically treated as a non-tensioned reinforced, simple supported 

column. Buckling is considered, along with first and second-order effects. A detailed 

Table 4.6 – Design parameters for the RC column evaluation model, with corresponding range. 

Table 4.7 – External parameters for the RC column evaluation model, with corresponding range. 

Figure 4.33 – Illustration of the different height values used in relation to the column calculations. 
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evaluation is carried out using an interaction diagram for several reasons. Firstly, constructing 

an interaction diagram is computationally cheaper than iteratively finding a strain value that 

creates equilibrium in the cross-section. Secondly, engineers in the organization are 

accustomed to using an interaction diagram. Furthermore, additional load combinations can 

easily be included later.  

A training set of 2500 samples was generated and optimized using the GA. Subsequently, 

a grid search analysis was performed to determine the optimal hyperparameters of the neural 

network. Two surrogate models were constructed to predict the column width and cost, 

respectively. The corresponding prediction plots of these two models are visualized in Figure 

4.34.  

 

 

 

 

 

Figure 4.34 (a) exhibits small clusters due to the normalized input being remapped to 

widths that vary in small intervals. The dense clustering around the 1:1 area results from 

custom alterations made in the first generations of solutions in the GA, where all width 

parameters are set to one to ensure that some solutions would be valid in the first generation. 

As the optimization progresses, the algorithm is incentivized to reduce cost by reducing the 

design parameters. However, the optimization process is stochastic, and an optimal solution 

is not always guaranteed. Consequently, a larger proportion of solutions with maximum 

width may occur, leading to clustering. Increasing the number of generations and population 

size or including a solution with all its design parameters set to one could potentially reduce 

clustering. However, this is not considered a pressing issue. It can be concluded that both 

models demonstrate satisfactory prediction capabilities, with only a few outliers observed.  

Figure 4.34 – Illustration of the prediction plots for the RC column evaluator, (a) prediction of the variable height 

parameter, (b) prediction of the cost output in DKK 
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Table 4.9 – External parameters for the RC beam-column evaluation model, with corresponding range. 

4.6.4 RC beam-column line module  

The main goal of this module is to estimate the optimal distance between columns in a 

beam-column module. The distance is the only design parameter specified in Table 4.8 and 

illustrated in Figure 4.35. A brute force algorithm is employed, using a resolution of 1000 steps 

over the range of the design parameter to determine the optimal distance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design parameters Range 

Beam Length [m] {3-12} 

 

 

External parameters Range 

Ls [m] {2.5-5} 

NEd [kN] {0-32000} 

MEd [kNm] {0-300} 

Beam Length [m] {3-12} 

Characteristic live load (q) [kN/m] {0-126} 

Characteristic dead load (g) [kN/m] {0-104} 

Live load category {A, B, C, D, E, F} 

Slab height left [mm] {180-1020} 

Slab height right [mm] {180-1020} 

Column price factor (CPF)  {1-4} 

 

Table 4.8 – Design parameters for the RC beam-column evaluation model, with corresponding range. 

Figure 4.35 – Illustration of the variables for a RC beam-column module, blue indicates design parameters. 
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The external parameters for the beam-column module are listed in Table 4.9 and mainly 

consist of the same parameters as those specified for the RC column and RC beam. The unique 

external parameter is a user-defined parameter denoted as the column reduction factor. This 

factor is included to reduce the number of columns, even if it would be more expensive. It is 

typically used from the architect’s perspective. The column price factor (CPF) is multiplied by 

the cost of the columns, resulting in a fictitious higher cost. This adjustment alters the cost ratio 

between columns and beams and incentivizes the algorithm to reduce the number of columns.  

The optimal distance between columns also depends on the total length of the beam-

column line. However, the decision was made not to treat the total length as an external 

parameter, as doing so would result in a substantial and complex solution space. Additionally, 

setting an upper bound for the parameter would be necessary, which could severely limit the 

tool’s use cases and result in errors when the module is applied in practice. Therefore, an 

alternative approach was adopted, where the beam-column line is assumed to be infinitely 

long, and the cost is calculated as an average cost per meter (CPM) using equation 4.20.  

 

 ��» � ���¡¦ÆÇ«89� ∙ ��� + ��¡¦È��9�cÈ��9  (4.20) 

Where:  �É?²�É�@A= Total cost of one column �É?²Ê��A Total cost on one beam ­Ë® Cost per meter (DKK/m) 

 

The RC beam-column surrogate model employs a hierarchical approach, where the 

evaluator is built based on the existing surrogate models for the RC beam and RC column. 

These surrogate models form the basis for the new surrogate model, effectively emulating their 

response. In other words, an approximation model is developed by combining two existing 

approximation models. This concept is illustrated in Figure 4.36.   

 

 

 

 

 

 

 

 

 

Figure 4.36 – Principal illustration of hierarchical surrogate modelling approach used to predict the geometry 

and cost of the SU Beam-Column line. 
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Figure 4.36 is a simplistic representation of the hierarchical surrogate modeling approach. 

The cost of the SU beam-column module is based on the predicted geometry of the beam and 

column modules rather than their cost prediction functions.  

Because the beam-column line is treated as infinite, the optimal design parameters that are 

outputted are likely, not divisible by the actual length, potentially resulting in very short outer 

beam lengths. Therefore, an approach is used where the total length of the beam-column line 

is divided by the ideal beam length, resulting in a number that indicates the idealized number 

of divisions. This number is a natural number and is then rounded up and down to find the 

two nearest integers. These integers can be converted into two different beam lengths divisible 

by the length of the entire beam-column line. These two values are then inputted into a 

function that calculates the CPM value using the existing column and beam SU models and 

the beam lengths as input. This approach allows for investigating which beam spacing is the 

most cost-effective using equation 4.21.  

 

 �$
⎝⎜
⎛�ÆÇ7Ì Í cÌÇÌÎ cÌÇÌc3���«ÏÐ 6 �ÆÇ7Ì Í cÌÇÌ  cÌÇÌc3���«¢Ð

⎠⎟
⎞: 

cÈ�7Ì � cÌÇÌÎ cÌÇÌc3���«Ï 
 �b¡�: cÈ�7Ì � cÌÇÌ  cÌÇÌc3���«¢ 

(4.21) 

Where:  <�É?² A function that calculates the CPM of a beam-column line using the beam length 

as input and the existing SU models for the column and beam.  ¤²É² The total length of the beam-column line.  ¤����� The idealized beam length. ¤Ê�?² The beam length resulting in the most cost-effective beam-column line and is 

divisible by the total length.  ⌈−⌉ Ceiling function to round up to the nearest integer.  ⌊−⌋ Floor function to round down to the nearest integer.  
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The principle of this approach is visualized in Figure 4.37, where the y-axis represents CPM, 

and the x-axis represents the beam length. The graph itself illustrates the cost-benefit for the 

distance ratio between columns. The shape of this graph will change according to the values 

of the external parameters.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The surrogate model used to predict the idealized beam length for the beam-column system 

was trained on 3000 training samples, and the resulting prediction plot is shown in Figure 4.38.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37 – Illustration of how the ideal beam length is rounded up and down to lengths that are divisible with 

the total beam-column length. The most cost effective of the two candidate lengths are then used. 

Figure 4.38 – Illustration of the prediction plots for the surrogate model that predicts the idealized length. 
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It can be observed that the correlation value is slightly smaller than the remaining 

prediction models. This difference can be partly attributed to the more significant number of 

external parameters in the evaluation model and the fact that the evaluation is based on two 

existing surrogate models. A correlation value of 0.89 is still considered very good, and the 

increased uncertainty is not a significant issue as the predicted value is rounded up and down. 

Therefore, this variation is very unlikely to impact the final beam spacing.  

 

4.6.5 RC wall module 

RC element suppliers tend to offer wall element components that are relatively similar. 

Therefore, the module is considered to work generally, even though minor variations may 

occur. In such cases, the procedure used by the chosen suppliers is implemented. A distinction 

is made between external and internal walls to consider that external walls are affected by 

wind loads acting perpendicular to the surface. Additionally, a parameter denoted the recess 

ratio determines the percentage of the external walls that consist of recesses. The static system 

and the degrees of freedom are illustrated in Figure 4.39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.10 presents the design parameters and their respective ranges. Brute-force 

optimization is employed since only the reinforcement ratio fluctuates within a continuous 

interval. A resolution of 1000 steps is applied for the reinforcement ratio, in addition to the 

predetermined intervals of the other external parameters. This results in a total of 14000 

iterations required for each training sample. Although the brute-force approach is more 

computationally expensive than the GA approach, the benefit of increased accuracy outweighs 

the additional computational burden.  

Figure 4.39 – Illustration of the variables for a RC wall section, blue indicates design parameters. 
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The thickness range is established based on industrial standards used by all suppliers. The 

reinforcement level parameter is remapped from a normalized value to a range dependent on 

geometry and the boundaries for under and over-reinforced cross-sections. Unlike the RC 

column module, the reinforcement size is not specified; it is expressed in [mm2/m]. This 

simplification requires an estimate of the edge distance, which is achieved using a simple 

linear formula on the conservative side based on the reinforcement level. The final design 

parameter is defined as a Boolean value determining whether corrugated pipes will be 

integrated into the wall element. Corrugated pipes serve several purposes in practice. For 

instance, robustness requirements may dictate their placement to reduce the risk of a 

progressive collapse. They may also be included to secure the wall against sliding failure. In 

this scenario, they only increase the wall’s capacity to resist overturning. Generalizing the 

design of corrugated pipes is challenging, as several different factors and parameters must be 

considered. Therefore, a simplistic approach is used to parameterize the corrugated pipes. 

Firstly, corrugated pipes can only be used for walls with a minimum thickness of 180mm. 

Secondly, it is impossible to calculate an exact capacity, as this value depends on several 

factors, including whether there is sufficient ballast in the foundation or whether the 

foundation can function as a stabilizing baseplate.  

All constructions below the foundation footing are beyond the scope of design cycle one; 

therefore, a conservative assessment of the capacity is calculated, which increases linearly with 

the thickness of the wall. The exact cost of corrugated pipes is hard to determine since the cost 

objective is tied to material prices. Based on internal discussions, a factor four is multiplied by 

the cost of the reinforcement used in the corrugated pipe. This multiplication accounts for the 

additional overlapping- and transverse reinforcement needed and the material cost of the 

corrugated pipe itself. This simplification and multiplier value is deemed acceptable for the 

level of detail defined for design cycle one and because the algorithm in the training examples 

used corrugated pipes in 19.6 percent of all cases. If the algorithm used the corrugated pipes 

every time or never, it would indicate that the cost was calibrated incorrectly. It is also noted 

that the expected percentage of use was within this range since corrugated pipes can only be 

used on wall thicknesses of a minimum of 180mm, as previously mentioned.  

 

 

Design parameters Range 

Thickness [mm] {100,120,150,180,200,240,300} 

Reinforcement level [mm2/m] Depends on geometry 

Corrugated steel tube {true, false} 

 

Table 4.10 - Design parameters for the RC wall evaluation model, with corresponding range. 
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Table 4.11 outlines the external parameters. The height and load parameters are defined 

based on the same considerations as those used in the RC column evaluator. It should be noted, 

however, that higher loads may occur for external walls due to the recess parameters which 

can result in concentrated loads, as indicated in blue in Table 4.11. The recess ratio is set to a 

range between 0, which indicates no recess at all, and 80 percent. This range is deemed realistic, 

as exceeding it would result in insufficient material to absorb the forces acting on the wall 

element.  

 

 

External parameters Range 

Ls [m] {2.5-5} 

Number of floors {1:1:12} 

Wall length [m] {1-10} 

Live load category {A, B, C, D, E, F} 

Characteristic live load (q) [kN/m] {0-126} / {0-315} 

Characteristic dead load (g) [kN/m] {0-104} / {0-260} 

Characteristic wind load (pw) [kN/m] {0,34-12} 

Recess ratio (RR) {0-0.8} 

 

It should be noted that snow load is not included as an independent parameter. This 

exclusion is because it can be implicitly calculated from the size and category of the live load 

since the current geometric limitations do not allow for snow accumulation. The wall length 

is limited to the range between one and ten meters due to practical limitations in production 

and transportation and static considerations defined in section 4.4.3. Based on an assessment 

of the weighting between the level of calculation detail and the resulting increased complexity, 

it is deemed sufficient to examine the walls based on the following three STR/GEO load 

combinations defined in Eurocode 0 [109]: 

 

 1: Dominant wind with favorable load 

 2: Dominant wind with unfavorable load 

 3: Dominant live load 

 

Regarding the vertical load, the wall is evaluated using an interaction diagram similar to 

the column module. Concerning the overturning moment, it is verified that the wall's center 

point remains with the cross-section of the wall to prevent overturning. There is no need to 

verify sliding; a potential issue is not dimensioning for the geometry of the wall itself and can 

Table 4.11 - External parameters for the RC wall evaluation model, with corresponding range. The parameters in 

blue are only applicable for outer walls. 
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be easily resolved using corrugated pipes. The maximum stress resulting from the overturning 

moment is also included in the calculations.  

As described earlier, a training set consisting of 8000 samples for both the inner and outer 

walls was created and optimized using a brute-force approach. The relatively large number of 

samples was necessary because finding a solution may not always be possible based on the 

randomly generated external parameters. For example, if the length of a wall is short and the 

wind load is very high, the wall will overturn regardless of its thickness or the use of 

corrugated pipes. Therefore, creating two more types of surrogate models for each wall type 

was necessary. First, a classification model was trained to predict whether it is possible to find 

a solution for the given wall length and external conditions. Then, a regression model was 

created to predict the geometry and cost. This model was only trained on samples where it 

was possible to find an optimal solution.   

 

The confusion matrix, shown in Figure 4.40, displays the prediction performance of the 

classification model. This model was evaluated using a validation subset of 400 samples that 

the surrogate model had not encountered during training.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both models demonstrate good performance with few errors. It can be assumed that the 

errors that occur are close to the decision boundary, meaning that a solution incorrectly 

classified as valid is likely to be close to a valid solution, and the corresponding geometry will 

not be significantly incorrect. It should also be noted that fewer valid solutions were found for 

the outer walls than the inner walls, even though the inner walls have twice the maximum 

load area. This difference occurs because the outer walls are also affected by the horizontal 

Figure 4.40 – Confusion matrix for the classification models of the innerwall- and outerwall modules. Blue 

indicates a correct prediction. False designate cases where a solution could not be found, true designate cases 

where a solution could be found. 
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wind acting perpendicular to the wall surface, as well as the recess ratio increasing the load 

on the outer walls.  

A valid solution was obtained in 2461 out of the initial 8000 samples for the inner wall 

regression model. These valid samples were used to train the surrogate regression model, 

which predicts thickness and cost based on external parameters. The corresponding prediction 

plots are visualized in Figure 4.41. It is noted that distinct clusters emerge in subfigure (a) due 

to the actual thickness being defined in specific intervals, as indicated in Table 4.10. While a 

multiple classification model could have been used, a regression model can also predict 

specific intervals. Based on the prediction plots and error metrics, it can be concluded that both 

models exhibit good prediction properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the outer wall module, 2338 valid samples were generated from the initial batch of 8000 

samples. As with the inner wall, two surrogate models were constructed to predict the 

thickness and cost of a given wall based on external parameters. The corresponding prediction 

plots are visualized in Figure 4.41 and Figure 4.42. It can be observed that both models exhibit 

similar behavior.  

 

 

 

 

 

 

Figure 4.41 – Illustration of the prediction plots for the RC inner wall evaluator, (a) prediction of the thickness 

parameter, (b) prediction of the cost output in DKK 
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However, the surrogate models for the outer walls are slightly less accurate, which can 

likely be attributed to fewer training samples, and because the outer wall modules contain two 

additional external parameters, increasing the solution space. Nevertheless, the models still 

exhibit excellent prediction capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42 – Illustration of the prediction plots for the RC outer wall evaluator, (a) prediction of the thickness 

parameter, (b) prediction of the cost output in DKK/m. 
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4.7 Optimization phase  
The general optimization framework utilized in the design tool is illustrated in Figure 4.43. 

The process can be described as a surrogate-assisted optimization using a modified genetic 

algorithm that combines real-value and permutation encoding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimization procedure illustrated in Figure 4.43 can be utilized to create AI-generated 

or hybrid solutions, as detailed in section 4.3.4. 

Tournament selection is utilized as the selection mechanism, and the solutions’ parameters 

are divided into their real-value and permutation encoding components. Simulated Binary 

Crossover and HypeE Mutation [60] are used for the real-value parameters, while Order 

Crossover and Scramble Mutation are applied to the permutation parameters.  

Some of the adjusted solutions derived from the GA operators will be flawed, as the 

stabilizing walls may be too short to withstand the horizontal forces. Therefore, it may be 

advantageous to integrate a repair algorithm that operates on the chromosome of different 

solutions and increase the parameters defining the shear wall’s length. Incorporating user-

induced knowledge into the optimization process has shown great potential in reducing 

convergence time in previous research, such as [28] [29]. The “Evaluate and Repair” module 

in Figure 4.43 represents this part of the algorithm, and the entire process is further elaborated 

in Figure 4.44.  

 

Figure 4.43 – Illustration of the general optimization procedure. 
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The process commences by generating the slabs and beam-column systems using the 

surrogate models. The story height is determined by the geometry of the beam-column system, 

which dictates the height of the shear walls. The total building height is then computed, and 

the resulting wind force affecting the building is updated accordingly. Next, the horizontal 

forces are distributed among the shear walls, and the surrogate model that determines 

whether a wall solution can be found is used on every wall line. The corresponding wall 

lengths are extended if the SU model predicts one or more wall lines to fail. The process is then 

repeated, and updated beam-column systems are created, which may result in a new building 

height. The loads are updated and redistributed as before, and all wall lines are rechecked. As 

a result of the updated stiffness, the forces are now distributed differently. Therefore, it is 

necessary to verify that all walls can handle the loads affecting them again. This iterative 

process continues until all walls are valid, or a wall cannot be extended further. After this 

process, the geometry of the walls can be defined, and the total cost of the building structure 

can be determined as the sum of the slabs, beams, columns, and walls.   

Figure 4.44 – Illustration of the evaluation and repair procedure. 
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It is important to note that the repair procedure does not optimize in the opposite direction, 

i.e., by removing unnecessary shear walls or changing the global geometry. Firstly, this process 

occurs indirectly through the optimization process in the GA. Additionally, it is essential that 

the repair algorithm does not undermine the evolutionary principles in the GA but only makes 

minor adjustments to speed up the convergence process.   

 

If a hybrid solution is required, the user may dictate specific parameters. However, this 

does not significantly alter the overall optimization process. An algorithm ensures that user-

defined parameters remain untouched by the crossover and mutation mechanisms. The 

algorithm reorders permutation parameters for any operated-upon chromosomes to ensure 

that user-defined parameters are first located in the chromosome.  
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4.8 Summary 
Chapter 4 presents the final design tool and elaborates on implementing the conceptual 

framework in Chapter 3. The design tool, also referred to as a design methodology, was built 

using four core principles: optimization, interactivity, dissemination, and automation. The 

chapter also explains how the design tool was envisioned in a larger context of nesting design 

loops, each with an increasingly associated Level of Detail (LOD). In this project, the design 

loop was intended for the outermost design loop, referred to as design loop one.  

Various relevant programming languages were explored, and their advantages and 

disadvantages were discussed. Based on a balance between user-friendliness and computing 

speed, C# was chosen for this project, while Rhino was selected as the software platform for 

the design tool. Rhino provides access to the RhinoCommon library and offers a 3D engine to 

visualize the structural layouts of the building.  

The design tool's general framework was outlined and divided into two main phases: 

initialization and optimization. The chapter presents the design objectives of CPM2 and ACS 

and the load modules. Additionally, a novel method, named the Adjacent Polygon (APoly) 

representation, was introduced, which can be used to create diverse yet logical structural 

layout suggestions. The evaluation modules use surrogate and hierarchical surrogate 

modeling approaches to achieve fast approximated responses. The chapter also presents the 

accuracy of these models using prediction plots and the correlation value as the error metric.  

Lastly, the optimization phase is presented with a focus on how user-induced knowledge 

is incorporated into the optimization framework. This incorporation is achieved using a repair 

algorithm that operates on the chromosomes of each individual to increase the number of valid 

solutions in each generation.  
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Chapter 5 – Validation studies  
  

“The form of an object is a diagram of forces.” 
  – D’Archy [110] 

 

When utilizing evolutionary optimization algorithms, it is obvious to draw parallels to 

nature. The structural framework of all living organisms, animal or plant-based, has adapted 

and optimized over time in response to the environment and physical forces affecting them. 

For instance, elephants have evolved to become the largest land animal in existence today 

because their size provided them immunity from local predators. As their size increased, so 

did their bones, which needed to withstand the gravitational forces acting upon their large 

mass [65]. Nevertheless, an elephant’s bone is only as thick as they need to be, as nature creates 

the most efficient structure with the least possible amount of material. As Darwin stated in On 

the Origin of Species: “for it will profit the individual not to have its nutriment wasted on building up 

a useless structure” [61]. 

Nature’s structural optimization is also evident when observing the structural shape of 

trees. Trees grow tall and spread their branches to maximize the surface area of leaves, thereby 

increasing the amount of photosynthesis they can produce. However, this growth pattern 

comes at a cost, as trees are subjected to the physical constraints imposed by wind and 

gravitational loads. Consequently, the branches of trees are more robust and thicker at the base 

of the trunk, where the sectional forces are the largest. The size of the branch then 

progressively becomes thinner towards its end, where the forces are at their minimum.  

This realization that physical laws and principles of evolution govern patterns and shapes 

in nature was also evident to Scottish biologist and mathematician D’Archy Wentworth 

Thompson, who stated, "The form of an object is a diagram of forces.” This statement implies that 

it is possible to understand why a natural object is formed as it is by studying the environment 

to which it has adapted.  

This approach is also highly relevant to the examinations carried out in Chapter 5. 

Assuming the algorithm has generated optimal results that are adapted to the specified 

constraints and forces acting on the building, it should be possible to derive why the algorithm 

produced a particular structural configuration. These validation studies can then be used to 

confirm that the algorithm offers rational and efficient solutions. The studies are categorized 

into two sections: a parameter sensitivity study of the local modules in section 5.1 and the 

evaluation of the design tool on diverse building plans and settings in section 5.2.  
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5.1 Validation of the structural modules 
In Chapter 4, the prediction efficiency of the structural modules was demonstrated. Section 

5.1 conducts a parameter sensitivity study to observe how changes in parameters affect the 

module’s response. This study is visualized using sensitivity plots, demonstrating how 

sensitive a model is to change in a given parameter. This examination also offers an 

opportunity to assess whether the response is logical, indicating that the surrogate models 

behave as expected. 

The x-axis in the sensitivity plot represents the specified free parameter for which the 

response is being examined. The parameter change occurs through high-resolution increments 

of 1000 steps, translating into a continuous response graph. The y-axis represents the response, 

which is the objective that the given SU model is designed to predict. 

 

It is not possible to visualize the interrelated spectrum of all parameters. Instead, the change 

in response is demonstrated for one parameter at a time while the remaining parameters are 

fixed. The value of each external parameter is visualized in their normalized domain under 

each sensitivity plot, except for the live load category, which is set to zero unless another value 

is specified. The value of zero represents the typical residential load. It should also be noted 

that the dead load and live load parameters are combined into one parameter denoted as 

“vertical load” for the sake of simplicity.  

A series of the most relevant sensitivity studies are selected and presented in the following 

subsections to help evaluate the validity of the structural modules used in the final design tool. 

 

5.1.1 Wall module 

Given the similarity in structure and behavior between the inner and outer wall modules, 

it is determined that sensitivity studies will be conducted solely on the inner wall module. This 

decision is made because the conclusions derived from the sensitivity studies on the inner wall 

module will also apply to the outer wall module.  

 

A scenario is examined with a relatively high overturning moment, while the vertical load 

is defined as the free parameter. It should be noted that the length of the wall is set to its 

maximum value to ensure that a solution can be found when the vertical load is low. In Figure 

5.1, an initial high CPM and thickness value is observed, which quickly decreases before 

experiencing a slight increase. This behavior can be explained by the fact that the overturning 

moment dominates when the vertical load is low. The wall increases its self-weight and utilizes 

corrugated tubes, which increases the cost, to compensate. When the vertical load on the wall 

is increased, the wall can more easily withstand the overturning moment, resulting in the use 
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of less material. However, when the vertical load becomes too high, the wall requires more 

material to withstand the load, causing the cost to increase again. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A scenario is examined in which the number of floors represents the free variable. The 

length of the wall is maximized to minimize the influence of the overturning moment. In 

Figure 5.3 (a) and (b), a steep increase is observed initially, followed by a more gradual increase 

throughout the rest of the range. This change is likely due to the live load reduction factor, 

which activates after a couple of floors, which reduces the percentwise increase of the live load 

and is reflected in the material cost.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 – Sensitivity plot for the RC wall module in relation to the load value, with (a) illustrating the response 

of the cost per meter (DKK/m) objective, and (b) illustrating the response of the wall thickness objective. 

Figure 5.3 – Sensitivity plot for the RC wall module in relation to the number of floors, with (a) illustrating the 

response of the cost per meter (DKK/m) objective, and (b) illustrating the response of the wall thickness objective.

Figure 5.2 – External parameter settings that were used for the sensitivity plot in Figure 5.1 
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5.1.2 Beam module 

Figure 5.5 illustrates the sensitivity plot in relation to the beam length parameter across the 

entire range. The vertical load parameter is fixed at the 0.75 percentile to amplify the impact 

of the beam length variation. An accelerating increase in the CPM and beam height response 

can be observed. This graph shape was expected because the beam length is squared in the 

bending moment calculation.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 illustrates the sensitivity plot for a scenario where the vertical load is set as the 

free parameter. The beam length is fixed at the 0.75 percentile, and the live load category is set 

to category F, which corresponds to traffic load, to amplify the impact of the variation. As 

expected, a relatively linear increase in cost and beam height can be observed in Figure 5.7 (a) 

and (b).  

 

 

Figure 5.4 – External parameter settings that were used for the sensitivity plot in Figure 5.3 

Figure 5.5 –  Sensitivity plot for the RC beam module in relation to the beam length, with (a) illustrating the 

response of the cost per meter (DKK/m) objective, and (b) illustrating the response of the beam height objective. 

Figure 5.6 – External parameter settings that were used for the sensitivity plot in Figure 5.5 
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An interesting effect is demonstrated in Figure 5.9, where the height slab on the left side is 

fixed at its maximum value, and the parameter for the right slab height is free. A decrease in 

cost is observed as the slab height on the right-side increases. This effect occurs because the 

beam ledge's height decreases to accommodate the increasing slab height, and because no 

other external parameters change, no increase in the total height is necessary. Consequently, 

the beam's cross-sectional area decreases, which is manifested in Figure 5.9 (a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 – External parameter settings that were used for the sensitivity plot in Figure 5.7 

Figure 5.7 – Sensitivity plot for the RC beam module in relation to the load, with (a) illustrating the response of 

the cost per meter (DKK/m) objective, and (b) illustrating the response of the beam height objective. 

Figure 5.9 – (a) Sensitivity plot for the RC beam in relation to the right slab height and the cost per meter 

(DKK/m) objective, and (b) illustrating the corresponding external parameters. 
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5.1.3 Column module  

A scenario is examined where the beam length is defined as the free parameter, resulting 

in a linear increase of the normal force acting on the column. It is noted that the beam length 

in this context, can also be understood as the column spacing. As expected, the cost and 

column width increase as the beam length and load area increase, as the column requires more 

material to withstand the increasing force affecting it. The cost is observed to be moderately 

accelerating in Figure 5.10 (a), likely due to the second-order effect being triggered and because 

the weight of the above columns’ mass increases, as shown in Figure 5.10 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 illustrates an analysis where the number of floors is defined as the free 

parameter. The SU model demonstrates a pattern of cost increases occurring in intervals 

corresponding to an increase in the number of floors. There are 12 plateaus visible in Figure 

5.12 (a) corresponding to each available floor number, and the distance between them are 

roughly equal, which was expected given the parametric definition.  

Figure 5.12 (b) shows a relatively linear increasing trend in the column width response. 

However, the slope of the increase flattens slightly, which can be attributed to the scaling 

principle of the column, where the cross-section area increases by a more significant 

proportion with each width increment.  

 

 

Figure 5.10 – Sensitivity plot for the RC column module in relation to the beam length, with (a) illustrating the 

response of the cost per meter (DKK/m) objective, and (b) illustrating the response of column width objective. 

Figure 5.11 – External parameter settings that were used for the sensitivity plot in Figure 5.10 
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5.1.4 Beam-column line module  

The methodology for defining the optimal distance between columns in the beam-column 

SU model has been outlined in section 4.6.4. This section presents a series of analyses where 

two sensitivity graphs are plotted using the beam length as the free parameter and two 

different values of a relevant external parameter to illustrate their impact on the optimal 

column spacing. It is noted that all unspecified external parameters are set to their 0.25 

percentile value in the normalized domain, except for the live load category, which is defined 

as category A, corresponding to a standard residential live load.  

 

An analysis is conducted to evaluate the impact of the CPM parameter, which was designed 

to artificially increase the cost of columns, thereby encouraging the algorithm to reduce the 

number of columns. The black curve in Figure 5.14 represents an unaltered column price, 

while the blue curve illustrates a column price multiplied by a factor of three. It is evident that 

the curve's minimum point has shifted to the right, increasing the distance between the 

columns as expected. It is emphasized that the adjusted column price is only utilized to 

determine the column spacing, while the actual price of the column is used in the overall 

algorithm of the design tool.  

Figure 5.12 – Sensitivity plot for the RC column module in relation to the number of floors, with (a) illustrating the 

response of the cost per meter (DKK/m) objective, and (b) illustrating the response of column width objective. 

Figure 5.13 – External parameter settings that were used for the sensitivity plot in Figure 5.12 



Chapter 5 – Validation studies   

 

126 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 illustrates the difference in using the minimum and maximum effective column 

length, represented by the black and blue curves, respectively. It can be observed that 

increasing the effective length results in a higher column spacing. This effect was expected, as 

an increased column length leads to a greater self-weight from the columns above and a more 

significant influence from the second-order effects. All these aspects increase the load on the 

columns and consequently increase the price per column, incentivizing the algorithm to utilize 

fewer columns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 5.16, the black and blue curves visualize the effect of utilizing the minimum and 

maximum line load, respectively. As expected, when the line load consists only of the self-

weight of the beam, the algorithm will choose a larger spacing distance between the columns. 

However, when the line load is maximized, the column spacing is almost halved to reduce the 

bending moment in the beam and decrease the load on the columns.  

Figure 5.14 – Sensitivity plots for the RC beam-column line module in relation to two different values of the 

Column Price Factor (CPF). 

Figure 5.15 – Sensitivity plots for the RC beam-column line module in relation to two different values of the 

effective column length (Ls) 
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Figure 5.17 illustrates the difference between using one or twelve floors, as visualized by 

the black and blue curves, respectively. It can be observed that the overall shape of the curves 

is similar, as the parameter does not affect the prerequisites regarding the beam, but only the 

axial force which affects the columns. Therefore, the relative cost ratio between columns and 

beams only changes slightly, reflected in the small reduction of the column spacing, to 

decrease the accumulated load on the columns.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 – Sensitivity plots for the RC beam-column line module in relation to the minimum and maximum 

line load value. 

Figure 5.17 – Sensitivity plots for the RC beam-column line module in relation to the minimum and maximum 

number of floors. 
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5.2 Validation of the design tool 
The analysis presented in section 5.1 should be considered as local investigations of the 

structural modules. This section employs a global approach, wherein the design methodology 

as a whole is tested on various building planes. The general design methodology is illustrated 

in Figure 4.43 and Figure 4.44, and the solutions generated consider the interconnected 

relationships between all the structural modules with respect to the specified design objective.  

These examinations aimed to investigate whether the algorithm converges towards 

optimized solutions. The design objective is the minimization of material cost; therefore, 

optimized solutions should be characterized by an efficient structural layout that still complies 

with the defined physical and practical constraints. A series of specific scenarios are examined 

to analyze why the algorithm converged toward a particular solution, aiming to demonstrate 

that the design tool generates optimized and logical solutions.  

The base settings used in the design tool are listed in Table 5.1, while those utilized in the 

GA are listed in Table 5.2. If an analysis deviates from the main settings, it will be specified in 

the corresponding subsection.  

 

 

Design tool setting Value 

Live load size 1.5 [kN/m2] 

Live load category A1 – Residential area 

Variable dead load 1 [kN/m2] 

Number of floors 4 

Installations height 0.4 [m] 

Ground clearance height 2.5 [m] 

Terrain category III 

Orography factor 1 

Outer wall recess ratio 0.5 

CPF 1 

 

 

GA setting Value 

Generations 100 

Population 200 

Elite ratio 1:10 

Crossover rate 0.70 

Mutation probability 0.05 

Mutation rate 0.35 

Table 5.1 – Base settings for the design tool 

Table 5.2 – Base settings for the GA 
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5.2.1 Different CPF on a simple building plane 

As shown in Figure 5.18 the design tool has been applied to a building plan with an L-

shaped layout. This layout was selected for the initial test due to its simplistic shape, which 

reduces the solution space. This simplification makes it easier to analyze the solution from a 

static and economic perspective before applying the design tool to more complex building 

shapes. The L-shaped layout is transformed into five different AP shapes, allowing for a 

reduction in population size to 100.  

Two investigations are conducted, one using standard settings and one using a CPF value 

of three, to examine how a change in CPF values affects the final results of the algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 (a) and (b) demonstrate a rapid convergence towards an optimum with a 

minimum CPM2 value of 393.5 and 410.6, respectively, corresponding to a 4.3% increase. As 

expected, the algorithm also reduces the number of columns from six to four, as illustrated in 

Figure 4.20.  

As illustrated in Figure 5.22, the algorithm has chosen to insert a wall element, even though 

it is not required from a static point of view regarding the overturning moment. It is assumed 

that this decision is due to the algorithm’s incentive to minimize the number of columns used. 

The algorithm can avoid placing an additional intermediate supporting column by inserting 

Figure 5.18 – Illustration of the wind resultants and corresponding wind pressure values for 12 directions. 
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the wall. The choice of the slab is not affected by the different CPF values, as both tests employ 

the same type of hollow core slab of EX18-5L9.3. 

From a general static and geometric perspective, it is noticeable that the algorithm has 

chosen to halve the span using beam-column lines. While it was statically possible for the 

algorithm to employ TT-slabs, this solution was economically inferior, despite the potential 

reduction in beam-column lines. This potential reduction was not enough to compensate for 

the increased cost per square meter of the slab and the increased height of the exterior walls, 

as the minimum height must always be maintained.  

Based on these observations, it can be concluded that the design tool has generated 

solutions that make sense from both an economic perspective and that increasing the CPF 

value will reduce the number of applied columns. As a result, the design tool can be tested on 

more complex building shapes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 – Convergence plot for both the minimum CPM2 (a) and the average CPM2 (b) values. 

Figure 5.20 – Plan view of the structural layout, with (a) representing CPF =1 and (b) representing CPF=3. 
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Figure 5.22 – 3d visualization of final solution using CPF=3. CPM2 objective = 410.6. 

Figure 5.21 – 3d visualization of final solution using CPF=1, CPM2 objective = 393.5. 
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5.2.2 Multiple floors 

This analysis explores the effects of varying floor counts. As additional floors are added, 

vertical and horizontal loads increase, resulting in an anticipated increase in the use of shear 

walls. Additionally, cross-sectional dimensions are expected to increase to accommodate the 

more significant vertical load affecting the structural elements. The analysis employs standard 

settings as input. Figure 5.29 (a) illustrates the geometric shape and dimensions of the building 

plan used in the analysis, while Figure 5.23 shows the critical wind directions. Although the 

wind direction is only indicated for four floors, the relationship between the wind results 

remains constant for solutions with eight and twelve floors.  

 

 

 

 

 

 

 

 

 

 Figure 5.24 – Convergence plot for both the minimum CPM2 (a) and the average CPM2 (b) values. 

Figure 5.23 – Illustration of the wind resultants and corresponding wind pressure values for 12 directions. 



Chapter 5 – Validation studies   

 

133 

 

Figure 5.24 (a) demonstrates a convergence towards an optimum, with a minimum CPM2 

value of 387.2, 438.4, and 488.7 for the solutions with four, eight, and twelve floors, 

respectively. The convergence graphs show a relatively similar shape, although it takes 

slightly longer for the solution with twelve floors to converge. This difference can be attributed 

to the increased horizontal forces and vertical loads, which makes it more difficult for the 

algorithm to find valid solutions.  

The increase in CPM2 values was expected, as the structure requires more material to 

support the additional load. Nonetheless, the percentage increase is relatively linear, 

indicating that the cost of the slab still dominates the structure’s overall cost, as demonstrated 

in Figure 5.25. However, it is noticed that this proportion decreases as the number of floors 

rises since the structure requires more material in the wall sections to withstand the affecting 

forces.  

 

 

 

 

 

 

 

 

 

The final results are presented in Figure 5.26 to Figure 5.30. It is noted that in the four-floor 

solution, no shear walls were added, as the outer walls of the building can still absorb all the 

horizontal forces. As a result, the algorithm minimizes cost by reducing the contribution from 

slabs, accomplished by designing efficient beam-column layouts that allow for the utilization 

of EX18 hollow core slabs. This slab type has the smallest height dimension in the slab database 

and is, therefore, the most cost-effective option.  

As the number of floors increases to eight, the algorithm can still rely primarily on the outer 

walls, but it does need to include a shear wall to reinforce them. It is also noted that the 

algorithm utilizes primarily the same beam-column line configuration, implying that the 

system is the most efficient option. However, in the extended section of the building plan, the 

span direction has been altered, presumably to add vertical load to the outer shear walls and 

to increase their stabilizing capacity.  

For twelve floors, more significant modifications can be observed. The algorithm has added 

a beam-column line, likely to distribute the increased vertical load across multiple columns. 

However, the most significant change is the increased use of shear walls in both directions. 

This change indicates that it is no longer feasible only to redirect forces to the outer walls. 

Figure 5.25 – Cost distribution for the different number of floors. 
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Additionally, it is worth noting that if the walls were combined into a resultant, the vector 

direction of this resultant would align well with the critical wind resultant from the WNW 

direction, as depicted in Figure 5.23.  

Based on these observations, it can be concluded that the algorithm responds logically to 

changes in the number of floors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.27 – 3d visualization of final solution using 8 floors, CPM2 objective = 438.4 

Figure 5.26 – 3d visualization of final solution using 4 floors, CPM2 objective = 387.2 
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Figure 5.28 – 3d visualization of final solution using 8 floors, CPM2 objective = 488.7 

Figure 5.29 – Plan view of the structural layout, with (a) representing CPF =1 and (b) representing 4 floor. 
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Figure 5.30 – Plan view of the structural layout, with (a) representing 8 floors and (b) representing 12 floors. 
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5.2.3 Limited slab options  

This analysis examines the impact of a reduced slab database on the final design. 

Specifically, the option to select hollow core slabs has been eliminated. The algorithm can only 

select from different versions of the TT slab type, which is suited for longer spans due to its 

large cross-section. Consequently, the algorithm is expected to utilize larger spans than in the 

previous examinations. The algorithm is applied to the same building plan used in Figure 5.26, 

with identical settings except for the reduced slab database. 

Figure 5.31 demonstrates a rapid convergence toward an optimum CPM2 value of 655.0, 

corresponding to a 69.2% increase compared to the solution that used hollow core slabs. This 

increment was expected as the algorithm is forced to use TT-slabs, which have a higher cost 

per square meter, and because the overall building height increases. The rapid convergence 

can be attributed to the reduced slab database, which decreases the solution space the 

algorithm has to search through.  

  

Figure 5.32 and Figure 5.33 illustrates the final solution. It is evident that the algorithm has 

generated a substantially different solution than the one presented in Figure 5.26. As expected, 

the algorithm has widened the distance between beam-column lines to maximize material 

usage. This optimization is also reflected in the algorithm’s decision to utilize TTD78/240 slabs 

throughout the structure, as it was the TT-type with the lowest height available. 

As a consequence of the algorithm being forced to use the TT-slab type, the overall floor-

to-floor height increases from 3.38m to 3.98m since the algorithm must always ensure the 

defined minimum clear height. Using TT-slabs also means that the beam’s height and stiffness 

increase. Therefore, even though the beam experiences a significant increase in load, the 

column spacing remains comparable to that seen in Figure 5.26. 

Although using TT-slabs in the solution increases the cost per square meter, this strategy 

may present additional benefits, including practical and aesthetic considerations. Table 5.3 

shows that the solution with TT-slabs has an almost double ACS value. A larger open area 

provides a better design freedom. Furthermore, the cost assessment is solely based on material 

Figure 5.31 – Convergence plot for both the minimum CPM2 (a) and the average CPM2 (b) values. 
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prices, and there may be other factors to consider, such as the number of work processes and 

crane lifts.  

Based on these considerations and results, it can be concluded that the availability of 

structural elements significantly impacts the design of the structural layout and final cost. 

 

 

Case ACS 

All slab types 82.6 [m2] 

Only TT-slabs 144.5 [m2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3 – ACS values for both the solution with all slab types available and the solution with limited options. 

 

Figure 5.33 – Plan view of the structural layout suggestion using a limited slab database. 

Figure 5.32 – 3d visualization of final solution with limited slab options, CPM2 objective = 655.0 
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5.2.4 Different recess ratio settings on the outer wall 

This analysis investigates whether the outer wall recess ratio (RR) parameter functions as 

intended by redirecting horizontal forces within the structure. As described in section 4.6.5, 

the RR parameter denotes the percentage of the outer walls containing recesses, such as 

windows and doors. A high RR value reduces stiffness, as less material is available to resist 

the overturning moment. Furthermore, outer walls with a high RR value will be more affected 

by vertical load and wind loads perpendicular to the surface due to a concentration of forces 

on a smaller area, further reducing the element’s ability to counteract the overturning moment. 

Therefore, the algorithm is expected to add inner shear walls to increase the structure's 

capacity against the overturning wind forces for the solution with a high RR value. 

The analysis is carried out on a block building, as this building type has a high proportion 

of outer walls relative to the plan area, which will emphasize the impact of the RR parameter 

on the final design. The building plan and geometry are shown in Figure 5.34 (a), while the 

critical wind direction is illustrated in Figure 5.34 (b). The algorithm conducts two analyses, 

one with a low RR value set to 0.2 and another with a high RR value set to 0.8. The number of 

floors is set to six to amplify the effect, but standard settings are used otherwise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34 – (a) Illustration of the wind resultants and corresponding wind pressure values for 12 directions.  

(b) The geometric dimensions of the applied building plan. 
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Figure 5.35 demonstrates a convergence towards an optimum with a minimum CPM2 value 

of 380.2 and 407.9, respectively, for the solution with RR=0.2 and RR=0.8. The price for the 

outer wall is determined based on the total surface area. Consequently, the price difference 

reflects the variation in the wall thickness and reinforcement level in the outer walls, as well 

as the difference in the inner structural layout. Therefore, it is reasonable that the value with 

the RR=0.8 is slightly higher, even though the floor height for this solution has decreased from 

3.47m to 3.17m.  

 

 

 

 

 

 

 

 

 

 

Figure 5.36 to Figure 5.38 illustrates the final solutions. From a general static perspective, 

the algorithm has opted to orient the slab direction to utilize the permanent load-bearing lines 

in the outer walls, thus reducing material usage. As expected, the algorithm has increased the 

number of shear walls to counteract the overturning moment better. Additionally, it is 

observed that the algorithm has applied the same fundamental layout system across two 

distinct optimization iterations, indicating that the configuration is efficient. 

Based on these results, it can be concluded that the RR value has the intended effect and 

can be used to redirect horizontal forces to and from the outer walls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.35 – Convergence plot for both the minimum CPM2 (a) and the average CPM2 (b) values. 

Figure 5.36 – Plan view of the structural layout, with (a) representing RR=0.2 and (b) representing RR=0.8 
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Figure 5.37 – 3d visualization of final solution using RR=0.2, CPM2 objective = 380.2 

Figure 5.38 – 3d visualization of final solution using RR=0.8, CPM2 objective = 407.9 
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5.2.5 Change of live load 

This analysis investigates the impact of vertical load on the optimized structural layout. 

The analysis is conducted on a building shape with a relatively large surface area, making 

changes in the inner structural layout more apparent. The building plan and geometry are 

depicted in Figure 5.39. The critical wind load is not illustrated, as it does not influence the 

final design. The analysis will be carried out on two cases, one with a surface load equal to 1.5 

kN/m2, corresponding to category A (residential load), and another case using a surface load 

equal to 7.5 kN/m2, corresponding to category E (traffic load).  

Figure 5.40 demonstrates a convergence towards an optimum with a minimum CPM2 value 

of 359.8 and 388.2 for the solutions with live load A and live load B, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.40 – Convergence plot for both the minimum CPM2 (a) and the average CPM2 (b) values. 

Figure 5.39 – The geometric dimensions of the applied building plan. 
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Figure 5.41 to Figure 5.43 illustrate the final solutions. As expected, the structural layout is 

dominated by beam-column lines, as this is the most cost-effective option. It is evident that the 

algorithm still favors the utilization of EX18 hollow core slabs, even across load categories. The 

variance in the structural layout lies in the density of beam-column lines and the column 

spacing. This approach is reasonable from both a static and economic perspective and is 

consistent with the findings of previous studies in Chapter 5. 

Figure 5.41 (a) shows that only a single shear wall is utilized in the small wing. It is assumed 

that the algorithm has placed a wall here instead of a beam-column line because it uses an 

EX32 hollow core slab to cover the span. If the algorithm had used a beam-column line, the 

floor height would have increased because of the defined parametric rules to ensure the 

minimum clear height. Additionally, none of the surrounding slabs have a bearing on the wall; 

thus, the minimum thickness can be used, which is more cost-effective. This approach is 

logical, considering the defined constraints and design objectives. However, from a practical 

and static viewpoint, this wall does not make sense, as Figure 5.41 (b) illustrates that the outer 

walls can withstand the overturning moment. The wall is present because the rules dictate that 

all edge curves in an APoly shape must have a function. Thus, the placement of this wall serves 

as an example of how the algorithm can still be refined, such as by allowing non-vertically 

loaded support lines to be empty. 

However, considering the defined rules, it can be concluded that the algorithm has 

generated logical and cost-effective solutions based on the different live load values.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.41 – Plan view of the structural layout, with (a) representing live load category A and (b) representing 

live load category B. 
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Figure 5.42 – 3d visualization of final solution using live load category A, CPM2 objective = 359.8 

Figure 5.43 – 3d visualization of final solution using live load category E, CPM2 objective = 388.2 
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5.2.6 Different locations  

This analysis investigates the influence the location can have on the optimized structural 

layout of a building. Two optimization iterations will be performed with the same settings, 

except for the placement of the building. Both analyses will be placed in a real-world location 

using the wind load values dictated by the location. Both locations are selected to significantly 

impact the building with wind load from a specific direction. In this case, from a Northern and 

Eastern direction, clearly illustrated in Figure 5.46. 

The variation in load outcomes is primarily attributed to unfavorable terrain categories and 

orography values for specific directions. The terrain categories are defined based on the radar 

images found in Appendix A. The orography values are visualized in Figure 5.47. 

The geometry of the affected building plan is illustrated in Figure 5.45 (b). The building is 

designed with teen floors to ensure that the wind load significantly impacts the final structural 

layout. Otherwise, standard settings are applied. 

Figure 5.44 demonstrates a convergence towards an optimum with a minimum CPM2 value 

of 461.3 and 483.6 for the solution with the critical Northern and Eastern directions, 

respectively. It is noted in the graph that the algorithm took longer to reach an optimum in 

this analysis compared to previous studies. This scenario can be attributed to the significant 

wind load the algorithm has to manage in addition to the vertical loads.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 5.44 – Convergence plot for both the minimum CPM2 (a) and the average CPM2 (b) values. 

Figure 5.45 – (a) Number of repairs conducted by the algorithm. (b) The geometric dimensions of the applied 

building plan. 
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Furthermore, it can be observed that the algorithm utilizes more material for the solution 

in the critical Eastern direction compared to the critical Northern direction. This observation 

is apparent since the critical wind resultant is more significant for the eastern direction than 

the critical Northern direction, as demonstrated in Figure 5.46. 

Figure 5.45 (a) illustrates the number of repairs per generation. There is no apparent pattern 

in the number of generations, but it is noted that the repair algorithm has been considerably 

more active in these optimization iterations than previously observed. This activity is logical 

since the repair algorithm is designed to increase the length of the stabilizing wall where 

necessary. It can therefore be concluded that the repair algorithm outlined in Figure 4.44 works 

as intended and contributes to increasing the number of valid solutions in each generation. 

The optimized results are illustrated in Figure 5.48 to Figure 5.50. As expected, the 

algorithm has allocated more shear walls along the critical wind directions to withstand the 

overturning moment. This strategy was especially evident for the case with the critical Eastern 

direction, as this value was exceptionally high. Additionally, it is noted that the algorithm also 

optimized the positioning of the beam-column lines to minimize the number of columns, 

indicating that it still takes the vertical loads into consideration. This approach is further 

evident in the resulting structural layout, which has been designed to accommodate the use of 

EX18 hollow core slabs.  

In general, it can be concluded that the building’s location can significantly impact the final 

structural layout, provided that the building is highly exposed to wind loads.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.46 – (a) Wind resultants and corresponding wind pressure values for the critical Northern direction.  

(b) Wind resultants and corresponding wind pressure values for the critical Eastern direction. 



Chapter 5 – Validation studies   

 

147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.48 – Plan view of the structural layout, with (a) representing the critical Northern direction and (b) 

representing the critical Eastern direction. 

Figure 5.47 – (a) Orography values for the critical Northern direction. (b) Orography values for the critical 

Eastern direction. 
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Figure 5.49 – 3d visualization of final solution for the critical Northern direction, CPM2 objective = 461.3 

Figure 5.50 – 3d visualization of final solution for the critical Eastern direction, CPM2 objective = 483.6 
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5.2.7 Hybrid solution 

As described in section 4.3.4, a hybrid solution is a partially defined solution where the user 

has already designed a part of the structural layout. The algorithm then adapts to the user-

defined inputs when completing the remaining sections of the structural layout. The 

effectiveness of the algorithm’s ability to adapt to user input is examined and compared to a 

similar solution where the algorithm had complete design freedom. 

The analysis builds upon the previous case study, which examined the critical Northern 

wind direction, as shown in Figure 5.49. The population size in the GA is increased to 500 to 

account for a higher proportion of solutions that are likely to fail in the first generation. 

However, standard settings have been applied in all other aspects. The custom input is 

illustrated in Figure 5.52 (a), where an open area without any interior load-bearing lines has 

been specified. This input reflects a plausible functional requirement that could occur in real-

world scenarios. 

Figure 5.51 (a) demonstrates a convergence towards an optimum with a minimum CPM2 

value of 472.5, a 2.4 percent increase compared to the non-restricted optimization. This result 

is very satisfying as it was expected to be even higher; it can likely be attributed to the 

unrestricted optimization not having fully converged, as indicated in Figure 5.44 (a).   

 

 

 

 

 

 

 

 

 

 

 

The final solutions are illustrated in Figure 5.52 (b) and Figure 5.53. It can be observed that 

the algorithm has chosen to position the shear walls around the fixed APoly shape, which was 

not included in the customized inputs. Additionally, the algorithm has opted to use a similar 

structural layout, indicating that the layout is efficient.  

In summary, the algorithm can effectively incorporate user input and generate optimized 

hybrid solutions based on the defined objectives and constraints.  

 

 

 

Figure 5.51 – Convergence plot for both the minimum CPM2 (a) and the average CPM2 (b) values. 
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Figure 5.52 – (a) User defined APoly shape and slab direction. (b) Final plan view of the structural layout 

Figure 5.53 – 3d visualization of final hybrid solution, CPM2 objective = 472.5 
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5.2.8 Multi-objective optimization  

A MOO analysis is conducted to investigate whether the algorithm can generate optimized 

solutions that take multiple objectives into account simultaneously. This analysis employs the 

CPM2 objectives used in all previous case studies and the ACS objective. These two objectives 

are in conflict, such that improving one objective will lead to a deterioration in the other. 

Consequently, selecting a solution will require determining a satisfactory trade-off between 

the design objectives.  

The analysis is performed on the same building plan as shown in Figure 5.26 with the same 

assumptions, except for an increase in the initial population in the GA from 200 to 300. The 

HypE algorithm will be employed to select the elite individuals in each generation. 

Regarding the two defined objectives, solutions at each end of the spectrum are expected 

to resemble the solution shown in Figure 5.26 when the CPM2 objective is prioritized and the 

solution shown in Figure 5.32 when the ACS objective is prioritized. 

The convergence plot for the CPM2 objective is presented in Figure 5.54 (a). The ACS 

convergence plot is not displayed as it only changed twice and thus does not provide much 

information. The convergence values also represent only the extreme values of the Pareto front 

and therefore offer limited information about whether the Pareto front is still being optimized. 

However, as shown in Figure 5.54 (b), the number of invalid solutions has significantly 

decreased, suggesting that the algorithm has converged.     

 

 

 

 

 

 

 

 

 

 

 

The trade-off between the objectives is clearly depicted in the Pareto front in Figure 5.55. 

Solution (A) is the same as the solution found in Figure 5.26, while solution (C) closely 

resembles the solution presented in Figure 5.32, although with a slightly higher CPM2 value. 

While it is not guaranteed that two optimization sessions will converge toward the same 

solution, given enough time, the mutation operators would ensure that the same solution 

would eventually be found. Solution (B) represents a solution where the objectives are 

weighted roughly equally, which is also evident from the objective values presented. 

Figure 5.54 – (a) Convergence plot for the minimum CPM2 objective.  

(b) Number of invalid solutions in each generation. 
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It is noted that the density of solutions in the Pareto front is moderately low, possibly due 

to the relatively simple building plan used in this analysis. Future sensitivity analysis may 

demonstrate whether the SPEA2 or NSGA-II algorithm can produce a more densely populated 

Pareto front. However, the previous case studies in sections 5.2.2 and 5.2.3 indicate that the 

solutions at the outer spectrum of the Pareto front are correct, and a strong trade-off can also 

be observed, as expected. Therefore, it can be concluded that the algorithm can incorporate 

multiple objectives and generate structurally valid solutions optimized with respect to the 

defined design objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution CPM2 ACS 

(A) 387.2 82.6 

(B) 487.4 144.5 

(C) 695.5 192.7 

 

Figure 5.55 – Visualization of the pareto front for the MOO analysis using the ACS and CPM2 objectives. 
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5.3 Summary 
In Chapter 5, the performance and reliability of the design tool were validated through a 

series of local and global case studies. The validation studies were divided into two main 

groups.  

The first group, presented in section 5.1, consisted of parameter sensitivity studies 

conducted on the structural approximation modules. These studies evaluated the modules’ 

responsiveness to changes in different parameters and assessed whether the response was 

logical and consistent with expectations. The studies were conducted on the wall, beam, 

column, and BC line evaluation modules. All sensitivity studies demonstrated a logical 

response that was consistent with expectations. Therefore, it can be concluded that the 

modules function as intended and can be combined in the final design tool.  

The second group of validation studies examined the design tool’s effectiveness across 

relevant building plans and scenarios. The corresponding results demonstrated that the tool 

could adapt to different scenarios and settings and produce optimized results based on the 

design objective and active constraints.  

It was also demonstrated that the tool could produce solutions adapted to the user 

interactivity features as defined in Chapter 3. These features enable the user to influence or 

define sections of the structural layout suggestions.  

Furthermore, it was demonstrated that the design methodology could conduct multi-

objective optimization and produce a front of Pareto optimal solutions.  

All studies produced excellent results, confirming the tool’s ability to generate efficient, 

logical, and optimized solutions. 
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Chapter 6 – Conclusion 
  

“ Technology is there to be used to help you be creative ” 
  – Nicholas Grimshaw [111] 

 

Chapter 6 provides the final conclusions of this project and highlights that the developed 

design tool is more than just a proof-of-concept. It is, in its current form, a valuable tool for 

exploring and evaluating various structural layout suggestions. Chapter 6 is divided into three 

sections: 

 Section  6.1 summarizes chapters 1 to 5 and presents the conclusions, including the 

project’s novelty.  

 Section 6.2 reflects on and discusses some of the main findings.  

 Section 6.3 is dedicated to presenting and discussing future improvements and 

prospects concerning short- and long-term goals.  

 

6.1 Summary of the thesis 
Chapter 1:  

The primary goal of this project is to develop a tool that could generate optimized structural 

layout suggestions using prefabricated reinforced concrete (RC) elements. Chapter 1 outlines 

the research aims, questions, and objectives to achieve this goal.  

The background and motivation for the project are presented, emphasizing the need for 

more effective use of concrete due to environmental, legal, and economic considerations. The 

argument is made that better design exploration in the early design phase using the proposed 

design tool could indeed lead to more effective use of concrete. It is argued that such a tool 

could support an integrated design process (IDP) approach, which involves earlier and more 

efficient collaboration between architects, engineers, and contractors. State-of-art is also 

presented with a focus on research developing structural layout tools and early design tools 

for building design.  

 

Chapter 2: 

Chapter 2 focuses on the fundamental mechanics of the theories and methods applied in 

constructing the design tool. It introduces the concept of parametric design and relevant 

approaches to this topic. Additionally, it specifies terminology and definitions of concepts 

used in this project.   
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The chapter also introduces the general optimization principle for single-objective and 

multi-objective optimization. It explains the difference between ideal-based and preference-

based multi-objective optimization, arguing that a preference-based approach is most suitable 

for this project. This approach is implemented in the form of a Pareto front representation.  

The characteristics of meta-heuristic algorithms are defined, with a detailed explanation of 

the mechanisms of a Genetic Algorithm. Machine learning (ML) is also introduced, focusing 

on how ML models can learn to emulate complex objective functions. This topic is further 

explored through the concepts behind surrogate modeling, which is a sub-field of ML. The 

essential concepts behind surrogate modeling are presented, including sampling strategies, 

error metrics. Different specific surrogate model strategies are explained in detail. The chapter 

emphasizes that surrogate modeling can be combined with meta-heuristic optimization 

algorithms to solve complex and computationally expensive engineering problems.  

It is noted that not all of the defined methods are incorporated into the final design tool, 

but they are all considered. The chapter also provides a common terminology used in the 

subsequent chapters.  

 

Chapter 3:  

Chapter 3 introduces the concept of Action Research (AR), including the fundamental 

theory, and details how it can be used for concept development through a cyclical process of 

planning, acting, observing, and reflection.  

The AR analysis uses three loops for the concept development and employs semi-

structured interviews and co-creating workshops where architects, engineers, and contractors 

contribute to the development of the design tool. The inputs and data collected during these 

sessions are evaluated based on their potential value and feasibility for implementation. The 

most relevant and requested features are identified and serve as a guideline for the actual 

development of the design tool.  

 

Chapter 4: 

Chapter 4 presents the final design tool and elaborates on implementing the conceptual 

framework from Chapter 3. The design tool, also referred to as a design methodology, is built 

using four core principles: optimization, interactivity, dissemination, and automation. The 

design tool is envisioned in a larger context of nesting design loops, each with an increasingly 

associated Level of Detail (LOD). In this project, the developed design loop is intended for the 

first design loop with a LOD set to 200.  

Various relevant programming languages are explored, and their advantages and 

disadvantages are discussed. Based on a balance between user-friendliness and computing 
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speed, C# is chosen for this project, while Rhino is selected as the software platform for the 

design tool.  

The design tool’s general framework is outlined and divided into two main phases: 

initialization and optimization. During initialization, user input is applied to calculate and 

prepare the information needed for the evaluation modules. This phase utilizes the novel 

method developed for this project named Adjacent Polygon (APoly) representation, which 

essentially defines how a building’s parametric representation can change dynamically.  

The evaluation modules are presented, focusing on applying surrogate and hierarchical 

surrogate modeling approaches to achieve fast approximated responses. Their accuracy is 

demonstrated using prediction plots and error metrics.  

Lastly, the optimization phase is presented with a focus on how user-induced knowledge 

is incorporated into the optimization framework. This incorporation is achieved using a repair 

algorithm that operates on the chromosome of each individual to increase the number of valid 

solutions in each generation.  

 

Chapter 5:  

Chapter 5 validates the performance and reliability of the design tool through a series of 

local and global case studies. The validation studies are divided into two main groups. 

The first group consists of parameter sensitivity studies on the structural surrogate 

evaluation modules, including the wall, beam, column, and beam-column line modules. All 

sensitivity studies demonstrate a logical response that is consistent with expectations. 

Therefore, it can be concluded that the modules operate as intended and can be combined in 

the final design tool, which is explored in the second group of studies.  

The second group of validation studies examines the design tool’s effectiveness across 

relevant building plans and scenarios. The corresponding results demonstrate that the tool can 

adapt to different scenarios and settings and produce optimized results based on the design 

objective and active constraints.  

It is also demonstrated that the tool can produce solutions adapted to different settings of 

the user-interactivity parameters, which was incorporated based on the AR analysis in 

Chapter 3.  

Furthermore, it is demonstrated that the design methodology can conduct multi-objective 

optimization and produce excellent results, confirming the tool’s ability to generate efficient, 

logical, and optimized solutions.  
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6.1.1 Overall conclusions 

Based on the results of this project, the following conclusions can be made:  

 

 The AR method was effectively utilized as a framework for developing early design 

tools, allowing for the identification of weaknesses and opportunities for 

improvement.  

 AR was successfully applied to identify relevant user interactivity and 

dissemination features, which would aid building design practitioners in real-world 

practice. 

 The proposed APoly representation methodology can produce varied and relevant 

structural layout suggestions for any given building plan.  

 The APoly representation methods allow for user interaction, enhancing the 

algorithm's purpose as a supportive tool in the design process.  

 Surrogate modeling can produce optimized structural RC elements with high 

accuracy and instant response time.  

 Hierarchical surrogate modeling can be applied to more complex issues, such as 

determining the optimal BC lines while maintaining satisfactory accuracy levels.  

 The repair algorithm successfully increased the percentage of valid solutions in each 

generation, especially when horizontal wind loads dominate the structure. 

 The design tool can take into account multiple objectives and produce a Pareto front 

of valid and optimized solutions.  

 

After conducting four parameter sensitivity studies and eight validation studies, it can be 

concluded that the design tool can generate valid and efficient solutions optimized with 

respect to the defined objectives and constraints. The program’s ability to perform robustly 

under different scenarios and conditions further validates its use as an early design tool. 

Therefore, it can be concluded that the program is suitable for generating structural layout 

suggestions.  

 

Novelty:  

The novelty of this research is present in different aspects: 

 

 The proposed APoly representation method adopts a distinct approach compared to 

existing methods, offering greater design flexibility that accounts for the placement 

and dimensioning of slabs, beams, columns, and walls within a single optimization 

procedure.  
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 The approach of using hierarchical surrogate modeling to predict the entire optimized 

geometry of the structural elements, such as the shear walls and beam-column line on 

finite length, is believed to be a novel approach in the context of structural layout 

optimization. Previous research has mainly focused on prediction performance metrics 

such as utilization values and deformations levels and then utilizing meta-heuristic 

algorithms to determine optimized geometry. This methodology is commonly referred 

to as surrogate-assisted optimization. Similarly, the design tool utilized in this project 

also employs surrogate-assisted optimization but at a global level, which defines the 

overall structural layout.  

 The development of the tool was inspired by previous research focusing on HVAC 

tools [30], which utilized AR. This approach was adapted and structured to suit the 

current design tool’s concept development process, which focused on generating 

optimized structural layout suggestions. 

 The repair algorithm developed for this project aimed to increase the number of valid 

solutions in each generation and decrease the convergence time. The approach of 

incorporating user knowledge into the framework of the GA was inspired by prior 

research [28] [29] done during the developer’s Ph.D. program. 

 In conclusion, the combination of all applied methods and approaches, whether novel 

or known, has resulted in a new robust, flexible design tool that can produce valid and 

optimized solutions for the initial design phase.  
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6.2 Reflection and discussion 
Developing an early design tool to generate optimized structural layouts has required 

various theories and methods, leading to numerous reflections on the interrelationships 

between these methods and their impact on the final design. As stated in the introductory 

quote in Chapter 1, there is no one correct answer but rather many valid approaches that can 

be used to achieve the same goal. This section will reflect on and discuss some of the strengths 

and weaknesses of the proposed design methodology, thereby identifying potential areas for 

improvement.  

 

6.2.1 The importance of parameterization 

The research focused on developing PBGD models tends to prioritize performance metrics 

and the chosen optimization technique over the parametric representation. This preference 

may be because parametric modeling is challenging to quantify, and there may be several 

acceptable ways to parameterize the model, depending on the problem being addressed. 

However, it can be argued that the choice of the parametric representation has a far more 

significant impact on the final results than the choice of the optimization algorithm, especially 

for complex problems such as structural layout optimization.  

The present design tool is constructed from various principles, such as surrogate modeling, 

genetic algorithms, and evaluation modules utilizing static theory. However, the parametric 

representation is by far the most crucial aspect. The proposed APoly representation method is 

particularly well-suited for structural layout optimization for two reasons. Firstly, relatively 

few parameters can generate numerous varied and relevant solutions. Secondly, these 

parameters can be easily manipulated through user interactivity and can even serve as 

constraints, as demonstrated in the hybrid solution example in section 5.2.7 

However, there are still aspects that can be improved. For instance, in some results, a BC 

line is generated for lines with no load area attached. This issue can be easily resolved by 

introducing simple “if” rules to the algorithm that removes elements with no structural 

purpose. 

Furthermore, it is necessary to investigate how the parametric representation method can 

be adapted to use concrete cores. Incorporating cores would require some human input, at 

least to determine the requested size and quantity. Implementation could occur through a 

separate optimization iteration before the primary optimization phase, where the cores are 

placed in the most efficient locations within the building plan to reduce deformation and 

torsion. The concrete core could either be inserted directly into a structural layout and then 

replace the overlapping structure. It could, however, also be incorporated into the algorithm 

that defines the APoly shapes. However, these considerations require tests and examinations 
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to determine the optimal approach for implementing concrete cores into the design 

methodology.   

 

6.2.2 Use cases 

The primary use case for the tool is to explore different design options during the initial 

design phase. This exploration can be done using any of the three levels of ML involvement 

or a combination thereof. The primary use case will typically occur in a competition scenario 

with limited time to determine and dimension a potential structural layout. The proposed 

design methodology would have a significant advantage over the current approach, as the 

user can receive instant feedback on specific configurations when using the “user-defined 

solution” approach or leverage the capability of ML to explore optimized solutions. 

Additionally, the user can adjust these solutions as needed. This feature can potentially tailor 

an optimized solution to fit the functional needs that may be present. Ultimately, this method 

can generate more accurate solutions than what can be achieved through standard rough 

estimate calculations.  

The tool is built using a modular principle, which means each module can be used in other 

scenarios, maximizing the project’s value creation. For example, if a specific task only requires 

the determination of an optimized BC geometry, the corresponding BC module can be used to 

solve this problem. The wind load modules are another excellent example of adding value. 

Unlike many other modules, the wind modules are not based on an approximation algorithm 

but rather on high-fidelity calculations and can be used in static documentation.  

The tool, in its current state, is highly effective and robust. However, as described in the 

previous section, many aspects can still be improved and further developed, such as the 

implementation of concrete cores and additional topics will likely arise as the design tool is 

used in its entirety.  

 

6.2.3 Automation  

Automation is not a typical research topic, but it was a necessity to achieve the limited setup 

time requested by the interviewed architects, engineers, and contractors. For this reason, 

automation was defined as one of the four key aspects in Figure 4.1.  

As previously mentioned, the primary use case of the tool would be during the initial 

design phase to explore design options. Fewer resources are typically allocated for this stage, 

and the design tool has to be tailored to this reality. Cost is one of the primary factors for any 

building project, so if an early design tool is to be successfully implemented, automation must 

be incorporated into the tool’s overarching framework.  
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6.2.4 Constructability 

The significance of the constructability measure became increasingly apparent throughout 

the process. During initial testing, it was discovered that the algorithm sometimes placed large 

slabs on thin walls. While investigations showed that it was statically permissible regarding 

the wall’s load capacity, such a scenario would occur in actual practice as the slab bearing 

length would be far too small. As a result, a constraint was inserted to prevent this and ensure 

that the solutions generated were buildable. 

Constraints and user-defined rules such as these are essential, as they increase the 

constructability of the generated solutions. However, constructability also entails other 

considerations, such as not using stabilizing walls longer than ten meters to avoid 

overestimating the building’s to absorb the overturning moment and setting minimum height 

as a constraint instead of a constant input value. These considerations may seem obvious, but 

they are often only highlighted through conversations with relevant stakeholders or through 

actual use. 

Implementing more functional constructability constraints, such as minimum thickness 

regarding acoustic requirements, could also be relevant. The tool's flexibility could also be 

enhanced if these requirements were interactive, allowing the user to enable or disable them 

in the same way the user can add or remove structural elements from the database the 

algorithm uses for evaluation.  

 

6.2.5 AR as a structured approach for concept development 

Research methods from the social sciences are not often used in structural engineering 

research projects that focus on creating early design tools. This occurrence happens because 

the research tends to be more theoretical, with a greater focus on constructing a proof-of-

concept than creating a tool that conforms to everyday design practice. 

AR provided this project with a platform where discussions, inputs, and reflections from 

different stakeholders helped develop a more refined tool than its original starting point. 

Including at least two AR loops is recommended, as this allows participants to see that their 

input is being incorporated into the solution. This approach can form the basis for a more 

nuanced discussion, resulting in a more developed and relevant final product. 

It should be noted that an AR analysis requires a significant amount of time and resources 

to complete. However, this expense is greatly outweighed by its improvements to the design 

tool’s framework.  

 

6.2.6 Evaluation response time 

Creating a working design tool by attaching a FEM engine as an evaluation engine would 

have been easier and faster to implement. However, FEM calculations are ill-suited for running 
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numerous evaluation iterations to achieve an optimized result. It also limits the tool's use, as 

it depends on a FEM license. Consequently, it was chosen to code methods for defining load 

cases, performing evaluations, and distributing horizontal forces. Although this required 

significant development time, the outcome was faster than if a FEM model were implemented, 

even if the FEM model was only used to determine the load on the structural elements. 

Another crucial aspect of the evaluation speed was pre-calculating as much information as 

possible before the optimization process. For example, the optimal choice of the slab was found 

for each APoly shape, for each possible load direction, and for each slab length, as described 

in section 4.3.2. This strategy was possible because the choice of the slab was not affected by 

external wind loads. This information was stored in the APoly C# class created so the 

algorithm could access this database for each iteration.  

Another, and even more important feature for the evaluation speed, was the use of 

surrogate models. This principle allowed for instant dimensioning of the structural elements, 

so the primary time used in a single evaluation was allocated for executing the parameters into 

a structural layout and calculating and distributing the external forces that affect the structural 

elements.  

 

6.2.7 Design objectives 

The primary CPM2 design objective showed a clear tendency that it was generally more 

cost-effective to use multiple but smaller elements, at least to a certain limit. However, other 

factors may also contribute to the total cost, such as transportation and the number of work 

processes, as mentioned in section 4.2.1. Therefore, if a more precise cost calculation is desired, 

these factors must be incorporated, requiring a more detailed understanding of the different 

cost factors. The RC suppliers who were approached in this study were not willing to disclose 

how they assess the total cost, as it is considered a trade secret. Other suppliers may be more 

open to collaboration, and contractors may contribute to further refining the cost objective. 

It may also be relevant to test other design objectives, such as minimizing the number of 

turning elements or incorporating more functional constraints, but only if they add value to 

the design process.  

 

6.2.8 User interaction and dissemination 

User interaction was a significant priority in the project, as it was crucial that the tool 

supported the creative design process rather than dictating it, as previously emphasized. This 

priority was also shared by the co-creation workshop participants, along with clear 

dissemination of the final results. Interactivity and dissemination were included as part of the 

four core principles for the design tool for these reasons.  
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The implemented interactivity features enhance the user’s ability to influence the final 

design. For example, three measures have been implemented to reduce the number of 

elements: the CPF value, the ability to reduce the number of available elements, and the ACS 

objective. The effect of all these measures has been demonstrated in the case studies presented 

in Chapter 5. Using a factor like CPF can also be extended to other structural elements, which 

may be more advantageous than removing options from the algorithm.  

Generally, user interaction and dissemination features are expected to be improved 

continuously as users tend to report on possible areas for improvement. Early alpha testing 

has already resulted in several relevant requests for new features or adjustments to existing 

ones. This entire process could also be more systematized by using relevant theories from the 

social sciences.  

 

 

6.3 Future work 
The design methodology has shown promising results, providing a robust foundation for 

further development. This section elaborates on some aspects that can be improved and 

further developed; the subjects are divided into short-term and long-term goals. Some of these 

planned features can relatively easily be implemented, while others are in the preliminary 

stage and only discussed in theory.  

There is great potential in using early design tools. However, development has numerous 

challenges, especially if one aims to create a generalized tool for real-world practice. The 

design limitations listed in section 1.3.1 will also be addressed in future versions. There are 

numerous directions that a further development process can take, which will be explored in 

the following subsections.  

 

6.3.1 Short-term goals 

The process of finding the different APoly shapes is currently the bottleneck in the design 

methodology due to the large number of possibilities that the algorithm has to check using the 

powerset function, as shown in equation (4.4). This process is non-recurrent, and when 

completed, the APoly shapes can be generated and used in a fast optimization process. The 

building shapes applied in Chapter 5 were simple enough, but due to the nature of the 

problem, this can quickly become an issue for more complex building shapes. A mockup 

expert algorithm has been formulated as a potential alternative to the powerset function. 

However, unlike using the powerset function, this function will not guarantee that every 

possible combination is found. Alternatively, users can define the APoly shapes themselves, 

as the number of basis shapes the default algorithm generates are typically manageable.  
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Generalizing a design tool is associated with significant challenges, mainly because there 

are so many different scenarios in terms of geometry, loads, and evaluations that need to be 

considered. It was defined as a goal that the design tool should be able to handle 80 percent of 

all use cases. It is acknowledged that the tool is not there yet. One of the most important future 

features is that the tool should be able to handle non-regular plan elevations, and also, by 

expanding the library of structural elements, the design tool can use.  

With the inclusion of these features and the capacity to incorporate concrete cores, it can be 

argued that the design tool is equipped to handle 80 percent of all use cases. However, 

implementing these features also imposes other challenges that must be addressed. For 

example, including non-regular plan elevations may result in snow accumulation to such an 

extent that it becomes the dominating factor for the design of elements such as the slabs. 

Implementing snow accumulation can be resource-demanding if it is to be as automated as 

the current wind load calculations.  

 

As previously mentioned, it is planned to implement LCA as a design objective, which 

requires estimating the total reinforcement quantity. This implementation could be achieved 

by adding another SU model in a series after the SU models that predicts the final geometry. 

There is expected to be a high correlation between the reinforcement quantity and the cross-

sectional area of an RC element. Using the geometry value and all the other known external 

parameters should result in a SU model that can accurately predict the amount of 

reinforcement, assuming a constant reinforcement quality.   

There is also expected to be a strong correlation between the CPM2 and LCA objectives. 

Therefore, it is speculated whether the LCA objective is better suited as a constraint. For 

example, this constraint could be implemented by ensuring that the embodied energy is less 

than the legal requirement. However, this would require defining the proportion of embodied 

energy typically contributing to the overall carbon footprint. Literature analysis and 

interviews with experts in this field would help to determine how such a requirement could 

best be formulated and implemented. 

 

It is planned to ensure vibrations comfort induced by rhythmic person loads by calculating 

the limit acceleration values based on the method defined in [112]. These values will then be 

compared against the requirements defined in EC1 [113] instead of using a minimum 

eigenfrequency threshold value. This change will result in a more accurate representation of 

the comfort functionality, which can be easily integrated into the SU model.  

 

Various measures are planned to increase the evaluation speed. For instance, the selection 

and mutation operators were selected based on experience, but a performance study is 
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necessary to identify the optimal operators and settings for this specific problem. Other 

relatively simple measures can also be implemented, such as using a stopping criterion instead 

of letting the optimization run for a finite number of generations. Bottlenecks in the code can 

also be identified and replaced with more efficient methods.   

 

6.3.2 Long-term goals 

The design loop was initially conceived as part of a larger context of nested design loops, 

with each subsequent loop increasing the LOD and calculation fidelity. This progression is 

achieved by fixing a set of parameters at the end of each design loop and then releasing other 

parameters for modification in the next loop. The visualization of this approach is depicted in 

Figure 4.2. This project has solely focused on the implementation of design loop 1. 

Future efforts will be focused on implementing design loop 2, where the LOD will increase 

to 300. This implementation will include recesses into the geometry and estimating the overall 

geometry at a level that will not change for the rest of the design process. 

Another feature planned for design loop 2 is developing a plastic redistribution method of 

the horizontal forces inspired by the method presented in [9]. This method designates a 

relative stiffness to every shear wall but only changes in very rough intervals and uses few 

parameters. The schematics of a potentially better method have been drafted. This method 

would consider load values, height, local and global geometry, and other parameters to 

determine the relative stiffness of the shear walls. The function itself would be calibrated using 

a meta-heuristic algorithm. The algorithm would require thousands of training examples 

which could be provided by the design tool in this project. The objective would be to minimize 

the highest utilization value of the shear walls. This proposed method is still vaguely defined 

and would require much time and resources. However, an improved distribution method 

could provide considerable value, and its performance could be compared with the method 

defined in [9] and other relevant methods found in the literature.  

 

The design methodology is not limited to prefabricated RC elements, and it can be adapted 

for other structural typologies such as steel and wood. However, this would require a more 

extensive analysis of how to logically define and compare the cost of different material types. 

Additionally, numerous expert rules would likely be introduced to ensure constructability, as 

joints across typologies are not always practical.  

In terms of implementation, a hierarchical surrogate approach could be used, where initial 

models predict the most suitable structural material for a given location and then activate 

another surrogate model that dimensions the specific structural element. Furthermore, 

increased use of timber elements would necessitate rethinking the load distribution, as timber 

does not possess the same plastic properties as reinforced concrete and steel.  
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Appendix A 
The following table lists the material prices used in the SU models. It should be noted that 

some of the values averaged based on the data available from suppliers. All prices are 

converted to cubic meters.  

 

Material DKK / m3 

C35 Concrete 1792 

C40 Concrete 1891 

C45 Concrete 1990 

B550B (Y) reinforcement 42547 

Prestressed reinforcement 45547 

 

 

Appendix B 
The applied settings used for the different neural network models are listed as follows:  

 

KB – Price prediction 

Setting type Setting value 

Training function trainlm 

Transfer function logsig 

No of layers 3 

No of neurons 12 

No of training samples 2500 

 

KB – Height prediction 

Setting type Setting value 

Training function trainlm 

Transfer function satlins 

No of layers 4 

No of neurons 6 

No of training samples 2500 
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RC Column – Price prediction 

Setting type Setting value 

Training function trainlm 

Transfer function logsig 

No of layers 3 

No of neurons 10 

No of training samples 2500 

 

RC Column – Width prediction 

Setting type Setting value 

Training function trainlm 

Transfer function tansig 

No of layers 2 

No of neurons 10 

No of training samples 2500 

 

BC Column – Optimized column spacing prediction 

Setting type Setting value 

Training function trainlm 

Transfer function logsig 

No of layers 3 

No of neurons 9 

No of training samples 3000 

 

Inner RC wall – Price prediction 

Setting type Setting value 

Training function trainlm 

Transfer function logsig 

No of layers 3 

No of neurons 14 

No of training samples 2461 
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Inner RC wall – Thickness prediction 

Setting type Setting value 

Training function trainlm 

Transfer function tansig 

No of layers 3 

No of neurons 7 

No of training samples 2461 

 

Inner RC wall – Validity state prediction 

Setting type Setting value 

Training function traincgf 

Transfer function satlins 

No of layers 3 

No of neurons 42 

No of training samples 2461 

 

Outer RC wall – Price prediction 

Setting type Setting value 

Training function trainlm 

Transfer function logsig 

No of layers 2 

No of neurons 18 

No of training samples 2338 

 

Outer RC wall – Thickness prediction 

Setting type Setting value 

Training function trainlm 

Transfer function logsig 

No of layers 4 

No of neurons 9 

No of training samples 2338 
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Outer RC wall – Validity state prediction 

Setting type Setting value 

Training function trainbfg 

Transfer function tansig 

No of layers 3 

No of neurons 18 

No of training samples 8000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C   

 

187 

 

Appendix C 
The following radar images was used to determine the terrain category used in the 

validation study in section 5.2.6. 

 

 
Figure  1 – Radar image at location: 55.872615200208635, 9.900330266895853 
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Figure  2 – Radar image at location: 56.127254302136436, 10.2121679787756 

 

 

 

 

 

 

 

 

 

 

 




