
NEGOT IAT I NG SOFTWARE
Redistributing Control at Work and on the Web

midas nouwens

PhD dissertation
Department of Digital Design & Information Studies

Communication & Culture
Aarhus University

March 2021

Negotiating Software: Redistributing Control at Work and on the Web
by Midas Nouwens

A dissertation submitted in partial fulfilment of the requirements of Aarhus Uni-
versity for the degree of Doctor of Philosophy.

main supervisor:
Clemens Nylandsted Klokmose
co-supervisor:
Peter Dalsgaard

DOI: 10.7146/aulsps-e.480
ISBN: 978-87-7507-539-3

All that is gold does not glitter,
Not all those who wander are lost;

The old that is strong does not wither,
Deep roots are not reached by the frost.
From the ashes a fire shall be woken,
A light from the shadows shall spring;

Renewed shall be blade that was broken,
The crownless again shall be king.

— J. R. R. Tolkien

We live in capitalism. Its power seems inescapable.
So did the divine right of kings.

— Ursula K. Le Guin

ABSTRACT

Since the 1970s, digital technologies increasingly determinewho gets what, when,
and how; and the workings of informational capitalism have concentrated con-
trol over those technologies into the hands of just a few private corporations. The
normative stance of this dissertation is that control over software should be dis-
tributed and subject to processes of negotiation: consensus-based decision mak-
ing oriented towards achieving collective benefits. It explores the boundaries of
negotiating software by trying to effect a change in two different kinds of software
using two different approaches.
The first approach targets application software – the paradigmatic model of

commodified, turn-key computational media – in the context of knowledge work
– labour that involves the creation and distribution of information through non-
routine, creative, and abstract thinking. It tries to effect change by developing
negotiable software as an alternative to the autocratic application model, which
is software that embeds the support for distributed control in and over its de-
sign. These systems successfully demonstrate the technological feasibility of this
approach, but also the limitations of design as a solution to systemic power asym-
metries.
The second approach targets consent management platforms – pop-up inter-

faces on the web that capture visitor’s consent for data processing – in the context
of the European Union’s data protection regulation. It tries to effect change by em-
ploying negotiation software, which is software that supports existing processes
of negotiation in complex systems, i.e., regulatory oversight and the exercise of
digital rights. This approach resulted in a considerable increase in data protection
compliance on Danish websites, but showed that sustainable enforcement using
digital tools also requires design changes to data processing technologies.
Both approaches to effecting software change – making software negotiable

and using software in negotiations – revealed the drawbacks of individualistic
strategies. Ultimately, the capacity of the liberal subject to stand up against cor-
porate power is limited, and more collective approaches to software negotiation
need to be developed, whether when making changes to designs or leveraging
regulation.

iv

CONTENTS

Setting the Agenda 1
1 introduction 2

1.1 Software Power . 2
1.2 Software Control . 3
1.3 Software Negotiation . 4

1.3.1 Negotiable software . 5
1.3.2 Negotiation software . 7

2 research questions & dissertation structure 10
2.1 A personal reflection on the dissertation content and structure . . 12

3 publications 16

I negotiable software 17
4 introduction 18

4.1 Software: Applications . 18
4.2 Context: Knowledge work . 19

5 a brief history of the application; or, how the commod-
ification of software shaped its negotiability 21
5.1 Introduction . 21
5.2 The material creation of software 21
5.3 The cooperative design of software 23
5.4 Software as a package . 26
5.5 The rise of the software product 27
5.6 The first wave of microcomputers 30
5.7 The gold rush of application programs 33
5.8 The search for software integration 38

5.8.1 Application families . 38
5.8.2 Integrated packages . 39
5.8.3 Windowed Application Managers 43
5.8.4 Component Software . 45

5.9 Conclusion . 47
6 surveying application use in danish knowledge work 50

6.1 Introduction . 50
6.2 Method . 51

6.2.1 Participants . 51
6.2.2 Materials . 52
6.2.3 Procedure . 52
6.2.4 Analysis . 52

6.3 Results & Discussion . 52

v

contents

6.3.1 The Demographics of Danish Knowledge Workers 52
6.3.2 Education . 53
6.3.3 Occupation and industry 54
6.3.4 Hardware . 55
6.3.5 Software . 55
6.3.6 Software Customisation 57
6.3.7 Digital Competences . 59

6.4 Conclusion . 61
7 surveying application use in danish knowledge work 63

7.1 Introduction . 63
7.2 Method . 64

7.2.1 Instrument design . 64
7.2.2 Data collection . 65
7.2.3 Data processing . 66

7.3 Results . 66
7.3.1 Hardware Working Environment 67
7.3.2 Software Working Environment 68
7.3.3 Digital Competences . 71
7.3.4 Digital Appropriation . 74

7.4 Discussion . 75
7.4.1 The Dream of Personal Computing 76
7.4.2 The Geopolitics of Software 77
7.4.3 The Need for Digital Working Conditions Research 77

7.5 Limitations . 79
7.6 Conclusion and future research 79

8 the application and its consequences for non-standard
knowledge workers 81
8.1 Introduction . 81
8.2 Related Work . 82

8.2.1 Knowledge Work . 82
8.2.2 Non-Standard Work . 84
8.2.3 Applications . 85

8.3 Methodology . 87
8.3.1 Participants . 87
8.3.2 Data Collection . 87
8.3.3 Analysis . 88

8.4 Results . 88
8.4.1 The Natures of Non-Standard Knowledge Work 88
8.4.2 The Value in Applications 90
8.4.3 Personal Preference vs. Collective Compromise 92
8.4.4 Cross-Application Collaboration 95
8.4.5 Preferred Alternatives . 96

8.5 Discussion . 98
8.5.1 Application-Application Relationship 99
8.5.2 Application-Document Relationship 99
8.5.3 Implications for Research, Development, and Design . . . 101

vi

contents

8.6 Conclusion . 103
9 negotiable software: literate computing with webstrates104

9.1 Introduction . 104
9.2 Related work . 106

9.2.1 Collaborative systems and documents 106
9.2.2 Scriptable and reprogrammable applications 106
9.2.3 Interactive notebooks using literate computing 108

9.3 Codestrates Overview . 109
9.3.1 Use of paragraphs and sections 109
9.3.2 Uses of Codestrates . 112
9.3.3 Interactive notebooks in Codestrates 112
9.3.4 Extending codestrates in Codestrates 113
9.3.5 Developing applications in Codestrates 114

9.4 Implementation . 115
9.4.1 How Webstrates works . 115
9.4.2 Codestrates . 116

9.5 Discussion . 121
9.5.1 Limitations and future work 121
9.5.2 Systems-oriented evaluation 123

9.6 Conclusion . 124
10 between scripts and applications: negotiable software

for the frontier of nanoscience 125
10.1 Introduction . 125
10.2 Related Work . 126

10.2.1 Lab Notebooks and e-Science Tools 126
10.2.2 Computational Media . 128

10.3 Method . 130
10.3.1 Participants . 131
10.3.2 Observations and Interviews 131
10.3.3 Participatory Design of a Possible Future Prototype 132
10.3.4 In-situ Interviews While Using the Prototype 133

10.4 Findings . 134
10.4.1 Overview of the Lab . 134
10.4.2 Computational Characteristics 136
10.4.3 The Computational Labbook Prototype 139

10.5 Discussion . 143
10.5.1 Distributability . 144
10.5.2 Shareability . 145
10.5.3 Malleability . 146
10.5.4 Computability . 146

10.6 Conclusion . 147
11 conclusion 149

II negotiation software 151
12 introduction 152

12.1 Software: Consent Management Platforms 152

vii

contents

12.2 Context: European Digital Rights and Responsibilities 153
13 a brief history of web tracking and consent pop-ups 154

13.1 The invention of tracking . 154
13.2 User control over tracking . 156
13.3 Regulatory response . 158

13.3.1 The United States and Self-Regulation 158
13.3.2 The European Union and Government Regulation 159
13.3.3 The General Data Protection Regulation 161

13.4 Conclusion . 162
14 dark patterns after the gdpr: scraping consent pop-

ups and demonstrating their influence 164
14.1 Introduction . 164
14.2 Consent and Web Technologies under EU Law 165

14.2.1 Freely given and unambiguous consent 166
14.2.2 Specific and informed consent 167
14.2.3 Efficient and timely data protection 168

14.3 Related Work . 169
14.3.1 Notice & Consent . 169
14.3.2 Dark patterns . 170
14.3.3 Empirical Studies of EU Privacy Regulation 172

14.4 Study 1: Scraping CMP Interface Designs 173
14.4.1 Method . 174
14.4.2 Understanding compliance 175
14.4.3 Results . 175
14.4.4 Interim Discussion . 177
14.4.5 Limitations . 178

14.5 Study 2: Demonstrating the Effects of Designs on Answers 178
14.5.1 Method . 178
14.5.2 Results . 181
14.5.3 Interim Discussion . 185
14.5.4 Limitations . 185

14.6 Discussion and Conclusion . 186
15 negotiating consent pop-ups with supervisory author-

ities in denmark 188
15.1 Introduction . 188
15.2 Supervisory Authorities . 189

15.2.1 The ePrivacy Directive enforcement authority 189
15.2.2 The GDPR enforcement authority 190

15.3 Enforcement Status Quo . 191
15.3.1 ePrivacy Directive . 191
15.3.2 General Data Protection Regulation 191

15.4 The Negotiation Process . 193
15.4.1 Gathering the Data . 193
15.4.2 Raising the Priority . 194

15.5 Negotiation outcome . 195
15.6 Conclusion & Future Work . 197

viii

contents

16 negotiating consent pop-up designs using adversarial
interoperability 199
16.1 Introduction . 199
16.2 Software-mediated Negotiation 200
16.3 Interoperability . 201
16.4 Consent Management Platform Designs 201

16.4.1 Dynamic vs. static HTML 201
16.4.2 Semantic markup . 202
16.4.3 Hidden state . 203

16.5 Consent-automating Software: Consent-o-Matic 203
16.5.1 DOM Selection and Actions 203
16.5.2 Consent Preferences . 205

16.6 Negotiation outcome . 205
16.7 Conclusion . 207

17 conclusion 209

Last and Final Offer 212
18 negotiating software as a countermovement 213

bibliography 217

ix

L I ST OF F IGURES

Figure 1 Machine instructions for mechanical and electronic main-
frame computers. 22

Figure 2 The first two pages of the program library included in
Wilkes, Wheeler, and Gill’s The Preparation of Programs
for an Electronic Digital Computer. 23

Figure 3 The IBM 701 Electronic Data Processing Machine. 24
Figure 4 The Altair 8800 on the cover of the January 1975 edition

of Popular Electronics magazine. 31
Figure 5 The welcome screen and interface of the Electric Pencil

word-processing application created by Michael Shrayer
in 1976. 32

Figure 6 The program code and logic flowchart for the Star Trek
game written by Lynn Cochran, published in the June
1976 edition of the SCCS INTERFACE magazine. 34

Figure 7 The second wave of commercial microcomputers. From
left to right, the Commodore PET, Apple II, and TRS-80. . 35

Figure 8 The VisiCalc reference card, minus the last page which
showed an annotated screenshot of the interface. The ref-
erence card was shipped in a brown, fake leather folder
together with 5 1/4” diskettes, a manual, and a registra-
tion card. See http://www.bricklin.com/history/saiproduct1.htm
for more detail. 36

Figure 9 The splash screen and spreadsheet view of Lotus 1-2-3
release 1a (1983) . 40

Figure 10 An example macro of Lotus 1-2-3 release 2.3 (1991) . . . 40
Figure 11 Lotus’ Symphony (left) and Ashton-Tate’s Framework. Note

the explicit revocation of user ownership and control in
Framework’s splash screen: “You do not become the owner
of the package nor do you have the right to copy or alter
the software”. 42

Figure 12 Advertisement for the Apple Lisa in Personal Computing
1983 . 44

Figure 13 Windowed ApplicationManagers released between 1984-
1985. 45

Figure 14 Level of education of Danish knowledge workers) 54
Figure 15 Occupation categories of Danish knowledge workers . . . 54
Figure 16 Number of devices used by Danish knowledge workers . 55

x

http://www.bricklin.com/history/saiproduct1.htm

List of Figures

Figure 17 Number of applications used by Danish knowledge work-
ers on their desktop/laptop for their main job activities . 56

Figure 18 Applications used by Danish knowledge workers on their
desktop/laptop for their main job activities 56

Figure 19 Software customisation frequency across different meth-
ods by Danish knowledge workers 58

Figure 20 Software customisation frequency across different strate-
gies per Danish knowledge workers 59

Figure 21 Average digital competences of Danish knowledge workers 59
Figure 22 Digital content competences of Danish knowledge work-

ers. “Content creation” refers to generating multimedia
data; “Content formatting” to editing other’s data; and
“Computational creation” to controlling and authoring in-
teractive digital elements (e.g., software settings, code) . 60

Figure 23 Digital communication and collaboration competences of
Danish knowledge workers. “Collaboration” refers to file-
sharing and using common information spaces; “Commu-
nication” refers to the meta activities to support such ac-
tivities. 61

Figure 24 General digital adaptability of Danish knowledge work-
ers. “Problem solving” refers to knowing how to solve un-
expected challenges within the context of the tool; “Sup-
port” refers to being able to find information and help for
problems outside of the tool. 61

Figure 25 Frequency distribution of different types of devices used
by Danish knowledge workers 67

Figure 26 Correlation distribution of different device types by Dan-
ish knowledge workers. 0 means the device is not used,
1 means the device is used. The correlations between de-
vice and usage can be found by tracing the intersection.
The higher the number, the darker the square, the more
common the correlation. 68

Figure 27 Number of software applications mentioned per respon-
dent as essential to accomplish their work tasks 69

Figure 28 A network visualisation of software applicationsmentioned
together by the same respondent. Only combinationsmen-
tioned by at least five workers are included. The thicker
the edge connecting two nodes, the more frequently these
combinations were mentioned 71

Figure 29 Self-reported digital competences of Danish knowledge
workers across eight different types of dimensions 72

Figure 30 Different software adaptation strategies and how frequently
they are used by Danish knowledge workers 74

xi

List of Figures

Figure 31 Correlation distribution of different adaptation strategies
by Danish knowledge workers. 0 means the strategy is not
used, 1 means it is used. The correlations between strate-
gies can be found by tracing their intersection. The higher
the number, the darker the square, the more common the
correlation. 75

Figure 32 Example uses of Codestrates: (A) Collaborative authoring
of a physics report. Accelerometer data from a phone is
visualized in real-time in the codestrate, and across mul-
tiple devices; (B) a codestrate is extended with real-time
video communication; (C) themechanics of a game imple-
mented in a codestrate is collaboratively tinkered with at
run-time. 104

Figure 33 The structure of a codestrate. On the left are the sec-
tions, which include system sections (hidden by default)
and one or more user sections. Sections can include para-
graphs of different types (body, code, style, data). On the
right is a sidebar (hidden by default), which contains ac-
tions for the codestrate (tag and restore, pull from an-
other codestrate) and sections (toggle sections’ visibility,
add section). 110

Figure 34 A codestrate in a light theme. It shows a body paragraph
with its HTML inspector visible—visibility is toggled through
the eye icon in the paragraph’s header. 111

Figure 35 A simple grocery list implemented in a Codestrate. On the
left, the codestrate in a desktop browser showing a body
paragraph and the top of a code paragraph. To the right,
the body paragraph has beenmade full-screen and loaded
on a smartphone, now functioning as a grocery list app. . 111

Figure 36 Codestrate view of Listing 1, including paragraphs and
their contents. The section containing the bootstrap code
is hidden. 119

Figure 37 Applications (left) and computationalmedia (right). Adapted
from diSessa . 129

Figure 38 Overview of researcher (orange) and participant (green)
engagement in the research process. 131

Figure 39 A lab bench in one of the main laboratories. 135
Figure 40 Screenshot of the computational labbook. The center shows

the sections and paragraphs of the document; on the right
side the Instrument Panel allows users to drag instruments
into the document. 140

Figure 41 Cookie pop-up from Netscape 3.04 157
Figure 42 Online privacy management tool NSClean for NetScape,

by Kevin McAleavey . 157

xii

Figure 43 The cookie pop-up of the Information Commissioner’s Of-
fice in 2011, the UK’s independent authority for data pro-
tection and privacy. 161

Figure 44 The three components of the QuantCast CMP on https://
sourceforge.net in September 2019. 162

Figure 45 The three components of the QuantCast CMP on https://
sourceforge.net in September 2019. 169

Figure 46 UpSet diagram of sites by adherence to three core condi-
tions of EU law. Sites meeting all three in green. 176

Figure 47 The 8 interface conditions: (a) Banner / Accept + Reject;
(b) Barrier / Accept + Reject; (c) Bulk; (d) Bulk + Pur-
poses; (e) Banner / Accept; (f) Barrier / Accept; (g) Bulk
+ Vendors; (h) Bulk + Purposes + Vendors. 179

Figure 48 Annual budgets of the DPAs, via Brave 192
Figure 49 Number of tech specialists and total employees per DPA,

via Brave . 193
Figure 50 Example of the JSON object returned by the scraper for a

given domain . 194
Figure 51 Percentage of pop-ups with a reject button on the first

page on the top 30.000 most popular Danish websites . . 196
Figure 52 Percentage of sites using one of six third-party consent

pop-up providers on the top 30.000 most popular Danish
websites . 197

Figure 53 Dummy example of a JSON ruleset for a particular CMP
(brackets condensed to preserve space) 204

Figure 54 Consent-O-Matic’s data processing purposes that can be
toggled. 206

Figure 55 Number of users of the extension per browser. Chrome
counts enabled installs, Firefox counts active use (thus
dips during the weekend). 207

L I ST OF TABLES

Table 1 Unweighted and weighted participant demographics . . . 51
Table 2 Filtered participants demographics 53
Table 3 Top thirtymost used application software by Danish knowl-

edge workers . 57
Table 4 Unweighted, unfiltered sample and overall population dis-

tribution . 65

xiii

https://sourceforge.net
https://sourceforge.net
https://sourceforge.net
https://sourceforge.net

Table 5 Number of devices of the same type (desktop, laptop, phone,
tablet) used by Danish knowledge workers 68

Table 6 The top 30 most used applications by Danish knowledge
workers . 70

Table 7 Overview of how the computational labbook prototype re-
alises the four principles of computational media. 143

Table 8 Key statistics on scraped CMPs. 173
Table 9 Level of granularity on the first page, with bulk consent

as the reference . 184
Table 11 News reporting on data collected about illegal consent

pop-ups . 195
Table 12 The five types of filters that can be used to select the ele-

ment of interest. 204
Table 13 The nine types of actions that can be executed on an ele-

ment of interest. 205

L I ST I NGS

Listing 1 Simplified HTML structure of a codestrate. 116
Listing 2 Codestrates’ bootstrap JavaScript code. 117
Listing 3 Import external libraries in a Codestrates code paragraph. 119

xiv

Setting the Agenda

1

1.
I NTRODUCT ION

This dissertation is about how to negotiate software – the process of making
a substantial and sustainable change to a software’s design. It explores this by
taking two types of software – workplace applications and web-consent pop-ups
– and trying to renegotiate their designs.

Why should we care about negotiating software? Because software plays an im-
portant role in global patterns of power, and because control over that software
is distributed unjustly.

1.1 software power

In the last half century, the political economies of most OECD countries have
been transforming from industrial capitalism to informational capitalism. This
qualifying adjective to capitalism follows Castell’s seminal “The Rise of the Net-
work Society”,1 in which he augments the Marxist concept of a society’s mode of
production (capitalism, feudalism) with the idea of a mode of development (indus-
trialism, informationalism). A mode of production refers to the systematic way
that surplus value is generated and controlled. The capitalist mode of production
“is oriented toward ... increasing the amount of surplus appropriated by capital
on the basis of the private control over the means of production and circulation”.2
Briefly explained, to create a surplus workers have been separated from the tools
and resources they need to produce goods and services. This means that workers
have to enter into a relation with the owners of those means of production to
subsist (i.e., they exchange their labour for a wage). The owners of the means
of production – the holders of capital – sell the goods and services produced by
the workers for more than the costs needed to produce them, which means they
can appropriate the surplus value. This framework of a mode of production helps
explain how we structure our societies, who we interact with, what determines
our quality of life, how power is distributed.
Castell introduces the idea of a mode of development to explain differences in

capitalist societies across time and space. The mode of development tries to ex-

1 Manuel Castells (2009). The Rise of the Network Society. 2nd ed. Vol. 1. The Information Age:
Economy, Society, and Culture. Blackwell Publishers. isbn: 978-0-631-22140-1.

2 Ibid., p. 16.

2

1.2 software control

plain how the same mode of production can have different levels of surplus by
identifying what the fundamental element is that increases productivity. In indus-
trial capitalism, Castell argues, the main productive elements are new sources of
energy (e.g., steam, electricity, oil) and how effectively they are used through-
out production and distribution processes. In informational capitalism the main
source of increased productivity comes from the use of “the technology of knowl-
edge generation, information processing, and symbol communication”34. As the
economy shifts its orientation from energy to information as the primary source
of surplus value, the creation, accumulation, and use of that information become
the organising principles for capitalist activity.
For a large part, the surplus-generating activities of informational capitalism

are mediated by software. As a result, the design of that software helps shape
how value can be extracted, the quantity of that surplus, and who can appropri-
ate it – for example, by making workers more productive, giving employers more
managerial control, or creating new kinds of data that can be commodified. Be-
cause software as a mediating artefact plays an important role in the generation
and appropriation of surplus value, software bestows power.

1.2 software control

The way control over software is distributed, and how that distribution is legit-
imised, depends on the ideology underpinning the mode of development. Julie
Cohen argues that the transformation from industrial to informational capitalism
was simultaneously accompanied by parallel transformation from liberalism to
neoliberalism.5 A nebulous concept, one popular definition describes it as “polit-
ical economic practices proposing that human well-being can best be advanced
by the maximization of entrepreneurial freedoms within an institutional frame-
work characterized by private property rights, individual liberty, unencumbered
markets, and free trade”.6 By successfully advancing the four core policy areas
of neoliberalism – deregulation, non-intervention, free markets, and free trade
– large, transnational corporations have significantly increased their social and
economic power in the past 50 years.7 Pasquale argues that the simultaenous re-
treat of the state has created a reality where people are increasingly governed
based not on their citizenship and geographic location (territorial governance),
but by the corporations who mediate their life (functional governance).8 For ex-

3 Castells, The Rise of the Network Society, p. 17.
4 Castell acknowledges that information plays an important role in other modes of development
(and production) as well, but argues that the key difference in informationalism is that surplus
is created through the application of information on information itself: knowledge is used to
increase the quality and production of knowledge, rather than, say, the production of material
goods.

5 Julie E Cohen (2019). Between Truth and Power: The Legal Constructions of Informational Capi-
talism. Oxford University Press, USA, p.7.

6 David Harvey (2007). ‘Neoliberalism as creative destruction.’ In: The annals of the American
academy of political and social science 610.1, pp. 21–44, p.22.

7 Terry Hathaway. ‘Neoliberalism as Corporate Power.’ In: Competition & Change ().
8 Frank Pasquale (2016). ‘Two Narratives of Platform Capitalism.’ In: Yale Law & Policy Review 35,

pp. 309–320.

3

1.3 software negotiation

ample, people across the globe that make their living by selling goods on the
Amazon Marketplace are governed by a semi-automated system with no sepa-
ration of power, no rights of appeal or promise of fair trial (inspiring some to
fly to the Amazon offices to try and petition its arbitrary decisions9). Similarly,
regulatory authorities trying to hold Uber accountable for its tax avoidance and
illegal licensing were thwarted by Uber’s software system Ripley, which allows
the company to lock-and-destroy computers remotely.10 The far-reaching conse-
quences are that the Rechtsstaat has been decentered as a provider of human
rights, and state-centric institutions of oversight have been replaced by commer-
cial platforms. Control over justice, equality, generality, privacy, publicness – the
predicate conditions for a dignified life – is increasingly in the hands of transna-
tional, privatised actors for whom principled governance is an aspiration rather
than an obligation 11. Although technology and software companies are not the
only beneficiaries, they are undoubtedly some of the most influential ones.

1.3 software negotiation

If we agree that software facilitates expressions of power, that control over that
software is primarily concentrated in the hands of private actors, and that this
is undesirable; how do we respond? The normative stance of this dissertation is
that control over software should be distributed and subject to consensus-seeking
negotiations.
Negotiation generally refers to “a process by which two or more parties attempt

to resolve their opposing interests”,12 and has been addressed across research
disciplines such as psychology, economics, anthropology, sociology, and political
science. Given the interdisciplinary nature of the concept, as well as its high level
of abstraction, negotiation can be considered essentially contested: “concepts the
proper use of which inevitably involves endless disputes about their proper uses
on the part of their user”.13 What constitute the core characteristics of a negotia-
tion beyond the ambiguous description above depends on who you ask, and pro-
viding a strict typology quickly becomes an exercise in disciplinary gate-keeping
rather than a way to apply it productively. Ultimately, negotiation is as negotiation
does, regardless of whether it meets a particular scholarly definition.

9 Josh Dzieza (Dec. 19, 2018). ‘Prime and Punishment: Dirty dealing in the $175 billion Amazon
Marketplace.’ In: The Verge. url: https://www.theverge.com/2018/12/19/18140799/amazon-
marketplace-scams-seller-court-appeal-reinstatement (visited on 06/21/2020).

10Olivia Solon (Jan. 11, 2018). ‘Uber developed secret system to lock down staff computers in
a police raid.’ In: The Guardian. url: https://www.theguardian.com/technology/2018/jan/
11/uber-developed-secret-system-to-lock-down-staff-computers-in-a-police-raid (visited on
06/21/2020).

11 To provide a timecapsule-like example, see the unilateral decision by Google and Apple to only
support decentralised architectures for contact tracing apps in response to the COVID-19 pan-
demic, which has exposed the gaping powerlessness of sovereign states to determine how to
use technology in their public health response

12 Roy J. Lewicki, Bruce Barry, and David M. Saunders (2016). Essentials of Negotiation. 6th ed.
McGraw Hill. isbn: 978-0-07-7862466.

13W. B. Gallie (1955). ‘Essentially contested concepts.’ In: Proceedings of the Aristotelian society.
Vol. 56. Wiley, pp. 167–198.

4

https://www.theverge.com/2018/12/19/18140799/amazon-marketplace-scams-seller-court-appeal-reinstatement
https://www.theverge.com/2018/12/19/18140799/amazon-marketplace-scams-seller-court-appeal-reinstatement
https://www.theguardian.com/technology/2018/jan/11/uber-developed-secret-system-to-lock-down-staff-computers-in-a-police-raid
https://www.theguardian.com/technology/2018/jan/11/uber-developed-secret-system-to-lock-down-staff-computers-in-a-police-raid

1.3 software negotiation

Extending the above definition of negotiation in general, software negotiation
in this dissertation is used to refer to a process by which two or more parties attempt
to resolve their opposing interests about the design of a software system. Although
this narrows the concept to a particular context, it is hardly specific enough to
shed the essentially contested baggage of negotiation at large. This begs the ques-
tion: if these theoretical constructs will always be challenged no matter our ef-
forts, why bother trying to develop and clarify them?
The aim of this dissertation is not to try andwork towards a single truemeaning

of the concept of software negotiation, but instead to use it pragmatically and self-
reflectively in the pursuit of other goals. My concern with using it as a tool rather
than clarifying its essence – with praxis over theory – is also reflected in the title
of this document: “negotiating software” signals my focus on the act of effecting
a software change, whereas the inverse – “software negotiation” – would place
the emphasis on the theoretical.
Other interpretations of software negotiation might appear that focus on a sin-

gle party rather than two ormore; that discuss situations where interests between
parties are aligned, rather than conflicting; that target more specifically the ini-
tial development or continuous deployment of a system rather than its entire life-
cycle. These interpretations will flow from the epistemology, purpose, tradition,
and skills of thosewho use the concept of software negotiation. Human-Computer
Interaction (HCI), for example, – the computing research this dissertation mostly
speaks to – generally seems to implicitly believe that software problems are a
result of well-meaning technologists who misunderstand the complexity of the
social world, but that the software can be negotiated by documenting bad de-
signs and suggesting alternatives. Professional computing organisations, such as
the Association of Computing Machinery, have mostly responded to the contro-
versies of information-based harms by introducing ethics and codes of conduct.
Their underlying approach to negotiation appears to be that individual liberty,
moral responsibility, and self-regulation are the best way to address structural
issues.
Rather than debate whether these perspectives better reflect the true nature

of software negotiation, I welcome any use of the concept that will productively
achieve the goals of its authors. Ideally, this openness to pluriformity will help us
develop a conceptual toolbox with different approaches to negotiating software
that are attuned to different problems, collectively working towards addressing
the hegemonic way control over software design is currently distributed.
This dissertation reports on two parallel negotiation projects I have carried out

over the course of my doctoral work, which develop two of such conceptual tools:
the idea of negotiable software and of negotiation software.

1.3.1 Negotiable software

Negotiable software refers to any software system which inscribes negotiability
directly into its design, allowing it to be changed in a substantial and sustainable
way by any actor. It represents a principle-based approach and implicitly assumes
that negotiability can be translated into concrete technical requirements.

5

1.3 software negotiation

Parallel concepts exist in Human-Computer Interaction and adjacent comput-
ing research fields that try to bring some measure of agency to a user over the
design of a piece of software. End-user development (EUD) is arguably the largest
umbrella term for research efforts in this direction. One popular definition de-
scribes it as “methods, techniques, and tools that allow users of software systems,
who are acting as non-professional software developers, at some point to create,
modify or extend a software artifact”.14 The focus on non-professional activity
is an important one, and is often combined with the idea that these users have
limited technical skills that need to be catered to. Spreadsheets are considered
a paradigmatic tool that supports end-user development, and programming-by-
example an approach that lowers the threshold for end-users to start developing
and adapting software.
Customisability and configurability15 are principles that might support EUD

on the lower end of the scale, referring to the parameterisation of a system
such that users can choose between various pre-defined alternative designs (most
commonly through the settings or preferences options of software). Tailorability
raises the ceiling a little, and is argued to include modifying the system in use,16
allowing for substantial changes to the software such as “specializing behavior, or
adding functionality”.17 Reflecting the blurry boundaries between all these prin-
ciples, Mørch18 actually includes customisability as a sub-concept of tailorability,
together with integration (tailoring through “linking together predefined compo-
nents”) and extension (“adding new code”). Appropriability is another of those
principles that shares considerable overlap with tailorability, although its use by
some scholars (e.g., Mackay,19 Dix,20 Tchounikine21) go beyond the focus on
technological features and also consider organisational and institutional factors
that support or inhibit how users change software systems.
The popularity of these principles and concepts wax and wane, even if their

content or aim does not change all that much. End-user development, although
an isolated but cohesive research topic at the flagship CHI conference until 2003,
14 End User Development (2006). Vol. 9. Human-Computer Interaction Series. Springer Nether-

lands. isbn: 978-1-4020-4220-1. doi: 10.1007/1-4020-5386-X. url: http://link.springer.
com/10.1007/1-4020-5386-X.

15 James R Eagan and John T Stasko (2008). ‘The buzz: supporting user tailorability in awareness
applications.’ In: Proceedings of the sigchi conference on human factors in computing systems,
pp. 1729–1738.

16 End User Development.
17 Randall H. Trigg, Thomas P. Moran, and Frank G. Halasz (1987a). ‘Adaptability and Tailorability

in NoteCards.’ In: Human–Computer Interaction–INTERACT ’87. Elsevier, 723–728. isbn: 978-
0-444-70304-0. doi: 10.1016/B978-0-444-70304-0.50117-5. url: http://linkinghub.elsevier.
com/retrieve/pii/B9780444703040501175.

18 Anders Mørch (1997). ‘Three levels of end-user tailoring: Customization, integration, and ex-
tension.’ In: Computers and design in context. Ed. by Morten Kyng and Lars Mathiassen. MIT
Press, pp. 51–76.

19Wendy Mackay (1990). ‘Users and customizable software: A co-adaptive phenomenon.’ PhD
thesis. Massachusetts Institute of Technology.

20 Alan Dix (2007). ‘Designing for appropriation.’ In: Proceedings of the 21st British HCI Group An-
nual Conference on People and Computers: HCI... but not as we know it-Volume 2. British Computer
Society, 27–30. url: http://dl.acm.org/citation.cfm?id=1531415.

21 Pierre Tchounikine (2017). ‘Designing for Appropriation: A Theoretical Account.’ In: Hu-
man–Computer Interaction 32.4, 155–195. issn: 0737-0024, 1532-7051. doi: 10 . 1080 /
07370024.2016.1203263.

6

https://doi.org/10.1007/1-4020-5386-X
http://link.springer.com/10.1007/1-4020-5386-X
http://link.springer.com/10.1007/1-4020-5386-X
https://doi.org/10.1016/B978-0-444-70304-0.50117-5
http://linkinghub.elsevier.com/retrieve/pii/B9780444703040501175
http://linkinghub.elsevier.com/retrieve/pii/B9780444703040501175
http://dl.acm.org/citation.cfm?id=1531415
https://doi.org/10.1080/07370024.2016.1203263
https://doi.org/10.1080/07370024.2016.1203263

1.3 software negotiation

has largely disappeared from that stage since then. Newly emerging terms that
try to address some of the same concerns, if with perhaps a different inflection,
include no-code, low-code and live programming. No-code and low-code describe
development environments for interactive systems that do not require manual
coding but instead support more graphical or automated code generation; again
to facilitate the creation or adaptation of software by a wider group of people.
Live programming refers to the act of changing software on-the-fly during exe-
cution time.22 Environments supporting such liveness help shorten the feedback
loop between authoring and using software systems, which also opens up the
possibility that anyone could alter a running system instead of just those with
access to the source code and the necessary compilers.
These concepts represent a tenacious and messy patchwork of research efforts

whose distinctions are not entirely clear, but which all try to work towards al-
lowing end-users to adjust the design of their software systems. The principle
of negotiability overlaps with these other concepts to some extent but adds the
explicit concern for power dynamics and conflict, which are not absent from ex-
isting work but also not necessarily systematically included. Negotiability con-
notes a process of discussion and compromise between actors, which inherently
includes some reflection on how those different actors relate to each other and
how that might affect the process of negotiation. These dynamics can be the re-
sult of things such as who actually has access to code, who has the technical
skills to make adjustments, who is perceived to have the ownership of a system,
and how the different actors are placed in existing social hierarchies. The goal of
the negotiability principle as a conceptual tool is to extend previous research on
how users adapt software to their local needs, and explicitly recognise that the
overall power dynamics around technology have changed dramatically since the
introduction of personal computing devices in the 1980s.

1.3.2 Negotiation software

Negotiation software refers to any system which supports the negotiation activi-
ties of two or more parties. It represents a process-based approach, and is anal-
ogous to using technology to facilitate any other domain-specific tasks such as
creative design,23 air-traffic control,24 or patient record management.25 In the
context of this thesis, negotiation software is oriented towards supporting pro-
cesses that try to change the design of software, but negotiation software could
of course also be used in contexts such as international conflict resolution, collec-
tive bargaining, or hostage situations.
22 Steven L Tanimoto (2013). ‘A perspective on the evolution of live programming.’ In: 2013 1st

International Workshop on Live Programming (LIVE). IEEE, pp. 31–34.
23 Jonas Frich et al. (2019). ‘Mapping the landscape of creativity support tools in HCI.’ In: Pro-

ceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–18.
24 R. R. Harper, J. A. Hughes, and D. Z. Shapiro (1990). ‘Harmonious Working and CSCW: Com-

puter Technology and Air Traffic Control.’ In: Studies in Computer Supported Cooperative Work:
Theory, Practice and Design. NLD: North-Holland Publishing Co., 225–234. isbn: 044488811X.

25 Trisha Greenhalgh et al. (2009). ‘Tensions and paradoxes in electronic patient record research:
A systematic literature review using the meta-narrative method.’ In: The Milbank Quarterly 87.4,
pp. 729–788.

7

1.3 software negotiation

There are two strands of computing-related research relevant for the concept
of negotiation software: the use of software to support processes of change of
any kind, and the use of any kind of method to change the design of software.
The first strand – how technology can mediate processes of change – is explored
primarily in the context of participatory democracy activities such as collective
actions, grassroots movement building, and community organising. Social media
technology specifically has been attributed a significant role in democratic activ-
ities, such as how protests start and develop. These studies generally argue that
social technologies make protest much easier and faster to organise, but that this
method does not help build the infrastructure necessary to sustain a movement
in the long-term.26 Other studies more narrowly reflect on the use of software
for specific types of movements. Dencik and Wilkin, for example, discuss digi-
tal activism in international labour movements, and suggest that incorporating
technology-based strategies might help address the core challenges trade unions
currently face, such as decline in membership, decreasing labour power, and a
decentering of the workplace as a place to organise.
An inspirational article by Abebe et al.27 published at the recently-founded

Fairness, Accountability, and Transparency conference proposed four high-level
ways that computing could contribute to social change: as a diagnostic, by mea-
suring social problems using computational methods; as a formaliser, by explic-
itly defining social problems when translating them into computational models;
as a rebuttal, by showing the limits of technological implementations, and; as
synecdoche, by using the public’s fascination with computers as a vehicle to bring
long-standing issues back into the mainstream. These types of studies give us an
insight into how software can be used in negotiation processes at various levels
of abstraction for various democratic projects.
The second strand of research discusses how to bring change to software, through

various methods and channels. A variety of different traditions might fall un-
der this category, depending on how widely we consider ‘change’ and ‘methods’.
Thinking broadly, participatory design (PD) is one of these traditions, founded
in the 1970s to help workers and unions have some influence on computing so-
lutions introduced by their employers. While still a lively area of research with
its own dedicated conference, some of the founding scholars have criticised con-
temporary approaches for being too focused on small, relatively unimportant is-
sues,28 and only involving the final users of the technology to elicit requirements
and test the usability, rather than in two-way, long-term processes.29 The PD ap-
proach represents a broad view on bringing change to software, as it includes
many other concerns as well.

26 Zeynep Tufekci (2017). Twitter and tear gas: The power and fragility of networked protest. Yale
University Press.

27 Rediet Abebe et al. (2020). ‘Roles for computing in social change.’ In: Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, pp. 252–260.

28 Susanne Bødker and Morten Kyng (2018). ‘Participatory design that matters—Facing the big
issues.’ In: ACM Transactions on Computer-Human Interaction (TOCHI) 25.1, pp. 1–31.

29 Claus Bossen, Christian Dindler, and Ole Sejer Iversen (2012). ‘Impediments to user gains:
experiences from a critical participatory design project.’ In: Proceedings of the 12th Participatory
Design Conference: Research Papers-Volume 1, pp. 31–40.

8

1.3 software negotiation

The efforts of technologists to communicate with policymakers represents a
more targeted approach to bringing change to software. The HCI community has
had little involvement with public policy communities in the past,30 but this has
been changing in recent years, with researcher writing white papers, trying to
get more policy experience through work placements, and developing graduate
courses to teach the necessary skills to future generations.31 These new moves
are not without challenges, as what is considered publishable research is not al-
ways valued as acceptable evidence by policymakers, and developing the right
communication strategy around that evidence takes time to develop.32
Negotiation software in this dissertation is the combination of these two strands:

the use of computational tools to support negotiation processes directed at chang-
ing a software’s design. The goal of this conceptual tool is to explore how soft-
ware can improve the effectiveness of existing negotiation strategies, what new
strategies it might open up, and in what situations it might do more harm than
good.

To answer the question posed at the start of this chapter, we should care about
negotiating software because, since the 1970s, digital technologies increasingly
determine “who gets what, when, and how”,33 and control over those technolo-
gies has concentrated in the hands of private corporations who have no mandate
to ensure they benefit the people whose life it mediates. We should consider
the demand that control over software is distributed and subject to consensus-
seeking negotiations as a way to address this current power asymmetry. Two
ways in which this could be operationalised, and which this dissertation will ex-
plore, is by embedding the principle of negotiability directly in software, and by
leveraging software to support existing processes of negotiation.

30 Jonathan Lazar et al. (May 2016). ‘Human–Computer Interaction and International Public Poli-
cymaking: A Framework for Understanding and Taking Future Actions.’ In: Found. Trends Hum.-
Comput. Interact. 9.2, 69–149. issn: 1551-3955. doi: 10.1561/1100000062. url: https://doi.
org/10.1561/1100000062.

31 Anne Spaa et al. (2019). ‘Understanding the Boundaries between Policymaking and HCI.’ In:
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–15.

32 Ibid.
33Harold D. Lasswell (1936). Politics: Who Gets What, When, How. Whittlesey House.

9

https://doi.org/10.1561/1100000062
https://doi.org/10.1561/1100000062
https://doi.org/10.1561/1100000062

2.
RESEARCH QUEST IONS &
DI S SERTAT ION STRUCTURE

The overarching research question of this dissertation is:

How can the design of software be negotiated?

The dissertation is separated into two parts. Each part focuses on a different
kind of software to negotiate, and uses a different theory of change to inform the
process.
Part I targets the application: the paradigmatic model of commodified, turn-key

software for end-users. Its theory of change is design-centric, which assumes that
improvements to software originate from a better understanding of the context
in which it is used, followed by a close collaboration with the intended users to
develop and implement an alternative design. Its goal is to produce negotiable
software, technology which embeds the principle of negotiation directly into its
design.
Part II targets consent management platforms: pop-up interfaces that purport

to capture the consent of website visitors, which have appeared in response to
EU data protection regulation. Its theory of change is regulation-centric, which
assumes that changes to software are the result of the implementation and en-
forcement of state-based regulation. Its goal is to develop negotiation software,
technology which supports existing processes of negotiation.

Part I: negotiable software

Chapter 5 provides a historic overview of application software, starting from the
mainframes of 1940s and ending with the proliferation and stabilisation of the
microcomputer industry in the 1990s. It traces the origins of the term application
software and how its design evolved. The primary goal of this chapter is to demon-
strate that the application model is a construct. The main research question is:
How was the current dominant design of application software constructed?
Chapter 7 gives a broad outline of contemporary application use by Danish

knowledge workers. Based on a representative survey, it details which applica-
tions they use, their digital competences, and their overall customisation strate-
gies. It shows how the Danish knowledge industry is dominated by a handful of
US software and that they use mostly turn-key rather than personalised software.

10

research questions & dissertation structure

The research question is: What is the contemporary landscape of application
use by Danish knowledge workers?
Chapter 8 counter-balances the quantitative overview of the previous chapter

and describes the lived experience of Danish knowledge workers with applica-
tion software. It shows how i) their economic value is intertwined with data and
skills related to specific applications; ii) their access to this value is systemati-
cally jeopardised in collaboration due to the different application practices, pref-
erences, and proficiencies of other stakeholders; and iii) they mitigate the costs of
this compromise through cross-application collaboration strategies. The main re-
search question is: How does the application model impact labour conditions
of Danish knowledge workers?
Chapter 9 switches from empirical descriptions to normative interventions, and

presents a negotiable software system: Codestrates. Rather than separating mul-
timedia content from code, Codestrates allows both to be written in the same
perceptual space, blurring the distinction between development and use of inter-
active systems. Its aim is to demonstrate the technical feasibility of an alternative
software model where its design can be altered on the fly, collaboratively, from
within itself. The main research question is:What does an alternative software
model look like that is technologically negotiable?
Chapter 10 brings the software model back into a real-world context, and de-

scribes a participatory design process with a laboratory of biomolecular nanosci-
entists. It builds on the Codestrates platform and implements a negotiable soft-
ware system to support the computational design of RNA structures. It uses this
experience to reflect on the principles of negotiability. The research question is:
How can negotiable software better support the work practices of a particu-
lar group of biomolecular nanoscientists?

Part II: negotiation software

Chapter 13 provides a historic overview of consent management interfaces, start-
ing from the invention of internet tracking technologies in the mid-1990s to the
implementation of the General Data Protection Regulation in 2018 and the sub-
sequent boom of third-party consent services. The research question is:Why did
pop-up interfaces become the model for consent management and the exer-
cise of digital rights on the web?.
Chapter 14 gives a large-scale overview of the designs of consent management

platforms, collected by scraping the most popular third-party services used on
the top 10,000 most popular websites in the UK. It shows how the vast major-
ity of these interfaces do not comply with the design specifications required by
EU law for legally-valid consent. It also reports on a controlled experiment to
demonstrate how the design of consent interfaces affect the answers submitted
by internet users. It directly speaks to the requirement for consent to be “freely
given” as described in article 4(11) of the GDPR. It shows how the notification
style does not affect people’s consent choices, but that the ordering of buttons
and option granularity does. The research question is: What is the contempo-

11

2.1 a personal reflection on the dissertation content and structure

rary landscape of consent management interfaces on the web and how does
it impact people’s consent choices?
Chapter 15 reports on my efforts to use the data about consent pop-ups gath-

ered using a web-scraper to reach out to news media and regulatory authorities.
It describes how the Danish Data Protection Authority made a verdict in an ongo-
ing consent interface complaint and released new guidance for companies that
directly addressed the non-compliant designs highlighted in Chapter 14. The re-
search question is: How can automated compliance monitoring software be
used to support existing regulatory processes of negotiation?
Chapter 16 describes an individualistic approach to negotiating consent man-

agement platforms, as a safe-guard for when regulatory action falls short. It in-
troduces a browser extension which automatically answers consent pop-ups, sub-
verting their manipulative designs and allowing people to take direct action. The
research question is: How can adversarial interopability be used to negotiate
software designs?

2.1 a personal reflection on the dissertation content and
structure

A doctoral dissertation is the final product of a multi-year intellectual project, but
its design and structure are shaped by more things than just scholarly concerns
about what the best way is to answer a particular research question. In this sec-
tion I will briefly reflect on how other constraints – personal, institutional, and
national – have affected my work.

In Denmark, a PhD is usually a three-year, fully-funded, full-time salaried po-
sition (37 hours per week). In line with the Ministerial Order on the PhD De-
gree Programme, at Aarhus University a PhD position includes 1) independent
research work under supervision; 2) 840 hours of departmental work (i.e., teach-
ing, conference organising); 3) PhD courses or similar activities corresponding to
30 ECTS credits (i.e., 840 hours); 4) a stay at a foreign research environment of
2-6 months; and, 5) submitting a PhD dissertation.1 At a total of 4.929 working
hours over the course of three years, the 1680 hours for departmental work and
accredited courses take up one third. Accounting six months for the stay at a for-
eign research environment, and another six months for writing the dissertation,
this leaves roughly one year for other independent research work.
There are two ways to be hired as a PhD student at Aarhus University: either by

applying through the university’s open call with your own project, or by applying
for a specific call to a pre-defined project. My PhD falls under the second cate-
gory, and was advertised under the title “The Present and Future of Digital Tools
and Materials in Design and Knowledge Work”, funded by Aarhus Universitets
Forskningsfund. The original funding application stated that “[t]he PhD student
[...] will primarily focus on studying and conceptualising present and future prac-

1 Ministry of Science, Innovation and Higher Education (2013). Ministerial Order on the PhD
Degree Programme at the Universities and Certain Higher Artistic Educational Institutions. https:
//www.retsinformation.dk/eli/lta/2013/1039.

12

https://www.retsinformation.dk/eli/lta/2013/1039
https://www.retsinformation.dk/eli/lta/2013/1039

2.1 a personal reflection on the dissertation content and structure

tices of computer use in design and knowledge work with cases in academia (e.g.
at Nanoscience or Interacting Minds) and private companies (e.g. DesignIt)”.
Aarhus University accepts two kinds of dissertation formats: the monograph –

a “dissertation written independently by the PhD student” – and a publication-
based thesis – “a collection of several academic that are related in content and/or
methodology and where the results obtained in course of the PhD programme
are presented and possibly published, either by the PhD student alone or by the
student together with other authors”.2

These national and institutional conditions affected the content, direction, and
final structure of my dissertation in a number of ways.
I chose to do a dissertation based on publications, since the research group I

was employed at was situated in the field of Human-Computer Interaction, where
papers are the common currency rather than monographic books more common
in other fields. Having calculated the number of hours allotted for independent
research at the beginning of my PhD, I decided to aim for one paper submission
per year, which naturally had an impact on the length and scope of the projects
I imagined. I decided that these papers would have to make sense on their own
if I wanted to be able to publish them, rather than only in the context of a larger
dissertation. They would also require a certain level of independence, since previ-
ous experience had told me research projects rarely work out exactly as planned,
and relying on finding something in one project to justify a follow-up study would
be much more fragile and encourage premature optimisation. My supervisor, as-
sociate professor Clemens Nylandsted Klokmose, also frequently mentioned he
considered a PhD “like getting a driver’s license” for researchers. I interpreted
this to mean that I should treat the PhD more as an educational opportunity than
already a commitment to a specific professional identity, and use it primarily to
learn how research worked, what the rules of academia were, and explore what
kind of scholar I would like to be.
All these things combined meant that my general attitude to the PhD was that

I would try to work towards a coherent dissertation and answer a main research
question, but generally prioritise self-contained papers that would teach me a
new skill, method, theory, or concept. That way, even if the paper was an “aca-
demic” failure, it would still be a success seen through the perspective of the
PhD as a “driver’s license”. As a result, the chapters in this dissertation include a
diverse set of methods, epistemologies, topics, and participants, chosen not just
based on scholarly considerations but also my interests, pragmatic constraints,
and available opportunities.

In the first year of my PhD, I mostly worked on research projects already ongo-
ing in the group and on topics and questions included in the project description
of the “specific call” I was hired under. For example, the research reported on in
Chapter 9 was already well-underway when I arrived at Aarhus University. The

2 Aarhus University Graduate School of Arts (2012). Rules for the PhD Programme at the Graduate
School, Art. https://phd.arts.au.dk/fileadmin/phd.arts.au.dk/AR/Generelle_retningslinjer_
UK_1-11-2012.pdf.

13

https://phd.arts.au.dk/fileadmin/phd.arts.au.dk/AR/Generelle_retningslinjer_UK_1-11-2012.pdf
https://phd.arts.au.dk/fileadmin/phd.arts.au.dk/AR/Generelle_retningslinjer_UK_1-11-2012.pdf

2.1 a personal reflection on the dissertation content and structure

technology had been built, an evaluation was being conducted, and my role was
to contribute to framing the contribution, writing the paper, recording the video,
rebut the reviews, and prepare the final submission. The research reported on
in Chapter 8 was inspired by my supervisor’s suggestion that I should start by
“getting my hands dirty” (advice I was happy to follow). It was a replica of my
Master’s thesis methodologically, but instead applied to the research questions in
the PhD funding proposal. Since I had just moved to Denmark and did not speak
the language or have a large network, the recruitment strategy for participants
was shaped as much by whoever I could convince to lend me their time as by a
considered idea of which knowledge workers I was most interested in. The project
in Chapter 10 was a combination of the outcomes of these two previous projects
– the Codestrates platform and the focus on the harms of application-centric com-
puting – in collaboration with a nanoscience research group that had already
been included as a partner in the funding application. Naturally, this group of
knowledge workers was much more specific than the earlier study, but the op-
portunity to do long-term participant observation won out over the worry about
demographic consistency between projects.
The early months of the second year of my PhD was spent writing up a first ver-

sion of what would eventually become the paper in Chapter 10. I struggled trying
to connect my observations about how these knowledge workers really used tech-
nology with the framing of the funding proposal and the initial idea of building
computational interventions. Most technology-related problems these workers
had were mundane, structural issues such as insufficient funds to buy software,
or the slow processing speeds of their computers, or the general lack of commer-
cial software for their niche area of research. When the paper was rejected for the
2019 cycle of the ACM CHI Conference on Human Factors in Computing Systems,
I had become dissatisfied with my (and HCI’s in general) approach to computing-
related problems, which I started to see more as technological solutionism than
actually helpful contributions.
One of my responses to this dissatisfaction was to try to do more generalisable

research in the form of a large-scale survey, the results of which are reported in
Chapter 7. This was also the time that I was expected to arrange a research stay
at a foreign institution. One of my other responses was to use this opportunity to
explore the policy-side of technology design by joining Tim Berners-Lee’s Decen-
tralised Information Group at Massachusetts Institute of Technology, supervised
by Lalana Kagal, who had previously been involved in policy-aware technology
projects. To strengthen the link to my earlier HCI work, I also collaborated with
David Karger’s Haystack group, which published at HCI venues and was situated
on the same floor at the Computer Science and Artificial Intelligence Lab. Trying
to find a research project at the intersection of policy, HCI, MIT, Aarhus Univer-
sity, my interests, and the interests of the two professor I was visiting, resulted in
the publication in Chapter 14. A not-insignificant factor in the decision was the
purely opportunistic consideration that the General Data Protection Regulation
had just gone into effect, and that being a European citizen meant I was seen as
qualified to work on this subject.

14

2.1 a personal reflection on the dissertation content and structure

The results of that study exposed the limitations of technology policy as well
(without effective enforcement, regulation remains toothless), so in my third year
of the PhD I decided to find a middle-ground: technological interventions to help
with policy-related problems, the results of which are described in Chapter 16
and Chapter 15. The remaining time of the PhD contract, as well as an additional
six months during which I taught at Aarhus University to supplement my income,
I focused on connecting these various projects, and wrote the chapters that would
form the necessary bridge.

These practical constraints shapedmy doctoral work in unanticipated ways and
for reasons beyond scholarly concerns. It also helped me develop a nuanced per-
spective on the intersection between HCI and technology policy; on the strengths
and weaknesses of regulatory interventions and silver software bullets; on the
epistemologies of interviews, observations, surveys, controlled experiments, his-
toriographies, and computational methods; and, perhaps most constructively, on
how to balance personal motivations and academic contributions.

15

3.
PUBL ICAT IONS

In addition to new material, this dissertation also includes content from the fol-
lowing list of previously published documents.

Roman Rädle,Nouwens, Midas, Kristian Antonsen, James R Eagan, and Clemens
N Klokmose (2017). ‘Codestrates: Literate computing with webstrates.’ In: Pro-
ceedings of the 30th Annual ACM Symposium on User Interface Software and Tech-
nology. Quebec City, QC, Canada: Association for Computing Machinery, pp. 715–
725. doi: 10.1145/3126594.3126642. url: https://doi.org/10.1145/3126594.3126642

Nouwens, Midas and Clemens Nylandsted Klokmose (2018). ‘The Application
and Its Consequences for Non-Standard Knowledge Work.’ In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. CHI ’18. Montreal
QC, Canada: Association for Computing Machinery, 1–12. isbn: 9781450356206.
doi: 10.1145/3173574.3173973. url: https://doi.org/10.1145/3173574.3173973

Nouwens, Midas, Marcel Borowski, Bjarke Fog, and Clemens Nylandsted Klok-
mose (2020a). ‘Between Scripts and Applications: Computational Media for the
Frontier of Nanoscience.’ In: Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. CHI ’20. Honolulu, HI, USA: Association for Com-
puting Machinery, 1–13. isbn: 9781450367080. doi: 10.1145/3313831.3376287.
url: https://doi.org/10.1145/3313831.3376287

Nouwens, Midas, Ilaria Liccardi, Michael Veale, David Karger, and Lalana
Kagal (2020b). ‘Dark Patterns after the GDPR: Scraping Consent Pop-Ups and
Demonstrating Their Influence.’ In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. CHI ’20. Honolulu, HI, USA: Association
for Computing Machinery, 1–13. isbn: 9781450367080. doi: 10.1145/3313831.
3376321. url: https://doi.org/10.1145/3313831.3376321

16

https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3173574.3173973
https://doi.org/10.1145/3173574.3173973
https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3313831.3376321
https://doi.org/10.1145/3313831.3376321
https://doi.org/10.1145/3313831.3376321

Part I

Negotiable Software

4.
I NTRODUCT ION

Artefacts have politics,1 code is law,2 and technological mediation embeds inten-
tionality:3 three slogans used across different disciplines which all get to the same
point. The design of the non-human objects embed properties which help regu-
late howwe behave and perceive the world. While this framing is more commonly
used to analyse and critique existing artefacts produced by others, it also implies
that we can imbue our own politics, law, and intentionality into the artefacts that
we design.
Part I of this dissertation describes the process of developing negotiable soft-

ware, i.e., software that is designed to explicitly and inherently support being
changed through multi-stakeholder engagement.

4.1 software: applications

Software can take many forms, but arguably the most well-known shape of soft-
ware is the application: an isolated piece of software installed on a computer that
operates on certain data types using a set of predetermined programs through
a graphical interface. To explore negotiable software at large, this dissertation
focuses on application software in particular.

Application-centric computing has dominated human-computer interactions
for the past forty years, to the point that it has achieved Weiserian-levels of in-
visibility. The vast majority of users experience computation solely through ap-
plications: they use computers not as programmable universal devices, but as “a
specific machine with a specific behavior for a specific purpose”4 (e.g., a spread-
sheet, a word processor, an email client, a web browser). This model of software
is a construct with its own set of embedded politics, shaped by the process of
commodification and mass-marketisation it went through between the 1950s

1 Langdon Winner (1980). ‘Do artifacts have politics?’ In: Daedalus, pp. 121–136.
2 Lawrence Lessig (1999). Code and other laws of cyberspace. Basic Books. isbn: 978-0-465-03912-

8.
3 Peter-Paul Verbeek (2005). What things do: Philosophical reflections on technology, agency, and

design. Penn State Press.
4 Bengt Goransson et al. (1987). ‘The Interface is Often Not the Problem.’ In: Proceedings of the
SIGCHI/GI Conference on Human Factors in Computing Systems and Graphics Interface. CHI ’87.
Toronto, Ontario, Canada: ACM, pp. 133–136. isbn: 0-89791-213-6. doi: 10 .1145/29933 .
30872. url: http://doi.acm.org/10.1145/29933.30872.

18

https://doi.org/10.1145/29933.30872
https://doi.org/10.1145/29933.30872
http://doi.acm.org/10.1145/29933.30872

4.2 context: knowledge work

and 1990s in the United States. As a result, it is negotiable in a specific, limited
way that mostly favours the developers and their business models, rather than
users/consumers/citizens and their rights. In general, the application is globally
distributed but its design is locally controlled; its code is often proprietary rather
than freely available; it facilitates customisation through sand-boxed plugins and
scripts rather than run-time reprogramming; it updates autocratically rather than
democratically; it does not interoperate with other software. Exceptions exist, but
the dominant design of application software favours unilateralism over negotia-
bility.

4.2 context: knowledge work

Applications are used in many contexts, but one of the earliest industries and
successful markets for software applications was knowledge work: jobs that in-
volve the creation and distribution of (digital) information through non-routine,
creative, and abstract thinking. To explore negotiable applications, Part I of this
dissertation focuses on contemporary knowledge work and workers.

Although the concept of knowledge work suffers from policy evangelism and
lacks an operationalised definition5, at the most abstract level it refers to any
labour that uses existing information in flexible and innovative ways to produce
new information from which value can be extracted. The knowledge economy
itself emerged in the 1990s-2000s, when capital returns on mass-produced phys-
ical goods slowed down and global competition increased. Many countries com-
mitted to the idea of “knowledge” as the new, more efficient asset that would guar-
antee continued economic growth. Examples of knowledge-based capital include
things such as patents, intellectual property, brand-equity, innovation research,
and, of course, software.
In knowledge economies, the knowledge worker – offensively called “human

capital” – has become the most in-demand commodity, as most of the additional
surplus value is created when the worker has more knowledge and uses it more
effectively. Application software has played a facilitative role in this increased ef-
ficiency from the beginning. The application as a model of software first emerged
during the late 1970s and early 1980s in the United States, and only became a
commercially successful product because it managed to capture the imagination
of large corporations and white-collar office workers. A considerable reason why
the knowledge economy became a viable alternative to the manufacturing econ-
omy was because computers increased the rate at which information could be
produced and processed by orders of magnitude, and because application soft-

5 EU and OECD white papers have variously attempted to capture knowledge work by describing
it based on the sector or industry they work in, the activities common in their work, the level
of education required, or their occupation category, but none have allowed governments and
businesses tomeasure and intervene effectively in this type of labour. See (Ian Brinkley, Michelle
Mahdon Rebecca Fauth, and Sotiria Theodoropoulou [2009]. Knowledge workers and knowledge
work: A knowledge economy programme report. Work Foundation) for a discussion

19

4.2 context: knowledge work

ware made it possible for humans to leverage that capability at scale. To this day,
the more knowledge intensive industries continue to be the most digitised.6
To explore the idea of negotiable application software, we will be going back

to the original context for which it was developed, and which could not exist
without it.

6 Jacques Bughin et al. (2016). ‘Digital Europe: Pushing the frontier, capturing the benefits.’ In:
McKinsey Global Institute.

20

5.
A BR I E F H I STORY OF TH E
APPL ICAT ION ; OR , HOW TH E
COMMODI F ICAT ION OF SOFTWARE
SHAPED ITS NEGOT IAB I L IT Y

5.1 introduction

The “application” is not a natural, inevitable design of software, but rather a par-
ticular construct profoundly shaped by the process of commodification it went
through in the United States between the 1950s and the 1990s. Despite its ubiq-
uity, the application model of software is almost wholly ignored as a topic of
inquiry by HCI research and the history of computing communities. As a result,
it is difficult to imagine our everyday interaction with computers mediated by
anything other than applications, or see a path towards a different model in the
future.
The aim of this chapter is to trace how the negotiability of software has changed

over time by describing the history of the application model from the 1950s until
the 1990s. It will follow the social and economic construction of this technology
by looking at how, at different points in time, software was defined, what its
purpose was imagined to be, who was included in its development, and what
activities it supported or inhibited.
The words used to distinguish between different designs and commodifications

of software, even the word software itself, are anachronisms that did not exist
or refer to the things we might use it for today. For the sake of clarity, however,
I will use software ahistorically as a catch-all term for non-material computer
instructions, in conjunction with the actual words used to describe the artefact
at the time whenever possible.

5.2 the material creation of software

Before the 20th century, there was no need to distinguish between ‘hardware’
and ‘software’: a machine’s execution instructions were largely hardcoded into
the device’s design. A first conceptual distinction between a device and its in-
structions was made in the late 1930s and early 1940s with the invention of the
universal, general purpose, programmable computer: a computer could now (in

21

5.2 the material creation of software

(a) Tape reader of the ASCC. (b) Ruth Lichterman wiring the ENIAC.

Figure 1. Machine instructions for mechanical and electronic mainframe computers.

principle) be adapted to calculate anything, rather than just those specified in
its original design. For mechanical and electromechanical mainframe computers
(e.g., the Automatic Sequence Controller Calculator at Harvard University), these
instructions were fed to the machine through spools of punched hole paper tapes
(fig. 1a). In fully electronic mainframe computers (e.g., the Electronic Numerical
Integrator And Computer), they were provided by connecting plugs to sockets,
flipping switches, and turning dials (fig. 1b). However, in both cases the instruc-
tions were still firmly rooted in the physical, as using the machine for another
“general purpose” still required rewiring or new paper tapes.

The firstmaterial distinction between the computer and its instructions was cre-
ated in 1948-1949 through the successful implementation of stored-program ar-
chitectures,1 which allowed calculations to be executed from an electronic mem-
ory. For the first time, the device’s instructions were purely electronic signals, and
the physical state of the computer no longer represented the program it was cal-
culating. To get the instructions into the electronic memory still required feeding
them to the machine through punched paper cards or magnetic tapes, however,
so this material separation was at least partly theoretical rather than experiential.
Software for these mainframe computers was written by the researchers work-

ing on the technology. In the first textbook on programming published in 1951
– “The Preparation of Programs for an Electronic Digital Computer” by Wilkes,
Wheeler, and Gill; often referred to as just WWG2 – more than half of the first
edition of the book (85 out of 164 pages) contained the software developed by

1 Nick Metropolis and Jack Worlton (1980). ‘A Trilogy on Errors in the History of Computing.’ In:
Annals of the History of Computing 2.1, pp. 49–59.

2 Martin Campbell-Kelly (2011). ‘In praise of ‘Wilkes, Wheeler, and Gill’.’ In: Communications of
the ACM 54.9, pp. 25–27.

22

5.3 the cooperative design of software

the authors and their team working with the Electronic Delay Storage Automatic
Calculator (EDSAC) (fig. 2).

PART THREE

PROGRAMS OF SELECTED EDSAC LIBRARY SUBROUTINES

The following notation is used on all library program sheets.

Entry points: If control may arrive at an order by being

transferred there by a jump order the location

of the latter (relative to the first order of the

subroutine) is shown on the extreme left, with

an arrow pointing to the location of the order to

which control is transferred, e.g.,

16 -> 23 T 6 6.

Unconditional transfers

of control:

Variable orders:

Pseudo-orders:

A horizontal line is drawn underneath every

jump order which is intended to produce a

transfer of control each time it is encountered.

Orders and pseudo-orders which are to be

changed during the course of the calculation

are shown in brackets.

A double vertical line is drawn on the left of

the contents of all storage locations which are

intended never to be obeyed as orders.

In the program sheets which follow, the code letter S is freely used, in

orders involving the B-register, in the way described in Part 1. To use a

subroutine in which this code letter occurs it would be necessary to have
subroutine R30 in the store at the time the subroutine was read. In prac-

tice, in the subroutines actually used on the EDSAC, this necessity has

been avoided by subtracting the address from 1024 in the case of an order

which would be terminated by code letter S, and by adding 1024 to the

address in an order in which the B-digit must be 1. For example,

TS 2 F would be written as T 102G F
B 2 S " " " B 1022 F
BS 2 S " " " " B 2046 F.

The content of the J5-register is sometimes denoted by b.

173

174 PROGRAMS OF SELECTED SUBROUTINES [PART 3

All Arithmetical operations on real numbers expressed in floating decimal

forin.

For representation of numbers see Part 2. The number in the floating decimal

accumulator (f.d.a.) is here referred to as y • IO9
, and the operand as x • 10 p

.

Parameters:

Preset: H
N

P s D
P t F

T ,. , f numerical parti , ,
,Location of * of f.d.a.

L exponent J

Preset by subroutine:

94

M
A
L

p 103 e

p e

E 56 6 D}'namic stop order

E 69 K
T 9ttM

9ttJ7 1 71798 69183

UttM]L7179 86918

13ttJ/ 1717 98692
157rilf 171 79869

HtvM 17 17987

197ril/ 1 71799
21ttM 17180

23ttM 1718

T Z
A 46 e

-> 1 A 2 F
2 T 3 e

3 (H F)

4 C 9 M
5 E 20 e

6 R 256 F
7 A M
8 T 19 d

9 C 1 M
10 T ii e

11 (A F)
-1

12 U 22 e

13 L 32 F
1

14 R 32 F \

15 U D
16 S 22 d

17 R 64 F
18 T 22 d

Call in RQ to read following

constants

1

io- 1

io-2

io-3

io-4

io-5

io- 6

IO"7

Form and plant order 3

Place interpretive order in multiplier register

and in accumulator
Jump if interpretive E- or T-order

Form jump order specifying an address de-

pending on function of interpretive order

Form and plant A-order speci-

fying same address as inter-

pretive order

Select operand
Store more significant half

Remove exponent, p

X'2- 10 toOZ)

-2~ 14p to 220

Unpack
operand for

interpretive

,1-, B-, and
F-orders

Figure 2. The first two pages of the program library included in Wilkes, Wheeler, and
Gill’s The Preparation of Programs for an Electronic Digital Computer.

They did not use the word software to describe their code, but instead referred
to each self-contained calculation as a subroutine, and a collection of subroutines
as a program. Considering the huge effort required to write correct code, the au-
thors advised writing subroutines such that they could be reused, and described
how they organised them into a code library. Interestingly, the publication of the
book boosted the popularity of the EDSAC hardware design. Because of the lack
of computer standardisation, software and hardware were still tightly coupled.
To take advantage of the considerable labour represented by the WWG software
library, other computers matched the EDSAC (e.g., Japan’s first electronic com-
puter, the Tokyo Automatic Computer3).

5.3 the cooperative design of software

While the mainframe computers of the 1940s were research prototypes or mili-
tary equipment, the 1950s saw the rise of the computer as a commercial product.
For example, IBM, with decades of success selling tabulating machinery to clients
such as the the US Government and the Third Reich4, announced its first foray
into the commercial computing market in April 1952: the IBM 701 Electronic

3 Campbell-Kelly, ‘In praise of ‘Wilkes, Wheeler, and Gill’,’ p. 2.
4 From the start, computers have been inextricably linked to warfare, population control, and

crimes against humanity.

23

5.3 the cooperative design of software

Figure 3. The IBM 701 Electronic Data Processing Machine.

Data Processing Machine (fig. 3). While the hardware industry developed, the
program code required to use the computer remained uncommodified, and still
largely the prerogative of the computer user to develop. When the first eighteen
customers received the IBM 7015, it did not come with any software except for
a primitive assembler and some “utilities” such as a one-card, memory clearing
program.6
Almost from the beginning, the skills and time required to develop software

have been the main constraints determining the design of the technology and the
direction of its industry. The labour cost of programming the early mainframes
was so high (often upwards of a year’s rental of the device) that IBM considered
it a major threat to the future commercial success of computers: organisations
were reluctant to buy a new computer and have to redevelop their entire library
of programs. With the launch of the IBM 704 on the horizon, an IBM sales man-
ager in the Los Angeles area decided to organise a meeting between all customers
of the 701 to discuss whether a collaborative software development effort would
be possible to reduce the individual burden. This approach was a profound shift
from the normal, internal way software was developed at the time, and no small
undertaking, as it included companies that were each other’s direct competitors
(e.g., RAND Corporation, Lockheed Aircraft Corporation, North American Avia-
tion Inc.), with a history of poaching each other’s programmers. After several
rounds of drinks, the November 1952 meeting would later be known as the suc-

5 The first client to receive the 701 was the Los Alamos Scientific Lab in New Mexico, working on
the development of nuclear weapons.

6 Martin Campbell-Kelly (2004). From airline reservations to Sonic the Hedgehog: a history of the
software industry. MIT press, p. 30.

24

5.3 the cooperative design of software

cessful inauguration of the “Digital Computer Association” (DCA), colloquially
known as the Drunkard’s Computer Association.7
The DCA’s efforts resulted in the first cooperative design of a piece of software

for the 701 called, appropriately, PACT: the Project for the Advancement of Cod-
ing Techniques. Although the compiler was an impressive accomplishment and
a better piece of software than anything offered by IBM, the DCA was convinced
that “[t]he spirit of cooperation between member organizations and their repre-
sentatives during the formulating of PACT-I has been one of the most valuable
resources to come from the project. It is essential that this spirit of cooperation
continue with future project plans”.8
And continue it did. When IBM announced the 704 in May 1954, the groups

involved in PACT started discussing a new joint effort to standardise assemblers
and avoid the redundancy of each programming the same set of mathematical
subroutines (e.g., numerical inversions) and utility programs (e.g., input-output
programs). This eventually culminated in the founding of SHARE in 1955, the
very first “User’s organization” of the computing industry. Its explicit goals were
“1) the standardization of machine language and certain machine practices, 2)
the elimination of redundant effort expended in connection with use of the com-
puter, 3) the promotion of inter-installation communication and 4) the develop-
ment of a meaningful stream of information between the user and the manu-
facturer”.9 Within two years, the SHARE network of IBM 704 installations grew
from eighteen to forty-seven. A Policy Committee was appointed to direct the ef-
forts and distribute programming assignments to members. Once finished, these
were made available to all other members as part of the SHARE distributions,
disseminated via post by the SHARE Program Library Agency as magnetic tapes
or punched cards (if not exceeding more than 1000 cards).10
The activities of the DCA and the organisations that emerged out of it offer a

window to a fundamentally different mode of software production. The choice of
the names PACT and SHARE both strongly signal commitments to plurality, co-
operation, and compromise. A point of pride among the founders of SHARE was
the strong spirit of collaboration between the representatives of highly competi-
tive companies.11 In each case, the defining principles of the networks were not
just technical, but codified norms about what it meant to be part of the coopera-
tive. As stated in the “Obligations of a SHARE Member” included in the SHARE
Reference Manual for the IBM 704, “[t]he principle obligation of a member is to
have a cooperative spirit”(emphasis original).12 The obligations also included the

7 Mary Brandel (1999). ‘1955: IBM customers form the first computer user group.’ In: CNN. url:
http://edition.cnn.com/TECH/computing/9905/05/1955.idg/.

8 Paul Armer (1956). ‘SHARE - A Eulogy to Cooperative Effort.’ In: Annals of the History of Com-
puting 2.

9 Steve Guendert (2011). ‘Mainframe History and the First User’s Groups (SHARE).’ In: p. 2. url:
https://www.cmg.org/wp-content/uploads/2011/05/m_79_5.pdf.

10 SHARE Program Library Agency (1977). ‘User’s Guide and Catalog of Programs.’ In: url: http:
//www.bitsavers.org/pdf/ibm/share/SHARE_PgmCatalog_Jan77.pdf.

11 Atsushi Akera (2001). ‘Voluntarism and the Fruits of Collaboration: The IBMUser Group, Share.’
In: Technology and Culture 42.4, 710–736. issn: 0040-165X.

12 Joanna Edson et al. (1956). ‘SHARE Reference Manual for the IBM 704.’ In: url: https : //
latimesblogs.latimes.com/thedailymirror/files/share59.pdf.

25

http://edition.cnn.com/TECH/computing/9905/05/1955.idg/
https://www.cmg.org/wp-content/uploads/2011/05/m_79_5.pdf
http://www.bitsavers.org/pdf/ibm/share/SHARE_PgmCatalog_Jan77.pdf
http://www.bitsavers.org/pdf/ibm/share/SHARE_PgmCatalog_Jan77.pdf
https://latimesblogs.latimes.com/thedailymirror/files/share59.pdf
https://latimesblogs.latimes.com/thedailymirror/files/share59.pdf

5.4 software as a package

imperative that majorities should not be “overbearing” to minorities; they should
try to win them over through discussion rather than simply vote them down.
Cooperative users’ groups became a popular model for distributed software

development around other computers as well: the UNIVAC 1100 had USE, IBM’s
4300 had GUIDE, Wang Equipment had SWAP, etc. The user groups were not
just about exchanging knowledge and software between members, but often had
a formal relationship with computer manufacturers, and they were able to exert
considerable power over the business decisions these made (e.g., IBM on multiple
occasion tried to kill the VM/CMS Operating System but SHARE intervened on
behalf of its users13).

5.4 software as a package

Up until the end of the 1950s, software was generally considered an artefact with-
out inherent commercial value, and there was little interest in claiming control or
ownership over it. The prevailing idea at the time was that software by definition
was inimical to standardisation and could never be sold as is: a general ledger
or payroll software system would always need to be built specifically for the lo-
cale it would be used in.14 Rather, manufacturers treated software as a way to
boost the viability of their hardware, and they budgeted its development as part
of their marketing costs. They freely shared the software they or their customers
built through mail-order program libraries, recurring newsletter catalogues from
which members could request a punched card or magnetic tape copy for a small
fee. These software were considered general blueprints and “seldom if ever used
as programs; rather, the overall system design was usually modified and then
recoded to the particular user’s requirements”.15
The rising number of computer installations across the United States and the

rapidly expanding capabilities of computers created a strong demand for more
software, yet the shortage of workers with programming skills and the slow speed
of program development made it difficult to meet. The inability of the in-house
developed, custom-built model of software development to meet these demands
resulted in the emergence of the software contracting industry. Not only did this
industry increase the overall quantity of software in the US, but their business
models – different from the manufacturer- or user-originated code – also created
a new way of imagining and designing software in the 1960s: the software pack-
age.
For the organisations that could not find or afford in-house programmers, hir-

ing development services from a contractor was an attractive way to create the
programs they needed. Initially, these contractors would develop custom soft-
ware based on the specifications worked out with their clients. Their business
models were based on economies of scope: they specialised in building software
for a very narrow market so they could reduce development costs by building up

13 Ed Scannell (1984). ‘IBM User Groups.’ In: Computerworld 8.October.
14 Arthur Norberg (1983). ‘An Interview with Walter Bauer.’ In: Charles Babbage Institute. url:

https://conservancy.umn.edu/bitstream/handle/11299/107108/oh061wb.pdf.
15 Larry Welke (1980). ‘The Origins of Software.’ In: Datamation December, p. 127.

26

https://conservancy.umn.edu/bitstream/handle/11299/107108/oh061wb.pdf

5.5 the rise of the software product

knowledge about the domain and a library of program code that could be used
as templates.16 Eventually, this repurposing of previously built software by con-
tractors evolved into a growing interest for “pre-packaged” software across the
computer industry. What the concept of the package aspired to do, was “make
a program portable, transferable, and usable on a second computer unrelated to
the first”,17 a paradigmatic shift in the way software was imagined18. Rather than
serve as just a blueprint for building a new system, software was beginning to be
considered as something that could be reused across locales.
The ‘62 CFO (Consolidated Functions Ordinary) package developed by IBM

for the 1401 and released through their Application Program Library was an
early attempt at such a package for life insurance companies, used for billing
and accounting. The intent was that it could be “used broadly throughout the
Life Insurance Industry as operational computer programs or as a guide in the
development of personalized total systems on an individual company basis”.19
It was developed in consultation with representatives from several life insurance
and, by 1964, used relatively widely (peaking at 200-300 installations), resulting
in the creation of three CFO user groups by the insurance companies.
However, the market for software as a package never really took off, and at the

end of 1960 was only about 10 percent the size of contract programming. There
were a couple reasons for this stagnation. First, the belief that custom-developed
software was inherently superior to pre-built solutions remained strong. Second,
the lack of hardware standardisation made software developed for one computer
generally incompatible for others, so the pool of potential customers for a pack-
age was small. And third, the bundling of software together with hardware by
computer manufacturers meant third-party package developers were competing
against the manufacturers’ free software.

5.5 the rise of the software product

A number of events in the mid to late 1960s made the market for software as a
package more viable, and eventually culminated in the emergence of software as
a product.
The problem of hardware standardisation was addressed by IBM’s 1964 an-

nouncement of their System/360: a family of mainframes that would all be com-
patible with each other, making vertical and horizontal integration across market
segments possible. For software contractors with a backlog of packages, this sig-

16 Campbell-Kelly, From airline reservations to Sonic the Hedgehog: a history of the software industry.
17Welke, ‘The Origins of Software.’
18 The meaning of the term software package was not as clear-cut as presented here. For some,

it referred to pre-made software developed by a manufacturer whose costs were bundled to-
gether with the hardware and available through their software library. Others use it to refer to
just pre-made software in general, regardless of origin or delivery. At least one collection of oral
histories reports that it was called a package because the client received, as a package, the pro-
gram code, documentation, and some level of service (e.g., installation, maintenance) (Luanne
Johnson [2002]. ‘Creating the software industry-recollections of software company founders of
the 1960s.’ In: IEEE Annals of the History of Computing 24.1, pp. 14–42)

19 JoAnne Yates (1995). ‘Application Software for Insurance in the 1960s and Early 1970s.’ In:
Business and Economic History, pp. 123–134.

27

5.5 the rise of the software product

nificantly increased the pool of potential customers for each piece of software
and thus its potential profitability.
The problem of manufacturers bundling their software with the hardware was

similarly up to IBM to address, although other factors played a role. The company
Applied Data Research (ADR) had released a package in 1966 called Autoflow,
which produced automatic flowcharts of Assembly-based software. It had sold
300 copies by the end of 1968, which was relatively successful, but ADR believed
their sales had been severely hurt by the fact that IBM had started to offer a free
package called Flowcharter, which also produced software flowcharts (although
not automatically and not based on analyzing the assembly code). ADR eventually
brought a lawsuit against IBM, claiming that it was monopolising the software
industry by bundling software for free with its devices. Whether the ADR lawsuit,
the simultaneous anti-trust case brought by the US government over IBM’s market
dominance, or just the rising costs of software development and support that
was “virtually bringing the company to its knees”,20 IBM announced that starting
1 January 1970, it would “unbundle” its software from its hardware and start
charging separately for it.21
This unbundling did not necessarily create a market overnight by removing

the competition of free software (many early packages did not have a direct IBM
equivalent), but it did force companies to consider software costs when buying
computers, allowing the notion of non-bundled software as a reasonable alterna-
tive to emerge. Before unbundling, buying software as a stand-alone package was
an unusual decision that needed to be justified, often by the computer controller
or the president of the company. Once IBM had normalised the idea, purchas-
ing authority (for products up to a certain price range, e.g., US$15.000-20.000)
moved down in the organisational hierarchy, making it easier to sell software
packages.22
The idea that custom-built software was superior to packages never really went

away, but the economic crunch of the 1970s made hiring programming contrac-
tors or maintaining an in-house development team simply too expensive for many
companies. Packages, despite its design limitations, were significantly cheaper
and could be operational within a matter of weeks instead of months, generating
a faster return on investment. Rather than not use any software at all, organ-
isations chose to buy a pre-made package and instead redesign their company
structure to fit its design.23

With these three barriers removed, the software industry expanded signifi-
cantly. In 1970 the annual turnover for all US American software firms was less

20 Johnson, ‘Creating the software industry-recollections of software company founders of the
1960s,’ p. 37.

21 Thomas Haigh (2002). ‘Software in the 1960s as Concept, Service, and Product.’ In: IEEE Annals
of the History of Computing 24.1, pp. 5–13.

22 Johnson, ‘Creating the software industry-recollections of software company founders of the
1960s,’ p. 27.

23 Campbell-Kelly, From airline reservations to Sonic the Hedgehog: a history of the software industry,
p. 98.

28

5.5 the rise of the software product

than US$0.5 billion; by 1979 this had quadrupled to roughly US$2 billion.24 Soft-
ware magazines were created to showcase all the different packages available and
conference papers were written about how to evaluate and choose the best ones.
Slowly, the software package turned into a capital good: a software product.

This commodification of software left a lasting imprint on its dominant designs.
An early representative example of this transformation was Informatic’s Mark IV,
a file management system that generated programs for creating, maintaining,
and reading data from punched cards, magnetic tapes, and direct access devices.
First released in 1967, it grew out of tailor-made packages, before being turned
into a stand-alone “product”. John Postley, inventor of the previous Mark pack-
ages, argued that turning the system into a successful product required it to be
bug free, robust, and fully supported by stand-alone manuals and documentation.
This might seem trivial, but was a significant shift from the much more forgiving
requirements when delivering software as a package of code and customer ser-
vice. The “free” software package provided by the computer manufacturer “was
supplied with few contractual obligations, and no matter how well the customer
might be supported in practice, there was no legal requirement that the manu-
facturer supply a fully operational application”.25 The software product, on the
other hand, was “a discrete software artifact that required little or no customiza-
tion, either by the vendor or by the buyer; it was actively marketed, it was sold or
leased to a computer user, and the vendor was contractually obligated to provide
training, documentation, and after-sale service”.26
With the business model change from software as a ‘free’ package to software

as a tradeable product, there was a shift in responsibility over the quality of that
software, and a subsequent appropriation of control over the software by its pro-
ducers in order to better manage those responsibilities and ensure continued
profit. Previously, software code was easy to access and trivial to replicate, which
was economically acceptable because it had little to no value outside of the spe-
cific context it was built for. Software contractors were hired more for their de-
velopment and support services than the program. Distribution and replication
of software did not seriously endanger their business models. Now that more and
more commercial value was contained in the program code, and it was possible
to run it on multiple machines without requiring customisation, protecting the
software code became imperative for the revenue streams of the company.
To protect an informational asset, legal instruments had to be invented or reap-

propriated. Patents were an ill-fit because they were designed for tangible objects
rather than immaterial goods. Copyright law required a human-readable copy of
the artefact to be submitted to the Copyright Office, something companies were
obviously reluctant to do. In the case of Mark IV, Informatics decided to use the
mechanism of trade secret laws, and required employees and customers to sign
non-disclosure agreements. Most importantly, however, after roughly thirty years
of mostly decentralised ownership of programs, the commodification of software
24Martin Campbell-Kelly (1995). ‘Development and structure of the international software indus-

try, 1950-1990.’ In: Business and economic history, pp. 73–110, p. 74.
25 Campbell-Kelly, From airline reservations to Sonic the Hedgehog: a history of the software industry,

p. 99.
26 Ibid., p. 99.

29

5.6 the first wave of microcomputers

led developers to implement the first intentional technological barrier to a soft-
ware’s negotiability: they shipped their program in binary code, with the express
purpose to limit the ability of their customers to access, read, and customise the
software.

5.6 the first wave of microcomputers

The microcomputer industry developed largely independently from the main-
frame and minicomputer sector, but the evolution of the industry and the design
of software follows an almost identical path. The first wave of microcomputers
were sold as assemble-yourself kits for electronics hobbyists, containing circuit
boards, wires, card connectors, a case, and instructions of often questionable
quality. The first commercially successful microcomputer was the Altair 8800,
announced in the now-iconic January 1975 edition of Popular Electronics (fig. 4).
This was not a device with much practical applicability out of the box, but a new
toy that provided an interesting challenge for hardware homebrewers and soft-
ware hackers, captured perfectly in the headline of a later ad campaign: “Build-
ing your own computer won’t be a piece of cake. (But, we’ll make it a rewarding
experience)”.27 The microcomputer was programmed by flipping switches, and
the output came as flashing LED lights on the front. Using it for anything more
substantial than that required buying external peripherals such as a keyboard,
screen, disk drive, RAM extensions -– products which the company behind the
Altair, MITS, sold to make a profit on the microcomputer.
Analogous to the early mainframes, these microcomputers did not come with

any operating system or software programs, so users had to design their own.
Initially using mostly machine language, until programing language interpreters
were released that allowed users to write in something more human-friendly. Fa-
mously, the Altair 8800 gave Bill Gates and Paul Allen their first opportunity and
first product, the BASIC interpreter called Altair BASIC. Unheard of at the time,
Gates and Allen were paid for their software in royalties and received a small
percentage of each sale made by MITS, rather than the more common licensing
lump-sum. This business model would provide them with a steady influx of cap-
ital over the next years as they diversified into other programming languages
(COBOL, FORTRAN) and other hardware.

Digital Research, founded by themarried couple Gary Kildall and DorthMcEwen,
was the first vendor of operating systems. Between 1974 and 1976, Gary Kildall
designed CP/M – Control Program for Microcomputers – which could be run with
minimal changes on any machine using the 8008 Intel microprocessor. At a time
when a manufacturer could expect to spend US$50,000-100,000 on developing
an operating system for a microcomputer, Kildall sold his CP/M by mail-order for
US$75, and eventually licensed it (non-exclusively) for US$25,000 to IMSAI, the
manufacturer of the Altair rival IMSAI 8080. Hugely popular, Digital Research
adapted CP/M to run on other microprocessors as well, and by the end of the

27 n.a. (1975). ‘Building your own computer won’t be a piece of cake.’ In: Popular Electronics 4.

30

5.6 the first wave of microcomputers

Figure 4. The Altair 8800 on the cover of the January 1975 edition of Popular Electronics
magazine.

31

5.6 the first wave of microcomputers

Figure 5. The welcome screen and interface of the Electric Pencil word-processing appli-
cation created by Michael Shrayer in 1976.

decade could run on 200 different computers.28 In much the same way that
IBM’s System/360 increased the market for software packages, CP/M’s ad-hoc
standardisation expanded the possible market for personal software: anything
adapted to that operating system could run on a multitude of devices, liberating
developers from having to significantly rewrite the software for each platform.

The application program market was still barebones in the mid-1970s, con-
strained by the limitations of the hardware and the fledgling state of program-
ming languages and operating systems. One of the few commercially successful
“practical” software products for the microcomputers at the time was a word pro-
cessor. Michael Shrayer developed Electric Pencil out of personal necessity when
he had to write the documentation for an assembler package he had created.
State-of-the-art at the time, it showed the message “THE ELECTRIC PENCIL (C)
1977 MICHAEL SHRAYER” when the program was launched (fig. 5); nothing
else would happen until the user started typing, which would replace the text.29
Originally released in December 1976 for the Altair 8800, it become a runaway
success and Shrayer quickly found himself rewriting the application for more than
seventy other devices.

28 Campbell-Kelly, From airline reservations to Sonic the Hedgehog: a history of the software industry,
p. 206.

29Michael Shrayer (1977). The Electric Pencil Word Processor: Operator’s Manual, p. 6.

32

5.7 the gold rush of application programs

The majority of programs available at the time were text-based games. One of
the first and most widely used ones,30 Star Trek, demonstrates the collective and
negotiated character of these early programs. Originally written for a Sigma 7
minicomputer between 1971 and 1972 by a teenager called Mike Mayfield, Star
Trek was a text-based strategy game inspired by the popular Spacewar! game.
During the summer of 1972, a local Hewlett-Packard sales office allowedMayfield
access to their computer, and he rewrote it for their version of BASIC. It was
subsequently added to the HP Contributed Program Library in February 1973
under the name STTR1. Other members of the library reprogrammed the game
for their own hardware architectures, and added new game features along the
way. Eventually, some of the many versions of the Star Trek game made it to the
microcomputers. A copy of the game for the Altair 8800, written by Lynn Cochran,
was featured as the cover story of the June 1976 edition of the SCCS INTERFACE
magazine. The article included the entire software code (on just two and a half
pages) and a block diagram explaining the general logic of the program (fig. 6).
The renegotiability and shared ownership of the software was an explicit part of
its identity. One article in the magazine lists the many different versions of the
Star Trek game, and how one could embark on the “Enterprise” of modifying their
own copy.31 An ad in the magazine for yet another copy of the game highlighted
that, in addition to “a complete program source listing”, the package would also
include “tips on how to ‘patch’ the program to add your own features”.32
This collaborative and open design of software (games, at least) was the dom-

inant imaginary, and the notion that programs should not be commodified held
considerable sway among hobbyists. Such ideas clashed with those who wanted
to extract value from their software. Writing angrily in February 1976, Gates ac-
cused members of the Homebrew Computer Club: “As the majority of hobbyists
must be aware, most of you steal your software. Hardware must be paid for, but
software is something to share. Who cares if the people who worked on it get
paid? Is this fair?”.33

5.7 the gold rush of application programs

The second wave of microcomputers started in 1977, kicked off by devices such
as the Commodore PET (January), Apple II (April), and TRS-80 (August). These
machines approached what we now recognise as a (personal) computer, at least
in its hardware design: it hid away the electrical wiring behind a molded plastic
case and came with a keyboard built in (fig. 7).
Although its exterior looked more approachable, significant technical skills

were still required to overcome the lack of programs, poor documentation, and

30 Art Childs (1976). ‘Interfacial.’ In: SCCS INTERFACE June. url: https://archive.org/details/
sccs_v1n7/, p. 2.

31 Ralph Kiestadt (1976). ‘Large Scale Systems: Software Choices for Star Trek.’ In: SCCS INTER-
FACE June. url: https://archive.org/details/sccs_v1n7/, p. 49.

32 Inc. International Data Systems (1976). ‘Patchable Star Trek/Space War Program Offered.’ In:
SCCS INTERFACE June. url: https://archive.org/details/sccs_v1n7/, p. 41.

33 Bill Gates et al. (1976). ‘An open letter to hobbyists.’ In: Homebrew Computer Club Newsletter
2.1, p. 2.

33

https://archive.org/details/sccs_v1n7/
https://archive.org/details/sccs_v1n7/
https://archive.org/details/sccs_v1n7/
https://archive.org/details/sccs_v1n7/

5.7 the gold rush of application programs

Figure 6. The program code and logic flowchart for the Star Trek game written by Lynn
Cochran, published in the June 1976 edition of the SCCS INTERFACE maga-
zine.

34

5.7 the gold rush of application programs

Figure 7. The second wave of commercial microcomputers. From left to right, the Com-
modore PET, Apple II, and TRS-80.

minimal support so the computer could be used as a tool rather than a toy. This
changed at the end of the 70s, when the success of VisiCalc helped establish
the application software market and usher in a four year gold rush that set the
stage for the design and industry of software for years. Released initially for the
Apple II in 1979 (and significantly buoying the platform’s sales), VisiCalc was a
spreadsheet program that would dynamically recalculate cell values in response
to changes in other cells. Compared to other software available at the time, Visi-
Calc was exceptionally easy to use – an explicit design choice strongly influenced
by the fact that its developers – Dan Bricklin and Bob Frankston – conceived of
VisiCalc as “a product, not a program”.34 Whereas mainframe software relied on
a low volume of sales for high prices (US$5,000 - US$250,000), the developers of
VisiCalc decided to bet on a high volume-low price mass-market strategy instead,
targeting everyday individuals instead of just large corporations with deep pock-
ets. Supporting thousands of customers would be expensive, if not impossible, so
Dan Bricklin and Bob Frankston relied on its design and documentation to be so
simple and unsurprising that they did not have to have any further interaction
with the customer after the point of sale: any feature that could not be concisely
explained on the reference card was dropped (fig. 8). Priced initially at US$99,
the company sold 1,000 copies per month on average. For four straight years,
from 1979 through 1983, Personal Software/VisiCorp was the largest software
company on the market.
Although games continued to be one of the main types of software, spread-

sheets and similar “practical” applications such as word processors, databaseman-
agers, and business graphics became multimillion dollar categories in their own
rights. The professional appeal of the microcomputer was further solidified when
IBM announced it would enter the business as well, and released the IBM PC
in 1981. Big Blue’s reliable reputation helped it quickly capture a large market
share, but more important for the software industry was that the IBM PC had an

34 Robert M. Frankston (2015). ‘Implementing VisiCalc.’ In: url: https : / / rmf . vc /
implementingvisicalc.

35

https://rmf.vc/implementingvisicalc
https://rmf.vc/implementingvisicalc

5.7 the gold rush of application programs

Figure 8. The VisiCalc reference card, minus the last page which showed an annotated
screenshot of the interface. The reference card was shipped in a brown, fake
leather folder together with 5 1/4” diskettes, a manual, and a registration card.
See http://www.bricklin.com/history/saiproduct1.htm for more detail.

36

http://www.bricklin.com/history/saiproduct1.htm

5.7 the gold rush of application programs

open hardware architecture (in contrast with the proprietary Apple II system, for
example), making it possible for third-parties to develop software and hardware
for the platform. The IBM hardware design became a de-facto standard, reduc-
ing (but not eliminating) the technical and business challenges of device-specific
software development, and broadening the software market. The lack of practical
software had kept the microcomputer a hobbyist novelty, but these applications
and the legitimisation by IBM helped reimagine the microcomputer as an essen-
tial business tool for white-collar workers and a household economics device for
non-technical users.
In addition to applications themselves, there also emerged a lively after-market

software industry (referred to as add-ons, add-ins, plug-ins, accessories). Applica-
tions were often not just a tool for executing the pre-programmed functions, but
also a development environment in their own right, or at the very least exposed
enough of their code to make it possible for other code to interoperate with it.
George Tate, CEO of Ahston-Tate, the company behind the immensely popular
database application dBASE, explained how they “never really sold dBASE as just
an end-user product. [...] It’s always been – always and forever – a product that
serves two markets”. One was to use the database as a database, another was
for skilled users to turn their workflow into a program “and have something that
his secretary could use, or have something he could market”.35 The “accessories”
built around dBASE fell into two categories: first, utilities to enhance the parent
software (e.g., Quickcode by Fox&Geller helped with the creation of databases);
second, “vertical market” packages, which added functionality to dBASE that
served a particular niche community (e.g., Abstrat by Anderson-Bell added sta-
tistical analyses for accounting). Many of the other dominant software packages
had and supported similar extensibility, allowing the software to be renegotiated
by its users through third-party packages or programming their own customisa-
tions.
The particular way microcomputer applications were commodified reconfig-

ured the means and relations of software production, and thus the potential for
negotiating its design. Where software contractors and manufacturers relied on
economies of scope, application programs for the microcomputer were based on
economies of scale. This mass-marketisation intentionally disconnected the soft-
ware’s user from the software’s developer, closing off one way people would
traditionally customise the software. Because early consumers of applications
were mostly technical hobbyists, the software’s designs did allow for reprogram-
ming, either by making the source code accessible or supporting the development
of new functionality from within the application itself. However, because mass-
marketisation also expanded the target market for software from niche home-
brewers to everyday users, the proportion of consumers who had the skills (or
interest) to reprogram their software themselves decreased significantly. Without
the competences or access to more capable peers, the negotiation of a software’s
design was now limited to whatever add-ons and plugins were available to the
user.

35 Scott Mace (1983). ‘Software accessories enhance software programs.’ In: InfoWorld 5.10, p.
24.

37

5.8 the search for software integration

5.8 the search for software integration

After the gold rush era of application software, the rest of the 1980s saw the soft-
ware industry mature. By 1983, a handful of applications had established them-
selves as the market leaders and barriers to entry made it harder for small start-
ups to compete. The increased technical capabilities of microcomputers meant
software development becamemore complex and expensive, the human-computer
interaction expertise necessary to build easy-to-use software was mostly locked
inside existing companies, and an expensive advertising blitz was required to
secure a limited spot on the shelf in the computer store (an estimated 35,000
products were competing for the 200 slots).36
In addition to these socioeconomic factors, there was also a simple technologi-

cal bottleneck on the growth of the personal software market: it was practically
impossible to use more than one application at a time. First, switching software
would generally take several minutes, as the user had to close the current applica-
tion, remove the storage disk, load the second disk, and start up the new program.
Second, the lack of data standardisation meant that transferring data between
application was generally impossible, unless you were lucky and the software
application had made their format public and was popular enough that others
built compatibility with it. Third, applications all had their own set of commands
that had to be memorised. Understanding the basic functions of a piece of soft-
ware could take weeks, and mastering all of them even longer. Having multiple
applications use the same commands for different outcomes made it practically
unrealistic for a user to learn more than two or three programs.
“Software integration” became the holy grail for applications in the 1980s. Its

aim was to let the consumer use multiple programs side-by-side, easily share
data between them, and unify the commands and interface so that skills would
be transferable. This drive towards integration was the main impetus for most
software innovation during the 1980s and helped application design converge
into what we know today. There were three main designs the industry explored:
application families, integrated packages, and windowed application managers.

5.8.1 Application families

Application families often started after a software developer achieved some suc-
cess with one of the four main software products – word processors, spreadsheets,
database managers, and graphing tools – and then tried to branch out to the
other categories. These applications were purchased separately, and “integration”
meant they had a shared command structure and data format. The main disad-
vantage of this “family” approach was that a user had to buy all the different ap-
plications to benefit from the integration, and while the company’s spreadsheet
might be the industry leader, there was no guarantee that their word processor
would be better than (or ever comparable to) other applications on the market.

36 Campbell-Kelly, ‘Development and structure of the international software industry, 1950-1990,’
p. 97.

38

5.8 the search for software integration

Data format compatability was not reserved just for applications of the same
family. Bob Frankston, one of the developers behind the VisiCalc application,
created the text-based Data Interchange Format (DIF) so that VisiCalc could
exchange data with VisiPlot, their graphing application. By virtue of VisiCalc’s
market dominance, DIF became an ad-hoc standard because other software com-
panies tried to use read/write compatability with VisiCalc to claim a share of the
market. This network effect also worked in favour of the dominant application,
so companies would often build explicit compatability support into their data
format. For example, the files of Ashton-Tate’s dBASE II -– one of the best-selling
database programs -– began with 500 characters listing the names, types, and
sizes of all database fields, followed by the data itself, which made it possible
for developers of other BASIC programs to build around it. WordStar, one of the
largest word processor packages released in 1979, stored its data in a plain text
file, making reading and linking to it even easier.
While these approaches made data integration technologically possible, expe-

rientially there was still a big disconnect between applications, because a user
would still have to quit one program and load another to work with that data.

5.8.2 Integrated packages

Integrated application packages similarly tried to make it possible for customers
to combine the most commonly used productivity software, but rather than sell-
ing these as separate applications, the idea was to build “one-application-to-rule-
them-all”. ContextMBA (1981) was the first of these integrated application pack-
ages, although it preceded the term. It combined a spreadsheet, database man-
ager, word processor, form creator, graphics tool, and “telecommunications” func-
tionality (i.e., using phone lines to transfer data between the application and a
mainframes computer, other ContextMBA users, or a timeshare system). Each of
these were referred to as a “context” and a user could create live links between
data entered in any of them, so if a spreadsheet was updated, so were the graphs
created based on that data.
Since there was still no standardised microcomputer architecture, ContextMBA

was written in Pascal, a higher-level language that could be run on any device
with a Pascal interpreter, but which also made it slower than if it was written for a
specific architecutre in assembly or machine language. It proved too slow for most
users. Reviews in PCMagazine of June 1983 summarised that ContextMBA “sacri-
fices efficiency for integration”37 and concluded that “[t]he idea of an integrated
management system is excellent. [...] Nevertheless, a good set of compatible text
editing, database, graphics, and spreadsheet programs that runs under MS-DOS
is probably a better investment”.38
Lotus 1-2-3 was the second integrated package that was released, and turned

out to be an overnight success (fig. 9). Launched in October 1982 and shipped
in January 1983, Lotus 1-2-3 was the brainchild of Mitch Kapor, former head of

37Mark S. Zachmann (1983). ‘Context MBA: Half a Step in the Right Direction.’ In: PC Magazine
2.1, p. 123.

38 Ibid., p. 131.

39

5.8 the search for software integration

development at VisiCorp and creator of the popular VisiPlot and VisiTrend acces-
sory applications for VisiCalc. The software was more limited than ContextMBA
and arguably only barely qualifies as an ‘integrated’ package: it was mostly a
spreadsheet program with additional database, word processing, and graphics
capabilities. It was integrated in the sense that all these components were usable
in the spreadsheet and shared the same base commands, but they were not fully-
fledged applications. Data from VisiCalc, dBase II, and WordStar could also be
added after being “analysed” by Lotus.

Figure 9. The splash screen and spreadsheet view of Lotus 1-2-3 release 1a (1983).39

One of Lotus’ most popular features was that it allowed users to write macros
– sequences of keystroke commands that could automate part of the user’s in-
teraction with the software and system and thus create quite complex programs
(e.g., parsing comma-delimited files). This generated a very active after-market
industry of macro packages (in v1.0) and add-ins (in v2.0) (fig. 10). These were
initially seen as parasitic by Lotus, but were embraced when it became clear that
the grassroots development of additional functionality boosted its popularity in
niche communities and helped fortify its market position. It needed this, because
Lotus never successfully diversified its offerings. Nearly all of its other software
products were commercial failures.

Figure 10. An example macro of Lotus 1-2-3 release 2.3 (1991).40

40

5.8 the search for software integration

When version 2.0 of Lotus was released in September 1985, little new was
added beyond supporting add-on development by exposing how other software
could integrated with Lotus. Lotus Corporation also created considerable insti-
tutional support for add-on developers. They published all the file formats of
its products, set up the Development Services Department to provide telephone
support, organised conferences (the first one was attended by 400 people), and
created the Registered Developer Program. Before these changes, insider knowl-
edge or reverse engineering of Lotus was required to build an add-on, but with ex-
plicit documentation and support, the numbers of third-party software exploded.
In 1987, Lotus magazine reported that over 1.000 add-ons were created.
Although Lotus’ extensive support for add-on development made its design ex-

plicitly negotiable, the company fought heavily to retain control in other ways,
with ramifications for negotiable designs in the software industry at large. Com-
petitors to Lotus often tried to synchronise their menu tree structure with the
one from Lotus. This was helpful to users because they did not have to learn how
to use a new interface, but it also made it possible for the macros that they or
their organisation had written – which could reach thousands of commands and
represented a significant investment – to be interoperable with the other soft-
ware’s menu as well. Lotus Development Corp responded to these designs that
would allow users to have more control over their software environment by fil-
ing copyright infringement lawsuits. Their first victim was Paperback Software
International in 1987, which had developed a spreadsheet that looked identical
to Lotus 1-2-3. At the time, the legal system only recognised source code as some-
thing that could be copyrighted, so it required a new interpretation of copyright
to also include what became known as the “look and feel” of a piece of software.
This lawsuit was a widely publicised event because it was believed that it could
reshape the vision of what the software industry was working towards. One at-
torney observed in the magazine InfoWorld that “[i]f Lotus wins these lawsuits,
it ... may kill all hope of there someday being a standard user interface across all
software packages”.41
Lotus Development Corpwon the lawsuit in 1990, and it quickly went on to also

sue Borland International, developer of the competitor application Quattro Pro.
Quattro Pro had its own unique interface, but also a mode that looked the same as
Lotus 1-2-3, and thus allowed macros developed in one to work in the other. The
lawsuit dragged on for six years, with multiple conflicting verdicts at different
levels in the US court structure, before eventually reaching the Supreme Court
where it ended in a 4-4 stalemate between the judges. By default, this meant an
earlier judgement in favour of Borland would stand, and menu hierarchies were
deemed uncopyrightable. However, the six years of uncertainty for developers
had had a chilling effect on technical interoperability and visual synchronicity as
something that should be pursued in software design (in particular because the
first verdict against Borland happened in Massachusetts, where a lot of software
developers had their offices).Without these qualities, the freedom to easily switch
between applications without having to abandon the skills and data developed in

41Doug Derwin (1987). ‘Overheard...’ In: InfoWorld 9.4, p. 35.

41

5.8 the search for software integration

Figure 11. Lotus’ Symphony (left) and Ashton-Tate’s Framework. Note the explicit revo-
cation of user ownership and control in Framework’s splash screen: “You do
not become the owner of the package nor do you have the right to copy or
alter the software”.

another was significantly constrained, and instead users were becoming walled-
off as soon as they made their first choice.
The integrated packages industry reached its peak in 1984 with the simultane-

ous launch of Lotus Development Corps’ Symphony and Ashton-Tate’s Framework
(fig. 11). Symphony was meant to be the full-blown integrated package that 1-2-3
aspired to be and included the classic combination of spreadsheet, word proces-
sor, graphics, database, and communications. Users could switch between each
of these environments by pressing ALT+F10 and see a different view of the same
underlying data. Ashton-Tate’s Framework included the same applications, and
organised them using the metaphor alluded to in its name. Each application was
launched inside a frame, and the user could have multiple frames open at the
same time, providing visual integration. Frames could contain other frames, data
could be linked between frames such that changes would propagate, or frames
could target other frames as output containers.
Integrated packages never delivered on their promises and were mostly com-

mercial failures. The size of the software meant that almost all of them required
an additional external hard disk to store the programs – or instead continuously
swap between a fistful of floppy disks – and made them much slower than other
applications. Even though the command structures were integrated, the sheer
number of commands available made these software synonymous with difficult

42

5.8 the search for software integration

to use in popular media.42 The quality of, for example, the spreadsheet and the
word processor part of the package could vary considerably, so while users paid
a premium price for the integrated packaged they also have to buy other stand-
alone applications. Data transfer also fell short of the claims made by vendors,
with many integrated packages offering just cut-and-paste techniques for shar-
ing data between different programs, rather than transclusion and live links.43

5.8.3 Windowed Application Managers

In addition to the multi-purpose application approach to integrated software,
software developers also explored application managers that could show mul-
tiple, unrelated programs side-by-side and allow users to quickly switch between
them: the window environment These efforts were not separate from the large
integrated package approach, but happened in conjunction with them, before
eventually being pitted against each other in the press.
The 1981 Xerox Star was the first commercial product that had a graphicalwin-

dow environment. The user accessed the software through icons and executed
operations through menus. It also introduced the mouse as the main way to in-
teract with those elements. This helped reduce the need for unified or standard-
ised command structures that was one of the driving forces behind full package
integration, because now users could see the different possible operations and
click on them, rather than having to memorise the key combination that would
execute it.
The 1983 Apple Lisa – on paper an acronym for Locally Integrated Software Ar-

chitecture, but in reality named after the child Steve Jobs refused to acknowledge
– is credited for popularising the graphical window manager (fig. 12). The Lisa
was never a commercial success for a number of reasons, including its hefty price-
tag, internal conflicts at Apple, and the fact that the more limited but cheaper
Macintosh was released a year later. On the Lisa, the user could see multiple
applications in the integrated package side-by-side and quickly switch between
them (but not use them at the same time) through overlapping windows. This
window environment was tied together with the integrated packaged called the
Lisa Office System, which included LisaWrite, LisaCalc, LisaDraw, LisaGraph, Lis-
aProject, LisaList, and LisaTerminal. To transfer data between these different ap-
plications, the Lisa used cut-copy-and-paste commands, and introduced the term
’clipboard’ to refer to the temporary storage where the data would be kept in the
process. Compared to the live links between data that other software offered, this
model of data integration was considered to be on the most limited side of the
spectrum.
Other dominant software companies quickly followedwith their ownwindowed

applicationmanagers: IBM’s TopView, QuarterDeck’s DESQView, Digital Research’s
Graphics Environment Manager, VisiCorp’s VisiOn, and Microsoft’s Windows (fig.
13). Some came with integrated packages, others were simply frameworks for
third party software. By virtue of being the leading company for microcomputer

42 Christine McGeever (1984). ‘A Look at Lotus for the Mac.’ In: InfoWorld 6.47.
43 Paul Korzeniowksi (1984). ‘Multi-application Packages: Who Needs Them?’ In: InfoWorld 18.33.

43

5.8 the search for software integration

Figure 12. Advertisement for the Apple Lisa in Personal Computing 1983.44 Note the
promotion of the Lisa Office programs and the cut and paste functionality.

software in revenue, VisiCorp’s product was the most highly anticipated. It turned
out to be a fatal product for the company. VisiCorp had been working on their
version since 1982 and committed significant resources, and when it was finally
launched in January 1984 for the IBM PC it got positive reviews but made hardly
any sales. The minimum hardware requirements were too high for most users
and even a price cut from US$495 to US$95 within the first month did not save
it. Another factor was that Microsoft had undercut VisiCorp by announcing in
November 1983 that it would release their window-based environment the next
spring. It chilled the interest for VisiOn – something better might be just around
the corner – but Microsoft was overconfident and after months of technical diffi-
culties only released their product – Windows 1.0 – in January 1985.
The “window wars” of 1984-1985 were the most exciting event in the software

industry at the time. Integrated packages and windowed environments were two
paths towards the same goal – functional multitasking— and were constantly pit-
ted against each other in the press. Some industry observers proclaimed that the
window environment would be the death of integrated software packages, while

44

5.8 the search for software integration

(a) IBM TopView (1985) (b) VisiCorp VisiOn (1984)

(c) Digital Research Graphic Environment Manager (1985) (d) Microsoft Windows (1985)

Figure 13. Windowed Application Managers released between 1984-1985.

others believed that they could co-exist.45 Like the integrated packages, however,
all early window environments were market failures. The software required too
much from the hardware at the time and third-party applications needed to be
rewritten from scratch to take advantage of the added benefits, which few were
keen to do. The casualties were steep. VisiCorp and Digital Research had to fire
half of its employees. Eventually, VisiCorp was sold off to Paladin Software, and
Digital Research CEO Gary Kildall (of CP/M fame) resigned.46 Only IBM and
Microsoft had enough capital to overcome the financial blow of these failures.

5.8.4 Component Software

Component software was seen as the answer to the failures of integrated pack-
ages and windowed application managers: a hybrid model which would allow
customers to use multiple applications from different vendors side-by-side, while
still getting the data compatibility and functional interoperation from integrated
packages. Writing about the battle between integrated software and windowing

45Winn L. Rosch (1985). ‘Can Integrated Software Co-Exist with Windows?’ In: PC Magazine 4.2,
p. 60.

46 Campbell-Kelly, From airline reservations to Sonic the Hedgehog: a history of the software industry,
p. 250.

45

5.8 the search for software integration

environments, one journalist predicted that “[s]oftware will become like stereo
equipment – the low end will be integrated and the high end will be compo-
nents”.47 In the late 1980s and early 1990s, it was touted as the next paradigm
shift in computing. Apple confidently wrote: “In the 1980s, the graphical user
interface revolutionized personal computing, enabling big leaps in user produc-
tivity and ultimately making obsolete all the applications standards of the day.
In the 1990s, Apple believes the next major software revolution will be compo-
nent software”.48 Compound documents would be the resulting artefact, “some-
thing like a display desktop that can contain visual and information objects of
all kinds”49 including text, graphics, spreadsheets, calendars, video, buttons, a
newsreel, etc. The goal of this paradigm, stemming from the philosophy of ob-
ject oriented programming, was to decenter the application as the container of
commands and programs, and instead have the document take centre stage, with
the data editable in place through contextual menus. For software developers, it
was projected that they would move away from building fully-fledged applica-
tions and instead a lively component market would appear.50
Still developing and promoting its graphical window environment, Microsoft

was an early proponent of this software vision and released the Dynamic Data
Exchange (DDE) standard in 1987 as part of Windows 2.0, which “lets users
dynamically link applications, automating tasks performed between multiple pro-
grams”.51 The first commercial software to demonstrate this ability was Microsoft
Excel, also launched in 1987, but it took another two years for third-party appli-
cations to appear that took advantage of it. For example, Autocad could connect
its diagrams to Microsoft Excel, such that changes in the spreadsheet would also
update the graphics. Microsoft pushed these ideas further in 1990 and released
their Object Linking and Embedding (OLE) protocol together with Windows 3.0,
the first of their windowed application managers that was actually successful.
Where DDE just propagated plain text messages between applications, OLE could
maintain active links between data across programs and fully embed the content.
This allowed an application to render a kind of content it was not able to normally
create itself, and was specifically designed to support compound documents.
Apple, weighed down by its internal power struggle, finally followed with their

own object linking model called Publish and Subscribe, released together with
the Apple System 7 in 1991. The concepts were inspired by their successful appli-
cation/development environment HyperCard and allowed content to be linked
together across programs, both on a local computer and on a network. Users
could publish documents on a shared folder, and other people on the network
could subscribe to those documents and incorporate them in their own. Updates
to the original data would automatically propagate to all other instances of the
file that incorporated it. ClarisWorks, probably the most successful application
on the Apple platform, was an integrated package that successfully implemented

47 Rosch, ‘Can Integrated Software Co-Exist with Windows?’ p. 60.
48 Apple Computer (1995). ‘Macintosh vs. Windows 95: OpenDoc.’ In: url: http://tech-insider.

org/mac/research/acrobat/Mac/950829.pdf.
49Hossein Bidgoli (2004). ‘The internet encyclopedia (Volume 2).’ In: p. 23.
50 Laurie Flynn (1989). ‘Applications for DDE are Starting to Appear.’ In: InfoWorld 11.44, p. 13.
51 Ibid., p. 13.

46

http://tech-insider.org/mac/research/acrobat/Mac/950829.pdf
http://tech-insider.org/mac/research/acrobat/Mac/950829.pdf

5.9 conclusion

the component philosophy (if not the document-centric approach). Data types
were contained in components and could be copied across the different docu-
ment types, which meant that a text object could be added to a graphics docu-
ment and the user would be able to access the word-processing capabilities of its
parent application through it.
Lotus Development Corp., still limping along after the VisiOn fiasco, also de-

veloped an object-linking technology called Link, Embed, Launch-to-edit (LEL).
Similar to Microsoft and Apple’s technology, it allowed users to copy-paste objects
between applications, have changes propagate through the maintained link, and
launch the original application by clicking on the embedded object.52
Despite considerable investment in these software models by major players in

the industry, the systems never quite seemed to materialise. PCMagazine, writing
in 1994 about software suites, aptly captured the state these designed seemed to
languish in for years: “Lotus, Microsoft, and WordPerfect have all made progress,
but the seamlessly integrated suite still seems a version or two away”.53 Exactly
why component software failed to become the new dominant design is unclear.
Steve Jobs killed Apple’s project when he retook control over the company, but
its progress had already been sluggish for some time. Lotus Corporation was sold
off to IBM in 1995 and never finished building the technology. Microsoft’s OLE
protocol is still alive and implemented in its Office suite, but third-party appli-
cations do not seem to take any advantage of it. Perhaps the protocols simply
took too long to be established and the rest of the software market moved on
from the idea. Perhaps, after years of competition, it was too difficult for these
companies to collaborate and agree on a standard. Regardless, after fifteen years
of the entire software industry working towards software integration, the dom-
inant design that crystallised was a pale reflection of the initial goals. Visual in-
tegration, in the sense that multiple applications could be used side-by-side, was
finally achieved when graphical application managers were accepted, thanks to
Microsoft’s persistence and long financial breath. But there was no standardisa-
tion of commands, menu structures, or interface designs that would allow users
to easily transfer skills or programs between software. If there was file compat-
ibility it was more likely to be a historical leftover than a planned feature, and
there was virtually no functional interoperability at all, historic or otherwise. In
the end, the walled-garden model of software won out, shedding reprogramming
the code, writing macros, installing add-ons, or combining the functionality of
multiple applications as the last few options users had to negotiate the design of
applications.

5.9 conclusion

The application model of software is a construct that was profoundly shaped by
its progressive commodification between the 1950s and 1990s. It has resulted in

52Doug Barney (1993). ‘Object Linking Readied for Unix Notes Clients, Programs.’ In: InfoWorld
15.24, p. 18.

53Michael J. Miller (1994). ‘Are They Suites Yet.’ In: PC Magazine 13.18, p. 159.

47

5.9 conclusion

a dominant design that centralises control with the software’s developers while
constraining its negotiability for other stakeholders.
In the early days of mainframe computers, software was not considered to have

any inherent commercial value. Users had to write their own code and were free
to share it with others. When computer manufacturers realised that software
would become a bottleneck for the financial viability of their hardware industry,
they invested company resources to support the creation of user-groups: com-
munities of computer users who cooperatively designed their software, reducing
development time by eliminating redundant efforts. During this time, software
was a collectively negotiated artefact, and the only barriers to participate in that
discussion were side-effects of the complexity of the technology.
As the hardware market matured and the share of computers with similar ar-

chitectures increased, it became possible to reuse previously written code. This
meant that it now had some value in and of itself, leading to emergence of the
software contractor and software package. Rather than writing the code for the
context in which it would be used, companies were now willing to purchase pre-
built software that was customised with the help of the contractor. While still
negotiable, this process of software development (and the costs associated with
it) made it more common for people to simply accept its design and adjust their
operations, rather than the other way around.
While moderately profitable, developers of software packages wanted to in-

crease the value they could extract from their software, so they leveraged the
legal system against computers manufacturers who were still providing free soft-
ware bundled with their other products, and worked towards normalising the
idea that software was a product you had to pay for. This transformation further
imbued software code with economic value, incentivising the developers to con-
solidate control over it by implementing the first intentional constraints to the
software’s negotiability. They obfuscated the source code – making it impossi-
ble for users to copy or adapt its design – and required their customers to sign
agreements relinquishing full ownership.
In the mid 1970s, the microcomputer appeared as a new platform for a soft-

ware industry to develop around. Early microcomputer games and applications
were collective artefacts whose code was accessible and distributed through mag-
azines for hobbyists to redesign. Once the microcomputer became affordable and
approachable enough that general consumers could purchase one, it transformed
software into a mass-market product. User-friendliness became an important way
to successfully sell to non-technical users, abstracting away the complex insides
of software as much as possible and relinquishing the developer from the respon-
sibility to help the user understand and customise their program.
However, the limitations of the microcomputer hardware and the dominant

design of the software throttled the growth of the application market, because
people could only realistically use two or three programs at the same time. To
resolve this bottleneck on their potential revenues, the entire software industry
worked towards achieving “software integration”. Applications competing for a
spot on the user’s device built in data transfer mechanisms, functional interop-
erability, and support for add-ons, all to make it easier for their software to be

48

5.9 conclusion

used alongside others. Once on top, however, they were quick to use technical
and legal means to limit the control others had over their software and thus
market share, trampling user’s abilities to renegotiate the application’s design by
reprogramming the source code, extending it through add-ons, or combining it
with other applications. Once the dust had settled, users were left with a walled-
garden design of software applications that could be used side-by-side visually,
but had no interaction technologically.

With both the mainframe and microcomputer, we see the same process of pro-
gressive appropriation of control over the software by its developers, and the
shrinking ability of others to (re)negotiate its design. Before commodification,
when the users and uses of the computer were niche, the distribution of control
over the technology was a side-effect of its complexity. As the commercial po-
tential of the technology increased, and value was imbued in the software itself,
profit-seeking companies redesigned the technology, law, and business practices
to consolidate their autocratic power. More collective imaginations of software fa-
cilitated by openness, interoperability, and compatibility were supported when it
broadened their market shares, but were aggressively shut down if it meant po-
tentially losing customers and revenue to competitors. Today, software negotia-
tion has devolved into consumer choice between not-so-different products, rather
than actual personalisation of the technology itself. Computing technology that
was developed under different political economies give us hints about what our
computational media could have looked like – France’s dirigisme produced the
Minitel, Chile’s socialism generated project Cybersyn. If wewant to change the ap-
plication model of software, those counterfactuals might serve as guiding lights.

49

6.
SURVEY I NG APPL ICAT ION USE I N
DAN I SH KNOWLEDGE WORK

6.1 introduction

The labour market in the European Union is changing: work is increasingly de-
pendent on digital competences, with an estimated 90% of jobs requiring some
IT skills;1 non-routine work is becoming more prevalent, as routine tasks are au-
tomated or outsourced;2 and work is decentralised, requiring workers to be more
entrepreneurial and collaborative as they engage in project-based contracts with
multiple employers.3
Instigating and guiding these kind of digital transformations has been a corner-

stone of the European Union’s economic and social strategy for the past twenty
years, and continues to occupy a central position under the von der Leyen com-
mission. Curiously, however, these strategies focus almost entirely on data and
skills as the two main components for a digital, globally competitive economy,
but ignore the computational tools that workers use on a day-to-day basis to
productively leverage those data and skills. Despite the fact that software appli-
cations are the mediating artefact, there has been no discussion or investigation
into whether the dominant designs and their associated business models are fit
for the transformations the EU is striving for. As a result, we know little about
what kind of applications are used by the European labour force, how they relate
to the digital competences the EU is trying to engender, and their effects on the
overall digital working conditions.
This chapter reports on a representative survey of application use by Danish

knowledge workers – the most digitalised industry in one of Europe’s most digital
countries. Thematically, the survey operationalised this topic through the follow-
ing three sub-questions:

1 Jacques Bughin et al. (2018). ‘Skill shift: Automation and the future of the workforce.’ In: McK-
insey Global Institute. McKinsey & Company.

2 Gene M Grossman, Esteban Rossi-Hansberg, et al. (2006). ‘The rise of offshoring: it’s not wine
for cloth anymore.’ In: The new economic geography: effects and policy implications, pp. 59–102;
Nir Jaimovich and Henry E Siu (2012). ‘Job Polarization and Jobless Recoveries.’ In: National
Bureau of Economic Research. doi: 10 .3386/w18334. url: http ://www.nber.org/papers/
w18334.

3 Irene Mandl et al. (2015a). New forms of employment. Vol. 2. Publications Office of the European
Union Eurofond, Luxembourg.

50

https://doi.org/10.3386/w18334
http://www.nber.org/papers/w18334
http://www.nber.org/papers/w18334

6.2 method

• What hardware and software do knowledgeworkers use to accomplish their
main job activities?

• What strategies do knowledge workers use to personalise their software?

• What level of digital competences do knowledge workers have?

Using the answers to these questions, we paint a portrait of the digital charac-
teristics of knowledge workers in Denmark, allowing us to better ground future
discussions about the impacts of digitalisation and the direction of digital policy.

6.2 method

6.2.1 Participants

A total of 3945 participants answered the survey, segmented to reflect the gender,
age, and location distribution of the Danish population (table 4). The intended de-
mographic of this survey was knowledge workers, which we identified as anyone
in the three top levels of the Danish version of the International Standard Clas-
sification of Occupations (DISCO-08)4: managers, professionals, and associate
professionals5.
After filtering for this requirement and incompletes, the sample was reduced

to 1608 participants.

Unweighted Weighted
3945 100% 3945 100%

Gender Female 2148 54,4 1966 49,8
Male 1797 45,6 1979 50,2

Age 18-34 866 22 1184 30
35-54 1637 31,5 1475 37,4
55-74 1442 36,6 1286 32,6

Region Capital city 1260 31,9 1260 31,9
Sjælland 577 14,6 567 14,4
Syddanmark 813 20,6 825 20,9
Midtjylland 863 21,9 891 22,6
Nordjylland 432 11 403 10,2

Table 1. Unweighted and weighted participant demographics

4 White papers and studies variously identify knowledge workers based on the nature of the work
activities, the sector or industry of the worker, the level of education required, or occupation.
For an overview, see (Brinkley, Rebecca Fauth, and Theodoropoulou, Knowledge workers and
knowledge work: A knowledge economy programme report).

5 “Ledelsesarbejde”; “Arbejde, der forudsætter viden på højeste niveau inden for pågældende
område” i.e., “Work which requires the highest level of knowledge for the field concerned”; and
“Arbejde, der forudsætter viden på mellemniveau” or “Work that requires intermediate level
knowledge”.

51

6.3 results & discussion

6.2.2 Materials

The survey consisted of twenty-four questions, focusing on three thematic sub-
jects: hardware and software tools used, software customisation strategies, and
digital competences. The questions about digital competences were taken from
the self-assessment version of the European Union’s Digital Competence Frame-
work, where a participant can rank their competence level (basic–intermediate–
advanced) for different skill categories (information processing, content creation,
problem-solving) (see Carretero, Vuorikari, and Punie6 for the full scale).

6.2.3 Procedure

We contracted YouGov to disseminate the questionnaire, a commercial internet
survey and data analytics company which maintains a panel of respondents that
can be segmented in different ways based on the needs of their clients. Because
occupations were not one of the categories that YouGov had pre-recorded about
their panel, the first question of the survey asked respondents to self-categorise
based on the second-level occupation category of the DISCO-08 framework (e.g.,
health professional, commercial manager, information and communications tech-
nician). Those who fell within the right occupation categories progressed to the
rest of the survey.
Because YouGov made a mistake in the logic flow of the survey, a second round

of re-contact was necessary to get additional responses for a sub-group of the
sample (n = 716 (of 787)).

6.2.4 Analysis

Although post-stratification weights were applied to correct for imbalanced re-
sponse probabilities and ensure the sample approached representativeness, these
were not used for the analysis. Because we performed a secondary filtering to
remove incompletes and non-knowledge workers – and weight scores are contin-
gent on the other respondents – we used the absolute values for the calculations.
Data from open ended questions, such as the names of the software participants

used to accomplish their job, were cleaned using fuzzy matching algorithms in
OpenRefine7.

6.3 results & discussion

6.3.1 The Demographics of Danish Knowledge Workers

The knowledge workers are not distributed evenly across gender, age, and re-
gion compared to the overall Danish labour force (table 2). First, our sample of
6 S Carretero, R Vuorikari, and Y Punie (2017). DigComp 2.1: The Digital Competence Framework

for Citizens with eight proficiency levels and examples of use. Publications Office of the European
Union EUR 28558 EN, DOI: 10.2760/38842.

7 http://openrefine.org/

52

http://openrefine.org/

6.3 results & discussion

knowledge workers skews more to men (55,2%) than women (44,8%), which,
compared to the overall statistics of the labour force in Denmark, is an inversion
of ten percentage points. This shift could be explained by the fact that we use the
top three occupation categories as a proxy for knowledge work (i.e., managers,
professionals, and associate professionals), where discriminatory hiring practices
are likely to suppress the proportion of women. Second, the knowledge workers
are twice as likely to be between the ages of 35 and 54 (even though this age cat-
egory was underrepresented in the sample compared to the overall labour force,
which might mean the real proportion is even higher). This is perhaps surpris-
ing, considering the fact that the knowledge economy is a recent policy direction,
something which the European Union has only started orienting towards since
the 2000s: we would expect that the younger generation (18–34) occupies the
larger share of knowledge workers. Third, the respondents are concentrated in
the capital and central jutland region, which could be explained by the fact that
these are the two most populated areas (Copenhagen and Aarhus, respectively)
and are home to the most and largest research universities of the country: en-
vironments which should increase the relative proportion of knowledge workers
over other kinds of jobs.

Filtered (unweighted)

1020 100%
Gender Female 457 44,8

Male 563 55,2
Age 18-34 256 25,1

35-54 537 52,6
55-74 227 22,3

Region Capital region 382 37,5
Sjælland 133 13,0
Syddanmark 171 16,8
Midtjylland 236 23,1
Nordjylland 98 9,6

Table 2. Filtered participants demographics

6.3.2 Education

The knowledge workers are overwhelmingly highly educated, with nearly 70%
of them having a bachelor’s or master’s degree (fig. 14). Only eighteen respon-
dents have a PhD degree, which is surprising considering (academic) research is
a quintessential knowledge intensive occupation and would be expected to have
a prominent positions in the sample. Considering the real proportion of workers
with PhD degrees is 15%, we assume this is due to non-responses.

53

6.3 results & discussion

Figure 14. Level of education of Danish knowledge workers)

6.3.3 Occupation and industry

In terms of occupation, the majority (57,8%) are “Professionals”8; 22,5% are
“Associate professionals”9, and 19,7% are “Managers”). Knowledge workers are

Figure 15. Occupation categories of Danish knowledge workers

most prevalent in occupations that focus on providing services – education, health,
public administration, and ICT represent 45,2% of respondents – but are mostly
absent in manufacturing industries (oil refinery, mining, furniture). This contra-
dicts the common industry-based distinction that is being made in post-industrial
economies between knowledge and service employment; there appears to be a
significant overlap, rather than the polarisation that is often presented. Interest-
ingly, the third most popular industry for the respondents was “Other”, which

8 i.e., “Work which requires the highest level of knowledge for the field concerned”.
9 i.e., “Work that requires intermediate level knowledge”.

54

6.3 results & discussion

might reflect the prevalence of non-standard employment for knowledge work-
ers, i.e., project-based contracts that move across traditional industry boundaries.

6.3.4 Hardware

Nearly 85% of knowledge workers use a laptop or a smartphone for their pro-
fessional activities (fig. 16). Desktops are less popular, only 60% of respondents
use those; and tablets are less popular still, used by just 40% of workers. Over-
whelmingly, knowledge workers use just a single device per category, although
there is a consistent share of around 17% of workers who use between two or
more of the same type of device. In general, the combination of a single laptop
and smartphone appears to be the most common tool-set of a Danish knowledge
worker.

Figure 16. Number of devices used by Danish knowledge workers

6.3.5 Software

When asked to list their most important software, 807 respondents provided a to-
tal of 2762 (non-unique) applications (fig. 17). This means that, on average, each
knowledge worker uses 3,4 different software applications on their laptop/desk-
top for their main job activities. A little over a quarter of knowledge workers
report only using a single application for their job, and 60% use between one
and three. In a single, rare case, a worker reported using twenty different pieces
of software.

55

6.3 results & discussion

Figure 17. Number of applications used by Danish knowledge workers on their desk-
top/laptop for their main job activities

There is an extreme homogeneity in the applications used by knowledge work-
ers: the 2762 answers included merely 731 unique software, which translates to
an average of 0,91 unique applications per respondent in the 3,4 mentioned. The
general pattern is that most workers use the same applications, with the addition
of perhaps a single unique one, best visualised as an extreme steep curve with a
long tail (fig. 18). The top two mentioned software – MS Word and MS Excel –

Figure 18. Applications used by Danish knowledge workers on their desktop/laptop for
their main job activities

are used by a quarter (25,49%) of knowledge workers (see table 6). The top ten
applications are used by more than 50% of all workers.
The lack of diversity is not in the choice of software, but also their character-

istics. Of the top thirty applications (representing 62,75% of all software used),
twenty-seven are made in the United States, two are from Denmark, and one
from Germany. Seventeen – more than half – are designed by Microsoft alone;

56

6.3 results & discussion

four by Adobe, and two by Google. Despite the fact that this software is used to
support professional activities, twenty-four of the applications are general pur-
pose consumer applications, and only eight are dedicated business software. Ad-
ditionally, virtually all applications are produced as a mass-market product. Of
the 2762 responses, only 28 reported custom-built software provided to them by
their employer or developed by themselves: a mere 1%.

Software Freq. % Cum. % Origin Company Target market

MS Word 397 14,37 14,37 US Microsoft Consumer
MS Excel 307 11,12 25,49 US Microsoft Consumer
MS Office 194 7,02 32,51 US Microsoft Consumer
MS Outlook 188 6,81 39,32 US Microsoft Consumer
MS PowerPoint 117 4,24 43,56 US Microsoft Consumer
Google Chrome 71 2,57 46,13 US Google Consumer
MS Office 365 52 1,88 48,01 US Microsoft Consumer
MS Internet Explorer 45 1,63 49,64 US Microsoft Consumer
MS Dynamics NAV 38 1,38 51,02 US Microsoft Business
SAP 26 0,94 51,96 DE SAP SE Business
MS Visual Studio 22 0,8 52,76 US Microsoft Consumer
Adobe Acrobat Reader 22 0,8 53,56 US Adobe Consumer
MS Skype For Business 21 0,76 54,32 US Microsoft Business
Adobe CC 20 0,72 55,04 US Adobe Consumer
MS Skype 19 0,69 55,73 US Microsoft Consumer
Mozilla Firefox 18 0,65 56,38 US Mozilla Consumer
Adobe Photoshop 18 0,65 57,03 US Adobe Consumer
MS SharePoint 16 0,58 57,61 US Microsoft Business
Citrix 15 0,54 58,15 US Citrix Business
MS OneNote 14 0,51 58,66 US Microsoft Consumer
Adobe InDesign 13 0,47 59,13 US Adobe Consumer
MS Access 12 0,43 59,56 US Microsoft Consumer
Autodesk AutoCAD 12 0,43 59,99 US Autodesk Consumer
KMD 10 0,36 60,35 DK KMD Business
MS OneDrive 10 0,36 60,71 US Microsoft Consumer
Sundhedsplatformen 10 0,36 61,07 US Epic Business
MS Paint 10 0,36 61,43 US Microsoft Consumer
KMD Nexus 9 0,33 61,76 DK KMD Business
MS Visio 9 0,33 62,09 US Microsoft Consumer
Google Docs 9 0,33 62,42 US Google Consumer

Table 3. Top thirty most used application software by Danish knowledge workers

6.3.6 Software Customisation

More than half of respondents have, at least once, used the built-in settings
(87,6%) and plugins/add-ons (57,7%) to customise their application software

57

6.3 results & discussion

(fig. 30). Almost half (45,8%) have ever used scripts, and a third (31,6%) repro-
gramming.
Breaking down whether knowledge workers customise their software into how

often they do it, we see that on average they “almost never” do. Of all the differ-
ent strategies, only the built-in settings are distributed relatively evenly across all
levels of frequency; the other strategies are used only sparingly. The proportion
of respondents who at least “most of the time” use plugins is a mere 13,2%, drop-
ping down to 6,7% and 4,7% for scripts and reprogramming respectively. It does
become apparent that there is a hierarchy between the strategies. As the complex-
ity of the strategy goes up, the proportion of people who “never” use it increases
considerably, while all the other frequencies shrink symmetrically. The only cate-
gory that goes against this pattern is the proportion of people who “sometimes”
use plugins, which is higher than those who “sometimes” use the built-in settings.

Figure 19. Software customisation frequency across different methods by Danish knowl-
edge workers

Looking at each individual knowledge worker (fig. 20) we can see how the use
and frequency levels of customisation strategies are correlated. There appears to
be carry-over between the strategies as the complexity goes up: those who use
reprogramming “about half the time” are likely the same that use scripts “about
half the time”. However, this is not uniformly true and there is some transfer be-
tween the levels of frequency of each strategy: workers who “never” use plugins,
“sometimes” use scripts and those who “never” use scripts “always” use repro-
gramming.
In summary, the more complex a customisation strategy, the less frequently

knowledge workers use it. However, how often a particular worker uses a strategy
is not just dependent on how often they use any of the other strategies; there are
more variables at play that determine what approach to customisation is used
than just its complexity.

58

6.3 results & discussion

Figure 20. Software customisation frequency across different strategies per Danish
knowledge workers

6.3.7 Digital Competences

Knowledge workers in Denmark have slightly higher levels of digital competences
than the country average. According to the DESI 2020 report, 70% Danish resi-
dents have at least basic digital skills, and 49% has above basic skills.10 Compared
to this, 75,8% of knowledge workers have at least basic, and 59,6% have above
basic skills (fig. 21).

Figure 21. Average digital competences of Danish knowledge workers

6.3.7.1 Working with digital content

Digital information is the main material and output of most activities that knowl-
edge workers engage in, which we can see reflected in the digital competences
of the respondents. The survey scale used three proxies to measure the ability
to work with digital content: content creation, content formatting, and computa-
tional creation. Almost 60% of the knowledge workers have at least intermediate
level content creation skills and are able to“produce complex digital content in
different formats”; a small 14,1% has advanced skills and is able to produce it
“using a variety of digital platforms, tools, and environments”. The responses to
the content formatting question are much more polarised. Roughly a third reports
having no skills in this category and is unable to “make basic editing to content

10 European Commission (2020). Digital Economy and Society Index (DESI) 2020 Denmark.

59

6.3 results & discussion

produced by others”, while another third falls in the advanced category and can
“used advanced formatting functions of different tools” such as merging docu-
ments of different formats and macros. In terms of computational content, it is
striking that more respondents report being able to author and control this type
of material than format other people’s text or images. More than half of the work-
ers “know the basics of one programming language” and 18,9% can “use several
programming languages”. In other words, digital skills lower in the stack are not
fundamental to using more higher level tools: knowing how to program does not
automatically confer the ability to mail merge or edit footnotes in an application.

Figure 22. Digital content competences of Danish knowledge workers. “Content cre-
ation” refers to generating multimedia data; “Content formatting” to editing
other’s data; and “Computational creation” to controlling and authoring in-
teractive digital elements (e.g., software settings, code)

6.3.7.2 Communicating and collaborating with others

Knowledge work is often done in (distributed) teams with other individuals. Con-
sidering this, respondents scored surprisingly low on communication and collab-
oration competences (fig. 23). 34,5% is unable to “use basic features to communi-
cate” such as sending and receiving emails/text messages, and 41,4% is unable to
“share files”. Only 15,1% has advanced communication skills and is able to “use
a wide range of communication tools” (e.g., instant messaging, social networks);
and a quarter advanced collaboration skills such as creating and managing con-
tent with online collaborative systems. These results are very counter-intuitive,
especially considering the large share of the respondents that use a smartphone,
but we are unable to find an explanation for this in the survey design or response
quality.

6.3.7.3 Overcoming and adapting

According to some definitions, knowledge work can be characterised by non-
routine tasks that require continuous innovation and worker autonomy. This also
appears to be themost well-developed digital competence of this sample of knowl-
edge workers: compared to the other competences, they score the highest on the
questions measuring problem solving and support finding. 67,7% is able to find

60

6.4 conclusion

Figure 23. Digital communication and collaboration competences of Danish knowledge
workers. “Collaboration” refers to file-sharing and using common informa-
tion spaces; “Communication” refers to the meta activities to support such
activities.

support or by themselves solve “most” or “almost all” problems that arise when
using their digital tools. In terms of how they solve their problems, 42,5% has the
intermediate-level skills to “explor[e] the settings and options of programs” and
29,8% fall in the advanced category because they “understand the underlying
logic of the technology”.

Figure 24. General digital adaptability of Danish knowledge workers. “Problem solving”
refers to knowing how to solve unexpected challenges within the context of
the tool; “Support” refers to being able to find information and help for prob-
lems outside of the tool.

6.4 conclusion

The average Danish knowledge worker is a middle-aged, highly-educated person
living in the capital or central jutland region, working in education, health, or
public administration. They do their work on a laptop and a smartphone, using
three Microsoft Office applications and a single, domain-specific software. They
almost never customise their digital tools, but if they do, it is primarily by using
the built-in setting options. They know how to make complex documents with
multiple types of content using a variety of tools, and might even know a pro-
gramming language. However, they struggle to use collaborative tools and digi-
tally communicate with co-workers, and find it difficult to edit or format content
they did not create themselves. Yet, if they run into technology problems they are

61

6.4 conclusion

quite capable of figuring out how to resolve them, even if they have not had to
deal with them before.

Individual, day to day experiences with the computer informwhat Rosenberger
calls “relational strategies”: the learned ideas about and habits around how to re-
late to a technology that is stable in a particular way.11 This survey of application
use in Danish knowledgework paints a picture of a digital ecosystemmonopolised
by a few US American corporations, with a handful of software being responsi-
ble for the ideas and habits we develop about computing at large. Rather than
the computer as the “intimate supplement” imagined by Bush12 or the “[hu]man-
computer symbiosis” by Licklider,13 the paradigmatic application model of soft-
ware seems to be teaching people that a computer contains turn-key products of
pre-packaged functionality. With the European Union looking towards the digital
economy as the future of the continent, it begs the question whether we want the
US to have such outsized control over the artefacts that mediate and cocreate the
European labour force.

11 Robert Rosenberger (2009). ‘The sudden experience of the computer.’ In: Ai & Society 24.2,
pp. 173–180.

12 Vannevar Bush et al. (1945). ‘As we may think.’ In: The atlantic monthly 176.1, pp. 101–108.
13 J. C. R. Licklider (1960). ‘Man-Computer Symbiosis.’ In: IRE Transactions on Human Factors in

Electronics HFE-1, pp. 4–11.

62

7.
SURVEY I NG APPL ICAT ION USE I N
DAN I SH KNOWLEDGE WORK

7.1 introduction

The labour market in the European Union is changing: work is increasingly de-
pendent on digital competences, with an estimated 90% of jobs requiring some
IT skills;1 non-routine work is becoming more prevalent, as routine tasks are au-
tomated or outsourced;2 and work is decentralised, requiring workers to be more
entrepreneurial and collaborative as they engage in project-based contracts with
multiple employers.3
Instigating and guiding these kind of digital transformations has been a corner-

stone of the European Union’s economic and social strategy for the past twenty
years, and continues to occupy a central position under the von der Leyen com-
mission. Curiously, however, these strategies focus almost entirely on data and
skills as the two main components for a digital, globally competitive economy,
but ignore the computational tools that workers use on a day-to-day basis to
productively leverage those data and skills. Despite the fact that software appli-
cations are the mediating artefact, there has been no discussion or investigation
into whether the dominant designs and their associated business models are fit
for the transformations the EU is striving for. As a result, we know little about
what kind of applications are used by the European labour force, how they relate
to the digital competences the EU is trying to engender, and their effects on the
overall digital working conditions.
This chapter reports on a representative survey of application use by Danish

knowledge workers – the most digitalised industry in one of Europe’s most digital
countries. Thematically, the survey operationalised this topic through the follow-
ing three sub-questions:

• What hardware and software do knowledgeworkers use to accomplish their
main job activities?

• What strategies do knowledge workers use to personalise their software?
• What level of digital competences do knowledge workers have?

1 Bughin et al., ‘Skill shift: Automation and the future of the workforce.’
2 Grossman, Rossi-Hansberg, et al., ‘The rise of offshoring: it’s not wine for cloth anymore’;
Jaimovich and Siu, ‘Job Polarization and Jobless Recoveries.’

3 Mandl et al., New forms of employment.

63

7.2 method

Using the answers to these questions, we paint a portrait of the digital charac-
teristics of knowledge workers in Denmark, allowing us to better ground future
discussions about the impacts of digitalisation and the direction of digital policy.

7.2 method

7.2.1 Instrument design

The survey consisted of a mix of 18 open and closed questions, with a possible
maximum of 24 depending on specific conditional answers. The first question of
the survey was used to filter respondents based on their occupation, using the
sub-major groups of the 2008 version of the Danish International Standard Clas-
sification of Occupations (DISCO-08). The rest of the survey was divided into two
sections: one with questions about the respondents’ use of digital technologies,
and one about their demographic characteristics.
The section about digital technologies consisted of questions about the hard-

ware and software they used to accomplish their work activities (which and
how many devices, what operating systems, and which software applications
for each device); about whether they adapted their software (how often, and
using which strategy); and about their digital competences (e.g., digital com-
munication, collaboration, problem solving). The question regarding software
adaptation was conceptually informed by partially-overlapping taxonomies de-
veloped by,4,5 and,6 resulting in four adaptation strategies: using the software’s
built-in preference settings, through plugins or add-ons, using scripts or macros,
and by reprogramming the source code. The questions regarding digital compe-
tences were based on the self-assessment survey of the European Commission’s
Digital Competence Framework, where a participant can rank their competence
level (basic–intermediate–advanced) for different skill categories (e.g., informa-
tion processing, content creation, problem-solving) (see Carretero, Vuorikari, and
Punie7 for the full scale).
The section about demographic characteristics included questions about em-

ployment status (e.g., full-time, self-employed, unemployed, retired), job title,
primary work activities, sector (public, private), and industry (e.g., financial and
insurance, education, construction). The industry categories were based on the
second revision of the Statistical Classification of Economic Activities in the Euro-
pean Community (NACE rev 2).8 NACE is a multi-level classification with 21 first
level categories, each of which is further broken down into more specific activi-
ties. This study used 14 of the top level categories, and a selection of the second
4 Mørch, ‘Three levels of end-user tailoring: Customization, integration, and extension.’
5 Randall H Trigg, Thomas P Moran, and Frank G Halasz (1987b). ‘Adaptability and tailorability

in NoteCards.’ In: Human–Computer Interaction–INTERACT’87. Elsevier, pp. 723–728.
6 Allan MacLean et al. (1990). ‘User-tailorable systems: pressing the issues with buttons.’ In:

Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 175–182.
7 Carretero, Vuorikari, and Punie, DigComp 2.1: The Digital Competence Framework for Citizens

with eight proficiency levels and examples of use. Publications Office of the European Union EUR
28558 EN, DOI: 10.2760/38842.

8 EUROSTAT (2008). NACE rev. 2. Office for Official Publications of the European Communities.
isbn: 978-92-79-04741-1.

64

7.2 method

level classifications of 5 other categories. Two categories (sections T and U) were
not included.

7.2.2 Data collection

7.2.2.1 Procedure

The data was collected between July 12 and 22, 2018 by YouGov, a global inter-
net survey and data analytics company which maintains a panel of respondents
across multiple demographic characteristics. Respondents earn points for com-
pleting surveys which can be exchanged for cash, vouchers, or prize draws.

7.2.2.2 Participants

A total of 3944 respondents between the ages of 18 and 74 were contacted, with
quotas on gender, age, and region to reach a nationally representative sample.

Sample Population
3945 100% 100%

Gender Female 2148 54,4 49,8
Male 1797 45,6 50,2

Age 18-34 866 22 30
35-54 1637 31,5 37,4
55-74 1442 36,6 32,6

Region Capital city 1260 31,9 31,9
Sjælland 577 14,6 14,4
Syddanmark 813 20,6 20,9
Midtjylland 863 21,9 22,6
Nordjylland 432 11 10,2

Table 4. Unweighted, unfiltered sample and overall population distribution

7.2.2.3 Variables

In addition to the data gathered through the survey instrument described in In-
strument design on 64, the YouGov service included pre-existing background in-
formation about the respondents gender, region, age, civil status, and education.
The gender data was binary (male, female), and level of education followed the
2015 version of the Danish International Standard Classification of Education
(DISCED-15).

65

7.3 results

7.2.3 Data processing

The sample was cleaned to increase the data quality and processed to make it
nationally representative.
The data was cleaned based on 1) occupation, 2) non-response, 3) qualitative

data quality, and 4) overall response time. 2474 respondents were screened out
because their self-reported occupation did not match our definition of knowledge
work (i.e., not falling in the DISCO-08 categories of managers, professionals, and
technicians and associate professionals9.). 450 respondents were removed be-
cause they did not complete the survey. Respondents were asked to report which
software applications they used to accomplish their main job activities per type of
device (laptop, desktop, tablet, smartphone). This qualitative data was processed
using fuzzy matching algorithms in OpenRefine10 and manual inspection, result-
ing in a standardised list of software. All unreasonable answers (e.g., “asdfghjkl”,
“none”) and software names that could not be identified were replaced with the
value “-1”. All participants with this response for any single, device-related soft-
ware question were removed from the data set (n = 525). The median response
time for the survey was 7 minutes, with the first quartile at 5 minutes and the
third at 10 minutes. All respondents with a response time below 2,5 minutes and
above 30 minutes were removed (n = 29) After the cleaning, the final sample
size corresponds to 466 knowledge workers.
Post-stratification weights were applied to correct for non-responses using the
marginal distribution of occupation category separated into sex (female, male)
and sector (public, private). Information about the population was retrieved from
Danmark Statistik, the official statistics bureau of the Danish government, specif-
ically from “LONS20: Earnings by occupation, sector, salary, salary earners, com-
ponents and sex”11. The weights were calculated using Iterative Proportional Fit-
ting (IPF) or raking. Briefly, raking is a method that forces the marginal distribu-
tion of a sample to match those of the population by applying a weight to each
individual row. It does this by fitting the sample to the population using one de-
mographic statistic at a time (e.g., gender). Once completed, it does the same for
the next statistic, until the final distribution equals the population’s.
The answers regarding device operating system had to be removed because of

a flaw in the conditional logic of the survey that meant respondents were incon-
sistently shown the question.

7.3 results

The concept of working environments is rooted in the emergence of the industrial
revolution and the dangerous machinery and materials workers were exposed to.

9 “Ledelsesarbejde” i.e., "Management"; “Arbejde, der forudsætter viden på højeste niveau inden
for pågældende område” i.e., “Work which requires the highest level of knowledge for the field
concerned”; and “Arbejde, der forudsætter viden på mellemniveau” or “Work that requires in-
termediate level knowledge”.

10 http://openrefine.org/
11 Available here: https://www.dst.dk/en/Statistik/dokumentation/documentationofstatistics/

structure-of-earnings

66

http://openrefine.org/
https://www.dst.dk/en/Statistik/dokumentation/documentationofstatistics/structure-of-earnings
https://www.dst.dk/en/Statistik/dokumentation/documentationofstatistics/structure-of-earnings

7.3 results

Figure 25. Frequency distribution of different types of devices used by Danish knowledge
workers

Since then, it has expanded to not just include physical factors, but also social
and cultural aspects that affect the psychological well-being of workers. Digital
factors, however, such as the technological devices and the software components,
are still missing from most official metrics, even in highly digitalised jobs.

7.3.1 Hardware Working Environment

Contemporary knowledge workers have a variety of digital devices to choose from
to perform their tasks, ranging from more traditional desktop computers, now-
common laptops and smartphones, to the still fledgling tablet form factor.
The survey results indicate that the laptop and smartphone are by far the most

common tools for the knowledge worker (see Figure 25). Roughly 83,6% uses
laptops, and 73,9% uses smartphones for their professional activity. Desktop com-
puters are less common, bit still used by 55% of workers, and tablets less popular
still, used by just 30,6%.
Overwhelmingly, knowledge workers use just one device per category (83,9%),

7,4% report using two copies of the same device type, dropping to 2,2% for three
copies and 1,4% for four copies (see Table 5). Interestingly, there appears to be
a larger group of workers (5,1%) that use 5 or more copies of the same device.
There are clear correlations in the way these devices are combined (see Figure

26). All devices are combined in some way by a considerable number of workers,

67

7.3 results

Number of devices Individuals Percentage

1 951 83,92
2 84 7,38
3 25 2,22
4 16 1,42
5+ 57 5,06

Table 5. Number of devices of the same type (desktop, laptop, phone, tablet) used by
Danish knowledge workers

Figure 26. Correlation distribution of different device types by Danish knowledge work-
ers. 0 means the device is not used, 1 means the device is used. The correla-
tions between device and usage can be found by tracing the intersection. The
higher the number, the darker the square, the more common the correlation.

with the least frequently used pair being the desktop and the tablet, at just shy
of one fifth (19,7%) of the respondents. Pretty much all knowledge workers use
either a laptop or desktop for their work – only 0,5% use neither. Almost 40%
of workers use both a desktop and a laptop, but just as many use a desktop with
a smartphone (39,3%). Out of all devices, the laptop-smartphone is the most
frequent combination, corresponding to 67,6% of workers, although the laptop
is also (and more often than the desktop) combined with a tablet, by more than
a fourth of all respondents (28,1%).

7.3.2 Software Working Environment

In the 1980s in the United States – the early days of consumer application soft-
ware – using more than one piece of software as the same time was practically im-
possible because of hardware limitations such as memory and processing power,
but also because of how difficult it was to memorise complicated set of commands

68

7.3 results

Figure 27. Number of software applications mentioned per respondent as essential to
accomplish their work tasks

for more than a handful of applications. These days, in large part because of the
invention of graphical interfaces with overlapping windows and continuously im-
proving hardware capabilities, it is technologically possible to use a plethora of
applications at the same time. This section reports on the software ecosystems of
Danish knowledge workers.
Nearly all respondents (464 out of 466) used either a desktop or a laptop.When

asked about the software they use for this device that was necessary to accomplish
their work tasks, they mentioned a total of 1832 non-unique applications, with a
mean of 3,9 and a median of 4 applications per worker. The largest proportion
(20,13%) uses just a single application, nearly half uses between one and three
(48,95%), and 86,54% of workers use up to six (see Figure 27).

There is considerable homogeneity in the applications used by knowledgework-
ers: the 1832 answers includedmerely 535 different software (29%), which trans-
lates to an average of 1,15 unique applications per respondent in the 3,9 men-
tioned. The top two mentioned software – MS Word and MS Excel – are used
by a quarter (24,89%) of all knowledge workers, and the top ten applications
are used by half (see table 6). The general pattern appears to be that almost all
workers use the same (set of) applications, with the addition of perhaps a single
unique one: a long-tailed distribution.
The lack of diversity is not just in the choice of software, but also their char-

acteristics. Of the top thirty applications (representing 60,89% of all software
used), twenty-nine are made by companies headquartered in the United States
and one in Germany. Sixteen – more than half – are designed by Microsoft alone;
five by Adobe, and two by Alphabet. Despite the fact that this software is used
to support professional activities, many of these applications are general purpose
consumer applications, and only seven are marketed as primarily business soft-
ware (MS Dynamics NAV, MS Skype for Business, MS SharePoint, SAP, MS Access,

69

7.3 results

Sundhedsplatformen, SAS). Additionally, nearly all applications are produced as
a mass-market product. The exceptions are MS Sharepoint, Sundhedsplatformen
(the healthcare system for the capital region of Denmark), and SAP, which were
either built as custom-solutions ormarket themselves as being highly configurable
to the local environment.

Software application Frequency % Cum % Developer HQ
1 MS Word 256.59 13.92 13.92 Microsoft US
2 MS Excel 197.19 10.70 24.61 Microsoft US
3 MS Outlook 131.96 7.16 31.77 Microsoft US
4 MS Office 91.31 4.95 36.72 Microsoft US
5 MS PowerPoint 83.12 4.51 41.23 Microsoft US
6 Google Chrome 52.27 2.83 44.07 Alphabet US
7 MS Internet Explorer 36.32 1.97 46.04 Microsoft US
8 MS Office 365 30.46 1.65 47.69 Microsoft US
9 Adobe Acrobat Reader 19.19 1.04 48.73 Adobe US

10 MS Visual Studio 18.56 1.01 49.74 Microsoft US
11 MS Dynamics NAV 18.15 0.98 50.72 Microsoft US
12 Mozilla Firefox 14.28 0.77 51.49 Mozilla US
13 MS OneNote 13.81 0.75 52.24 Microsoft US
14 MS Skype For Business 13.73 0.74 52.99 Microsoft US
15 Adobe Photoshop 13.14 0.71 53.70 Adobe US
16 MS SharePoint 13.00 0.70 54.41 Microsoft US
17 MS Skype 11.73 0.64 55.04 Microsoft US
18 Adobe CC 10.14 0.55 55.59 Adobe US
19 SAP 9.89 0.54 56.13 SAP SE DE
20 MS Paint 9.51 0.52 56.64 Microsoft US
21 Autodesk AutoCAD 9.35 0.51 57.15 Autodesk US
22 MS OneDrive 8.53 0.46 57.61 Microsoft US
23 Google Docs 8.39 0.46 58.07 Alphabet US
24 MS Access 8.16 0.44 58.51 Microsoft US
25 Apple Safari 8.03 0.44 58.95 Apple US
26 Adobe Acrobat Reader XI 7.90 0.43 59.37 Adobe US
27 Adobe InDesign 7.63 0.41 59.79 Adobe US
28 Sundhedsplatformen 7.31 0.40 60.19 Epic US
29 Lotus Notes 6.52 0.35 60.54 IBM US
30 SAS 6.51 0.35 60.89 SAS Institute US

Table 6. The top 30 most used applications by Danish knowledge workers

The homogeneity in applications used is also evident in the correlations be-
tween applications, as can be seen in Figure 28: there is just a single cluster
centred around MS Word, MS Excel, MS PowerPoint, and MS Outlook. There are
no independent clusters disconnected from these, which could have represented
alternative constellations beyond the Microsoft ecosystem. The internal connec-

70

7.3 results

Figure 28. A network visualisation of software applications mentioned together by the
same respondent. Only combinations mentioned by at least five workers are
included. The thicker the edge connecting two nodes, the more frequently
these combinations were mentioned

tions between Microsoft applications seems to show that the software suite is
popular for many of its offerings, or that this model helps boost the popularity of
one application based on its bundling with the others. Interestingly, this network
effect is not present for the Adobe Suite: Adobe Photoshop and InDesign are not
connected at all, hinting that these software are used for tasks or occupations
with no overlap.
In the outward connections from the core cluster, we can see that these ap-

plications are used in combination with software that supplement its function-
ality (e.g., MS Word with Adobe Photoshop or MS Skype), but also with appli-
cations that one could consider alternatives (e.g., MS Word with Lotus Notes or
MS OneNote). Similarly, Google Chrome is used in tandem with Mozilla Firefox
and Internet Explorer, but the latter are not used with each other. This kind of
friendly coexistence does not extend to all software, however. Some applications
are clear competitors; MS Skype is never combined with MS Skype for Business,
for example, and neither is MS Dynamics NAV with SAP, indicating these are
mutually exclusive.
Ultimately, this network visualisation paints the same picture as the overall fre-

quency distribution: the tool set for the Danish knowledge worker is the Microsoft
Office Suite, with MS Word and MS Excel the clear power couple.

7.3.3 Digital Competences

Digital competences, more reductively referred to as digital skills12 are seen as
one of the core requirements for the successful digitalisation of an industry or
12 Psychologists conceptualise skills as only one aspect of “the ability to successfully perform a

range of tasks to a high level of performance” (Francis Green [2013]. Skills and skilled work: an

71

7.3 results

Figure 29. Self-reported digital competences of Danish knowledge workers across eight
different types of dimensions

occupation. How exactly to conceptualise andmeasure these digital competences,
however, is still largely unclear. The European Commission has recently proposed
a software-independent framework called DigComp, but its fledgling state means
there is still little data on the relationship between specific occupations and the
presence or requirements of certain competences. This section reports on an early
attempt to measure the digital competences of knowledge workers in Denmark.
The respondents of the study have slightly higher levels of digital competences

than the country average. According to the Digital Economy and Society Index
report of 2020, 58% of Danish residents have at least basic digital skills, and 33%
has above basic skills.13 Compared to this, 34,2% of knowledge workers have at
least basic skills, but 54,7% have above basic skills (see Figure 29).

7.3.3.1 Working with digital content

Digital information is the main material and output of most activities that knowl-
edge workers engage in, which we can see reflected in the digital competences
of the respondents. The survey scale used three proxies to measure the ability to
work with digital content: content creation, content formatting, and computational
creation.
The respondents are most skilled at content formatting: nearly 40% is able to

at least “apply basic formatting (e.g., insert footnotes, charts, tables)” to content
they or others produced, and 35% can “use advanced formatting functions of dif-
ferent tools” such as merging documents of different formats or applying macros.
In terms of creating their own content, just short of half of knowledge workers
(46,3%) have basic skills and are able to “produce simple digital content in at least
one format”, but a sizeable 21,6% has advanced skills and is able to produce “pro-
duce or modify complex, multimedia content in different formats using a variety

economic and social analysis. Oxford University Press). The broader concept of competence also
includes “knowledge” and “attitude”

13 European Commission, Digital Economy and Society Index (DESI) 2020 Denmark.

72

7.3 results

of digital platforms, tools, and environments”. In terms of computational content,
this is the dimension where the largest share of workers (30%) report having
no competences, in other words, they are not able to “apply and modify simple
functions and settings of software and applications”. On the other hand, more
than a third is able to do this, around 20% knows the basics of one programming
language, and 12,1% can use several.
The staggered diminishing of competence levels across these three dimensions

meets face-level expectations: editing other people’s content is the easiest, fol-
lowed by creating ones own content. Using more fundamental computer skills
such as programming is still far from being the wide-spread competence that
most digital policy initiatives are trying to make it. Interesting to note, however,
is that despite the obvious importance of creating tangible artefacts that contain
the knowledge these workers produced, these three dimensions have the highest
overall share of respondents with lower than basic skills.

7.3.3.2 Communicating and collaborating with others

Knowledge work is often done in (distributed) teams14 on a per-project basis, re-
quiring good communication and collaboration skills. This characteristic of knowl-
edgework is reflected in the competence distribution of the respondents. The com-
munication and collaboration dimensions have the lowest proportion of workers
without those skills, 2,5% and 4,3% respectively. Collaboration also has the high-
est proportion of advanced-level workers, with nearly half (45,7%) able to create
and manage content using tools such as electronic calendars, project manage-
ment systems, and online spreadsheets. In terms of communication competences,
44,3% has the basic skills to use a mobile phone, teleconference, send e-mails,
or use chat systems. Roughly a third (34,7%) indicates they “actively use a wide
range of communication tools”, such as social networks and blogs.

7.3.3.3 Overcoming and adapting

By some definitions, knowledge work can be characterised by non-routine tasks
that require continuous innovation and creativity.15 In terms of the use of digital
tools, this would require searching for new ways to do things, update ones digital
skills in order to explore new ways of working, and being able to handle any
technical problems when they arise. The three dimensions associated with these
practices – upskilling, problem solving, and support – are the three dimensions that
collectively the largest proportion of knowledge workers have intermediate level
skills in. Roughly one third is able to “solve most of the more frequent problems”
by “exploring the settings and options of programs or tools”. Around one third is
“aware” that they need to update their digital skills regulary, more than a third is
“regularly” doing so, and a bit more than a quarter does this “frequently”.

14Mandl et al., New forms of employment.
15 Brinkley, Rebecca Fauth, and Theodoropoulou, Knowledge workers and knowledge work: A knowl-

edge economy programme report.

73

7.3 results

7.3.4 Digital Appropriation

One of the fundamental tenets of HCI research in general, and practice-oriented
CSCW in particular, is that there always exists a gap between the design of a
standardised piece of software and the idiosyncratic work practices of the indi-
vidual/community. This section describes the strategies knowledge workers use
to customise their digital tools, and how frequently they use them.
The respondents were asked how often they used the built-in settings, plugins/add-

ons, scripts, or reprogramming to adapt their software (see Figure 30). Con-
sidering the use of these strategies from a binary perspective, we can observe
that 90,87% have used the built-in settings, 59,41% have used plugins/add-ons,
42,47% have used scripts, and 26,64% have used reprogramming.

When going beyondwhetherworkers adapt their software and instead consider
how frequently they do this, the data follows a similar stepwise reduction. A con-
siderable number of respondents (68,42%) use the built-in settings about half the
time or more often to adopt their software, but this proportion shrinks to 20,03%
for plugins or add-ons, 11,66% for scripts, and a marginal 2,64% for reprogram-
ming. As we move between strategies, which can be considered to grow more
complex, the proportion of workers who never use it that strategy increases. In an
analogous pattern, as the frequency of using scripts or reprogramming increases,
the proportion of respondents is reduced. The use of scripts or add-ons, how-
ever, behaves slightly different. Here, more workers “sometimes” use this strategy
(24,20%) than “almost never” (14,96%) Of all strategies, only the use of built-in
settings is approximately evenly spread across different frequencies (from Never
to Always).

Figure 30. Different software adaptation strategies and how frequently they are used by
Danish knowledge workers

The use of certain strategies appear to be correlated with each other in unex-
pected ways (see Figure 31). Considering the staggered decrease of use going
from settings to reprogramming, one would assume that between two strategies,
the less complex one is most strongly correlated with the non-use of the other. In
other words, if a worker uses the built-in settings, they are more likely to not use

74

7.4 discussion

plugins. If they use scripts, they are more likely to not use reprogramming. This
does not appear to be the case. Instead, workers that use the built-in settings are
most likely to also use plugins, are equally likely to use or not use scripts, and
most likely to not use reprogramming. Respondents are roughly just as likely to
use plugins and scripting, as they are to use neither; and if they use scripts, they
are equally likely to use or not use reprogramming. These correlations suggest
that there is some independence between the use of different adaptation strate-
gies: it is not simply a matter of those who use reprogramming also being the
ones who use scripting, plugins, and built-in settings. Instead, the data hints at
clusters of respondents who combine certain strategies in ways that do not follow
their complexity.

Figure 31. Correlation distribution of different adaptation strategies by Danish knowl-
edge workers. 0 means the strategy is not used, 1 means it is used. The cor-
relations between strategies can be found by tracing their intersection. The
higher the number, the darker the square, the more common the correlation.

7.4 discussion

The average Danish knowledge worker uses a single laptop and smartphone de-
vice to accomplish their work tasks. On their main computer, they use approx-
imately four software applications. Like almost all their colleagues, they mostly
use MSWord, MS Excel, and MS Outlook, and a single, unique application. When
using these applications, they most of the time take advantage of the built-in set-
tings to customise it to their preference, but rarely if ever use plugins, scripts, or
reprogramming. Overall, they are comfortable using a computer and know a cou-
ple of different ways to approach the same problem using software tools, although
there are still areas they are less competent in. They are more skilled at format-
ting other worker’s digital content than creating their own; are comfortable using
collaborative tools and know how to communicate with their colleagues using the
basic features of a variety of media. If they run into technical problems, they are
capable at solving most issues or know how to find support.

75

7.4 discussion

7.4.1 The Dream of Personal Computing

The computer as an intimate partner, a supplement to the human brain, that
might “elevate one’s spirit”16 is a foundational dream of Human-Computer In-
teraction. Personal accounts of early hobbyists and hackers of the personal com-
puter in the 1970s seem to suggest that such symbiosis were formed, but historio-
graphic analyses of PC magazines from 1980 to 1984 shows how this imagination
and relationship transformed as the computer became a mass-market consumer
product and the people buying it became users:17 this demographic was more
interested in the purposes for which personal computing could be used as a tool,
rather than seeing the device as a reprogrammable universal machine.
Our data confirms this tendency and shows that most knowledge workers are

users of ready-made software that rarely tailor beyond the built-in preferences.
The commodification of software – the emergence of Software as an Appli-

cation – and the subsequent expansion of its user base with their own diverse
visions for the computer (to the chagrin of some computing researchers18), re-
quires us to take stock of HCI’s dream of personal computing. How close are we
to achieving that human-computer interaction? Is it still a worthwhile pursuit,
or should it be repositioned as a historic interest rather than one of the main
goals of the research community? What design characteristics of contemporary
application software is inviting or inhibiting this kind of relationship? What are
the wider, structural conditions – the character of the software industry, the in-
creasing geopolitical role of software – that shape the nature of our connection
to applications?
As the application software industry emerged, it both stimulated and pursued

the imaginary of people as users of computers rather than programmers of com-
puters, of software as a product rather than a medium. One of the early bar-
riers limiting the size of the software product market was how difficult it was
to use multiple applications at the same time, and most of the 1980s and early
1990s was devoted to exploring different paths towards the holy-grail of software
multi-tasking: application families, integrated packages, windowed application
managers, component software, etc. AlthoughMoore’s law has mostly eliminated
hardware limitations and the graphical user interface has reduced the cognitive
strain of learning how to use more than a handful of software, the data from this
survey shows that users – or, at least, knowledge workers – still only use between
one and six applications. Why is that? Is a few applications simply sufficient to
accomplish most work tasks? Or are there specific barriers that inhibit the use of
more applications, such as the lack of interoperability or entrenched proprietary
document formats? Is it still too difficult to learn how to effectively use more
applications, despite the GUI? Or are they not individual factors, but limitations
that arise in collaboration with others?

16 Vannevar Bush (1945a). ‘As we may think.’ In: The Atlantic Monthly 176.1, pp. 101–108.
17 Laine Nooney, Kevin Driscoll, and Kera Allen (2020). ‘From Programming to Products: Softalk

Magazine and the Rise of the Personal Computer User.’ In: Information & Culture 55.2, pp. 105–
129.

18 Alan Kay (2007). ‘The real computer revolution hasn’t happened yet.’ In: Viewpoints Research
Institute 15.

76

7.4 discussion

Another question that arises from seeing which applications are used by knowl-
edge workers is why, despite having largely stayed the same since the 1990s, the
Microsoft Office Suite still dominates user’s application ecosystem. Is this simply
a matter of “the end of history”: has Microsoft perfect the designs of word process-
ing, spreadsheet, and presentation software, and are there no reasons to switch to
alternative applications? Or are there other forces at play, such as organisational
legacies, high (data and skill-based) personal investments, consumer lock-in, or
network effect?

7.4.2 The Geopolitics of Software

Individual, day to day experiences with the computer inform what Rosenberger19
calls “relational strategies”: the learned ideas about and habits around how to re-
late to a technology that is stable in a particular way. This survey of application use
in Danish knowledge work paints a picture of a digital ecosystem monopolised by
a few US American corporations, with a handful of software being responsible for
the ideas and habits we develop about computing at large. Rather than the com-
puter as the “intimate supplement” imagined by Bush20 the “[hu]man-computer
symbiosis” by Licklider21 or software as a “clay of computing” by Kay and Gold-
berg,22 the paradigmatic application model of software seems to be teaching peo-
ple that a computer contains turn-key products of pre-packaged functionality that
you adapt to, rather than adapting it to you. With the European Union looking to-
wards the digital economy as the future of the continent, it begs the question
whether we want the US to have such outsized control over the artefacts that
mediate and cocreate the European labour force. The predominance of turn key
applications leaves little room for workplace democracy traditions in Denmark to
have any control over how software is shaped and used.

7.4.3 The Need for Digital Working Conditions Research

Regulations of working environments are historically rooted in the physical con-
text that work is performed, designed to protect against dangerous equipment
and materials. Since then, a large share of physical labour has become automated
or outsourced to other parts of the world, and knowledge and service work has
became more prevalent in post-industrial economies. Working environment reg-
ulations have evolved with it, now also taking psychological factors that affect
worker’s well-being into account. The Danish Working Environment Act, for ex-
ample, takes the broadly construed position that “individual workplaces should
be designed in a way which will prevent employees from being forced to leave
the labour market due to attrition and stress”.23

19 Rosenberger, ‘The sudden experience of the computer.’
20 Bush, ‘As we may think.’
21 Licklider, ‘Man-Computer Symbiosis.’
22 Alan Kay and Adele Goldberg (1977). ‘Personal dynamic media.’ In: Computer 10.3, pp. 31–41.
23 Arbejdstilsynet (n.d.). The working environment legislation. url: https://at.dk/en/regulations/
working-environment-legislation/ (visited on 02/22/2021).

77

https://at.dk/en/regulations/working-environment-legislation/
https://at.dk/en/regulations/working-environment-legislation/

7.4 discussion

Asmore andmore work becomes digitally mediated, driven on by the sociotech-
nical imaginary of the digitalised economy and society as the new cornucopia
of continued growth and social progress, our conceptualisation of working envi-
ronments should shift with it to consider the ways digital technologies intersect
with the physical and psychological well-being of workers. One could argue that
these two higher-order categories are broad enough to also capture the impacts
of digital technologies, but without comparative studies between traditional in-
struments to measure working environments and those that focus specifically on
software design, we cannot say for certain whether, or how much, is accounted
for. Tentative first steps have been taken across a variety of disciplinary venues,
centred around the concept of technostress. Ayyagari, Grover, and Purvis24 de-
scribe how the always-on nature of technology, the constant changing nature of
software, and the increased ability for worker surveillance are antecedents for
later stress. Fuglseth and Sørebø25 show that the perceived complexity of the
software and constant changes are the biggest contributors to technostress, but
that technical support and mechanisms that increase worker’s digital literacy can
have inhibiting effects. Berg-Beckhoff, Nielsen, and Ladekjær Larsen26 present
conflicting results, showing how digital technologies are correlated with stress
in cross-sectional studies (which explores bi-directional relations), but not in in-
tervention studies (which would reveal causal relations). However, they do find
an association between digital tools and burnout, mostly present in middle-aged
working populations. Tarafdar, Cooper, and Stich27 add a speculative optimistic
note, and argues against the prevailing literature to claim that technostress might
lead to positive outcomes as well, such as greater effectiveness and innovation.
HCI has a clear contribution to make to issues surrounding digital technologies
and workplace environments. Current work exploring these questions is not as
attuned to interface design, or software models more broadly. The data provided
by this study has taken a first step, by trying to representatively capture the hard-
ware and software conditions, and the digital competences and practices related
to those factors of Danish knowledge workers.
A better understanding of which elements of software design are causally re-

lated to both positive and negative digital working environments can contributed
to two agendas. One the one hand, this knowledge can be used to inform dig-
italisation policies, regulatory initiatives, and – importantly – the instruments
currently used to monitor workplace environments. On the other hand, data on
which software design elements create or inhibit negative psycho-social experi-

24 Ramakrishna Ayyagari, Varun Grover, and Russell Purvis (2011). ‘Technostress: Technological
antecedents and implications.’ In: MIS quarterly, pp. 831–858.

25 Anna Mette Fuglseth and Øystein Sørebø (2014). ‘The effects of technostress within the context
of employee use of ICT.’ In: Computers in Human Behavior 40, 161–170. issn: 0747-5632. doi:
10.1016/j.chb.2014.07.040.

26Gabriele Berg-Beckhoff, Grace Nielsen, and Eva Ladekjær Larsen (2017). ‘Use of information
communication technology and stress, burnout, and mental health in older, middle-aged, and
younger workers–results from a systematic review.’ In: International journal of occupational and
environmental health 23.2, pp. 160–171.

27Monideepa Tarafdar, Cary L. Cooper, and Jean-François Stich (2019). ‘The technostress trifecta
- techno eustress, techno distress and design: Theoretical directions and an agenda for research.’
In: Information Systems Journal 29.1, 6–42. issn: 1365-2575. doi: 10.1111/isj.12169.

78

https://doi.org/10.1016/j.chb.2014.07.040
https://doi.org/10.1111/isj.12169

7.5 limitations

ences can be used to inform the (re)design of commonly used applications. For
both agendas, the data from this study can be used to decide which stakehold-
ers to prioritise. Considering the dominance of US American-developed software,
and specifically the monopolising position of Microsoft, any regulatory or design
interventions should be targeted towards these actors.

7.5 limitations

The results from this study should be considered with the following limitations
in mind. First and foremost, the data was collected using the commercial survey
service YouGov, so the quality of that data is in large part determined by the
quality of the panel of respondents they have recruited. In the process of cleaning
the data, more than half of the sample was discarded. Although the design of the
survey instrument also plays a role, and a conservative filtering method was used,
this is still a considerable proportion of the data corpus, and affects the overall
confidence in the results. However, it should be noted that the distributions of
the answers to the different questions did not always show a considerable change
before and after the cleaning (with the exception of the questions about digital
competences).
In addition to the quality of the remaining data, the data cleaning also had

consequences for the overall sample size, reduced to merely 466 participants. Al-
though the marginal distributions of the sample were close to those of the popula-
tion, and iterative proportional fitting further aligned the two, the small sample
size means that we should be careful when considering the generalisability of the
results.
Lastly, the survey instrument was designed for this study, but not validated to

confirm that the questions properly captured the intended variables. However,
most of the questions included were taken from pre-existing and widely used
surveys

7.6 conclusion and future research

The field of Computer Supported Cooperative Work specialises in providing thick
descriptions of technologically-mediated work practices. This paper contributes
a nationally representative social survey about the digital working conditions of
knowledge workers in Denmark, to contextualise such qualitative data with sta-
tistical insights. We collected data on the hardware and software used by knowl-
edge workers, their digital competences, and the extent to which they adapt their
software
The analysis show that the hardware and software used by Danish knowledge

workers are largely homogeneous. The results demonstrate that products from
a few US-based companies have become the de facto standard for computer-
mediated knowledge work, and that adaptation of software beyond changing
built-in preferences rarely happens.
Considering that the need for local adaptation of software is a basic premise

of CSCW research, we highly encourage future work that can shed more light on

79

7.6 conclusion and future research

this lack of software customisation: is the software simply good enough, or are
the costs of appropriation (in terms of time, training, risk of obsolescence) too
high? We hope this study encourages more CSCW researchers to consider large-
scale survey methods as a worthwhile tool to address these and other questions
that provide a high-level overview of the status quo of computer supported work.
While their results might not always be shockingly surprising, they complement
our qualitatively informed intuitions with detailed empirical data.

80

8.
TH E APPL ICAT ION AND ITS
CONSEQUENCES FOR NON -STANDARD
KNOWLEDGE WORKERS
Ba s e d on Nouwen s a n d K l o kmo s e . 1

8.1 introduction

Application-centric computing has dominated human-computer interactions for
the past forty years. Although application-centric computing has been criticised
before (e.g., Norman,2 Bardram et al.3), “the application” as a particular way of
packaging our interaction with computation has largely escaped empirical inves-
tigation: which software characteristics define an application and how they mat-
ter is ambiguous. Is it based on the way functionality is monolithically bundled
together? On how it operates on the user’s document? On its updating and up-
grading model? Do those qualities manifest the same across applications? What
impact do variations have? As a result, the boundaries of the application are fuzzy,
the effects of experiencing almost all computation through them is unclear, and
articulating alternatives is difficult.
To unpack and problematise the application as a specific interactive artefact, we

ground our discussion in an empirical study of application-use in contemporary
knowledge work. The emergence of the application is closely connected to the
labour landscape of the 1980s, when large (US American) corporations sought
to take advantage of computers to optimise work in various professional domains.
But where the technical tendencies of applications have stayed relatively sta-
ble, the work practices these applications were intended to support have con-
1 Midas Nouwens and Clemens Nylandsted Klokmose (2018). ‘The Application and Its Conse-

quences for Non-Standard Knowledge Work.’ In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. CHI ’18. Montreal QC, Canada: Association for Comput-
ing Machinery, 1–12. isbn: 9781450356206. doi: 10.1145/3173574.3173973. url: https :
//doi.org/10.1145/3173574.3173973.

2 Donald A. Norman (1998). The Invisible Computer. Cambridge, MA, USA: MIT Press. isbn: 0-
262-14065-9.

3 Jakob Bardram, Jonathan Bunde-Pedersen, and Mads Soegaard (2006). ‘Support for Activity-
based Computing in a Personal Computing Operating System.’ In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’06. Montréal, Québec,
Canada: ACM, pp. 211–220. isbn: 1-59593-372-7. doi: 10 . 1145/1124772 . 1124805. url:
http://doi.acm.org/10.1145/1124772.1124805.

81

https://doi.org/10.1145/3173574.3173973
https://doi.org/10.1145/3173574.3173973
https://doi.org/10.1145/3173574.3173973
https://doi.org/10.1145/1124772.1124805
http://doi.acm.org/10.1145/1124772.1124805

8.2 related work

tinued to evolve. The labour landscape in post-industrial economies has shifted
from predominately full-time, permanent, open-ended employment (i.e., stan-
dard employment),4 to one with increasingly more short-term, flexible, project-
based forms of labour (i.e., non-standard employment).5 Knowledge work in par-
ticular – jobs that involve the creation and distribution of information through
non-routine, creative, and abstract thinking – is increasingly performed under
these labour conditions: via temporary or fixed-term contracts, as part-time and
on-demand jobs, or through self-employment.6 These non-standard knowledge
workers (e.g., freelance journalists, interimmanagers, and self-employed creative
directors) collaborate with (multiple) dynamic groups on a per-project basis for
short periods of time across borders and time-zones, mediated through technol-
ogy. “The application” features prominently in their daily practice as the main
environment of production.
How well does the historically situated way of packaging computational inter-

action as “applications” match contemporary ways of working? How do its chal-
lenges and successes relate to the technical tendencies of applications? In what
ways do these tendencies manifest themselves in different applications?
This chapter aims to explore “the application” as a class of interactive artefacts

through the lens of non-standard knowledge work. The contribution is twofold:

1. It maps out computer mediated collaboration for non-standard knowledge
workers, the challenges they face, and the workarounds they employ to
circumvent them.

2. It explores contemporary characteristics of applications and the meaning
they have in users’ experiences.

8.2 related work

8.2.1 Knowledge Work

Knowledge work has been a classic area of interest in HCI and CSCW. Field-
defining works such as Bush’s “AsWeMay Think”7 and the NLS/Augment system8

took the information society as a central theme and the knowledge worker as the
main user to be supported. Engelbart dedicated much of his career on augment-
ing the “high performance knowledge worker” through developing a “knowledge
workshop” system. He explored his vision of reprogrammable software tools to

4 German Federal Ministry of Labour and Social Affairs (2015). ‘Green Paper Work 4.0.’ In: Strate-
gic Notes.

5 European Political Strategy Center (2016). ‘The Future of Work: Skills and Resilience for a
World of Change.’ In: Strategic Notes 13.

6 OECD (2015). In It Together: Why Less Inequality Benefits All. Paris: OECD Publishing. doi:
http://dx.doi.org/10.1787/9789264235120-en. url: /content/book/9789264235120-en.

7 Vannevar Bush (1945b). ‘As we may think.’ In: Atlantic Monthly 176, pp. 101–108.
8 Douglas C Engelbart (1962). ‘Augmenting human intellect: a conceptual framework.’ In: Sum-

mary Report, Stanford Research Institute, on Contract AF 49(638)-1024.

82

https://doi.org/http://dx.doi.org/10.1787/9789264235120-en
/content/book/9789264235120-en

8.2 related work

create universally accessible “personal working files”9 through the framework of
Open Hyperdocument Systems and Dynamic Knowledge Repositories.10
Much of the research in the area of knowledgework since has further developed

and added complexity to these goals. There is a considerable collection of theoret-
ical and ethnographic work on different domains of knowledge work, including
scientific collaboration,11 architectural work,12 and office management.13 Other
approaches have focused on particular activities within knowledge work, such as
file sharing,14 collaborative writing,15 using common data repositories,16 or web
activity.17
However, few have considered “the application” as the unit of analysis. The ones

that have (e.g.,18) are mostly rooted in the standard employment perspective and
studied workers in large organisations with access to enterprise level and domain-
specific applications.

9 Douglas C. Engelbart (1988). ‘Computer-supported Cooperative Work: A Book of Readings.’ In:
ed. by Irene Greif. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Chap. Toward
High-performance Knowledge Workers (Reprint), pp. 67–78. isbn: 0-934613-57-5. url: http:
//dl.acm.org/citation.cfm?id=49504.49507.

10Douglas C. Engelbart (1990). ‘Knowledge-domain Interoperability and an Open Hyperdocu-
ment System.’ In: Proceedings of the 1990 ACM Conference on Computer-supported Cooperative
Work. CSCW ’90. Los Angeles, California, USA: ACM, pp. 143–156. isbn: 0-89791-402-3. doi:
10.1145/99332.99351. url: http://doi.acm.org/10.1145/99332.99351.

11Marina Jirotka, Charlotte P. Lee, and Gary M. Olson (Aug. 2013). ‘Supporting Scientific Collab-
oration: Methods, Tools and Concepts.’ In: Comput. Supported Coop. Work 22.4-6, pp. 667–715.
issn: 0925-9724. doi: 10.1007/s10606-012-9184-0. url: http://dx.doi.org/10.1007/s10606-
012-9184-0.

12 Kjeld Schmidt and Ina Wagner (2004). ‘Ordering Systems: Coordinative Practices and Artifacts
in Architectural Design and Planning.’ In: Computer Supported Cooperative Work (CSCW) 13.5,
pp. 349–408. issn: 1573-7551. doi: 10.1007/s10606-004-5059-3. url: https://doi.org/10.
1007/s10606-004-5059-3.

13 Abigail J. Sellen and Richard H.R. Harper (2003). The Myth of the Paperless Office. Cambridge,
MA, USA: MIT Press. isbn: 026269283X.

14Michael Muller, David R. Millen, and Jonathan Feinberg (2010). ‘Patterns of Usage in an En-
terprise File-sharing Service: Publicizing, Discovering, and Telling the News.’ In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’10. Atlanta, Georgia,
USA: ACM, pp. 763–766. isbn: 978-1-60558-929-9. doi: 10.1145/1753326.1753438. url:
http://doi.acm.org/10.1145/1753326.1753438.

15 Bill Tomlinson et al. (2012). ‘Massively Distributed Authorship of Academic Papers.’ In: CHI ’12
Extended Abstracts on Human Factors in Computing Systems. CHI EA ’12. Austin, Texas, USA:
ACM, pp. 11–20. isbn: 978-1-4503-1016-1. doi: 10.1145/2212776.2212779. url: http://doi.
acm.org/10.1145/2212776.2212779.

16 Charlotte Massey, Thomas Lennig, and Steve Whittaker (2014). ‘Cloudy Forecast: An Explo-
ration of the Factors Underlying Shared Repository Use.’ In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’14. Toronto, Ontario, Canada: ACM, pp. 2461–
2470. isbn: 978-1-4503-2473-1. doi: 10.1145/2556288.2557042. url: http://doi.acm.org/
10.1145/2556288.2557042.

17 Abigail J. Sellen, Rachel Murphy, and Kate L. Shaw (2002). ‘How Knowledge Workers Use the
Web.’ In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’02.
Minneapolis, Minnesota, USA: ACM, pp. 227–234. isbn: 1-58113-453-3. doi: 10.1145/503376.
503418. url: http://doi.acm.org/10.1145/503376.503418.

18 Richard Harper and Abigail Sellen (1995). ‘Collaborative Tools and the Practicalities of Pro-
fessional Work at the International Monetary Fund.’ In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’95. Denver, Colorado, USA: ACM Press/Addison-
Wesley Publishing Co., pp. 122–129. isbn: 0-201-84705-1. doi: 10.1145/223904.223920. url:
http://dx.doi.org/10.1145/223904.223920.

83

http://dl.acm.org/citation.cfm?id=49504.49507
http://dl.acm.org/citation.cfm?id=49504.49507
https://doi.org/10.1145/99332.99351
http://doi.acm.org/10.1145/99332.99351
https://doi.org/10.1007/s10606-012-9184-0
http://dx.doi.org/10.1007/s10606-012-9184-0
http://dx.doi.org/10.1007/s10606-012-9184-0
https://doi.org/10.1007/s10606-004-5059-3
https://doi.org/10.1007/s10606-004-5059-3
https://doi.org/10.1007/s10606-004-5059-3
https://doi.org/10.1145/1753326.1753438
http://doi.acm.org/10.1145/1753326.1753438
https://doi.org/10.1145/2212776.2212779
http://doi.acm.org/10.1145/2212776.2212779
http://doi.acm.org/10.1145/2212776.2212779
https://doi.org/10.1145/2556288.2557042
http://doi.acm.org/10.1145/2556288.2557042
http://doi.acm.org/10.1145/2556288.2557042
https://doi.org/10.1145/503376.503418
https://doi.org/10.1145/503376.503418
http://doi.acm.org/10.1145/503376.503418
https://doi.org/10.1145/223904.223920
http://dx.doi.org/10.1145/223904.223920

8.2 related work

8.2.2 Non-Standard Work

Historically, studies on technology in work practices were situated in corporate
contexts. In third wave HCI,19 research followed computers beyond the organisa-
tional walls and into non-traditional environments. Nomadic work in particular
has received considerable attention, with investigations into such topics as the
effect of spatiality in work activities20 and the struggle these workers face with
maintaining their mobile offices.21
In addition to different workplaces, mobile technologies have also allowed dif-

ferent employer-employee relationships to emerge, as can be found in some types
of non-standard work. Although it lacks a universally agreed upon definition,
non-standard work is generally considered to include three forms of employ-
ment: temporary or fixed-term contracts, part-time and on-demand jobs, and
self-employment.22 There are multiple, continuously evolving types of work per-
formed under such employment contracts, such as portfolio work (i.e., working
for multiple clients at the same time), platform work (i.e., work offered through
digital platforms without a fixed working environment), and crowd work (i.e.,
big tasks that are broken down and digitally distributed over a large amount of
workers).23 Conform to these developments, HCI literature has engaged with the
new types work performed under non-standard contracts – such as the gig econ-
omy,24 the platform economy,25 on-demand work,26 and crowd work27 – but has
paid less attention to existing professions (e.g., journalism) under these condi-
19 Susanne Bødker (2006). ‘When SecondWave HCI Meets ThirdWave Challenges.’ In: Proceedings

of the 4th Nordic Conference on Human-computer Interaction: Changing Roles. NordiCHI ’06. Oslo,
Norway: ACM, pp. 1–8. isbn: 1-59593-325-5. doi: 10.1145/1182475.1182476. url: http:
//doi.acm.org/10.1145/1182475.1182476.

20 Brown Brown and Kenton O’Hara (2003). ‘Place as a Practical Concern of Mobile Workers.’ In:
Environment and Planning A 35.9, pp. 1565–1587. doi: 10.1068/a34231.

21Norman Makoto Su and Gloria Mark (2008). ‘Designing for Nomadic Work.’ In: Proceedings
of the 7th ACM Conference on Designing Interactive Systems. DIS ’08. Cape Town, South Africa:
ACM, pp. 305–314. isbn: 978-1-60558-002-9. doi: 10.1145/1394445.1394478. url: http:
//doi.acm.org/10.1145/1394445.1394478.

22ManosMatsaganis et al. (2016).Non-Standard Employment and Access to Social Security Benefits.
Directorate-General for Employment, Social Affairs and Inclusion, European Commission.

23 Irene Mandl et al. (2015b). New forms of employment. Vol. 2. Publications Office of the European
Union.

24 Ali Alkhatib, Michael S. Bernstein, and Margaret Levi (2017). ‘Examining Crowd Work and Gig
Work Through The Historical Lens of Piecework.’ In: Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems. CHI ’17. Denver, Colorado, USA: ACM, pp. 4599–4616.
isbn: 978-1-4503-4655-9. doi: 10.1145/3025453.3025974. url: http://doi.acm.org/10.
1145/3025453.3025974.

25 Airi Lampinen and Barry Brown (2017). ‘Market Design for HCI: Successes and Failures of Peer-
to-Peer Exchange Platforms.’ In: Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. CHI ’17. Denver, Colorado, USA: ACM, pp. 4331–4343. isbn: 978-1-4503-
4655-9. doi: 10 .1145/3025453 .3025515. url: http : //doi . acm.org/10 .1145/3025453 .
3025515.

26 Rannie Teodoro et al. (2014). ‘The Motivations and Experiences of the On-demand Mobile
Workforce.’ In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work
& Social Computing. CSCW ’14. Baltimore, Maryland, USA: ACM, pp. 236–247. isbn: 978-1-
4503-2540-0. doi: 10.1145/2531602.2531680. url: http://doi.acm.org/10.1145/2531602.
2531680.

27 Lilly C. Irani and M. Six Silberman (2013). ‘Turkopticon: Interrupting Worker Invisibility in
Amazon Mechanical Turk.’ In: Proceedings of the SIGCHI Conference on Human Factors in Com-

84

https://doi.org/10.1145/1182475.1182476
http://doi.acm.org/10.1145/1182475.1182476
http://doi.acm.org/10.1145/1182475.1182476
https://doi.org/10.1068/a34231
https://doi.org/10.1145/1394445.1394478
http://doi.acm.org/10.1145/1394445.1394478
http://doi.acm.org/10.1145/1394445.1394478
https://doi.org/10.1145/3025453.3025974
http://doi.acm.org/10.1145/3025453.3025974
http://doi.acm.org/10.1145/3025453.3025974
https://doi.org/10.1145/3025453.3025515
http://doi.acm.org/10.1145/3025453.3025515
http://doi.acm.org/10.1145/3025453.3025515
https://doi.org/10.1145/2531602.2531680
http://doi.acm.org/10.1145/2531602.2531680
http://doi.acm.org/10.1145/2531602.2531680

8.2 related work

tions.
Underlying most of these discussions is a sense of precarity and vulnerability of

the workers, and the opportunity for specific system designs to promote fairness,
safety, and self-determination. For example, Martin et al.28 describe the invisibil-
ity of much of the work Mechanical Turkers do to operate more efficiently and
how there is no monetary compensation for it. Glöss et al.29 discuss how the
design of apps – in their case ride-sharing apps like Uber and Lyft – embed partic-
ular labour relations, and how this creates responsibilities for the app’s designers.
Lampinen et al.30 introduce a “market design” vocabulary and show how it can
be used to analyse and generate systems with specific (e.g., enjoyable, equitable)
relationships between the market’s stakeholders. These and related themes can
be seen to culminate in Ekbia and Nardi’s31 recent call for HCI to engage with
the political economy of computing.
However, while these contributions acknowledge how technological designs

have an impact on labour practices or market structures, “the application” and
its specific characteristics are rarely implicated.

8.2.3 Applications

Elements of the application model have been challenged from a number of per-
spectives.
Norman, in The Invisible Computer,32 criticises applications for being “homo-

geneous, super-duper general purpose software packages” that “are far too powerful
for the use [we] make of them, yet lack all the necessary components for any given
task”. Instead, he proposes information appliances, devices dedicated to a single
activity but which are based on a universal information standard so outputs can
easily be shared between them.
The Xerox Star implemented a document-centric form of computing in which

documents operated as containers for bits of applications, allowing the user to
combine multiple types of content (e.g., text, graphics, tables, and formulae) that

puting Systems. CHI ’13. Paris, France: ACM, pp. 611–620. isbn: 978-1-4503-1899-0. doi: 10.
1145/2470654.2470742. url: http://doi.acm.org/10.1145/2470654.2470742.

28David Martin et al. (2014). ‘Being a Turker.’ In: Proceedings of the 17th ACM Conference on
Computer Supported Cooperative Work & Social Computing. CSCW ’14. Baltimore, Maryland,
USA: ACM, pp. 224–235. isbn: 978-1-4503-2540-0. doi: 10.1145/2531602.2531663. url:
http://doi.acm.org/10.1145/2531602.2531663.

29Mareike Glöss, Moira McGregor, and Barry Brown (2016). ‘Designing for Labour: Uber and the
On-Demand Mobile Workforce.’ In: Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. CHI ’16. San Jose, California, USA: ACM, pp. 1632–1643. isbn: 978-1-
4503-3362-7. doi: 10.1145/2858036.2858476. url: http://doi.acm.org/10.1145/2858036.
2858476.

30 Lampinen and Brown, ‘Market Design for HCI: Successes and Failures of Peer-to-Peer Exchange
Platforms.’

31Hamid Ekbia and Bonnie Nardi (2016). ‘Social Inequality and HCI: The View from Political
Economy.’ In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
CHI ’16. San Jose, California, USA: ACM, pp. 4997–5002. isbn: 978-1-4503-3362-7. doi: 10.
1145/2858036.2858343. url: http://doi.acm.org/10.1145/2858036.2858343.

32Norman, The Invisible Computer.

85

https://doi.org/10.1145/2470654.2470742
https://doi.org/10.1145/2470654.2470742
http://doi.acm.org/10.1145/2470654.2470742
https://doi.org/10.1145/2531602.2531663
http://doi.acm.org/10.1145/2531602.2531663
https://doi.org/10.1145/2858036.2858476
http://doi.acm.org/10.1145/2858036.2858476
http://doi.acm.org/10.1145/2858036.2858476
https://doi.org/10.1145/2858036.2858343
https://doi.org/10.1145/2858036.2858343
http://doi.acm.org/10.1145/2858036.2858343

8.2 related work

remained (mostly) editable in-place.33 Microsoft’s Object Linking and Embedding
and Apple’s OpenDoc34 technology were industry’s attempts towards a document-
centric paradigm through compound documents, but never quite reachedwidespread
adoption despite significant involvement.
Jef Raskin, in his book The Humane Interface,35 critiques how applications

trap commands in a particular domain and cannot cross application boundaries.
Raskin proposes a radically different take on digital content production through
the esoteric Canon Cat computer prototype, which provides a command based
general purpose content editing environment that replaces files and directories
with a searchable database of user content.
The Haystack project36 argues that there is no way to predict how a user wants

to interact with data, so “there should be no a priori segregation of users’ infor-
mation by ‘type’ or application”.37 Rather than connecting the information to a
particular application with a predetermined set of possible operations, their soft-
ware platform enables users to compound heterogeneous types of data and easily
create aggregate views of it.
Bardram et al.38 describes how applications make combining resources and

tools for complex tasks difficult and explored activity-centric computing as an al-
ternative, in which the main focus of computation is “no longer the file (e.g., a
document) or the application (e.g. MS Word) but the activity of the user”. It intro-
duces an activity abstraction on top of regular desktop applications and allows
the user to arbitrarily move between computers throughout a working day (e.g.,
in a clinical setting), and between different applications dealing with the same
data types (e.g., PDF viewers on different devices).
Kaptelinin and Bannon39 problematise the production model of applications, in

which changes to digital tools are instigated by the product designers and devel-
opers. They suggest moving away from this product based application model and
instead allow for “intrinsic practice transformation”. This means that tool devel-
opment happens as a result of the ongoing dialectic between the user’s practice
and the tool, instead of as a result of externally enforced updates and upgrades.

33 Jeff Johnson et al. (Sept. 1989). ‘The Xerox Star: A Retrospective.’ In: Computer 22.9, pp. 11–26,
28–29. issn: 0018-9162. doi: 10.1109/2.35211. url: http://dx.doi.org/10.1109/2.35211.

34 Kurt Piersol (1994). ‘Under the Hood: A Close-Up of OpenDoc.’ In: BYTE 19, pp. 183–188. url:
http://archive.li/zPfWW.

35 Jef Raskin (2000). The Humane Interface: New Directions for Designing Interactive Systems.
Addison-Wesley Professional.

36 Eytan Adar, David Karger, and Lynn Andrea Stein (1999). ‘Haystack: Per-user Information Envi-
ronments.’ In: Proceedings of the Eighth International Conference on Information and Knowledge
Management. CIKM ’99. Kansas City, Missouri, USA: ACM, pp. 413–422. isbn: 1-58113-146-1.
doi: 10.1145/319950.323231. url: http://doi.acm.org/10.1145/319950.323231.

37David Karger (2007). ‘Haystack: Per-User Information Environments Based on Semistructured
Data.’ In: Beyond the Desktop Metaphor: Designing Integrated Digital Work Environments. Ed. by
Victor Kaptelinin and Mary Czerwinski. Cambridge, MA, USA: MIT Press. Chap. 3, pp. 49–100.

38 Bardram, Bunde-Pedersen, and Soegaard, ‘Support for Activity-based Computing in a Personal
Computing Operating System.’

39 Victor Kaptelinin and Liam J. Bannon (2012). ‘Interaction Design Beyond the Product: Creat-
ing Technology-Enhanced Activity Spaces.’ In: Human–Computer Interaction 27.3, pp. 277–309.
doi: 10 . 1080/07370024 . 2011 . 646930. eprint: http : / /www. tandfonline . com/doi / pdf /
10.1080/07370024.2011.646930. url: http://www.tandfonline.com/doi/abs/10.1080/
07370024.2011.646930.

86

https://doi.org/10.1109/2.35211
http://dx.doi.org/10.1109/2.35211
http://archive.li/zPfWW
https://doi.org/10.1145/319950.323231
http://doi.acm.org/10.1145/319950.323231
https://doi.org/10.1080/07370024.2011.646930
http://www.tandfonline.com/doi/pdf/10.1080/07370024.2011.646930
http://www.tandfonline.com/doi/pdf/10.1080/07370024.2011.646930
http://www.tandfonline.com/doi/abs/10.1080/07370024.2011.646930
http://www.tandfonline.com/doi/abs/10.1080/07370024.2011.646930

8.3 methodology

While these works discuss “the application” to some extent, they each focus on
different characteristics of the software model and base their critiques on a ratio-
nal evaluation, rather than taking a holistic and empirically grounded approach.

8.3 methodology

We conducted an exploratory interview study with 14 participants, focusing on
knowledge workers who collaboratively produce textual, visual, or auditory dig-
ital artefacts in non-standard forms of employment (i.e., freelance work, self-
employment, and fixed-term contracting).

8.3.1 Participants

The participants were recruited through snowball sampling until we reached the-
matic saturation (i.e., until no new categories were found in the last three inter-
views). The participants ranged from 26 to 57 years old, ten were female and
four were male, and they were currently residing in Denmark, The Netherlands,
and Belgium. Their employers and collaborators – as is typical in digital labour
– extended beyond these country borders. Their employment status varied: six
described themselves as freelance, five as self-employed, two were on temporary
contracts, and one had a full-time contract but worked as a freelancer before.
They had been active as a non-standard worker for different periods of time,
ranging from one to sixteen years (mean = 6,4 years). Their occupations were
consultant, journalist, sound designer/composer, user experience designer, art
director, copywriter, and project officer at an NGO. The participants’ type of non-
standard work could be categorised as portfolio work: self-managed and income-
generating work that is not dependent on a single organisation and where the
worker is responsible for building andmaintaining relationships with clients from
various industries.40

8.3.2 Data Collection

The interviews were semi-structured and the questions open-ended. Inspired by
Flanagan’s critical incident technique,41 questions aimed to draw out specific in-
stances, problems, or highlights of technology use. Participants were asked to
walk through a recent or memorable collaborative project, to explain which ap-
plications they worked in, what their collaborators were using, what specific
problems arose in the process, how it related to their preferred workflow, what
workarounds they used, etc. This technique favours detailed descriptions of de-
fined situations over global statements about general use, grounding the partici-
pant in their experience rather than asking them to abstract over longer periods
of time.

40Mandl et al., New forms of employment.
41 John C Flanagan (1954a). ‘The critical incident technique.’ In: Psychological bulletin 51.4, p. 327.

87

8.4 results

The interviews were conducted in person or via video/audio conference tech-
nology (i.e., Skype, appear.in, or WhatsApp), depending on the location or pref-
erence of the participant. Each interview was recorded and lasted between 30
and 110 minutes (mean = 55). The recordings were transcribed orthographi-
cally; pauses, corrections, and non-verbal interjections (laughter and exclama-
tions) were included. Emphasis and intonation were represented using italics
and punctuation.

8.3.3 Analysis

The interviewswere analysed using thematic analysis, a qualitative analysis method
agnostic to theoretical perspectives.42 Codes and themes were constructed induc-
tively, driven by and closely linked to the data in a bottom-up approach. The
transcripts were coded for both semantic and latent themes.43 For example, a
semantic theme included the type of applications participants used to do their
work, and a latent theme how the choice of application affected their employa-
bility. Themes were topics that existed across the majority of data sets or which
were given particular importance within a few data sets (i.e., topics that some
participants felt very strongly about). We aimed to provide a rich thematic de-
scription of the entire data set to give an idea of the predominant or important
themes (as oppposed to focusing on one theme) - some depth and complexity is
necessarily lost. Counts (e.g., the number of participants that used Dropbox) are
reported for the sake of illustrating internal coherency, but should not be seen as
representative or used for inference.

8.4 results

8.4.1 The Natures of Non-Standard Knowledge Work

The work described by participants varied in terms of duration, scale, type of
activity, and composition of stakeholders. Activities consisted of collaboratively
writing news articles for national newspapers, creating soundtracks and sound
effects for mobile games, generating content for global marketing campaigns of
large companies, writing grant applications for research into food security in
Latin America, developing visual brand identities, etc. Projects lasted anywhere
between one week to an entire year. Clients included multinational corporations,
small agencies, and single individuals. Sometimes participants were able to estab-
lish their own team of (non-standard) collaborators for a project, other times they
were hired onto an existing team or worked alone. Participants perceived their
position within the group of collaborators in different ways: some considered
themselves as experts with valuable knowledge and skills, others saw themselves
42 Virginia Braun and Victoria Clarke (2006). ‘Using thematic analysis in psychology.’ In: Qual-

itative Research in Psychology 3.2, pp. 77–101. doi: 10 . 1191/1478088706qp063oa. eprint:
http://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa. url: http://www.
tandfonline.com/doi/abs/10.1191/1478088706qp063oa.

43 Richard E. Boyatzis (1998). Transforming Qualitative Information: Thematic Analysis and Code
Development. SAGE Publications, Inc. isbn: 0761909613.

88

https://doi.org/10.1191/1478088706qp063oa
http://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa
http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

8.4 results

as a standard employee hired to execute the project brief. Collaborators were
rarely located in the same location, but distributed geographically across country
borders and time zones (although some met periodically).
Collaboration as described by the participants consisted of three main activ-

ities: communication, (co-)creation, and data sharing/storage, each with their
own set of associated applications (e.g., Slack for communication, Powerpoint for
creation, OneDrive for data sharing). Co-creation happened both synchronously
and asynchronously and ranged from symmetrical – where all parties were in-
volved in the same way and to the same degree – to asymmetrical – where some
collaborators would contribute only at particular stages of the production. The
primary deliverables produced by the participants were always digital artefacts –
whether textual, visual, or auditory – but sometimes resulted in physical products
or activities.
The applications mentioned by the participants wereDropbox (11),Google Docs

(10),Microsoft Word (8),Microsoft PowerPoint (7),WeTransfer (6),Microsoft Excel
(4), Google Slides (4), Keynote (3), Adobe InDesign (3), OneDrive (3), and Adobe
Photoshop (2). All participants used the Microsoft Office Suite. All but one par-
ticipant used the Google Suite. All five participants working in the visual design
industry used the Adobe Creative Suite. Applications that were only mentioned by
one participant (17) are excluded from this list for brevity.

8.4.1.1 Digital Characteristics of Non-Standard Work

Participants repeatedly emphasised how being a non-standard worker shaped
their relationship with applications in particular ways. Standard workers can rely
on their employer to provide them with (enterprise level) applications, software
training, IT support, and top-down enforced standards that (aim to) streamline
collaboration (e.g., file-naming conventions, shared repositories, document tem-
plates). In contrast, non-standard workers are expected to purchase their own
digital tools:

As a freelancer, that’s just something that you pay for yourself. If you
want to use Photoshop, then you have your own Photoshop. You can’t
expect the client to pay for that. (P8)

They are hired based on their pre-existing knowledge and are responsible for
training themselves in the use of applications:

Often a company will make a user for you in whatever system they’re
using and expect you to become fully aware of how everything works.
And that’s something I’m always quite reluctant about because spending
a lot of time familiarising myself with a system that I’m not going to use
again is a waste of my time and I’m normally not getting paid for that.
(P12)

They need to provide their own technical support (or find a more capable peer),
even though they have no knowledge of or interest in this role:

89

8.4 results

I’m not the IT guy! I’m not! It’s not my expertise. I don’t want to be, but
I have to be. You have to be everything, it’s part of the job. (P6)

While these expectations can also hold true for standard workers, they take on
a different character in non-standard employment. As one participant put it: "The
tools I have need to be more flexible and my knowledge needs to be more advanced
than if I wasn’t self-employed" (P3).Whereas a standard worker can be hired on po-
tential, a non-standard worker is expected to have all the required competences.
What is normally considered the responsibility of the employer (training, tech-
nical support, access to specific tools) becomes a point of competition between
non-standard workers. Consequently, the access and skilled use of applications be-
comes imperative to the worker’s position on the labour market and – given the
flexibility/instability of non-standard employment – challenges related to these
applications can have considerable consequences.

8.4.2 The Value in Applications

Eight participants explicitly mentioned how their labour value as a non-standard
worker was intertwined with specific applications, based on the skills they devel-
oped with and data they invested in them.

8.4.2.1 Skill-Based Value

Participants cultivated optimised workflows and personal appropriations with re-
spect to particular applications and considered this part of their value proposition:

InVision 44 wasn’t meant as a roadmap tool, but for me it is. So that
makes me valuable because I thought of a way of using the application
in that way. Using something that is at hand and cheap, right here and
now, so you don’t spend any unnecessary amounts of money and time.
(P7)

Significant changes to the interface or functionality of an application were ex-
perienced as undermining this skill-based value. For example, one participant
kept postponing an update of her browser-based wireframing application UXPin
45 because she was busy and did not feel she had the time to work in a new in-
terface layout. When the update was finally pushed on her, she felt anxious and
frustrated:

When they make changes, it’s like “woah!”. It’s like I’m starting all over
again. It’s huge and it’s like “aaahh what am I doing here”. (P8)

At the same time, similarities across applications allowed participants to trans-
fer their skills from one application to another, resulting in a blasé attitude to-
wards using unfamiliar applications:

44 A web app for creating clickable, interactive prototypes based on static images.
45 A web app for designing, prototyping, and documenting interfaces.

90

8.4 results

Recently I had a big project where we had to reuse some print files and
the base of that was done in InDesign. I don’t work in InDesign and I
don’t know that program. It’s fairly complicated. But I know the digital
logic of Adobe products, so I wasn’t really fussed. (P6)

This shows how uniformity across applications in a software suite or industry
at large can help relax the coupling between an application and the embodied
skills or workflows users have developed related to that particular application.

8.4.2.2 Data-Based Value

Participants created value in applications through investing them with data (e.g.,
template files, email addresses, purchased plugins):

I have different [Google] documents that I use all the time for new clients.
I have different presentation templates. I have this document I call the
“work document” for working with clients remotely where I maybe put
the agenda and a few thoughts, maybe some inspiration, imagery, ani-
mations. And I have this scoping document whenever I need to "win" a
client. [...] The project management work I do [using these documents],
I consider that part of my toolbox. It’s a reason why people hire me; it’s
part of my value. (P8)

Some participants would try to only work in sustainable file types or explicitly
export their files tomore universal formats, in an effort to protect their data-based
value:

I don’t save into weird new photo formats that Photoshop just came up
with last week. I just stick to the standard formats of things. Because
that way there is a bigger chance that you are able to open them and
use them. (P10)

Although not possible with all types of data, these efforts allowed participants
to decouple their data-based value (to some extent) from the application and
make it accessible beyond its boundaries.

8.4.2.3 Software Conservatism

Participants exhibited software conservatism in that they preferred to use appli-
cations they were familiar with and had invested in rather than exploring (po-
tentially) better alternatives. One participant was aware of the benefits of cloud-
based applications and had even previously compiled a list of recommended ser-
vices for colleagues. Despite repeatedly emphasising how he does “everything in
the cloud”, when sharing stories of his actual practice, he stated that he was “still
quite conservative; I’m still writing in Word in a client” (P4). When communicat-
ing with his collaborators, he would email them a twelve year old document
that requested them to give feedback through Microsoft Word’s track and trace
functionality.

91

8.4 results

However, this loyalty did not guarantee the preservation of their application-
based value. Updating or upgrading an application can result in changes that
are just as significant as switching between applications. The way these changes
are delivered has evolved over the years conform to new business models, from
updates as physical products, to digital downloads, to the subscription-based Soft-
ware as a Service model. Each of these delivery models comes with a different
power relationship between the producer and the consumer of the application,
with the control increasingly in the hands of the manufacturer to decide when
and what to change.

8.4.3 Personal Preference vs. Collective Compromise

In collaboration, the use of the participants’ value-laden applications was compli-
cated further. All fourteen participants reported multiple instances where there
was a tension between wanting to use their preferred applications while simulta-
neously needing to adapt to the constraints imposed on them by the collaboration.
Participants mentioned a wide variety of constraints that influenced which appli-
cations were accessible to them during a project, such as technical constraints
(e.g., operating system incompatibility) or structural constraints (e.g., company’s
security policies).
The vast majority of the time, however, the main constraint cited by partici-

pants was the diversity of institutional and individual practices, preferences, and
proficiencies with respect to applications. One freelance journalist, for example,
received feedback on his articles via the review functionalities in Microsoft Word,
as colour coded text in the document with explanations in a separate email, in
voicemails with the client dictating changes, and as scans of paper copies with
handwritten annotations.

The situation for me as a freelancer, having a lot of customers, a lot of
sources, a lot of contacts, doing different things, I have to be flexible.
[...] People all have different levels of education and different working
habits, so they use what they are used to. (P4)

However, this kind of interpersonal asymmetry was considered fundamentally
incompatible with the way applications are designed:

So it’s really about finding the program or technology that we can all
be united in, but that’s difficult because we all have our own preferences
and our own ways of doing things. (P7)

Consequently, almost all participants started a new project by explicitly ne-
gotiating which applications to use, highlighting the importance of reaching a
collaborative compromise.

8.4.3.1 Application Negotiation

When describing the process of negotiation, participants repeatedly articulated
how their position in the discussion related to their status as a non-standard

92

8.4 results

worker. Ten participants reported that their capacity as an expert-for-hire meant
they had to assume a subordinate position and adapt to their clients: “As a consul-
tant, you’re always trying to work in the customer’s way” (P4). Participants cited
wanting to make their clients “feel safe” (P6) and “have a positive experience col-
laborating” (P9); not wanting to “change or disrupt the entire organisation just
because of that small workshop or website” (P8); and that, “in the end, it is easier
for me to adapt than to make them adapt” (P12).
Four participants expressed that their position as an external expert actually

made them feel entitled – and even compelled – to enforce their own application
preferences, rather than adapting to the client or collaborator. Especially if they
felt it would encroach on their main value proposition as a worker or risk their
professional image:

I decided some time ago that what I’m doing is unique, which is why
I can sell it. So why would I change? Why would I not be the one in
control of what I’m selling them? I see it as a bit of giving up if they can
change me too much, because then they’re not getting what they bought.
For me it’s just been sticking to my guns and figuring out what works
and then reshape the clients instead of the client reshaping me. (P10)

Normally I’ll just bend. Because it’s not important to me. It’s important
that it works. But I won’t bend when I have to present something in
person, because then it’s my persona that’s there. (P11)

In the effort to achieve application symmetry, the stakeholders in a project often
ended up using the lowest common software denominator: the application that was
still available after the various constraints were taken into account (device and
OS compatibility, privacy restrictions, price, interpersonal skill levels, etc):

The thing with KeyNote or Google Slides or something is that it’s so easy
to use, but if you really want to do it beautifully, I would never use that
program. I would love to do that presentation in InDesign but since only
10% of the people involved in that project know how to use it, we made
that compromise of working in Keynote. But they happen all the time,
those compromises. (P13)

In collaboration, then, the personal application preferences of the participants
were routinely replaced through collective compromise, leaning towards themost
traditional applications due to widespread familiarity.

8.4.3.2 The Cost of Compromise

The compromises participants had to make in collaboration did not prevent them
from meeting their contractual obligations, but they did exact a cost on their
labour process. Eleven participants detailed in multiple stories how adapting af-
fected their ability to do their work and, consequently, their perceived worth as a
non-standard worker. For example, one participant was forced to use his client’s
online email system instead of his preferred application, which meant he was
unable to access his application-based data:

93

8.4 results

I am hired for my network, but my network is also in my Outlook; I have
all email addresses and phone numbers in there. But I can’t connect the
email address they gave me with my email client. I am hired for my
expertise and network but I can’t do what I want to do. And this is
something as basic as an email application! (P3)

Another participant was hired under the condition that she would use the
client’s preferred application – even after she explained she was more skilled
in a different one – and felt this affected her value:

I like to do it in the programs that I know so that I can do my best work.
That’s why it can be a bit tricky when your workflow needs to change
and you need to use Keynote instead of Google Slides for instance. It
changes my whole workflow and I get slower and I feel like I am not
worth the money that they pay me. (P8)

In one case, two collaborators tried to meet in the middle – rather than one
party adapting to the other – which compromised both their abilities to work
optimally:

And she was very honest, she said “I don’t normally use this so I don’t
really know how it works”. So she sent [the PowerPoint slides] to me
and the pictures were beautiful, but you couldn’t write in it... it was just
made of pictures. So I tried to change it as well and I’m normally quite
good in those programs but she’d done stuff that I hadn’t seen before.
(P11)

The cost of compromise also had ripple effects beyond the context of a particu-
lar project. Frequently, participants would abandon their preferred application in
anticipation of collaboration, rather than at the request of the client or colleague:

I think I am doing that more and more based on the experiences I’ve had
where I send people Google Docs and then they pasted the text into Word
documents. So now I’ve started to assume that Word is the best choice
in many situations because it doesn’t cause any disturbance and people
are not surprised by a Word document. (P10)

This self-censorship also affected which applications participants were willing
to invest in (even at the cost of their own emotional state):

I make a ton of PowerPoints. Its the stupidest thing I ever taught myself
because it’s so boring, but there’s a big need for them and it pays my rent.
But PowerPoint is such a shitty program. Microsoft needs to be dragged
outside and shot. I haven’t even started working in Keynote that I hear is
so much easier, because none of my clients would be able to access them.
None of my clients use Keynote and that conversion there is between
Keynote and PowerPoint doesn’t work. So if I do it in Keynote it means
I have to redo it in PowerPoint anyway. It’s actually a better program,
a better product. But I haven’t wanted to spend the time on it because I
can only sell PowerPoints. (P10)

94

8.4 results

The cost, then, does not express itself in the inability of the participants to pro-
duce in collaboration, but rather in their inability to consistently use the applica-
tions they are most experienced with and in systematically preventing workers to
use better applications that can improve their work practices. At the same time,
having to constantly switch between applications per project inhibits the repeated
and deliberate practice with those applications to develop into an increased pro-
ficiency. As the above examples indicate, unless a team of collaborators happen
to use the same applications in the same way, there will always be a compromise
that leaves a stakeholder bereft of their preferred tool and make it more difficult
for them to produce at the level they are capable of.

8.4.4 Cross-Application Collaboration

Seven participants developed a number of practices to facilitate a (precarious)
type of cross-application collaboration in an effort to still use their preferred appli-
cations and protect their value, while simultaneously accommodate their clients
and collaborators. Most commonly, collaborators would break up co-creation ac-
tivities among their preferred applications for as long as possible and then move
the data across application boundaries:

I usually let the copywriter decide what kind of format they want to write
in because it’s their desktop. It’s their tool. So we usually use Word, but
before I send it to a copywriter I like to do my draft of it in Textedit or
just in an email. (P10)

This type of distribution sometimes resulted in a state of confusing document
divergence, where it was not clear which version of the document was the ‘real’
or ‘final’ one:

And you know, just proof reading is a big challenge! When you have
that kind of... what’s the final sentence on this page? Is it the one in the
InDesign document? Or the one in the Keynote document? Who gets to
decide? (P8)

If the data was of a non-proprietary type (such as plaintext), crossing applica-
tion boundaries required some additional work but was mostly seamless:

I wrote two blogposts and sent those to her as Google Docs and asked for
her comments and she returned them to me in Word, having used the
comments function. It makes it a bit harder because then I have to take
the comments from the Word documents into my Google Docs because I
continue working in my Google Docs. It’s more work for them and more
work for me. (P9)

However, with task-specific applications that produce more particular digital
artefacts, the data needed to be transformed. Translating between applications
(or between different versions of the same application) was done by exporting
the file to a more universal file format and opening it in the target application, at
the cost of flexibility and interactivity:

95

8.4 results

So he made the slides in Illustrator and exported them as PDFs and
then we built the whole slideshow in PowerPoint. And that prolonged
the process because when you find a mistake in the PowerPoint, he had
to go back and correct it in Illustrator, export it again, and then upload
it. (P7)

I know that if I save an InDesign as a PDF, I will be able to actually open
it in Illustrator and actually access the different elements because you
can do that. It’s gonna take bloody ages and it’s such a mess and there’s
weird boxes that don’t do anything all over the place, but that’s how you
do it. (P10)

The exported file functioned as an intermediary that could be read by both
applications, but at the expense of flattening it to a state that can no longer be
operated on in the same way, sometimes affecting the file’s integrity. The cross-
application collaboration participants can engage in, then, is one that requires a
constant back and forth between stakeholders depreciating their produced digital
artefacts to a format that is readable to some extent across applications.

8.4.5 Preferred Alternatives

Specific software properties emerged as being particularly conducive to non-standard
work practices. Interestingly, the properties that participants described as the rea-
son why they preferred one application over another were rarely the features one
would consider part of the application’s unique selling point. Instead, applications
were compared and contrasted based on underlying application infrastructures
(e.g., how it handled files) rather than the activity the application purported to
support (e.g., making wireframes).

8.4.5.1 Zero-install

Multiple participants repeatedly and forcefully praised the application appear.in,
a simple WebRTC video communication web app. They preferred it not because
they thought it had superior video/audio quality or unique features, but because
of its almost non-existent onboarding threshold:

The thing that doesn’t work with Skype for Business is that it takes so
many steps to get to the actual business. Whereas with appear.in, you get
a link and we’re running. It’s easier than picking up the phone. That’s
a massive quality criteria for any solution when you’re trying to get
someone into something new. If they have to figure out how to even get
in there... it’s like inviting somebody to your house and saying “I’m not
gonna unlock the door, you’re just gonna have to get a lock-pick and try
to break in”. (P6)

Bypassing the traditional installation requirement of applications was preferred
by the participants because it addressed the cost and benefit disparity that is
common in application negotiations: the person recommending the application

96

8.4 results

is the principal beneficiary (since they are already familiar with the software and
have it set up) whereas the people adapting to this new application have to pay
the cost of installing and familiarising themselves with it. Zero-install applications
greatly reduce the time and effort required of the newcomer and thus made it
more likely for the application to be successfully integrated.

8.4.5.2 Links Instead of Files

Participants preferred URL-based documents over file-based documents for a va-
riety of reasons. Files were seen as a (limited) representation instead of a one-to-
one translation of the participant’s document, whereas URLs gave access to the
actual document as the participant saw them in the context of the application.

You have to remember you can’t send PowerPoints to a client because if
a client doesn’t have that font that you’re using it’ll look weird. So you
have to export it as a PDF to send it but then you can’t use animations
in PowerPoint. So if you have slides with things flying in, you have to
simulate the animations by creating twenty slides. (P7)

Files required the participants to actively share a particular state of the docu-
ment, whereas URLs could be passively shared and still be changed afterwards:

In the beginning we would share presentations with clients as a PDF.
But eventually we found out, you know, why not just send the link? And
then we could even make small changes 5 minutes before the deadline.
We didn’t have the stress of saving out the file. (P8)

URLs were seen as easier to manage than files because they were always the
right version of the document, they were easier to share, and they could be book-
marked instead of being lost in the client’s inbox:

When you only have one Google document and everyone can go in there,
then you don’t have that discussion of which file is the right one because
it’s just super visible. There’s only one copy. (P8)

InVision gives the customer a link that they can share internally and
I think that’s really valuable to them. That you don’t have to send the
PowerPoint but that you can just send the link. Even though [a file] is
just adding a few more steps – downloading and opening it – it’s a hassle.
With a link you can just bookmark it in your browser, you don’t have to
go into your email and find the PowerPoint every time.

One participant even went as far as to say that it was “impossible to do modern
work where everybody sits with their documents in their local drives” (P6).
Interestingly, it was not the qualities one would normally relate to cloud-based

services that made these applications preferable (i.e., real-time collaboration),
but rather the qualitatively different experience of interacting, managing, and
sharing a digital artefact in the shape of a URL. It contrasts the static and non-
representative snapshot of the document that is a file, with the dynamic and “real”
version of the document that is accessed through a URL.

97

8.5 discussion

8.4.5.3 Desktop vs. Browser

Participants predominately preferred web applications over native applications,
but not (necessarily) because they support real-time collaboration or their docu-
ments are stored in the cloud. Instead, they pointed to the fundamentally differ-
ent relationship of native applications and web applications with the underlying
hardware and software. Native applications have a larger amount of dependen-
cies and participants struggled with managing compatibility issues between a
file and different versions of the same application, between an application and
different devices, between an application and different operating systems, and be-
tween an application and different versions of the same operating system. Web
applications, however, absolved the participants from having to anticipate or even
be aware of the technological realities of their collaborators:

I prefer web apps and that is what I recommend people to use because
I only need to send the link and I don’t have to worry about whether
someone has the right version. (P4)

I recently came back to InVision because it is online. I don’t have to worry
whether people are on a Mac or a Windows. (P7)

Browsers and web standards function as a de facto universal operating sys-
tem that can guarantee a higher degree of interoperability across software and
hardware than native applications, and the applications built on top of it have a
substantively different character because of it.

8.5 discussion

Our findings demonstrate the central role of applications in (collaborative) non-
standard knowledge work. Participants invested data and developed skills in spe-
cific applications, and their value as “human capital” became intertwinedwith the
effective and efficient use of those applications. However, participants struggled
to control and access those value-holding applications – both in isolation and
collaboration. Compromising on their preferred application meant participants
were unable to use tools or techniques they had already developed, had to spend
time learning how to use a new application, refrained from or were unable to per-
form certain tasks, felt clumsy, slow, and incompetent, etc. Some non-standard
knowledge workers knew which applications were most commonly used by their
(prospective) clients and peers and, to avoid the cost of compromise, eschewed
experimenting with or investing in applications that might be easier to use or
more powerful. Others tried to continue using their preferred applications and
would cross application boundaries by copying content or exporting their work
to more universal formats. However, those practices transformed their product
into something with a different type of fidelity and interactivity that was less
flexible and more time-consuming to manage.

98

8.5 discussion

8.5.1 Application-Application Relationship

Underpinning the participants’ experiences is the ubiquitous silo model of appli-
cations, in which interoperability between applications is the exception rather
than the rule. This forces users to be unified in their application choices if they
want to collaborate, and there is a fundamental tension between this prescriptive
symmetry and the asymmetric nature of non-standard work. The individual dif-
ferences in skill level, responsibilities, or preferences between collaborators are
not reflected anywhere in the applications: the expert and the novice, the cre-
ative and the manager, the traditionalist and the adventurous are all funnelled
into using the same application with largely the same user interface that has the
same functionality to operate on the same data type. Because of this ubiquitous
characteristic in applications, the majority of collaborations started with an ex-
plicit discussion about which set of technological constraints to adopt. It created a
mentality of assumed compromise in non-standard knowledge workers, to the ex-
tent that they changed their application use in anticipation of collaboration and
chose to use the lowest common software denominator in their target market,
even when they worked by themselves.
Variations in the application model exist that support more asymmetry. For ex-

ample, email clients operate through standardised protocols, which allows for a
different relationship between applications; users are not constrained by the soft-
ware their communication partner is using and can shift between different ap-
plications with different functionality at their own discretion. Microsoft’s Object
Linking and Embedding and Apple’s OpenDoc frameworks allowed for a similar
type of application-application relationship in productivity software – but with
limited success. The participants’ practices to cross application boundaries can
be seen as a bottom-up attempt to achieve this kind of interoperability. By follow-
ing the path of least resistance, participants found the file types that had overlap
between applications and operating systems and exported, copied, or recorded
their documents in those formats. This allowed different stakeholders to use their
preferred applications – with all the associated labour value – while still working
towards a common digital artefact. However, these more universal file types that
could travel between applications transformed the document into something dif-
ferent: Adobe Illustrator files with layers were flattened into PDFs, interactive
InVision wireframes were turned into static .jpeg images, Cubase audio tracks
were reduced to .mp3 files.

8.5.2 Application-Document Relationship

The participants’ way of achieving application interoperability relies on another
common application characteristic: the distinction between the application and
the document. Most applications treat the document as something separate from,
yet still defined by and intrinsically coupled to, the application. The document
can be independent as a file, yet at the same time requires an application to be
created, rendered, and operated on. Which applications are able to interact with
the file depends on the way in which it has been externalised. Saving the docu-

99

8.5 discussion

ment in the format preferred by the application will result in a file that, when
opened, closely resembles the document as it existed inside the application when
it was created. However, because most applications’ formats are proprietary, this
also means that the file usually cannot be operated on by other applications. Sav-
ing the document in more universal formats increases the chances that it can be
opened by other applications, but moves the document further away from how it
originally existed in the application. This tension between truthful externalisation
and general accessibility is a result of the “separate yet connected” application-
document relationship that is common in applications.
Alternative application-document relationships exist that show how the inte-

gration or separation between the two can vary. For example, web applications
can be considered to have a closer connection between the application and the
document because they use a pass by reference model for sharing documents,
rather than the pass by value that is associated with file-based sharing. In this ap-
proach, documents are not externalised, but can instead be linked to directly in
the context of the application: the application and the document are experienced
together, rather than as two separate entities (although web-based services such
as Google Drive and Microsoft 365 still allow users to save the document as an
external file).
Another type of application-document relationship can be seen in Embedded-

Buttons,46 which was an architecture that allowed arbitrary elements in the doc-
ument (e.g., lines or text) to be turned into buttons. Those buttons could then
interact with other elements in the document (while retaining the ability to be
operated on by the application). The buttons were part of the document and could
travel between editors, but could also be linked to the application and effectively
extend its functionality. This blurs the distinction between the document and the
application. On the one hand, the document and application start to merge be-
cause the document (in the form of buttons) is becoming part of the application’s
user interface. On the other hand, the document and the application start to
separate because the document could contain all the functionality it needs to op-
erate on itself, within itself. However, the EmbeddedButtons documents needed
an application to be rendered, so there was still a distinction between the two.
A change in the application-document relationship has implications for the

application-application relationship as well. If the application and the document
are merged, users could share a digital artefact without needing to consider
whether the receiver has access to the same (version of the) application that can
open it. Because the digital artefact knows how to render itself, there would be
no need to externalise the document and there would be no loss of fidelity. How-
ever, if the application/document is serialised and self-contained, users would
no longer be able to open documents in asymmetric applications. The document
would be identical for all stakeholders, and there would be no way to achieve the
application asymmetry that is possible in the current application model.

46 Eric A. Bier (1991). ‘EmbeddedButtons: Documents As User Interfaces.’ In: Proceedings of the
4th Annual ACM Symposium on User Interface Software and Technology. UIST ’91. Hilton Head,
South Carolina, USA: ACM, pp. 45–53. isbn: 0-89791-451-1. doi: 10.1145/120782.120787.
url: http://doi.acm.org/10.1145/120782.120787.

100

https://doi.org/10.1145/120782.120787
http://doi.acm.org/10.1145/120782.120787

8.5 discussion

Webstrates47 is amore recent interactive environment that pushes the application-
document relationship to the extreme and does not technically distinguish be-
tween the two at all; any part of the document can be operated on by the user
and be made to operate on any other part in the document, including the user
interface. A document in Webstrates, called a webstrate, is expressed in standard
HTML. A webstrate is loaded in a web-browser like any other web-page, but lo-
cal changes to the document (including embedded code and styling) are made
persistent and synchronized to all clients of the same page. Klokmose et al.48
demonstrate that Webstrates has the potential to support asymmetric collabora-
tion: it allows users to interact with the same document through entirely different
(and personalised) editors. This application model would allow each stakeholder
in a project to use the application they felt most skilled, efficient, and comfortable
with. However, these capabilities have only been demonstrated through proof-of-
concept prototypes.

8.5.3 Implications for Research, Development, and Design

The results of our study highlight problems that have been at the core of HCI
since before it was an official field of research, but which are still challenging
knowledge workers fifty years later. While document-centric and activity-centric
computing have targeted some of these issues, those models do not address all
of the problems identified here: the need to support application asymmetry in
collaboration, the user’s contentious control over changes made to their applica-
tions, and the difficulty of transferring embodied skills between applications due
to design diversity would still be problematic in those approaches.
From a technical perspective, the limitations of the current application-centric

paradigm could be addressed at two different scales. The small-scale approach
would be to create applications that slot into the current paradigm, but which sub-
vert the traditional model. Entrepreneurial designers and developers could create
simple zero-install tools (such as appear.in) that can support different facets of
(collaborative) knowledge work with an appropriate power-simplicity trade-off.
This approach is reminiscent of the UNIX philosophy,49 which advocates that ap-
plication software should be written as simple tools that can be combined to do
complex tasks (as opposed to using complex tools to do simple tasks). However,
some tasks are too complex and do not easily lend themselves to be distributed as
an open-source UNIX tool: cloud-based collaborative systems require expensive
infrastructure that currently need a reliable revenue stream.
The large-scale approach is to follow in the footsteps of a project such as Web-

strates, and fundamentally rethink the application model and the application-
document distinction. This could result in systems that support asymmetric col-

47 Clemens N. Klokmose et al. (2015a). ‘Webstrates: Shareable Dynamic Media.’ In: Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology. UIST ’15. Charlotte,
NC, USA: ACM, pp. 280–290. isbn: 978-1-4503-3779-3. doi: 10.1145/2807442.2807446. url:
http://doi.acm.org/10.1145/2807442.2807446.

48 Ibid.
49 Rob Pike and Brian W Kernighan (1984). ‘The UNIX System: Program Design in the UNIX

Environment.’ In: AT&T Bell Laboratories Technical Journal 63.8, pp. 1595–1605.

101

https://doi.org/10.1145/2807442.2807446
http://doi.acm.org/10.1145/2807442.2807446

8.5 discussion

laboration with highly idiosyncratic tools that are specifically developed for in-
dividual practices. However, the elephant in the room is the sheer difficulty of
addressing such fossilised structures as the application model. Once a technology
is introduced, “choices tend to become strongly fixed in material equipment, eco-
nomic investment, and social habit [and] the original flexibility vanishes for all
practical purposes”.50 Alternatives, then, can only be built and tested in isolated
bubbles. Potential future research would include establishing microcosms where
a possible future can be explored and studied.51
The way applications are tied to the labour value of precarious workers also

creates a responsibility for HCI researchers to not disrupt it. Novelty is privileged
in HCI research and new interfaces and interaction techniques often stand out by
their noticeable deviation from the status quo. Engaging with Ekbia and Nardi’s
call to consider the political economy of HCI52 forces us to ask who stands to
benefit most from this approach. The participants’ accounts show how stabil-
ising applications, fixing bugs without radically changing interaction patterns,
and standardisation protocols would support collaboration better than new fea-
tures. Favouring innovation over preservation favours those who can innovate
over those who have to maintain. Questions that emerge from this perspective
are whether there are alternative update and upgrade models for applications
that would minimise the way it jeopardises the embodied skills of users, and how
fundamental the tension between the users’ needs for stability and uniformity
and the current novelty-based paradigm really is.
One of the challenges that remains is figuring out the scope of the problem. The

application is near invisible in its omnipresence, which makes it difficult to iden-
tify its consequences without something to contrast it with. While this study fo-
cused on non-standard knowledge workers, the challenges of application-centric
computing are not necessarily limited to this demographic. Standard workers
in larger enterprises also have applications imposed on them and find ways of
working around it53 and project-based, cross-organisational collaborations are
not uncommon in multinational networked organisations either. Exploring its im-
pact in different work domains, different cultures of use, and different economies
will reveal the everyday societal and economic costs of the problems workers face
in this anachronistic application model.

50Winner, ‘Do artifacts have politics?’
51Henrik Korsgaard, Clemens Nylandsted Klokmose, and Susanne Bødker (2016). ‘Computational
Alternatives in Participatory Design: Putting the T Back in Socio-technical Research.’ In: Pro-
ceedings of the 14th Participatory Design Conference: Full Papers - Volume 1. PDC ’16. Aarhus,
Denmark: ACM, pp. 71–79. isbn: 978-1-4503-4046-5. doi: 10.1145/2940299.2940314. url:
http://doi.acm.org/10.1145/2940299.2940314.

52 Ekbia and Nardi, ‘Social Inequality and HCI: The View from Political Economy.’
53Mark J. Handel and Steven Poltrock (2011). ‘Working Around Official Applications: Experiences

from a Large Engineering Project.’ In: Proceedings of the ACM 2011 Conference on Computer
Supported Cooperative Work. CSCW ’11. Hangzhou, China: ACM, pp. 309–312. isbn: 978-1-
4503-0556-3. doi: 10.1145/1958824.1958870. url: http://doi.acm.org/10.1145/1958824.
1958870.

102

https://doi.org/10.1145/2940299.2940314
http://doi.acm.org/10.1145/2940299.2940314
https://doi.org/10.1145/1958824.1958870
http://doi.acm.org/10.1145/1958824.1958870
http://doi.acm.org/10.1145/1958824.1958870

8.6 conclusion

8.6 conclusion

The application represents a particular way of packaging interaction with com-
putation. We explored how the common characteristics of applications reveal
themselves through the problems and opportunities experienced by non-standard
knowledge workers. We found how the labour value of these workers is tied
up with the applications they use based on the skills and data they invest in
them and how this relationship affects the efficient, effective, and enjoyable ex-
ecution of their tasks. However, the technical tendencies of application-centric
computing require non-standard knowledge workers to regularly abandon their
preferred choice and instead switch to applications they are unfamiliar with or
which change their ability to produce. At the same time, not all applications are
identical and the extent and way in which users have to adapt can vary, based on
the way the application relates to the document, different versions of the same
application, other applications, and the operating system. The way application
characteristics vary shows how they exist on a spectrum and how alternative mod-
els can create qualitatively different user experiences. Given the central position
of the application in our interaction with computation, empirically exploring the
application-centric computing paradigm is imperative in order to further reveal
what defines an application, how variations matter, and what alternatives are yet
to be explored.

103

9.
NEGOT IABLE SOFTWARE : L IT ERATE
COMPUT I NG WITH WEBSTRATES
Ba s e d on Rädl e , Nouwen s , A n t on s e n , E a g a n , a n d K l o kmo s e . 1

Figure 32. Example uses of Codestrates: (A) Collaborative authoring of a physics report.
Accelerometer data from a phone is visualized in real-time in the codestrate,
and across multiple devices; (B) a codestrate is extended with real-time video
communication; (C) the mechanics of a game implemented in a codestrate is
collaboratively tinkered with at run-time.

9.1 introduction

There is a strong political push in post-industrial economies to consider computa-
tional thinking as a “fundamental skill for everyone”2 is to create a future in which
professional and non-professional programmers alike have the skills to develop
their own software or adapt someone else’s. But computational thinking alone
is insufficient: to achieve this goal we need to change how we build software.
The current application-centric paradigm of software creates a strong separation
between programming and use, making it difficult to renegotiate a program’s be-
havior: most applications offer no meaningful way for end-users to adapt them
to their needs. While some allow customization through plugins, they are con-
fined to the boundaries of their specific application’s exposed API. Open source
applications can be tailored, but require a user to overcome the significant bar-
rier of assuming a programmer role (downloading source code, understanding
it, editing, building, and deploying it). If efforts to teach computational think-
1 Roman Rädle et al. (2017). ‘Codestrates: Literate computing with webstrates.’ In: Proceedings

of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 715–725.
2 Jeannette M. Wing (Mar. 2006). ‘Computational Thinking.’ In: Commun. ACM 49.3, pp. 33–35.

issn: 0001-0782. doi: 10 .1145/1118178 .1118215. url: http : //doi . acm.org/10 .1145/
1118178.1118215.

104

https://doi.org/10.1145/1118178.1118215
http://doi.acm.org/10.1145/1118178.1118215
http://doi.acm.org/10.1145/1118178.1118215

9.1 introduction

ing succeed, we may find that people have the knowledge to adapt their digital
tools, but not the power to do so. We need a new way of building software that is
negotiable by design.
Webstrates3 demonstrates how software can become reprogrammable and ex-

tensible in a collaborative fashion, blurring the distinction between applications
and documents through a simple change to theweb stack—making the Document
Object Model (DOM) of web-pages persistent and collaboratively editable. Klok-
mose et al. present two approaches for developing with Webstrates: 1) using the
web browser’s built-in developer tools to edit the DOM; and, 2) using a dedicated
code-editor webstrate that loads the code of other webstrates through transclu-
sion using iframes. In both of these cases, there is a separation between using
a webstrate and changing its behavior. The first limits development to desktop
computers and makes use of a tool meant for debugging rather than developing.
The second introduces an application-document relationship between webstrates,
where the user has the overhead of loading the target webstrate in a separate code
editor to make changes.
In interactive notebooks, use and development happen in the same context.

They have become popular with non-professional programmers in education and
scientific communities because they allow for authoring content, use code to pro-
cess data, and visualize results in the same document.4 Interactive notebooks
typically allow for creating documents that interleave blocks of executable code
with blocks of (rich) text, and output from the code in the form of textual data
or graphics. The creators of the popular Jupyter notebook call this approach liter-
ate computing56. Literate computing has the potential for narrowing the gap be-
tween developing and using applications, however today’s interactive notebooks
have limitations: 1) Support for developing applications from within a notebook
is limited as it is difficult to save application state, 2) real-time collaboration is,
at best, limited to text editing and 3) the behaviour of a notebook cannot be
reprogrammed or extended from within, hereby limiting its expressive power.
We present Codestrates, an alternative approach to building user-extensible col-

laborative interactive systems that combines the possibilities of Webstrates with
literate computing. Firstly, Codestrates pushes the literate computing approach
further by making collaborative computation, extension, and development of
applications with persisted state possible in the same environment, hereby nar-
rowing the gap between development and use of interactive systems. Secondly,
Codestrates enables prototyping in a manner similar to code playgrounds (e.g.,

3 Clemens N Klokmose et al. (2015b). ‘Webstrates: shareable dynamic media.’ In: Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology. ACM, pp. 280–290.

4 Thomas Kluyver et al. (2016). ‘Jupyter Notebooks–a publishing format for reproducible com-
putational workflows.’ In: Positioning and Power in Academic Publishing: Players, Agents and
Agendas, pp. 87–90.

5 K Jarrod Millman and Fernando Pérez (2014). ‘Developing open-source scientific practice.’ In:
Implementing Reproducible Research 149.

6 Knuth’s literate programming (Donald E. Knuth [May 1984]. ‘Literate Programming.’ In: Comput.
J. 27.2, pp. 97–111. issn: 0010-4620. doi: 10.1093/comjnl/27.2.97. url: http://dx.doi.org/
10.1093/comjnl/27.2.97) is the act of interweaving code and documentation in the same
source file, where literate computing is the blend of writing and executing code with authoring
text and rich media in the same interactive document.

105

https://doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97

9.2 related work

Codepen or JSFiddle), but as application state persists, prototypes become usable
applications. Thirdly, Codestrates provides Webstrates with a development envi-
ronment that goes beyond the paradigmatic application-document model. Code-
strates is open source and ready for everyone to tinker at https://codestrates.org.
After reviewing related work, we explain the concept of Codestrates and demon-

strate it with three use cases, inspired by our own day-to-day use: (i) using a
codestrate as a collaborative interactive notebook (fig. 32(a)), (ii) extending the
functionality of a codestrate (fig. 32(b)), and (iii) developing reprogrammable
applications in a codestrate (fig. 32(c)). We subsequently explain the technical
implementation of Codestrates, discuss its limitations, and evaluate it based on
Olsen’s solution viscosity criteria.7

9.2 related work

Codestrates combines real-time, web-based collaborative authoring, documents
that blend multimedia with executable code in a literate computing style, and
end-user (re)programmability of the document and the application. We discuss
related work that combines some of these elements.

9.2.1 Collaborative systems and documents

Jupiter8 was an early collaborative multi-user dungeon built around shared, per-
sistent “virtual places” (i.e., rooms). Users could create and customize places,
documents, and tools in Jupiter using the provided high-level windowing toolkit
or the internal programming language. Since then, Google Docs has established
itself as one of the first web-based word processors that offered real-time collabo-
ration. Dropbox recently released their own collaborative word processor called
Paper9, which goes beyond traditional documents by allowing users to write text,
embed rich media, and include (non-executable) code snippets.

9.2.2 Scriptable and reprogrammable applications

9.2.2.1 Shareable and malleable applications

HyperCard10 was an early hypermedia system for producing software that could
easily be shared with and adapted by others. Through a visual drag-and-drop
interface, end-users could create applications by building “stacks” of interactive
cards. Users could programmatically add interactivity to the cards (e.g., a button
7 Dan R. Olsen Jr. (2007). ‘Evaluating User Interface Systems Research.’ In: Proceedings of the 20th

Annual ACM Symposium on User Interface Software and Technology. UIST ’07. Newport, Rhode
Island, USA: ACM, pp. 251–258. isbn: 978-1-59593-679-0. doi: 10.1145/1294211.1294256.
url: http://doi.acm.org/10.1145/1294211.1294256.

8 David A. Nichols et al. (1995). ‘High-latency, Low-bandwidth Windowing in the Jupiter Collabo-
ration System.’ In: Proceedings of the 8th Annual ACM Symposium on User Interface and Software
Technology. UIST ’95. Pittsburgh, Pennsylvania, USA: ACM, pp. 111–120. isbn: 0-89791-709-X.
doi: 10.1145/215585.215706. url: http://doi.acm.org/10.1145/215585.215706.

9 https://paper.dropbox.com/ (last accessed: July 11, 2017)
10D Goodman (1988). The complete Hyper Card Handbook. Bantam Books.

106

https://codestrates.org
https://doi.org/10.1145/1294211.1294256
http://doi.acm.org/10.1145/1294211.1294256
https://doi.org/10.1145/215585.215706
http://doi.acm.org/10.1145/215585.215706
https://paper.dropbox.com/

9.2 related work

on a card could link to another card in the stack) using the provided scripting
language Hypertalk. However, HyperCard was only scriptable and not fully re-
programmable.

9.2.2.2 Reprogrammability of an environment at run-time

Smalltalk programming systems like Squeak11 or Pharo12 allow users to extend
a program’s functionality or even reprogram it entirely at run-time through just-
in-time compilation and late binding.13 Smalltalk relies on an image-based per-
sistence model which forgoes a hard distinction between system code, applica-
tion code, and application state. In the recent Lively project,14 the concepts of
Smalltalk have been ported to the modern web architecture using JavaScript. It
takes an object-oriented approach to UIs based on Morphic15 by abstracting over
the DOM and CSS.

9.2.2.3 Web-based dev playgrounds & reactive programming

Web-based programming environments like JSFiddle16, JS Bin17, and Codepen18
allow the user to experiment with code and rapidly develop UI, functionality,
features, or applications that stay reprogrammable and can be shared with others.
However, (i) the persistence and sharing of application state is not supported, (ii)
the user’s code cannot change the development environment (e.g., to increase its
expressive match19 by customizing its tools to match a programmer’s personal
preference), and (iii) collaboration is only possible for the editing of code.
Various web-based systems exist that try to make application development

more approachable by going beyond traditional programming, such as through
spreadsheet-like environments in Gneiss20 or using only HTML in Mavo.21 How-

11Dan Ingalls et al. (Oct. 1997). ‘Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself.’ In: SIGPLAN Not. 32.10, pp. 318–326. issn: 0362-1340. doi: 10.1145/263700.
263754. url: http://doi.acm.org/10.1145/263700.263754.

12 http://pharo.org/ (last accessed: July 11, 2017)
13 Adele Goldberg (Oct. 1995). ‘Why Smalltalk?’ In: Commun. ACM 38.10, pp. 105–107. issn:

0001-0782. doi: 10 .1145/226239 .226260. url: http : //doi . acm.org/10 .1145/226239 .
226260.

14 Antero Taivalsaari et al. (2008).Web Browser As an Application Platform: The Lively Kernel Expe-
rience. Mountain View, CA, USA; Robert Krahn et al. (2009). ‘Lively Wiki a Development Envi-
ronment for Creating and Sharing Active Web Content.’ In: Proceedings of the 5th International
Symposium on Wikis and Open Collaboration. WikiSym ’09. Orlando, Florida: ACM, 9:1–9:10.
isbn: 978-1-60558-730-1. doi: 10.1145/1641309.1641324. url: http://doi.acm.org/10.
1145/1641309.1641324.

15 John H Maloney and Randall B Smith (1995). ‘Directness and liveness in the morphic user
interface construction environment.’ In: Proceedings of the 8th annual ACM symposium on User
interface and software technology. ACM, pp. 21–28.

16 https://jsfiddle.net/ (last accessed: July 11, 2017)
17 https://jsbin.com/ (last accessed: July 11, 2017)
18 http://codepen.io/ (last accessed: July 11, 2017)
19Olsen, ‘Evaluating User Interface Systems Research.’
20 Kerry Shih-Ping Chang and Brad A. Myers (Apr. 2017). ‘Gneiss.’ In: J. Vis. Lang. Comput. 39.C,

pp. 41–50. issn: 1045-926X. doi: 10.1016/j.jvlc.2016.07.004. url: https://doi.org/10.1016/
j.jvlc.2016.07.004.

21 Lea Verou, Amy X. Zhang, and David R. Karger (2016). ‘Mavo: Creating Interactive Data-Driven
Web Applications by Authoring HTML.’ In: Proceedings of the 29th Annual Symposium on User

107

https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/263700.263754
http://doi.acm.org/10.1145/263700.263754
http://pharo.org/
https://doi.org/10.1145/226239.226260
http://doi.acm.org/10.1145/226239.226260
http://doi.acm.org/10.1145/226239.226260
https://doi.org/10.1145/1641309.1641324
http://doi.acm.org/10.1145/1641309.1641324
http://doi.acm.org/10.1145/1641309.1641324
https://jsfiddle.net/
https://jsbin.com/
http://codepen.io/
https://doi.org/10.1016/j.jvlc.2016.07.004
https://doi.org/10.1016/j.jvlc.2016.07.004
https://doi.org/10.1016/j.jvlc.2016.07.004

9.2 related work

ever, reprogramming finished applications requires external editors or importing
it back into the development environment, rather than the use environment.

9.2.3 Interactive notebooks using literate computing

9.2.3.1 Interactive notebooks

Jupyter notebook (formerly IPython Notebook)22 and Apache Zeppelin23 are two
popular interactive notebooks that can embed code in multiple programming lan-
guages. Interactive notebooks can be used for data cleaning and transformation,
numerical simulation, statistical modeling, and machine learning. However, the
scope of the code extends only to the content of the notebook: the user interface
cannot readily be extended from within a notebook. Jupyter supports extensions,
but these have to be installed on the server side and are developed externally
to the notebook. Zeppelin supports collaborative editing, but only to designated
text areas. Neither Jupyter or Zeppelin are designed for developing state-full ap-
plications. Persisting data requires manually writing data to the file-system of the
host computer or through a database interface.

9.2.3.2 Reprogrammable applications using literate computing

Leisure24 and Eve25 are systems that share the most with Codestrates. Leisure is
an open source, web-based, and document-centric approach to computing based
on the Emacs org-mode document format.26 Leisure provides two-way bindings
between an interactively editable representation of the document and its org-
mode representation. Leisure documents are served statically from a web server
(but can persist changes by connecting to a local Emacs buffer on a client’s ma-
chine). Leisure supports WebSocket-based remote collaboration over a separate
relay server.
Eve is an ambitious project that wants to rethink programming for everyone.

It introduces a new programming language in which all of the system state (in-
cluding the UI) is addressable through queries. Eve takes a literate programming
approach to developing full web-applications and uses an interactive notebook
style user interface. Currently, the Eve project is still in development and (while
planned) has yet to implement (real-time) collaboration and distribution across
devices.
Codestrates combines conceptual ideas and technical implementations of these

related works: it adopts an image-based persistence model inspired by Smalltalk,
where the image is the content of a webpage. Similar to Lively, Codestrates builds

Interface Software and Technology. UIST ’16. Tokyo, Japan: ACM, pp. 483–496. isbn: 978-1-
4503-4189-9. doi: 10.1145/2984511.2984551. url: http://doi.acm.org/10.1145/2984511.
2984551.

22 http://jupyter.org (last accessed: July 11, 2017)
23 http://zeppelin.apache.org (last accessed: July 11, 2017)
24 https://github.com/zot/Leisure (last accessed: July 11, 2017)
25 http://witheve.com (last accessed: July 11, 2017)
26 Eric Schulte and Dan Davison (2011). ‘Active documents with org-mode.’ In: Computing in
Science & Engineering 13.3, pp. 66–73.

108

https://doi.org/10.1145/2984511.2984551
http://doi.acm.org/10.1145/2984511.2984551
http://doi.acm.org/10.1145/2984511.2984551
http://jupyter.org
 http://zeppelin.apache.org
https://github.com/zot/Leisure
http://witheve.com

9.3 codestrates overview

on modern web-technology, but does not abstract away from the DOM and con-
ventional web development. Codestrates follows the literate computing approach
(and visual structure) of interactive notebooks and the block-like code representa-
tion of online programming playgrounds, but it goes beyond in-line computation
to programming and reprogramming applications—including itself. Codestrates
provides Google Docs style real-time collaboration, but (by leveraging the Web-
strates platform) shares the entire webpage instead of just the editor buffer. Fi-
nally, Codestrates adopts the prototype based approach to re-purposing software
made by others from HyperCard.

9.3 codestrates overview

A codestrate is essentially a webpage whose content, presentation, and behaviour
can be (collaboratively) edited from within the page and whose edits are inher-
ently made persistent. It is automatically versioned and versions can be tagged
with human-readable names. A codestrate is created by copying another code-
strate and includes everything it needs to both implement and edit itself; and
can be broken into three components: paragraphs, sections of related paragraphs,
and the entire codestrate implementation (details are in the implementation sec-
tion).

9.3.1 Use of paragraphs and sections

Paragraphs and sections in a codestrate are structured in a linear fashion, simi-
lar to traditional text documents. Figure 33 shows a schematic overview of the
structure of a codestrate.

9.3.1.1 Paragraph types and their function

A paragraph can be of the type body, code, style, or data:

• Body paragraphs contain what is typically considered the content of a web-
page and are directly editable through a simple rich-text editing interface
or an HTML inspector (as illustrated in fig. 34).

• Code paragraphs contain editable JavaScript code that can be toggled to
run on page load or be executed by pressing an execute button. The code
in Codestrates executes in the run-time of the browser. Code paragraphs
have syntax highlighting, identation, auto-completion, and an expandable
interactive console for debugging.

• Style paragraphs contain Cascading Style Sheet (CSS) rules. Changes are
immediately reflected on the page. They have syntax highlighting, identa-
tion, and auto-completion.

• Data paragraphs contain editable data in the JavaScript Object Notation
(JSON) format; and they have syntax highlighting and identation.

109

9.3 codestrates overview

Figure 33. The structure of a codestrate. On the left are the sections, which include sys-
tem sections (hidden by default) and one or more user sections. Sections can
include paragraphs of different types (body, code, style, data). On the right
is a sidebar (hidden by default), which contains actions for the codestrate
(tag and restore, pull from another codestrate) and sections (toggle sections’
visibility, add section).

Each paragraph can be expanded to full-screen, collapsed to a header only, locked
against edits, deleted, and moved up or down in the list of paragraphs or across
sections. They can also have a title and are addressable in JavaScript or in CSS
through their (optional) IDs or classes.
In Codestrates, the result of evaluating a code paragraph does not have a stan-

dard output. Instead, the idea is to output evaluated code results into body para-
graphs. To facilitate this, a body paragraph can include variables whose value
can be set from code paragraphs through a simple API (more details in the im-
plementation section).

9.3.1.2 Section as paragraph collection

Sections are collections of related paragraphs. We distinguish between system sec-
tions and user sections. System sections contain the implementation of the code-
strate itself and are hidden by default. User sections contain whatever the user is
working on. However, whether a section belongs to the user or the system is not
fixed. Extending a codestrate with new functionality is essentially turning a user
section into a system section by ticking a checkbox in the section’s header.
All sections are listed in the sidebar, which also provides access to functions

such as creating a new section, toggling a section’s visibility, pulling sections from
another codestrate, and tagging and restoring the codestrate.
The traditional boundaries between development and use are thus reduced in

Codestrates. The user can fluidly move between the two, and to the extent that
developing and using interactive systems are no longer necessarily separate activ-
ities. Figure 35 illustrates how a grocery list app can be developed in a codestrate
with the UI expressed in a body paragraph and a style paragraph, and the inter-

110

9.3 codestrates overview

Figure 34. A codestrate in a light theme. It shows a body paragraph with its HTML in-
spector visible—visibility is toggled through the eye icon in the paragraph’s
header.

action implemented in a code paragraph that is set to run on page load (green
runningman). Full-screening the body paragraph turns the codestrate into a “reg-
ular” application, usable across devices (since the state is synchronized through
the DOM). If changes to the application are required, the body paragraph can
be minimized again and edits to the code can be made—collaboratively between
multiple users, and in real-time.

Figure 35. A simple grocery list implemented in a Codestrate. On the left, the codestrate
in a desktop browser showing a body paragraph and the top of a code para-
graph. To the right, the body paragraph has beenmade full-screen and loaded
on a smartphone, now functioning as a grocery list app.

111

9.3 codestrates overview

9.3.2 Uses of Codestrates

We present three scenarios that highlight Codestrates’ capabilities, inspired by our
own daily use over the course of six months. The scenarios assume a future of
teachers and students fluent in computational thinking27 who are able to master
a medium that requires more technical knowledge than what is common today.
The uses cases are also demonstrated in the supplementary video.

9.3.3 Interactive notebooks in Codestrates

Alex, a secondary school physics teacher prepares an assignment on speed and
acceleration. He provides the students with a notebook for the assignment, in-
cluding interactive code samples. One of these samples show how students can
access the accelerometer and GPS data from their mobile phones (fig. 32A). Later
and on their laptops, the students add a button that uses Alex’ code sample to
store the current position and acceleration in a data paragraph. They then open
the codestrate on a smartphone while they walk, run, and cycle outdoors. When
they return, they plot a graph of the captured data for another assignment in the
notebook.

9.3.3.1 How it works

The assignment notebook is created by copying a codestrate, adding a section
and a body paragraph to it, and using the rich-text capabilities to add content.
Interfacing with the sensors on the device is done by writing JavaScript in a code
paragraph and using the geolocation28 and devicemotion29 APIs. The sensors’
current values are displayed through variables, which are inserted into a body
paragraph and set through JavaScript in a code paragraph. The newest version
of the codestrate is then tagged as stable and shared as a URL.
Users can create a personal copy of the stable version using the supplied URL

with an additional /?copy query parameter. A data paragraph is added to the
copy and the existing code paragraph is edited to store sensor values to the data
paragraph. The HTML editor of a body paragraph can be used to add a button;
and an additional code paragraph is added to make the button interactive. To
plot data, the codestrate functionality needs to be extended either by writing
code for custom visualization or by importing data visualization libraries (e.g.
Vega Lite3031). The implementation section contains details on how to import
libraries.

27Wing, ‘Computational Thinking.’
28 https://developer.mozilla.org/en-US/docs/Web/API/Geolocation (last accessed: July 11,
2017)

29 https://developer.mozilla.org/en-US/docs/Web/Events/devicemotion (last accessed: July 11,
2017)

30 https://vega.github.io (last accessed: July 11, 2017)
31 Arvind Satyanarayan et al. (2017). ‘Vega-lite: A grammar of interactive graphics.’ In: IEEE Trans-

actions on Visualization and Computer Graphics 23.1, pp. 341–350.

112

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developer.mozilla.org/en-US/docs/Web/Events/devicemotion
https://vega.github.io

9.3 codestrates overview

9.3.3.2 In real use

We have actively used Codestrates as an interactive assignment environment in
our own classes. Twenty-five students in an introduction to programming course
for non-computer science students completed their hand-ins for five consecutive
weeks using Codestrates. We prepared assignments as codestrates with written
instructions, interactive examples, automated testing, and code scaffolds (i.e.,
working but with incomplete code the students needed to edit). The assignment
codestrates had a low threshold32 and allowed our students to immediately start
programming instead of fiddling with server settings, file uploads, or installing
programming IDEs. We received positive feedback from the students through a
dedicated feedback section in the codestrates they were using.

9.3.4 Extending codestrates in Codestrates

Alex notices that his students are collaborating remotely on their assignments
after class. To hone his programming skills, he decides to extend the assignment
codestrate with video communication. He copies a new codestrate and starts
tinkering with Web Real-Time Communications (WebRTC). After a few iterations,
Alex manages to stream audio and video from his web camera to all clients who
have the same codestrate open (illustrated in fig. 32B). The codestrate already
shows an avatar per connected client in the bottom left corner of the screen, and
Alex overlays users’ avatars to display their video streams instead. He pulls the
section with the WebRTC code into the assignments codestrate and emails the
students to let them know they can update their codestrates if they want to use
this new functionality.

9.3.4.1 How it works

For video and audio streams, users can exploit the getUserMedia33 API. The video
and audio stream can be added to a DOM node with Webstrates’ signal stream-
ing API34. To build the UI of this new functionality, the user can add HTML, CSS,
and JavaScript in body, style, and code paragraphs. The video element can be
placed on top of the already existing avatar elements. The user can tag the cur-
rent version of the codestrate with a meaningful name through an action in the
sidebar. If an existing tag is reused, it will be updated to the current version. Other
codestrates can update their sections with the changes using the “pull sections”
function.

32 Brad Myers, Scott E. Hudson, and Randy Pausch (Mar. 2000). ‘Past, Present, and Future of User
Interface Software Tools.’ In: ACM Trans. Comput.-Hum. Interact. 7.1, pp. 3–28. issn: 1073-
0516. doi: 10.1145/344949.344959. url: http://doi.acm.org/10.1145/344949.344959.

33 https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia (last ac-
cessed: July 11, 2017)

34 https://github.com/Webstrates/Webstrates (last accessed: July 11, 2017)

113

https://doi.org/10.1145/344949.344959
http://doi.acm.org/10.1145/344949.344959
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://github.com/Webstrates/Webstrates

9.3 codestrates overview

9.3.4.2 In real use

We have implemented several features by copying codestrates and pulling sec-
tions with new features back into the master codestrate. We usually started fea-
tures in user sections but eventually changed them to system sections (e.g., re-
mote pointers, video communication). The fluid way with which we can move be-
tween using and developing a codestrate results in the continuous development
of functionality in response to specific tasks at hand. If the same functionality in
one codestrate is needed at a later point in time for different tasks, those sections
can easily be transferred between codestrates. For example, one user built a pre-
sentation tool for a research talk. That tool was then copied by someone else and
extended with an in-slide code editor to teach a programming course. A static
PDF viewer was adapted to a mobile note-taking tool that allowed hand-written
annotations from an iPad, before being extended again into a review-writing tool
with a simple text processor next to it. Through using/developing codestrates this
way, we have access to an organically growing repository of functionality instead
of a limited collection defined during the traditional development phase.

9.3.5 Developing applications in Codestrates

Jim and Bethany, two of Alex’ students, are part of an extra-curricular game de-
velopment club. They have been working on a multi-player tank game in a code-
strate with the help of an open source web-based game engine. One day, while
playing the game across their networked computers, they realize something is
wrong with the physics of the bullets bouncing off of the walls. They exit the
full-screen mode of the body paragraph that hosts the game view, and together
edit the function that calculates the bullet path. The changes are immediately
reflected in the running game, helping them iterate through different equations
until they are satisfied (illustrated in fig. 32C).

9.3.5.1 How it works

Web-based game engines such as Phaser35 can be used to render the game to a
canvas element in a body paragraph. The game itself can be built using code para-
graphs and is similar to regular game development in JavaScript. To add a multi-
player mode in which the game state is synchronized between multiple players,
users can—similar to the video streaming—leverage Webstrates’ signalling API
to send messages between clients of the same codestrate. In the game loop, it
is possible to require the code of another code paragraph, which will allow for
changing the game mechanics at run-time without reloading the page. Requiring
code is explained in the implementation section.

9.3.5.2 In real use

We hired a professional game developer for a day to demonstrate it was possible to
build a multi-player game in a codestrate. He implemented a simplified version of
35 https://phaser.io (last accessed: July 11, 2017)

114

https://phaser.io

9.4 implementation

an existing tank game he had developed36. With only a brief introduction to how
Codestratesworks and the signalling API of Webstrates, he was able to implement
the game without significant assistance over the course of a day. He struggled
with the lack of screen real estate to get an overview of all his code, but enjoyed
the ability to tweak gameplay mechanics and see them reflected in the game
immediately. We will address this in the discussion section.

9.4 implementation

Codestrates is implemented on top of Webstrates.37 In order to understand the
architectural choices and implementation details of Codestrates, it is necessary to
understand how Webstrates works.

9.4.1 How Webstrates works

Webstrates consists of a web-server that persists all client-side DOM changes and
synchronizes those changes to all clients of the same page. When a browser re-
quests a page from the Webstrates server (e.g. /myWebstrate), it is served a generic
HTML page containing a Webstrates client written in JavaScript. The client con-
nects to the server through a web socket and receives the requested webstrate
(e.g. myWebstrate) in a serialized JSON format. The client deserializes the JSON,
populates the DOM of the generic HTML page, observes the DOM for changes
using a MutationObserver, and listens on the web socket connection for changes
made by other clients. Synchronization happens through operational transforma-
tion (OT)38 using the open source OT framework ShareDB39. Webstrates uses OT
to maintain a consistent document state across clients, consequently providing
real-time collaborative editing of the DOM. Because ShareDB synchronizes oper-
ations on JSON documents, Webstrates’ inner representation of the DOM is JSON
using JsonML40. Webstrates leverages the principle of transclusion (using iframes)
as a composition mechanism, which creates a dynamic document-application like
relationship between two or more webstrates.
A new webstrate is created by requesting a webstrate that does not exist or by

creating a copy of an existing webstrate. It can be copied either to a new web-
strate with a random id (using /myWebstrate/?copy) or a named webstrate (using
/myWebstrate/?copy=myWebstrateCopy).
Webstrates has a simple versioning mechanism based on logs of operations. For

example, requesting /myWebstrate/1432 will retrieve the HTML of the 1432nd ver-
sion of myWebstrate, and /myWebstrate/?restore=1432 will restore it to the state
it had at the 1432nd version by applying the operations matching the differ-
ence between the current and the 1432nd version. Versions can be tagged with
human-readable names and tags can be retrieved in the same manner as ver-
36 https://www.tanktrouble.com/ (last accessed July 11, 2017)
37 Klokmose et al., ‘Webstrates: shareable dynamic media.’
38 Clarence A Ellis and Simon J Gibbs (1989). ‘Concurrency control in groupware systems.’ In:

Acm Sigmod Record. Vol. 18. 2. ACM, pp. 399–407.
39 https://github.com/share/sharedb (last accessed: July 11, 2017)
40 http://www.jsonml.org (last accessed: July 11, 2017)

115

/myWebstrate
/myWebstrate/?copy
/myWebstrate/?copy=myWebstrateCopy
/myWebstrate/1432
/myWebstrate/?restore=1432
https://www.tanktrouble.com/
https://github.com/share/sharedb
http://www.jsonml.org

9.4 implementation

sions. The Webstrates server automatically generates a tag for a webstrate when
no edits were made for a set period of time. Webstrates uses external authen-
tication providers (e.g. GitHub). User rights such as read, read-write, or none
can be added to a webstrate using the data-auth attribute on the html element.
User information such as username and a user’s avatar are accessible through a
JavaScript API.

9.4.1.1 Extensions to Webstrates

In parallel to Codestrates, Webstrates has been extended with a number of fea-
tures that makes the development of larger systems more convenient. Codestrates
relies on many of these extensions, e.g., tagging, transient elements, assets, sig-
nalling, and a WebRTC API. A transient element has been introduced that al-
lows for adding elements to the DOM that are not persisted and synchronized
to other clients. A custom context menu is an example of something that makes
sense to put in a transient element as the context menu is ephemeral and only
relevant for the user who opened it. Binary assets such as images or videos can
be attached to a webstrate (through a POST request) and accessed using e.g.
myWebstrate/myVideo.mp4. Assets are versioned like any other change made to the
webstrate document. A signalling API has been developed to allow clients of the
same webstrate to communicate with each other without manipulating the DOM.
Clients can broadcast signals to every client of the same webstrate or send tar-
geted signals to a subset of clients (client list accessible through the API). Signals
can contain JSON objects as message payloads. For example, Codestrates uses
signals to communicate ephemeral states such as remote cursor and pointer posi-
tions, or to establish WebRTC connections between clients of the same codestrate.
Finally, signal streaming allows peer-to-peer communication between clients us-
ing WebRTC. Codestrates uses signal streaming for video+audio communication.

9.4.2 Codestrates

Every codestrate is a webstrate that includes the codestrate implementation and
the user content: it is completely self-contained. The markup (HTML), styling
(CSS), program code (JavaScript), and data (JSON) are stored in a codestrate’s
document body, each wrapped in a paragraph element (<div class="paragraph

">). As a structuring mechanism, paragraphs are grouped inside sections (<div
class="section">). Webstrates ensures that changes to the content of a code-
strate are made persistent and synchronized to all clients of the same codestrate.
Listing 1 shows a simplified HTML of the document structure with two system
sections (one hidden), a user section, three code paragraphs (one hidden by its
section), a body paragraph, a style paragraph, and a data paragraph.

1 <html>
2 <head>
3 <script type="text/javascript">
4 <!-- see Listing 2 -->
5 </script>
6 </head>
7 <body>
8 <div class="section section-hidden" data-type="system">

116

myWebstrate/myVideo.mp4

9.4 implementation

9 <div id="bootstrap" class="paragraph code-paragraph">
10 <pre type="text/javascript">
11 // Code that queries and executes all
12 // run-on-load code paragraphs
13 </pre>
14 </div>
15 </div>
16 <div class="section" name="A System Section"
17 data-type="system">
18 <div class="paragraph code-paragraph"
19 run-on-load="true">
20 <pre id="code-on-load" type="text/javascript">
21 // Executed by code paragraph in line 10
22 </pre>
23 </div>
24 </div>
25 <div class="section" name="A User Section">
26 <div class="paragraph body-paragraph">
27 <div id="body" class="class1 class2"
28 contenteditable="true">
29 <!-- HTML -->
30 </div>
31 </div>
32 <div class="paragraph style-paragraph">
33 <style id="style" type="text/css">
34 /* CSS */
35 </style>
36 </div>
37 <div class="paragraph code-paragraph">
38 <pre id="code" type="text/javascript">
39 // JavaScript
40 </pre>
41 </div>
42 <div class="paragraph data-paragraph">
43 <pre id="data" type="application/json">
44 /* JSON */
45 </pre>
46 </div>
47 </div>
48 </body>
49 </html>

Listing 1: Simplified HTML structure of a codestrate.

9.4.2.1 Bootstrapping and code execution

Code execution in Codestrates differs from the regular JavaScript execution rou-
tine of a browser. Its execution relies on three integral conditions: (i) there is
bootstrap code in a script element in the document head (Listing 1, line 3); (ii),
all other code is stored in pre elements, which are not executed on page load;
and (iii) one code paragraph has the id #bootstrap (Listing 1, line 9).
To open a codestrate, the four lines of bootstrap code in (Listing 2) are executed

after the webstrate is loaded. This triggers the execution of the code paragraph
with the id #bootstrap, which queries the DOM for all other code paragraphs with
the attribute run-on-load set to true (e.g., Listing 1, line 19) and synchronously
executes them in the order as they appear in the DOM.

1 webstrate.on("loaded", function () {
2 var codeParagraph = document.querySelector("#bootstrap");
3 new Function(codeParagraph.textContent)();

117

9.4 implementation

4 });

Listing 2: Codestrates’ bootstrap JavaScript code.

Each code paragraph is executed in its own scope and execution context using
the Function object. Code paragraphs do not create closures to their creation con-
texts and are only able to access their own local variables and variables defined in
global scope (e.g., document object). This prevents users from accidentally over-
riding and interfering with Codestrates’ execution logic. The execution context
provides access to a proxied console and a Variable object. Each code paragraph
has its own console output; all log, error, debug, warn, and info function calls on
the console object are logged to this output before they are redirected to the win-
dow’s console. The Variable object provides convenience functions to replace
content in a body paragraph. For example, a variable myVar is inserted into a
body paragraph using its rich-text editor tools (see Add Variable in fig. 36). The
content of myVar can be set from any code paragraph using Variable("myVar")

.set("newValue"). The variable is represented as <div class="variable" data-

name="myVar"></div> in the body paragraph.

9.4.2.2 Requiring modules and importing external libraries

A code paragraph can require another code paragraph using CSS selectors (e.g.,
var myModule = require("#myModule")) or class selectors (e.g. require(".myModules
")). When code is required using a class selectors, all code paragraphs of that
particular class are queried, their contents are concatenated, and the code is exe-
cuted as one script. Executing the content of a required code paragraph adds an
additional exports object in the execution context. An imported code paragraph
can export variables and functions using the exports object (e.g., exports.myVar
= "myValue" or exports.myFunction = function() {...}). The exports object
is a plain key value store that allows code paragraphs to export multiple variables
and functions. The require function will return the exports object in order for the
caller code paragraph to access exported variables and functions (e.g., myModule.
myVar or myModule.myFunction()).
External JavaScript libraries can be used through importLib (Listing 3), which

takes either a single URL or reference to a webstrate, or an array of them. For
each URL, Codestrates adds a transient element in the document head with the
script element inside. This way, added scripts do not persist and are not syn-
chronized with other clients. Because browsers execute script elements asyn-
chronously when added at runtime, two external JavaScript libraries that depend
on each other can cause faulty code when added after page load. Codestrates’
importLib guarantees that external JavaScript libraries are loaded and executed
synchronously in the order in which they have been defined.
The importLib function returns a promise which resolves after all libraries have

been imported (i.e., loaded and executed). The code in the resolve function can
then use imports the same way as script elements that are loaded synchronously.
Importantly, subsequent code paragraphswill be blocked until the preceding code
paragraph has imported and executed all external libraries, executed all code
paragraphs that are required within, and finally executed all of its own code.

118

9.4 implementation

Figure 36. Codestrate view of Listing 1, including paragraphs and their contents. The
section containing the bootstrap code is hidden.

1 importLib([
2 "//cdn/extLibrary.js",
3 "assetLibraryDependingOnExtLibrary.js"
4]).then(() => {
5 // code executes after both libraries are imported
6 });

Listing 3: Import external libraries in a Codestrates code paragraph.

9.4.2.3 Generating user interfaces and structuring paragraphs’ data

As part of Codestrates’ core system functionality, the user interface elements for
sections and paragraphs are generated at runtime (e.g., the rich-text editor tools
for a body paragraph (fig. 36)). The UI elements are programatically created
using transient elements in order to keep their states local instead of synchro-
nized between clients. This way, expanding the HTML editor of a body paragraph
only has effect locally. A MutationObserver observes the body element of a code-
strate and its subtree to create user interfaces for sections and paragraphs that
are added to the document after initial loading.
The content of body paragraphs are contenteditable div elements directly visi-

ble to the user. All changes within a div element are immediately reflected in the
DOM and Webstrates synchronizes changes with other users of the same code-
strate.
For the code, style, and data paragraphs, the element storing their content is

hidden from the users through CSS, and a transient element is generated with
a CodeMirror41 based editor that creates a two-way binding between its text
buffer and (remote) changes to the element’s content. CodeMirror comes with
41 http://codemirror.net (last accessed: July 11, 2017)

119

http://codemirror.net

9.4 implementation

support for syntax highlighting, code completion, formatting, and other function-
ality expected from modern code editors. As an optimization we only instantiate
CodeMirror instances for visible paragraphs.
CSS is stored directly in a style element. Therefore, changes to CSS rules in

style paragraphs have an immediate effect on the rendering of the codestrate’s
content. Code is executed either explicitly by the user through pressing the exe-
cute button in the code paragraph’s toolbar, or after the webstrate loaded if the
user enabled the run-on-load in the code paragraphs toolbar (the green running
man fig. 36, top).

9.4.2.4 Remote collaboration

As Webstrates synchronizes the DOM between connected clients transparently,
Codestrates allows for remote collaboration. However, ephemeral data such as
pointers (e.g., mouse cursor or touch points) are not synchronized.
Using signalling, we implemented a user manager and remote pointers in Code-

strates to support awareness of other users. Every client that joins a codestrate
broadcasts the user’s information to all other clients. If a user is authenticated,
the codestrate broadcasts username, friendly name, and the avatar url of the user;
otherwise it broadcasts anonymous with a default avatar. The default codestrate
UI shows all connected users as avatars in the bottom left corner in a transient

element. Each user gets assigned a distinct color that is visible as the border of
their avatar.
Each client broadcasts pointer positions (such as mousemove and touchmove)

and pointer actions (such as click and tap). Remote pointers are represented as
transient elements positioned relative to the nearest paragraph, which share
dimensions across devices and screen sizes. Actions are styled div elements ap-
pended to the pointer element and removed after a timeout. Cursor positions and
selections in editors are synchronized across clients to allow for Google Docs-like
document-centric authoring. The user color from the user manager is used to
color pointers and cursors to associate actions to remote users.
Video and audio communication is implemented using Webstrates’ transient

element and signal streams, and the getUserMedia API. A codestrate listens for
incoming streams from other clients, automatically accepts them, and overlays
the sender’s avatar with a video element with the stream. The video element is
wrapped in a transient element and not synchronized with other clients. Gener-
ally, a user can exploit Webstrates’ transient element in a codestrate to write an
application that has a visually distinct appearance on different clients or different
users. To start video and audio streaming, a user has to click on the videocamera
icon that is revealed when hovering over the user’s own avatar.

9.4.2.5 Creating, versioning, and updating

Codestrates provides a UI for easily tagging and restoring versions of a codestrate.
Pressing the restore button in the sidebar shows a dialog with a list of both user-
generated and auto-generated tags, which are accessed using the Webstrates ver-
sioning API.

120

9.5 discussion

Because a codestrate contains all of its implementation, it needs to be updated
manually in case a new feature is introduced or a bug is found in the codestrate
fromwhich it was copied. To support this, users can pull sections from other code-
strates or even from an earlier version of the same codestrate. The pull sections
functionality loads a codestrate of a specific version into the caller codestrate
using an iframe wrapped in a transient element. To pull a section, the user
provides the codestrate id and (optionally) specifies the version of the codestrate
to be pulled and a CSS selector for particular elements of the codestrate (if un-
specified, the latest version and the “system section” selector will be used). The
codestrate then deletes all of its sections that match the CSS selector; queries sec-
tions matching the CSS selector in the codestrate being pulled and deep clones
them; appends the cloned elements to itself; and finally reloads the webpage af-
ter all operations (OT) are synchronized with the server. While pulling sections
would work without a reload, doing so ensures code written by others always
runs without side-effects.

9.5 discussion

9.5.1 Limitations and future work

9.5.1.1 Out-of-browser code exection and Jupyter integration

Code execution in Codestrates happens at run-time and only within the browser
which limits language support to JavaScript (or languages compiled or transpiled
to it) and means it does not have access to the operating system of the host com-
puter. However, we have successfully experimented with using a Jupyter kernel
running on the local machine to execute Python code from a codestrate. We cre-
ated Python specific code paragraphs that post their code over HTTP to the local
Jupyter kernel when executed and have the standard output redirected to the
console of the code paragraph. Future research includes a model for managing
in-browser and out-of-browser computation (e.g. on a local computer or an online
service) and polyglot code-execution in a codestrate where various programming
languages can be combined to perform a series of dependent computations.

9.5.1.2 Version control

Version control systems (e.g., Git or Subversion) are essential for systems develop-
ment. Codestrates allows tagging of and branching from codestrates, but updating
from another codestrate replaces affected paragraphs entirely. It does not support
automatic or manual merging of paragraph contents. For future work we plan to
integrate merging algorithms, e.g. a recursive three-way merge.
Codestrates “pull section” mechanism allows for very idiosyncratic ways of fea-

ture and application development: (i) feature development for Codestrates can
happen in a copy of the Codestrates prototype and after testing be pulled back
into the prototype, (ii) copies can be updated to the latest version of the Code-
strates prototype by pulling the latest version of system sections, and (iii) (sys-

121

9.5 discussion

tem) sections in a codestrate can be downgraded without undoing the changes
in-between, e.g., changes that happened to other sections.

9.5.1.3 Overhead of development environment

Applications developed with Codestrates carry more weight than regular web ap-
plications because they include both the application code and a development en-
vironment. Loading time and memory consumption of an application built with
Codestrates is higher than a comparable traditional web application. The over-
head adds ~800 kilobytes of data (including external and non-minified libraries
like CodeMirror). Future work includes caching strategies for external libraries
and lazy loading of the development environment.

9.5.1.4 Textual programming

Codestrates currently only allows users to express interactive behavior through
textual programming using JavaScript and the DOM API. Visual languages such
as Scratch or languages influenced by natural language such as HyperTalk have
successfully introduced beginners and children to programming. These approaches
could be integrated in Codestrates and even be used interchangeably, so that Code-
strates can adapt to the experience level of the programmer. We strongly believe
that the threshold for expressing interaction and computation in a codestrate
should be lower so it can be used by a wider audience with different levels of
computational literacy.42

9.5.1.5 Usability

Full-screening a paragraph is currently not a transient action, which means that
it affects all clients of the same codestrate. This makes it impossible for a user
to change the style or code of a codestrate while also running it as a full-screen
application on another device or for multiple users to view the codestrate in dif-
ferent ways. Adding this flexibility would mean users could maximize the use of
screen real-estate e.g. across multiple screens instead of continuously scrolling
through the document, as mentioned as a limitation by the game developer who
implemented the multi-player game in Codestrates. This would be possible by
CSS rules targeting transient attributes available with the newest version of Web-
strates; attributes that are not persisted and synchronized.
While the CodeMirror library we use in Codestrates provides many of the edit-

ing capabilities of modern programming IDEs, it is still limited compared to desk-
top editors. For example, it lacks advanced auto-completion and refactoring fea-
tures now taken for granted when developing software (and their absence was
noticed by our students).

42Myers, Hudson, and Pausch, ‘Past, Present, and Future of User Interface Software Tools.’

122

9.5 discussion

9.5.1.6 Limitations from Webstrates

Codestrates inherits the limitation from Webstrates that fine-grained permissions
beyond a per-document permission model (no access, read-only, or read-and-
write) is a significant challenge.43

9.5.2 Systems-oriented evaluation

According to Olsen, a user interface system can be evaluated according to its
“solution viscosity”, which expresses the effort of a programmer to create possible
solutions. Good systems can reduce solution viscosity in three ways: flexibility,
expressive leverage, and expressive match.

9.5.2.1 Flexibility

Good flexibility allows the user to make rapid changes and evaluate them im-
mediately.44 Codestrates supports flexibility with paragraphs and sections that re-
main continuously inspectable and whose changes can be evaluated at runtime.
For example, a user can customize the look of a codestrate-based application by
changing CSS properties in a style paragraph, change application behavior by
changing the respective code paragraph, or add additional functionality by writ-
ing new code.

9.5.2.2 Expressive leverage

A system with a high expressive leverage reduces the choices a user can make
while still being able to express more.45 Since Codestrates builds on Webstrates,
all content is by default persisted and synchronized. As a result, there are no
additional software layers necessary to add real-time collaboration and there is
no need to create databases or add service to persist application data.

9.5.2.3 Expressive match

The expressivematch refers to how close “themeans for expressing design choices
are to the problem being solved”.46 With Codestrates, we anticipate a future gener-
ation where computational thinking is part of formal education practices and con-
sidered a “fundamental skill for everyone”.47 Although this generation will know
how to express computation in code, they are considered non-professional pro-
grammers48 and may not have acquired a fundamental knowledge about comput-
ing technology (e.g., an understanding of client/server communication). Olsen
43 Klokmose et al., ‘Webstrates: shareable dynamic media.’
44Olsen, ‘Evaluating User Interface Systems Research.’
45 Ibid.
46 Ibid.
47Wing, ‘Computational Thinking.’
48Margaret M. Burnett and Brad A. Myers (2014). ‘Future of End-user Software Engineering: Be-

yond the Silos.’ In: Proceedings of the on Future of Software Engineering. FOSE 2014. Hyderabad,
India: ACM, pp. 201–211. isbn: 978-1-4503-2865-4. doi: 10.1145/2593882.2593896. url:
http://doi.acm.org/10.1145/2593882.2593896.

123

https://doi.org/10.1145/2593882.2593896
http://doi.acm.org/10.1145/2593882.2593896

9.6 conclusion

argues that new tools should be “accessible, easier or more effective for this
desired population” and they should support “different norms of expression or
design goals that are not supported by existing tools.” With literate computing
expressed in Codestrates’ paragraphs, users can “read a program” from top to
bottom to understand its execution order, much like reading a book or an article.
This is greatly different from often complex dependencies in file-based projects.
It is also different from a single HTML file containing HTML, JavaScript, and
CSS edited in a file editor; paragraphs containing HTML, JavaScript, or CSS are
visually distinct from each other and provide additional tools like “execute” for
code paragraphs or rich-text editor tools for body paragraphs. Changes to a body,
style, code, or data paragraphs are immediately part of the codestrate that con-
tains them and thus are already “deployed.” There is no need to copy code from
a playground, paste it to a file, and deploy it on a server to make it accessible to
everyone. Codestrates is agnostic to any programming pattern, and might in the
future even be agnostic to the programming language (based on ongoing work).
Users can exploit their pre-existing knowledge on web development without the
need to learn or adapt to a new programming language.

9.6 conclusion

Most modern applications create a strict divide between the development of the
software and the use of it. We have demonstrated how a literate computing ap-
proach can close that gap by allowing users to mix prose and computation in the
same perceptual space. This not only supports the execution of programs within
an application, but can also be used to extend and reprogram the functionality of
an interactive notebook from within itself, resulting in an inherently negotiable
computational medium.
Codestrates is built on Web standards and is easily appropriable and usable by

anyone with a basic Web development background. However, the presented use
cases in this paper are based on currently fictional levels of technical proficiency of
non-professional programmers. Future research includes iteratively co-designing
codestrates to support real users such as data scientists, secondary school teach-
ers, and students; and exploring what could aid or prevent end-user adoption of
a medium such as Codestrates.

124

10.
BETWEEN SCR I PTS AND
APPL ICAT IONS: NEGOT IABLE
SOFTWARE FOR TH E FRONT I ER OF
NANOSC I ENCE
Ba s e d on Nouwen s , B o r ow sk i , Fo g , a n d K l o kmo s e 1

10.1 introduction

There has been a recent upsurge in commercial products and research proto-
types that run counter to the application paradigm and instead look more like
computational media—software which allows you to create, execute, and edit
computations that can operate on anything, including the software itself. The
computational notebooks that have become popular in data science, digital jour-
nalism, and education, for example (e.g., Jupyter Notebook2 or Observable3), al-
low users to mix traditional word-processing functionality with executable code
in the same environment.
As seeds for a paradigm shift of software, however, computational notebooks

are programming environments with some application-like qualities, rather than
GUI applications that also allow for writing and executing computations. As such,
they treat code as the primary object of interest and expect users with software
engineering skills (e.g., version control, dependency management). We want to
expand this reimagination of software as computational media and explore de-
signs that support computer users who are dependent on computation for their
activities, but who are not trained as software engineers.
We collaborated with a group of biomolecular nanoscientists whose scientific

practice and progress rely on using in-house developed computational tools, but
who do not have a formal programming education. We engaged them in the par-
ticipatory design of a computational labbook that helps them carry out a key part

1 Midas Nouwens et al. (2020a). ‘Between Scripts and Applications: Computational Media for
the Frontier of Nanoscience.’ In: Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. CHI ’20. Honolulu, HI, USA: Association for Computing Machinery, 1–13.
isbn: 9781450367080. doi: 10.1145/3313831.3376287. url: https://doi .org/10.1145/
3313831.3376287.

2 Juypter Notebook (2019). url: https://jupyter.org.
3 Observable (2019). url: https://observablehq.com.

125

https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3313831.3376287
https://jupyter.org
https://observablehq.com

10.2 related work

of their work, namely the computational design of new RNA structures. The proto-
type and participatory design process were guided by the concepts computability,
malleability, shareability, and distributability; four proposed principles for com-
putational media derived from Klokmose et al.4 and Rädle et al.5
We address the following research questions:
1. How do biomolecular nanoscientists use computation in their work?
2. How can computational media, rather than applications and scripts, better

support their work?
3. What can we learn about computational media at large by designing for

biomolecular nanoscientists?
Accordingly, our main contributions are: (i) an empirical account of the com-

putational activities and challenges of biomolecular nanoscientists; (ii) a high-
fidelity computational labbook prototype for the domain of biomolecular nanoscience;
and (iii) a deepening of the four principles for computational media rooted in
real-world work praxis.

10.2 related work

We examine the potential and principles of computational media in a scientific
practice. Related work includes computational tools in the sciences and work on
computational media.

10.2.1 Lab Notebooks and e-Science Tools

In the sciences, the laboratory notebook is often seen as the cornerstone of re-
search, and efforts to create electronic lab notebooks (ELNs) are plenty. Com-
mercial ELNs are largely wiki-based and oriented towards particular considera-
tions such as transparency, data management, and ease-of-use (e.g., Confluence,6
BIOVIA,7 and Labguru8). Some academic work has explored other aspects of elec-
tronic laboratory work. Inspired by the Semantic Web, Talbott et al.9 (among oth-
ers10) have focused on data provenance as a key factor in lab work. Others have
4 Klokmose2015.
5 Roman Rädle et al. (2017). ‘Codestrates: Literate Computing with Webstrates.’ In: Proceed-

ings of the 30th Annual ACM Symposium on User Interface Software and Technology. UIST ’17.
Québec City, QC, Canada: ACM, pp. 715–725. isbn: 978-1-4503-4981-9. doi: 10.1145/
3126594.3126642. url: http://doi.acm.org/10.1145/3126594.3126642.

6 Atlassian Confluence (2019). url: https://atlassian.com/confluence.
7 BIOVIA (2019). url: https://3dsbiovia.com.
8 Labguru (2019). url: https://labguru.com.
9 Tara Talbott et al. (2005). ‘Adapting the Electronic Laboratory Notebook for the Semantic Era.’

In: Proceedings of the 2005 International Symposium on Collaborative Technologies and Systems,
2005. Pp. 136–143. doi: 10.1109/ISCST.2005.1553305.

10 Zulkifly M. Zaki et al. (2011). ‘A User-orientated Electronic Laboratory Notebook for Retrieval
and Extraction of Provenance Information for EUROCHAMP-2.’ In: 2011 IEEE Seventh Interna-
tional Conference on eScience, pp. 371–378. doi: 10.1109/eScience.2011.58; Zulkifly M. Zaki
et al. (2013). ‘Architecture design of a user-orientated electronic laboratory notebook: A case
study within an atmospheric chemistry community.’ In: Future Generation Computer Systems
29.8, pp. 2182 –2196. issn: 0167-739X. doi: 10 .1016/ j . future . 2013 .04 .011. url: http :
//www.sciencedirect.com/science/article/pii/S0167739X1300071X.

126

https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3126594.3126642
http://doi.acm.org/10.1145/3126594.3126642
https://atlassian.com/confluence
https://3dsbiovia.com
https://labguru.com
https://doi.org/10.1109/ISCST.2005.1553305
https://doi.org/10.1109/eScience.2011.58
https://doi.org/10.1016/j.future.2013.04.011
http://www.sciencedirect.com/science/article/pii/S0167739X1300071X
http://www.sciencedirect.com/science/article/pii/S0167739X1300071X

10.2 related work

aimed to bridge the gap between physical and digital materials by providing an
interactive tabletop in the lab space,11 augmenting the work-space with mixed-
reality “interactive paper”,12 or using digital photographs to couple notebooks
and external materials.13 Oleksik et al. have investigated the artifact ecologies
of laboratories14 and how scientists appropriate existing off-the-shelf note-taking
software and the inherent clash between stability and flexibility, providing guide-
lines to how ELNs might be designed.15
Most of the work on ELNs, however, has sought to more or less replace phys-

ical notebooks with digitally enhanced replicas. These enhancements are often
web-based and collaborative, offering tools for cross-referencing, tagging, and
visualization.16 While these are admirable efforts in their own right, we believe
that looking more closely at the potential of computational media can fruitful
directions for re-thinking laboratory notebooks to be the locus of scientific com-
putational activities—as also proposed in.17

11 Aurélien Tabard et al. (2011). ‘The eLabBench: An Interactive Tabletop System for the Biology
Laboratory.’ In: Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces. ITS ’11. Kobe, Japan: ACM, pp. 202–211. isbn: 978-1-4503-0871-7. doi: 10.1145/
2076354.2076391. url: http://doi.acm.org/10.1145/2076354.2076391.

12Wendy E. Mackay (2003). ‘The Missing Link: Integrating Paper and Electronic Documents.’
In: Proceedings of the 15th Conference on L’Interaction Homme-Machine. IHM ’03. Caen, France:
ACM, pp. 1–8. isbn: 1-58113-803-2. doi: 10.1145/1063669.1063671. url: http://doi.acm.
org/10.1145/1063669.1063671.

13 Ron Yeh et al. (2006). ‘ButterflyNet: A Mobile Capture and Access System for Field Biology
Research.’ In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’06. Montréal, Québec, Canada: ACM, pp. 571–580. isbn: 1-59593-372-7.
doi: 10.1145/1124772.1124859. url: http://doi.acm.org/10.1145/1124772.1124859.

14Gerard Oleksik, Natasa Milic-Frayling, and Rachel Jones (2012). ‘Beyond Data Sharing: Arti-
fact Ecology of a Collaborative Nanophotonics Research Centre.’ In: Proceedings of the ACM 2012
Conference on Computer Supported CooperativeWork. CSCW ’12. Seattle, Washington, USA: Asso-
ciation for Computing Machinery, 1165–1174. isbn: 9781450310864. doi: 10.1145/2145204.
2145376. url: https://doi.org/10.1145/2145204.2145376.

15Gerard Oleksik, Natasa Milic-Frayling, and Rachel Jones (2014). ‘Study of Electronic Lab Note-
book Design and Practices That Emerged in a Collaborative Scientific Environment.’ In: Proceed-
ings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing.
CSCW ’14. Baltimore, Maryland, USA: Association for Computing Machinery, 120–133. isbn:
9781450325400. doi: 10.1145/2531602.2531709. url: https://doi.org/10.1145/2531602.
2531709.

16Georgios John Fakas, Anh Vu Nguyen, and Denis Gillet (2005). ‘The Electronic Laboratory Jour-
nal: A Collaborative and Cooperative Learning Environment for Web-Based Experimentation.’
In: Computer Supported Cooperative Work (CSCW) 14.3, pp. 189–216. issn: 1573-7551. doi:
10.1007/s10606-005-3272-3. url: https://doi.org/10.1007/s10606-005-3272-3; Francois
Roubert and Mark Perry (2013). ‘Putting the Lab in the Lab Book: Supporting Coordination in
Large, Multi-site Research.’ In: HCI 2013 - 27th International British Computer Society Human
Computer Interaction Conference: The Internet of Things. url: http://dl.acm.org/citation.cfm?
id=2578048.2578066; Jenifer L. Skidmore et al. (1998). ‘A Prototype Notebook-based Envi-
ronment for Computational Tools.’ In: Proceedings of the 1998 ACM/IEEE Conference on Super-
computing. SC ’98. San Jose, CA: IEEE Computer Society, pp. 1–15. isbn: 0-89791-984-X. url:
http://dl.acm.org/citation.cfm?id=509058.509080; Phil Turner and Susan Turner (1997).
‘Supporting Cooperative Working Using Shared Notebooks.’ In: Proceedings of the Fifth Euro-
pean Conference on Computer Supported Cooperative Work. Dordrecht: Springer Netherlands,
pp. 281–295. isbn: 978-94-015-7372-6. doi: 10.1007/978-94-015-7372-6_19. url: https:
//doi.org/10.1007/978-94-015-7372-6_19.

17 Clemens N. Klokmose and Pär-Ola Zander (2010). ‘Rethinking Laboratory Notebooks.’ In: Pro-
ceedings of COOP 2010. Springer, pp. 119–139. doi: 10.1007/978-1-84996-211-7_8.

127

https://doi.org/10.1145/2076354.2076391
https://doi.org/10.1145/2076354.2076391
http://doi.acm.org/10.1145/2076354.2076391
https://doi.org/10.1145/1063669.1063671
http://doi.acm.org/10.1145/1063669.1063671
http://doi.acm.org/10.1145/1063669.1063671
https://doi.org/10.1145/1124772.1124859
http://doi.acm.org/10.1145/1124772.1124859
https://doi.org/10.1145/2145204.2145376
https://doi.org/10.1145/2145204.2145376
https://doi.org/10.1145/2145204.2145376
https://doi.org/10.1145/2531602.2531709
https://doi.org/10.1145/2531602.2531709
https://doi.org/10.1145/2531602.2531709
https://doi.org/10.1007/s10606-005-3272-3
https://doi.org/10.1007/s10606-005-3272-3
http://dl.acm.org/citation.cfm?id=2578048.2578066
http://dl.acm.org/citation.cfm?id=2578048.2578066
http://dl.acm.org/citation.cfm?id=509058.509080
https://doi.org/10.1007/978-94-015-7372-6_19
https://doi.org/10.1007/978-94-015-7372-6_19
https://doi.org/10.1007/978-94-015-7372-6_19
https://doi.org/10.1007/978-1-84996-211-7_8

10.2 related work

The natural sciences have been the targets of efforts to augment the scien-
tific process with computational capabilities, in particular when their objects are
large-scale and complex data, e.g., genomic data, which often is referred to as e-
Science. Smith18 argues that contemporary scientific work is increasingly reliant
on software engineering abilities. Surveying the literature on e-science reveals
a large body of work that focuses on the technical infrastructure for distributed
and grid computing. However, there is also work that addresses challenges sim-
ilar to some of those we observe in our studies: Holdgraf et al.19 explore how
to facilitate sharing of computational environments, Östberg et al.20 study how
to ease distribution of computations by raising the required level of abstraction,
and Harrison et al.21 developed a standard for sharing scientific computational
workflows. However, their aim to create practical computational tools to support
scientific work, rather than change the dominant software paradigm. We argue
that many of these challenges are tied together and can be addressed by a change
in focus from scripts and applications to computational media.

10.2.2 Computational Media

The idea of software as a dynamic or computational medium was popularised by
Alan Kay in his Dynabook vision.22 diSessa exemplified a computationalmedium23

with his Boxer programming environment24 that allowed users to build software
and execute computation in the same medium. diSessa contrasted the “mono-
lithic, nonmodifiable applications” with computational media, perceiving the lat-
ter as tools that can be organically enriched and extended25 (fig. 37).
18 Spencer Smith (2018). ‘Beyond Software Carpentry.’ In: Proceedings of the International Work-

shop on Software Engineering for Science. SE4Science ’18. Gothenburg, Sweden: Association for
Computing Machinery, 32–39. isbn: 9781450357487. doi: 10.1145/3194747.3194749. url:
https://doi.org/10.1145/3194747.3194749.

19 Chris Holdgraf et al. (2017). ‘Portable Learning Environments for Hands-On Computational
Instruction: Using Container- and Cloud-Based Technology to Teach Data Science.’ In: Proceed-
ings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Suc-
cess and Impact. PEARC17. New Orleans, LA, USA: Association for Computing Machinery. isbn:
9781450352727. doi: 10.1145/3093338.3093370. url: https://doi.org/10.1145/3093338.
3093370.

20 P. Östberg et al. (2012). ‘Reducing Complexity in Management of eScience Computations.’ In:
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), pp. 845–852. doi: 10.1109/CCGrid.2012.72.

21 Andrew Harrison et al. (2011). ‘Object Reuse and Exchange for Publishing and Sharing Work-
flows.’ In: Proceedings of the 6th Workshop on Workflows in Support of Large-Scale Science.
WORKS ’11. Seattle, Washington, USA: Association for Computing Machinery, 67–76. isbn:
9781450311007. doi: 10.1145/2110497.2110506. url: https://doi.org/10.1145/2110497.
2110506.

22 Alan C. Kay (1972). ‘A Personal Computer for Children of All Ages.’ In: Proceedings of the ACM
Annual Conference - Volume 1. ACM ’72. Boston, Massachusetts, USA: Association for Computing
Machinery. isbn: 9781450374910. doi: 10.1145/800193.1971922. url: https://doi.org/10.
1145/800193.1971922.

23 Andrea A. diSessa (2001). Changing Minds: Computers, Learning, and Literacy. Mit Press. isbn:
9780262041805.

24 Andrea diSessa and Hal Abelson (Sept. 1986). ‘Boxer: A Reconstructible Computational
Medium.’ In: Commun. ACM 29.9, pp. 859–868. issn: 0001-0782. doi: 10.1145/6592.6595.
url: https://doi.org/10.1145/6592.6595.

25 diSessa, Changing Minds: Computers, Learning, and Literacy.

128

https://doi.org/10.1145/3194747.3194749
https://doi.org/10.1145/3194747.3194749
https://doi.org/10.1145/3093338.3093370
https://doi.org/10.1145/3093338.3093370
https://doi.org/10.1145/3093338.3093370
https://doi.org/10.1109/CCGrid.2012.72
https://doi.org/10.1145/2110497.2110506
https://doi.org/10.1145/2110497.2110506
https://doi.org/10.1145/2110497.2110506
https://doi.org/10.1145/800193.1971922
https://doi.org/10.1145/800193.1971922
https://doi.org/10.1145/800193.1971922
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595

10.2 related work

Figure 37. Applications (left) and computational media (right). Adapted from diSessa.26

In recent years, the proliferation of computational notebooks, e.g., Jupyter
Notebook,27 is emblematic of the perceived and actual benefits of computational
media. In 2017, over a million Jupyter notebooks had been shared on GitHub.28
Computational notebooks has has also recently become an academic object of
study in HCI (e.g.,29). Computational notebooks are not ELNs by another name,
rather they are computational environments that enables weaving “a narrative di-
rectly into a live computation, interleaving text with code and results to construct
a complete piece that relies equally on the textual explanations and the compu-
tational components”.30 They are particularly designed to support replication in
computational sciences.31 Computational media do not necessitate that the user
becomes a programmer. A particular group of these media can be termed no-code
computational media. No-code computational media embody computational ca-
pabilities but do not require that the users themselves write program code. One
such example is Notion,32 a knowledge repository environment that enables users
to utilise computation without writing code. Another example is Coda.33

27 Juypter Notebook,
28 Adam Rule, Aurélien Tabard, and James D. Hollan (2018). ‘Exploration and Explanation in
Computational Notebooks.’ In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. ACM, p. 32. doi: 10.1145/3173574.3173606.

29 Andrew Head et al. (2019). ‘Managing Messes in Computational Notebooks.’ In: Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems. ACM, p. 270. doi: 10.1145/
3290605.3300500; Mary Beth Kery and Brad A. Myers (2018). ‘Interactions for Untangling
Messy History in a Computational Notebook.’ In: 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, pp. 147–155. doi: 10.1109/VLHCC.2018.8506576;
Mary Beth Kery et al. (2018). ‘The Story in the Notebook: Exploratory Data Science using a
Literate Programming Tool.’ In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. ACM, p. 174. doi: 10.1145/3173574.3173748; Adam Rule et al. (2018).
‘Aiding Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.’ In: Pro-
ceedings of the ACM on Human-Computer Interaction 2.CSCW, p. 150. doi: 10.1145/3274419;
Rule, Tabard, and Hollan, ‘Exploration and Explanation in Computational Notebooks.’

30 Fernando Pérez and Brian Granger (2015). Project Jupyter: Computational Narratives as the En-
gine of Collaborative Data Science. url: https://blog.jupyter.org/project-jupyter-computational-
narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58.

31 Kluyver et al., ‘Jupyter Notebooks–a publishing format for reproducible computational work-
flows.’

32Notion (2019). url: https://notion.so.
33 Coda (2019). url: https://coda.io.

129

https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1109/VLHCC.2018.8506576
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3274419
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://notion.so
https://coda.io

10.3 method

Webstrates34 is a platform for developing dynamic or computational media in-
spired by Kay’s early visions of personal dynamic media. Webstrates is based on
a simple change to the mechanics of the web, where a web-page is made col-
laboratively editable directly from the browser. In Webstrates there is no techni-
cal distinction between editing content and the scripts defining the functionality
of a page. This means that the traditionally hard distinction between develop-
ment and use of software is blurred. Codestrates35 is an authoring environment
for Webstrates and builds on the computational notebook metaphor. However,
it allows for the development of application-like collaborative software, and is
reprogrammable and extensible from within. Webstrates and Codestrates are
document-centric in the spirit of Boxer.
Webstrates is based on the principles of shareability, distributability, and mal-

leability. Shareability refers to the users’ ability to share and collaborate seam-
lessly on multiple types of data within a document, synchronously and asyn-
chronously, with themselves and multiple people, using their own personalised
views and tools. Distributability points to the ability to easily distribute docu-
ments, interactive elements, and computation across multiple and heterogeneous
devices and platforms.Malleability signifies the system’s ability to be continuously
changed and appropriated by users in personal and idiosyncratic ways. We used
these principles as guiding design principles for our participatory design process
with the inclusion of the principle of computability, which is left implicit in previ-
ous work on computational media. With computability, we refer to the ability to
develop, edit, and execute simple and complex computations on data that exist
in the same perceptual space as the code. We used Webstrates and Codestrates
to create our prototype.

10.3 method

Our aim was to explore computational media as an alternative vision of software
to traditional applications and scripts. To make this actionable, we looked for
use cases where computation was an integral part of users’ activities, but where
users were not employed or trained as a programmer; activities where using and
developing a piece of software blur, and users who work close to the code but did
not necessarily author it.
We collaborated with a group of biomolecular nanoscientists because they (a)

do complex knowledge work mediated by digital tools and materials, some of
which are developed by lab themselves; (b) are computationally dependent but
not trained to be computationally literate; (c) have a history of experimenting
with new research tools and processes; and (d) were willing to participate and
easy to access.
Our research consisted of three core activities over two years: (1) observations

and interviews; (2) participatory design of a prototype; and (3) in-situ interviews
while using the prototype (fig. 38 right).

34 Klokmose2015.
35 Rädle et al., ‘Codestrates: Literate Computing with Webstrates.’

130

10.3 method

2019

Activities

Project brief and
technology demo
Observations and
interviews

Future workshop

Prototype iteration #1

Prototype presentation
and design discussion

Prototype iteration #2

Observations and
interview

Prototype iteration #3

Remote videocall
prototype demo
Prototype testing and
contextual interviews

In-situ interviews w/
prototype #4

2017

2018

People involved: participants
(0–11) & researchers (I–IV)

1 2 3 4 5 6 7 8 9 1011 I II III IV

Initial design meeting

Prototype iteration #4

0

Figure 38. Overview of researcher (orange) and participant (green) engagement in the
research process.

10.3.1 Participants

We collaborated with the Andersen Lab for Biomolecular Design36 which is part of
the Interdisciplinary Nanoscience Center37 at Aarhus University. The nanoscience
center is a consortium of fifteen departments and faculties across two universities,
housing twenty-five research groups. At the time of the study, the lab consisted
of one principle investigator (PI), eight postdoctoral researchers (one remote),
and four PhD students. All members of the lab except one were involved in the
study to different extents. The process overview in Figure 38 to the left shows
the participant engagement in the different activities in the project.

10.3.2 Observations and Interviews

To gain a phenomenological understanding of the work practice of the partici-
pants, their use of computational tools, and the socio-technical context of the lab,
we took a contextual inquiry-based approach, which totalled five whole days of
observations at the lab and six formal in-context interviews. Before starting our
36 https://bion.au.dk
37 https://inano.au.dk

131

https://bion.au.dk
https://inano.au.dk

10.3 method

observations, we were introduced to the research group at their weekly meet-
ing. We explained our overall goal and asked for consent to record their work.
The participants were introduced to our general research agenda and we demoed
previous prototypes of computational media that we had developed. We followed
two participants for the entire duration of a particular experimental phase—each
lasting between a day and a day and a half—and opportunistically observed and
interviewed the other members of the lab when appropriate. During the experi-
ments we tried to get a general understanding of the participants’ work practice
and asked them to walk us through the different steps of their experimental pro-
cess, why they were doing it in the way they were, what problems they run into
while doing their work, and what they would like to see changed. In particular,
we asked them to report on the variety of computational tools they used and how
they worked together. During the formal interviews, we used the critical incident
technique38 to ask the participants about recent or memorable technology break-
downs. The data collected in this phase included field notes, photos, videos of
participants interacting with equipment and software, and audio recordings of
interviews and workshops. The interviews were transcribed pure verbatim.

10.3.3 Participatory Design of a Possible Future Prototype

To help the participants reflect on how computational media might or might not
be useful for their work practice, we wanted to establish a possible future,39 that
is, use prototype development to co-create a future vision of a computational
laboratory notebook “empirically researchable in the present world”.40 The aim of
this participatory design process was to encourage the participants to iteratively
reflect on their current computational practice, crystallize ideas into prototypes,
and give them hands-on experience with a possible future lab notebook.
The participatory design process started with a full-day workshop that focused

on collectively imagining the future of digitally supported biomolecular nanoscience.
We presented the empirical data we had collected and asked the participants to
confirm and expand on our observations. Grounded in these accounts, the partic-
ipants wrote detailed scenarios of one particular, common activity of their work
practice. They were asked to bring up the different digital and analog materials
they used, the breakdowns that occurred, and the workarounds they employed to
deal with them. We picked two of these scenarios and ideated in two groups on
how the scenario could be better supported digitally in the future. We chose one
of these two ideas to design and develop into a prototype. The idea was chosen
based on its level of significance to their research, and its technical feasibility to
implement.

38 John C. Flanagan (1954b). ‘The Critical Incident Technique.’ In: Psychological bulletin 51.4,
p. 327. doi: 10.1037/h0061470.

39 Antti Salovaara, Antti Oulasvirta, and Giulio Jacucci (2017). ‘Evaluation of Prototypes and the
Problem of Possible Futures.’ In: Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. CHI ’17. Denver, Colorado, USA: ACM, pp. 2064–2077. isbn: 978-1-4503-
4655-9. doi: 10 .1145/3025453 .3025658. url: http : //doi . acm.org/10 .1145/3025453 .
3025658.

40 Ibid.

132

https://doi.org/10.1037/h0061470
https://doi.org/10.1145/3025453.3025658
http://doi.acm.org/10.1145/3025453.3025658
http://doi.acm.org/10.1145/3025453.3025658

10.3 method

We focused on the first part of their experimental workflow, which is the design
phase of RNA structures. We conducted four meetings with researchers of the
laboratory and a collaborator in the US to iteratively design and develop the
prototype.
Using previously conducted fieldwork as a basis, we implemented the initial

iteration of our prototype. It featured rudimentary functions like the displaying
of a 3D representation of an RNA molecule or a drawing canvas for sketches.
We used this first iteration as a way to communicate our ideas during the first
meeting with two researchers of the lab. This meeting was used to get an initial
reaction towards our idea of computational media and to clarify the exact steps
of the workflow of one of the researchers.
After developing the structure of our prototype, during a second meeting, one

of the researchers showcased how the tools and scripts are used in practice. This
showcase was followed by a discussion on how and with what features the re-
searcher could imagine this workflow using a computational medium. The third
iteration of the prototype, which implemented various scripts and tools the re-
searchers use, was discussed in a meeting with three researchers of the lab, two
of whom were introduced to the prototype for the first time during that meeting.
After a brief introduction to the prototype, all three researchers used it with one
of the molecule designs they were working with at the time. Based on the feed-
back and ideas of the three participating researchers, the prototype was iterated
another time. The fourth prototype was used as the basis for the in-situ interviews
described below.

10.3.4 In-situ Interviews While Using the Prototype

We conducted in-situ semi-structured interviews with three participants while
they used the prototype to design a new RNA structure. We chose these three par-
ticipants because they, at the time of the study, had concrete work they needed to
do which the prototype was specifically designed to support. The three indepen-
dent sessions with the participants started with us giving them an introduction
to the goals of the project and the process so far, a brief mention of the history of
these types of software tools, and a few words on what HCI research is. We intro-
duced the participants to the four principles that the prototype was built upon:
shareability, malleability, distributability, and computability. We did this to allow
them to reflect on these, and for them to have a vocabulary to talk about the
prototype with. After the introduction, which lasted between 15 and 20 minutes,
they received an in-depth demonstration of how the prototype worked.
We began the interviews by asking the participants to design an RNA structure

using the prototype. The prototype was used as a springboard41 into a discussion
of their computational work, their thoughts on the four principles, and a general
reflection on computational media in relation to their work. The interviews dealt
with their general software problems, further explaining and discussions of the
inner workings of the prototype, and even co-debugging their pre-existing scripts
that had been imported into the notebook prototype. The interviews were guided
41 Yrjö Engeström (2015). Learning by Expanding. Cambridge University Press.

133

10.4 findings

by a number of questions we had prepared, e.g., “When was the last time you
tweaked a script?” or “Do you have any shared documents or resources in the
lab?”. The interviews lasted 82minutes, 57 minutes, and 90minutes, respectively.
All authors coded them independently (open coding), focusing on statements
related to the four principles of computational media. We collected the codes
and examples on a whiteboard and discussed how to arrange them in themes
over three meetings.

10.4 findings

The findings are structured as follows: first, we give an overview of the nanoscience
laboratory and explain the work and environment of the participants. Second, we
describe three defining computational characteristics of biomolecular nanoscience
that affect the participants. Lastly, we present the design of our computational
labbook prototype and how it relates to the participants’ work practice and com-
putational challenges.
The findings are presented in an anachronistic order. The computational char-

acteristics we describe came out of co-reflecting with the participants while using
the prototype for a realistic work task. However, we present these insights before
we describe the prototype’s design, because we believe this makes it easier for
the reader to understand and appreciate what challenges the prototype tries to
address.

10.4.1 Overview of the Lab

Nanoscience is the study and application ofmaterials and structures on the nanoscale,
a transdisciplinary research category that can be found in fields such as chemistry,
biology, physics, engineering, and material science. The research group under
discussion here is one of the world’s leading molecular biology labs specialis-
ing in the origami method: a way of creating molecular structures using DNA,
RNA and proteins as building blocks which can assemble themselves into non-
arbitrary shapes. This allows researchers to create “nanorobots”; structures that
can perform pre-programmed tasks such as turn into a smiley, act as biosensors,
or (hopefully in the future) deliver drugs to specific parts of the body.
The experimental process of this area of research can be roughly divided into

two parts: the “dry” part, which includes the open-ended and creative design of
new structures; and the “wet” part, which includes creating those structures in
the lab and performing experiments on it to see how it behaves.
For the wet work, each of the researchers in this group has their own assigned

workbench in the laboratory (fig. 39). The lab is crowded with scientific instru-
ments they use for their experiments (e.g., vortex centrifuges, electroporators,
non-confocal laser scanners). Because they work with genetic material, they have
to be careful not to accidentally contaminate their samples. They wear latex
gloves in the lab, and there are strict rules about “glove-on” and “glove-off” equip-
ment. They also limit the number of things entering or leaving the lab as much

134

10.4 findings

Figure 39. A lab bench in one of the main laboratories.

as possible to protect the environment, and anything brought from the outside is
only allowed to be placed in specific taped off sections on the lab bench.
The dry work is predominately done at a desk in the office. Over the years, each

researcher has accrued an ecosystem of computational tools they feel most com-
fortable with. Some of them have invested significant time designing their ideal
software environment, with scripts to automate parts of their tasks, sophisticated
Excel spreadsheets, and carefully chosen commercial and open-source web and
desktop applications. Some of the researchers are provided with a laptop by the
department, others simply bring their own device. Because of the restriction on
moving things into and out of the lab, to use a computer in the lab means sac-
rificing that computer to that space, resulting in some of the researchers having
one high-quality device for their office work and a second “disposable” laptop for
the laboratory. All team members are also supplied with Apple iPads as part of
the PI’s efforts to digitise the lab and experiment with new ways of working.
There are two computational tools that are absolutely fundamental for the lab,

the knowledge it creates, and the way they organise their work. The first is their
ELN: a wiki-based collaborative software called Confluence. The notebook is the
linchpin of the natural sciences, used to plan experiments, record research results,
and document analyses. It plays an important part in ensuring scientific integrity
and settling intellectual property disputes. The Confluence ELN—a digital reme-
diation of the traditional paper notebook—started as a grassroots project in this
group, but was later picked up by the university administration and is now used
by most of the labs. Each member of the group has their own webpage on the
ELN, which they use to plan and report their experiments, present results during

135

10.4 findings

weekly meetings, hand over projects between researchers, and onboard new lab
members. The second crucial computational tool is their repository of in-house
developed Perl and Python scripts, which the researchers use to compute RNA
structures, generate 3D visuals, and reformat outputs to be more readable.
These scripts were written by one particular postdoc who taught himself how

to program, and they are used in good faith by other lab members who have
fewer or no programming background. Without these scripts, the lab would not
be able to do RNA origami research, since this is a frontier of science that is still
being invented.

10.4.2 Computational Characteristics

We identified three characteristics of computational biomolecular nanoscience
that shape how participants structure their work, their psycho-social working
conditions, and scientific knowledge they produce related to their computational
tools.

10.4.2.1 Computational Culture

Biomolecular nanoscientists have a distinct relationship with computers and com-
putation compared to other, related scientific fields. Reflecting on the tools they
use, P3 remarked:

Our lab is derived from molecular biology, so our methods are also from
that field. We use “black box” machines a lot, where you put in your
sample and just press start and you get your data. Physicists [on the
other hand] like to have their own equipment they can tinker with. (P3)

The sophistication of those “black box” machines—whether hardware or soft-
ware—differs quite significantly depending on the particular research questions
the scientist focuses on. If the area of study is well established, so is the compu-
tational support. But going beyond the frontier of an established type of research
means stepping into a tabula rasa of software. P10, for example, was confronted
with this jarring difference when switching from analysing RNA structures in their
previous job to designing them when they joined the current lab:

We didn’t execute a whole bunch of codes in our previous lab. I was more
using pretty well established software with a nice-ish GUI [. . .] I was
still doing RNA work, but I wasn’t doing any design of RNA sequence or
anything like that. So depending on the research you’ll have either really
well supported workflows . . . or nothing . . . or homebrew scripts. (P10)

Switching research focus, then, also means a shift in the kind of computational
competencies required of the researcher. For the ground-breaking RNA origami
that this lab does, there are no well-established tools available. The lab members
have to cobble together scripts in different languages, some of which are built
in-house and others they found online. When asked if they could do this kind of
research without those scripts, P11 answered:

136

10.4 findings

No, no I couldn’t do it. [. . .] I could do other kinds of science, but this
is what is giving us like, a lot of chances to create new structures. [. . .]
I see sometimes other people designing RNAs manually in some papers
. . . that’s crazy. Sequence design manually? Do you know how crazy
that is? (P11)

The friction comes from the fact that the software skills necessary to understand,
run, and debug those scripts are not (yet) part of the formal education leading
up to this kind of research, nor is it considered part of the professional culture
to pick them up. Biomolecular nanoscientists with the computational literacy to
produce or modify scripts are “pretty rare” (P10) and learning how to program is
considered “a whole other career” (P11) rather than an integral part of their job.
As a result, the development and maintenance of the computational tools vital
to the participants’ research rests on the very precarious foundation of a once-
in-a-blue-moon computationally literate graduate student, postdoc, or research
assistant.
In summary, the computational culture of biomolecular nanoscience is one

where there is a dependency on computational tools to do the work, but not a
tradition of training scientists in the development, deployment, and maintenance
of them. This is fine when doing established research using GUI software, but be-
comes very restricting when working on a frontier of science where the tools have
to be invented. There is an incongruous need for the flexibility of scripts that al-
lows researchers to invent new methods, but the usability and convenience of
applications. A computational medium would have to address this gap between
flexibility and usability.

10.4.2.2 Computational Environment

The biggest challenge for the nanoscientists was not a lack of coding skills, but
having to manage the computational environments in which to execute code. Be-
cause there are few computational tools that support their work, the participants
use any software—whether an open source system published on GitHub or a
script sent by a colleague from a different lab—regardless of language, depen-
dencies, or quality of documentation. Installing, maintaining, and debugging the
various environments that these tools rely on, however, has proven to be categori-
cally prohibitive. Issues include terminal commands that change across operating
systems, having to set up virtual environments to run scripts, fixing corrupted in-
stallations of language interpreters, etc.
The consequences of these challenges are that they work with partial outputs,

accept bottlenecks, and even abandon certain research approaches. For example,
P8 explains how they had to give up on a popular tool because they could not
get it to work in Windows.

I was trying to get this software that everyone was using [. . .] and I
couldn’t get it to work [. . .] Probably because it’s for like Linux and my
Windows just didn’t . . . so I had to either do a virtual machine, get Linux,
and do it from there . . . but then I just gave up. (P8)

137

10.4 findings

P11 tried to run a script given to them by a collaborator but could not get it to
work42. In the end, P11 simply sent the data and asked the collaborated to run
the script on it and email back the result.

We are trying to build this new structure, a triangle that is a bit weird.
So what I do is, I try to design the pattern that I think is going to fold
the way we expect and then I send it to him and he runs it, and he’s like
“no”. (P11)

In summary, using computational tools requires an understanding of the en-
tire software stack, but this kind of information is often assumed in documenta-
tion and few online tutorials focus on such obscure dependency management.
A computational medium should break the tight coupling between hardware
and computational environments, and instead merge the computational environ-
ment with the code. This would allow the code/environment artefact to be self-
contained and easily shared regardless of the underlying platform.

10.4.2.3 Computational Disempowerment

Paradoxically, the very tools that provide the scientists with the ability to push
the boundaries of RNA origami also created a psycho-social working environ-
ment where they frequently felt disempowered. Participants were vocal about
how their tools made them feel helpless, but mostly placed the blame on their
own perceived lack of skills rather than the design of the technology.

So now I’m following this tutorial on how to use this other script and it
doesn’t work and that’s it. I have no idea what to do. I don’t understand
how it works, at all. (P11)

When a script reports an error, it is in the form of error codes or snippets of
a foreign programming language. Errors in the molecular structure that make it
impossible to be created are expressed as software errors and have to be somehow
deciphered back into the realm of molecular biology.

This is one of my points of frustration. Because I have no idea what that
[highlights terminal error] means [. . .] I have tried to to look at the
script. And that’s about as far as I got. Because this means nothing to
me. So if I go to line 2856 . . . 2856 is . . . print oped spool, okay yeah
that’s what’s there [laughs]. (P10)

In fortunate situations, a more capable peer can assist, as when P11 explained
how they would send data to a remote collaborator to run a script that would
not work on their own computer. However, this is a fragile workaround as P11’s
work became dependent on the collaborator’s time and goodwill.
Sometimes it is obvious that there are more efficient ways to go about a prob-

lem, but time and skill prohibit doing something about it.
42We helped fix the issue during the interview: the script would overwrite the original source file

instead of creating a new file.

138

10.4 findings

I think this is one of those things where it’s definitely not the most effi-
cient way of doing this, but it’d take me longer to find a more efficient
way. (P10)

P8 explains how one of the scripts requires not having duplicates of the same
sequences, but is a bit uncertain whether it is a biological or software limitation.

RNA wise it makes sense. But for some of these it doesn’t . . . I kind of
like having duplicates. P8

Even though P8 would like to be able to change the script they don’t, instead
they “hack the structure a bit” (P8).
The new computational possibilities are a blessing and a curse. They enable

scientific breakthroughs that were previously inconceivable, but also create a de-
pendence onmachinery that the scientists are not trained to operate. When break-
downs happen—and they happen often— the scientists are largely left to their
own fate, to much frustration.

10.4.3 The Computational Labbook Prototype

We produced a prototype through which to co-reflect with participants on their
current and imagined future computational tools and activities. The findings pre-
sented above largely came from the co-creation of the prototype and its subse-
quent role as an artefact to talk about their current challenges and possible fu-
tures. In this section, we will describe the particular task that this prototype was
developed for, how it implements the computational media principles suggested
by previous work, and how its design addresses some of the three challenges
faced by the scientists mentioned in the previous section.

10.4.3.1 Supporting the Designing of Macromolecules

Our prototype of a computational labbook43 is designed to support the design
of RNA nanostructures, also referred to by the scientists as the “dry” part of the
experimental process. This phase typically consists of some variation of these
steps:

1. Producing a 2D textual representation of the target macromolecule, often
by adapting an existing structure (from previous work or another lab mem-
ber) with a molecule that folds in a desired way.

2. Checking whether the structure is physically capable of folding in the de-
sired way by creating a 3D representation of it and looking for flaws.

3. Computing possible genetic sequences thatmight fold into the desiredmacro-
molecular structure and ranking them by viability.

4. Turning the 2D textual representation into a string-based representation
that can then be send to a commercial company when ordering.

43 See the accompanying video for an overview of the prototype.

139

10.4 findings

Figure 40. Screenshot of the computational labbook. The center shows the sections and
paragraphs of the document; on the right side the Instrument Panel allows
users to drag instruments into the document.

Step two and three are largely interchangeable, and at least one researcher
does not create a 3D representation at all. The “dry” part is then followed by the
“wet” part in which researchers assemble, analyse, and validate their work in the
lab space.

10.4.3.2 Redesigning the Task as a Computational Notebook

Besides providing functionality typically associated with ELNs, such as text edit-
ing and image uploading in a document, the computational labbook prototype
lets the user add various computational instruments to the document by dragging
and dropping from an instrument panel (fig. 40).
The prototype addresses the steps of the dry phase in the following ways: To

design a new structure (step 1), the scientist can create a new document and drag
in an ASCII-based Pattern Editor instrument for the textual representation of the
RNA structure. To preview the structure (step 2), a PDB44 Viewer instrument can
be added, which generates an interactive 3D visualization of the structure in the
document. Now, the Batch Revolvr instrument can be added to compute multi-
ple candidates of molecules (step 3) for a specific pattern scaffold by—broadly
speaking—repetitively filling the scaffold and computing its energy properties.
This is necessary as it is not feasible for researchers to try out every possible
combination of nucleobases45 in their scaffolds which can contain hundreds of
nucleobases. The resulting candidates can then be used for further analysis in
other external tools. As the computation of candidates is computationally heavy,

44 The Protein Data Bank file format.
45 Put simply, nucleobases are the four fundamental building blocks of DNA/RNA molecules.

140

10.4 findings

it is offloaded to a server which—once finished—sends the results back to the
document.
The ability to offload heavy computation to a fast central server was (unsur-

prisingly) something that was well received by the participants.

It works pretty well! [laughs] This is so fast. This is really good. (P8)

Other instruments can be added to perform analyses on the structure, to per-
form various sequence operations (step 4) such as converting from RNA to DNA or
reversing a sequence, or to give access to a shared repository of molecule designs.

Having the repository is nice because it’s just click and drag and not a
text document, stuff like that. But having it shared is also nice because
you can make sure people are using the same motifs, like this mango
one [a particular structure] has been through like five iterations. (P10)

Multiple designs can be made in a document, and the computational instru-
ments can be interleavedwithwritten text, images, and even hand-drawn sketches
if the notebook is opened on a tablet with a stylus. The unification of the differ-
ent tools and scripts in one document was particularly highlighted by the partic-
ipants.

[whispers] Oh this is really convenient . . . usually I would have to like go
in . . . make the modification, save the file, run the script on the terminal,
wait for it to generate the file, then click that. (P8)

It would be nice to have the whole . . . everything from trace analysis to
Revolvr all on there. I think it would be nice to do . . . because it’s all
amalgamated into one location. And it’s a well documented workflow
rather than having . . . [clicks and shows folders of files] this. (P11)

Using and discussing the prototype also spawned new ideas, e.g., the ability to
chain the output of one script to the execution of another.

This is pretty fast! Except you don’t get the summary, I would love to get
these results but run another script on it. (P8)

10.4.3.3 Adherence to the Principles of Computational Media

The prototype was developed to embody the four principles of computational
media: shareability, distributability, malleability, and computability. We realised
these principles partly by leveraging existing features of Webstrates and Code-
strates and extending them with new ones. Table 7 gives an overview over how
the prototype practically implements these principles through specific function-
ality.
The principles are realised in the following manner: Notebooks are shareable

as they are accessed through their URLs, they can be copied, and they support
real-time collaborative editing and interaction. Nanostructures can be shared be-
tween notebooks through a repository. Also, functionality can be shared between

141

10.4 findings

notebooks using its built-in packaging system from Codestrates. While the partic-
ipants didn’t collaborate closely on a day-to-day basis, they reflected on how the
shareability could help in knowledge sharing.

I think this is just so much nicer, just from an organisational point of
view. Like if he’s working on these designs, instead of just sending me
the text files and then I have to organise that in my own computer and
yada yada, I can just look at his labbook and see the output, and see
what he’s done. (P10)

The prototype is web-based and can be accessed from any device with a web
browser, and as a result it is distributable across a variety of devices (e.g., desktop
computers, laptops, tablet, and phones) and operating systems (e.g., Windows,
macOS, Android, and iOS). It supports distribution of interaction where, for ex-
ample, the PDB Viewer can be shown on a tablet while the structure is edited
on a laptop. Also, it supports distribution of computation. While the benefits of
distributing computation was obvious to the participants, it was harder for them
to imagine how to leverage distribution of interaction across devices in their day-
to-day work.
The prototype supports computability as computations can be executed directly

in the documents of the labbook without any setup, and it supports the execution
of multiple programming languages. Compared to a conventional computational
notebook, the prototype does not have code front-and-center. The code for the
computational instruments can be accessed and modified from within the note-
book, including the Perl and Python scripts developed in the lab. The built-in
versioning support in Webstrates enables to revert to a working state if the note-
book breaks. The notebook includes an instrument for creating custom scripts
in Python, two dialects of Perl, Ruby, or Node.js JavaScript. The execution of the
custom scripts is offloaded to a server. Hereby, the notebook supportsmalleability.

10.4.3.4 Technical Foundation

The prototype is realized usingWebstrates46 and its authoring environment, Code-
strates.47 Webstrates48 is a platform for creating computational media that fol-
lows a document-centric approach to software. Documents in Webstrates are
identified by their URL and can also be shared using it. Every document is self-
contained and includes the source code of its own implementation. In Webstrates,
changes to the document are made persistent on a server and synchronized to all
other clients with the same document open, this includes changes to embedded
scripts. The user interface of the labbook prototype is an adaptation of the Code-
strates user interface following the same document-centric structure of sections
and paragraphs, where paragraphs can be textual, data, executable code, or user
interface elements. Functionality can be dynamically added and removed from

46 Klokmose2015.
47 Rädle et al., ‘Codestrates: Literate Computing with Webstrates.’
48 Klokmose2015.

142

10.5 discussion

Distributability – Documents accessible on any device with browser
– Distribution of notebook paragraphs to other devices
– Off-loading script execution to server

Shareability – Real-time synchronisation of document changes
– Package system for sharing tools
– Repository of molecule structures
– Easy sharing through URLs
– Copying and branching of documents/templates

Malleability – All code is accessible and changeable from within
– Version control as safeguard
– Custom scripts

Computability – Scripts, data, and output in the same document
– No setup of computational environment required
– Execute code in multiple programming languages

Table 7. Overview of how the computational labbook prototype realises the four princi-
ples of computational media.

a from a document using Codestrates’ package manager.49 Each computational
instrument is implemented as a package, which means that it is possible to con-
figure a notebook with a specific selection of instruments, and also extend it with
new ones.
The Codestrates platform supports the execution of JavaScript code directly

in the document. The scripts of the nanoscience lab, however, are mainly im-
plemented in Perl and Python. To be able to execute these scripts as well, we
extended the Codestrates platform to make use of an experimental distributed
computing platform for Webstrates. The latter uses Docker50 containers on a ded-
icated server to run scripts of arbitrary programming languages in a sandboxed
environment.

10.5 discussion

The design of the tools used by researchers play an important epistemological
role in shaping what knowledge can be created. In his book Changing Minds,51
diSessa explains how the invention of modern algebra at the close of the 16th
century suddenly made it possible for secondary school level students to grap-
ple with mathematical proofs that were previously only accessible to university-
educated mathematicians. A parallel can be seen in the tools for the origami
method in biomolecular nanoscience: modeling nanostructures was initially done
by hand, but this limited the research to only small, manageable sequences. For
49Marcel Borowski, Roman Rädle, and Clemens N. Klokmose (2018). ‘Codestrate Packages: An Al-

ternative to “One-Size-Fits-All” Software.’ In: CHI EA ’18 Proceedings of the 2018 CHI Conference
Extended Abstracts on Human Factors in Computing Systems. doi: 10.1145/3170427.3188563.

50Docker (2019). url: https://docker.com.
51 diSessa, Changing Minds: Computers, Learning, and Literacy.

143

https://doi.org/10.1145/3170427.3188563
https://docker.com

10.5 discussion

DNA origami, a group of researchers released a software packaged called caD-
NAno that provided a graphical user interface for designing 3D nanostructures.52
All of a sudden, this branch of research became more accessible and more pop-
ular, to the point that “undergrad students can now even build these types of
structures” (P3). For RNA origami, which the researchers in this study focus on,
the tools are in-house developed scripts that compute suggestions of RNA struc-
tures. Because the script was designed to process the inputs sequentially, when
it gets stuck in an infinite loop on a particular structure, all possible nanostruc-
tures that might have been “discovered” afterwards are rendered scientifically
impossible.
Our findings highlight the dichotomy between computational tools designed

as scripts and applications. Software as a script provides the nanoscientists with
great expressiveness and flexibility to do research on the frontier of their dis-
cipline, but becomes unapproachable because of the competences required to
create, execute, and maintain it. Software as an application is more accessible
because it requires less computational literacy, but they provide only turn-key op-
erations that calcify a particular scientific praxis and the types of research that can
be done. We could teach all scientists to also be software engineers so they could
make their own tools, or we could provide all labs with professional programmers
to create user-friendly applications. These are both commendable, albeit unreal-
istic paths. A scaleable solution is to develop a software model that straddles the
divide of the dichotomy. This means questioning the application paradigm of the
last 50 years and reinvigorate the efforts in creating computational media.
What design should computational media have? With our prototype, we ap-

plied four design principles derived from Klokmose et al.53 and Rädle et al.54 as a
starting point: distributability, shareability, malleability, and computability. The
rest of our discussion is structured around these principles, their relevance for
the context of biomolecular nanoscience, and their limitations.

10.5.1 Distributability

Based on our observations and interviews, we can extend the concept of dis-
tributability for computational media by dividing it into three: distribution of
documents, functionality, and computation. The distribution of documents is im-
portant because the participants need easy access across devices (laptop, desktop,
tablet, phone) and spaces (office, home, laboratory, conferences). This need is al-
ready well-integrated into th mental model of the researchers, and facilitated by
file-sharing platforms and the Confluence system. The distribution of functional-
ity refers to the orchestration of operations across devices. Currently, operations
are bundled in applications which means that each device needs to install the
same application for functionality to be distributed (i.e., to access spreadsheets
stored in the cloud, every device needs to install a spreadsheet application). How-

52 Shawn M Douglas et al. (2009). ‘Rapid prototyping of 3D DNA-origami shapes with caDNAno.’
In: Nucleic acids research 37.15, pp. 5001–5006. doi: 10.1093/nar/gkp436.

53 Klokmose2015.
54 Rädle et al., ‘Codestrates: Literate Computing with Webstrates.’

144

https://doi.org/10.1093/nar/gkp436

10.5 discussion

ever, the participants did not engage in any multi-device activities (e.g., using the
PDB Viewer on a tablet while using the Pattern Editor on a desktop computer)
despite being provided with extra tablets by the lab. Previous research shows
that—even if it is beneficial to use multiple devices to perform a task—users
tend to use only one or at most two devices at a time.55 Distribution of computa-
tion was something that made an immediate positive impact and was wholeheart-
edly embraced by the participants. Being able to offload heavy computations to
a remote server was a crucial improvement over their current workflow, and is
also a core focal point of many e-Science efforts. This, however, also necessitates
server infrastructure that needs to be set up, be secure, should be scalable to a
large number of users, and needs to be maintained.

10.5.2 Shareability

The participants work independently most of the time, so they did not see the
need for real-time collaboration on a day-to-day basis. Instead, what the partic-
ipants needed to be shareable was self-contained, computational environments.
The difficulties they experienced trying to run scripts across devices make sharing
their tools and results a huge hassle, either when when calling in the help of a
more capable peer to debug an error, collaborating with a remote colleague, or
networking at a conference. The problem of the tight coupling between compu-
tational environments and the hardware it runs on was similarly highlighted by
Guo and Engler.56 They built the CDE system, which combines code, data, and en-
vironemnt into software packages that could be transferred seamlessly between
Linux machines. Our prototype facilitates shareability by storing and running
documents/environments on a server that are accessed through URLs, which is
a conceptual switch from the traditional pass-by-value of sharing to a pass-by-
reference model. Beyond this, however, the prototype does not implement any
functionality that supports collaboration. Research into groupware (see57 for a
historical overview) shows that when multiple people can access a document,
questions such as “Who did that?” or “What happened since I was here last?” be-
come pertinent.58 We see additional challenges when the document is computa-
tional, with questions such as “Is something computing?” or “What computation
is this a result of?”. These need to be addressed in future designs, especially for

55 Thomas Plank et al. (2017). ‘Is Two Enough?! Studying Benefits, Barriers, and Biases of Multi-
Tablet Use for Collaborative Visualization.’ In: Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. doi: 10.1145/3025453.3025537.

56 Philip J. Guo and Dawson Engler (2011). ‘CDE: Using System Call Interposition to Automatically
Create Portable Software Packages.’ In: USENIXATC’11 Proceedings of the 2011 USENIX confer-
ence on USENIX annual technical conference, p. 21. url: https://dl.acm.org/citation.cfm?id=
2002202.

57 Jonathan Grudin (1995). ‘Groupware and Social Dynamics: Eight Challenges for Developers.’
In: Readings in Human–Computer Interaction. Elsevier, pp. 762–774. doi: 10.1016/B978-0-08-
051574-8.50079-0.

58 Carl Gutwin and Saul Greenberg (2002). ‘A Descriptive Framework of Workspace Awareness for
Real-Time Groupware.’ In: Computer Supported Cooperative Work (CSCW) 11.3-4, pp. 411–446.
doi: 10.1023/A:1021271517844.

145

https://doi.org/10.1145/3025453.3025537
https://dl.acm.org/citation.cfm?id=2002202
https://dl.acm.org/citation.cfm?id=2002202
https://doi.org/10.1016/B978-0-08-051574-8.50079-0
https://doi.org/10.1016/B978-0-08-051574-8.50079-0
https://doi.org/10.1023/A:1021271517844

10.5 discussion

scientific contexts where provenance of data and computation are important to
attribute authorship and settle intellectual property disputes.

10.5.3 Malleability

The kind of software malleability we observed was not a constant low-level tin-
kering with the code. Rather, it was similar to the malleability of a house, where
adjustments can be made when needed, but which are often outsourced to skilled
workers often such as carpenters and plumbers. As such, the concept of malleabil-
ity needs to take a more collective view of software transformation, especially
when the computational media targets users who are not trained programmers
but rely on more capable peers. We implemented this by leveraging the package
system of the Codestrates platform, which makes the medium extensible through
packages authored by others. This allows users with limited technical skills to
mold their environment, while retaining easy access to the code should it be
needed.
There is also the question of whether malleability is actually desirable, espe-

cially in the context of laboratory notebooks. While this did not come up explic-
itly in our process, Oleksik et al.59 document how the ease with which ELNs are
edited clashes with the “requirements for persistence and consistency of scientific
records” and makes collaborating with others more difficult because document
structures are no longer standardised. They suggest such systems could imple-
ment “fixity” to address the first concern: features that allow users to freeze
certain states of a document so it can be authentically replicated. To facilitate
collaboration, they recommend adding functionality that can deal with multi-
structured data, such as text mining, natural language processing, and scheme
integration.

10.5.4 Computability

Because the participants operate in a space where there is no established soft-
ware ecosystem, they opportunistically use scripts from different sources, written
in multiple languages. Therefore, supporting computability in a computational
medium should not just be about the ability to execute code, but should also al-
low the agnostic mixing of multiple programming languages in the same space.
Our prototype distributed code execution to containers on a remote server, which
makes it in principle possible to run any code. However, this simply moves depen-
dency management to a device out of the control of the user, which does not
scale very well without requiring the help of experts to maintain those execution
environments. With multiple, heterogeneous components also comes the need
for piping the output of one into another—something participants requested.

59Oleksik, Milic-Frayling, and Jones, ‘Study of Electronic Lab Notebook Design and Practices That
Emerged in a Collaborative Scientific Environment.’

146

10.6 conclusion

While our current prototype does not support this, we have developed reactive
data-flow pipeline mechanisms using Codestrates elsewhere.60
Ideally, the day-to-day access to a medium that supports computability will

improve the computational literacy of its users over time. There is evidence that
this happened in the early days of the web through sites such as Myspace and
Neopets. These social media helped users pick up HTML and CSS skills simply
because the code was accessible and could be tinkered with.61 Whether such
learning-through-exposure extends to imperative languages such as JavaScript,
Python, or Perl is unknown to us. What we do know is that creating the type of
interactive components that we have developed for the prototype requires being
able to read and write asynchronous event-based code, which is difficult to pick
up by simply stumbling into an existing codebase.

10.6 conclusion

The tools used in research shape the science and the scientist, guiding what
knowledge can be created andwhich competences are required to create it. In this
paper, we explored the scripts and applications used in biomolecular nanoscience,
and the concept of computational media as an alternative software model that sits
in between them. We discussed how the computational culture of biomolecular
nanoscience creates a dependency on digital tools, but does not have a tradition
of training the scientists in developing, deploying, and maintaining them. We
showed how, contrary to what most policy around the digitalisation of science
focuses on, the nanoscientists do not need help with learning how to code, but
with managing the computational environments required to execute that code. As
a result, the tools that make their research possible also are a source of feeling
computational disempowerment on a daily basis.
Computational media—systems where users can author and execute code in

the same perceptual space as othermultimedia content—could provide biomolec-
ular nanoscientists with the flexibility of scripts together with the accessibility of
applications. During a two-year participatory design process with the Andersen
Lab at the Aarhus University iNANO Center, we built a computational labbook
prototype to explore this potential. We used the prototype to critically evalu-
ated four design principles for computational media suggested by previous re-
search: distributability, shareability, malleability, and computability. We find that
distributing functionality across devices is not particularly relevant, but distribut-
ing (heavy) computation is crucial; that being able to share self-contained exe-
cution environments could play a small but critical role when collaborating and
debugging code with more capable peers; that malleability is a collective rather
than individual need; and that computability should support the execution and
coupling of multiple programming languages.
60 Sriram Karthik Badam et al. (2018). ‘Vistrates: A Component Model for Ubiquitous Analytics.’

In: IEEE Transactions on Visualization and Computer Graphics. issn: 10772626. doi: 10.1109/
TVCG.2018.2865144. url: https://karthikbadam.github.io/assets/data/vistrates.pdf.

61Dan Perkel (2008). ‘Copy and Paste Literacy: Literacy practices in the production of a MySpace
profile.’ English. In: Informal Learning and Digital Media. Ed. by Kirsten Drotner et al. Cambridge
Scholars Press. Chap. 10, pp. 203–224.

147

https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://karthikbadam.github.io/assets/data/vistrates.pdf

10.6 conclusion

For the past forty years, applications have been the dominant model for soft-
ware. But the emergence and popularity of code-centric computational notebooks
(e.g., Jupyter) and no-code computational documents (e.g., Notion) are excit-
ing hints of a changing paradigm. Without a dominant design in place, what
these computational media will look like is still an open challenge. Although our
study is rooted in a very particular context, we hope it inspires a larger discussion
around the paradigm shifting potential of this type of software.

148

11.
CONCLUS ION

Denmark is one of the few countries in the world which regulates its labour mar-
ket not through legislation, but through tripartite discussions and collective agree-
ments between employer organisations, labour representatives, and the govern-
ment. At its very heart, the “Danish model” is about the negotiatibility of labour
conditions such a wages, pensions, hours, and the quality of working environ-
ments. It requires that all stakeholders have strong, representative organisations
with a seat at the table that can bargain for their members’ interests.
Denmark is also one of the most digitised countries in the world, following

thirty years of successful national strategies. Reports such as the European Com-
mission’s Digital Economy and Society Index1 and the UN’s e-Government Sur-
vey2 consistently place Denmark in the top three digital societies, with high levels
of broadband connectivity, widespread integration of technology across indus-
tries, and trusted digital public services.
The current state of informational capitalism has placed these two characteris-

tics of Denmark’s labourmarket – the high-level of digitisation and the negotiation-
based regulation model – on a collision course. On the one hand, digitisation
means that work activities are increasingly mediated by software, and the design
of that software affects the labour conditions of Denmark’s workers. For example,
in Chapter 8 I described how the perceived labour power of Danish knowledge
workers is strongly connected to specific applications, but that the lack of interop-
erability between applications undermines that power when collaborating with
others and affects their psychosomatic health. On the other hand, Denmark’s
regulation of working conditions through tripartite negotiations and collective
agreements is incompatible with the software used by its labour force. In Chap-
ter 5, I traced the historical construction of the application model of software and
showed how its negotiability was eroded by the process of commodification. It
transformed from a cooperatively designed artefact in the 1950s, to a commis-
sioned package in the 1960s, to a mass-market product in the 1970s and 1980s.
Throughout this process, the developers of the software have increasingly appro-
priated control over its design: source code was hidden away, data formats made
proprietary, interoperability abandoned, and interfaces copyrighted. On top of
the way the application model centralises control with its developers, in Chapter

1 European Commission, Digital Economy and Society Index (DESI) 2020 Denmark.
2 United Nations Department of Economic and Social Affairs (2020). United Nations E-government
Survey: Digital government in the decade of action for sustainable development. United Nations.

149

conclusion

7 I reported on the extreme homogeneity of applications used by Danish knowl-
edge workers. This further concentrates the power over Denmark’s digital work-
ing conditions in the hands of a small group of US American corporations with no
moral commitment or legal responsibility to participate in tripartite negotiations.
Alternative software models are possible that, at least technologically, open up

the possibility for distributed control over the design of software. In Chapter 9
I presented Codestrates, a computational medium that removes the distinction
between the use and development of an application and allows users to collabo-
ratively and continuously change its design using a literate computing approach.
In Chapter 10 I described howwe further developed this software model together
with a group of biomolecular nanoscientists, showing first how the lack of nego-
tiability of applications forces them to revert back to command-line interfaces,
and then how the Codestrates-based platform provides them with the usability
of applications combined with the flexibility of scripts that they require for their
work.

Part I of this dissertation asked whether the power and control of large multina-
tional technology corporations could be redistributed by making software nego-
tiable by design. While this line of research was successful academically, it did not
affect a meaningful, lasting change in the digital labour conditions of knowledge
workers.
HCI research – including this dissertation – generally sets itself apart from

other technology-centric research disciplines by focusing on the user as the main
object and beneficiary of study, and on design as the vehicle for delivering those
benefits. Its overall theory of change is that establishing informational harms and
developing research prototypes that address those harms will trickle down into
computational products and subsequently solve the identified problems. Follow-
ing this tradition, I have successfully documented the undesirable characteristics
of the application model of software, and demonstrated the technological fea-
sibility of negotiable software. This knowledge might have affected a change at
a time when workplace software was primarily developed in-house, meaning re-
searchers such as myself had a direct line of communication with the organisation
that would ultimately implement the system. However, because most applications
used by workers are produced by inaccessible developer kings, the unavoidable
conclusion is that such user-centric, participatory design approaches are essen-
tially assemblies of the powerless. Without a way to inform or enforce changes to
existing software products, the knowledge generated by these research projects
will make a difference only by accident.

150

Part II

Negotiation Software

12.
I NTRODUCT ION

There is no easy path towards change in complex social systems, and believing
technology can unilaterally solve problems equates to unrealistic (and accord-
ing to some, destructive1) solutionism. However, that does not mean that digital
technologies cannot be part of the solution.
Part II of this dissertation describes the use of negotiation software, i.e., soft-

ware that supports negotiating activities with other actors in complex social and
political systems. The software that I will target are consent manangement plat-
forms (i.e., consent pop-ups) in the context of European data protection regula-
tion.

12.1 software: consent management platforms

Under informational capitalism, the primary source of surplus value is the knowl-
edge generated from the processing of information.2 Before information and
knowledge, however, there are data: “material produced by abstracting the world
into categories, measures and other representational forms”.3 The fundamental
role of data in informational economies has given rise to two kinds of processes:
on the one hand, more and more aspects of human life are datafied; and on the
other hand, human life is transformed to render it more datafiable.4 This dual
move gives lie to the popular metaphor that “data is the new oil” as if it was a
raw, naturally occurring resource that only needs to be extracted. Rather, Brown
and Marsden propose, we should think of data as silk, and humans as the worm
whose activities help produce the informational tapestries that sustain the em-
pires of a few merchants, infamously Google, Amazon, and Facebook.5
The internet and the web are two technologies where the process of datafi-

cation has considerably transformed their original decentralised and (largely)
anonymous design into platformed data-productionmachines. The businessmodel
of almost every contemporary online service relies on the creation and collection

1 Evgeny Morozov (2013). To save everything, click here: The folly of technological solutionism.
Public Affairs.

2 Castells, The Rise of the Network Society, p. 17.
3 Rob Kitchin (2014). The data revolution: Big data, open data, data infrastructures and their

consequences. Sage.
4 Ulises A Mejias and Nick Couldry (2019). ‘Datafication.’ In: Internet Policy Review 8.4.
5 Ian Brown and Christopher T Marsden (2013). Regulating code: Good governance and better

regulation in the information age. MIT Press.

152

12.2 context: european digital rights and responsibilities

of behaviour and identity data, piped through intermediary brokers into real-time
bidding infrastructures. Counter-technologies have been created that try and con-
trol the collection and flow of that data, for example browser extensions such as
Privacy Badger and uBlock and HTTP protocols such as Do Not Track and Plat-
form for Privacy Platform.
One particular sociolegal technology that has become the nexus of these power

struggles are Consent Management Platforms (CMPs). These JavaScript libraries
serve two purposes. On the front-end, they serve privacy notices for the web-
site visitor to interact with and provide their consent through. On the back-end,
they let the website owner integrate existing advertising services (e.g., Google
AdSense), manage which tracking technology is added to the page at what point
in time (before or after a visitor’s interaction); and store those consent signals in
a way that allows them to be audited.

12.2 context: european digital rights and responsibilities

The current state of data protection law in the European Union is the culmination
of fifty years of legislative efforts, evolving from regional laws, to national laws,
to EU laws, to fundamental rights in the EU Charter of Fundamental Rights.6
The normative commitment of the EU to see data protection as a fundamental
right, coupled with its legacy of civilian power,7 has created a situation where
control over data processing software is managed through legally protected rights
and legally enforced responsibilities. Under this regulatory regime, there are four
main parties who collectively shape this slice of digital life.

• The data subject or user, which refers to the natural person who can be
identified through the data or is using an electronic device.

• The data controller, which refers to the entity that determines the purposes
and means of the processing of personal data.

• The data processor, which refers to the entity that processes personal data
on behalf of the controller. Depending on how much influence they have
over determining the purposes and means of processing, they might be
“upgraded” to a join-controller.

• The supervisory authority, which refers to the independent body responsible
for monitoring and enforcing the regulation

Each entity has their own set of rights and responsibilities which they can exer-
cise to co-regulate how data is collected and processed, including consent man-
agement platforms. These are the parties I will negotiate with.

6 Gabriela Zanfir-Fortuna (2020). Why data protection law is uniquely equipped to let us fight a
pandemic with personal data. url: https://pdpecho.com/2020/04/06/why-data-protection-
law - is - uniquely - equipped - to - let - us - fight - a - pandemic - with - personal - data/ (visited on
07/08/2020).

7 Ian Manners (2002). ‘Normative power Europe: a contradiction in terms?’ In: JCMS: Journal of
common market studies 40.2, pp. 235–258.

153

https://pdpecho.com/2020/04/06/why-data-protection-law-is-uniquely-equipped-to-let-us-fight-a-pandemic-with-personal-data/
https://pdpecho.com/2020/04/06/why-data-protection-law-is-uniquely-equipped-to-let-us-fight-a-pandemic-with-personal-data/

13.
A BR I E F H I STORY OF WEB TRACK I NG
AND CONSENT POP-UP S

Tracking people on the world wide web and the consent pop-ups that purport to
give people some control over being tracked, are two later additions to the design
of network technologies. The purpose of this chapter is to trace the different
technological and legislative decisions that were made which resulted in “Notice
and Consent” being the dominant design of global, digital interconnection under
informational capitalism.

13.1 the invention of tracking

The design of the HTTP protocol – the back-bone of the web – did not origi-
nally include any way for a server to keep track of a user across different web
pages. The reason for this design choice was to reduce interdependence and thus
complexity, while increasing resilience. The successful handling of a single HTTP
request-response cycle does not depend on any previous connection between a
server and a client. It avoids the web server having to store any data between
concurrent connections, or needing some kind of memory clean-up mechanisms.
This stateless design makes it easier for the technology to scale, but it also makes
it impossible to track a specific person across different web pages.
Both commercial companies and regulators were unsatisfied with this design.

In 1994, the Bavarian State Government in Germany wanted to regulate porn
on the internet. At the time, Bavarian citizens were serviced by CompuServe, the
first US American online service provider, which did in fact host some porn on its
servers. Because of the stateless design of the web that made it impossible to know
who someone was and where they were coming from, the only way CompuServe
could comply with the Bavarian regulators and avoid being punished was to block
access to the porn for all worldwide customers of their network. Because of the
design of the technology, the geographical scope of a single nation’s regulatory
action was global, something which drew considerable critique from international
news media and digital rights organisations. About a year later, it implemented
the technology to filter access to content on a country-by-country basis, making
one of the first steps in the web’s history of tracing digital connections to physical
people.
Also in 1994, the browser company Netscape wanted to make it possible for

people to place items in a digital shopping basket and for that information to

154

13.1 the invention of tracking

be remembered when they went to a new page, i.e., the check-out. The stateless
design of the webmade such actions impossible, which was seen as a considerable
barrier to making e-commerce (and through it, the entire web) financially viable.
Montulli, a founding programmer at the company, was given the task to come up
with a technological solution. He ended up using the header of an HTTP request-
response to send data from the server to the client’s device, which the Netscape
browser would then read and save: the Set-Cookie Response Header. Netscape
shipped this implementation for the first time in September 1994 as part of their
Mosaic browser.
This implementation managed to spread far beyond the Netscape browser

through the www-talk mailing list of the World Wide Web Consortium (W3C). In
April 1995, Brian Behlendorf, a programmer at Hot-Wired.com, noted the general
interest of commercial companies in people’s “clickstreams” through websites,
and proposed a Session-ID HTTP header to store these. Montulli replied saying
they had been “doing some work along these lines”,1 and included his proposal:

Syntax of the Set-Cookie HTTP Response Header:
Set-Cookie: NAME=OPAQUE_STRING \

[; expires=] \
[; path=] \
[; domain=] \
[; secure]

Syntax of the Cookie HTTP Request Header:
Cookie: NAME=OPAQUE_STRING *[; NAME=OPAQUE_STRING]

The proposal fell on fertile ground. In December 1995 a subgroup of the W3C
HTTP Working Group was created around this idea of “state management”. It
used Montulli’s proposal as a starting point and published the specification of
cookies as a memory mechanism under the name HTTP State Management Mech-
anism in February 1997. Two important and frictious design decision were made.
First, cookies were rejected by default and required the user to opt-in. Second,
it would only allow cookies to be placed if they came from the same domain the
user was currently visiting. If the webpage used third-party sources for certain
elements on the page (e.g., images), the HTTP response sent along with that
content would not be allowed to set a cookie on the user’s device.
When this specification was published, two organisations joined a conversation

that normally did not receive a lot of outside attention. DoubleClick, the largest
and already contentious internet advertising agency, argued that blocking third-
parties like themselves from placing cookies and tracking users across websites
would have “huge ramifications” for the economic viability of small websites that
relied on selling advertising banner space to fund their operations. The second or-
ganisation, the Electronic Privacy Information Center (EPIC), occupied the other
side of the spectrum and came out in support of the specification. It concluded
its letter of support by saying that transparency – “the ability of users to see and
exercise control over the disclosure of personally identifiable information” – was
the most important principle to protect when designing these kind of tracking

1 Lou Montulli (Apr. 18, 1995). Re: Session tracking. www-talk electronic mailing list message.
url: https://lists.w3.org/Archives/Public/www-talk/1995MarApr/0462.html.

155

https://lists.w3.org/Archives/Public/www-talk/1995MarApr/0462.html

13.2 user control over tracking

technologies: third-party cookies would be difficult for the user to keep track of
and understand, making it untransparent and undesirable.
The disagreements around the technical implementation stalled the acceptance

of the proposal, which continued to be iterated over until at least 2000. In the end,
Netscape and Microsoft simply ignored the discussion around the proposal and
implemented their own version of the protocol. Launched in 1996, both Naviga-
tor and Internet Explorer allowed both first- and third-party cookies to be placed
by default.

13.2 user control over tracking

At the same time that Montulli proposed amechanism to track people’s behaviour
on and between websites, other members on the mailing list discussed ways to
preserve the privacy and control of the user. In Behlendorf ’s original call for a
way to save website visitors’ clickstreams, he also said that “any proposed solu-
tion *must* protect the anonymity of the user, for it’s not really necessary to lose
that when all that’s care about is unique sessions.” To Montulli’s proposal, he re-
sponded that “[t]he browser should allow the user to NULL their [cookie] at any
time (or turn off the functionality, even if by default it is on)”. Koen Holtman, at
the time a Master student at the Technical University Eindhoven in the Nether-
lands, suggested that browsers had some responsibility as well,2 and proposed a
control interface:

It is suggested that browsers provide something like the following
preferences box:

+---+
Honor set-cookie requests:

() Always honor request
() Start honoring requests if one is done in a response to

a form submission (POST request).
(*) Ask once for every site, use reply in later sessions
() Never honor requests

+---+
where the (*) is the default setting.

Version 1.1 of Netscape – released in April 1995 – did not offer users any
control over the cookies: they could not set any preferences, were not notified
when one was placed, and were all accepted by default. Netscape 2.0, released
in September 1995, supposedly limited each website to placing only three cook-
ies, although researchers trying to reconstruct this were able to have the browser
accept four cookies in version 2.02.3 It was possible, however, to limit the place-
ment of cookies by editing attributes of the cookies.txt file (ignoring the “do not
edit” comment).4 Internet Explorer and Navigator – both released in August 1996,
included a rudimentary version of the preference box suggested by Holtman. The
browsers gave users the option to either accept all cookies (the default option)
2 Koen Holtman (Aug. 11, 1995). Non-persistent Cookie proposal. www-talk electronic mailing list

message. url: https://lists.w3.org/Archives/Public/www-talk/msg01499.html.
3 Lynette I Millett, Batya Friedman, and Edward Felten (2001). ‘Cookies and web browser design:
Toward realizing informed consent online.’ In: Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 46–52.

4 Ibid.

156

https://lists.w3.org/Archives/Public/www-talk/msg01499.html

13.2 user control over tracking

or be alerted when a site tried to place a cookie and choose in the moment. The
alert would tell the user what server wanted to place the cookie, which server
could use it in the future, the cookie ID, the cookie content, and its expiration
date (fig. 41 via5).

Figure 41. Cookie pop-up from Netscape 3.04.6

At least as early as 1996, protection against cookies also became an interme-
diate software market, with popular solutions such as Luckman’s Anonymous
Cookie for Internet Privacy, Kevin McAleavey’s NSClean (fig. 42), or Limitsoft’s
Cookie Crusher.7 These could automatically delete or reject cookies, prompt the
user for a decision, and set guidelines for future choices on the same site.

Figure 42. Online privacy management tool NSClean for NetScape, by Kevin McAleavey

TheW3C also weighed in on the discussion and in May 19978 launched the Pri-
vacy Preference Project (P3P) to develop a technical specification for automated
privacy decisions: the user could indicate what type of data they did or did not
5 Millett, Friedman, and Felten, ‘Cookies and web browser design: Toward realizing informed

consent online.’
7 Monique R. Brown (1998). ‘Revenge of the cookie monster.’ In: Black Enterprise, pp. 42–44.
8 Joseph Reagle Jr. Lorrie Faith Cranor (1997). ‘Designing a Social Protocol: Lessons Learned from

the Platform for Privacy Preferences.’ In: Proceedings of the Telecommunications Policy Research
Conference.

157

13.3 regulatory response

want to share through their browser and, when visiting a website, the server
would configure itself to comply with these preferences. The specification repre-
sented a huge effort from researchers, browser vendors, and industry and finally
became a specification in 2002. Mozilla and Internet Explorer implemented sup-
port for the specification but almost no websites used it, and the protocol was
declared obsolete in 2018.

13.3 regulatory response

As digital data collection and surveillance technologies grew in quantity and
scope, governmental authorities in both the US and the EU were forced to re-
spond. This also revealed their ideological perspectives on the role of the state
and how to best shape a society.

13.3.1 The United States and Self-Regulation

In the United States, the Clinton administration continued and further expanded
the idea that data protection should be managed through the self-regulation of
companies, rather than strong intervention of the state.9 Their approach was in-
strumental in transforming computer users into computer consumers in the 1990s:
privacy and data protection became a matter of consumer choice between com-
peting offers, rather than decommodified, fundamental rights of citizens.10 For
example, it was the Federal Trace Commission, the agency tasked with uphold-
ing competition law and consumer protection, that started an investigation into
DoubleClick in 1999 for planning to merge with Abacus Direct, which held a
large database of consumer-purchasing data. This (and some of the ensuing le-
gal battles DoubleClick became mired in) resulted not in data protection legis-
lation to ensure such aggregation of citizen’s data would only happen within
certain constraints, but instead in DoubleClick launching extensive campaigns to
educate users about how cookies worked as well as the creation of the “indus-
try choice page for consumers”, a central opt-out page accessible off-site after
clicking through a website’s multiple privacy policy pages. This preference for
self-regulation has continued until today, although the adoption of stronger pri-
vacy and data protection regulations in other parts of the world have pressured
the US to reconsider its position, and individual states are beginning to introduce
legal instruments.

9 Meghan Grosse (2020). ‘Laying the foundation for a commercialized internet: international
internet governance in the 1990s.’ In: Internet Histories 0.0, pp. 1–16. doi: 10.1080/24701475.
2020 . 1769890. eprint: https : / /doi . org /10 . 1080/24701475 . 2020 . 1769890. url: https :
//doi.org/10.1080/24701475.2020.1769890.

10Meg Leta Jones (2020). ‘Surveillance Capitalism Online: Cookies, Notice Choice, and Web
Privacy.’ In: Surveillance Capitalism in America: From Slavery to Social Media. Ed. by Josh Lauer
and Kenneth Lipartito. University of Pennsylvania Press, p. 23.

158

https://doi.org/10.1080/24701475.2020.1769890
https://doi.org/10.1080/24701475.2020.1769890
https://doi.org/10.1080/24701475.2020.1769890
https://doi.org/10.1080/24701475.2020.1769890
https://doi.org/10.1080/24701475.2020.1769890

13.3 regulatory response

13.3.2 The European Union and Government Regulation

The European Union, instead, took a normative and rights-based approach to
people’s data and privacy.

13.3.2.1 Data Protection Directive

It adopted the Data Protection Directive (DPD) in 1995, which regulated the pro-
cessing of data that could reveal an individual’s identity – such as their name,
address, credit card numbers, criminal record, etc – and the free movement of
that data between EU Member States and other countries.11 The motivation for
the Directive came from the belief that European integration was endangered
because of the diverging ways that Member States protected their citizens with
respect to the processing of their data.12 Unifying these, they believed, would
better protect the fundamental right of a private life enshrined in article 8 of the
European Convention on Human Rights, and help with the objective to establish
an internal European market. The DPD allowed six ways in which a data con-
troller could lawfully process an individual’s data: (a) based on their consent;
(b) for the purpose of a contract; (c) to comply with other laws; (d) because it
would be in the data subject’s vital interest; (e) to serve the public interest; (f) or
for the legitimate interest of the data controller. In spite of its unifying goal, the
DPD was a Directive, which meant that each EU Member State was allowed some
liberties of interpretation when they transposed it into national law (compared
to the literal translations required by Regulations). This resulted in a slightly de-
viating patchwork of data protection regulation across the continent. In terms
of cookies and other web-tracking technologies, the DPD did not really directly
affect their designs or the control mechanisms available to the user. Most Mem-
ber States allowed cookies to be processed as part of the legitimate commercial
interest of the data controller, which has no bearing on interface design.

13.3.2.2 ePrivacy Directive

The first EU regulation that has a significant effect on the design and use of cook-
ies and adjacent software was the 2002 ePrivacy Directive (colloquially known as
the Cookie Law). The focus of this directive was not on personal data, but instead
on confidentiality of communication. It legislated the reading and writing of in-
formation on an individual’s devices, of which cookies were just a single example.
Described in in Article 5(3), it set out that storing data on or accessing data from
a user’s device is only allowed on the condition that the user “is provided with
clear and comprehensive information in accordance with Directive 95/46/EC [...]
about the purpose of the processing and is offered the right to refuse”. It is in the
reference to Directive 95/46/EC (the DPD) that interface design first becomes

11 ‘95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection
of individuals with regard to the processing of personal data and on the free movement of such
data’ (1995). In: Official Journal of the EC 23.6.

12Gloria González Fuster (2014). The emergence of personal data protection as a fundamental right
of the EU. Vol. 16. Springer Science & Business, p.125.

159

13.3 regulatory response

important for legal compliance. Article 10 of the DPD specifies that a data sub-
ject should have information about the identity of the controller, the purpose for
the processing, and any other information necessary “to guarantee fair process-
ing”.13 And so, websites and advertising agencies invented the cookie pop-up to
meet these requirements and continue to collect user’s data.
The directive originally also stipulated that “prior, explicit” consent was re-

quired, but this provision was lobbied out by advertising organisations, who ar-
gued that it would destroy commerce on the internet.14 This changed when in
2005 Mark Russinovich – a security expert – published a blog post detailing how
Sony was installing rootkits on people’s devices when they inserted one of their
CDs.15 The rootkit modified the operating system to prevent them from being
copied, but also opened it up to vulnerabilities for other malware. The scandal
and public uproar gave the European Commission enough momentum to bring
back the concept of consent. It amended Article 5(3) of the ePrivacy Directive to
say that, in addition to clear and comprehensive information, the lawful reading
and writing of information on a user’s device now also required that the user “has
given his or her consent”. To define consent, as with the specification for infor-
mation, the amendment pointed to the Data Protection Directive, which defined
in article 2(h) that consent needed to be a “freely given, specific, and informed”.
Consequently, the design of cookie pop-ups needed to change.
Although pop-up interfaces were not the only way that consent could be given,

it was the recommended method. Recital 17 of the ePrivacy Directive states that
consent can be given in a number of different ways, through browser settings or
by ticking a box when visiting a website. However, A29WP criticised a browser
based approach, because they argued that it would muddy the concept of con-
sent, that many browsers’ cookie settings did not meet the requirements of the
regulation, and that certain cookies (e.g., Flash cookies) could not even be con-
trolled via the browser. They state that a pop-up window would be an adequate
way of meeting the requirements for informed consent.16 And so, the original
information-providing cookie banners from 2002 now got an ‘I consent’ button
added to it (fig. 43).
The ePrivacy Directive is generally considered a regulatory failure, as most

websites purposefully flouted or simply ignored the requirements for legally valid
consent and information (for an analysis of the Dutch case, see17).

13 ‘95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection
of individuals with regard to the processing of personal data and on the free movement of such
data.’

14 Sylvia Mercado Kierkegaard (2005). ‘How the cookies (almost) crumbled: Privacy & lobbyism.’
In: Computer Law & Security Review 21.4, pp. 310–322.

15 Eleni Kosta (2013a). ‘Peeking into the cookie jar: the European approach towards the regulation
of cookies.’ In: International journal of law and information technology 21.4, pp. 380–406.

16 Article 29Working Party (2009). OPINION 1/2009 on the proposals amending Directive 2002/58
on privacy and electronic communications (e-Privacy Directive), WP159. European Commission.

17 Ronald Leenes and Eleni Kosta (2015). ‘Taming the cookie monster with dutch law–a tale of
regulatory failure.’ In: Computer Law & Security Review 31.3, pp. 317–335.

160

13.3 regulatory response

Figure 43. The cookie pop-up of the Information Commissioner’s Office in 2011, the UK’s
independent authority for data protection and privacy.

13.3.3 The General Data Protection Regulation

The Data Protection Directive was conceived and implemented at a time when the
internet and data processing were marginal concerns, rather than a fundamental
aspect of European societies and economies. As privacy and data collection scan-
dals continued to occur with predictable regularity, originating both from gov-
ernments and commercial companies, the European Commission began working
on a reform of the DPD in 2012. The goal was to provide individuals with more
rights and control over their personal information, while directing the flow of
data between countries and companies through procedural requirements that
would promote more responsible use: an ambition largely identical to the moti-
vation for the DPD. Four years later, in May 2016, and significantly behind the
imagined schedule (with the Snowden revelations in the midle of it), the General
Data Protection Regulation (GDPR) was adopted. Two years after that, in 2018,
it finally went into effect.
The GDPR is a comprehensive piece of legislation whose consequences are

still playing out, but in relation to cookies and consent mechanisms it matters
mostly only in relation to the ePrivacy Directive. The GDPR repeals the DPD,
which means that any other legislation referring to definitions in the latter, are
now automatically referred to the new definitions of the GDPR. For the reading
and writing of cookies, this means that the requirements of consent and informa-
tion are significantly enhanced by the more stringent requirements of the GDPR,
which defined consent as “any freely given, specific, informed and unambiguous
indication of the data subject’s wishes by which he or she, by a statement or by
a clear affirmative action, signifies agreement to the processing of personal data
relating to him or her”.18 As a result, the old cookie consent interfaces no longer
18 European Union (2016). Regulation (EU) 2016/679 of the European Parliament and of the Coun-

cil of 27 April 2016 on the protection of natural persons with regard to the processing of personal

161

13.4 conclusion

(a) First page (b) Categories and purposes (c) Vendors/third-parties

Figure 44. The three components of the QuantCast CMP on https://sourceforge.net in
September 2019.

sufficed, and new designs needed to be made. Quickly enough, third-party solu-
tions emerged that purported to help websites achieve legal compliance through
something called a Consent Management Platform (CMP)(fig. 45).
More sophisticated than the first banners of the early 2000s, these platforms

allowed websites to connect the “consent” they acquired from visitors to the real-
time advertising bidding infrastructure that underlies the vast majority of data
processing on the internet these days. With such vested interests, the design of
these CMPs often use (illegal) dark patterns: design decisions which exploit hu-
man psychology to guide the decisions made by users. At the time of writing,
roughly a quarter of websites is using third-party CMPs, and this rate continuous
to go up.19

13.4 conclusion

There is muchmore to web-based tracking, consent software, and regulation than
what is described in this chapter. Beyond cookies, websites use technologies such
as invisible tracking pixels and canvas fingerprinting based on how a device ren-
ders HTML elements that are not necessarily covered by the ePrivacy Directive.
Many browser extensions have emerged that try to fight back using blocklists of
known tracker endpoints. More protocol innovations have been suggested, such
as Do Not Track, that could send signals to webservers about an individual’s pri-
vacy preferences, and browsers have started to phase out third-party cookies com-
pletely. The EU is working on repealing the ePrivacy Directive and a number of
states in the US have implemented their own regulatory responses. But while the
details might have changed, the position of the main chess pieces have stayed
pretty much the same since the early 1990s. Commercial companies continue
to track individuals across the internet to make money; the United States gov-
ernment still believes self-regulation could work; the European Union continous

data and on the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation), OJ 2016 L 119/1.

19 Adzerk (2019). Adtech Insights— August 2019 Report. url: https://adzerk.com/assets/reports/
AdTechInsights_Aug2019.pdf.

162

https://sourceforge.net
https://adzerk.com/assets/reports/AdTechInsights_Aug2019.pdf
https://adzerk.com/assets/reports/AdTechInsights_Aug2019.pdf

13.4 conclusion

down its path of being a normative regulatory force on the global digital stage;
and users of the internet continue to have little control over their personal data
and digital technologies.

163

14.
DARK PATTERNS AFT ER TH E GDPR:
SCRAP I NG CONSENT POP-UP S AND
DEMONSTRAT I NG TH E I R I NFLUENCE
Ba s e d on Nouwen s , L i c c a r d i , Ve a l e , K a r g e r , a n d Ka g a l 1

14.1 introduction

The predominant method of giving people some semblance of control over their
privacy while browsing the web is ‘notice and choice’ or ‘notice and consent’.2
These mechanisms involve showing an individual an informational statement
and, depending on their (in)action, acquiring or assuming their agreement to
collecting, storing, and processing their data. To many, this practice has become
informally known as ‘cookie banners’.
What counts as sufficient notice, and what counts as legally-acceptable consent,

significantly differs depending on the geographical and regulatory scope that an
actor falls in. The application in Europe of the General Data Protection Regula-
tion (GDPR)3 from May 2018, together with recent regulatory guidance from
data protection authorities (DPAs) and jurisprudence from the Court of Justice
of the European Union (CJEU), has highlighted the illegality of the way ‘notice
and consent’ has hitherto functioned in the EU. These regulatory changes have
both clarified the concept of consent in European law, as well as brought more
significant (and extraterritorial) consequences for flaunting these rules. EU law
in particular focuses on the quality of the consent required, and its freely-given,
optional nature.

1 Midas Nouwens et al. (2020b). ‘Dark Patterns after the GDPR: Scraping Consent Pop-Ups and
Demonstrating Their Influence.’ In: Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. CHI ’20. Honolulu, HI, USA: Association for Computing Machinery, 1–13.
isbn: 9781450367080. doi: 10.1145/3313831.3376321. url: https://doi .org/10.1145/
3313831.3376321.

2 Lorrie Faith Cranor (2012). ‘Necessary but Not Sufficient: Standardized Mechanisms for Pri-
vacy Notice and Choice The Economics of Privacy.’ In: Journal on Telecommunications and High
Technology Law 10.2, pp. 273–308.

3 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1.

164

https://doi.org/10.1145/3313831.3376321
https://doi.org/10.1145/3313831.3376321
https://doi.org/10.1145/3313831.3376321

14.2 consent and web technologies under eu law

Consent management platforms (CMPs) have gained traction on theWeb to help
website owners outsource regulatory compliance. These (often third-party) code
libraries purport to help websites establish a lawful basis to both read and write
information to users’ browsers and to process these individuals’ personal data,
often for the purposes of tracking and complex advertising transactions, such as
‘real-time bidding’.4

This intertwining of interface designs and data protection and privacy law
raises significant questions. This chapter deals with two of them:

1. What is the current state of interface design of CMPs in the EU, and how
prevalent are non-compliant design elements?

2. How do interface designs affect consent actions of users and, by extension,
how ‘freely given’ that consent is?

To answer the first question, we surveyed the designs of the 5 most commonly
used third-party CMPs by scraping their varied implementations on the top 10,000
most popular websites in the United Kingdom (UK) (n=680); and evaluated
them against European law and regulatory guidance. To answer the second ques-
tion, we built a browser plugin that injects consent notices into webpages and ran
a controlled experiment (n=40) with eight different interfaces to see how they
affect participants’ consent responses.

14.2 consent and web technologies under eu law

EU law considers users’ devices and information within them part of their private
sphere. Relevant protection is extended to all EU residents and to all individ-
uals around the world being delivered online services from the Union. In light
of a growing trend in the early 2000s of rightsholders sneaking piracy-spotting
rootkits onto users’ devices,5 the ePrivacy Directive6 was amended to require
that storing or accessing information on a user’s device not ‘strictly necessary’ for
providing an explicitly requested service requires both clear and comprehensive
information and opt-in consent.7 This also applies to cookies, HTML web storage,
and fingerprinting in browsers providing non-essential features such as tracking.
Such consent is however, not required for essential functions such as remember-
ing login status, a shopping cart, or cookies for data security required by law.8

4 Information Commissioner’s Office (June 2019b). Update Report into Adtech and Real Time Bid-
ding. Wilmslow, Cheshire: ICO.

5 Eleni Kosta (2013b). ‘Peeking into the Cookie Jar: The European Approach towards the Regula-
tion of Cookies.’ In: International Journal of Law and Information Technology 21.4, pp. 380–406.
doi: 10.1093/ijlit/eat011.

6 European Union (2002). Directive 2002/58/EC of the European Parliament and of the Council
of 12 July 2002 concerning the processing of personal data and the protection of privacy in the
electronic communications sector (Directive on privacy and electronic communications) OJ L 201.

7 Kosta, ‘Peeking into the Cookie Jar.’
8 Commission nationale de l’informatique et des libertés (CNIL) (2019). Délibération n° 2019-093

du 4 juillet 2019 portant adoption de lignes directrices relatives à l’application de l’article 82 de la
loi du 6 janvier 1978 modifiée aux opérations de lecture ou écriture dans le terminal d’un utilisateur
(notamment aux cookies et autres traceurs) (rectificatif); Information Commissioner’s Office (July
2019a). Guidance on the Use of Cookies and Similar Technologies. Wilmslow, Cheshire: ICO.

165

https://doi.org/10.1093/ijlit/eat011

14.2 consent and web technologies under eu law

The ePrivacy Directive is connected to definitions in European data protection
law, so when the GDPR9 repealed and replaced the Data Protection Directive
199510 in 2018, these practices became subject to new, heightened standards con-
cerning the quality of consent. The GDPR defines consent as “any freely given, spe-
cific, informed and unambiguous indication of the data subject’s wishes by which
he or she, by a statement or by a clear affirmative action, signifies agreement to
the processing of personal data relating to him or her”.11 Several aspects of this
legal regime with design implications are important to highlight here, which are
drawn from the legal texts, regulators’ guidance, and court cases or opinions.

14.2.1 Freely given and unambiguous consent

Regulators and the Court of Justice of the EU have both emphasised that for con-
sent to be freely given and informed, it must be a separate action from the activity
the user is pursuing.12 So-called ‘implicit’ or ‘opt-out’ consent— continuing to use
a website without active objection to a notice — is not a clear positive action and
as such will not establish a valid legal basis to lay cookies or process data on the
basis of consent.13
As a consequence of the importance of the freely given nature of consent, de-

sign matters for legal compliance. Pre-ticked boxes, which require a positive ac-
tion to opt-out from, are explicitly singled out in the GDPR as an invalid form of
consent.14 The Court of Justice has recently ruled that they were also not a valid

9 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1.

10 European Union (1995). Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the processing of personal data and
on the free movement of such data, OJ 1995 L 281/31.

11 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1, art 4(11).

12 Advocate General Szupunar (2019). Case C-673/17 Planet49 GmbH v Bundesverband der
Verbraucherzentralen und Verbraucherverbände – Verbraucherzentrale Bundesverband e.V.
ECLI:EU:C:2019:246, Opinion of the Advocate General; Article 29 Working Party (2018). Guide-
lines on Consent under Regulation 2016/679 (WP259 rev.01). European Union; Court of Jus-
tice of the European Union (2019b). Case C-673/17 Planet49 GmbH v Bundesverband der
Verbraucherzentralen und Verbraucherverbände – Verbraucherzentrale Bundesverband e.V.
ECLI:EU:C:2019:801.

13 Article 29 Working Party, Guidelines on Consent under Regulation 2016/679 (WP259 rev.01);
Commission nationale de l’informatique et des libertés (CNIL), Délibération n° 2019-093 du 4
juillet 2019 portant adoption de lignes directrices relatives à l’application de l’article 82 de la loi
du 6 janvier 1978 modifiée aux opérations de lecture ou écriture dans le terminal d’un utilisa-
teur (notamment aux cookies et autres traceurs) (rectificatif); Information Commissioner’s Office,
Guidance on the Use of Cookies and Similar Technologies.

14 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1, recital 32.

166

14.2 consent and web technologies under eu law

form of consent under the previous law, operational since the mid-90s.15 The UK’s
Information Commissioner’s Office further states that “[a] consent mechanism
that emphasises ‘agree’ or ‘allow’ over ‘reject’ or ‘block’ represents a non-compliant
approach, as the online service is influencing users towards the ‘accept’ option.”
Similarly, cookie boxes without a ‘reject’ option, or where it is located in a ‘more
information’ section or on a third party webpage, are also non-compliant.16 One
of the CJEU’s Advocates General (official impartial advisors to the Court on cases
raising new points of law) has emphasised the need that both actions, “optically
in particular, be presented on an equal footing”.17
Moreover, it must be “as easy to withdraw as to give consent”.18 This means if

consent was gathered through “only one mouse-click, swipe of keystroke”, with-
drawal must be “equally as easy” and “without detriment” or “lowering service
levels”.19
An issue of continued contention is the validity of so-called ‘cookie walls’, whereby

consent is a prerequisite to accessing a website. While several regulators appear
minded to suggest in many or all cases this practice is illegal,20 the issue remains
unclear21 and the final conclusion will regardless be subject to the “glacial flow”
of the draft ePrivacy Regulation through the EU’s legislative process.22

14.2.2 Specific and informed consent

An important aspect of data protection is purpose limitation, meaning users must
consent in relation to a particular and specific purpose for processing data. They
cannot provide carte blanche for a data controller to do whatever they like.23
These purposes cannot be inextricably ‘bundled’, so an ‘accept all’ button is only

15 Court of Justice of the European Union, Case C-673/17 Planet49 GmbH v Bundesverband
der Verbraucherzentralen und Verbraucherverbände – Verbraucherzentrale Bundesverband e.V.
ECLI:EU:C:2019:801.

16 Information Commissioner’s Office, Guidance on the Use of Cookies and Similar Technologies.
17 Advocate General Szupunar, Case C-673/17 Planet49 GmbH v Bundesverband der Ver-

braucherzentralen und Verbraucherverbände – Verbraucherzentrale Bundesverband e.V.
ECLI:EU:C:2019:246, Opinion of the Advocate General, para 66.

18 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1, art 7(3).

19 Article 29 Working Party, Guidelines on Consent under Regulation 2016/679 (WP259 rev.01).
20 Autoriteit Persoonsgegevens (2019). Hoe Legt de AP de Juridische Normen Rond Cookiewalls Uit?

Den Haag: AP; Commission nationale de l’informatique et des libertés (CNIL), Délibération n°
2019-093 du 4 juillet 2019 portant adoption de lignes directrices relatives à l’application de l’article
82 de la loi du 6 janvier 1978 modifiée aux opérations de lecture ou écriture dans le terminal d’un
utilisateur (notamment aux cookies et autres traceurs) (rectificatif); European Data Protection
Supervisor. EDPS Opinion on the Proposal for a Regulation on Privacy and Electronic Communi-
cations (ePrivacy Regulation), Opinion 6/2017. Brussels, BE: EDPS; Information Commissioner’s
Office, Guidance on the Use of Cookies and Similar Technologies.

21 Frederik J Zuiderveen Borgesius et al. (2017). ‘Tracking Walls, Take-It-Or-Leave-It Choices, the
GDPR, and the ePrivacy Regulation.’ In: European Data Protection Law Review 3.3, pp. 353–368.
doi: 10/gfsh4x.

22Oisin Tobin (2019). ‘Cookie consent revisited.’ In: Privacy and Data Protection 19 (5), p. 11.
23 As an unalienable fundamental right, it is impossible for an EU resident to ‘sign away’ their right

to effective data protection.

167

https://doi.org/10/gfsh4x

14.2 consent and web technologies under eu law

compliant if it is additional to the possibility of specifically consenting to each
purpose.24
Furthermore, consent is invalid unless all organisations processing this data are

specifically named.25 Simply linking to an external list of potential vendors, which
may not represent the code being run on the linking webpage, is “insufficient to
provide for free and informed consent”.26 Consent should be able to be rejected
at the same level as the ‘accept’ button, so having to navigate further to third
party websites to reject tracking is non-compliant.27 Information required to be
provided to data subjects includes certain GDPR–mandated information (includ-
ing controller contact, processing purposes, legal basis, recipients and sources of
data, international transfers, storage period, data rights and rights of complaint,
and meaningful information about the logic of significant automated decision-
making),28 as well as the duration of cookies.29

14.2.3 Efficient and timely data protection

Individuals have the right to ‘efficient and timely’ protection of their data rights,
meaning where consent is required, it is required prior to data processing, not
subsequently.30 Cookies must not be set before the user has expressed their affir-
mative consent. Furthermore, fresh consent is required when new, non-essential
cookies are being set by a new third party.31 The burden is on the data controller
to be able to demonstrate that they adhere to data protection law and principles,
including that they have valid consent for each individual.32

24 Commission nationale de l’informatique et des libertés (CNIL), Délibération n° 2019-093 du 4
juillet 2019 portant adoption de lignes directrices relatives à l’application de l’article 82 de la loi
du 6 janvier 1978 modifiée aux opérations de lecture ou écriture dans le terminal d’un utilisateur
(notamment aux cookies et autres traceurs) (rectificatif).

25 Commission nationale de l’informatique et des libertés (CNIL), Délibération n° 2019-093 du 4
juillet 2019 portant adoption de lignes directrices relatives à l’application de l’article 82 de la loi du
6 janvier 1978 modifiée aux opérations de lecture ou écriture dans le terminal d’un utilisateur (no-
tamment aux cookies et autres traceurs) (rectificatif); Information Commissioner’s Office, Update
Report into Adtech and Real Time Bidding.

26 Information Commissioner’s Office, Update Report into Adtech and Real Time Bidding.
27 Information Commissioner’s Office, Guidance on the Use of Cookies and Similar Technologies.
28 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27

April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1, arts 13–14.

29 Advocate General Szupunar, Case C-673/17 Planet49 GmbH v Bundesverband der Ver-
braucherzentralen und Verbraucherverbände – Verbraucherzentrale Bundesverband e.V.
ECLI:EU:C:2019:246, Opinion of the Advocate General; Information Commissioner’s Office, Guid-
ance on the Use of Cookies and Similar Technologies.

30 Article 29 Working Party, Guidelines on Consent under Regulation 2016/679 (WP259 rev.01);
Court of Justice of the European Union (2019a). Case C-49/17 Fashion ID GmbH & Co.KG v
Verbraucherzentrale NRW eV. ECLI:EU:C:2019:629.

31 Article 29 Working Party, Guidelines on Consent under Regulation 2016/679 (WP259 rev.01);
Information Commissioner’s Office, Guidance on the Use of Cookies and Similar Technologies.

32 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1, art 5(2).

168

14.3 related work

(a) First page (b) Categories and purposes (c) Vendors/third-parties

Figure 45. The three components of the QuantCast CMP on https://sourceforge.net in
September 2019.

14.3 related work

14.3.1 Notice & Consent

The predominant model for communicating information privacy protections to
end-users has been notice(/awareness) and consent(/choice). The interface de-
signs of this model have mostly been privacy policies and opt-in/out interfaces,33
which legally can be seen as “pre-formulated declarations of consent”, or “click-
wrap” contracts.34 The usability challenges of these interfaces have seen consid-
erable work across disciplines, largely divisible in studies that establish the short-
comings of interface designs, and studies proposing alternative technologies. Pri-
vacy policy notices are notorious for taking a disproportionate amount of time
to go through and require reading comprehension abilities at university level.35
Privacy policies are rarely read by users36 prior to using or visiting a site/ser-
vice. Users have been shown to (almost automatically) consent without viewing
them37 since they stand in the way of the users’ primary goal: accessing the ser-

33 Cranor, ‘Necessary but Not Sufficient.’
34Damian Clifford, Inge Graef, and Peggy Valcke (2019). ‘Pre-formulated Declarations of Data

Subject Consent—Citizen-Consumer Empowerment and the Alignment of Data, Consumer and
Competition Law Protections.’ In: German Law Journal 20.5, pp. 679–721.

35 Carlos Jensen and Colin Potts (2004). ‘Privacy policies as decision-making tools: an evaluation of
online privacy notices.’ In: Proceedings of the SIGCHI conference on Human Factors in Computing
Systems. ACM, pp. 471–478.

36H. Nissenbaum (2011). ‘A contextual approach to privacy online.’ In: Daedalus 140.4, pp. 32–
48; Jonathan A. Obar and Anne Oeldorf-Hirsch (2018). ‘The biggest lie on the Internet: ignoring
the privacy policies and terms of service policies of social networking services.’ In: Information,
Communication & Society 0.0, pp. 1–20. doi: 10.1080/1369118X.2018.1486870. eprint: https:
//doi.org/10.1080/1369118X.2018.1486870. url: https://doi.org/10.1080/1369118X.2018.
1486870; Tony Vila, Rachel Greenstadt, and David Molnar (2003). ‘Why We Can’T Be Bothered
to Read Privacy Policies Models of Privacy Economics As a Lemons Market.’ In: Proceedings of
the 5th International Conference on Electronic Commerce. ICEC ’03, pp. 403–407.

37 Alessandro Acquisti and Jens Grossklags (2005). ‘Privacy and rationality in individual decision
making.’ In: Security Privacy, IEEE 3.1, pp. 26–33; Julio Angulo et al. (2011). ‘Towards Usable
Privacy Policy Display & Management for PrimeLife.’ In: S. M. Furnell, & N. L. Clarke (Eds.), Pro-
ceedings of international symposium on human aspects of information security & assurance (HAISA

169

https://sourceforge.net
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870

14.3 related work

vice.38 This behaviour has been attributed to the users’ difficulty understanding
how to make meaningful decisions about their privacy preferences; but even in
situations where they are made aware of the implications of their decision, they
prefer short-term benefits over long-term privacy.39 Because of this, control mech-
anisms of these notices are considered illusory in practice40 — sometimes having
devolved into merely an informational statement rather than an interactive con-
trol panel.
The perceived ineffectiveness of this approach has given rise to a number of

design alternatives (for an overview of the entire design space, see41). Gage Kel-
ley et al. proposed standardised “nutrition label” notices with icons representing
the type of data collected and how it is used, and showed how it helped users
find information more quickly and accurately.42 Reeder et al. developed an inter-
active matrix visualisation called Expandable Grid which shows a colour-coded
overview of a policy that can be expanded for more detail.43 The Platform for
Privacy Preferences (P3P) was an involved attempt to help automate some of
this process by building a machine-readable language for expressing website pri-
vacy policies which could then interface with user agents, such as the browser or
other privacy applications.44 While it was implemented by Microsoft for Internet
Explorer and Edge, P3P never achieved widespread adoption, partly because its
comprehensiveness was seen as too complex for regular website owners to apply
but also because there was no regulatory or political impetus to force browser
vendors to use it.
The majority of studies around notice and consent have focused on how well

the interface design helps users make informed decisions. This paper focuses
more on the legal quality of the consent that is collected.

14.3.2 Dark patterns

Interface designs that try to guide end-users into desired behaviour through ma-
licious interaction flows are referred to as “dark patterns”.45 As a phenomenon

2011), pp. 108 –117; Meinert David B. et al. (2006). ‘Towards Usable Privacy Policy Display &
Management for PrimeLife.’ In: Journal of Electronic Commerce in Organizations (JECO) 4.1,
pp. 1–17; A. M. McDonald and L. F. Cranor (2008). ‘The cost of reading privacy policies.’ In:
I/S: A Journal of Law and Policy for the Information Society 4, pp. 540 –565; Nissenbaum, ‘A
contextual approach to privacy online.’

38 Acquisti and Grossklags, ‘Privacy and rationality in individual decision making’; Angulo et al.,
‘Towards Usable Privacy Policy Display & Management for PrimeLife.’

39 Acquisti and Grossklags, ‘Privacy and rationality in individual decision making.’
40 Fred H Cate (2010). ‘The limits of notice and choice.’ In: IEEE Security & Privacy 8.2, pp. 59–62.
41 Florian Schaub et al. (2015). ‘A design space for effective privacy notices.’ In: Eleventh Sympo-

sium On Usable Privacy and Security (SOUPS 2015), pp. 1–17.
42 Patrick Gage Kelley et al. (2009). ‘A nutrition label for privacy.’ In: Proceedings of the 5th Sym-

posium on Usable Privacy and Security. ACM, p. 4.
43 Robert W Reeder et al. (2008). ‘Expandable grids for visualizing and authoring computer secu-

rity policies.’ In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, pp. 1473–1482.

44 Lorrie Cranor (2002). Web privacy with P3P. Sebastopol, CA: O’Reilly Media.
45 Colin M Gray et al. (2018). ‘The dark (patterns) side of UX design.’ In: Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. ACM, p. 534.

170

14.3 related work

they are part of the larger research agenda around persuasive design46 and nudg-
ing.47 The practice of dark patterns for privacy notices — while only sometimes
discussed under this moniker in HCI and privacy literature48 — is extensively
reported on by consumer protection organisations,49 white papers,50 and popu-
lar press51 (for an excellent overview, see the Norwegian Forbrukerrådet docu-
ment “Deceived by Design”52). Its infamy has led the European Union and data
protection officers to specifically highlight certain common dark patterns as non-
compliant examples of the GDPR in its advisory documents such as privacy in-
trusive default settings, hiding away privacy-friendly choices and requiring more
effort from the user to select it, illusory or take-it-or-leave-it choices, etc. Senators
from the United States have recently introduced a draft bill specifically aimed at
outlawing such practices, stating that it should be prohibited for any large online
operator to “design, modify, or manipulate a user interface with the purpose or
substantial effect of obscuring, subverting, or impairing user autonomy, decision-
making, or choice to obtain consent or user data”.53
Since the submission of this paper, two studies have been released that look

specifically at the consent management platforms that have appeared in response
to the GDPR.
Utz et al54 analysed a random sample of 1,000 CMPs and manually categorised

them along different design dimensions (e.g., positioning, size, consent options).
They found (among other things) that a minimum of 57.4% used dark patterns to
nudge users to select privacy-unfriendly options, and that 95.8% provide either

46 Brian J Fogg (2009). ‘A behavior model for persuasive design.’ In: Proceedings of the 4th inter-
national Conference on Persuasive Technology. ACM, p. 40.

47 Alessandro Acquisti et al. (Aug. 2017). ‘Nudges for Privacy and Security: Understanding and
Assisting Users’ Choices Online.’ In: ACMComput. Surv. 50.3, 44:1–44:41. issn: 0360-0300. doi:
10.1145/3054926. url: http://doi.acm.org/10.1145/3054926; Richard H Thaler and Cass R
Sunstein (2009). Nudge: Improving decisions about health, wealth, and happiness. Penguin.

48 Christoph Bösch et al. (2016). ‘Tales from the dark side: Privacy dark strategies and privacy dark
patterns.’ In: Proceedings on Privacy Enhancing Technologies 2016.4, pp. 237–254; Gregory Conti
and Edward Sobiesk (2010). ‘Malicious Interface Design: Exploiting the User.’ In: Proceedings
of the 19th International Conference on World Wide Web. ACM, pp. 271–280; Gray et al., ‘The
dark (patterns) side of UX design’; Arunesh Mathur et al. (2019). ‘Dark patterns at scale: Find-
ings from a crawl of 11K shopping websites.’ In: Proceedings of the ACM on Human-Computer
Interaction 3.CSCW, p. 81.

49 Forbrukerrådet (2019). Deceived by Design: How tech companies use dark patterns to discourage
us from exercising our rights to privacy. url: https://fil.forbrukerradet.no/wp-content/uploads/
2018/06/2018-06-27-deceived-by-design-final.pdf.

50 European Data Protection Supervisor (2018). ‘EDPS Opinion on the legislative package “A New
Deal for Consumers”.’ In: url: https://edps.europa.eu/sites/edp/files/publication/18-10-
05_opinion_consumer_law_en.pdf.

51Natasha Singer (May 2016). ‘When Websites Won’t Take No for an Answer.’ In: New York Times.
url: https://www.nytimes.com/2016/05/15/technology/personaltech/when-websites-wont-
take-no-for-an-answer.html?mcubz=0&_r=0.

52 Forbrukerrådet, Deceived by Design: How tech companies use dark patterns to discourage us from
exercising our rights to privacy.

53Mark R. Warner Deb Fisher (2019). ‘Deceptive Experiences To Online Users Reduction (DE-
TOUR) Act.’ In: url: https://www.scribd.com/document/405606873/Detour-Act-Final.

54 Christine Utz et al. (2019). ‘(Un)Informed Consent: Studying GDPR Consent Notices in the
Field.’ In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’19. London, United Kingdom: ACM, pp. 973–990. isbn: 978-1-4503-6747-9. doi:
10.1145/3319535.3354212. url: http://doi.acm.org/10.1145/3319535.3354212.

171

https://doi.org/10.1145/3054926
http://doi.acm.org/10.1145/3054926
https://fil.forbrukerradet.no/wp-content/uploads/2018/06/2018-06-27-deceived-by-design-final.pdf
https://fil.forbrukerradet.no/wp-content/uploads/2018/06/2018-06-27-deceived-by-design-final.pdf
https://edps.europa.eu/sites/edp/files/publication/18-10-05_opinion_consumer_law_en.pdf
https://edps.europa.eu/sites/edp/files/publication/18-10-05_opinion_consumer_law_en.pdf
https://www.nytimes.com/2016/05/15/technology/personaltech/when-websites-wont-take-no-for-an-answer.html?mcubz=0&_r=0
https://www.nytimes.com/2016/05/15/technology/personaltech/when-websites-wont-take-no-for-an-answer.html?mcubz=0&_r=0
https://www.scribd.com/document/405606873/Detour-Act-Final
https://doi.org/10.1145/3319535.3354212
http://doi.acm.org/10.1145/3319535.3354212

14.3 related work

no consent choice or confirmation only. They conducted a follow-up experiment
to test the effects of the CMP position, the granularity and nudging of choices,
and the technicality of the language and presence of a privacy policy link. They
demonstrate that positioning the CMP in the lower (left) part of the screen in-
creases interaction rates; users are more likely to accept tracking given a binary
choice than when given more granular options; acceptance rate increased from a
mere 0.16% to 83.55% when options were preselected; and technical language
and privacy policies have a minor effect on consent choice.
The work byMatte, Bielova, and Santos55 investigates the actual consent signal

sent from the CMP to the respective data processors. They detect that 12.3% of
1,426 sites send a consent signal before the usermakes a choice. Semi-automatically
reviewing 560 sites reveals that 54% of them contain at least one violation regard-
ing the way consent is determined, asked, or complied with.

14.3.3 Empirical Studies of EU Privacy Regulation

Various studies have tried to chart the impact of European privacy regulation
on the collection and processing of personal data on the web, both within its
territorial scope and globally. A longitudinal 4-year study of the impact of the
revised ePrivacy directive on cookie placement shows that 1) 49% of websites
placed cookies before receiving consent; 2) 28% of websites did not provide any
consent mechanism; and 3) the percentage of websites violating the directive
stayed constant over the course of 4 years, indicating the policy to be ineffective.56
With respect to the GDPR, both industry and academia have been monitoring

its effects since being introduced in May 2018. Degeling et al.57 monitored the
prevalence of privacy policies on websites before and after the introduction of
the regulation, showing that in some EU member states the number of policies
increased by 15.7% (to a total of 84.5%), while 72.6% of sites updated docu-
ments they already had. They estimate that a total of 62.1% of websites in Europe
display a consent notice, an increase of 16% since shortly before the regulation
became enforceable. Adzerk, an ad tech company, places this percentage consid-
erably lower, at a mere 20.4%,58 although their methodology is more restrictive
than Degeling et al.’s. Interestingly, QuantCast, one of the largest CMP providers,
also brought out a report stating that over 90% of users (n=1bn) have consented
to data processing.59

55 Célestin Matte, Nataliia Bielova, and Cristiana Santos (2019a). ‘Do Cookie Banners Respect my
Choice? Measuring Legal Compliance of Banners from IAB Europe’s Transparency and Consent
Framework.’ In: Under submission. url: https://arxiv.org/abs/1911.09964v1.

56Martino Trevisan et al. (2019). ‘4 Years of EU Cookie Law: Results and Lessons Learned.’ In:
Proceedings on Privacy Enhancing Technologies 2019.2, pp. 126–145.

57Martin Degeling et al. (2018). ‘We Value Your Privacy... Now Take Some Cookies: Measuring
the GDPR’s Impact on Web Privacy.’ In: arXiv preprint arXiv:1808.05096.

58 Adzerk, Adtech Insights — August 2019 Report.
59 John McCarthy (2019). Over 90% of users consent to GDPR requests says Quantcast after enabling
1bn of them. https://www.thedrum.com/news/2018/07/31/over-90-users- consent-gdpr-
requests-says-quantcast-after-enabling-1bn-them.

172

https://arxiv.org/abs/1911.09964v1
https://www.thedrum.com/news/2018/07/31/over-90-users-consent-gdpr-requests-says-quantcast-after-enabling-1bn-them
https://www.thedrum.com/news/2018/07/31/over-90-users-consent-gdpr-requests-says-quantcast-after-enabling-1bn-them

14.4 study 1: scraping cmp interface designs

CMP Sites Median vendors
(low./upp. quar-
tiles)

Explicit/implicit
consent

Banner/barrier Preticked
options

Minimum
compliance

Cookiebot 12.5% (85) 104 (61, 232) 45/40 78/7 64 (75.3%) 2 (5.6%)
Crownpeak 12.2% (83) 38.5 (18.8, 132.3) 46/37 52/31 67 (80.7%) 0 (0%)
OneTrust 24.3% (165) 58 (26.5, 104.5) 47/118 158/7 108 (65.4%) 3 (1.8%)
QuantCast 41% (279) 542 (542, 542) 279/0 132/147 90 (32.3%) 73 (26.2%)
TrustArc 10% (68) 87 (38, 152) 42/26 26/42 53 (77.9%) 2 (2.9%)

all 680 315 (58, 542) 459/221 446/234 382 (56.2%) 80 (11.8%)

Table 8. Key statistics on scraped CMPs.

Sanchez-Rola et al.60 performed an evaluation of the tracking undertaken by
2,000 high-traffic websites and evaluated how information notices and actual
tracking behaviour changed. They found that the GDPR affected EU and US sites
in the same way, that consent management platforms reduced the amount of
tracking, but that personal data collection is still ubiquitous: 90% still made use of
cookies that were able to identify individual users. Sørensen and Sokol61 present
amore nuanced picture of the shifts in third-party tracker presence and behaviour,
showing a decrease mostly present in private websites, whereas websites hosted
by public institutions mostly stayed the same between February and September
2018. Along the same lines, there exists a difference between EU and non-EU
private-sector sites, but little difference in public sites. Depending on the pur-
pose category the tracker falls into, further distinctions can be made. The largest
shift was visible in data collection for advertising, and the least in those used for
cybersecurity. Overall, only 151 third-party trackers are used by 1% or more of
the websites, while the remaining long-tail of 968 have a share of less than one
percent.

14.4 study 1: scraping cmp interface designs

Little is known about many aspects of consent management platforms on the
Web, particularly around the consent modalities, quality of this consent and re-
lated practices found in the field in the European Union. The major five CMP
vendors offer a wide range of customisation options for their clients, and so from
an identification of the CMP vendor it does not follow that many assumptions can
bemade about the interface design. To understand the status quo of consent man-
agement plaform interface design after the GDPR, we developed a web scraper

60 Iskander Sanchez-Rola et al. (2019). ‘Can I Opt Out Yet?: GDPR and the Global Illusion of Cookie
Control.’ In: Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security. Asia CCS ’19. Auckland, New Zealand: ACM, pp. 340–351. isbn: 978-1-4503-6752-3.
doi: 10.1145/3321705.3329806. url: http://doi.acm.org/10.1145/3321705.3329806.

61 Jannick Sørensen and Sokol Kosta (2019). ‘Before and After GDPR: The Changes in Third Party
Presence at Public and Private European Websites.’ In: The World Wide Web Conference. WWW
’19. San Francisco, CA, USA: ACM, pp. 1590–1600. isbn: 978-1-4503-6674-8. doi: 10.1145/
3308558.3313524. url: http://doi.acm.org/10.1145/3308558.3313524.

173

https://doi.org/10.1145/3321705.3329806
http://doi.acm.org/10.1145/3321705.3329806
https://doi.org/10.1145/3308558.3313524
https://doi.org/10.1145/3308558.3313524
http://doi.acm.org/10.1145/3308558.3313524

14.4 study 1: scraping cmp interface designs

to collect information about the five most commonly used third-party CMPs in
the top 10,000 most-visited websites in the United Kingdom.
While their sophistication varies, surveyed CMPs all share similarities in back-

end function. When a user accesses a site, the CMP detects their IP address and
checks their cookies or local storage for any previously set consent preferences,
and retrieves this data. If this fails, or if the CMP decides their preferences have
expired, the user is shown a consent notice, and their response is recorded. This
consent status is then passed on to any integrated tag firing rules, ad servers, and
real-time bidding platforms the website has employed.
Visually, the CMP interfaces generally consist of three parts: 1) a first page

describing the general purpose of the consent pop-up, with bulk consent options
(‘accept all’ and, for some, ‘reject all’) (fig. 45a); 2) a second page with a more
detailed description of the different data processing categories or purposes (e.g.
personalisation, marketing), the ability to toggle them individually or collectively,
and a button to submit the current consent state (fig. 45b); and, 3) a third page
with a breakdown of all the vendors for whom the data is collected or with which
it is shared, again with the ability to toggle individually or collectively, and a
button to save these settings (fig. 45c). Not all deployed CMPs have all parts of
these interfaces enabled.

14.4.1 Method

We built a Web scraper to collect data about the CMP’s visual elements, interac-
tion design, and text content (e.g. names of data processing categories or ven-
dors). The scraper utilised the Python library Scrapy62 and JavaScript rendering
service Splash63. The variables the scraper collected included the CMP vendor, the
notification style (banner, barrier, other), the type of consent (explicit or implicit)
and specific user actions counted as consent (consent/visit/navigation/reload-
ing/scrolling/closing the pop-up/clicking the page); the existence of accept and
reject all buttons and the minimum number of clicks to make them available; for
both vendors and categories/purposes, the existence of lists of these, their extent
and descriptions, whether or which are enabled for user control, and their default
state(s).
We ran the scraper from a Danish IP address64 over 3 days in September 2019

over the top 10,000 UK sites according to webtraffic service Alexa. We throttled
our scraper to two concurrent URL requests and no concurrent requests per do-
main, with a delay of 2 seconds. We cycled through three different user agents
copied from our browsers to make sure the websites treated us as normal visitors,
rather than an automated crawler. The CMPs the scraper was designed for are
third-party services as identified by Adzerk in August,65 which together account
for ~58% of the market share: QuantCast, OneTrust, TrustArc, Cookiebot, and
62 https://github.com/scrapy/scrapy
63 https://github.com/scrapy-plugins/scrapy-splash
64 Relevant legislation is harmonised across the EU and so a Danish IP and UK IP are the same

jurisdiction for our purposes.
65 A company that does server-side ad serving and writes reports about the state of the industry:
www.adzerk.com

174

https://github.com/scrapy/scrapy
https://github.com/scrapy-plugins/scrapy-splash
www.adzerk.com

14.4 study 1: scraping cmp interface designs

Crownpeak. We targeted UK sites, rather than sites across all EU countries, be-
cause the Adzerk report gives us information about the total population of CMPs
in the UK market. This allowed us to check that our scraper’s sample was repre-
sentative both in number of CMPs identified and the overall distribution of the
five most popular ones.
To determine the presence of a particular CMP, the scraper looked for an iden-

tifying HTML element within 5–15 seconds of arriving on the site (depending on
the particular CMP and how it injects the pop-up). Data to construct the variables
were extracted by querying for elements and attributes, traversing the DOM if no
unique indentifiers existed, or accessing globally scoped objects. This data was
pushed to a MongoDB database. Before deployment, the data returned by the
scraper was manually validated with 40 randomly selected sites from the list of
10,000 for each of the five CMPs.

14.4.2 Understanding compliance

Based on the above section on EU law, we consider three core, measurable condi-
tions that providers will have to meet to be considered legally compliant for the
purpose of this study. This serves as a minimum hurdle: meeting these conditions
alone will not guarantee compliance with the law, as there are a multitude of
aspects and provisions, many of which can only be appropriately assessed quali-
tatively. However, these are conditions that are testable with the variables from
our scraper, and therefore provide a window on themaximum level of compliance
in the industry today. These conditions are:

consent must be explicit This condition is true if consent is a clear, posi-
tive, affirmative act, such as clicking a button, rather than e.g. continuing
to navigate a website.

accepting all is as easy as rejecting all Consent must be as easy to
give as to withdraw/refuse. This condition is met if accepting all takes the
same number of clicks as rejecting all, and automatically not met in the case
where consent requires no clicks (i.e. Condition 1 is violated)

no pre-ticked boxes Consent to any vendor or purpose must be through
affirmative acts at all granularity. If no non-necessary purposes or vendors
are automatically on, this condition is met.

Factors which could contribute to non-compliance which we did not examine
include qualitatively considering the information provided (e.g. specificity of pur-
poses, contact details of vendors, provision of the duration of cookies), nor certain
visual features such as colour or size or prominence of buttons beyond clicks.

14.4.3 Results

680 (6.8%) of the top 10,000 UK websites contained a CMP which could be
successfully scraped by our tool. According to a survey of the top 10K UKwebsites

175

14.4 study 1: scraping cmp interface designs

206 (30.3%)

170 (25%) 167 (24.6%)

80 (11.8%)
51 (7.5%)

6 (0.9%) 0

50

100

150

200

In
te

rs
ec

tio
n

Si
ze

Consent is Explicit
Reject All as Easy as Accept All

No Optional Boxes Preticked

0100200300400

Set Size

Figure 46. UpSet diagram66 of sites by adherence to three core conditions of EU law.
Sites meeting all three in green.

in August 2019,67 only 20.35% of the top 10K UK websites are reported to use a
CMP (from any vendor). 1191 of those (i.e., 58.52%) use the top 5 CMPs, which
means the 680 instances our scraper captured represents 57.09% of the total
population68.
We found that implicit consent is common among these sites (32.5%). An array

of actions that websites count as consent (but which EU law does not) was ex-
tracted from their code, such as just visiting the site (16.8%), navigating within
the site (6.2%), revisiting/refreshing the page (7.6%), scrolling or clicking on the
page (5.3%) or closing the pop-up or banner (1.6%). 9% of sites accepted more
than one form of implicit consent. With only a handful of idiosyncratic exemp-
tions all implied consent was found in the use of ‘banner’ rather than ‘barriers’ (a
barrier style is in fig. 45). Within those CMPs exhibiting explicit consent, there
was a roughly even split between the use of barriers and banners (50.3%/49.7%).
Popular CMP implementation wizards still allow their clients to choose implied
consent, even when they have already indicated the CMP should check whether
the visitor’s IP is within the geographical scope of the EU, which should be mutu-
ally exclusive. This raises significant questions over adherence with the concept
of data protection by design in the GDPR.
The vast majority of CMPs make rejecting all tracking substantially more diffi-

cult than accepting it. 50.1% of sites did not have a ‘reject all’ button. Only 12.6%
of sites had a ‘reject all’ button accessible with the same or fewer number of clicks
as an ‘accept all’ button. In practice, this means both were accessible on the first
page — an ‘accept all’ button was never buried in a second layer. 74.3% of reject
all buttons were one layer deep, requiring two clicks to press; 0.9% of them were
two layers away, requiring at minimum three.
Furthermore, when users went to amend specific consent settings rather than

accept everything, they are often faced with pre-ticked boxes of the type specif-
ically forbidden by the GDPR.69 56.2% of sites pre-ticked optional vendors or
purposes/categories, with 54.1% of sites pre-ticking optional purposes, 32.3%
67 Adzerk, Adtech Insights — August 2019 Report.
68 It should be noted that Adzerk’s methodology counts CMPs by URL endpoints of the Javascript

files and we found during development that websites frequently include inactive CMPs’ .js files.
This means that Adzerk’s statistics are likely inflated with double-counting, and that our survey
is consequently more representative than the 57.09% would indicate.

69 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and

176

14.4 study 1: scraping cmp interface designs

pre-ticking optional categories, and 30.3% pre-ticking both. Our scraper was de-
tecting visual status rather than functional status—we do not know the impact
on toggling on or off vendors or categories beyond what the CMP tells the user
is happening (Matte et al.’s70 findings indicate 7.7% of CMPs ignore the consent
signal submitted by the user).
Sites relied on a large number of third party trackers, which would take a pro-

hibitively long time for users to inform themselves about clearly. Out of the 85.4%
of sites that did list vendors (e.g. third party trackers) within the CMP, there was
a median number of 315 vendors (low. quartile 58, upp. quartile 542). Differ-
ent CMP vendors have different average numbers of vendors, with the highest
being QuantCast at 542 (table 8). 75% of sites had over 58 vendors. 76.47% of
sites provide some descriptions of their vendors. The mean total length of these
descriptions per site is 7985 words: roughly 31.9 minutes of reading for the av-
erage 250 words-per-minute reader, not counting interaction time to e.g. unfold
collapsed boxes or navigating to and reading specific privacy policies of a vendor.
As discussed, we consider that a site is minimally compliant if it has no optional

boxes pre-ticked, if rejection is as easy as acceptance, and if consent is explicit.
Only 11.8% of sites met these basic requirements. The interaction between the
requirements is shown in Figure 46. This varied significantly by CMP vendor —
as shown in Table 8, only Quantcast has a non-negligible number of CMPs that
we consider minimally compliant (26.2%), with Crownpeak having zero (that we
found). This can largely be explained by the non-existence of implicit consent in
QuantCast CMPs and their lower levels of pre-ticked boxes.

14.4.4 Interim Discussion

Given that all vendors (with the exception of Crownpeak) have examples in the
wild of minimally compliant CMPs, it is unclear whether non-compliance is a
practical result of sites configuring it in a non-compliant manner, being encour-
aged to do so by the CMP vendors or, in some cases, running older CMPs without
updating them in light of the more publicised nature of the law.71 Whatever the
practical reasons, 11.8% is an extraordinarily low number for seemingly market-
leading CMP vendors, and suggests an urgent role for data protection authorities
to take action to ensure only correct configurations are permitted.
The dataset in this study will be available to other researchers, and we wel-

come further research into, for example, the scraped text content of the CMPs, as
the 11.8% in this study is a maximum value that is likely to only decrease on con-
sideration of further aspects of the law which are harder to assess in a formulaic
manner.

on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1, recital 32.

70Matte, Bielova, and Santos, ‘Do Cookie Banners Respect my Choice? Measuring Legal Compli-
ance of Banners from IAB Europe’s Transparency and Consent Framework.’

71Note that the recent judgement from the European Court of Justice clarified that these re-
quirements have been part of EU law since 2012, rather than just since the GDPR (Court
of Justice of the European Union, Case C-673/17 Planet49 GmbH v Bundesverband der
Verbraucherzentralen und Verbraucherverbände – Verbraucherzentrale Bundesverband e.V.
ECLI:EU:C:2019:801)

177

14.5 study 2: demonstrating the effects of designs on answers

14.4.5 Limitations

Although we manually validated the scraper, we cannot guarantee that there are
no false negatives or false positives in our dataset. Because these CMPs are dy-
namically rendered via JavaScript, determining whether the state of the DOM
scraped is the final one is tricky (further complicated by the fact that Scrapy’s en-
gine runs on ECMAScript 2015making tools to deal with asynchronous execution,
such as async/await, unavailable). We hardcoded a waiting time of 5-15 seconds
between loading the site and scraping the content which should be more than
sufficient, but there might be exceptions. The CMP might be customised either
by the company or the website owner, thwarting the automated way we identify
the presence of elements. Legacy implementations, either from various iterations
over the years or because the company has been sold multiple times, also intro-
duced branches in the CMP code we might have missed. While we did our best
to identify and work around elements of the CMPs designed to obfuscate their
function and prevent automation, deliberate changes to data retrieval are often
used to foil research for those studying APIs,72 and such practices seem likely in
this domain also to protect against potential automated regulatory scrutiny.

14.5 study 2: demonstrating the effects of designs on an-
swers

The goal of the second study was to establish if, and to what extent, certain CMP
designs affect the consent answer given by users. We were interested in non-
compliant designs that are very prevalent, or designs that are not yet described
as non-compliant by the applicable regulation. We conducted two field experi-
ments to establish the effects on user behaviour and consent rate of 1) barrier
and banner notifications; 2) equal and unequal prominence of accept all and re-
ject all options on the first page; and 3) the level granularity of consent options
on the first page (bulk, purposes, vendors).

14.5.1 Method

14.5.1.1 Design

The study consisted of two counter-balanced experiments, evaluating a total of
8 different interfaces (fig. 47).
Experiment 1 used a [2x2] latin square, within-subjects, repeated measures de-

sign. The independent variables were the notification style (Barrier; Banner)
and bulk consent buttons (Accept all+Reject all; Accept all). The primary de-

72 Axel Bruns (2019). ‘After the ‘APIcalypse’: Social Media Platforms and Their Fight against Crit-
ical Scholarly Research.’ In: Information, Communication & Society 22.11, pp. 1544–1566. doi:
10 . 1080 / 1369118X . 2019 . 1637447. url: https : / / doi . org / 10 . 1080 / 1369118X . 2019 .
1637447; Tania Bucher (2013). ‘Objects of Intense Feeling: The Case of the Twitter API : Com-
putational Culture.’ In: Computational Culture: A Journal of Software Studies 3. url: http://
computationalculture.net/objects-of- intense-feeling-the-case-of-the-twitter-api/ (visited on
06/17/2019).

178

https://doi.org/10.1080/1369118X.2019.1637447
https://doi.org/10.1080/1369118X.2019.1637447
https://doi.org/10.1080/1369118X.2019.1637447
http://computationalculture.net/objects-of-intense-feeling-the-case-of-the-twitter-api/
http://computationalculture.net/objects-of-intense-feeling-the-case-of-the-twitter-api/

14.5 study 2: demonstrating the effects of designs on answers

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 47. The 8 interface conditions: (a) Banner / Accept + Reject; (b) Barrier / Accept
+ Reject; (c) Bulk; (d) Bulk + Purposes; (e) Banner / Accept; (f) Barrier /
Accept; (g) Bulk + Vendors; (h) Bulk + Purposes + Vendors.

pendent variable was the consent answer (Accept all; Reject all; Submit default;
Submit personalised).
Experiment 2 used a [1x4] latin square, within-subjects, repeated measures de-

sign. The independent variable was the consentgranularity (Bulk; Bulk+Purposes;
Bulk+Vendors; Bulk+Purposes+Vendors) on the first page of the notification. The
primary dependent variable was the consent answer (Accept all; Reject all; Sub-
mit default; Submit personalised).

14.5.1.2 Participants

A total of 40 participants successfully finished both experiments, with a mean
age of 26.1 and standard deviation of 8.673. The majority, 30, had a university
degree (17 Bachelor, 12 Master, 1 Doctorate). Seven had some college credit
but no degree, and three a highschool diploma. 28 participants were currently
studying and 12 were employed full-time. All participants were residing in the
United States for the duration of the study, and did not travel to the EU. We
selected this sample to prevent the confounding effects of real CMPs, which would
have popped-up on top of our injected one if the participants were in the EU and
thus in the regulatory scope of the GDPR. Four participants lived in the EU in the
past five years, meaning they might already be familiar with pop-ups from the
ePrivacy directive. All participants used Google Chrome as their main browser.
Participants were recruited through one of the author’s personal network and

a university mailing list. They were offered $50 upon completion of the study,
and an additional $10 if they successfully recommended others.

73 Age was reported using brackets of ten years so we are unable to report the exact range; the
answers were assumed to be normally distributed to calculate the mean.

179

14.5 study 2: demonstrating the effects of designs on answers

14.5.1.3 Apparatus and Materials

The materials and apparatus of this study include a pre-study survey, a browser
extension, and a post-study survey.
The pre-study survey consisted of 11 questions designed to gather demographic

information (age, employment status, highest degree obtained, country of resi-
dence), check whether the participants met the study criteria (devices used to
browse the web, main browser, travelling to the EU during the study), and ac-
quire their informed consent.
To expose the participants to the different interface designs in a controlled yet

ecologically realistic context, we developed a browser extension that injects dif-
ferent pop-ups into any website that participants would visit during their normal
daily browsing (available as open-source after publication). The designs of the
eight interfaces (i.e., conditions) were inspired by the designs of the top five Con-
sentManagement Platforms also used for the scraper study: QuantCast, OneTrust,
TrustArc, Cookiebot, and Crownpeak.
All the text, data processing purposes, and vendor names were created by syn-

thesising those commonly used by a random selection of those CMPS in the top
500 Alexa websites in the UK. The data processing purposes are a combination
of the options that the five CMPs give to website owners when they create their
own pop-up, or the purposes those websites came upwith themselves. The vendor
names were copied from existing websites, and picked to represent one of four
categories: well-known companies (e.g, “Yahoo!”), foreign companies with En-
glish names (e.g., “Beijing Interactive Marketing”), foreign companies with non-
English names (e.g., “Programatica de publicidad S.L.”), and gibberish names
(e.g., “s_vi_bikx7Becalgbkjkxx”).

The extension used the open-source JavaScript database PouchDB to store the
participants’ interactions with the interfaces locally, which was synchronised with
a CouchDB instance running on OpenStack over an SSL encrypted connection.
The post-study survey consisted of four questions asking the participants to

reflect on their general pop-up answering strategy, showed them a visualisation
of their actual answers, and asked them to describe how well those answers fit
their ideal preferences.

14.5.1.4 Procedure

A recruitment email was sent to potential participants asking them to join a study
about web-tracker activity in the United States compared to the European Union,
and answer the pre-study survey. Once approved, the participants were assigned
and emailed a participant number and a link to the Chrome extension on the
Chrome Web Store. After installing the extension, a welcome screen automati-
cally appeared asking the participants to fill in their assigned number. This con-
nected the installation to the participant number in the CouchDB database, where
each participant was matched to a pre-determined experiment and condition or-
der. Once the extension was successfully activated, a pop-up appeared notifying
the participants the experiment had started. To train the participants and ho-
mogenise their understanding of the CMPs they received an additional email that

180

14.5 study 2: demonstrating the effects of designs on answers

informed them they might sometimes see consent pop-ups (ostensibly when they
were shown the European version of a website instead of the US equivalent), ex-
plained how those pop-ups worked, and instructed them to answer the pop-ups
according to their preferences.
The extension injected a pop-up every fourth url visited – including naviga-

tions on the same page, excluding automatic redirects or urls for which an an-
swer was already recorded – to approximate the realistic frequency with which
consent pop-ups are currently shown74. Each interface condition was repeated
four times, requiring the participants to answer sixteen pop-ups per experiment.
All interactions with the pop-up were recorded and timestamped: clicking on the
elements, toggling purposes or vendors, scrolling the lists, navigating back and
forth between the pages, submitting a consent response. Interfaces which were
not interacted with were re-appended to the list of conditions and shown again
for a maximum of five times, after which it was recorded as “not answered” (sim-
ilar to a participant clicking or scrolling through the interface without providing
a consent response). Once all conditions of the first experiment were answered,
the participant progressed to the second experiment.
After completing both experiments, the participants were notified by email that

the study was finished, informed that they could uninstall the extension, and
asked to complete the post-study survey. The completion time of the experiment
ranged from four days to three weeks, depending on how many unique urls the
participant visited per day (e.g., some participants mostly visited the same web-
sites, some went on holiday during the experiment, some installed the extension
on their secondary device and only used it a couple days per week).

14.5.1.5 Data analysis

Although originally 48 participants finished the experiment, we removed eight
of them because they mentioned in the survey that their answers were affected
by the study (e.g., some participants said they chose “accept all” because they
wanted to give more data, despite the instructions they received). To analyse
the effects of interface design on consent answers we created a linear regression
model with fixed effects; we treated the participants as a factor to account for
their (assumed) stable privacy preferences.

14.5.2 Results

14.5.2.1 General interaction patterns

Of the four possible consent choices – accept all, reject all, submit preferences,
no answer – the vast majority of answers submitted by participants was through
the bulk options (89.3%), with a skew towards accepting: 55.2% (707) accept all
versus 34.1% (437) reject all. Just 9.7% (124) of answers represent the “submit
preference” option, and 0.9% (12) were “no answer” (but recorded interactions).
Of those 124 “submit” answers, merely 21 – given by 6 participants – were per-
sonalised answers, instead of submitting the default status (all toggled off). Four
74 Based on Adzerk’s Ad-Tech Insights report: (Adzerk, Adtech Insights — August 2019 Report)

181

14.5 study 2: demonstrating the effects of designs on answers

of those 21 were personalised by clicking the “Toggle All” button, which means
only 17 answers out of 1280 (1.3%) represent a participant consenting to a spe-
cific selection of purposes or vendors. Whether this is because users are unable to
make such decisions, are not interested in that level of detail, or fatigued by the
form and frequency of the question is unclear; but it does indicate that users’ con-
sent is rarely empirically as "specific" as the GDPR requires it to be. It does not
follow that specific controls should therefore be removed, but rather that such
specificity could be distributed to other actors invited by the user (e.g., browser
agents, consent predictors, a knowledgeable friend).
Almost all interactions (93.1%) were limited to the first page of the pop-up the

participants were exposed to. Seven out of eight interfaces had a “more options”
link to navigate to a second or third page for more information and granular
consent choices, but this was clicked only 88 times (6.9%). When participants
were exposed to a scrollable list of data collection purposes or vendors on the
first or subsequent pages (560 occasions), they ignored it 68.6% (384) of the
time. Of the 176 instances they did scroll, 21.6% (38) were between 0 and 25
percent of the list, and 64.2% (113) between 75 and 100 percent. In other words,
anything not immediately visible to the user, anything requiring interaction to
access, might as well not exist.

14.5.2.2 Notification style

The validity of one design element still under discussion by policy makers is that
of the notification style:75 a barrier in the middle of the screen which prevents the
user from interacting with the website until a response is recorded, or a banner
stretching the width of the screen that does not block access to the information .
We found that notification style did not affect the consent rate of participants.

Two simple linear regressions were calculated to investigate the relationship be-
tween the answer given (accept or not) and notification style (banner or barrier).
The first, comparing Barrier to Banner with both the Accept and Reject button,
did not find a regression line at all (F(1,279) = 0.000, p = 1). The second, com-
paring Barrier to Banner with just the Accept button, found a non-significant
relationship (p = 0.702), with a slope coefficient of 0.013 (95% CI min and max
of −0.052 and 0.077 respectively) and an R2 of 0.001.
While there was no difference in acceptance rate when participants actually

answered the pop-up, the banner notification was ignored 3.6 times more often
than the barrier. For this statistic we considered any pop-up that was not inter-
acted with, but which had a time difference of at least 3 seconds between being
injected and the tab being closed, as “ignored”; 133 of such instances were found,
with only 21.1% (28) for the barrier and 78.9% (106) for the banner.

14.5.2.3 Button prominence

Data from our scraper indicates ‘accept all’ and ‘reject all’ buttons are not dis-
played with equal prominence: only a mere 12.6% of sites show both on the

75 Zuiderveen Borgesius et al., ‘Tracking Walls, Take-It-Or-Leave-It Choices, the GDPR, and the
ePrivacy Regulation.’

182

14.5 study 2: demonstrating the effects of designs on answers

same page. Such unequal prominence of consent options is already considered
non-compliant with the GDPR76 because it is expected they affect consent an-
swers, but the severity of its impact is unknown.
We found that removing the ‘reject all’ button from the first page increased the

probability of consent by 22−23 percentage points. We calculated two simple lin-
ear regressions to analyse the relationship between the answer given (accept or
not) and the consent options on the first page (accept and reject, or just accept).
The first, comparing Accept all + Reject all to Accept all for the barrier
notification, found a strong positive linear relationship between the two. The sig-
nificant (p < 0.001) slope coefficient for the consent answer was 0.220, meaning
the accept rate increased on average by 22.0 percentage points when the reject
all button was removed from the first page. The 95% CI had a minimum and
maximum of 0.149 and 0.290 respectively. The R2 was 0.117, so 11.7% of the
variation in answers for the barrier notification can be explained by the changing
prominence of the buttons.
The second regression compared Accept all + Reject all to Accept all

for banner notifications and found a similarly strong, positive linear relationship
between the button prominence and answer given. The significant (p < 0.001)
slope coefficient was 0.231, meaning the accept rate increased on average by 23.1
percentage points when the reject all button was removed from the first page. The
95% CI had a minimum and maximum of 0.163 and 0.230 respectively. The R2

was 0.135, so 13.5% of the variation in answers for the banner notification can
be explained by the changing prominence of the buttons.

14.5.2.4 Level of granularity

The most common order in which consent options are displayed is bulk first, fol-
lowed by the data collection purposes on the second page and the vendors on the
third page, or some combination of those two on the same page.
We found that displaying more granular consent choices on the first page de-

creased the probability of consent by 8−20 percentage points. We calculated a sim-
ple linear regression to compare a Bulk only interface to an interface that com-
bined Bulk + Purposes; Bulk + Vendors; and Bulk + Purposes + Vendors
on the same page. We found a significant (p < 0.01) negative relationship be-
tween all increases in the level of granularity of consent options and the answer
given, with different strengths depending on the kind of options that were avail-
able. As illustrated by Table 9, showing just the vendors affected the acceptance
rate the most (−0.200), whereas just the purposes (−0.088) and the combina-
tion of vendors and purposes (−0.119) were closer together but still lower than
the baseline interface with just bulk options. Along the same lines, the 95% CIs
overlap most between Purposes and Purposes + Vendors and only a little
with Vendors.

76 Advocate General Szupunar, Case C-673/17 Planet49 GmbH v Bundesverband der Ver-
braucherzentralen und Verbraucherverbände – Verbraucherzentrale Bundesverband e.V.
ECLI:EU:C:2019:246, Opinion of the Advocate General; Information Commissioner’s Office, Guid-
ance on the Use of Cookies and Similar Technologies.

183

14.5 study 2: demonstrating the effects of designs on answers

Dependent variable: 95% CI:

‘accept all’ clicked lower : upper

Bulk + Purposes −0.088∗∗ −0.151 : −0.024
(0.032)

Bulk + Vendors −0.200∗∗∗ −0.263 : −0.137
(0.032)

Bulk + Purposes −0.119∗∗∗ −0.182 : −0.056
+ Vendors (0.032)

Observations 640
R2 0.062
F Statistic 13.210∗∗∗ (df = 3; 597)

Note: ∗p<0.1; ∗∗p<0.01; ∗∗∗p<0.001
Table 9. Level of granularity on the first page, with bulk consent as the reference

14.5.2.5 Participant Strategies and Behaviour Patterns

While the experimental data suggests how different designs affect how “freely
given” the consent answers of participants are, it does not provide information
about how those answer relate to their preferred privacy settings. In a post-study
survey, we requested participants to describe their overall answering strategy,
showed them a visualisation of their actual behaviour, and then asked them to
state how well their answers reflected their ideal preferences and, if not, why. To
structure these findings, we classify participants according to their general con-
sent answers: always accept, mostly accept (>= 75%), mixed consent, mostly
reject (>= 75%), always reject.
When asked what they based their choices on, the answers touched on eleven

different topics. The four ‘always accept’ participants cited a general apathy to-
wards privacy concerns and “just did it to make the window go away”. The one
participant that ‘always rejected’, no matter whether that required more effort,
argued that they would only accept data collection if it was to use a particular
feature offered by the site. The eleven participants categorised as ‘mostly reject’
heavily emphasised a disagreement with the practice of tracking in general and
stated they would only consent to have their data collected if it was for websites
they trusted. Two of those also mentioned that they did not feel a need for any
personalisation. The participants that fell into the ‘mostly accept’ and ‘mixed con-
sent’ category were more diverse. Most often mentioned were pragmatic reasons
such as just wanting to get to the site as quickly as possible, not believing the con-
trols were meaningful, and not wanting to lose any functionality. Eight decided
based on trust, whether it was the website or the vendors, and the sensitivity
of the data they would be submitting (e.g., banking information). One partici-
pant stated that they relied on other methods to protect their privacy, so did not

184

14.5 study 2: demonstrating the effects of designs on answers

care that much about their pop-up answers: “I tend to vary my devices/browser-
s/accounts/use incognito and duckduckgo a lot, I’m not too worried about my data
being tracked to every detail.”
After being shown a visualisation of their actual consent behaviour and asked

if it matched their ideal settings, the responses were predominately that it did
not. Only those falling into the two extreme categories – ‘always accept’ and
‘always reject’ – all indicated they agreed (3) or strongly agreed (2) with their
answers. For the remaining three categories, the sentiments were mostly spread
evenly along the spectrum, with 11 somewhat agreeing, 3 neither agreeing nor
disagreeing, 7 somewhat disagreeing, 1 disagreeing, and 3 strongly disagreeing.
The 25 participants who indicated their behaviour did not match their ideal pri-

vacy settings were asked to explain what the reason for this difference was. Par-
ticipants mentioned desires such as just wanting more privacy (“I would rather
companies not collect any information”); the fear of unknown consequences of
opting-out (“I didn’t want to risk the website not working after that”); and not
knowing what their ideal preferences even are. The most common reason men-
tioned, however, was the interface design. Participants lamented the fact that
pop-ups stand in the way of their primary goal (accessing a service), that the
frequency of the pop-ups caused frustration and consent fatigue, and even the
perception that the pop-up “forced them to accept” – even though these options
were available on the second page.

14.5.3 Interim Discussion

The experimental results indicate how two of the most common consent interface
designs – not showing a ‘reject all’ button on the first page; and showing bulk op-
tions before showing granular control – make it more likely for users to provide
consent, violating the principle of “freely given”77. The notification style, on the
other hand, appears to have no effect on the answer, but possibly a large effect
on whether an answer is given at all, suggesting that a non-blocking mechanism
provides a desired third consent option to users: a neutral middle-ground. The
qualitative reflections of the participants, however, put into question the entire
notice-and-consent model not because of specific design decisions but merely be-
cause an action is required before the user can accomplish their main task and
because they appear too frequently if they are shown on a website-by-website
basis.

14.5.4 Limitations

The participant sample is by no means representative of the general population
in the United States: they are almost all young and university-educated, and re-
cruited primarily through an emailing list of a computer science department. Ar-
guably, this means that our results describe a “best case scenario”: these partic-
ipants should be more knowledgeable about privacy issues and better equipped
to understand consent interfaces than the average web user.
77 It should be noted this data alone is not enough to establish legal compliance.

185

14.6 discussion and conclusion

There are a number of confounding variables that could have affected the par-
ticipants’ answers. First, although the condition order was counterbalanced, we
cannot guarantee that the participants were actually exposed to them in that
order (e.g., if they opened multiple tabs in a row and visited them anachronis-
tically), meaning order effects might not be controlled for. Second, because we
showed the same pop-up to each participant until we recorded four answers per
interface, some participants were exposed to the different conditions more often
than others. Lastly, participants might have also encountered “real” pop-ups at
the same time as the injected ones if the website they were visiting was within
the territorial scope of the GDPR.
While the GDPR is a European policy, our experiments were conducted in the

United States. These populations have been exposed to different legal regimes
and different consent controls over the year, something which we expect has af-
fected their mental model of these kind of pop-ups and accordingly, how they
answer them. This might influence the extent to which these findings can be gen-
eralised to a European population, and thus how they should be used to inform
EU policy changes.

14.6 discussion and conclusion

The results of our empirical survey of CMPs today illustrates the extent to which
illegal practices prevail, with vendors of CMPs turning a blind eye to — or worse,
incentivising —- clearly illegal configurations of their systems. Enforcement in
this area is sorely lacking. Data protection authorities should make use of auto-
mated tools like the one we have designed to expedite discovery and enforcement.
Designers might help here to design tools for regulators, rather than just for users
or for websites. Regulators should also work further upstream and consider plac-
ing requirements on the vendors of CMPs to only allow compliant designs to be
placed on the market. Such enforcement may be possible as the Court of Justice
indicates that plugin system designers can be ‘joint controllers’ along with web-
sites,78 and the UK’s ICO indicates it may be willing to force advertising trade
bodies to alter their standards.79 If this is the case, regulators must carefully con-
sider how to build a robust and well-maintained evidence base for user-centric
CMP design.
A core takeaway from the user study is that placing controls or information

below the first layer renders it effectively ignored. This leaves a few options for
genuine control of tracking online. If the notice-and-consent model is to continue,
it may be necessary to declare that, for example, consent can never be valid with
the presence of the (on average) hundreds of third parties we have shown data is

78 Court of Justice of the European Union, Case C-49/17 Fashion ID GmbH & Co.KG v Ver-
braucherzentrale NRW eV. ECLI:EU:C:2019:629; Rene Mahieu, Joris van Hoboken, and Hadi
Asghari (2019). ‘Responsibility for Data Protection in a Networked World: On the Question
of the Controller, Effective and Complete Protection and Its Application to Data Access Rights
in Europe.’ In: Journal of Intellectual Property, Information Technology and Electronic Commerce
Law 10.1, pp. 84–104. (Visited on 09/03/2019); Brendan Van Alsenoy (2019). Data Protection
Law in the EU: Roles, Responsibilities and Liability. Cambridge: Intersentia.

79 Information Commissioner’s Office, Update Report into Adtech and Real Time Bidding.

186

14.6 discussion and conclusion

sent to and cookies laid by today. This would mean consent would only be valid if
a compact but representative and rich description can be placed on the first layer,
and could certainly be a possible direction for the Court of Justice to consider if
they interpret the principles of data protection in a future case.
An alternative approach would be to overhaul the design pattern of the con-

sent banner or barrier, and have richer, more durable ways to set preferences,
potentially within the browser. The key is that such browser settings would be
legally binding, rather than weak and self-regulatory in nature. Yet the current
heavy lobbying around the EU’s draft ePrivacy Regulation has centred in part on
adtech firms trying to prevent browser settings having legally binding effect —
part of an ongoing drama for many years about the potential legal status of ‘Do
Not Track’ signals.80 Designers have a role here: how can users reflect on tracking
across the Web, rather than on a per-site basis? If users are not to automatically
reject everything, how can advertisers negotiate and present them with reasons
that they should consent? Might there be a role for delegation of preferences to
a trusted civil society actor, and what kind of relationship, information and in-
teraction might the user have with these? We invite and encourage researchers
to bring their skills and views to bear on these important, current issues at the
confluence of regulation, design and fundamental rights.

80 Irene Kamara and Eleni Kosta (2016). ‘Do Not Track Initiatives: Regaining the Lost User Con-
trol.’ In: International Data Privacy Law 6.4, pp. 276–290. issn: 2044-3994. doi: 10/gdxwds.
(Visited on 12/28/2018).

187

https://doi.org/10/gdxwds

15.
NEGOT IAT I NG CONSENT POP-UP S
WITH SUPERV I SORY AUTHOR IT I E S I N
DENMARK

15.1 introduction

The majority of consent pop-ups on the web do not meet the requirements for
legally valid consent laid out in the General Data Protection Regulation (GDPR),1
undermining the regulation and the rule of law. This begs the question: How
can we make a meaningful, lasting change to this status quo? Although the bat-
tle around data processing and privacy stretches back decades (see Chapter 13),
the adoption of the GDPR has brought data protection laws back into mainstream
focus, and the extensive promotion of the regulation has committed the EU’s le-
gitimacy to its success. These changes have created momentum that might shake
up the tiresome tolerance of illegal web-tracking.
It is unclear how to best leverage that momentum to address the lack of com-

pliance in consent pop-ups. The GDPR and ePrivacy Directive have given legal
responsibility over the design of consent notices to four parties: the data sub-
ject, the data controller(s), the data processor(s), and the supervisory authority.
This chapter examines the following theory: a) the dominant designs of consent
pop-ups can be changed through a negotiation between a data subject and a su-
pervisory authority; and b) software can be used as an effective diagnostic tool2
to facilitate that negotiation.
First, I will introduce the relevant supervisory bodies and the laws from which

they derive their authority. Second, I will describe the enforcement status quo,
with a specific focus on the Danish context. Third, I will recount the negotiation
process with the authorities through the use of automated compliance monitoring
software. Last, I will show how this has changed the design of consent pop-ups
on the Danish web, where the proportion of pop-ups with a reject button on the
first page has increased from 1,5% to 41%.

1 Nouwens et al., ‘Dark Patterns after the GDPR: Scraping Consent Pop-Ups and Demonstrating
Their Influence’; Célestin Matte, Nataliia Bielova, and Cristiana Santos (2019b). ‘Do Cookie
Banners Respect my Choice? Measuring Legal Compliance of Banners from IAB Europe’s Trans-
parency and Consent Framework.’ In: Under review. url: arXiv:1911.09964.

2 Abebe et al., ‘Roles for computing in social change.’

188

arXiv:1911.09964

15.2 supervisory authorities

15.2 supervisory authorities

In the context of web-tracking technologies, there are two legislative documents
from which supervisory authorities derive their power: the General Data Protec-
tion Regulation, and the national transposition of the ePrivacy Directive. The bod-
ies responsible for the enforcement of the GDPR are the Data Protection Author-
ities, and for the ePrivacy Directive, whichever authority the Member State has
elected to appoint for the task. These are the organisations that oversee the de-
sign of consent pop-ups and who have a duty to respond to individuals exercising
their data protection rights.

15.2.1 The ePrivacy Directive enforcement authority

The original ePrivacy Directive adopted in 2002 does not specify how the law
should be enforced, who should be in charge, and what powers they have. The
requirement of an enforcement agency is (strangely) first introduced as part of
Article 15a of the 2009 amendment, which states that each EUMember should ap-
point and provide resources for a “competent national authority” with the power
to start investigations and intervene when there are transgressions of the law.3
Because it is a Directive and thus does not strive for maximum harmonisation
across the EU, each Member State was allowed to make their own decision about
who that authority would be. Generally, most governments elected to give the
responsibility to (a number of) already existing institutions, such as telecomunni-
cations ombudsmen, consumer protection boards, electronic communication and
postal regulators, competition authorities, or personal data protection agencies.
In Denmark, the ePrivacy Directive was transposed into a total of fourteen

different documents, the most relevant ones for web-tracking and consent be-
ing the Electronic Communications Networks and Services Act4 and the Executive
Order on Information and Consent Required in Case of Storing and Accessing In-
formation in End-User Terminal Equipment.5 The Act originally appointed the IT-
og Telestyrelsen (IT and Telecom Agency) as the main responsible authority in
2002, but this agency was abolished following the 2011 parliamentary elections
and its responsibilities were redistributed to the Ministry of Industry, Business,
and Financial Affairs; Ministry of Defense; Ministry of Finance; and Ministry of
Economic Affairs and the Interior (some of which have since been disbanded
and/or merged themselves). Since 2011, the main responsible body for cook-
ies and consent has been the Erhvervsstyrelsen – the Danish Business Authority
– which “works to make it easy and attractive to run responsible businesses in

3 European Union (2009). ‘Directive 2009/136/EC of the European Parliament and of the Council
of 25 November 2009 amending Directive 2002/22/EC on universal service and users’ rights
relating to electronic communications networks and services.’ In:Official Journal of the European
Union, Article15a.

4 Energi-, Forsynings- og Klimaministeriet (2011). Lov om elektroniske kommunikationsnet og -
tjenester. LOV nr 169 af 03/03/2011. url: https://www.retsinformation.dk/eli/lta/2011/169.

5 Erhvervsministeriet (2011). Bekendtgørelse om krav til information og samtykke ved lagring af
eller adgang til oplysninger i slutbrugeres terminaludstyr. url: https://www.retsinformation.dk/
eli/lta/2011/1148.

189

https://www.retsinformation.dk/eli/lta/2011/169
https://www.retsinformation.dk/eli/lta/2011/1148
https://www.retsinformation.dk/eli/lta/2011/1148

15.2 supervisory authorities

Denmark”.6 It has a broad portfolio that includes all applicable laws which de-
termine the responsibilities and rights of businesses when operating in Denmark
(e.g., environmental guidelines, trade laws, development funds). For some parts
of the Directive, the responsibility of upholding it is delegated to Teleklagenævnet
(the Telecommunications Complaints Board), Forbrugerombudsmanen (the Dan-
ish Consumer Ombudsman), and Konkurrence- og Forbrugerstyrelsen (the Danish
Competition and Consumer Authority).

15.2.2 The GDPR enforcement authority

Data Protection Authorities (DPAs) in the European Union are independent or-
ganisations tasked with monitoring the application of data protection law. Un-
der the GDPR, each Member State is required to have their own national DPA
and is responsible for providing it with the human, technical, and financial re-
sources necessary to carry out its tasks and exercise its investigative, corrective,
and advisory powers.7 They provide guidance about how to comply with the law,
deal with complaints, carry out investigations, and function as the central con-
tact point about the rights and responsibilities of different actors vis-à-vis data
protection law. They do not have any judicial powers, but they are able to issue
fines for transgressions of up to €20 million or 4% of the total annual turn-over.
The responsibilities of the DPAs are mostly within the national borders they op-
erate in, although they are expected to cooperate with the other DPAs across the
EU. If a case is launched against an organisation that operates within multiple
EU countries, the responsibility will lie with the DPA in the country where that
organisation has its main establishment. This regulatory mechanism, called the
one-stop-shop, was introduced as part of the GDPR to make it easier to deal with
cross-border cases and ensure consistent application across the Union.
In Denmark, Datatilsynet is the Data Protection Authority that takes the lead

on anything concerning data protection law. However, because of the overlap
between the GDPR and ePrivacy Directive regarding cookies and consent, there
is some ambiguity around who is responsible for enforcement and should provide
guidance.Datatilsynet has stated in themedia that Erhvervsstyrelsen should be the
primary authority, but they have also recently started investigations and released
verdicts about illegal consent pop-ups themselves. They started to provide their
own guidance around pop-up design, which in certain places actually contradicts
that of Erhvervsstyrelsen.

6 Erhvervsstyrelsen (2020). Om Erhvervsstyrelsen. url: https : / / erhvervsstyrelsen . dk / om -
erhvervsstyrelsen (visited on 07/06/2020).

7 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1, Article52(4.

190

https://erhvervsstyrelsen.dk/om-erhvervsstyrelsen
https://erhvervsstyrelsen.dk/om-erhvervsstyrelsen

15.3 enforcement status quo

15.3 enforcement status quo

15.3.1 ePrivacy Directive

There has been little enforcement of the ePrivacy Directive since the latest amend-
ment in 2009 (which was only successfully transposed by all Member States in
2013, two years after the official deadline). In a 2015 assessment of the Direc-
tive’s effectiveness for the European Commission, the authors euphemistically
describe that “[i]t is ... difficult to deny that the introduction of the consent rule
in Art. 5.3 did not entirely reach its objective”.8 Most authorities have not pro-
vided more enforcement beyond writing documents explaining the law and how
to comply with it, but even those, the report describes, are not always correct.
Also in 2015, the European Commission announced that they were working on
replacing the Directive with the ePrivacy Regulation (ePR)9 to address its short-
comings and complement the GDPR. Although it was supposed to be adopted
concurrently with the GDPR, it has stalled significantly due to heavy lobbying
and it is currently unclear when or whether it will materialise.
There are no clear records about howmany cases Erhvervsstyrelsen has handled

since 2011 that address consent pop-ups; in response to a media inquiry they
stated that “they do not have an estimate of the number of inquiries specifically
regarding cookies”.10

15.3.2 General Data Protection Regulation

Two years after the GDPR has come into effect, it is increasingly criticised for a
lack of enforcement. Academic studies and investigative journalists have shown
the many areas in which commercial companies are failing to comply, yet are
not being held accountable. One of the main reasons suggested for this is the
lack of resources and staff provided to the DPA, something which Member States
are legally obliged to do under Article 52(4).11 The European Data Protection
Board – the umbrella organisation made up of the head of each national DPA
– released a study in February 2019 reporting that 94% of DPAs did not have

8 European Commission, Directorate-General for the Information Society and Media (2015). ePri-
vacy directive, assessment of transposition, effectiveness and copmatibility with the proposed data
protection regulation final report. url: http://bookshop.europa.eu/uri?target=EUB:NOTICE:
KK0415268:EN:HTML.

9 European Commission (2017). Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL concerning the respect for private life and the protection of personal data
in electronic communications and repealing Directive 2002/58/EC (Regulation on Privacy and Elec-
tronic Communications).

10 Emilie Aagaard (2020). ‘Forskere: DR’s og Folketingets hjemmesider er på kant med persondat-
aloven.’ In: Danmarks Radio.

11 European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), OJ 2016 L 119/1.

191

http://bookshop.europa.eu/uri?target=EUB:NOTICE:KK0415268:EN:HTML
http://bookshop.europa.eu/uri?target=EUB:NOTICE:KK0415268:EN:HTML

15.3 enforcement status quo

sufficient resources to carry out their tasks.12 Although the GDPR aimed to unify
and equalise the regulation and its enforcement throughout the EU, a recent
report by the Brave Software – developers of an open-source browser that blocks
ads and trackers – shows there are considerable differences between the different
national DPAs. Half of the DPAs receive €5 million or less budget per year (fig. 48)
and only six of twenty eight DPAs have more than 10 tech specialist employees
(fig. 49).

Figure 48. Annual budgets of the DPAs, via Brave13

Another main concern is the efficacy of the one-stop-shop system. Luxembourg,
the Netherlands, and Ireland disproportionally house large multinational compa-
nies – e.g., Facebook, Google, Amazon – because of their lucrative tax schemes.
As a result, any complaints brought against these companies in other Member
Countries have become the responsibility of, mostly, the Irish DPA, which has
been unable to cope and considerably stalled any actions against transgressions
of the largest global players.
In Denmark, Datatilsynet has since May 2018 made only one verdict related

to consent pop-ups. The original complaint was made by Christian Schmidt, a
private individual, on August 29, 2018 against dmi.dk, the official website of the
Danish Meteorological Institute. It took until February 11, 2020 until the verdict
was released that DMI’s consent pop-up was non-compliant.

12 European Data Protection Board (2019). ‘First overview on the implementation of the GDPR
and the roles and means of the national supervisory authorities.’ In: url: https://edpb.europa.
eu/sites/edpb/files/files/file1/19_2019_edpb_written_report_to_libe_en.pdf.

192

dmi.dk
https://edpb.europa.eu/sites/edpb/files/files/file1/19_2019_edpb_written_report_to_libe_en.pdf
https://edpb.europa.eu/sites/edpb/files/files/file1/19_2019_edpb_written_report_to_libe_en.pdf

15.4 the negotiation process

Figure 49. Number of tech specialists and total employees per DPA, via Brave14

15.4 the negotiation process

Given the overall lethargic enforcement of the GDPR, combined with the lack of
resources of the DPAs and thus their limited bandwidth, negotiating the design
of consent pop-ups with/through them required two things: gathering the data
to demonstrate the lack of compliance, and making them prioritise this problem.

15.4.1 Gathering the Data

DPAs generally use small-scale, qualitative methods when investigating the non-
compliance of an industry (see e.g., the Irish DPA’s 2019 report15) for two rea-
sons: 1) some of the data protection law’s requirements can only be assessed
qualitatively; and 2) they rarely have the technical expertise or resources to use
computational methods. As a result, they do not have a large-scale overview of
the consent pop-up situation within their borders.

15Data Protection Commission (2020). ‘Report by the Data Protection Commission on the use of
cookies and other tracking technologies: Following a sweep conducted between August 2019
and December 2019.’ In:

193

15.4 the negotiation process

As part of the study described in Chapter 14 I built an automated compliance
monitoring software (a web-scraper) which analyses the designs of six of the most
popular third-party consent pop-ups: Quantcast, OneTrust, TrustArc, CookieBot,
Cookieinformation, and Crownpeak. It takes a plain-text list of urls as input and
returns a new-line delimited JSON file for each domain. Table ?? lists all variables
collected and Figure 50 shows an example response.

Figure 50. Example of the JSON object returned by the scraper for a given domain

15.4.2 Raising the Priority

DPAs operate with limited resources and thus have to prioritise their tasks. The
only formal way to influence the DPAs priorities is by launching a complaint, and
while they are required to respond within three months, there is no time limit
on reaching an actual verdict. Rather than rely on the bureaucratic process, I
used the acceptance notification of the research paper described in Chapter 14

194

15.5 negotiation outcome

Date Publisher Title

10/01/2020 TechCrunch Cookie consent tools are being used to undermine EU privacy rules,
study suggests

13/01/2020 Engadget Most websites don’t follow European cookie consent laws, study shows

13/01/2020 Vice Companies Use ’Dark Patterns’ to Mislead Users About Privacy Law,
Study Shows

17/01/2020 de Standaard Websites schenden massaal privacywetgeving

18/01/2020 Danmarks
Radio

9 ud af 10 hjemmesider overholder ikke lov om cookies: ’Det kan
virkelig give bagslag’

21/01/2020 le Figaro RGPD: neuf sites sur dix rusent pour obtenir le consentement des
internautes

22/01/2020 Danmarks
Radio

Forskere: DR’s og Folketingets hjemmesider er på kant med
persondataloven

22/01/2020 Danmarks
Radio

Accepterer du cookies? Her er fire metoder til at undgå overvågning på
nettet

08/02/2020 BBC Cookies crumbling as Google phases them out
11/02/2020 Fast Company Why you can’t escape dark patterns
29/03/2020 Prosa Virksomheder narrer brugerne til mere dataovervågning
28/05/2020 Wired We need to fix GDPR’s biggest failure: broken cookie notices

Table 11. News reporting on data collected about illegal consent pop-ups

to contact the press. The overwhelming illegality of consent pop-ups, contrasted
with the bombastic release of the GDPR a year and a half before, proved inter-
esting enough that various international media sources published articles about
the issue (table 11). The public Danish Broadcasting Corporation (Danmarks Ra-
dio) released a three part series on the data, one discussing the situation in gen-
eral and holding the Danish supervisory bodies to account, one highlighting how
their own site, the Danish parliament, and other public institutions were non-
compliant, and one educating readers about ways to protect themselves against
web-tracking.
The media attention had the desired effect, and resulted in the study being

discussed by the Irish Data Protection Commissioner Helen Dixon at the annual
Computers, Privacy, and Data Protection conference and a meeting with the Dan-
ish DPA; as well as an invitation from the company behind the privacy-preserving
Brave browser to present at their London office; meetings with leading Danish
consent management company Cookieinformation; and various invitations for
conference panels.

15.5 negotiation outcome

On the 17th of February, just a day short of one month since the first DR arti-
cles came out criticising Datatilsynet and Erhvervsstyrelsen, the DPA released
new guidance for the design of consent pop-ups and reached a verdict in a case
against the Danish Meterological Institute’s pop-up that had been ongoing since

195

15.5 negotiation outcome

August 2018.16 Politiken, one of the leading broadsheet newspapers, reported on
the case with the headline “A bomb under websites: DMI receives severe criticism
in groundbreaking decision”.17 Ehrvervsstyrelsen, although adament in their orig-
inal comments to DR in February that their guidance was up-to-date and correct,
also changed their cookie guidance page.
The verdict explained how the design of DMI’s pop-up did not result in legally

valid consent, and emphasised that 1) it should be as easy to refuse consent as
it is to give it – a “one-click-away” approach or differently styled buttons are not
sufficiently transparent; and 2) it should be easy to access and understand which
data controllers a visitor is giving consent to – using websites, nicknames, or
product names is not enough.
The verdict and guidance has had considerable effect on the design of consent

pop-ups on the Danish web. I used the automated compliance monitoring software
to analyse the designs of consent pop-ups on the top 30.000 most popular web-
sites in Denmark on a weekly basis since February 18. The data shows that the
presence of a reject button on the first page – one of the main points raised in
Datatilsynet’s verdict – has steadily increased from 1,5% to 41% (fig. 51). How-
ever, it is striking how almost all of that increase can be attributed to just a single
third-party consent pop-up provider: Cookieinformation. The proportion for the
only other company with a non-negligable market share – CookieBot – has stayed
almost the same (from 4,4% to 5,7%). Despite the positive change, still not even
half of all pop-ups make it as easy to reject consent as to give it.

Figure 51. Percentage of pop-ups with a reject button on the first page on the top 30.000
most popular Danish websites

16Datatilsynet (2020). DMI’s behandling af personoplysninger om hjemmesidebesøgende. url: https:
//www.datatilsynet .dk/tilsyn- og- afgoerelser/afgoerelser/2020/feb/dmis- behandling- af-
personoplysninger-om-hjemmesidebesoegende.

17 Jakob Sorgenfri Kjær (2020). Bombe under hjemmesider: DMI får alvorlig kritik i banebrydende
afgørelse. url: https://politiken.dk/viden/Tech/art7657203/DMI- f\%C3\%A5r- alvorlig-
kritik-i-banebrydende-afg\%C3\%B8relse.

196

https://www.datatilsynet.dk/tilsyn-og-afgoerelser/afgoerelser/2020/feb/dmis-behandling-af-personoplysninger-om-hjemmesidebesoegende
https://www.datatilsynet.dk/tilsyn-og-afgoerelser/afgoerelser/2020/feb/dmis-behandling-af-personoplysninger-om-hjemmesidebesoegende
https://www.datatilsynet.dk/tilsyn-og-afgoerelser/afgoerelser/2020/feb/dmis-behandling-af-personoplysninger-om-hjemmesidebesoegende
https://politiken.dk/viden/Tech/art7657203/DMI-f\%C3\%A5r-alvorlig-kritik-i-banebrydende-afg\%C3\%B8relse
https://politiken.dk/viden/Tech/art7657203/DMI-f\%C3\%A5r-alvorlig-kritik-i-banebrydende-afg\%C3\%B8relse

15.6 conclusion & future work

In addition to the relative presence of reject buttons, the number of consent
pop-ups has also increased by more than 60% (fig. 52). However, the total per-
centage of sites using one of these six third-party services is still less than 10%.

Figure 52. Percentage of sites using one of six third-party consent pop-up providers on
the top 30.000 most popular Danish websites

15.6 conclusion & future work

The design of consent software can be changed, despite decades of stagnation,
by negotiating with supervisory authorities; and software can be an effective di-
agnostic tool during this process.
Although this negotiating process has achieved considerable success, it is un-

clear whether supervisory authorities are themost effective target to affect change.
The data shows how just one consent pop-up provider was almost single-handedly
responsible for all the increase in reject button compliance. This strongly suggests
that focusing on these data processors(/joint controllers) would be more efficient
than intermediary DPAs. Future work should analyse what caused the two ma-
jor Danish consent providers – Cookieinformation and CookieBot – to have such
starkly different trajectories in their compliance rates after the Datatilsynet ver-
dict. Did Cookieinformation remove non-compliant designs from their portfolio?
Did they more aggressively inform their clients? Is there a self-selection bias in
types of clients between the two companies?
If consent providers are the key to more effective enforcement, Data Protec-

tion Authorities might explore requiring their software to be inherently inter-
operable, which would allow automated tools to more easily (and accurately)
analyse their designs (rather than the more fragile and time-consuming reverse-
engineering approach used by my software). Such requirements could render the
industry more legible and thus governable. This recommendation comes with a
strong caveat: as data-driven governance and evidence-based policy approaches
continue to grow in popularity, we should stay vigilant that our institutions do

197

15.6 conclusion & future work

not fall victim to techno-solutionism. While enforcement in data protection law is
sorely lacking, the successful use of computational tools should not be allowed to
direct undue attention and resources to only those aspects of data protection and
privacy that can be monitored and operationalised through such tools. Already
it was clear that part of the interest and perceived legitimacy of my study came
from the quantity of the data; much reporting focused on the memetic fact that
10.000 websites were scraped. While it worked in my benefit, and was hugely
tempting to leverage, future use of negotiation software should more clearly iden-
tify what aspects of the law and reality are less amenable to computerisation and
datafication.

198

16.
NEGOT IAT I NG CONSENT POP-UP
DES IGNS US I NG ADVERSAR IAL
I NT EROPERAB I L IT Y
I n c o l l a b o r a t i on w i t h : Ro l f B a g g e , Ja nu s B a g e r K r i s t e n s e n , a n d

C l em en s N y l a n d s t e d K l o kmo s e

16.1 introduction

The majority of consent pop-ups on the web do not meet the requirements for
legally valid consent laid out in the General Data Protection Regulation (GDPR),1
undermining the regulation and the rule of law. Supporting the supervisory activ-
ities of DPAs as described in Chapter 15 is an obvious first step towards improving
compliance, but this path to software change is dependent on the DPAs ability
and willigness to enforce the regulation, a necessarily slow and procedural pro-
cess. A direct action approach, instead, would allow a data subject to negotiate
the design of software immediately, and accomplish their goals independent of
other stakeholders.
This chapter explores how to negotiate the interaction design of consent pop-

ups directly by interoperating with the code of the software. This would allow
data subjects to bypass the non-compliant designs of consent pop-ups and enforce
their data protection preferences, without relying on the cooperation of external
parties.
First, I will introduce existing approaches to software-mediated data protection

negotiation, and the concept of interoperability in HCI research. Second, I will de-
scribe the technical implementation of the five most popular third-party consent
management platforms (CMPs), and how their designs support or inhibit interop-
erability. Third, I will present consent-automating software: a browser extension
which automatically answers consent pop-ups using adversarial interoperability
– the ability to interact with systems in ways that go against their fundamental
interests. Last, I will reflect on the impact of this negotiation software, and what

1 Nouwens et al., ‘Dark Patterns after the GDPR: Scraping Consent Pop-Ups and Demonstrating
Their Influence’; Matte, Bielova, and Santos, ‘Do Cookie Banners Respect my Choice? Measuring
Legal Compliance of Banners from IAB Europe’s Transparency and Consent Framework.’

199

16.2 software-mediated negotiation

policy changes would improve reliable interopability and make computational
approaches to regulatory intermediation more effective.

16.2 software-mediated negotiation

Using software to automate and negotiate consent and privacy preferences is
not new. The two most high-profile attempts were Do Not Track (DNT) and the
Privacy Preferences Platform (P3P) (both coming out of working groups at the
World Wide Web Consortium). DNT is a simple binary value sent in an HTTP
header that signals to a website whether or not the user wants to be tracked.
P3P was a protocol that allowed websites to express what data they collected in
a machine-readable format such that it could be compared to user preferences
sent in the HTTP header and applied automatically when the website was served.
Neither of these approaches were successful, mainly because both relied on the
self-regulation of stakeholders that have little to no incentive to respect the signals
sent by users.
To regain control over their personal data, a variety of browser extensions

made by web users or privacy organisations have been created. PrivacyBadger –
a browser extension developed by the Electronic Frontier Foundation that blocks
third party trackers across websites – was developed specifically to address the
problem of websites not respecting a DNT signal. Ghostery similarly protects
against tracking by blocking HTTP requests of blacklisted origins.While these and
similar extensions have the same aim of shifting control from the company col-
lecting data to the data subject, they focus on the technological infrastructure of
data processing rather than the user-centric interfaces that have appeared either
as a result of the ePrivacy directive or the General Data Protection Regulation.
Browser extensions that do specifically deal with the consent pop-ups predom-

inately focus on improving the users’ experience of the website by removing the
notifications, rather than improving user control over their personal data. Cookie
Notice Blocker (3639 users on Chrome)2 and Consent Manager (1885 users)3
both use injected Javascript to block notices, but removing HTML elements does
not protect against tracking when you are opted-in by default. We only found one
example of a tool that tries to improve the user experience of consent pop-ups but
also improve the user’s control over the data that is collected on them by interact-
ing with the pop-ups: autoconsent by Sam Macbeth from Cliqz4. However, it only
provides users with the binary choice of opting in or out, so it does not offer the
user granular control over data collection; they might want to allow some things
(e.g., language localisation) but reject others (e.g., personalised advertising).

2 https://chrome.google.com/webstore/detail/cookie-notice-blocker/
odhmfmnoejhihkmfebnolljiibpnednn

3 https://chrome.google.com/webstore/detail/consent-manager/gpkoajillfmlpnglbagpplnphadbfalh
4 úrlhttps://github.com/cliqz-oss/autoconsent

200

https://chrome.google.com/webstore/detail/cookie-notice-blocker/odhmfmnoejhihkmfebnolljiibpnednn
https://chrome.google.com/webstore/detail/cookie-notice-blocker/odhmfmnoejhihkmfebnolljiibpnednn
https://chrome.google.com/webstore/detail/consent-manager/gpkoajillfmlpnglbagpplnphadbfalh

16.3 interoperability

16.3 interoperability

Interoperability is “[t]he capability to communicate, execute programs, or trans-
fer data among various functional units in a manner that requires the user to
have little or no knowledge of the unique characteristics of those units”,5 where
the user refers to both human and nonhuman entities. A distinction is made be-
tween syntactic and semantic interoperability, with the former referring to the
exchange of data and the latter to the meaningful use of that data.6 Cory Doc-
trow, writing for the Electronic Frontier Foundation, has dedicated much of his
writing in 2019 to conceptualising and historicising interoperability in the tech
industry (see7 for an overview). In particular, he argues for a renewed interest
in adversarial interoperability: the efforts of one system to interface with another
against the explicit wishes of its progenitors (e.g., Apple’s reverse engineering of
Microsoft’s .doc format so Pages could open them);
Interoperability – whether conceptually, technologically, or ethnographically –

does not appear to be a key topic of interest for HCI research. Querying for the
term in the entire corpora of CHI, UIST, CSCW, GROUP, ECSCW, TOCHI, and
JCSCW returns 288 results. Filtering for only those publications with “interoper-
ability” or “interoperable” in the title, abstract, or author keywords (and removing
workshop papers and false positives) reduces that to a mere 30. Almost half men-
tion interoperability tangentially, either as the problem statement (6) or as an
implication for design (6). Twelve papers present a system which includes (se-
mantic or syntactic) interoperability to varying degrees (i.e., as its main feature,
or as an unintentional side-effect). Four papers discuss interoperability concep-
tually, all in the context of supporting collaboration and cooperation.

16.4 consent management platform designs

Consent management platforms (CMPs) – what we have been referring to as con-
sent pop-ups – are (third party) services which help websites keep track of the
advertising mechanisms they employ on the website, and capture the consent
that visitors give about the data that needs to be collected for those advertis-
ing mechanisms. Although their overal functionality and visual design are quite
similar, their technical implementations are quite different, and affect how they
support or inhibit automated interoperability.

16.4.1 Dynamic vs. static HTML

Most CMPs load the content of the pop-up dynamically as the user interacts with
the interface – only Cookiebot is entirely present in the document object model
(DOM) on pageload. Whether all the elements are there on pageload or asyn-

5 ISO/IEC 2382-01 (1993). Information Technology Vocabulary, Fundamental Terms.
6 Kim H Veltman (2001). ‘Syntactic and semantic interoperability: new approaches to knowledge

and the semantic web.’ In: New Review of Information Networking 7.1, pp. 159–183.
7 Cory Doctorow (2019). ‘Adversarial Interoperability.’ In: Electronic Frontier Foundation. url:

https://www.eff.org/deeplinks/2019/10/adversarial-interoperability.

201

https://www.eff.org/deeplinks/2019/10/adversarial-interoperability

16.4 consent management platform designs

chronously generated instead makes a big difference for interoperating with it,
because it requires a mechanism to continuously detect whether elements exist
and handling the time between those checks. This bottleneck puts an upper limit
to how fast automated interactions with the interface can be. TrustArc in partic-
ular makes a lot of remote calls to retrieve e.g., the vendors that are active on
the page and whether they can be opted-out via the CMP or require going to a
separate page.
Static HTML – or more precisely, HTML which is static after the page finishes

loading – makes it more straight-forward to target elements. Interaction flows in
Cookiebot, for example, are managed by simply hiding or displaying elements in
the DOM.What makes interoperating with this approach slightly tricky is that the
system needs to check whether the elements are actually displayed and visible
in order to know whether they are the ones that need to be interacted with. A
unique benefit is that often the adversarial system has access tomore functionality
and could thus outperform even the best user, just by virtue of being able to
select options that are never visually represented. Cookiebot, again, has a “Use
necessary cookies only” button (their equivalent of declining all) which is almost
always hidden but can be clicked programmatically.

16.4.2 Semantic markup

A key part of interoperating with another system is being able to accurately and
reliably target objects of interest. Semantic information which describes the ob-
ject’s meaning is one key way to facilitate this. The target elements in these CMPs
are the buttons, sliders, checkboxes, and toggles that set and submit the consent
preferences. In HTML, explicit semantics are added using tags, classes, ids, and
attributes.
The quality of the semanticmarkup varies significantly between different CMPs.

Cookiebot has very descriptive ids for the different data processing purpose check-
boxes (e.g., CybotCookiebotDialogBodyLevelButtonMarketing), while QuantCast,
Crownpeak, OneTrust, and TrustArc use non-specific class names such as category
-check for all of them. Certain versions of OneTrust even have factually incorrect
semantics: purposes and vendors are placed under the menu-item-necessary cat-
egory (which they do not need consent for) yet are in fact optional. Some CMPs
use auto-generated classes, making it impossible to consistently interoperate with
it.
If no semantic markup is available, it can be inferred through the hierarchical

structuring in the DOM tree of elements that logically belong together (e.g text
labels and toggles). The DOM tree is volatile, however, and inferring meaning
by traversing its structure is not very robust. For example, QuantCast separates
purposes and vendors into different, dynamically generated pages, making it im-
possible to figure out how they relate to each other.
The only recourse left is analysing nearby text content to understand what the

element contains, but this creates language processing problems such as typos
and localisation differences.

202

16.5 consent-automating software: consent-o-matic

16.4.3 Hidden state

Proper software engineering principles argues for encapsulation of data within
methods that use it, and against storing state in something such as the DOM.
Indeed, most of the CMPs store the state entirely as JavaScript runtime state.
However, this makes it difficult for an (adversarially) interoperating system to
verify that the changes it effects are recorded, stored, and submitted. For example,
although toggling a checkbox might add or remove a class, it does not follow that
adding or removing that class changes the recorded value of a checkbox. The CMP
might instead be using an eventListener on a click to edit the consent value. As
a result, interoperating with such a system precludes making direct changes to
the data and instead requires simulating user interactions.

16.5 consent-automating software: consent-o-matic

Our goal is to automate the interaction between a data subject and a consent
pop-up as a way to deal with their (at best) confusing or (at worst) intentionally
manipulative interface designs. The design of the extension and the mechanisms
that needed to be created were shaped by the way the CMPs are implemented as
described above. The extension is published on the Chrome8 and Firefox9 web-
store (but built using the WebExtensions API so should also work for Opera and
Edge) and the code is available on Github10.
Rules for how to interoperate with a CMP are stored in JSON files in a declara-

tive notation (fig. 53), which makes it easy to add new CMPs to the extension or
edit existing instructions. The basic structure of the JSON consists of two main
parts: detectors and methods. detectors are used to determine a CMP is present
in the DOM and visually showing on the page by checking for the existence of
a particular HTML element that is specified by the user. If the detector returns
a positive result, the methods are executed, which can be one of three (optional)
actions: OPEN_OPTIONS, DO_CONSENT, or SAVE_CONSENT.

16.5.1 DOM Selection and Actions

The building blocks of these two parts of the system are a DOM Selection mecha-
nism that is more sophisticated than what is normally possible with CSS selectors,
and a list of Actions that can be used to trigger events on particular elements. The
DOM Selection works by first using a CSS selector to target elements and subse-
quently applying (optional) filters to what is returned to further winnow down
the list (see 12 for the five types of filters).
Because the way some CMPs are implemented make it very difficult to target

certain elements, it is possible to execute this selection process in two steps using
the parent and target construction. The selection and filtering options are the

8 https://chrome.google.com/webstore/detail/consent-o-matic/mdjildafknihdffpkfmmpnpoiajfjnjd
9 https://addons.mozilla.org/en-US/firefox/addon/consent-o-matic/
10 https://github.com/cavi-au/Consent-O-Matic

203

https://chrome.google.com/webstore/detail/consent-o-matic/mdjildafknihdffpkfmmpnpoiajfjnjd
https://addons.mozilla.org/en-US/firefox/addon/consent-o-matic/
https://github.com/cavi-au/Consent-O-Matic

16.5 consent-automating software: consent-o-matic

Figure 53. Dummy example of a JSON ruleset for a particular CMP (brackets condensed
to preserve space)

Filter type Description

textFilter filters all nodes that do not include the given (array of) string(s).

styleFilter
filters based on computedStyle. Takes an option which is the CSS
property name, and a value. Can be negated True or False to specify
presence or absence.

displayFilter filters based on if the element is displayed or not.
iframeFilter filters based on if a node is inside an iframe or not (Boolean).

childFilter
filters based on whether the node has a particular child element, which is
specified using the same DOM Selection process.

Table 12. The five types of filters that can be used to select the element of interest.

204

16.6 negotiation outcome

Action type Description

click simulates a click.
slide simulates moving a slider.
hide adds display: none.
close closes the current tab (for when new ones are opened).

ifcss conditionally executes an action based on whether an element is or is not
found.

waitcss waits until it can or cannot find the target element after a specified
waitTime for the number of retries.

foreach runs the same action for each of the elements found.

consent takes a list of the user’s consent choices (see below) and tries to toggle an
element value based on that.

list takes a list of actions to apply to the same element.

Table 13. The nine types of actions that can be executed on an element of interest.

same for both, but this allows users to first select the “root” parent node and
subsequently select one or multiple targets relative to that node.
Actions are what the Consent-o-Matic extension executes once a target has been

selected. Some actions are for manipulating a target element, other actions are
about controlling the flow of interactions with the CMP (see table 13 for the nine
types of actions).

16.5.2 Consent Preferences

The user can specify their privacy preferences by toggling six different data pro-
cessing purposes in the extension’s settings page (fig. 54). These purposes are
based on a survey of the purposes found in 680 CMPs used by the top 10.000
most popular websites in the UK.11 Different spellings of the purpose category
names were first collapsed by using OpenRefine12. Then, the descriptions of those
different purposes were compared and further merged until six separate ones
remained: Information Storage and Access; Preferences and Functionality; Per-
formance and Analytics; Content selection, delivery, and reporting: Ad selection,
delivery, and reporting; and Other Purposes. The purposes found in the CMPs
we interoperate with are matched to these global data processing categories and
the user’s answer for each of them (opt-in or opt-out) are passed to the consent
action mentioned previously.

16.6 negotiation outcome

As of July, nearly 4000 people have installed the consent-automating extension on
Chrome and Firefox (fig. 55). Since the launch on December 24th, five external
contributors have joined the project, and collectively expanded the ruleset from
five to now cover thirty-five different pop-up designs. Sam Macbeth, developer
11Midas Nouwens et al. (2020c). ‘Dark Patterns Post-GDPR: Scraping Consent Interface Designs

and Demonstrating their Influence.’ In: Conditionally accepted for CHI 2020. ACM.
12 An application used for data wrangling that has various fuzzy matching algorithms.

205

16.6 negotiation outcome

Figure 54. Consent-O-Matic’s data processing purposes that can be toggled.

for the privacy-preserving Cliqz browser, added support for the Consent-O-Matic
extension to their own autoconsent plugin, allowing the JSON rules to be used
in both (unfortunately, Cliqz has since then ceased operations). The extension
has been mentioned by a handful of the news articles that reported on the study
described in Chapter 14, as well as received word-of-mouth recommendations on
forums such as HackerNews and Reddit.
How successfully does this negotiation software allow users to change the in-

teraction design of consent pop-ups? Without a controlled experiment compar-
ing the manual preference settings with the automated consent, it is difficult to
say whether the use of the extension results in people feeling more empowered.
Based on online discussions and anecdotal feedback, however, it has made people
feel more in control of their data and help them get closer to their preferred web
browsing experience.
Apart from the experiential impact, there is also some ambiguity around how

well it lets users enforce their data protection preferences.
There is no guarantee that the consent answer submitted via the extension

is actually honoured by the website. Because browsers sandbox extensions for
security reasons, they do not have access to the internal JavaScript runtime state
of the page, nor the (encrypted) cookies set in the client header. As a result, it is
not possible to verify what consent settings are ultimately applied. This means
that the extension only works as well as a really informed (and fast) user, but
cannot guard against malintent from the website provider 13.
The extension is also not incredibly robust, because it interoperates with pop-

ups adversarially. The extension uses the semantics or structure of DOM elements

13Upsettingly, Matte et al.(Matte, Bielova, and Santos, ‘Do Cookie Banners Respect my Choice?
Measuring Legal Compliance of Banners from IAB Europe’s Transparency and Consent Frame-
work’) show that roughly 7% of websites do not respect the users’ pop-up answers.

206

16.7 conclusion

Figure 55. Number of users of the extension per browser. Chrome counts enabled installs,
Firefox counts active use (thus dips during the weekend).

to work, so it will break as soon as the pop-up provider changes its technical im-
plementation. However, the way these third-party pop-ups are deployed, and the
network in which they exist, create a certain stability. First, the Interactive Ad-
vertising Bureau – the advertising industry’s most prominent association – has
created their own standardised set of processing purposes, so websites can (il-
legally) pass around consent for certain purposes between websites through a
“global consent” signal. If the advertising industry decided to change their pur-
poses, it would force us to update the hard-coded connection between the ex-
tension’s purposes that users can toggle and their equivalent in the CMP. But it
would also require the pop-up companies to do the same if they wanted to keep
using the global consent mechanism and connect a user’s consent on one site
to a similar purpose on another. Second, the scripts which inject the pop-up are
deployed in a decentralised way: most websites host the Javascript file on their
own server or directly copy it into their HTML. This means that a coordinated,
centralised change to the code is impossible, making it harder for pop-up compa-
nies to unilaterally break our interoperating code. Even if they would centralise
the Javascript, many websites have customised the code to better fit with their
branding. Making changes to interfere with our code would also inconvenience
their revenue-generating clients, something they are unlikely to do.

16.7 conclusion

The interaction design of consent pop-ups can be changed by adversarially inter-
operating with it using consent-automating negotiation software.
Although this chapter does not provide empirical measurements of the impact

of the Consent-O-Matic extension, it is not unreasonable to suggest that changing

207

16.7 conclusion

the way users provide consent from a website-level to a browser-level activity im-
proves their experience of the web, and results in a more consistent application
of their data protection preferences. Rather than being faced with a barrage of
notices that all have their own manipulative designs, people can set their pref-
erences once and rely on public servants with the knowledge and resources to
develop software that can interoperate with pop-ups – my colleagues and I at
Aarhus University – to represent their interests. Of course, this approach is a
fragile fix for a poor interpretation of data protection law. If the consent signals
submitted through browser settings better reflect user’s real data protection pref-
erences than those submitted using pop-ups on websites, then a browser exten-
sion that people need to voluntarily install is not the best way for us to switch
between these models. Rather, data protection choices should be part of the de-
fault settings of the browser, and the consent signal received by a website through
them should be legally binding.
While browser settings are currently not considered a legally valid way to col-

lect consent under the GDPR, this mechanism was proposed in the ePrivacy Reg-
ulation, set to replace the 2002 ePrivacy Directive. The original draft of the regu-
lation submitted by the European Commission in 2017 included the requirement
that “[s]oftware placed on the market permitting electronic communications, in-
cluding the retrieval and presentation of information on the internet, shall offer the
option to prevent third parties from storing information on the terminal equip-
ment of an end-user or processing information already stored on that equipment”
(emphasis added).14 The idea was that when someone installed a browser, “the
software shall inform the end-user about the privacy settings options and, to con-
tinue with the installation, require the end-user to consent to a setting”.15 The
Article 29 Working Party – the official advisory body consisting of a representa-
tive of each Member State’s DPA – supported these requirements and “strongly
recommend[ed] to make adherence to the Do Not Track standard mandatory”.16
Unfortunately, the article was lobbied out during the latest round of amend-

ments. The ePrivacy Regulation has been languishing for years, passed around
between presidencies of the Council of the EU like a hot potato. The six-month
German presidency (1 July–31 December 2020) reopened negotiations recently,
adding a COVID-19 flavour by asking whether the “vital interest” of a data sub-
ject (i.e., their health) is a legally valid reason for reading or writing information
from their devices.17 Regrettably, the question whether preferences expressed via
browser settings should be legally binding has not made a reappearance. As such,
it seems we are stuck with the website-level notice and consent model for a while
longer, and developing negotiation software that lets an individual take direct
action against manipulative interfaces will be imperative until a more robust reg-
ulatory intervention materialises.
14 European Commission, Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF
THE COUNCIL concerning the respect for private life and the protection of personal data in elec-
tronic communications and repealing Directive 2002/58/EC (Regulation on Privacy and Electronic
Communications).

15 Ibid.
16 Article 29 Working Party (2017). Opinion 01/2017 on the Proposed Regulation for the ePrivacy

Regulation (2002/58/EC). European Commission.
17 Council of the European Union (2020). Interinstitutional File: 2017/0003(COD).

208

17.
CONCLUS ION

It took (Denmark) two centuries to make industrial capitalism (mostly) safe for
democracy and a dignified life by establishing fundamental rights and protections
(e.g. minimum wage, healthy and safe working conditions, collective agreement-
based governance). Over the past thirty years, global regimes have been strug-
gling to do the same with informational capitalism. With its orientation towards
information as the main source of surplus value, our institutions, labour, culture,
and economies have transformed themselves to better accumulate more data, but
also make sure humans produce more data. When asked how much progress the
European Union had made to ensure we did not “walk naked” into this new form
of capitalism, European Commissioner Margrethe Vestager replied: “I’m afraid
we only have a thong on”.1
Themulti-stakeholder struggle over the web described in part II of this disserta-

tion is a microcosm of the ideological battle for the digital future. In Chapter 13, I
chronicled how the web’s original technolibertarian design was quickly subverted
by the data-centric interests of commercial companies, and tracking technologies
such as cookies were baked into its fundamental protocols. The push-back by civil
organisations, governments, courts, and international bodies established the “no-
tice and consent” governance mechanism to protect human autonomy, now fur-
ther entrenched through the EU’s General Data Protection Regulation. Regret-
tably, as I have shown in Chapter 14, this mechanism continues to fall short, as
more than 80% of these consent pop-up do not comply with the interface guide-
lines required for the consent to be legally valid: they use dark patterns such as
pre-checked permission boxes, count implicit behaviour such as scrolling as ex-
plicit consent, and make it significantly harder to reject than to accept tracking.
Data protection authorities tasked with regulating this ecosystem have struggled
to push back, so it is encouraging to see that direct action based on data gath-
ered by the automated compliance monitoring tool described in Chapter 15 can
be extremely effective. Rgulatory action in response to the lack of compliance
highlighted by this study has helped increase the rate of bulk consent buttons
from 1,5% to 41% between February and July 2020. Similarly promising, Chap-
ter 16 describes how, even if authorities fail to regulate, nearly four thousand

1 Ingeniørforeningen (IDA) (2020). Shoshana Zuboff meets Margrethe Vestager: A conversation
about a future digital Europe - webinar. url: https : / / ida . dk / arrangementer - og - kurser /
arrangementer/shoshana-zuboff-meets-margrethe-vestager-a-conversation-about-a- future-
digital-europe-webinar-336843 (visited on 07/10/2020).

209

https://ida.dk/arrangementer-og-kurser/arrangementer/shoshana-zuboff-meets-margrethe-vestager-a-conversation-about-a-future-digital-europe-webinar-336843
https://ida.dk/arrangementer-og-kurser/arrangementer/shoshana-zuboff-meets-margrethe-vestager-a-conversation-about-a-future-digital-europe-webinar-336843
https://ida.dk/arrangementer-og-kurser/arrangementer/shoshana-zuboff-meets-margrethe-vestager-a-conversation-about-a-future-digital-europe-webinar-336843

conclusion

individuals can successfully subvert dark patterns and enforce their preferences
through the use of consent-automating browser extensions.

I have successfully used software to negotiate the design of web tracking tech-
nology in the context of European data protection regulation. Yet throughout
this process it has been impossible to ignore the fragility of the EU’s governance
approach, and the seeming improbability that it will actually produce systemic,
lasting change. Data protection has been touted as a preeminent instrument to
control the power of technology multinationals and protect European digital
sovereignty. Steeped in the human rights movement that emerged after World
War II, the explicit objective of the European Commission for data protection reg-
ulation has been to “strengthen individual’s rights” and “enhance control over
one’s own data”. This means that the EU has premised a considerable part of
the GDPR’s success on the idea of the rational, informed, and autonomous lib-
eral subject.2 It elects to believe that global tech behemoths with almost infinite
resources can be held to account by people exercising their rights; that the thun-
dering course of informational capitalism can be corrected by the uncoordinated
and underpowered actions of individuals. The notice and consent model is the
perfect representation of this ideology: it has placed the responsibility of con-
trolling the incredibly complex ways in which data is collected and processed
with the individual, now forced to continuously make “informed” and “specific”
decisions every time they visit a website.
Unsurprisingly, ignoring a power asymmetry does not make it go away, and

people have not felt more empowered by the rights conferred to them via data
protection law. Between 20153 and 2019,4 people’s perceived control over their
data has not meaningfully changed at all. If anything, after the GDPR, fewer peo-
ple feel in complete control (from 15% to 14%). The individualistic approach to
data protection might not only be ineffective, but actually directly undermine the
collective benefits it tries to create. When individuals use consent mechanisms to
reject tracking, it makes it easier for companies to identify those who did not.5
In other words, the benefits gained by some come at the cost of the privacy of
others. This operationalisation that emphasises individual responsibility appears
unlikely to achieve governance at scale.

The negotiation software developed in this dissertation has tried to address the
asymmetric power distribution over tracking technologies and advance a more

2 Linnet Taylor (2020). ‘Public actors without public values: legitimacy, domination and the reg-
ulation of the technology sector.’ In:

3 European Commission and Directorate-General for Justice and Consumers and TNS Opinion
Social (2015). Data protection: report. European Commission. isbn: 978-92-79-48414-8. url:
http://dx.publications.europa.eu/10.2838/552336.

4 European Commission and Directorate-General for Justice and Consumers and European Com-
mission and Directorate-General Communication and Kantar (2019). The General Data Protec-
tion Regulation: report. isbn: 978-92-76-08384-9. url: https://data.europa.eu/doi/10.2838/
579882.

5 Guy Aridor, Yeon-Koo Che, and Tobias Salz (2020). The Economic Consequences of Data Privacy
Regulation: Empirical Evidence from GDPR. ID 3522845. doi: 10 . 2139/ ssrn . 3522845. url:
https://papers.ssrn.com/abstract=3522845.

210

http://dx.publications.europa.eu/10.2838/552336
https://data.europa.eu/doi/10.2838/579882
https://data.europa.eu/doi/10.2838/579882
https://doi.org/10.2139/ssrn.3522845
https://papers.ssrn.com/abstract=3522845

conclusion

collective approach to data protection. The automated compliance monitoring tool
changes how consent pop-ups are currently regulated, which requires individ-
ual citizens to lodge complaints about specific domains with the data protec-
tion authorities to affect a change. Instead, it allows us to monitor industry-wide
practices, faster and cheaper than the small-scale methods predominately used
by resource-constrained DPAs. The consent-automating browser extension takes
away the need for people to make complicated, website-level privacy decisions.
Instead, it protects against the manipulative design practices of consent manage-
ment platforms by outsourcing the decision-making process to public servants
(my colleagues and I at Aarhus University) who have the domain-knowledge and
resources to represent and communicate people’s preferences to data controllers
and processors.
Negotiation software that collectivises the exercise of individual rights does not

fix the way European data protection is operationalised, but it does, in its own
way, contribute to the regulation of global tech companies and redistribution of
power and control over software.

211

Last and Final Offer

212

18.
NEGOT IAT I NG SOFTWARE AS A
COUNTERMOVEMENT

Since the 1970s, digital technologies increasingly determine “who gets what,
when, and how”,1 and control over those technologies has concentrated in the
hands of just a few private corporations.
However, there is cause for hope. Writing about the US American economy in

the 1950s, Galbraith argued that the monopolistic power of the large firms would
inevitably lead to the manifestation of “countervailing powers” to correct for the
imbalances, exploitations, and distortions created by corporate dominance (e.g.,
trade unions, civil society organisations). Competition as a model for market reg-
ulation had failed, he claimed, but the “tendency of power to be organized in
response to a given position of power”2 would ensure that the conditions for a dig-
nified life would eventually prevail. As advisor to John F. Kennedy, he advanced
the position that the role of a government – perhaps even the most important one
– was to provide the minimum opportunity for a countervailing power to organise
itself.
Galbraith was not alone in his belief of corrective dyadic relationships as the

engine behind social change. Roughly a decade before, Polayni conceptualised
the “double movement” to explain the origins of our current market societies
(i.e., capitalism). The first movement was reformers working to expand the role
of markets and curb the regulating influence of other social institutions, notably
by turning previously uncommodified things such as land, labour, and money into
tradeable goods. The destructive implications of this helped foment the second
movement – the countermovement – where nation states reinvented themselves
as market interventionists and providers of social protections, culminating in the
birth of the social democracy.
Ultimately, however, both Polanyian countermovements or Galbraithian coun-

tervailance create only temporary equilibria, because they themselves become
targets of evasion, co-optation, and redefinition. Julie Cohen, in her book Between
Truth and Power, describes how informational capitalism has systematically dis-
mantled or worked around the social protections instituted after WWII that im-
munised workers, consumers, and citizens against the harms of laissez-faire eco-
nomics. And so, the unchecked power of multinational technology corporations
1 Lasswell, Politics: Who Gets What, When, How.
2 John Kenneth Galbraith (1952). ‘American Capitalism: The Concept of Countervailing Power.’

In: Boston: Houghton Mifflin, p. 113.

213

negotiating software as a countermovement

that we are witnessing today requires the invention of a new countermovement,
one that will “engage directly with the logics of dematerialization, datafication,
and platformization”.3 Cohen cautions, however, that this new countermovement
cannot rely on the instruments from the previous economic era, but needs to de-
velop new methods that respond directly to the nature of the information age.

This dissertation has explored two ways to negotiate software as possible coun-
termovements to informational capitalism.
The negotiable software described in Part I focused on principle-based techno-

logical redesign, making distributed control an inherent quality of our software
applications. The computational medium Codestrates demonstrates the techno-
logical feasibility of this approach. It unequivocally shows it is possible to make
contemporary workplace applications whose code can be changed at a fundamen-
tal level from within itself, during run-time, and in a collective and distributed
fashion. Such exemplars can function as proof of concepts or rebuttals:4 they
make concrete the possibilities (and limitations) of technology and can showcase
a possible alternative future.5 This helps shift the window of discourse when we
critique today’s autocratically designed systems, a discourse which might other-
wise focus on how achievable or practical negotiability would be as an embedded
quality.
However, it also showed the limitations of such a demonstrative approach to

negotiating software at scale. Some technologies, such as the internet and the PC,
are argued to have generative features that give it the “capacity to produce un-
prompted change driven by large, varied, and uncoordinated audiences”.6 The
dominant model for end-user software, however, has features that arguably to
do the opposite: the copyright and intellectual property battles around software
in the 90s has created a climate where source code is hermetically sealed away
and obfuscated, and the shrink-wrapped designs of software won out against
component-based systems with after-market ecosystems of plugins, addons, and
macros. Rarely do mass-market software applications provide the infrastructure
for “uncoordinated audiences” to augment the software’s designs, thus making it
difficult for researchers (and any other stakeholder) to deploy code that renegoti-
ates the software people are already using. Instead, they would have to enter the
marketplace as a competitor, for which the barriers to entry are substantial (e.g.,
network externalities, economies of scope, vertical integration7), and which is at
odds with the incentive structures and funding possibilities of academia.
The negotiation software described in Part II focused on process mediation,

using digital tools to support existing ways that data-processing technologies
are regulated. These software can be used as a direct mediator between two
3 Cohen, Between Truth and Power: The Legal Constructions of Informational Capitalism, p.270.
4 Abebe et al., ‘Roles for computing in social change.’
5 Salovaara, Oulasvirta, and Jacucci, ‘Evaluation of Prototypes and the Problem of Possible Fu-

tures.’
6 Jonathan Zittrain (2009). ‘The Generative Internet.’ In: Communications of the ACM 52.1, 18–20.

issn: 0001-0782, 1557-7317. doi: 10.1145/1435417.1435426.
7 Jacques Crémer et al. (2019). Competition policy for the digital era. isbn: 978-92-76-01946-
6. url: http : / / publications . europa . eu / publication / manifestation _ identifier / PUB _
KD0419345ENN.

214

https://doi.org/10.1145/1435417.1435426
http://publications.europa.eu/publication/manifestation_identifier/PUB_KD0419345ENN
http://publications.europa.eu/publication/manifestation_identifier/PUB_KD0419345ENN

negotiating software as a countermovement

actors or instead provide more indirect support. For example, the Consent-O-
Matic browser extension sits between web users and the consent management
platforms (which themselves represent the website owners) and functions as a
representative of the users’ preferences by directly interacting with the pop-up
interface. The web-scraper, on the other hand, represents auxiliary negotiation
software that is used as a diagnostic,8 and whose purpose is to provide data that
can be used as leverage when communicating with news media and data pro-
tection authorities through other channels. Both types of negotiation software
supported actions that made a substantial and seemingly sustainable change to
the way people experience consent pop-ups on the Danish web.
However, it also became apparent that this approach is limited in scope: it can

support negotiation processes that already exist, but is less suited for creating or
imagining new ways of effecting change. The browser extension works because
the web is based on open standards and the source code of the target software is
accessible and can be interoperated with. The web-scraper works because there
are rights-based mechanisms that can be exploited and regulatory bodies that
have a duty to respond. Building digital tools that facilitate a process for which
there is no precedence, no legal duty, or which has little support from other stake-
holders is unlikely to be as effective.

The strength of negotiable software is that it allows us to demonstrate technical
feasibility, but it is limited in the scale at which these alternatives can be deployed
and directly affect the status quo. The strength of negotiation software is that it
can help us maximise the impact of existing processes of change, but is limited
in its scope because it is best used to support paths to change that already exist
in society. As such, these principle-based and process-based countermovements
should be seen as complementary, rather than substitutions, and future work
should focus on a two-pronged approach.
For example, in the domain of workplace applications, negotiation software

could be used to diagnose digital labour conditions and bring to attention the
way that existing regulation is not being complied with. European health and
safety directives from the 1990s, transposed into national law by all member
states at least since 1992, already demand that software must be “suitable for
the task”, “adaptable to the operator’s level of knowledge”, and that no “quanti-
tative or qualitative checking facility may be used without the knowledge of the
workers”.9 All Danish employers are legally required to evaluate their working
conditions at least once every three year, yet my preliminary research shows that
these requirements around the quality of the software – inscribed in their labour
law – are seemingly never included. As a result, any software-related harms Dan-
ish workers experience in one of the most digitalised countries in the world are
utterly unrecorded. When notifying local labour representatives, the response
was that addressing non-compliance “would require a lot of work and the likeli-
hood of succeeding seems slim”; the response from the IT-political consultant of
8 Abebe et al., ‘Roles for computing in social change.’
9 Council of European Union (1990). Directive on the minimum safety and health requirements

for work with display screen equipment (90/270/EEC). url: https://eur- lex.europa.eu/legal-
content/EN/ALL/?uri=CELEX:31990L0270.

215

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31990L0270
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31990L0270

negotiating software as a countermovement

Denmark’s IT union was that they “never had any member raise regulation of the
software they use as an issue – not even informally, so I believe that is not a big
issue”. In both cases, negotiation software that could demonstrate harm and non-
compliance might be used to convince these representatives and activate their
considerable leverage to negotiate changes with employer delegates.
Similarly, in the context of data protection and digital rights, negotiable alter-

natives of existing software could be designed that showcase what an ecosystem
amenable to distributed control would look like. For example, consent pop-ups
could be redesigned to include interoperability mechanism such as public APIs
that allow third-party code to configure and monitor their implementations. Data
protection authorities might benefit from web-scraper technologies packaged in-
side a negotiable system such as Codestrates, allowing them to adjust and tweak
its design for a variety of automated regulatory purposes.

While different in some respects, both principle-based negotiable software and
process-based negotiation software revealed the limitations of individualistic strate-
gies. Successful changes to a software’s design described in this dissertation hap-
pened primarily in situations where collective power was used – for example
when user cooperatives stood up against computer manufacturers; when nanosci-
entists leveraged colleagues, friends, and even us researchers to debug and adapt
their scripts; when web-users relied on our Consent-O-Matic browser extension
to change their interaction with consent pop-ups; or when I instrumented news
media to apply pressure to data protection authority to in turn use their power
to regulate non-compliant data controllers. Ultimately, the capacity of the lib-
eral subject to stand up against corporate power is limited, and more collective
countermovements need to be developed.
Denmark is uniquely positioned to explore this angle to negotiating software.

It has one of the highest levels of trust in national institutions in Europe,10 unions
are still some of the most influential organisations in the country,11 and adher-
ence to the rule of law is the strongest in the world.12 Denmark was also the first
country to create the Office of Technology Diplomacy, and established embassies
in Silicon Valley and Beijing to make sure the country’s interests were represented
in connection with the software developed there (although the ambassador has
recently quit and started working for Microsoft). It was the first country to see
a collective agreement between a union and a platform app (although the app’s
design was not part of that negotiation). Rather than relying on individuals to re-
program their software or chase after foreign tech giants, these responses to the
digitalisation of their society demonstrate their commitment to using collective
power for achieving universal welfare. The Nordic collectivist model has man-
aged to make industrial capitalism safe for and compatible with an egalitarian
and solidary society. Perhaps it can do the same for informational capitalism.

10 Eurofound (2018). Societal change and trust in institutions. url: https://www.mm.dk/misc/
Democracy-Perception-Index-2018-1.pdf, p. 16.

11Markus Bernsen, Christoph Ellersgaard, and Anton Grau Larsen (2015). Magteliten: Hvordan
423 danskere styrer landet. Politikens forlag.

12World Justice Project (2020). Rule of Law Index. url: https://worldjusticeproject.org/sites/
default/files/documents/WJP-ROLI-2020-Online_0.pdf, p. 16.

216

https://www.mm.dk/misc/Democracy-Perception-Index-2018-1.pdf
https://www.mm.dk/misc/Democracy-Perception-Index-2018-1.pdf
https://worldjusticeproject.org/sites/default/files/documents/WJP-ROLI-2020-Online_0.pdf
https://worldjusticeproject.org/sites/default/files/documents/WJP-ROLI-2020-Online_0.pdf

B I BL IOGRAPHY

‘95/46/EC of the European Parliament and of the Council of 24 October 1995
on the protection of individuals with regard to the processing of personal data
and on the free movement of such data’ (1995). In: Official Journal of the EC
23.6.

Aagaard, Emilie (2020). ‘Forskere: DR’s og Folketingets hjemmesider er på kant
med persondataloven.’ In: Danmarks Radio.

Aarhus University Graduate School of Arts (2012). Rules for the PhD Programme
at the Graduate School, Art. https://phd.arts .au.dk/fileadmin/phd.arts .au.dk/AR/
Generelle_retningslinjer_UK_1-11-2012.pdf.

Abebe, Rediet, Solon Barocas, Jon Kleinberg, Karen Levy, Manish Raghavan, and
David G Robinson (2020). ‘Roles for computing in social change.’ In: Proceed-
ings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 252–
260.

Acquisti, Alessandro and Jens Grossklags (2005). ‘Privacy and rationality in indi-
vidual decision making.’ In: Security Privacy, IEEE 3.1, pp. 26–33.

Acquisti, Alessandro et al. (Aug. 2017). ‘Nudges for Privacy and Security: Un-
derstanding and Assisting Users’ Choices Online.’ In: ACM Comput. Surv. 50.3,
44:1–44:41. issn: 0360-0300. doi: 10.1145/3054926. url: http://doi.acm.org/10.
1145/3054926.

Adar, Eytan, David Karger, and Lynn Andrea Stein (1999). ‘Haystack: Per-user In-
formation Environments.’ In: Proceedings of the Eighth International Conference
on Information and Knowledge Management. CIKM ’99. Kansas City, Missouri,
USA: ACM, pp. 413–422. isbn: 1-58113-146-1. doi: 10 .1145/319950 .323231.
url: http://doi.acm.org/10.1145/319950.323231.

Advocate General Szupunar (2019). Case C-673/17 Planet49 GmbH v Bundesver-
band der Verbraucherzentralen und Verbraucherverbände – Verbraucherzen-
trale Bundesverband e.V. ECLI:EU:C:2019:246, Opinion of the Advocate Gen-
eral.

Adzerk (2019). Adtech Insights — August 2019 Report. url: https://adzerk.com/
assets/reports/AdTechInsights_Aug2019.pdf.

Akera, Atsushi (2001). ‘Voluntarism and the Fruits of Collaboration: The IBM
User Group, Share.’ In: Technology and Culture 42.4, 710–736. issn: 0040-
165X.

Alkhatib, Ali, Michael S. Bernstein, and Margaret Levi (2017). ‘Examining Crowd
Work and Gig Work Through The Historical Lens of Piecework.’ In: Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems. CHI ’17.
Denver, Colorado, USA: ACM, pp. 4599–4616. isbn: 978-1-4503-4655-9. doi:
10.1145/3025453.3025974. url: http://doi.acm.org/10.1145/3025453.3025974.

217

https://phd.arts.au.dk/fileadmin/phd.arts.au.dk/AR/Generelle_retningslinjer_UK_1-11-2012.pdf
https://phd.arts.au.dk/fileadmin/phd.arts.au.dk/AR/Generelle_retningslinjer_UK_1-11-2012.pdf
https://doi.org/10.1145/3054926
http://doi.acm.org/10.1145/3054926
http://doi.acm.org/10.1145/3054926
https://doi.org/10.1145/319950.323231
http://doi.acm.org/10.1145/319950.323231
https://adzerk.com/assets/reports/AdTechInsights_Aug2019.pdf
https://adzerk.com/assets/reports/AdTechInsights_Aug2019.pdf
https://doi.org/10.1145/3025453.3025974
http://doi.acm.org/10.1145/3025453.3025974

bibliography

Angulo, Julio, Simone Fischer-Hübner, Tobias Pulls, and Erik Wästlund (2011).
‘Towards Usable Privacy Policy Display & Management for PrimeLife.’ In: S. M.
Furnell, & N. L. Clarke (Eds.), Proceedings of international symposium on human
aspects of information security & assurance (HAISA 2011), pp. 108 –117.

Apple Computer (1983). ‘It took 200 years to develop programs you can learn in
20 minutes.’ In: Personal Computing 6.

Apple Computer (1995). ‘Macintosh vs. Windows 95: OpenDoc.’ In: url: http :
//tech-insider.org/mac/research/acrobat/Mac/950829.pdf.

Arbejdstilsynet (n.d.). The working environment legislation. url: https://at.dk/en/
regulations/working-environment-legislation/ (visited on 02/22/2021).

Aridor, Guy, Yeon-Koo Che, and Tobias Salz (2020). The Economic Consequences
of Data Privacy Regulation: Empirical Evidence from GDPR. ID 3522845. doi:
10.2139/ssrn.3522845. url: https://papers.ssrn.com/abstract=3522845.

Armer, Paul (1956). ‘SHARE - A Eulogy to Cooperative Effort.’ In: Annals of the
History of Computing 2.

Article 29Working Party (2018).Guidelines on Consent under Regulation 2016/679
(WP259 rev.01). European Union.

Atlassian Confluence (2019). url: https://atlassian.com/confluence.
Autoriteit Persoonsgegevens (2019). Hoe Legt de AP de Juridische Normen Rond
Cookiewalls Uit? Den Haag: AP.

Ayyagari, Ramakrishna, Varun Grover, and Russell Purvis (2011). ‘Technostress:
Technological antecedents and implications.’ In: MIS quarterly, pp. 831–858.

B., Meinert David, Dane K. Peterson, John R. Criswell, and Martin D. Crossland
(2006). ‘Towards Usable Privacy Policy Display & Management for PrimeLife.’
In: Journal of Electronic Commerce in Organizations (JECO) 4.1, pp. 1–17.

Badam, Sriram Karthik, Andreas Mathisen, Roman Rädle, Clemens N. Klokmose,
and Niklas Elmqvist (2018). ‘Vistrates: A Component Model for Ubiquitous
Analytics.’ In: IEEE Transactions on Visualization and Computer Graphics. issn:
10772626. doi: 10.1109/TVCG.2018.2865144. url: https://karthikbadam.github.io/
assets/data/vistrates.pdf.

Bardram, Jakob, Jonathan Bunde-Pedersen, and Mads Soegaard (2006). ‘Sup-
port for Activity-based Computing in a Personal Computing Operating System.’
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems. CHI ’06. Montréal, Québec, Canada: ACM, pp. 211–220.
isbn: 1-59593-372-7. doi: 10.1145/1124772.1124805. url: http://doi.acm.org/10.
1145/1124772.1124805.

Barney, Doug (1993). ‘Object Linking Readied for Unix Notes Clients, Programs.’
In: InfoWorld 15.24.

Berg-Beckhoff, Gabriele, Grace Nielsen, and Eva Ladekjær Larsen (2017). ‘Use
of information communication technology and stress, burnout, and mental
health in older, middle-aged, and younger workers–results from a systematic
review.’ In: International journal of occupational and environmental health 23.2,
pp. 160–171.

Bernsen,Markus, Christoph Ellersgaard, and Anton Grau Larsen (2015).Magteliten:
Hvordan 423 danskere styrer landet. Politikens forlag.

Bidgoli, Hossein (2004). ‘The internet encyclopedia (Volume 2).’ In:

218

http://tech-insider.org/mac/research/acrobat/Mac/950829.pdf
http://tech-insider.org/mac/research/acrobat/Mac/950829.pdf
https://at.dk/en/regulations/working-environment-legislation/
https://at.dk/en/regulations/working-environment-legislation/
https://doi.org/10.2139/ssrn.3522845
https://papers.ssrn.com/abstract=3522845
https://atlassian.com/confluence
https://doi.org/10.1109/TVCG.2018.2865144
https://karthikbadam.github.io/assets/data/vistrates.pdf
https://karthikbadam.github.io/assets/data/vistrates.pdf
https://doi.org/10.1145/1124772.1124805
http://doi.acm.org/10.1145/1124772.1124805
http://doi.acm.org/10.1145/1124772.1124805

bibliography

Bier, Eric A. (1991). ‘EmbeddedButtons: Documents As User Interfaces.’ In: Pro-
ceedings of the 4th Annual ACM Symposium on User Interface Software and Tech-
nology. UIST ’91. Hilton Head, South Carolina, USA: ACM, pp. 45–53. isbn:
0-89791-451-1. doi: 10.1145/120782.120787. url: http://doi .acm.org/10.1145/
120782.120787.

BIOVIA (2019). url: https://3dsbiovia.com.
Bødker, Susanne (2006). ‘When SecondWave HCI Meets Third Wave Challenges.’
In: Proceedings of the 4th Nordic Conference on Human-computer Interaction:
Changing Roles. NordiCHI ’06. Oslo, Norway: ACM, pp. 1–8. isbn: 1-59593-325-
5. doi: 10.1145/1182475.1182476. url: http://doi.acm.org/10.1145/1182475.1182476.

Bødker, Susanne andMorten Kyng (2018). ‘Participatory design thatmatters—Facing
the big issues.’ In: ACM Transactions on Computer-Human Interaction (TOCHI)
25.1, pp. 1–31.

Borowski, Marcel, Roman Rädle, and Clemens N. Klokmose (2018). ‘Codestrate
Packages: An Alternative to “One-Size-Fits-All” Software.’ In: CHI EA ’18 Pro-
ceedings of the 2018 CHI Conference Extended Abstracts on Human Factors in
Computing Systems. doi: 10.1145/3170427.3188563.

Bösch, Christoph, Benjamin Erb, Frank Kargl, Henning Kopp, and Stefan Pfatthe-
icher (2016). ‘Tales from the dark side: Privacy dark strategies and privacy dark
patterns.’ In: Proceedings on Privacy Enhancing Technologies 2016.4, pp. 237–
254.

Bossen, Claus, Christian Dindler, and Ole Sejer Iversen (2012). ‘Impediments to
user gains: experiences from a critical participatory design project.’ In: Pro-
ceedings of the 12th Participatory Design Conference: Research Papers-Volume 1,
pp. 31–40.

Boyatzis, Richard E. (1998). Transforming Qualitative Information: Thematic Anal-
ysis and Code Development. SAGE Publications, Inc. isbn: 0761909613.

Brandel, Mary (1999). ‘1955: IBM customers form the first computer user group.’
In: CNN. url: http://edition.cnn.com/TECH/computing/9905/05/1955.idg/.

Braun, Virginia and Victoria Clarke (2006). ‘Using thematic analysis in psychol-
ogy.’ In:Qualitative Research in Psychology 3.2, pp. 77–101. doi: 10.1191/1478088706qp063oa.
eprint: http://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa. url: http:
//www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa.

Brave (2020). Europe’s governments are failing the GDPR.
Brinkley, Ian,MichelleMahdon Rebecca Fauth, and Sotiria Theodoropoulou (2009).
Knowledge workers and knowledge work: A knowledge economy programme re-
port. Work Foundation.

Brown, Brown and Kenton O’Hara (2003). ‘Place as a Practical Concern of Mobile
Workers.’ In: Environment and Planning A 35.9, pp. 1565–1587. doi: 10.1068/
a34231.

Brown, Ian and Christopher T Marsden (2013). Regulating code: Good governance
and better regulation in the information age. MIT Press.

Brown, Monique R. (1998). ‘Revenge of the cookie monster.’ In: Black Enterprise,
pp. 42–44.

Bruns, Axel (2019). ‘After the ‘APIcalypse’: Social Media Platforms and Their
Fight against Critical Scholarly Research.’ In: Information, Communication &

219

https://doi.org/10.1145/120782.120787
http://doi.acm.org/10.1145/120782.120787
http://doi.acm.org/10.1145/120782.120787
https://3dsbiovia.com
https://doi.org/10.1145/1182475.1182476
http://doi.acm.org/10.1145/1182475.1182476
https://doi.org/10.1145/3170427.3188563
http://edition.cnn.com/TECH/computing/9905/05/1955.idg/
https://doi.org/10.1191/1478088706qp063oa
http://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa
http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://doi.org/10.1068/a34231
https://doi.org/10.1068/a34231

bibliography

Society 22.11, pp. 1544–1566. doi: 10.1080/1369118X.2019.1637447. url: https:
//doi.org/10.1080/1369118X.2019.1637447.

Bucher, Tania (2013). ‘Objects of Intense Feeling: The Case of the Twitter API :
Computational Culture.’ In: Computational Culture: A Journal of Software Stud-
ies 3. url: http://computationalculture.net/objects- of- intense- feeling- the- case- of- the-
twitter-api/ (visited on 06/17/2019).

Bughin, Jacques, Eric Hazan, Eric Labaye, James Manyika, Peter Dahlström, Sree
Ramaswamy, and C Cochin de Billy (2016). ‘Digital Europe: Pushing the fron-
tier, capturing the benefits.’ In: McKinsey Global Institute.

Bughin, Jacques, Eric Hazan, Susan Lund, Peter Dahlström, Anna Wiesinger, and
Amresh Subramaniam (2018). ‘Skill shift: Automation and the future of the
workforce.’ In: McKinsey Global Institute. McKinsey & Company.

Burnett, Margaret M. and Brad A. Myers (2014). ‘Future of End-user Software
Engineering: Beyond the Silos.’ In: Proceedings of the on Future of Software
Engineering. FOSE 2014. Hyderabad, India: ACM, pp. 201–211. isbn: 978-1-
4503-2865-4. doi: 10.1145/2593882.2593896. url: http://doi .acm.org/10.1145/
2593882.2593896.

Bush, Vannevar (1945a). ‘As wemay think.’ In: The Atlantic Monthly 176.1, pp. 101–
108.

Bush, Vannevar (1945b). ‘As we may think.’ In: Atlantic Monthly 176, pp. 101–
108.

Bush, Vannevar et al. (1945). ‘As we may think.’ In: The atlantic monthly 176.1,
pp. 101–108.

Campbell-Kelly, Martin (1995). ‘Development and structure of the international
software industry, 1950-1990.’ In: Business and economic history, pp. 73–110.

Campbell-Kelly, Martin (2004). From airline reservations to Sonic the Hedgehog: a
history of the software industry. MIT press.

Campbell-Kelly, Martin (2011). ‘In praise of ‘Wilkes, Wheeler, and Gill’.’ In: Com-
munications of the ACM 54.9, pp. 25–27.

Carretero, S, R Vuorikari, and Y Punie (2017). DigComp 2.1: The Digital Com-
petence Framework for Citizens with eight proficiency levels and examples of use.
Publications Office of the European Union EUR 28558 EN, DOI: 10.2760/38842.

Castells, Manuel (2009). The Rise of the Network Society. 2nd ed. Vol. 1. The
Information Age: Economy, Society, and Culture. Blackwell Publishers. isbn:
978-0-631-22140-1.

Cate, Fred H (2010). ‘The limits of notice and choice.’ In: IEEE Security & Privacy
8.2, pp. 59–62.

Chang, Kerry Shih-Ping and Brad A. Myers (Apr. 2017). ‘Gneiss.’ In: J. Vis. Lang.
Comput. 39.C, pp. 41–50. issn: 1045-926X. doi: 10.1016/j.jvlc.2016.07.004. url:
https://doi.org/10.1016/j.jvlc.2016.07.004.

Childs, Art (1976). ‘Interfacial.’ In: SCCS INTERFACE June. url: https://archive.
org/details/sccs_v1n7/.

Clifford, Damian, Inge Graef, and Peggy Valcke (2019). ‘Pre-formulated Decla-
rations of Data Subject Consent—Citizen-Consumer Empowerment and the
Alignment of Data, Consumer and Competition Law Protections.’ In: German
Law Journal 20.5, pp. 679–721.

220

https://doi.org/10.1080/1369118X.2019.1637447
https://doi.org/10.1080/1369118X.2019.1637447
https://doi.org/10.1080/1369118X.2019.1637447
http://computationalculture.net/objects-of-intense-feeling-the-case-of-the-twitter-api/
http://computationalculture.net/objects-of-intense-feeling-the-case-of-the-twitter-api/
https://doi.org/10.1145/2593882.2593896
http://doi.acm.org/10.1145/2593882.2593896
http://doi.acm.org/10.1145/2593882.2593896
https://doi.org/10.1016/j.jvlc.2016.07.004
https://doi.org/10.1016/j.jvlc.2016.07.004
https://archive.org/details/sccs_v1n7/
https://archive.org/details/sccs_v1n7/

bibliography

Coda (2019). url: https://coda.io.
Cohen, Julie E (2019). Between Truth and Power: The Legal Constructions of Infor-
mational Capitalism. Oxford University Press, USA.

Commission nationale de l’informatique et des libertés (CNIL) (2019). Délibéra-
tion n° 2019-093 du 4 juillet 2019 portant adoption de lignes directrices relatives
à l’application de l’article 82 de la loi du 6 janvier 1978 modifiée aux opérations
de lecture ou écriture dans le terminal d’un utilisateur (notamment aux cookies
et autres traceurs) (rectificatif).

Conti, Gregory and Edward Sobiesk (2010). ‘Malicious Interface Design: Exploit-
ing the User.’ In: Proceedings of the 19th International Conference on World Wide
Web. ACM, pp. 271–280.

Conway, Jake R., Alexander Lex, and Nils Gehlenborg (2017). ‘UpSetR: An R Pack-
age for the Visualization of Intersecting Sets and Their Properties.’ In: Bioin-
formatics 33.18, pp. 2938–2940. issn: 1367-4803. doi: 10.1093/bioinformatics/
btx364. url: https ://academic .oup . com/bioinformatics/article/33/18/2938/3884387
(visited on 09/19/2019).

Corporation, Lotus Development (1991). ‘@Functions and Macros Guide: Lotus
1-2-3 Release 2.3.’ In:

Council of European Union (1990). Directive on the minimum safety and health
requirements for work with display screen equipment (90/270/EEC). url: https:
//eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31990L0270.

Court of Justice of the European Union (2019a). Case C-49/17 Fashion ID GmbH
& Co.KG v Verbraucherzentrale NRW eV. ECLI:EU:C:2019:629.

Court of Justice of the European Union (2019b). Case C-673/17 Planet49 GmbH
v Bundesverband der Verbraucherzentralen und Verbraucherverbände – Ver-
braucherzentrale Bundesverband e.V. ECLI:EU:C:2019:801.

Cranor, Lorrie (2002). Web privacy with P3P. Sebastopol, CA: O’Reilly Media.
Cranor, Lorrie Faith (2012). ‘Necessary but Not Sufficient: Standardized Mecha-
nisms for Privacy Notice and Choice The Economics of Privacy.’ In: Journal on
Telecommunications and High Technology Law 10.2, pp. 273–308.

Crémer, Jacques, Yves-Alexandre de Montjoye, Heike Schweitzer, European Com-
mission, and Directorate-General for Competition (2019). Competition policy
for the digital era. isbn: 978-92-76-01946-6. url: http://publications.europa.eu/
publication/manifestation_identifier/PUB_KD0419345ENN.

Data Protection Commission (2020). ‘Report by the Data Protection Commission
on the use of cookies and other tracking technologies: Following a sweep con-
ducted between August 2019 and December 2019.’ In:

Datatilsynet (2020). DMI’s behandling af personoplysninger om hjemmesidebesø-
gende. url: https://www.datatilsynet.dk/tilsyn-og-afgoerelser/afgoerelser/2020/feb/dmis-
behandling-af-personoplysninger-om-hjemmesidebesoegende.

Deb Fisher, Mark R. Warner (2019). ‘Deceptive Experiences To Online Users Re-
duction (DETOUR) Act.’ In: url: https://www.scribd.com/document/405606873/
Detour-Act-Final.

Degeling, Martin, Christine Utz, Christopher Lentzsch, Henry Hosseini, Florian
Schaub, and Thorsten Holz (2018). ‘We Value Your Privacy... Now Take Some
Cookies: Measuring the GDPR’s Impact onWeb Privacy.’ In: arXiv preprint arXiv:1808.05096.

221

https://coda.io
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1093/bioinformatics/btx364
https://academic.oup.com/bioinformatics/article/33/18/2938/3884387
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31990L0270
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31990L0270
http://publications.europa.eu/publication/manifestation_identifier/PUB_KD0419345ENN
http://publications.europa.eu/publication/manifestation_identifier/PUB_KD0419345ENN
https://www.datatilsynet.dk/tilsyn-og-afgoerelser/afgoerelser/2020/feb/dmis-behandling-af-personoplysninger-om-hjemmesidebesoegende
https://www.datatilsynet.dk/tilsyn-og-afgoerelser/afgoerelser/2020/feb/dmis-behandling-af-personoplysninger-om-hjemmesidebesoegende
https://www.scribd.com/document/405606873/Detour-Act-Final
https://www.scribd.com/document/405606873/Detour-Act-Final

bibliography

Derwin, Doug (1987). ‘Overheard...’ In: InfoWorld 9.4.
diSessa, Andrea and Hal Abelson (Sept. 1986). ‘Boxer: A Reconstructible Com-
putational Medium.’ In: Commun. ACM 29.9, pp. 859–868. issn: 0001-0782.
doi: 10.1145/6592.6595. url: https://doi.org/10.1145/6592.6595.

diSessa, Andrea A. (2001). Changing Minds: Computers, Learning, and Literacy.
Mit Press. isbn: 9780262041805.

Dix, Alan (2007). ‘Designing for appropriation.’ In: Proceedings of the 21st British
HCI Group Annual Conference on People and Computers: HCI... but not as we
know it-Volume 2. British Computer Society, 27–30. url: http : / /dl . acm . org /
citation.cfm?id=1531415.

Docker (2019). url: https://docker.com.
Doctorow, Cory (2019). ‘Adversarial Interoperability.’ In: Electronic Frontier Foun-
dation. url: https://www.eff.org/deeplinks/2019/10/adversarial-interoperability.

Douglas, ShawnM, AdamHMarblestone, Surat Teerapittayanon, Alejandro Vazquez,
George M Church, and William M Shih (2009). ‘Rapid prototyping of 3D DNA-
origami shapes with caDNAno.’ In:Nucleic acids research 37.15, pp. 5001–5006.
doi: 10.1093/nar/gkp436.

Dzieza, Josh (Dec. 19, 2018). ‘Prime and Punishment: Dirty dealing in the $175
billion Amazon Marketplace.’ In: The Verge. url: https://www.theverge.com/2018/
12/19/18140799/amazon-marketplace-scams-seller-court-appeal-reinstatement (visited on
06/21/2020).

Eagan, James R and John T Stasko (2008). ‘The buzz: supporting user tailorabil-
ity in awareness applications.’ In: Proceedings of the sigchi conference on human
factors in computing systems, pp. 1729–1738.

Edson, Joanna, John Greenstadt, Irwin Greenwald, Fletcher R. Jones, and Frank
V. Wagner (1956). ‘SHARE Reference Manual for the IBM 704.’ In: url: https:
//latimesblogs.latimes.com/thedailymirror/files/share59.pdf.

Ekbia, Hamid and Bonnie Nardi (2016). ‘Social Inequality and HCI: The View
from Political Economy.’ In: Proceedings of the 2016 CHI Conference on Hu-
man Factors in Computing Systems. CHI ’16. San Jose, California, USA: ACM,
pp. 4997–5002. isbn: 978-1-4503-3362-7. doi: 10.1145/2858036.2858343. url:
http://doi.acm.org/10.1145/2858036.2858343.

Ellis, Clarence A and Simon J Gibbs (1989). ‘Concurrency control in groupware
systems.’ In: Acm Sigmod Record. Vol. 18. 2. ACM, pp. 399–407.

End User Development (2006). Vol. 9. Human-Computer Interaction Series. Springer
Netherlands. isbn: 978-1-4020-4220-1. doi: 10.1007/1-4020-5386-X. url: http:
//link.springer.com/10.1007/1-4020-5386-X.

Energi-, Forsynings- og Klimaministeriet (2011). Lov om elektroniske kommunika-
tionsnet og -tjenester. LOV nr 169 af 03/03/2011. url: https://www.retsinformation.
dk/eli/lta/2011/169.

Engelbart, Douglas C (1962). ‘Augmenting human intellect: a conceptual frame-
work.’ In: Summary Report, Stanford Research Institute, on Contract AF 49(638)-
1024.

Engelbart, Douglas C. (1988). ‘Computer-supported Cooperative Work: A Book
of Readings.’ In: ed. by Irene Greif. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. Chap. Toward High-performance KnowledgeWorkers (Reprint),

222

https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595
http://dl.acm.org/citation.cfm?id=1531415
http://dl.acm.org/citation.cfm?id=1531415
https://docker.com
https://www.eff.org/deeplinks/2019/10/adversarial-interoperability
https://doi.org/10.1093/nar/gkp436
https://www.theverge.com/2018/12/19/18140799/amazon-marketplace-scams-seller-court-appeal-reinstatement
https://www.theverge.com/2018/12/19/18140799/amazon-marketplace-scams-seller-court-appeal-reinstatement
https://latimesblogs.latimes.com/thedailymirror/files/share59.pdf
https://latimesblogs.latimes.com/thedailymirror/files/share59.pdf
https://doi.org/10.1145/2858036.2858343
http://doi.acm.org/10.1145/2858036.2858343
https://doi.org/10.1007/1-4020-5386-X
http://link.springer.com/10.1007/1-4020-5386-X
http://link.springer.com/10.1007/1-4020-5386-X
https://www.retsinformation.dk/eli/lta/2011/169
https://www.retsinformation.dk/eli/lta/2011/169

bibliography

pp. 67–78. isbn: 0-934613-57-5. url: http://dl.acm.org/citation.cfm?id=49504.
49507.

Engelbart, Douglas C. (1990). ‘Knowledge-domain Interoperability and an Open
Hyperdocument System.’ In: Proceedings of the 1990 ACMConference on Computer-
supported Cooperative Work. CSCW ’90. Los Angeles, California, USA: ACM,
pp. 143–156. isbn: 0-89791-402-3. doi: 10.1145/99332.99351. url: http://doi.
acm.org/10.1145/99332.99351.

Engeström, Yrjö (2015). Learning by Expanding. Cambridge University Press.
Erhvervsministeriet (2011). Bekendtgørelse om krav til information og samtykke
ved lagring af eller adgang til oplysninger i slutbrugeres terminaludstyr. url:
https://www.retsinformation.dk/eli/lta/2011/1148.

Erhvervsstyrelsen (2020). Om Erhvervsstyrelsen. url: https://erhvervsstyrelsen.dk/
om-erhvervsstyrelsen (visited on 07/06/2020).

Eurofound (2018). Societal change and trust in institutions. url: https://www.mm.
dk/misc/Democracy-Perception-Index-2018-1.pdf.

European Commission (2017). Proposal for a REGULATION OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL concerning the respect for private life and
the protection of personal data in electronic communications and repealing Direc-
tive 2002/58/EC (Regulation on Privacy and Electronic Communications).

European Commission (2020). Digital Economy and Society Index (DESI) 2020
Denmark.

European Commission and Directorate-General for Justice and Consumers and
European Commission and Directorate-General Communication and Kantar
(2019). The General Data Protection Regulation: report. isbn: 978-92-76-08384-
9. url: https://data.europa.eu/doi/10.2838/579882.

European Commission and Directorate-General for Justice and Consumers and
TNS Opinion Social (2015). Data protection: report. European Commission.
isbn: 978-92-79-48414-8. url: http://dx.publications.europa.eu/10.2838/552336.

European Commission, Directorate-General for the Information Society and Me-
dia (2015). ePrivacy directive, assessment of transposition, effectiveness and cop-
matibility with the proposed data protection regulation final report. url: http:
//bookshop.europa.eu/uri?target=EUB:NOTICE:KK0415268:EN:HTML.

European Data Protection Board (2019). ‘First overview on the implementation
of the GDPR and the roles and means of the national supervisory authorities.’
In: url: https://edpb.europa.eu/sites/edpb/files/files/file1/19_2019_edpb_written_report_
to_libe_en.pdf.

European Data Protection Supervisor. EDPS Opinion on the Proposal for a Regu-
lation on Privacy and Electronic Communications (ePrivacy Regulation), Opinion
6/2017. Brussels, BE: EDPS.

European Political Strategy Center (2016). ‘The Future of Work: Skills and Re-
silience for a World of Change.’ In: Strategic Notes 13.

European Union (1995). Directive 95/46/EC of the European Parliament and of
the Council of 24 October 1995 on the protection of individuals with regard to
the processing of personal data and on the free movement of such data, OJ 1995
L 281/31.

223

http://dl.acm.org/citation.cfm?id=49504.49507
http://dl.acm.org/citation.cfm?id=49504.49507
https://doi.org/10.1145/99332.99351
http://doi.acm.org/10.1145/99332.99351
http://doi.acm.org/10.1145/99332.99351
https://www.retsinformation.dk/eli/lta/2011/1148
https://erhvervsstyrelsen.dk/om-erhvervsstyrelsen
https://erhvervsstyrelsen.dk/om-erhvervsstyrelsen
https://www.mm.dk/misc/Democracy-Perception-Index-2018-1.pdf
https://www.mm.dk/misc/Democracy-Perception-Index-2018-1.pdf
https://data.europa.eu/doi/10.2838/579882
http://dx.publications.europa.eu/10.2838/552336
http://bookshop.europa.eu/uri?target=EUB:NOTICE:KK0415268:EN:HTML
http://bookshop.europa.eu/uri?target=EUB:NOTICE:KK0415268:EN:HTML
https://edpb.europa.eu/sites/edpb/files/files/file1/19_2019_edpb_written_report_to_libe_en.pdf
https://edpb.europa.eu/sites/edpb/files/files/file1/19_2019_edpb_written_report_to_libe_en.pdf

bibliography

European Union (2002). Directive 2002/58/EC of the European Parliament and of
the Council of 12 July 2002 concerning the processing of personal data and the
protection of privacy in the electronic communications sector (Directive on privacy
and electronic communications) OJ L 201.

European Union (2009). ‘Directive 2009/136/EC of the European Parliament and
of the Council of 25 November 2009 amending Directive 2002/22/EC on uni-
versal service and users’ rights relating to electronic communications networks
and services.’ In: Official Journal of the European Union.

European Union (2016). Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation), OJ 2016
L 119/1.

European Union, Council of the (2020). Interinstitutional File: 2017/0003(COD).
EUROSTAT (2008). NACE rev. 2. Office for Official Publications of the European
Communities. isbn: 978-92-79-04741-1.

Fakas, Georgios John, Anh Vu Nguyen, and Denis Gillet (2005). ‘The Electronic
Laboratory Journal: A Collaborative and Cooperative Learning Environment
for Web-Based Experimentation.’ In: Computer Supported Cooperative Work
(CSCW) 14.3, pp. 189–216. issn: 1573-7551. doi: 10.1007/s10606-005-3272-3.
url: https://doi.org/10.1007/s10606-005-3272-3.

Flanagan, John C (1954a). ‘The critical incident technique.’ In: Psychological bul-
letin 51.4, p. 327.

Flanagan, John C. (1954b). ‘The Critical Incident Technique.’ In: Psychological
bulletin 51.4, p. 327. doi: 10.1037/h0061470.

Flynn, Laurie (1989). ‘Applications for DDE are Starting to Appear.’ In: InfoWorld
11.44.

Fogg, Brian J (2009). ‘A behavior model for persuasive design.’ In: Proceedings of
the 4th international Conference on Persuasive Technology. ACM, p. 40.

Forbrukerrådet (2019). Deceived by Design: How tech companies use dark patterns
to discourage us from exercising our rights to privacy. url: https://fil.forbrukerradet.
no/wp-content/uploads/2018/06/2018-06-27-deceived-by-design-final.pdf.

Frankston, Robert M. (2015). ‘Implementing VisiCalc.’ In: url: https : // rmf. vc/
implementingvisicalc.

Frich, Jonas, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose Bisk-
jaer, and Peter Dalsgaard (2019). ‘Mapping the landscape of creativity support
tools in HCI.’ In: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, pp. 1–18.

Fuglseth, Anna Mette and Øystein Sørebø (2014). ‘The effects of technostress
within the context of employee use of ICT.’ In: Computers in Human Behavior
40, 161–170. issn: 0747-5632. doi: 10.1016/j.chb.2014.07.040.

Fuster, Gloria González (2014). The emergence of personal data protection as a
fundamental right of the EU. Vol. 16. Springer Science & Business.

Galbraith, John Kenneth (1952). ‘American Capitalism: The Concept of Counter-
vailing Power.’ In: Boston: Houghton Mifflin.

224

https://doi.org/10.1007/s10606-005-3272-3
https://doi.org/10.1007/s10606-005-3272-3
https://doi.org/10.1037/h0061470
https://fil.forbrukerradet.no/wp-content/uploads/2018/06/2018-06-27-deceived-by-design-final.pdf
https://fil.forbrukerradet.no/wp-content/uploads/2018/06/2018-06-27-deceived-by-design-final.pdf
https://rmf.vc/implementingvisicalc
https://rmf.vc/implementingvisicalc
https://doi.org/10.1016/j.chb.2014.07.040

bibliography

Gallie, W. B. (1955). ‘Essentially contested concepts.’ In: Proceedings of the Aris-
totelian society. Vol. 56. Wiley, pp. 167–198.

Gates, Bill et al. (1976). ‘An open letter to hobbyists.’ In: Homebrew Computer
Club Newsletter 2.1, p. 2.

German Federal Ministry of Labour and Social Affairs (2015). ‘Green Paper Work
4.0.’ In: Strategic Notes.

Glöss, Mareike, Moira McGregor, and Barry Brown (2016). ‘Designing for Labour:
Uber and the On-Demand Mobile Workforce.’ In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. CHI ’16. San Jose, Cali-
fornia, USA: ACM, pp. 1632–1643. isbn: 978-1-4503-3362-7. doi: 10 .1145/
2858036.2858476. url: http://doi.acm.org/10.1145/2858036.2858476.

Goldberg, Adele (Oct. 1995). ‘Why Smalltalk?’ In: Commun. ACM 38.10, pp. 105–
107. issn: 0001-0782. doi: 10.1145/226239.226260. url: http://doi.acm.org/10.
1145/226239.226260.

Goodman, D (1988). The complete Hyper Card Handbook. Bantam Books.
Goransson, Bengt, Mats Lind, Else Pettersson, Bengt Sandblad, and Patrik Schwalbe
(1987). ‘The Interface is Often Not the Problem.’ In: Proceedings of the SIGCHI/GI
Conference on Human Factors in Computing Systems and Graphics Interface. CHI
’87. Toronto, Ontario, Canada: ACM, pp. 133–136. isbn: 0-89791-213-6. doi:
10.1145/29933.30872. url: http://doi.acm.org/10.1145/29933.30872.

Gray, Colin M, Yubo Kou, Bryan Battles, Joseph Hoggatt, and Austin L Toombs
(2018). ‘The dark (patterns) side of UX design.’ In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, p. 534.

Green, Francis (2013). Skills and skilled work: an economic and social analysis.
Oxford University Press.

Greenhalgh, Trisha, Henry WW Potts, Geoff Wong, Pippa Bark, and Deborah
Swinglehurst (2009). ‘Tensions and paradoxes in electronic patient record re-
search: A systematic literature review using the meta-narrative method.’ In:
The Milbank Quarterly 87.4, pp. 729–788.

Grosse, Meghan (2020). ‘Laying the foundation for a commercialized internet:
international internet governance in the 1990s.’ In: Internet Histories 0.0, pp. 1–
16. doi: 10.1080/24701475.2020.1769890. eprint: https://doi.org/10.1080/24701475.
2020.1769890. url: https://doi.org/10.1080/24701475.2020.1769890.

Grossman, Gene M, Esteban Rossi-Hansberg, et al. (2006). ‘The rise of offshoring:
it’s not wine for cloth anymore.’ In: The new economic geography: effects and
policy implications, pp. 59–102.

Grudin, Jonathan (1995). ‘Groupware and Social Dynamics: Eight Challenges for
Developers.’ In: Readings in Human–Computer Interaction. Elsevier, pp. 762–
774. doi: 10.1016/B978-0-08-051574-8.50079-0.

Guendert, Steve (2011). ‘MainframeHistory and the First User’s Groups (SHARE).’
In: p. 2. url: https://www.cmg.org/wp-content/uploads/2011/05/m_79_5.pdf.

Guo, Philip J. and Dawson Engler (2011). ‘CDE: Using System Call Interposition
to Automatically Create Portable Software Packages.’ In: USENIXATC’11 Pro-
ceedings of the 2011 USENIX conference on USENIX annual technical conference,
p. 21. url: https://dl.acm.org/citation.cfm?id=2002202.

225

https://doi.org/10.1145/2858036.2858476
https://doi.org/10.1145/2858036.2858476
http://doi.acm.org/10.1145/2858036.2858476
https://doi.org/10.1145/226239.226260
http://doi.acm.org/10.1145/226239.226260
http://doi.acm.org/10.1145/226239.226260
https://doi.org/10.1145/29933.30872
http://doi.acm.org/10.1145/29933.30872
https://doi.org/10.1080/24701475.2020.1769890
https://doi.org/10.1080/24701475.2020.1769890
https://doi.org/10.1080/24701475.2020.1769890
https://doi.org/10.1080/24701475.2020.1769890
https://doi.org/10.1016/B978-0-08-051574-8.50079-0
https://www.cmg.org/wp-content/uploads/2011/05/m_79_5.pdf
https://dl.acm.org/citation.cfm?id=2002202

bibliography

Gutwin, Carl and Saul Greenberg (2002). ‘A Descriptive Framework ofWorkspace
Awareness for Real-TimeGroupware.’ In: Computer Supported CooperativeWork
(CSCW) 11.3-4, pp. 411–446. doi: 10.1023/A:1021271517844.

Haigh, Thomas (2002). ‘Software in the 1960s as Concept, Service, and Product.’
In: IEEE Annals of the History of Computing 24.1, pp. 5–13.

Handel, Mark J. and Steven Poltrock (2011). ‘Working Around Official Applica-
tions: Experiences from a Large Engineering Project.’ In: Proceedings of the
ACM 2011 Conference on Computer Supported Cooperative Work. CSCW ’11.
Hangzhou, China: ACM, pp. 309–312. isbn: 978-1-4503-0556-3. doi: 10.1145/
1958824.1958870. url: http://doi.acm.org/10.1145/1958824.1958870.

Harper, R. R., J. A. Hughes, and D. Z. Shapiro (1990). ‘Harmonious Working and
CSCW: Computer Technology and Air Traffic Control.’ In: Studies in Computer
Supported Cooperative Work: Theory, Practice and Design. NLD: North-Holland
Publishing Co., 225–234. isbn: 044488811X.

Harper, Richard and Abigail Sellen (1995). ‘Collaborative Tools and the Practical-
ities of Professional Work at the International Monetary Fund.’ In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’95. Den-
ver, Colorado, USA: ACM Press/Addison-Wesley Publishing Co., pp. 122–129.
isbn: 0-201-84705-1. doi: 10.1145/223904.223920. url: http://dx.doi.org/10.1145/
223904.223920.

Harrison, Andrew, IanHarvey, Andrew Jones, David Rogers, and Ian Taylor (2011).
‘Object Reuse and Exchange for Publishing and Sharing Workflows.’ In: Pro-
ceedings of the 6th Workshop on Workflows in Support of Large-Scale Science.
WORKS ’11. Seattle, Washington, USA: Association for Computing Machinery,
67–76. isbn: 9781450311007. doi: 10.1145/2110497.2110506. url: https://doi.
org/10.1145/2110497.2110506.

Harvey, David (2007). ‘Neoliberalism as creative destruction.’ In: The annals of
the American academy of political and social science 610.1, pp. 21–44.

Hathaway, Terry. ‘Neoliberalism as Corporate Power.’ In: Competition & Change
().

Head, Andrew, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine
(2019). ‘Managing Messes in Computational Notebooks.’ In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. ACM, p. 270.
doi: 10.1145/3290605.3300500.

Holdgraf, Chris, Aaron Culich, Ariel Rokem, Fatma Deniz, Maryana Alegro, and
Dani Ushizima (2017). ‘Portable Learning Environments for Hands-On Compu-
tational Instruction: Using Container- and Cloud-Based Technology to Teach
Data Science.’ In: Proceedings of the Practice and Experience in Advanced Re-
search Computing 2017 on Sustainability, Success and Impact. PEARC17. New
Orleans, LA, USA: Association for ComputingMachinery. isbn: 9781450352727.
doi: 10.1145/3093338.3093370. url: https://doi.org/10.1145/3093338.3093370.

Holtman, Koen (Aug. 11, 1995). Non-persistent Cookie proposal. www-talk elec-
tronic mailing list message. url: https:// lists .w3.org/Archives/Public/www- talk/
msg01499.html.

(IDA), Ingeniørforeningen (2020). Shoshana Zuboff meets Margrethe Vestager:
A conversation about a future digital Europe - webinar. url: https : / / ida . dk /

226

https://doi.org/10.1023/A:1021271517844
https://doi.org/10.1145/1958824.1958870
https://doi.org/10.1145/1958824.1958870
http://doi.acm.org/10.1145/1958824.1958870
https://doi.org/10.1145/223904.223920
http://dx.doi.org/10.1145/223904.223920
http://dx.doi.org/10.1145/223904.223920
https://doi.org/10.1145/2110497.2110506
https://doi.org/10.1145/2110497.2110506
https://doi.org/10.1145/2110497.2110506
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3093338.3093370
https://doi.org/10.1145/3093338.3093370
https://lists.w3.org/Archives/Public/www-talk/msg01499.html
https://lists.w3.org/Archives/Public/www-talk/msg01499.html
https://ida.dk/arrangementer-og-kurser/arrangementer/shoshana-zuboff-meets-margrethe-vestager-a-conversation-about-a-future-digital-europe-webinar-336843
https://ida.dk/arrangementer-og-kurser/arrangementer/shoshana-zuboff-meets-margrethe-vestager-a-conversation-about-a-future-digital-europe-webinar-336843

bibliography

arrangementer - og - kurser/arrangementer/ shoshana - zuboff-meets - margrethe - vestager - a -
conversation-about-a-future-digital-europe-webinar-336843 (visited on 07/10/2020).

Information Commissioner’s Office (July 2019a). Guidance on the Use of Cookies
and Similar Technologies. Wilmslow, Cheshire: ICO.

Information Commissioner’s Office (June 2019b). Update Report into Adtech and
Real Time Bidding. Wilmslow, Cheshire: ICO.

Ingalls, Dan, Ted Kaehler, JohnMaloney, Scott Wallace, and Alan Kay (Oct. 1997).
‘Back to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself.’
In: SIGPLAN Not. 32.10, pp. 318–326. issn: 0362-1340. doi: 10.1145/263700.
263754. url: http://doi.acm.org/10.1145/263700.263754.

International Data Systems, Inc. (1976). ‘Patchable Star Trek/SpaceWar Program
Offered.’ In: SCCS INTERFACE June. url: https://archive.org/details/sccs_v1n7/.

Irani, Lilly C. and M. Six Silberman (2013). ‘Turkopticon: Interrupting Worker
Invisibility in Amazon Mechanical Turk.’ In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. CHI ’13. Paris, France: ACM,
pp. 611–620. isbn: 978-1-4503-1899-0. doi: 10 .1145/2470654 .2470742. url:
http://doi.acm.org/10.1145/2470654.2470742.

ISO/IEC 2382-01 (1993). Information Technology Vocabulary, Fundamental Terms.
Jaimovich, Nir and Henry E Siu (2012). ‘Job Polarization and Jobless Recoveries.’
In: National Bureau of Economic Research. doi: 10.3386/w18334. url: http://www.
nber.org/papers/w18334.

Jensen, Carlos and Colin Potts (2004). ‘Privacy policies as decision-making tools:
an evaluation of online privacy notices.’ In: Proceedings of the SIGCHI conference
on Human Factors in Computing Systems. ACM, pp. 471–478.

Jirotka, Marina, Charlotte P. Lee, and Gary M. Olson (Aug. 2013). ‘Supporting
Scientific Collaboration: Methods, Tools and Concepts.’ In: Comput. Supported
Coop. Work 22.4-6, pp. 667–715. issn: 0925-9724. doi: 10.1007/s10606- 012-
9184-0. url: http://dx.doi.org/10.1007/s10606-012-9184-0.

Johnson, Jeff, Teresa L. Roberts, William Verplank, David C. Smith, Charles H.
Irby, Marian Beard, and Kevin Mackey (Sept. 1989). ‘The Xerox Star: A Retro-
spective.’ In: Computer 22.9, pp. 11–26, 28–29. issn: 0018-9162. doi: 10.1109/
2.35211. url: http://dx.doi.org/10.1109/2.35211.

Johnson, Luanne (2002). ‘Creating the software industry-recollections of soft-
ware company founders of the 1960s.’ In: IEEE Annals of the History of Com-
puting 24.1, pp. 14–42.

Jones, Meg Leta (2020). ‘Surveillance Capitalism Online: Cookies, Notice Choice,
and Web Privacy.’ In: Surveillance Capitalism in America: From Slavery to Social
Media. Ed. by Josh Lauer and Kenneth Lipartito. University of Pennsylvania
Press, p. 23.

Juypter Notebook (2019). url: https://jupyter.org.
Kamara, Irene and Eleni Kosta (2016). ‘Do Not Track Initiatives: Regaining the
Lost User Control.’ In: International Data Privacy Law 6.4, pp. 276–290. issn:
2044-3994. doi: 10/gdxwds. (Visited on 12/28/2018).

Kaptelinin, Victor and Liam J. Bannon (2012). ‘Interaction Design Beyond the
Product: Creating Technology-Enhanced Activity Spaces.’ In:Human–Computer
Interaction 27.3, pp. 277–309. doi: 10.1080/07370024.2011.646930. eprint: http:

227

https://ida.dk/arrangementer-og-kurser/arrangementer/shoshana-zuboff-meets-margrethe-vestager-a-conversation-about-a-future-digital-europe-webinar-336843
https://ida.dk/arrangementer-og-kurser/arrangementer/shoshana-zuboff-meets-margrethe-vestager-a-conversation-about-a-future-digital-europe-webinar-336843
https://ida.dk/arrangementer-og-kurser/arrangementer/shoshana-zuboff-meets-margrethe-vestager-a-conversation-about-a-future-digital-europe-webinar-336843
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/263700.263754
http://doi.acm.org/10.1145/263700.263754
https://archive.org/details/sccs_v1n7/
https://doi.org/10.1145/2470654.2470742
http://doi.acm.org/10.1145/2470654.2470742
https://doi.org/10.3386/w18334
http://www.nber.org/papers/w18334
http://www.nber.org/papers/w18334
https://doi.org/10.1007/s10606-012-9184-0
https://doi.org/10.1007/s10606-012-9184-0
http://dx.doi.org/10.1007/s10606-012-9184-0
https://doi.org/10.1109/2.35211
https://doi.org/10.1109/2.35211
http://dx.doi.org/10.1109/2.35211
https://jupyter.org
https://doi.org/10/gdxwds
https://doi.org/10.1080/07370024.2011.646930
http://www.tandfonline.com/doi/pdf/10.1080/07370024.2011.646930
http://www.tandfonline.com/doi/pdf/10.1080/07370024.2011.646930

bibliography

//www.tandfonline.com/doi/pdf/10.1080/07370024.2011.646930. url: http://www.
tandfonline.com/doi/abs/10.1080/07370024.2011.646930.

Karger, David (2007). ‘Haystack: Per-User Information Environments Based on
Semistructured Data.’ In: Beyond the Desktop Metaphor: Designing Integrated
Digital Work Environments. Ed. by Victor Kaptelinin andMary Czerwinski. Cam-
bridge, MA, USA: MIT Press. Chap. 3, pp. 49–100.

Kay, Alan (2007). ‘The real computer revolution hasn’t happened yet.’ In: View-
points Research Institute 15.

Kay, Alan and Adele Goldberg (1977). ‘Personal dynamic media.’ In: Computer
10.3, pp. 31–41.

Kay, Alan C. (1972). ‘A Personal Computer for Children of All Ages.’ In: Proceed-
ings of the ACM Annual Conference - Volume 1. ACM ’72. Boston, Massachusetts,
USA: Association for Computing Machinery. isbn: 9781450374910. doi: 10.
1145/800193.1971922. url: https://doi.org/10.1145/800193.1971922.

Kelley, Patrick Gage, Joanna Bresee, Lorrie Faith Cranor, and Robert W Reeder
(2009). ‘A nutrition label for privacy.’ In: Proceedings of the 5th Symposium on
Usable Privacy and Security. ACM, p. 4.

Kery, Mary Beth and Brad A. Myers (2018). ‘Interactions for Untangling Messy
History in a Computational Notebook.’ In: 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, pp. 147–155. doi:
10.1109/VLHCC.2018.8506576.

Kery, Mary Beth, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers (2018). ‘The Story in the Notebook: Exploratory Data Science using a
Literate Programming Tool.’ In: Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems. ACM, p. 174. doi: 10.1145/3173574.3173748.

Kierkegaard, Sylvia Mercado (2005). ‘How the cookies (almost) crumbled: Pri-
vacy & lobbyism.’ In: Computer Law & Security Review 21.4, pp. 310–322.

Kiestadt, Ralph (1976). ‘Large Scale Systems: Software Choices for Star Trek.’ In:
SCCS INTERFACE June. url: https://archive.org/details/sccs_v1n7/.

Kitchin, Rob (2014). The data revolution: Big data, open data, data infrastructures
and their consequences. Sage.

Kjær, Jakob Sorgenfri (2020). Bombe under hjemmesider: DMI får alvorlig kritik
i banebrydende afgørelse. url: https : / /politiken .dk/viden/Tech/art7657203/DMI -
f\%C3\%A5r-alvorlig-kritik-i-banebrydende-afg\%C3\%B8relse.

Klokmose, Clemens N., James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon (2015a). ‘Webstrates: Shareable Dynamic Media.’ In:
Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. UIST ’15. Charlotte, NC, USA: ACM, pp. 280–290. isbn: 978-1-
4503-3779-3. doi: 10.1145/2807442.2807446. url: http://doi .acm.org/10.1145/
2807442.2807446.

Klokmose, Clemens N, James R Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon (2015b). ‘Webstrates: shareable dynamic media.’ In:
Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. ACM, pp. 280–290.

228

http://www.tandfonline.com/doi/pdf/10.1080/07370024.2011.646930
http://www.tandfonline.com/doi/pdf/10.1080/07370024.2011.646930
http://www.tandfonline.com/doi/abs/10.1080/07370024.2011.646930
http://www.tandfonline.com/doi/abs/10.1080/07370024.2011.646930
https://doi.org/10.1145/800193.1971922
https://doi.org/10.1145/800193.1971922
https://doi.org/10.1145/800193.1971922
https://doi.org/10.1109/VLHCC.2018.8506576
https://doi.org/10.1145/3173574.3173748
https://archive.org/details/sccs_v1n7/
https://politiken.dk/viden/Tech/art7657203/DMI-f\%C3\%A5r-alvorlig-kritik-i-banebrydende-afg\%C3\%B8relse
https://politiken.dk/viden/Tech/art7657203/DMI-f\%C3\%A5r-alvorlig-kritik-i-banebrydende-afg\%C3\%B8relse
https://doi.org/10.1145/2807442.2807446
http://doi.acm.org/10.1145/2807442.2807446
http://doi.acm.org/10.1145/2807442.2807446

bibliography

Klokmose, Clemens N. and Pär-Ola Zander (2010). ‘Rethinking Laboratory Note-
books.’ In: Proceedings of COOP 2010. Springer, pp. 119–139. doi: 10.1007/978-
1-84996-211-7_8.

Kluyver, Thomas, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Syl-
vain Corlay, et al. (2016). ‘Jupyter Notebooks–a publishing format for repro-
ducible computational workflows.’ In: Positioning and Power in Academic Pub-
lishing: Players, Agents and Agendas, pp. 87–90.

Knuth, Donald E. (May 1984). ‘Literate Programming.’ In: Comput. J. 27.2, pp. 97–
111. issn: 0010-4620. doi: 10.1093/comjnl/27.2.97. url: http://dx.doi.org/10.1093/
comjnl/27.2.97.

Korsgaard, Henrik, Clemens Nylandsted Klokmose, and Susanne Bødker (2016).
‘Computational Alternatives in Participatory Design: Putting the T Back in Socio-
technical Research.’ In: Proceedings of the 14th Participatory Design Conference:
Full Papers - Volume 1. PDC ’16. Aarhus, Denmark: ACM, pp. 71–79. isbn: 978-
1-4503-4046-5. doi: 10.1145/2940299.2940314. url: http://doi.acm.org/10.1145/
2940299.2940314.

Korzeniowksi, Paul (1984). ‘Multi-application Packages: Who Needs Them?’ In:
InfoWorld 18.33.

Kosta, Eleni (2013a). ‘Peeking into the cookie jar: the European approach to-
wards the regulation of cookies.’ In: International journal of law and informa-
tion technology 21.4, pp. 380–406.

Kosta, Eleni (2013b). ‘Peeking into the Cookie Jar: The European Approach to-
wards the Regulation of Cookies.’ In: International Journal of Law and Informa-
tion Technology 21.4, pp. 380–406. doi: 10.1093/ijlit/eat011.

Krahn, Robert, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and Krzysztof Palacz
(2009). ‘Lively Wiki a Development Environment for Creating and Sharing Ac-
tive Web Content.’ In: Proceedings of the 5th International Symposium on Wikis
and Open Collaboration. WikiSym ’09. Orlando, Florida: ACM, 9:1–9:10. isbn:
978-1-60558-730-1. doi: 10.1145/1641309.1641324. url: http://doi.acm.org/10.
1145/1641309.1641324.

Labguru (2019). url: https://labguru.com.
Lampinen, Airi and Barry Brown (2017). ‘Market Design for HCI: Successes and
Failures of Peer-to-Peer Exchange Platforms.’ In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. CHI ’17. Denver, Colorado,
USA: ACM, pp. 4331–4343. isbn: 978-1-4503-4655-9. doi: 10.1145/3025453.
3025515. url: http://doi.acm.org/10.1145/3025453.3025515.

Lasswell, Harold D. (1936). Politics: Who Gets What, When, How. Whittlesey
House.

Lazar, Jonathan et al. (May 2016). ‘Human–Computer Interaction and Interna-
tional Public Policymaking: A Framework for Understanding and Taking Future
Actions.’ In: Found. Trends Hum.-Comput. Interact. 9.2, 69–149. issn: 1551-
3955. doi: 10.1561/1100000062. url: https://doi.org/10.1561/1100000062.

Leenes, Ronald and Eleni Kosta (2015). ‘Taming the cookie monster with dutch
law–a tale of regulatory failure.’ In: Computer Law & Security Review 31.3,
pp. 317–335.

229

https://doi.org/10.1007/978-1-84996-211-7_8
https://doi.org/10.1007/978-1-84996-211-7_8
https://doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/2940299.2940314
http://doi.acm.org/10.1145/2940299.2940314
http://doi.acm.org/10.1145/2940299.2940314
https://doi.org/10.1093/ijlit/eat011
https://doi.org/10.1145/1641309.1641324
http://doi.acm.org/10.1145/1641309.1641324
http://doi.acm.org/10.1145/1641309.1641324
https://labguru.com
https://doi.org/10.1145/3025453.3025515
https://doi.org/10.1145/3025453.3025515
http://doi.acm.org/10.1145/3025453.3025515
https://doi.org/10.1561/1100000062
https://doi.org/10.1561/1100000062

bibliography

Lessig, Lawrence (1999). Code and other laws of cyberspace. Basic Books. isbn:
978-0-465-03912-8.

Lewicki, Roy J., Bruce Barry, and David M. Saunders (2016). Essentials of Negoti-
ation. 6th ed. McGraw Hill. isbn: 978-0-07-7862466.

Lex, A., N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister (2014). ‘UpSet:
Visualization of Intersecting Sets.’ In: IEEE Transactions on Visualization and
Computer Graphics 20.12, pp. 1983–1992. doi: 10.1109/TVCG.2014.2346248.

Licklider, J. C. R. (1960). ‘Man-Computer Symbiosis.’ In: IRE Transactions on Hu-
man Factors in Electronics HFE-1, pp. 4–11.

Lorrie Faith Cranor, Joseph Reagle Jr. (1997). ‘Designing a Social Protocol: Lessons
Learned from the Platform for Privacy Preferences.’ In: Proceedings of the Telecom-
munications Policy Research Conference.

Mace, Scott (1983). ‘Software accessories enhance software programs.’ In: In-
foWorld 5.10.

Mackay, Wendy (1990). ‘Users and customizable software: A co-adaptive phe-
nomenon.’ PhD thesis. Massachusetts Institute of Technology.

Mackay, Wendy E. (2003). ‘The Missing Link: Integrating Paper and Electronic
Documents.’ In: Proceedings of the 15th Conference on L’Interaction Homme-
Machine. IHM ’03. Caen, France: ACM, pp. 1–8. isbn: 1-58113-803-2. doi:
10.1145/1063669.1063671. url: http://doi.acm.org/10.1145/1063669.1063671.

MacLean, Allan, Kathleen Carter, Lennart Lövstrand, and Thomas Moran (1990).
‘User-tailorable systems: pressing the issues with buttons.’ In: Proceedings of the
SIGCHI conference on Human factors in computing systems, pp. 175–182.

Mahieu, Rene, Joris van Hoboken, and Hadi Asghari (2019). ‘Responsibility for
Data Protection in a Networked World: On the Question of the Controller, Ef-
fective and Complete Protection and Its Application to Data Access Rights in
Europe.’ In: Journal of Intellectual Property, Information Technology and Elec-
tronic Commerce Law 10.1, pp. 84–104. (Visited on 09/03/2019).

Maloney, John H and Randall B Smith (1995). ‘Directness and liveness in the
morphic user interface construction environment.’ In: Proceedings of the 8th
annual ACM symposium on User interface and software technology. ACM, pp. 21–
28.

Mandl, Irene, Maurizio Curtarelli, Sara Riso, Oscar Vargas, and Elias Gerogiannis
(2015a). New forms of employment. Vol. 2. Publications Office of the European
Union Eurofond, Luxembourg.

Mandl, Irene, Maurizio Curtarelli, Sara Riso, Oscar Vargas, and Elias Gerogiannis
(2015b). New forms of employment. Vol. 2. Publications Office of the European
Union.

Manners, Ian (2002). ‘Normative power Europe: a contradiction in terms?’ In:
JCMS: Journal of common market studies 40.2, pp. 235–258.

Martin, David, Benjamin V. Hanrahan, Jacki O’Neill, and Neha Gupta (2014).
‘Being a Turker.’ In: Proceedings of the 17th ACM Conference on Computer Sup-
ported Cooperative Work & Social Computing. CSCW ’14. Baltimore, Maryland,
USA: ACM, pp. 224–235. isbn: 978-1-4503-2540-0. doi: 10 . 1145 / 2531602 .
2531663. url: http://doi.acm.org/10.1145/2531602.2531663.

230

https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1145/1063669.1063671
http://doi.acm.org/10.1145/1063669.1063671
https://doi.org/10.1145/2531602.2531663
https://doi.org/10.1145/2531602.2531663
http://doi.acm.org/10.1145/2531602.2531663

bibliography

Massey, Charlotte, Thomas Lennig, and SteveWhittaker (2014). ‘Cloudy Forecast:
An Exploration of the Factors Underlying Shared Repository Use.’ In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’14.
Toronto, Ontario, Canada: ACM, pp. 2461–2470. isbn: 978-1-4503-2473-1.
doi: 10.1145/2556288.2557042. url: http://doi.acm.org/10.1145/2556288.2557042.

Mathur, Arunesh, Gunes Acar, Michael J Friedman, Elena Lucherini, Jonathan
Mayer, Marshini Chetty, and Arvind Narayanan (2019). ‘Dark patterns at scale:
Findings from a crawl of 11K shopping websites.’ In: Proceedings of the ACM on
Human-Computer Interaction 3.CSCW, p. 81.

Matsaganis, Manos, Erhan Özdemir, Terry Ward, and Alkistis Zavakou (2016).
Non-Standard Employment and Access to Social Security Benefits. Directorate-
General for Employment, Social Affairs and Inclusion, European Commission.

Matte, Célestin, Nataliia Bielova, and Cristiana Santos (2019a). ‘Do Cookie Ban-
ners Respect my Choice? Measuring Legal Compliance of Banners from IAB
Europe’s Transparency and Consent Framework.’ In: Under submission. url:
https://arxiv.org/abs/1911.09964v1.

Matte, Célestin, Nataliia Bielova, and Cristiana Santos (2019b). ‘Do Cookie Ban-
ners Respect my Choice? Measuring Legal Compliance of Banners from IAB
Europe’s Transparency and Consent Framework.’ In: Under review. url: arXiv:
1911.09964.

McCarthy, John (2019).Over 90% of users consent to GDPR requests says Quantcast
after enabling 1bn of them. https://www.thedrum.com/news/2018/07/31/over-90-users-
consent-gdpr-requests-says-quantcast-after-enabling-1bn-them.

McDonald, A. M. and L. F. Cranor (2008). ‘The cost of reading privacy policies.’
In: I/S: A Journal of Law and Policy for the Information Society 4, pp. 540 –565.

McGeever, Christine (1984). ‘A Look at Lotus for the Mac.’ In: InfoWorld 6.47.
Mejias, Ulises A and Nick Couldry (2019). ‘Datafication.’ In: Internet Policy Review
8.4.

Metropolis, Nick and Jack Worlton (1980). ‘A Trilogy on Errors in the History of
Computing.’ In: Annals of the History of Computing 2.1, pp. 49–59.

Miller, Michael J. (1994). ‘Are They Suites Yet.’ In: PC Magazine 13.18.
Millett, Lynette I, Batya Friedman, and Edward Felten (2001). ‘Cookies and web
browser design: Toward realizing informed consent online.’ In: Proceedings of
the SIGCHI conference on Human factors in computing systems, pp. 46–52.

Millman, K Jarrod and Fernando Pérez (2014). ‘Developing open-source scientific
practice.’ In: Implementing Reproducible Research 149.

Ministry of Science, Innovation and Higher Education (2013). Ministerial Order
on the PhD Degree Programme at the Universities and Certain Higher Artistic
Educational Institutions. https://www.retsinformation.dk/eli/lta/2013/1039.

Montulli, Lou (Apr. 18, 1995). Re: Session tracking. www-talk electronic mailing
list message. url: https://lists.w3.org/Archives/Public/www-talk/1995MarApr/0462.
html.

Mørch, Anders (1997). ‘Three levels of end-user tailoring: Customization, inte-
gration, and extension.’ In: Computers and design in context. Ed. by Morten
Kyng and Lars Mathiassen. MIT Press, pp. 51–76.

231

https://doi.org/10.1145/2556288.2557042
http://doi.acm.org/10.1145/2556288.2557042
https://arxiv.org/abs/1911.09964v1
arXiv:1911.09964
arXiv:1911.09964
https://www.thedrum.com/news/2018/07/31/over-90-users-consent-gdpr-requests-says-quantcast-after-enabling-1bn-them
https://www.thedrum.com/news/2018/07/31/over-90-users-consent-gdpr-requests-says-quantcast-after-enabling-1bn-them
https://www.retsinformation.dk/eli/lta/2013/1039
https://lists.w3.org/Archives/Public/www-talk/1995MarApr/0462.html
https://lists.w3.org/Archives/Public/www-talk/1995MarApr/0462.html

bibliography

Morozov, Evgeny (2013). To save everything, click here: The folly of technological
solutionism. Public Affairs.

Muller, Michael, David R. Millen, and Jonathan Feinberg (2010). ‘Patterns of Us-
age in an Enterprise File-sharing Service: Publicizing, Discovering, and Telling
the News.’ In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI ’10. Atlanta, Georgia, USA: ACM, pp. 763–766. isbn: 978-
1-60558-929-9. doi: 10.1145/1753326.1753438. url: http://doi.acm.org/10.1145/
1753326.1753438.

Myers, Brad, Scott E. Hudson, and Randy Pausch (Mar. 2000). ‘Past, Present,
and Future of User Interface Software Tools.’ In: ACM Trans. Comput.-Hum.
Interact. 7.1, pp. 3–28. issn: 1073-0516. doi: 10.1145/344949.344959. url: http:
//doi.acm.org/10.1145/344949.344959.

n.a. (1975). ‘Building your own computer won’t be a piece of cake.’ In: Popular
Electronics 4.

Nichols, David A., Pavel Curtis, Michael Dixon, and John Lamping (1995). ‘High-
latency, Low-bandwidth Windowing in the Jupiter Collaboration System.’ In:
Proceedings of the 8th Annual ACM Symposium on User Interface and Software
Technology. UIST ’95. Pittsburgh, Pennsylvania, USA: ACM, pp. 111–120. isbn:
0-89791-709-X. doi: 10.1145/215585.215706. url: http://doi .acm.org/10.1145/
215585.215706.

Nissenbaum, H. (2011). ‘A contextual approach to privacy online.’ In: Daedalus
140.4, pp. 32–48.

Nooney, Laine, Kevin Driscoll, and Kera Allen (2020). ‘From Programming to
Products: Softalk Magazine and the Rise of the Personal Computer User.’ In:
Information & Culture 55.2, pp. 105–129.

Norberg, Arthur (1983). ‘An Interview with Walter Bauer.’ In: Charles Babbage
Institute. url: https://conservancy.umn.edu/bitstream/handle/11299/107108/oh061wb.
pdf.

Norman, Donald A. (1998). The Invisible Computer. Cambridge, MA, USA: MIT
Press. isbn: 0-262-14065-9.

Notion (2019). url: https://notion.so.
Nouwens, Midas, Marcel Borowski, Bjarke Fog, and Clemens Nylandsted Klok-
mose (2020a). ‘Between Scripts and Applications: Computational Media for
the Frontier of Nanoscience.’ In: Proceedings of the 2020 CHI Conference on Hu-
man Factors in Computing Systems. CHI ’20. Honolulu, HI, USA: Association
for Computing Machinery, 1–13. isbn: 9781450367080. doi: 10.1145/3313831.
3376287. url: https://doi.org/10.1145/3313831.3376287.

Nouwens, Midas and Clemens Nylandsted Klokmose (2018). ‘The Application
and Its Consequences for Non-Standard Knowledge Work.’ In: Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems. CHI ’18. Mon-
treal QC, Canada: Association for ComputingMachinery, 1–12. isbn: 9781450356206.
doi: 10.1145/3173574.3173973. url: https://doi.org/10.1145/3173574.3173973.

Nouwens, Midas, Ilaria Liccardi, Michael Veale, David Karger, and Lalana Kagal
(2020b). ‘Dark Patterns after the GDPR: Scraping Consent Pop-Ups and Demon-
strating Their Influence.’ In: Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. CHI ’20. Honolulu, HI, USA: Association for Com-

232

https://doi.org/10.1145/1753326.1753438
http://doi.acm.org/10.1145/1753326.1753438
http://doi.acm.org/10.1145/1753326.1753438
https://doi.org/10.1145/344949.344959
http://doi.acm.org/10.1145/344949.344959
http://doi.acm.org/10.1145/344949.344959
https://doi.org/10.1145/215585.215706
http://doi.acm.org/10.1145/215585.215706
http://doi.acm.org/10.1145/215585.215706
https://conservancy.umn.edu/bitstream/handle/11299/107108/oh061wb.pdf
https://conservancy.umn.edu/bitstream/handle/11299/107108/oh061wb.pdf
https://notion.so
https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3173574.3173973
https://doi.org/10.1145/3173574.3173973

bibliography

puting Machinery, 1–13. isbn: 9781450367080. doi: 10.1145/3313831.3376321.
url: https://doi.org/10.1145/3313831.3376321.

Nouwens, Midas, Ilaria Liccardi, Michael Veale, David Karger, and Lalana Kagal
(2020c). ‘Dark Patterns Post-GDPR: Scraping Consent Interface Designs and
Demonstrating their Influence.’ In: Conditionally accepted for CHI 2020. ACM.

Obar, Jonathan A. and Anne Oeldorf-Hirsch (2018). ‘The biggest lie on the Inter-
net: ignoring the privacy policies and terms of service policies of social network-
ing services.’ In: Information, Communication & Society 0.0, pp. 1–20. doi: 10.
1080/1369118X.2018.1486870. eprint: https://doi.org/10.1080/1369118X.2018.1486870.
url: https://doi.org/10.1080/1369118X.2018.1486870.

Observable (2019). url: https://observablehq.com.
OECD (2015). In It Together: Why Less Inequality Benefits All. Paris: OECD Pub-
lishing. doi: http : / /dx .doi . org/10 .1787/9789264235120 - en. url: /content /book/
9789264235120-en.

Oleksik, Gerard, Natasa Milic-Frayling, and Rachel Jones (2012). ‘Beyond Data
Sharing: Artifact Ecology of a Collaborative Nanophotonics Research Centre.’
In: Proceedings of the ACM 2012 Conference on Computer Supported Coopera-
tive Work. CSCW ’12. Seattle, Washington, USA: Association for Computing
Machinery, 1165–1174. isbn: 9781450310864. doi: 10.1145/2145204.2145376.
url: https://doi.org/10.1145/2145204.2145376.

Oleksik, Gerard, Natasa Milic-Frayling, and Rachel Jones (2014). ‘Study of Elec-
tronic Lab Notebook Design and Practices That Emerged in a Collaborative Sci-
entific Environment.’ In: Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing. CSCW ’14. Baltimore, Mary-
land, USA: Association for ComputingMachinery, 120–133. isbn: 9781450325400.
doi: 10.1145/2531602.2531709. url: https://doi.org/10.1145/2531602.2531709.

Olsen Jr., Dan R. (2007). ‘Evaluating User Interface Systems Research.’ In: Pro-
ceedings of the 20th Annual ACM Symposium on User Interface Software and
Technology. UIST ’07. Newport, Rhode Island, USA: ACM, pp. 251–258. isbn:
978-1-59593-679-0. doi: 10.1145/1294211.1294256. url: http://doi.acm.org/10.
1145/1294211.1294256.

Party, Article 29 Working (2009). OPINION 1/2009 on the proposals amending
Directive 2002/58 on privacy and electronic communications (e-Privacy Directive),
WP159. European Commission.

Party, Article 29 Working (2017). Opinion 01/2017 on the Proposed Regulation
for the ePrivacy Regulation (2002/58/EC). European Commission.

Pasquale, Frank (2016). ‘Two Narratives of Platform Capitalism.’ In: Yale Law &
Policy Review 35, pp. 309–320.

Pérez, Fernando and Brian Granger (2015). Project Jupyter: Computational Nar-
ratives as the Engine of Collaborative Data Science. url: https://blog.jupyter.org/
project - jupyter - computational - narratives - as - the - engine - of - collaborative - data - science -
2b5fb94c3c58.

Perkel, Dan (2008). ‘Copy and Paste Literacy: Literacy practices in the produc-
tion of a MySpace profile.’ English. In: Informal Learning and Digital Media.
Ed. by Kirsten Drotner, Siggaard Jensen, Hans, Schrøder, and Kim Christian.
Cambridge Scholars Press. Chap. 10, pp. 203–224.

233

https://doi.org/10.1145/3313831.3376321
https://doi.org/10.1145/3313831.3376321
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://observablehq.com
https://doi.org/http://dx.doi.org/10.1787/9789264235120-en
/content/book/9789264235120-en
/content/book/9789264235120-en
https://doi.org/10.1145/2145204.2145376
https://doi.org/10.1145/2145204.2145376
https://doi.org/10.1145/2531602.2531709
https://doi.org/10.1145/2531602.2531709
https://doi.org/10.1145/1294211.1294256
http://doi.acm.org/10.1145/1294211.1294256
http://doi.acm.org/10.1145/1294211.1294256
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58

bibliography

Piersol, Kurt (1994). ‘Under the Hood: A Close-Up of OpenDoc.’ In: BYTE 19,
pp. 183–188. url: http://archive.li/zPfWW.

Pike, Rob and Brian W Kernighan (1984). ‘The UNIX System: Program Design
in the UNIX Environment.’ In: AT&T Bell Laboratories Technical Journal 63.8,
pp. 1595–1605.

Plank, Thomas, Hans-Christian Jetter, Roman Rädle, Clemens N. Klokmose, Thomas
Luger, and Harald Reiterer (2017). ‘Is Two Enough?! Studying Benefits, Barri-
ers, and Biases of Multi-Tablet Use for Collaborative Visualization.’ In: Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing Systems. doi:
10.1145/3025453.3025537.

Rädle, Roman, Midas Nouwens, Kristian Antonsen, James R Eagan, and Clemens
N Klokmose (2017). ‘Codestrates: Literate computing with webstrates.’ In: Pro-
ceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology, pp. 715–725.

Rädle, Roman, Midas Nouwens, Kristian Antonsen, James R. Eagan, and Clemens
N. Klokmose (2017). ‘Codestrates: Literate Computing with Webstrates.’ In:
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology. UIST ’17. Québec City, QC, Canada: ACM, pp. 715–725.
isbn: 978-1-4503-4981-9. doi: 10.1145/3126594.3126642. url: http://doi .acm.
org/10.1145/3126594.3126642.

Raskin, Jef (2000). The Humane Interface: New Directions for Designing Interactive
Systems. Addison-Wesley Professional.

Reeder, Robert W, Lujo Bauer, Lorrie Faith Cranor, Michael K Reiter, Kelli Bacon,
Keisha How, and Heather Strong (2008). ‘Expandable grids for visualizing and
authoring computer security policies.’ In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, pp. 1473–1482.

Rosch, Winn L. (1985). ‘Can Integrated Software Co-Exist with Windows?’ In: PC
Magazine 4.2.

Rosenberger, Robert (2009). ‘The sudden experience of the computer.’ In: Ai &
Society 24.2, pp. 173–180.

Roubert, Francois and Mark Perry (2013). ‘Putting the Lab in the Lab Book: Sup-
porting Coordination in Large, Multi-site Research.’ In: HCI 2013 - 27th Inter-
national British Computer Society Human Computer Interaction Conference: The
Internet of Things. url: http://dl.acm.org/citation.cfm?id=2578048.2578066.

Rule, Adam, Ian Drosos, Aurélien Tabard, and James D. Hollan (2018). ‘Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.’
In: Proceedings of the ACM on Human-Computer Interaction 2.CSCW, p. 150.
doi: 10.1145/3274419.

Rule, Adam, Aurélien Tabard, and James D. Hollan (2018). ‘Exploration and Ex-
planation in Computational Notebooks.’ In: Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems. ACM, p. 32. doi: 10.1145/3173574.
3173606.

Salovaara, Antti, Antti Oulasvirta, and Giulio Jacucci (2017). ‘Evaluation of Pro-
totypes and the Problem of Possible Futures.’ In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. CHI ’17. Denver, Colorado,

234

http://archive.li/zPfWW
https://doi.org/10.1145/3025453.3025537
https://doi.org/10.1145/3126594.3126642
http://doi.acm.org/10.1145/3126594.3126642
http://doi.acm.org/10.1145/3126594.3126642
http://dl.acm.org/citation.cfm?id=2578048.2578066
https://doi.org/10.1145/3274419
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606

bibliography

USA: ACM, pp. 2064–2077. isbn: 978-1-4503-4655-9. doi: 10.1145/3025453.
3025658. url: http://doi.acm.org/10.1145/3025453.3025658.

Sanchez-Rola, Iskander, Matteo Dell’Amico, Platon Kotzias, Davide Balzarotti,
Leyla Bilge, Pierre-Antoine Vervier, and Igor Santos (2019). ‘Can I Opt Out
Yet?: GDPR and the Global Illusion of Cookie Control.’ In: Proceedings of the
2019 ACM Asia Conference on Computer and Communications Security. Asia
CCS ’19. Auckland, New Zealand: ACM, pp. 340–351. isbn: 978-1-4503-6752-
3. doi: 10.1145/3321705.3329806. url: http://doi.acm.org/10.1145/3321705.3329806.

Satyanarayan, Arvind, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer
(2017). ‘Vega-lite: A grammar of interactive graphics.’ In: IEEE Transactions on
Visualization and Computer Graphics 23.1, pp. 341–350.

Scannell, Ed (1984). ‘IBM User Groups.’ In: Computerworld 8.October.
Schaub, Florian, Rebecca Balebako, Adam LDurity, and Lorrie Faith Cranor (2015).
‘A design space for effective privacy notices.’ In: Eleventh Symposium On Usable
Privacy and Security (SOUPS 2015), pp. 1–17.

Schmidt, Kjeld and Ina Wagner (2004). ‘Ordering Systems: Coordinative Prac-
tices and Artifacts in Architectural Design and Planning.’ In: Computer Sup-
ported Cooperative Work (CSCW) 13.5, pp. 349–408. issn: 1573-7551. doi:
10.1007/s10606-004-5059-3. url: https://doi.org/10.1007/s10606-004-5059-3.

Schulte, Eric and Dan Davison (2011). ‘Active documents with org-mode.’ In:
Computing in Science & Engineering 13.3, pp. 66–73.

Sellen, Abigail J. and Richard H.R. Harper (2003). The Myth of the Paperless Office.
Cambridge, MA, USA: MIT Press. isbn: 026269283X.

Sellen, Abigail J., Rachel Murphy, and Kate L. Shaw (2002). ‘How Knowledge
Workers Use the Web.’ In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’02. Minneapolis, Minnesota, USA: ACM,
pp. 227–234. isbn: 1-58113-453-3. doi: 10.1145/503376.503418. url: http://doi.
acm.org/10.1145/503376.503418.

SHARE Program Library Agency (1977). ‘User’s Guide and Catalog of Programs.’
In: url: http://www.bitsavers.org/pdf/ibm/share/SHARE_PgmCatalog_Jan77.pdf.

Shrayer, Michael (1977). The Electric Pencil Word Processor: Operator’s Manual.
Singer, Natasha (May 2016). ‘When Websites Won’t Take No for an Answer.’ In:
New York Times. url: https://www.nytimes.com/2016/05/15/technology/personaltech/
when-websites-wont-take-no-for-an-answer.html?mcubz=0&_r=0.

Skidmore, Jenifer L., Matthew J. Sottile, Janice E. Cuny, and Allen D. Malony
(1998). ‘A Prototype Notebook-based Environment for Computational Tools.’
In: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing. SC ’98.
San Jose, CA: IEEE Computer Society, pp. 1–15. isbn: 0-89791-984-X. url:
http://dl.acm.org/citation.cfm?id=509058.509080.

Smith, Spencer (2018). ‘Beyond Software Carpentry.’ In: Proceedings of the Inter-
national Workshop on Software Engineering for Science. SE4Science ’18. Gothen-
burg, Sweden: Association for ComputingMachinery, 32–39. isbn: 9781450357487.
doi: 10.1145/3194747.3194749. url: https://doi.org/10.1145/3194747.3194749.

Solon, Olivia (Jan. 11, 2018). ‘Uber developed secret system to lock down staff
computers in a police raid.’ In: The Guardian. url: https://www.theguardian.com/

235

https://doi.org/10.1145/3025453.3025658
https://doi.org/10.1145/3025453.3025658
http://doi.acm.org/10.1145/3025453.3025658
https://doi.org/10.1145/3321705.3329806
http://doi.acm.org/10.1145/3321705.3329806
https://doi.org/10.1007/s10606-004-5059-3
https://doi.org/10.1007/s10606-004-5059-3
https://doi.org/10.1145/503376.503418
http://doi.acm.org/10.1145/503376.503418
http://doi.acm.org/10.1145/503376.503418
http://www.bitsavers.org/pdf/ibm/share/SHARE_PgmCatalog_Jan77.pdf
https://www.nytimes.com/2016/05/15/technology/personaltech/when-websites-wont-take-no-for-an-answer.html?mcubz=0&_r=0
https://www.nytimes.com/2016/05/15/technology/personaltech/when-websites-wont-take-no-for-an-answer.html?mcubz=0&_r=0
http://dl.acm.org/citation.cfm?id=509058.509080
https://doi.org/10.1145/3194747.3194749
https://doi.org/10.1145/3194747.3194749
https://www.theguardian.com/technology/2018/jan/11/uber-developed-secret-system-to-lock-down-staff-computers-in-a-police-raid
https://www.theguardian.com/technology/2018/jan/11/uber-developed-secret-system-to-lock-down-staff-computers-in-a-police-raid

bibliography

technology/2018/jan/11/uber-developed-secret-system-to-lock-down-staff-computers-in-a-
police-raid (visited on 06/21/2020).

Sørensen, Jannick and Sokol Kosta (2019). ‘Before and After GDPR: The Changes
in Third Party Presence at Public and Private EuropeanWebsites.’ In: TheWorld
Wide Web Conference. WWW ’19. San Francisco, CA, USA: ACM, pp. 1590–
1600. isbn: 978-1-4503-6674-8. doi: 10.1145/3308558.3313524. url: http://doi.
acm.org/10.1145/3308558.3313524.

Spaa, Anne, Abigail Durrant, Chris Elsden, and John Vines (2019). ‘Understand-
ing the Boundaries between Policymaking and HCI.’ In: Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, pp. 1–15.

Su, Norman Makoto and Gloria Mark (2008). ‘Designing for Nomadic Work.’ In:
Proceedings of the 7th ACM Conference on Designing Interactive Systems. DIS ’08.
Cape Town, South Africa: ACM, pp. 305–314. isbn: 978-1-60558-002-9. doi:
10.1145/1394445.1394478. url: http://doi.acm.org/10.1145/1394445.1394478.

Supervisor, European Data Protection (2018). ‘EDPS Opinion on the legislative
package “A New Deal for Consumers”.’ In: url: https://edps.europa.eu/sites/edp/
files/publication/18-10-05_opinion_consumer_law_en.pdf.

Tabard, Aurélien, Juan-David Hincapié-Ramos, Morten Esbensen, and Jakob E.
Bardram (2011). ‘The eLabBench: An Interactive Tabletop System for the Bi-
ology Laboratory.’ In: Proceedings of the ACM International Conference on Inter-
active Tabletops and Surfaces. ITS ’11. Kobe, Japan: ACM, pp. 202–211. isbn:
978-1-4503-0871-7. doi: 10.1145/2076354.2076391. url: http://doi.acm.org/10.
1145/2076354.2076391.

Taivalsaari, Antero, Tommi Mikkonen, Dan Ingalls, and Krzysztof Palacz (2008).
Web Browser As an Application Platform: The Lively Kernel Experience. Mountain
View, CA, USA.

Talbott, Tara, Michael Peterson, Jens Schwidder, and James D. Myers (2005).
‘Adapting the Electronic Laboratory Notebook for the Semantic Era.’ In: Pro-
ceedings of the 2005 International Symposium on Collaborative Technologies and
Systems, 2005. Pp. 136–143. doi: 10.1109/ISCST.2005.1553305.

Tanimoto, Steven L (2013). ‘A perspective on the evolution of live programming.’
In: 2013 1st International Workshop on Live Programming (LIVE). IEEE, pp. 31–
34.

Tarafdar, Monideepa, Cary L. Cooper, and Jean-François Stich (2019). ‘The tech-
nostress trifecta - techno eustress, techno distress and design: Theoretical direc-
tions and an agenda for research.’ In: Information Systems Journal 29.1, 6–42.
issn: 1365-2575. doi: 10.1111/isj.12169.

Taylor, Linnet (2020). ‘Public actors without public values: legitimacy, domination
and the regulation of the technology sector.’ In:

Tchounikine, Pierre (2017). ‘Designing for Appropriation: A Theoretical Account.’
In: Human–Computer Interaction 32.4, 155–195. issn: 0737-0024, 1532-7051.
doi: 10.1080/07370024.2016.1203263.

Teodoro, Rannie, Pinar Ozturk, Mor Naaman,Winter Mason, and Janne Lindqvist
(2014). ‘The Motivations and Experiences of the On-demand Mobile Work-
force.’ In: Proceedings of the 17th ACM Conference on Computer Supported Coop-
erative Work & Social Computing. CSCW ’14. Baltimore, Maryland, USA: ACM,

236

https://www.theguardian.com/technology/2018/jan/11/uber-developed-secret-system-to-lock-down-staff-computers-in-a-police-raid
https://www.theguardian.com/technology/2018/jan/11/uber-developed-secret-system-to-lock-down-staff-computers-in-a-police-raid
https://www.theguardian.com/technology/2018/jan/11/uber-developed-secret-system-to-lock-down-staff-computers-in-a-police-raid
https://doi.org/10.1145/3308558.3313524
http://doi.acm.org/10.1145/3308558.3313524
http://doi.acm.org/10.1145/3308558.3313524
https://doi.org/10.1145/1394445.1394478
http://doi.acm.org/10.1145/1394445.1394478
https://edps.europa.eu/sites/edp/files/publication/18-10-05_opinion_consumer_law_en.pdf
https://edps.europa.eu/sites/edp/files/publication/18-10-05_opinion_consumer_law_en.pdf
https://doi.org/10.1145/2076354.2076391
http://doi.acm.org/10.1145/2076354.2076391
http://doi.acm.org/10.1145/2076354.2076391
https://doi.org/10.1109/ISCST.2005.1553305
https://doi.org/10.1111/isj.12169
https://doi.org/10.1080/07370024.2016.1203263

bibliography

pp. 236–247. isbn: 978-1-4503-2540-0. doi: 10 .1145/2531602 .2531680. url:
http://doi.acm.org/10.1145/2531602.2531680.

Thaler, Richard H and Cass R Sunstein (2009). Nudge: Improving decisions about
health, wealth, and happiness. Penguin.

Tobin, Oisin (2019). ‘Cookie consent revisited.’ In: Privacy and Data Protection
19 (5), p. 11.

Tomlinson, Bill et al. (2012). ‘Massively Distributed Authorship of Academic Pa-
pers.’ In: CHI ’12 Extended Abstracts on Human Factors in Computing Systems.
CHI EA ’12. Austin, Texas, USA: ACM, pp. 11–20. isbn: 978-1-4503-1016-1.
doi: 10.1145/2212776.2212779. url: http://doi.acm.org/10.1145/2212776.2212779.

Trevisan, Martino, Stefano Traverso, Eleonora Bassi, and Marco Mellia (2019).
‘4 Years of EU Cookie Law: Results and Lessons Learned.’ In: Proceedings on
Privacy Enhancing Technologies 2019.2, pp. 126–145.

Trigg, Randall H., Thomas P. Moran, and Frank G. Halasz (1987a). ‘Adaptability
and Tailorability in NoteCards.’ In: Human–Computer Interaction–INTERACT
’87. Elsevier, 723–728. isbn: 978-0-444-70304-0. doi: 10 . 1016 /B978 - 0 - 444 -
70304-0.50117-5. url: http://linkinghub.elsevier.com/retrieve/pii/B9780444703040501175.

Trigg, Randall H, Thomas P Moran, and Frank G Halasz (1987b). ‘Adaptability
and tailorability in NoteCards.’ In:Human–Computer Interaction–INTERACT’87.
Elsevier, pp. 723–728.

Tufekci, Zeynep (2017). Twitter and tear gas: The power and fragility of networked
protest. Yale University Press.

Turner, Phil and Susan Turner (1997). ‘Supporting Cooperative Working Using
Shared Notebooks.’ In: Proceedings of the Fifth European Conference on Com-
puter Supported Cooperative Work. Dordrecht: Springer Netherlands, pp. 281–
295. isbn: 978-94-015-7372-6. doi: 10.1007/978-94-015-7372-6_19. url: https:
//doi.org/10.1007/978-94-015-7372-6_19.

United Nations Department of Economic and Social Affairs (2020).United Nations
E-government Survey: Digital government in the decade of action for sustainable
development. United Nations.

Utz, Christine, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz
(2019). ‘(Un)Informed Consent: Studying GDPR Consent Notices in the Field.’
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’19. London, United Kingdom: ACM, pp. 973–990. isbn:
978-1-4503-6747-9. doi: 10.1145/3319535.3354212. url: http://doi.acm.org/10.
1145/3319535.3354212.

Van Alsenoy, Brendan (2019).Data Protection Law in the EU: Roles, Responsibilities
and Liability. Cambridge: Intersentia.

Veltman, KimH (2001). ‘Syntactic and semantic interoperability: new approaches
to knowledge and the semantic web.’ In: New Review of Information Networking
7.1, pp. 159–183.

Verbeek, Peter-Paul (2005).What things do: Philosophical reflections on technology,
agency, and design. Penn State Press.

Verou, Lea, Amy X. Zhang, and David R. Karger (2016). ‘Mavo: Creating Inter-
active Data-Driven Web Applications by Authoring HTML.’ In: Proceedings of
the 29th Annual Symposium on User Interface Software and Technology. UIST

237

https://doi.org/10.1145/2531602.2531680
http://doi.acm.org/10.1145/2531602.2531680
https://doi.org/10.1145/2212776.2212779
http://doi.acm.org/10.1145/2212776.2212779
https://doi.org/10.1016/B978-0-444-70304-0.50117-5
https://doi.org/10.1016/B978-0-444-70304-0.50117-5
http://linkinghub.elsevier.com/retrieve/pii/B9780444703040501175
https://doi.org/10.1007/978-94-015-7372-6_19
https://doi.org/10.1007/978-94-015-7372-6_19
https://doi.org/10.1007/978-94-015-7372-6_19
https://doi.org/10.1145/3319535.3354212
http://doi.acm.org/10.1145/3319535.3354212
http://doi.acm.org/10.1145/3319535.3354212

bibliography

’16. Tokyo, Japan: ACM, pp. 483–496. isbn: 978-1-4503-4189-9. doi: 10.1145/
2984511.2984551. url: http://doi.acm.org/10.1145/2984511.2984551.

Vila, Tony, Rachel Greenstadt, and David Molnar (2003). ‘Why We Can’T Be
Bothered to Read Privacy Policies Models of Privacy Economics As a Lemons
Market.’ In: Proceedings of the 5th International Conference on Electronic Com-
merce. ICEC ’03, pp. 403–407.

Welke, Larry (1980). ‘The Origins of Software.’ In: Datamation December.
Wing, Jeannette M. (Mar. 2006). ‘Computational Thinking.’ In: Commun. ACM
49.3, pp. 33–35. issn: 0001-0782. doi: 10 .1145/1118178 .1118215. url: http :
//doi.acm.org/10.1145/1118178.1118215.

Winner, Langdon (1980). ‘Do artifacts have politics?’ In: Daedalus, pp. 121–136.
World Justice Project (2020). Rule of Law Index. url: https://worldjusticeproject.org/

sites/default/files/documents/WJP-ROLI-2020-Online_0.pdf.
Yates, JoAnne (1995). ‘Application Software for Insurance in the 1960s and Early
1970s.’ In: Business and Economic History, pp. 123–134.

Yeh, Ron, Chunyuan Liao, Scott Klemmer, François Guimbretière, Brian Lee, Boyko
Kakaradov, Jeannie Stamberger, and Andreas Paepcke (2006). ‘ButterflyNet:
A Mobile Capture and Access System for Field Biology Research.’ In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’06.
Montréal, Québec, Canada: ACM, pp. 571–580. isbn: 1-59593-
372-7. doi: 10.1145/1124772.1124859. url: http://doi.acm.org/10.1145/1124772.
1124859.

Zachmann, Mark S. (1983). ‘Context MBA: Half a Step in the Right Direction.’ In:
PC Magazine 2.1.

Zaki, Zulkifly M., Peter M. Dew, Mohammed H. Haji, Lydia M. S. Lau, Andrew
Rickard, and Jennifer Young (2011). ‘A User-orientated Electronic Laboratory
Notebook for Retrieval and Extraction of Provenance Information for EUROCHAMP-
2.’ In: 2011 IEEE Seventh International Conference on eScience, pp. 371–378.
doi: 10.1109/eScience.2011.58.

Zaki, Zulkifly M., Peter M. Dew, Lydia M. S. Lau, Andrew R. Rickard, Jenny C.
Young, Tahir Farooq, Michael J. Pilling, and Chris J. Martin (2013). ‘Architec-
ture design of a user-orientated electronic laboratory notebook: A case study
within an atmospheric chemistry community.’ In: Future Generation Computer
Systems 29.8, pp. 2182 –2196. issn: 0167-739X. doi: 10.1016/j.future.2013.04.
011. url: http://www.sciencedirect.com/science/article/pii/S0167739X1300071X.

Zanfir-Fortuna, Gabriela (2020). Why data protection law is uniquely equipped to
let us fight a pandemic with personal data. url: https://pdpecho.com/2020/04/06/
why-data-protection- law- is-uniquely-equipped- to- let-us-fight-a-pandemic-with-personal-
data/ (visited on 07/08/2020).

Zittrain, Jonathan (2009). ‘The Generative Internet.’ In: Communications of the
ACM 52.1, 18–20. issn: 0001-0782, 1557-7317. doi: 10.1145/1435417.1435426.

Zuiderveen Borgesius, Frederik J, Sanne Kruikemeier, Sophie C Boerman, and Na-
tali Helberger (2017). ‘Tracking Walls, Take-It-Or-Leave-It Choices, the GDPR,
and the ePrivacy Regulation.’ In: European Data Protection Law Review 3.3,
pp. 353–368. doi: 10/gfsh4x.

238

https://doi.org/10.1145/2984511.2984551
https://doi.org/10.1145/2984511.2984551
http://doi.acm.org/10.1145/2984511.2984551
https://doi.org/10.1145/1118178.1118215
http://doi.acm.org/10.1145/1118178.1118215
http://doi.acm.org/10.1145/1118178.1118215
https://worldjusticeproject.org/sites/default/files/documents/WJP-ROLI-2020-Online_0.pdf
https://worldjusticeproject.org/sites/default/files/documents/WJP-ROLI-2020-Online_0.pdf
https://doi.org/10.1145/1124772.1124859
http://doi.acm.org/10.1145/1124772.1124859
http://doi.acm.org/10.1145/1124772.1124859
https://doi.org/10.1109/eScience.2011.58
https://doi.org/10.1016/j.future.2013.04.011
https://doi.org/10.1016/j.future.2013.04.011
http://www.sciencedirect.com/science/article/pii/S0167739X1300071X
https://pdpecho.com/2020/04/06/why-data-protection-law-is-uniquely-equipped-to-let-us-fight-a-pandemic-with-personal-data/
https://pdpecho.com/2020/04/06/why-data-protection-law-is-uniquely-equipped-to-let-us-fight-a-pandemic-with-personal-data/
https://pdpecho.com/2020/04/06/why-data-protection-law-is-uniquely-equipped-to-let-us-fight-a-pandemic-with-personal-data/
https://doi.org/10.1145/1435417.1435426
https://doi.org/10/gfsh4x

bibliography

Östberg, P., A. Hellander, B. Drawert, E. Elmroth, S. Holmgren, and L. Petzold
(2012). ‘Reducing Complexity in Management of eScience Computations.’ In:
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (ccgrid 2012), pp. 845–852. doi: 10.1109/CCGrid.2012.72.

239

https://doi.org/10.1109/CCGrid.2012.72

	Dedication
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Setting the Agenda
	1 Introduction
	1.1 Software Power
	1.2 Software Control
	1.3 Software Negotiation
	1.3.1 Negotiable software
	1.3.2 Negotiation software

	2 Research Questions & Dissertation Structure
	2.1 A personal reflection on the dissertation content and structure

	3 Publications

	Negotiable Software
	4 Introduction
	4.1 Software: Applications
	4.2 Context: Knowledge work

	5 A Brief History of the Application; or, How the Commodification of Software shaped its Negotiability
	5.1 Introduction
	5.2 The material creation of software
	5.3 The cooperative design of software
	5.4 Software as a package
	5.5 The rise of the software product
	5.6 The first wave of microcomputers
	5.7 The gold rush of application programs
	5.8 The search for software integration
	5.8.1 Application families
	5.8.2 Integrated packages
	5.8.3 Windowed Application Managers
	5.8.4 Component Software

	5.9 Conclusion

	6 Surveying Application Use in Danish Knowledge Work
	6.1 Introduction
	6.2 Method
	6.2.1 Participants
	6.2.2 Materials
	6.2.3 Procedure
	6.2.4 Analysis

	6.3 Results & Discussion
	6.3.1 The Demographics of Danish Knowledge Workers
	6.3.2 Education
	6.3.3 Occupation and industry
	6.3.4 Hardware
	6.3.5 Software
	6.3.6 Software Customisation
	6.3.7 Digital Competences

	6.4 Conclusion

	7 Surveying Application Use in Danish Knowledge Work
	7.1 Introduction
	7.2 Method
	7.2.1 Instrument design
	7.2.2 Data collection
	7.2.3 Data processing

	7.3 Results
	7.3.1 Hardware Working Environment
	7.3.2 Software Working Environment
	7.3.3 Digital Competences
	7.3.4 Digital Appropriation

	7.4 Discussion
	7.4.1 The Dream of Personal Computing
	7.4.2 The Geopolitics of Software
	7.4.3 The Need for Digital Working Conditions Research

	7.5 Limitations
	7.6 Conclusion and future research

	8 The Application and its Consequences for Non-Standard Knowledge Workers
	8.1 Introduction
	8.2 Related Work
	8.2.1 Knowledge Work
	8.2.2 Non-Standard Work
	8.2.3 Applications

	8.3 Methodology
	8.3.1 Participants
	8.3.2 Data Collection
	8.3.3 Analysis

	8.4 Results
	8.4.1 The Natures of Non-Standard Knowledge Work
	8.4.2 The Value in Applications
	8.4.3 Personal Preference vs. Collective Compromise
	8.4.4 Cross-Application Collaboration
	8.4.5 Preferred Alternatives

	8.5 Discussion
	8.5.1 Application-Application Relationship
	8.5.2 Application-Document Relationship
	8.5.3 Implications for Research, Development, and Design

	8.6 Conclusion

	9 Negotiable software: Literate Computing with Webstrates
	9.1 Introduction
	9.2 Related work
	9.2.1 Collaborative systems and documents
	9.2.2 Scriptable and reprogrammable applications
	9.2.3 Interactive notebooks using literate computing

	9.3 Codestrates Overview
	9.3.1 Use of paragraphs and sections
	9.3.2 Uses of Codestrates
	9.3.3 Interactive notebooks in Codestrates
	9.3.4 Extending codestrates in Codestrates
	9.3.5 Developing applications in Codestrates

	9.4 Implementation
	9.4.1 How Webstrates works
	9.4.2 Codestrates

	9.5 Discussion
	9.5.1 Limitations and future work
	9.5.2 Systems-oriented evaluation

	9.6 Conclusion

	10 Between Scripts and Applications: Negotiable Software for the Frontier of Nanoscience
	10.1 Introduction
	10.2 Related Work
	10.2.1 Lab Notebooks and e-Science Tools
	10.2.2 Computational Media

	10.3 Method
	10.3.1 Participants
	10.3.2 Observations and Interviews
	10.3.3 Participatory Design of a Possible Future Prototype
	10.3.4 In-situ Interviews While Using the Prototype

	10.4 Findings
	10.4.1 Overview of the Lab
	10.4.2 Computational Characteristics
	10.4.3 The Computational Labbook Prototype

	10.5 Discussion
	10.5.1 Distributability
	10.5.2 Shareability
	10.5.3 Malleability
	10.5.4 Computability

	10.6 Conclusion

	11 Conclusion

	Negotiation Software
	12 Introduction
	12.1 Software: Consent Management Platforms
	12.2 Context: European Digital Rights and Responsibilities

	13 A Brief History of Web Tracking and Consent Pop-ups
	13.1 The invention of tracking
	13.2 User control over tracking
	13.3 Regulatory response
	13.3.1 The United States and Self-Regulation
	13.3.2 The European Union and Government Regulation
	13.3.3 The General Data Protection Regulation

	13.4 Conclusion

	14 Dark Patterns after the GDPR: Scraping Consent Pop-Ups and Demonstrating their Influence
	14.1 Introduction
	14.2 Consent and Web Technologies under EU Law
	14.2.1 Freely given and unambiguous consent
	14.2.2 Specific and informed consent
	14.2.3 Efficient and timely data protection

	14.3 Related Work
	14.3.1 Notice & Consent
	14.3.2 Dark patterns
	14.3.3 Empirical Studies of EU Privacy Regulation

	14.4 Study 1: Scraping CMP Interface Designs
	14.4.1 Method
	14.4.2 Understanding compliance
	14.4.3 Results
	14.4.4 Interim Discussion
	14.4.5 Limitations

	14.5 Study 2: Demonstrating the Effects of Designs on Answers
	14.5.1 Method
	14.5.2 Results
	14.5.3 Interim Discussion
	14.5.4 Limitations

	14.6 Discussion and Conclusion

	15 Negotiating Consent Pop-ups with Supervisory Authorities in Denmark
	15.1 Introduction
	15.2 Supervisory Authorities
	15.2.1 The ePrivacy Directive enforcement authority
	15.2.2 The GDPR enforcement authority

	15.3 Enforcement Status Quo
	15.3.1 ePrivacy Directive
	15.3.2 General Data Protection Regulation

	15.4 The Negotiation Process
	15.4.1 Gathering the Data
	15.4.2 Raising the Priority

	15.5 Negotiation outcome
	15.6 Conclusion & Future Work

	16 Negotiating Consent Pop-up Designs using Adversarial Interoperability
	16.1 Introduction
	16.2 Software-mediated Negotiation
	16.3 Interoperability
	16.4 Consent Management Platform Designs
	16.4.1 Dynamic vs. static HTML
	16.4.2 Semantic markup
	16.4.3 Hidden state

	16.5 Consent-automating Software: Consent-o-Matic
	16.5.1 DOM Selection and Actions
	16.5.2 Consent Preferences

	16.6 Negotiation outcome
	16.7 Conclusion

	17 Conclusion

	Last and Final Offer
	18 Negotiating Software as a Countermovement
	Bibliography

