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Abstract. This review focuses on methods for trajectory prediction of moving entities (i.e., 
pedestrian workers and heavy construction equipment) in construction. To the authors’ knowledge 
it is the first review on trajectory prediction devoted to construction safety. Through a bibliometric 
analysis of the relevant literature, it examines the input data and prediction models used for trajectory 
prediction in dynamic and complex construction environments. Several techniques are available to 
perform prediction and their performance varies widely. Various types of data is being used, 
however, so far vision-based data is the major input to the models. Hence, computer-vision 
techniques are deployed for object tracking to infer the locations of the construction resources in 
almost entirely outdoor environments. This review concludes with an overview of the gaps, 
challenges, and future research steps for trajectory prediction relevant for researchers as well as 
practitioners working on reducing occupational health and safety hazards on construction sites. 

1. Introduction
Construction sites are highly dynamic and constantly evolving environments. Due to the 
irregular environment, workers are prone to accidents mainly attributed to four key hazards, 
namely falls from height, struck-by heavy objects, caught-in or –between, and electrocutions. 
Furthermore, many construction accidents involve pedestrian workers in the proximity of static 
or dynamic hazards, such as unprotected leading edges, moving heavy construction equipment, 
or lifted crane loads. In 2019, nearly two-thirds of all construction fatal accidents in the U.S. 
were caused by those types of hazards also known as the ‘Construction Focus Four’ (CPWR, 
2021). This is a reason why construction in the US remains at the top of the list of fatal accidents 
as it observes a 25%-share of all fatalities for the year 2019 (U.S. Bureau of Labor Statistics, 
2020). 
Trajectory prediction literature in the field of construction contributes mainly towards two 
directions. First, is the development of proactive real-time safety systems based on proximity 
monitoring for accident prevention. Those systems aim to provide relevant stakeholders (e.g., 
workers, equipment operators, safety managers) information for identifying static or dynamic 
hazard zones and performing safety decision-making, as well as enough response time for 
preventing imminent potentially hazardous events. Second, is the transition of construction to 
automation and autonomy where trajectory prediction is critical for safety planning and 
collision avoidance in human-robot collaboration.  
Proximity monitoring and detection in construction sites have been a major research area, and 
various location tracking methods have been adopted for acquiring spatio-temporal data of 
onsite moving workers and equipment. For instance, radio frequency identification (RFID) 
technology has been adopted in proximity warning systems (Schiffbauer, 2001; Teizer et al., 
2010), as well as ultra wideband (UWB) (Cheng et al., 2011; Teizer and Cheng, 2015), 
Bluetooth low-energy (BLE) (Lin et al., 2015; Teizer et al., 2017), Global Navigation Satellite 
Systems (GNSS) (Li et al., 2013; Zhang et al., 2015) and Long Range Wide Area Networks 
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(LoRA) (Teizer et al., 2020) for indoor and outdoor localization accordingly. More recently, 
vision-based systems that take advantage of modern computer vision techniques have been 
developed to identify the location of objects in construction site environments (Nahangi et al., 
2018; Kim et al., 2020). Those studies investigated and validated the applicability of such 
location tracking technologies in various construction site environments and demonstrated high 
accuracy. However, the uncertainties in the dynamic construction environment affect the 
accuracy of proximity warning systems and alert frequency, reducing users’ trust and 
potentially limiting their situational awareness (Ruff, 2006). 
Regardless of when the construction sector will eventually achieve the envisioned level of 
autonomy, both directions are significant to ensure and reinforce the safety of workers in the 
dynamic and complex construction environment. The remainder of this paper is structured as 
follows, (a) an introduction to the methodology of the literature review, (b) quantitative results 
on the applications of trajectory prediction in construction as well as what input data and 
prediction models are used, and (c) discussion of the challenges and future directions. The main 
contributions of this paper are (i) identification of applications and methods for trajectory 
prediction used in construction, (ii) limitations and challenges of the existing studies, and (iii) 
future research steps in trajectory prediction for safety in construction.  

2. Method 
The literature review and the bibliometric analysis are based on the Scopus and Web of Science 
(WoS) scientific databases because of the extensive coverage of literature, the ability to export 
the search results as comma separated values (CSV) file for further analysis, and the support of 
Boolean (i.e., “AND”, “OR”) and proximity operators (i.e., “W/”, “NEAR/”) in search strings 
for advanced queries. The selected scientific databases have been successfully used in previous 
state-of-the-art review papers (Jacobsen and Teizer, 2022; Kim et al., 2019). The yielded search 
results have been exported in CSV file format and used for further analysis. The export contains 
the citation information (e.g., authors, title, and year) and, abstract and keywords. 
The literature search is performed as a keyword search query by using keywords and, Boolean 
and proximity operators to limit the yielded results to the intended focus area. The search string 
consists of two parts. The first part contains the keywords “trajector*”, “move*”, “path” and 
“motion” followed by “predict*” and “forecast*” combined with the proximity operator “W/2” 
(or “NEAR/2 in WoS)”, that is for combinations of sets of keywords within two words space. 
The “or” operator is used to include all keyword sets variations. The asterisk wildcard is used 
to indicate a character that may or may not be present in the term. The second part is focused 
on yielding results that are relevant to the construction sector and therefore, it includes the 
keyword “construction” followed by keywords such as, “worker”, “site”, “safety”, “project” 
and “environment”. The results are limited to publications written in English. 

3. Data 
The publications that were yielded from the search were first filtered by eliminating the 
duplicate records in the two databases. Subsequently, the results were screened to only include 
relevant publications. The screening was done by searching in the titles and abstracts for topics 
and research fields that are not in the scope of the review. These topics include for instance soil 
mechanics and geotechnical engineering, offshore engineering, cost estimation, and labour 
ergonomics, and therefore, the corresponding papers were excluded from the publications 
database. This resulted in a total of 49 papers that were further assessed for eligibility. 
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The overall review process can be described by the following stages, (i) identification of the 
records from the selected digital databases and duplicate elimination, (ii) screening of the initial 
results, (iii) eligibility assessment of the publications, and (iv) inclusion of the relevant studies 
(as shown in Figure 1). The analysis of the current state-of-the-art for the trajectory prediction 
in construction aims to shed light on two main questions: What models or methods have been 
used for trajectory prediction in construction in previous studies, and what type of input data 
are utilized? For this, the abstracts and full text of the selected publications were reviewed.  

  

Figure 1: Stages and flow of the review process (number of publications in parentheses). 

3.1 Input Data 
Each publication on the topic of trajectory prediction in construction has been categorized based 
on the type of input data that are used by the corresponding predictive method to perform the 
prediction task. Regardless of the technology used, trajectory prediction requires either 
acquiring raw location tracking data (i.e., x, y, z coordinates over time) or inferring the location 
of the tracked entities indirectly, for instance, through the analysis of video-recorded footage 
and the application of object tracking techniques. 
Therefore, the input data could be grouped into three main categories, (i) vision-based data, (ii) 
raw location tracking data, and (iii) point clouds. In the analysed publications, the most 
frequently used type of input is vision data, namely camera footage from construction sites. The 
cameras used in the corresponding studies are mostly stationary and less frequently embedded 
in moving vehicles, such as unmanned aerial vehicles (UAVs). Another type of input data used 
is location tracking data from GNSS devices. Lastly, 3-dimensional point cloud data from Light 
Detection and Ranging (LiDAR) sensors which are combined with kinematic data from inertial 
motion units, stroke sensors, and rotational encoders that measure force, angular rate and 
displacement of objects. Figure 2 shows the number of publications per type of input data. 

3.2 Model 
To understand how the trajectory prediction of moving workers and equipment is performed in 
the construction safety literature, the adopted models and methods for trajectory prediction have 
been investigated in the publications dataset. Deep neural networks (DNN) are commonly used 
for trajectory prediction. A sub-genre of DNN is recurrent neural networks (RNN) in which 
long short-term memory (LSTM) models are the most common for trajectory prediction 
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problems. In other publications, Kalman filtering (KF) and hidden Markov models (HMM) are 
used for the prediction of workers and equipment motions. An illustration of the distribution of 
adopted methods in the identified publications is presented in Figure 3. 

 

Figure 2: Publications per year and type of input data used for trajectory prediction. 

 

Figure 3: Publications per year and method used for trajectory prediction. 

4. Results 
Trajectory prediction is a critical topic in other relevant research fields, motivated and enhanced 
by the rapid technological advancements of the computational power as well as of the 
availability and cost-effectiveness of computational, sensory and data acquisition technologies. 

4.1 Trajectory Prediction in Construction 
Trajectory prediction in construction refers to the short-term prediction of the path followed by 
a moving object within 1 to 10 seconds ahead and focuses on two main directions. First, the 
development of proactive real-time safety systems based on proximity monitoring for accident 
prevention (Golovina et al., 2019), and second, the transition of construction to automation and 
autonomy where trajectory prediction is critical for safety planning and collision avoidance in 
human-robot collaboration. Although the future of automation and robotics in construction is 
promising (Garcia de Soto and Skibniewski, 2020), the majority of the identified publications 
focus on proximity monitoring for accident prevention rather than on construction automation. 
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Three categories of input data were found to be used for trajectory prediction in construction 
literature: vision-based data, raw location tracking data, and 3-dimensional point cloud data 
from LiDAR sensors. Similar to Jacobsen and Teizer (2022) the average time of publication 
(ATP) is used as a bibliographic metric. Table 1 shows the ATP for the different types of input 
data, prediction methods and applications in the construction literature. The most common input 
type, namely the vision-based data have an ATP of 2019.2, whereas the LiDAR data have the 
highest ATP with very limited publications. DNN models are the most commonly used and 
have the highest ATP contrary to the other predictive models that have also developed in the 
previous decades. This is arguably showing a trend in the application of DNN for trajectory 
prediction in construction. The three types of input data and models adopted for trajectory 
prediction in the identified construction literature are depicted in Table 2 and further discussed 
in the following sub-sections. 

Table 1: Average time of publication (ATP) and number of papers for different types of input data 
and model adopted for trajectory prediction in construction. 

Input data ATP Publications Method ATP Publications 

Vision 2019.2 11 DNN 2020.1 7 

GNSS 2017.3 3 Kalman Filter 2019.0 5 

LiDAR 2020.5 2 HMM 2017.3 3 

Other 2016.6 1 

Table 2: Model adopted for different types of input data for trajectory prediction in construction. 

Input data DNN Kalman Filter HMM Other References 

Vision x Rezazadeh Azar, (2016) 

x (ConvLSTM) Bang et al., (2021) 

x (Seq2Seq LSTM) Cai et al., (2020) 

x Deng et al., (2021) 

x (Seq2Seq LSTM) Hu et al., (2020) 

x (Social LSTM+GAN) Kim et al., (2019) 

x (Social LSTM+GAN) Kim et al., (2020) 

x (Social LSTM) Kong et al., (2021) 

 x (UKF) Papaioannou et al., (2017) 

x (LSTM+MDN) Tang et al., (2020) 

x Zhu et al., (2016) 

GNSS x Rashid and Behzadan, (2017) 

x Rashid et al., (2017) 

x Rashid and Behzadan, (2018) 

LiDAR x (EKF) Rasul et al., (2020) 

x (UKF) Rasul et al., (2021) 

Vision-based Data 

Video recorded footage is used for predicting the movement of workers and equipment in 
construction sites through vision-based object recognition. The tracked objects (i.e., workers 
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and equipment) are identified in the frames using computer vision and the motion vector is then 
calculated. Short-term prediction is commonly performed based on NN models and KF, 
whereas HMM are less frequently applied. Zhu et al. (2016) proposed a framework for 
computer vision-based estimation of position and short-term prediction of workers and mobile 
equipment. The researchers assumed functionality with clear and of acceptable quality videos 
with limited occlusions, which makes the framework susceptible to input of inferior quality. To 
solve the tracking limitations in construction environments, Rezazaddeh Azar (2016) developed 
a vision-based equipment tracking algorithm for automated camera control with predictive 
capability by estimating the motion vector and speed of the tracked object. 

To increase the accuracy of the predictive models semantic and contextual information is used 
combining input from other sensory technologies. Papaioannou et al. (2017) introduced a 
system that uses footage from CCTV camera infrastructure and data from the inertial sensors 
embedded on modern smartphones and applied the Social Force Model (SFM) to consider 
obstacles and other people in the scene, assuming that they affect the behaviour of human 
motion, and represent their effect as repulsive forces. Cai et al. (2020) designed an LSTM model 
to predict worker trajectories in construction environments, considering additional contextual 
information, namely the distance to the nearest neighbour, the relationship between that 
neighbour and the tracked worker, and the distance to destination. An LSTM network combined 
with mixture density network (MDN) for construction workers and equipment path prediction 
towards right time intervention of collision and intrusion was constructed by Tang et al. (2020). 
The model considers two contextual cues, namely the distance between moving and static 
objects and the type of objects (i.e., worker and vehicle) to predict up to 2 seconds in the future. 
Although the model outperforms other existing models, it is still limited by the dynamic visual 
occlusions due to other moving construction resources. Semantic information in the form of 
predefined hazard zones is also considered in the literature. Deng et al. (2021) used KF to 
predict the movement of workers in construction sites and the estimated trajectory is checked 
against a set of artificial danger zone boundaries to determine whether the prediction point lies 
inside or outside of the zones. Considering the occlusion limitations, the researchers performed 
multi-angle detection which however, is limited by the camera resolution, especially when the 
workers are far from the camera position. Kong et al. (2021) proposed a framework for workers’ 
trajectory prediction in construction sites based on the Social LSTM architecture. The 
framework takes into consideration the workers’ unsafe behaviour, defined as any movement 
towards predefined hazardous areas, and corrects the predicted trajectories using KF. One 
important shortcoming of that study is related to the validation of the pre-trained model, 
performed on their own dataset with limited scenarios, preventing it from being generalizable. 

Only two of the identified publications focused on the future construction, where human 
workers and robots co-exist and collaborate. Kim et al. (2019) proposed a framework based on 
social generative adversarial network (S-GAN) for trajectory prediction to tackle contact-driven 
hazards in construction between workers and autonomous trucks. Their results showed that 
longer observation periods do not necessarily lead to higher prediction accuracy, due to 
inclusion in the prediction of less relevant time steps. In a later study, they evaluated the model 
on a controlled testbed, including a worker and a truck following three predefined movement 
patterns (Kim et al., 2020). Hu et al. (2020) expanded the application of the LSTM model 
developed by Cai et al. (2020), by implementing the A* path planning algorithm for 
autonomous robots in construction sites. However, the study validates the worker trajectory and 
path planning algorithms separately assuming flat ground surface. 
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Location Tracking Data 

GNSS are satellite-based navigation technologies that depend on the satellites orbiting around 
the earth. Existing studies have deployed low-cost GNSS technology for tracking construction 
resources to enhance construction safety, planning and management (Pradhananga and Teizer, 
2013; Zhang et al., 2015). GNSS data have also been used as input to trajectory prediction 
models in construction applications. Rashid and Behzadan (2017) developed a smartphone-
based application for trajectory prediction of workers to prevent contact-driven accidents in 
construction sites. The underlying model is based on HMM. A risk factor is introduced and 
ranges between 0 and 1 depending on the angle between the trajectory and the centre of one 
stationary and user-defined hazard zone (Rashid et al., 2017). The model was further developed 
to consider one static or dynamic hazard (i.e., moving between two points) and validated it by 
comparing to a benchmark Polynomial Regression model, showing better prediction accuracy 
(Rashid and Behzadan, 2018). Both models however, are error-prone in predicting trajectories 
with sharp turns and are limited to a single pedestrian worker and a predefined hazard. 
Furthermore, the application considers outdoor construction activities due to the limitations of 
GNSS technologies in indoor environments. Another shortcoming is related to the large number 
of detected close-call events (n=369) and potential collisions (n=77) in a 30-minute experiment, 
which could hinder the users’ situational awareness and trust in the warning system and lead to 
delays.  

Point Clouds 

Point clouds are sets of data points in space that can represent 3-dimensional objects, where 
each point has its own set of x, y and z coordinates. In a recent study, a LiDAR sensor was 
utilized to acquire point cloud data to track the positions of heavy machinery and obstacles in 
a construction site (Rasul et al., 2020; Rasul et al., 2021). The raw point cloud data were 
analysed to first detect the heavy machinery (i.e., excavator) and then perform detection and 
clustering of other objects (i.e., workers and machinery) of a width greater than 0.4m, which is 
the average chest width of a human being. The Extended Kalman Filter (EKF) was adopted for 
predicting the position and velocity of the moving objects, whereas the excavator’s predicted 
working area was calculated based on kinematics analysis and data from embedded stroke 
sensors and a rotational encoder (Rasul et al., 2020). In a later study, they used unscented 
Kalman filtering (UKF) to predict the non-linear motion dynamics of the moving objects. In 
both studies two safety indices are defined and used, namely the time to collision (TTC), and 
the warning index (x) defined as the degree of potential collision risks. 

5. Gaps, Challenges and Future Research
This paper reviews the problem of trajectory prediction in dynamic and complex construction 
environments and discusses the current applications, prediction methods and input data used 
for the predictive task. The following summarizes the gaps, challenges and directions for future 
research for trajectory prediction with a specific focus on the construction site applications: 

1. Predicting the future trajectories of moving objects while incorporating human behaviour
is a highly complex problem and hence it is limited to short-term prediction typically for 1-
10 seconds ahead with decreasing performance when the prediction horizon increases.
Previous studies improved the models’ accuracy by correcting the predicted trajectories
with KF, whereas other methods include construction semantic (i.e., static hazard zones)
and contextual information (e.g., distance from hazards, risk factor) to achieve better
performance. Trajectory prediction of moving construction resources should not neglect
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pedestrian workers and their contribution to potentially hazardous events. Future research 
should focus on both construction heavy equipment and pedestrian workers while 
integrating additional construction semantic information. For instance, construction 
semantic information such as dynamic hazard areas, work order and construction site layout 
information (Chronopoulos et al., 2021) could potentially further improve the prediction 
performance and thus, increase the impact of the developed architectures in real 
construction applications. 

2. Currently, trajectory prediction in construction aims to support the development of 
proactive real-time safety systems for accident prevention. Increasing the accuracy of 
prediction models is a common goal among all identified publications. However, it is 
important to consider the time dimension in proactive warning systems and the feedback 
must be shared at the desired level-of-detail at the right-time instead of in real-time (Teizer, 
2016). Frequent warnings can limit the situational awareness and trust in the warning system 
of workers and operators (Ruff, 2006). Novel systems focusing on construction safety 
though trajectory prediction should ensure not only high prediction accuracy but also right-
time warning functionality. 

3. The current state-of –the-art of trajectory prediction in construction mostly utilizes vision-
based data as input to computer-vision methods for object recognition and tracking. For 
this, recorded videos from cameras on-board UAVs, stationary commercial cameras, 
existing CCTV infrastructure and public datasets (Lerner et al., 2007) are used to train or 
validate the developed models. This introduces three significant issues that need to be 
considered in future research studies. First, is the comparability of performance metrics 
between models that are validated on different datasets. Second, is the absence of publicly 
available datasets for the construction sector to be used as benchmark for validating the 
developed models. Third, the use of camera-based systems in dynamic and rough 
construction environments is susceptible to various limitations, such as occlusions (Zhu et 
al., 2016), camera equipment resolution (Deng et al., 2021) and limited field-of-view 
(Jacobsen and Teizer, 2021), dust, weather conditions, malicious acts, and vandalisms.  

4. The trajectory prediction literature in the context of construction focuses primarily on 
outdoor applications and thus the proposed methods including the tools, models, training 
and validation are structured based on that spatial assumption. However, several types of 
private or public construction projects take place in indoor environments, for instance 
buildings, underground and tunnelling projects with additional constraints (e.g., limited 
luminosity, dust, no network, signal or GNSS coverage) that further constrain the 
applicability and scalability of those methods in the aforementioned projects. Future 
research efforts should also include indoor or hybrid construction environments in 
developing and validating trajectory prediction models for construction safety. 

6. Conclusion 
This review paper is, to the authors’ knowledge, the first that presents an overview of the 
trajectory prediction models for complex and dynamic construction environments. Deep neural 
networks are commonly used in recent studies to perform prediction compared to other 
methods. To increase the performance of the models, linear estimation models have been 
applied and integration of limited contextual and semantic information is performed. Various 
limitations exist and are related to the applied technologies as well as the dynamic and complex 
characteristics of the construction environments. The paper discusses those limitations and 
proposes future research steps in trajectory prediction for safety in construction. For instance, 
the integration of additional construction semantic information (e.g., dynamic hazard areas, 
work order and construction site layout information) to further improve the prediction accuracy 
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and the consideration of right-time proactive warning systems not only in outdoor construction 
environments but also in indoor or hybrid construction projects.  
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