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Abstract. In this study, a novel method for direct work estimation is used to classify whether a 

painter is performing direct work or not. The aim is to build an accurate and reliable work 

classification algorithm that can help monitor construction sites. The method utilizes a deep learning 

algorithm using convolutional and long short-term memory layers to classify multivariate time-

series data collected from five inertial measurement units (IMUs) mounted on the workers’ arms, 

torso, and legs. Three models are developed, differing in window sizes from 3 seconds to 7 seconds. 

The best performing model achieves an accuracy of 90% and an F1-score of 87.6%. This is the first 

step towards a general model that can classify productivity measures for workers on construction 

sites, which will be a valuable input for monitoring construction sites and future analyses. 

1. Introduction

The construction industry is very labor-intensive as it consists of many manual tasks. The ability 

to monitor and manage both workers and activities can be an essential tool to ensure projects 

are within the scope of time and cost. Several publications have over the last decade shown the 

construction industry lacks behind other industries in terms of productivity (Neve et al., 2020; 

Chapman et al., 2010). The conclusions vary due to the complex nature of the construction 

industry and the difficulty of consistently measuring productivity. The methods used are easily 

biased and often lack continuity, only looking at small percentages of the construction projects’ 

timespan. No standardization has been made for monitoring productivity, which is currently 

done on several levels, from project to task and worker levels. Therefore, developing methods 

that allow for continuous monitoring of construction worker productivity is necessary to 

improve construction projects' performance.  

Productivity can be an intangible concept as different tasks require different actions; different 

tasks have different definitions of whether an action is productive. In general, construction labor 

productivity (CLP) can be defined as the product output per person-hour worked. Several other 

factors are relevant when examining productivity, but as a measure of performance, CLP has 

been used alone as it is a significant factor for the total project cost, as well as because it is the 

only factor that is conscious of its contribution (Wandahl et al., 2021). This paper (1) gives an 

overview of current activity recognition and productivity estimation research in construction, 

(2) introduces a deep learning method for productivity estimation, (3) shows the early

implementation and preliminary results of the model, and (4) discusses the future work

regarding the method, the current challenges, and the potential.

2. Background

CLP has been extensively studied using manual methods, especially work sampling (Araujo et 

al., 2020; Wandahl et al., 2021; Gouett et al., 2011). Work sampling can be used to estimate 

CLP due to the direct correlation between the direct work (DW) category “producing” and 
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productivity. Automated processes, especially machine learning methods, have also been 

investigated to estimate productivity using static information such as project size, worker 

experience, or contractual agreements (Jacobsen and Teizer, 2022). The methods differ in the 

modality used for activity recognition, and most publications fall into one of three categories: 

images/videos, audio, or kinematic data (Sherafat et al., 2020). 

2.1 Computer Vision Methods 

Research within computer vision has seen an increase in interest from construction research 

(Jacobsen and Teizer, 2022). The methods based on images and videos have also been used for 

activity recognition. Luo et al. (2018) developed a convolutional neural network (CNN) model 

based on optical flow to recognize three actions: Walking, transporting, and steel bending. 

Support Vector Machine (SVM) is a highly used model, which has been used for activity 

detection both in lab settings (Khosrowpour et al., 2014) and on actual construction sites (Liu 

and Golparvar-Fard, 2015; Yang et al., 2016; Khosrowpour et al., 2014). Computer-vision 

methods have, in most cases, seen very well-performing models due to the efforts that have 

been put into the field of computer-vision methods, developing robust recognition models. 

However, computer-vision methods have limitations. Using cameras requires a well light scene, 

is a stationary method, and suffers in almost every configuration, especially in dynamic work 

settings, from occlusions (Jacobsen and Teizer, 2021). Furthermore, storing the information 

needed for the supervised machine learning algorithms can be costly as the files from cameras 

(pictures or videos) require large amounts of storage (Sherafat et al., 2020). 

2.2 Audio-based Methods 

Audio-based recognition for construction workers has primarily been used for activity detection 

through either an array of microphones or single microphones installed on job sites. A 

substantial part of the publications uses SVM for activity recognition. Several different features 

are used across the publications. Rashid and Louis (2020) utilize four domain-specific feature 

sets for their classification: time-, frequency-, cepstral-, and wavelet-domain features. Their 

algorithm was used to classify activities: nailing with nail-gun, hammering, table-saw cutting, 

and drilling. Others use only cepstral features (Yang et al., 2015) or only time features (Cheng 

et al., 2017). As the experiments differ in activities classified, experimental setup, and data 

quantities, it is impossible to compare these to each other, which is also why it is impossible to 

state which features are the most important when using audio-based methods for classifying 

activities. However, Rashid and Louis (2020), who use in total 318 features, shows that for their 

experiments, cepstral-domain features contribute the most to the algorithm’s performance and 

wavelet-domain features contribute the least.  

2.3 Kinematic-based Methods 

Kinematic signals such as orientation data, magnetic fields, acceleration, and angular velocity 

have been used as a basis for activity detection algorithms. These data streams are collected 

from sensors, for instance, inertial measurement units (IMUs). This is possible as activities 

often have unique kinematic patterns. Different types of machine learning algorithms have been 

used to classify these patterns.  Joshua and Varghese (2011) used decision trees, Naïve Bayes 

and multilayer perceptron to classify bricklaying activities using one acceleration sensor. More 

recent work has investigated other methods for activity classification, such as neural networks, 

KNN, and SVM (Akhavian and Behzadan, 2018; Ryu et al., 2018; Yang et al., 2019). Similarly 

to audio-based methods, SVM is a frequently used algorithm in this domain. This could be due 
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to its ease of implementation or the simplicity of most implementations. Some studies also 

utilize IMUs in combination with other datastreams, such as location (Cheng et al., 2013). Here 

the location is used for spatiotemporal reasoning, where zones have been predefined as working 

zones or material zones, to assist in classifying a movement into working, idling, walking or 

material handling. 

3. Methods

In this section, an introduction to the proposed method for estimating direct work is given. First, 

the data acquisition and the pre-processing steps are explained. After introducing the initial 

steps, the deep learning model and the tuning investigated will be explained. Finally, the model 

performance will be assessed through accuracy, precision, and F1-scores. 

3.1 Raw Kinematic Data and Pre-processing 

The raw kinematic data is collected from five IMUs placed on the worker, as shown in Figure 

1. The data is collected at 60 Hz, and six features are used for each IMU. The features are

acceleration on three axes and angular velocity around three axes. 60 Hz is used for the data

collection, as this is the standard output of the sensor. If the system was to be used for real-time

prediction, the optimal frequency should be investigated, as this is believed to become a tradeoff

between accuracy and computational efficiency. Other publications have used similar sampling

frequencies (Sherafat et al., 2020)

Figure 1: (a) Sensor position marked in red, (b) The sensor used for data collection, (c) 

Implementation on worker body 

After data collection, each participants’ data are combined into an array containing all features 

(30 in total). A fixed length sliding time window is used with 50% overlap as the input. Several 

window lengths have been investigated to assess how this affects performance. These 

configurations are window lengths of 3, 5, and 7 seconds. Each window is labelled based on 

video footage used as ground truth. The windows are labelled based on the amount of data that 

belongs to each class in the window, with the most frequent class being the overall label of the 

given window.  

Data augmentation was implemented to increase the amount of data available for training the 

model. This method has been proven successful in many domains, such as activity recognition 

of construction machinery (Rashid and Louis, 2019). Two augmentations have been 

implemented: Jittering and scaling. Both of which have been done four times, with different 

distributions. An example of a 3 second window is shown in Figure 2. 
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Figure 2: Data augmentation of a 3 second window. Each color represents a channel from the dataset 

(either acceleration or angular velocity). 

3.2 Time Series Classification Model 

The core of this method is a deep learning algorithm utilizing stacked convolutional layers to 

extract features and LSTM layers to find temporal relations in the feature maps created by the 

stacked convolutional layers. The convolutional layers use a 1D kernel to compute a temporal 

convolution of the data given by each sensor input. This kernel can be seen as a filter running 

over the input, filtering the data to find features. In stacked convolutional networks, the deeper 

layers will represent the features in more abstract ways, which have significantly impacted 

language processing (Krizhevsky et al., 2012) and computer vision (Jacobsen and Teizer, 

2022). The method of combining convolutional layers with LSTM also has shown robust 

performance on human activity recognition before (Ordóñez and Roggen, 2016). The model 

used in this research consists of convolutional layers, each with 32 filters, whereafter the data 

is then reshaped into a 2D array fed into LSTM layers connected to dropout layers. Finally, the 

architecture uses a flatten layer followed by a dense layer before the output layer.  

4. Model Evaluation and Case Study 

The model evaluation is done on data of simulating painting of flat walls indoors in a research 

environment and could in the future act as pre-training for datasets collected in more realistic 

work environments. This gathered data is split into training and test data, where the training 

data was augmented, ultimately giving the model 8 times more data for training. Therefore, this 

model will allow for testing the robustness of the system before deploying it on a real work task 

settings on a construction site. 

4.1 Data Collection 

The dataset was collected in a laboratory environment, in which four sessions were completed 

and then combined into the final dataset. Data was in total collected for 90 minutes with the 

five sensors and a frequency of 60 Hz. This corresponds to 324.360 lines of data, each having 

30 features. No additional features were calculated, meaning that only the features given 

directly from the IMU were used. The labelling was done using three classes, presented below: 

1. Direct Work 

Direct work is work that physically adds value to the finished product. This creates the 

output previously discussed as one of the components of productivity. Examples of 
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direct work would be painting walls, laying tiles or bricks, assembling interior elements, 

and installing drywall sheets. 

2. Indirect Work

Indirect work is work that is necessary but does not directly contribute to the finished

product. This could be activities such as getting materials and cleaning up the

workstation from the predecessor’s mess.

3. Waste

Waste is work that is not necessary because it does not contribute to the finished product.

This could include waiting, toilet visits, errands away from the construction site,

walking to and from break, or walking between workstations without any tools.

The challenge with this classification is that these categories are not as tangible as the 

classification done in earlier activity recognition work, such as classifying whether a worker is 

hammering, walking, or lifting something. 

The task was to paint walls around a predefined location, where a camera was set up to record 

the task. Breaks were done when it was seen as fitting. The breaks were labelled as waste and 

were spent on various tasks, such as walking around, getting a cup of coffee, or sitting and 

reading through the instructions. The direct work class was used whenever actual painting was 

happening. The indirect work class was used whenever the painting roller was dipped in the 

tray. An image from each of the three classes can be seen in Figure 3. 

Figure 3: Ground truth recording of (a) Direct Work (painting the wall), (b) Indirect Work (picking up 

paint), and (c) Waste (answering incoming call). 

The class distribution is shown in Table 1, where the number of occurrences for each class is 

shown.  

Table 1: Distribution of training and test data given in windows of 3 seconds. 

Class Windows Original training Augmented training Test data 

Waste 1.734 1.273  10.184 461 

Indirect work 587 449 3.592 138 

Direct work 1.275 889 7.112 386 
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4.2 Implementation of Model 

In the developed models, three different window lengths were used, the 7s model is shown in 

Figure 4, where also the labelling of the data is depicted.  

 

Figure 4: An example showing one of the 7s windows colored based on the label’s class: green is 

direct work, yellow is indirect work, and red is waste 

The project was developed on a windows machine using Tensorflow 2.6.0 in a Python 3.9.7 

environment. For the three different models, each window consisted of an array of sizes 120 x 

30, 300 x 30, or 420 x 30, respectively. The models were all set to train for 50 epochs and used 

a learning rate of 0.001. Minor hyperparameter tuning was done to the network, specifically the 

number of filters on the convolutional layers, the number of convolutional layers, the dropout, 

and the learning rate. 

4.2 Evaluation Measures 

Four performance measures are used to evaluate the performance of the developed models: 

accuracy, precision, recall, and F1 score. Accuracy only looks if the instances are classified 

correctly, whereas precision and recall look into how the misclassifications are distributed. In 

multiclass classification, a generalization of the measures is needed (Sokolova and Lapalme, 

2009) to calculate the precision (Equation 1) and recall (Equation 2). Both measures are 

essential for a high performing model. However, it is often challenging to maximize both 

measures at once. Because of this, the F1-score is often used as a combination of the two 

(Equation 3). In the equations 𝑡𝑝𝑖 is true positive for the class 𝐶𝑖, 𝑓𝑝𝑖 is false positive, 𝑓𝑛𝑖 is 

false negative, and 𝑡𝑛𝑖 is true negative. 

∑ 𝑡𝑝𝑖
𝑙
𝑖=1

∑ (𝑡𝑝𝑖 + 𝑓𝑝𝑖)
𝑙
𝑖=1

 

 

(1) 

∑ 𝑡𝑝𝑖
𝑙
𝑖=1

∑ (𝑡𝑝𝑖 + 𝑓𝑛𝑖)
𝑙
𝑖=1

 

 

(2) 

2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶𝑖) ∙ 𝑅𝑒𝑐𝑎𝑙𝑙(𝐶𝑖)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶𝑖) + 𝑅𝑒𝑐𝑎𝑙𝑙(𝐶𝑖)
 (3) 
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5. Results 

For the best performing model (7s), a model training history is shown in Figure 5. The model 

training history is depicted for the training and validation set, where the validation dataset is 

taken as 20% of the training dataset. As the dataset is very simple, only consisting of a worker 

painting a wall, it is expected that convergence will happen quickly. As seen in Figure 5, this is 

the case, as the model very quickly reaches high accuracy and minimal loss. 

 

Figure 5: (a) Accuracy and (b) loss for 7s window model. 

A confusion matrix is used for each of the three models to depict how well the model classifies 

and where it is mistaken (Figure 6). 

 

Figure 6: Confusion matrix for (a) 3s, (b) 5s, and (c) 7s windows. 

All models perform satisfactorily, with the 7s model being the best among them. The accuracy 

ranges from 88.5% to 90%, as displayed in Table 2, where all performance measures can be 

seen. A general confusion from all models is with the class Indirect Work due to the imbalanced 

dataset. For the 3 second model, only 16.3% of the windows are in the Indirect Work class. 

This class imbalance could be solved by augmenting the worst represented class more than the 

others. All models have high precision in the Indirect Work category (100%, 100%, 97.4%, 

respectively), meaning that when the models predict Indirect Work, it is often or always true. 

The recall of Indirect Work however, is low (63%, 48.8%, 61.7% respectively). This means 

that whenever a worker is actually doing direct work, the model will misclassify the action in 

37% to 51.2% of the time, depending on the model. All models perform well for Direct Work 

and Waste, with most windows being predicted to the true label and therefore having high 
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accuracy, recall and precision. A substantial part of the windows misclassified are windows 

where two or even three classes are present in the same window. An initial step to increase 

model performance could be to exclude windows where the class distribution is above a 

threshold.  

Table 2: Evaluation measures for deep learning models. 

Model Accuracy Precision Recall F1-Score 

3s window 0.885 0.909 0.822 0.863 

5s window 0.865 0.905 0.767 0.885 

7s window 0.900 0.919 0.837 0.876 

The three models evaluated are all successful solutions to classify the productivity measures, 

all being close to 90% accurate. This is seen as sufficient for estimating worker productivity, 

as other manual methods such as work sampling use far less frequent data collection for their 

assessment. If the current models’ classification was to be downsampled to giving one 

classification each minute, it is expected that this model would produce a more accurate picture 

of the construction site than the manual methods can. 

6. Future Steps 

As more trades become part of the project, it is expected that the model's performance will 

decrease. To combat this, hyperparameter tuning on all the individual models will be done, and 

new deep learning methods will be investigated. Methods such as Graph Convolutional 

Networks and attention-based models have seen successful implementations for timeseries 

problems (Zerveas et al., 2021; Heidari and Iosifidis, 2021) and could lead to robust 

performances for models classifying multiple trades. 

The model’s output is seen as a valuable input for decision-makers, and therefore, it is necessary 

to investigate the possibility of near real-time outputs. Having real-time outputs would make 

the model more valuable for the industry, as decisions could be made based on the current 

output of the model. Furthermore, the number of classes could be extended to distinguish 

between the activities, as the literature has several subgenres to the classes used in this paper. 

To enable real-time outputs, feature importance should be investigated, to examine what 

features are important and which could be left out. This would not only lead more efficient 

computations, but could make the setup less invasive on the worker. 

In the results section, the misclassification was discussed to primarily happen in windows where 

two or three classes are present. Implementing a dynamic window would make this situation 

impossible and make the model more robust. 

7. Conclusion 

Estimating productivity automatically provides a more robust solution than current methods 

such as work sampling. CLP is a important metric for understanding a construction project. To 

be able to estimate the metric automatically using simple kinematics sensors allows for greater 

insights and allows for detailed analyses, which potentially could lead to a higher CLP. This 

paper provides a trained classification model based on deep learning methods, utilizing 

kinematics data from IMUs. The paper evaluates the effect of window sizes on the models to 
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evaluate this hyperparameter to increase performance. Currently, the method has only been 

trained and tested on one task but shows good performance. Further analysis will determine 

how well the model generalizes to other tasks and trades. 

The hyperparameter tuning of this research was minimal, and future research should focus on 

finding optimal parameters to enable the models to generalize. As the data is collected in a 

controlled environment, data collection on a construction site is planned for future evaluation 

of the method. Creating a high-quality kinematics dataset of human activities on construction 

sites is an important step for the field, as this is currently unavailable. This would also enable 

an evaluation of the robustness of the algorithms, enabling validation of their output in a real 

construction setting. The data used in this paper would be utilized for pre-training on models 

that should be deployed on a real construction site, which has been shown to increase the 

performance of models in the past (Zerveas et al., 2021). 

To better understand how the model functions, it would be beneficial to use local interpretation 

methods to get local explanations for the classifications done by the model. This could 

potentially lead to pruning down the model and exclude sensors. The pruning would make for 

a more efficient model, as fewer computations would be needed. If the model is to be used in a 

real-time environment, this is seen as an essential step. The exclusion of sensors would also be 

beneficial, as this would mean less intrusion on the worker and make the setup less invasive.  
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