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Abstract. The construction industry’s productivity and safety have long been a source of concern, while the broad 

use of deep neural network (DNN)-based visual AI has transformed other industries. Automation and digitalization 

powered by DNN provide intriguing answers; yet the lack of high-quality, diversified data prevents the 

construction sector from leveraging the benefits. This paper presents a novel computational framework that enables 

synthetic data generation for DNN training to overcome the time-consuming manual data collection and avoid data 

privacy problems. The suggested framework uses graphics engines to create a virtual duplicate of the construction 

site that generates non-real yet realistic visuals. The proposed framework randomizes crucial scene elements such 

as worker pose, clothes, camera viewpoint, and lighting conditions to enhance the variety of the synthetic dataset. 

The findings of this study present promising potential of synthetic data in DNN training.  

1. Introduction

Accounting for 13 percent of global GDP, construction, an industry that provides infrastructure 

essential to daily life, is one of the largest industries worldwide (Oxford Economics, 2021). 

Despite its vital importance, the construction industry is facing several challenges. It is 

renowned as the least automated (Neythalath et al., 2021), experiencing significant safety (Zhou 

et al., 2015) and productivity problems (Dixit et al., 2019). In recent years, Deep Neural 

Network (DNN)-based visual Artificial Intelligence (AI), under the umbrella term of Industry 

4.0, made its way into different industries and improved the productivity and safety of the work 

environments (Chien et al., 2020). In spite of DNNs’ promises in other industries, significant 

challenges hinder the construction industry from reaping the benefits (Rao et al., 2022). On the 

one hand, the construction sites' dynamic, complex, and unstructured nature demand a higher 

level of AI than other industries (Daeho Kim et al., 2020; Laufer Alexander et al., 2008). On 

the other hand, the unavailability of data and privacy concerns around the collected data 

(Akinosho et al., 2020) raised significant hindrances to the widespread adoption of DNN-based 

visual AI in the construction industry. Even though many recent studies focused on applying 

DNNs, the development of field-applicable models appears to be over-ambitious (Bang et al., 

2019). Insufficient high-quality and diversified data in construction studies resulted in 

incomplete and overfitted models, ultimately limiting the accuracy and scalability of DNN 

solutions (Grosse et al., 2021). 

To address the data shortage of DNN solutions, a significant portion of previous studies were 

focused on the manual collection and labelling of data. However, manual labelling is laborious, 

time-consuming, and expensive (Assadzadeh et al., 2022). While the exact costs of labelling 

construction data remain unknown, the scale of the problem can be conveyed by looking at the 

crowdsourcing data labelling services. Semantic segmentation provided by Google Cloud 

would incur 0.87 USD per class for a single image (Dahun Kim et al., 2020). Besides the 

prohibitively time-consuming nature of manual data collection, the collected data is susceptible 

to human error and biases (Assadzadeh et al., 2022). Incorrect annotations would decrease the 

accuracy of experiments (Xiao and Kang, 2021). Since training high-quality DNNs require 

millions of labelled data, notable investments from both time and expenses are involved in the 

manual collection, labelling, and ensuring the quality of the data. 
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An essential element of DNNs’ prosperity in other industries is the availability of publicly 

shared datasets and access to a benchmarking system. Comparative benchmarking, however, in 

the construction industry is limited due to the lack of willingness of stakeholders to share project 

datasets (Hwang et al., 2018).  The stratified analysis showed that practitioners are primarily 

unsatisfied with the level of data sharing among stakeholders in the construction industry 

(Ayodele and Kahimo-shakantu, 2021). Furthermore, recording personal visual data has 

brought privacy concerns (Akinosho et al., 2020). Ethical issues regarding privacy are of 

concern in many countries, which resulted in the passing of strict laws to protect privacy (Fabbri 

et al., 2021). In light of the recent General Data Protection Regulation (GDPR), which applies 

to all companies holding EU citizen data, care must be taken with data sources (Koops, 2014). 

Ethical issues regarding privacy are also critical in the US. As an instance of privacy concerns, 

datasets for re-identification modules of DukeMTMC were taken offline recently (Fabbri et al., 

2021; Ristani et al., 2016). 

One possible solution to the data limitation issue is to leverage the available computational 

power to augment or synthesize data. The research community has already recognized the 

potential of synthetic data created by powerful graphical engines to compensate for the data 

shortage (Amato et al., 2019; Bousmalis et al., 2017) and create non-real, but real-looking 

comparative benchmarking (Fabbri et al., 2021). However, promising as it may seem, the 

potential of computer-generated data for training DNNs in the construction domain remained 

uninspected. There is a lack of understanding of DNNs’ behaviour when trained with synthetic 

data, specifically in the construction domain. No study has been conducted regarding the 

feasibility of training DNNs only using synthetic data to understand construction workers. We 

do not know how the realism of synthetic images impacts the DNNs performance. In addition, 

there is no consensus about the optimal size of the synthetic dataset to achieve state-of-the-art 

performance. Would privacy be an issue? Should synthetic images include occluded and 

cluttered scenes? These are the questions that remained unanswered. As a preliminary step 

toward extensive experiments to answer the above questions, this study aims to develop a 

computational method of synthetic data generation for human workers in construction scenes 

and to visually verify the performance of synthetic data-trained DNN on real construction 

images. 

Section 2 reviews the related works to the objective of the study and highlights the current state 

of the art and their limitations. Section 3 elaborates on the proposed method for synthetic data 

generation and explains the adapted DNN model. Training details, real-world validation 

dataset, and the employed evaluation metrics, along with achieved results are presented in 

Section 4. Lastly, the research contributions and limitations are covered in Section 5.  

2. Related works 

To tackle the data limitation and privacy concerns, two mainstream research can be seen: (i) 

data augmentation and (ii) synthetic data generation. 

2.1 Data Augmentation 

Data augmentation is an approach that utilizes the available dataset to augment or increase the 

dataset size by introducing linear transformations, interpolations and distortion, and 

probabilistic approaches (Delgado and Oyedele, 2021). Linear transformation approaches can 

be applied when the features of the datasets are not affected by alterations. Since images are 

transformation invariant, linear transformation techniques such as cropping, flipping, and 
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altering the colour space are easy and efficient methods to be implemented (Shorten and 

Khoshgoftaar, 2019). Interpolations and distortion methods introduce non-linear distortions and 

randomness to augmented data. This method has shown to be effective in shallow and deep 

neural networks (Delgado and Oyedele, 2021). Probabilistic methods, on the other hand, 

generate new data considering the distribution of the variables in the training set instances in a 

probabilistic manner (Delgado and Oyedele, 2021). To properly handle the probabilistic 

characteristic of a new dataset, this method is usually combined with deep learning models with 

probabilistic characteristics. Although many studies advocate the efficacy of data 

augmentation, this method do not augment new content to the dataset and is limited in the 

stimulation of the model’s parameters during training (Luo et al., 2020, 2018). Moreover, it 

might discard important information that is essential as the labels. The label-preserving 

augmentation is of more concern when multiple images are being combined. Therefore, the 

scope of where and when these transformations can be applied is relatively limited (Shorten 

and Khoshgoftaar, 2019). 

2.2 Synthetic Data 

Another approach to increase the data size and quality is to generate synthetic data. In this 

approach, the computational powers are leveraged to simulate new data from analogous 

mediums. One of the most renowned pieces of work in this domain is the flying chairs study 

(Dosovitskiy et al., 2015). The proposed method of this study uses 3 dimensional (3D) models 

of chairs in a virtual world and generates synthetic images. Generated synthetic images are 

proven to be effective in improving DNN training. Since labels are extracted automatically in 

this approach, data generation is a seamless effort (Neuhausen et al., 2020); thus, an unlimited 

number of synthetic data is accessible as seen in the SYNTHIA dataset (Ros et al., 2016).  

Despite the wide application of synthetic data in other disciplines, construction-related research 

expressed interest lately. With the rapid increase in the prevalence of building information 

modelling (BIM) (Alvanchi et al., 2021), research is underway to generate synthetic data from 

BIM. Acharya used the indoor images derived from BIM as training data for a deep learning 

network that estimates the pose of a camera (Acharya et al., 2019).  Ma et al. (Ma et al., 2020) 

used synthetic point clouds obtained from BIM as the training data for point cloud segmentation 

networks. Hong et al. (Hong et al., 2021) employed BIM to construct a synthetic dataset that 

contains the annotation information of infrastructure elements. BIM-powered synthetic data 

generation is, inevitably, limited in scope to the building components. Human workers and 

equipment, as one of the most essential entities in productivity and safety of the construction 

site, are neglected in this approach. 

To incorporate human workers and equipment in the synthetic data generation process, recent 

studies used 3D virtual models of construction sites. Soltani et al. (Soltani et al., 2018) applied 

3D modelling tools to generate automatically labelled synthetic training images. They used 

virtual images of construction resources extracted from various views for training by using a 

3D excavator model. Kim and Kim (Kim and Kim, 2018) reconstructed a 3D model of a 

concrete mixer truck using the multi-view stereo algorithm to generate synthetic data. 

Following the same approach, Mahmood et al. (Mahmood et al., 2022) developed a synthetic 

dataset for training DNN models that estimated the 3D pose of an excavator. In a very recent 

study by Neuhausen et al (Neuhausen et al., 2020), synthetically generated images are leveraged 

to train DNNs with a focus on human worker detection and tracking model. A comparative 

study of the developed model on both synthetic and real-world data identified the synthetic 

images as a viable solution for vision-based DNN training. Although synthetic data are applied 

widely out of the construction industry, there exists a promising potential to be used in 
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construction-related activities. In an attempt to investigate the capabilities of synthetic data on 

DNN training, this study uses the human workers images at virtual construction site to train a 

worker detection model. 

3. Training a deep neural network using synthetic construction images 

Following the promising results of prior studies in the computer vision domain (Fabbri et al., 

2021), this study adopts a graphical engine (Blender (2022)) to simulate a virtual construction 

site. The virtual construction site is then used to render diversified images from various 

scenarios of construction activities. Figure 1 illustrates different parts of the proposed 

framework.  

The first part of the framework is to build and prepare a construction worker avatar. In this part, 

a human worker conducts multiple construction activities. The worker’s body motion is 

collected using the motion capture suit. This capturing method records the movement of all the 

body joints and anonymizes the worker that has done the activity. Meanwhile, a 3-dimensional 

(3D) avatar of the human worker is modelled. Both the motion information and the worker 

avatar are input to the graphical engines. In the second part, the 3D models of the buildings 

under construction are extracted from both points clouds or BIM models.  

 

Figure 1. Synthetic data generation framework 

In the third part, the collected information of the body joints’ movements is augmented into a 

3D worker avatar, to create an animated worker in the virtual environment. By placing multiple 

characters of animated avatars conducting various construction tasks on the developed digital 

construction replica, an animated construction scene is generated. By scripting into the 

graphical engine, we automatically randomized the camera location, its viewpoint in the digital 

world, and lighting conditions. By randomizing the scene, multiple screenplays are generated 

in the virtual world. Rendering each of these screenplays produces sequences of images. Since 
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all the manipulations take place on a graphical engine, extraction of entities’ exact information 

is a seamless procedure. By using the scripting capability, the required ground truth labels are 

extracted from the virtual world as the last step of the third part. In the fourth part, rendered 

image sequences along with ground truth labels are organized as training and validation 

datasets. The fifth part of the framework uses the synthetic dataset to train DNN models for 

worker detection. 

3.1 Dataset Generation 

The synthetic data generation process of this study is comprised of three different processes: 

namely, screenplay settings, renderings, and label generations. This section will elaborate more 

on each process. 

Screenplays 

The first process is the screenplay design, which provides the basis for synthetic image 

generation. The screenplay contains the arrangement of everything that is seen on the scene, 

including locations, and avatars’ actions. To design screenplays, we manually placed animated 

avatars in different locations of the scene and randomized the location and viewpoint of the 

camera. Three different construction-related activities of walking, digging, and coordinating 

are assigned to the workers. Two unique worker avatars are also used in our screenplays. To 

obtain diversified viewpoints in the synthetic dataset, we randomized the location of the camera 

within a range of 35 meters from a target worker. The target worker is a specific avatar selected 

to be tracked by the camera in the scene. It is critical to have the target avatar to ensure the 

existence of at least a single worker in every rendered image.  

Rendering 

After setting up screenplays, we simulated the virtual construction scene and rendered various 

viewpoints from the scene. By randomizing the camera location in the scene and rendering the 

animation of avatars, we generated 41 screenplays. Each of the screenplays yields image 

sequences of the animated construction site, from different viewpoints. For the case of this 

study, we rendered 14 seconds of screenplays at a rate of 10 frames per second, which resulted 

in 140 image sequences for each screenplay. To obtain as diverse images as possible, we 

randomized the sun direction and daytime of the recordings. By rendering all of the screenplays, 

we were able to generate 5,740 images with a click of a single button within two days. 

Label generation 

Since graphical engines are used in this framework, every rendered image comes with precise 

information about the scene. Blender’s data structure enables the extraction of 3D annotations 

of visible or occluded body parts, 2D and 3D bounding boxes, instance segmentation, and depth 

maps (see Figure 2). While this study sufficed to the exploitation of the 2D bounding boxes for 

worker detection in the scene, there exists a significant potential in using the generated labels. 

3.2 Statistical Analysis of the synthetic data 

The synthetic dataset of this study is rendered as a Full HD image sequence. Each image 

contains 5.2 people per frame on average, totalling more than 30K bounding boxes. The 

distance of the avatars from the camera in the scene ranged from 5 to 100 meters, which resulted 

in bounding boxes with dimensions from 0.1 to 400 pixels.  
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3.3 Worker detection model 

This study adopts pre-trained YOLOv5 (Jocher et al., 2022) as the worker detection model. Pre-

trained YOLOv5 is trained on the COCO dataset (Lin et al., 2014), where the inputs are labelled 

in 80 object categories. Although the pre-trained YOLO can detect the persons, the process of 

fine-tuning the model with synthetic images is essential for multiple reasons. Firstly, the major 

difference of context in construction-related images with the COCO dataset reduces the 

performance of the pre-trained model in construction scenes. The construction contexts contain 

images such as equipment and workers and the backgrounds are usually cluttered. However, 

the COCO images are mostly captured out of the construction sites, with very controlled 

illumination and backgrounds (Kim et al., 2019). Secondly, the pre-trained network is not 

compatible with various camera viewpoints. This is due to the limited variation in the COCO 

dataset. For example, an image of persons captured with a UAV has a completely different 

appearance and scale than the person presented in the COCO dataset, which in turn, puzzles the 

convolutional layers and deteriorates the localization performance of the pre-trained model. To 

incorporate a wider range of viewpoints, this study fine tunned the model with diversified 

synthetic images. Another essential factor is the overfitting problem. Since the YOLO model 

has a very high level of complexity and considering that the COCO dataset is not suitable for 

construction worker detection, there is a need for a huge, labelled image dataset of construction 

workers to avoid overfitting. Therefore, this study adopts the pre-trained YOLO as the initial 

point and fine tunned with synthetic images. 

 
Figure 2. Sample of synthetic data 

391



 

 
29th International Workshop on Intelligent Computing in Engineering (EG-ICE) 

 

4. Experimental details and results 

The Generalized Intersection of Unions (GIoU) is used as the bounding box regression loss 

function. GIoU is adapted in YOLOv5 to address the inaccurate calculation of non-overlapping 

bounding boxes. Further details of the GIoU loss function can be found in (Wang et al., 2021). 

For training the model, we used Stochastic Gradient Descent (SGD) optimizer. As a fine-tuning 

process, all of the pre-trained model’s layers were completely unfrozen and all the pre-trained 

weights of the network were used as an initialization point. After unfreezing all the layers, the 

model is trained for 50 epochs with an initial learning rate of 1e-2 while using cosine annealing 

the final learning was decreased to 1e-4. The momentum of the optimizer and weight decay 

was set to 0.937 and 5e-4 respectively. Figure 3 illustrates the learning curve of the model fine-

tuned on synthetic data for 50 epochs with a batch size of 4. Decrease of loss by increasing 

epochs in both training and validation set in the learning curve is an absolute indication that 

synthetic data enables DNN training. 

 

Figure 3. The learning curve of the model trained on the synthetic dataset 

For visual verification, this study used the publicly available dataset of Moving Objects in 

Construction Sites (MOCS) (Xuehui et al., 2021). This dataset contains 41,668 images of 13 

categories of construction mobile objects. Concerning the scope of this research, images 

containing workers are filtered out of the MOCS validation set, which yielded 3,091 images as 

benchmarking data for this research. Figure 4 illustrates several detection results of the synthetic 

data-trained model on real construction images (i.e., MOCS validation set). As shown in Figure 

4, it successfully detected construction workers in diverse scenarios and at varying scales. 

Given that this model was trained only with synthetic data, the detection results are an indication 

of the great potential of synthetic data in DNN training. It should be noted that the fine-tuned 

model used in this experiment did not reach the optimum performance since it was trained with 

a very limited amount of synthetic data (i.e., 5,740 images). With the incorporation of a wider 

range of 3D backgrounds, worker motions, and avatar colours in data generation, the model 

would have another chance to improve its performance. Our follow-up study will address it, 

establishing a complete training set of synthetic construction images, and conducting a 

quantitative evaluation on real test images. This study will lay a stepping stone to non-real but 

real-looking image-driven DNN training.  
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Figure 4. Sample prediction for the model trained on synthetic images 

5. Conclusion 

The productivity and safety of the construction industry have continuously experienced 

staggering challenges, while the widespread adoption of DNN-based visual AI revolutionized 

other industries. DNN-powered automation and digitization offer promising solutions; 

however, the unavailability of high-quality and diversified data prohibitively hinders the 

construction industry from reaping the benefits. To address the time-consuming manual data 

collection process and avoid data privacy concerns, this study proposes a novel computational 

framework that enables synthetic data generation for DNN training. The proposed framework 

leverages the power of graphical engines to develop a virtual replica of the construction site 

and renders non-real but real-looking images. To increase the diversity of the synthetic dataset, 

the proposed framework randomizes critical features of the scene, such as the worker’s pose, 

clothing, camera viewpoint, lighting condition, and sun direction. Although numerous 

questions remained intact, the results of this study indicated the potential and applicability of 

computer-generated synthetic images in the development of high-quality, field applicable 

DNNs. Further research should be conducted to address critical questions such as understanding 

DNNs’ behaviour when trained with synthetic data, exploring the impact of synthetic image 

realism on DNN performance, examining the feasibility of training DNNs for pose estimation, 

semantic segmentation, depth estimation and activity recognition, and determining the optimal 

size of the synthetic dataset. Moreover, the creation of a virtual construction site involved the 

manual placement of avatars in pre-defined locations in the scene. Although this procedure can 

be automated, this study limited its scope to the manual placement of avatars in the scene. 

Leveraging the agent-based simulations can be a suitable approach toward automation of the 

avatar placement in the scene.  
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