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Abstract. Understanding the relationships between the condition of transportation infrastructure and 

the well-being of citizens in society is of significant importance towards restoring the aging and 

deteriorating transportation infrastructure in a way that enhances well-being. However, attaining such 

understanding is challenging because it relies on large-scale transportation infrastructure condition 

assessment. The broad spatial coverage of Google Street View (GSV) imagery offers a unique 

opportunity for such large-scale assessment. However, despite the richness of deep learning methods 

that can segment and recognize transportation infrastructure assets from GSV imagery for subsequent 

condition assessment, the performance of these methods typically varies. As such, this paper focuses 

on conducting performance evaluation of representative deep learning-based image segmentation 

methods to identify the optimal methods for recognizing transportation assets from GSV imagery. The 

preliminary evaluation results show that the ResNet + UNet and MobileNet + UNet methods achieved 

the highest intersection over union (IOU) of 0.87.    

1. Introduction

The aging and deteriorating transportation infrastructure has disproportionate impacts on the 

well-being of citizens in society. For example, according to the American Society of Civil 

Engineers’ Infrastructure Report Card, more than 40% of the U.S. transportation infrastructure, 

such as roadways and highways, is in poor or mediocre condition (American Society of Civil 

Engineers, 2022a). Such poor conditions result in unreliable and inefficient transportation 

services, increased travel time and costs for businesses and households, and, in turn, lead to 

higher prices for goods and lower disposable household income (American Society of Civil 

Engineers, 2022b). Consequently, the well-being of people gets negatively affected as resources 

necessary to maintain and improve well-being become less accessible and affordable. Most often, 

the negative impacts on well-being get passed along disproportionately to people from 

traditionally underserved groups (American Society of Civil Engineers, 2022b). 

There is, therefore, an evident need to quantitatively understand the relationships between the 

condition of transportation infrastructure and the well-being of citizens. Such an understanding 

would allow for restoring transportation infrastructure in a way that equitably enhances the well-

being of different population groups in society. However, attaining the understanding is 

challenging because it requires assessing the condition of transportation infrastructure at a large 

scale (e.g., the city scale). Existing methods for transportation infrastructure condition 

assessment typically do not scale well. Visual assessment by human inspectors, although it is still 

common in practice, is too costly and time-consuming to be conducted at scale (Yeum et al., 

2021). On the other hand, recent advancement in automated condition assessment technology has 

largely reduced human involvement in the assessment process. Such technologies include visual 

imaging, ground penetrating radar, infrared thermography, LiDAR, and hyperspectral imaging. 

For example, ground penetrating radar has been used to assess the thickness of road pavements 
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(Willett et al., 2006). Visual imaging, infrared thermography, and hyperspectral imaging 

technologies have been used to assess the conditions of road damages, such as cracks and 

delamination (Schnebele et al., 2015). However, these technologies have not been widely applied 

because of technology adoption barriers. Studies (e.g., Li et al., 2017) show that initial 

investments in assessment equipment and subsequent costs of training professional equipment 

operators are currently the principal factors hindering the wide adoption and application of these 

automated condition assessment technologies in practice. 

The availability of Google Street View (GSV) imagery offers a great promise for large-scale 

transportation infrastructure condition assessment. First, GSV imagery is readily and publicly 

accessible. This advantage liberates transportation agencies from investing in new equipment and 

training specialized operators and, thus, largely eliminates technology adoption barriers. Second, 

GSV imagery covers transportation assets in almost any place around the world. Currently, GSV 

can already provide images that cover more than 10 million miles of roads in the world (Raman, 

2017). The broad spatial coverage of GSV imagery lends itself a unique edge in conducting 

large-scale condition assessment. Third, GSV imagery is of high resolution. GSV images are 

usually taken using high-resolution camera systems, such as 20MP cameras. The high resolution 

not only allows for accurately segmenting and recognizing transportation assets from GSV 

images, but also enables the detection, localization, and quantification of damages on the 

recognized assets. 

However, despite the promise of GSV imagery, there is a lack of studies that evaluate the 

performance of different deep learning methods in segmenting transportation infrastructure 

assets from GSV images. Such an evaluation is critical to identify the optimal learning methods 

that can be used to better conduct the segmentation to support subsequent condition assessment 

(i.e., damage detection, localization, and quantification). Existing research efforts have focused 

on images captured using hand-held cameras or cameras mounted unmanned aerial vehicles 

(UAVs). For a few studies that use GSV images, they are mainly committed to a single learning 

method and are limited in additionally comparing other alternative methods. To address this 

limitation, this paper focuses on conducting performance evaluation of representative deep 

learning-based segmentation methods to identify the optimal ones for segmenting transportation 

assets from GSV imagery. In the remainder of this paper, the evaluation methodology is 

introduced in detail, and the evaluation results are discussed.  

2. State of the Art and Knowledge Gaps 

A body of research efforts have been undertaken in the field of image-based transportation 

infrastructure condition assessment. According to recent survey studies by Spencer et al., (2019), 

existing image-based assessment methods mostly rely on images captured using hand-held 

cameras or cameras mounted on unmanned aerial vehicles (UAVs). For example, recent studies 

(e.g., Li et al., 2019; Sukanya et al., 2020; and Mahmud et al., 2021) have focused on detecting 

and segmenting roads from images captured using UAVs. However, a limited number of studies 

have explored the use of GSV imagery for condition assessment of transportation infrastructure. 

Recent studies that used GSV imagery for the assessment include Ma et al., (2017) and Alipour 

and Harris (2020). 

However, despite the importance of existing research, there is a lack of understanding of the 

performances of different deep leaning-based image segmentation methods in segmenting 
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transportation infrastructure assets from GSV images. Such an understanding is critical to 

identify the optimal learning methods that can reliably segment transportation assets from GSV 

images to support subsequent condition assessment. On one hand, existing research efforts have 

focused on comparing and understanding the performances of different learning methods in 

segmenting general objects (e.g., humans, trees, and sky in natural scenes) from general images 

rather than GSV images. For example, Ahmed et al., (2020) evaluated the performance of several 

representative deep learning methods in segmenting humans from top-view images. However, 

the comparison results achieved using general images typically do not generalize to GSV images 

because, compared to general images, GSV images are often associated with severe occlusions 

(e.g., roads occluded by traveling vehicles) and are captured in dynamically changing 

environments (e.g., sunny days with an abundant amount of lights vs. cloudy/rainy days without 

decent lights). On the other hand, existing studies that use GSV images for transportation 

infrastructure condition assessment are limited in comparing alternative deep learning methods. 

For example, Ma et al., (2017) leveraged convolutional neural networks to detect pavement 

damages from GSV images; Campbell et al., (2019) used MobileNet to detect traffic signs from 

GSV images; and Alipour and Harris (2020) exploited deep residual networks (ResNet) to detect 

road defects from GSV images. However, these studies are committed to using a single learning 

method and did not additionally compare the performance of the chosen method to other deep 

learning-based segmentation methods. They are, thus, limited in identifying optimal methods for 

GSV-based transportation asset segmentation. 

3. Evaluation Methodology 

An evaluation methodology was developed and followed to evaluate the performance of 

representative deep learning methods in segmenting transportation infrastructure assets from 

GSV images. The methodology included three main steps: (1) data preparation, (2) deep learning 

method selection, and (3) deep learning method implementation and evaluation.  

3.1 Data Preparation  

Data preparation aimed to create a dataset with annotations for deep learning-based segmentation 

algorithm training and evaluation. Data preparation included four steps. First, a dataset, which 

includes a total of 500 GSV images, was created. The images were purposively sampled from 

main streets in Manhattan, New York City (NYC), so that each image captures key 

transportation infrastructure assets such as roads, sidewalks, bike lanes, and vehicles. Images for 

NYC were used in this study because road/street scenes in NYC are typically more complex than 

those in other cities, making the use of such images more suitable in comparing different 

segmentation algorithms. Figure 1 shows a sample of collected GSV images. Second, image 

preprocessing was conducted to resize raw images into the same size of 256 by 256 to allow for 

mini-batch-based segmentation model training. Third, the resized images were manually 

annotated using the Visual Geometry Group Image Annotator, which is a commonly used 

annotation tool for adding class labels to each pixel in an image. Each image pixel was annotated 

into one of the five classes that cover key transportation asset categories, including “Road”, 

“Sidewalk”, “Bike Lane”, “Vehicle”, and “Background”. Fourth, the dataset was split into a 

training set and a testing set at a ratio of 4:1, which is a commonly used ratio in image 

segmentation. The annotations in the testing set were used for evaluation purposes only. 
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Figure 1: Examples of Google Street View (GSV) Images. 

3.2 Deep Learning Method Selection  

Deep learning method selection aimed to select representative deep learning methods (for image 

segmentation) for the subsequent performance evaluation. The selection included two steps. First, 

representative deep learning methods for extracting visual features from images were selected. 

The selection focused on convolutional neural networks (CNN)-based feature extraction methods, 

because CNN is one of the most successful and widely used architecture for visual feature 

extraction. Based on the survey study by Minaee et al., (2020), four well-known CNN-based 

feature extraction methods were selected, including convolutional neural networks (CNN) 

(Fukushima, 1980), very deep convolutional networks (VGG) (Simonyan et al., 2015), residual 

neural networks (ResNet) (He et al., 2015), and MobileNet (Howard et al., 2017). Second, 

representative deep learning methods for learning from extracted visual features to segment 

images into pre-defined segmentation classes were selected. Four representative methods were 

selected, including fully convolutional networks (FCN)-8 (Long et al., 2015), FCN-32 (Long et 

al., 2015), SegNet (Badrinarayanan et al., 2015), and UNet (Ronneberger et al., 2015). FCNs 

were selected because they are one of the first deep learning methods for image segmentation 

and have been commonly used as a benchmark (Minaee et al., 2020). SegNet was selected 

because, unlike traditional FCN (which leverages a shallow network architecture for up-

sampling), it uses a decoder network that includes multiple up-sampling layers and a pixel-wise 

classification layer for segmentation. Each up-sampling layer uses the pooling indices from its 

corresponding down-sampling layer to conduct non-linear up-sampling without the need to learn 

how to up-sample. Such an up-sampling architecture configuration allows for reducing the 

number of parameters to be learned to improve the performance of segmentation models. UNet 

was selected because it leverages a contracting path with down-sampling to capture visual 

contexts and an expanding path with multiple up-sampling layers that also use down-sampled 

feature maps as input to capture visual patterns to enable precise localization and segmentation. 

The use of the two paths allows for using a small number of training images to achieve more 

precise segmentation. 

3.3 Deep Learning Method Implementation and Evaluation  

The selected deep learning methods were implemented to develop models for segmenting GSV 

images into the pre-defined segmentation class (i.e., “Road”, “Sidewalk”, “Bike Lane”, 

“Vehicle”, and “Background”). The implementation included three steps. First, the selected 
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visual feature extraction methods were implemented. Figure 2 shows the specific deep learning 

architecture used to implement each extraction method. Second, the selected segmentation 

methods were implemented. Figure 3 shows the specific learning architecture used to implement 

each segmentation method. In a segmentation learning architecture, a visual feature extraction 

architecture was used as an “encoder” to down-sample raw input images to extract feature maps, 

and the “decoder” architecture of the selected segmentation method was used to up-sample the 

feature maps for pixel-wise classification/segmentation. For example, in the CNN + FCN-32 

architecture, the CNN architecture was used to extract feature maps, and the 32X up-sampling 

layer in the FCN-32 was used to up-sample the feature maps from the 5th pooling block of the 

CNN for pixel-wise classification. As a result, a total of 16 segmentation models were 

implemented, and each model was implemented using a combination of a selected visual feature 

extraction method and a selected segment method. The Python code implementation from Divam 

(2019) was used for the implementation. Third, the segmentation models were separately trained 

using the training dataset. During the model training, the training pixel accuracy was monitored 

to ensure that the model is fully trained to converge. Pixel accuracy, as per Equation (1), is the 

ratio of the number of correctly segmented pixels to the total number of pixels. In Equation (1), 

C is the number of pre-defined segmentation classes, and Pij is number of pixels of class i that are 

classified as class j. Figure 4 shows the training pixel accuracy against the training epoch for 

each model. As per Figure 4, at epoch = 10, the training pixel accuracy for each segmentation 

model was over 90% and became stable, which indicates that the model is trained to converge. 

 

Figure 2: Learning Architectures for the Selected Deep Learning-based Visual Feature 

Extraction Methods.  
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Figure 3: Learning Architectures for Selected Deep Learning-based Segmentation Methods. 

 

 Figure 4: Training Pixel Accuracy of Segmentation Models: (a) CNN-based Models, (b) VGG-

based Models, (c) ResNet-based Models, and (d) MobileNet-based Models.  
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The trained segmentation models were evaluated using two commonly used metrics for image 

segmentation: class-wise intersection over union (IOU) and mean IOU. For each segmentation 

class, class-wise IOU, as per Equation (2), is the ratio of the area of intersection between the 

classified segmentation map for the class and the gold standard segmentation map for the class to 

the area of union between the two maps. Mean IOU, as per Equation (3), is the average of class-

wise IOUs over all the segmentation classes. In Equations (2) and (3), i is a segmentation class, A 

is classified segmentation map for class i, and B is gold standard segmentation map for the class i. 

4. Evaluation Results and Discussion 

The results for evaluating the performance of the selected deep learning methods in segmenting 

transportation infrastructure assets from GSV imagery are presented in Table 1. Overall, 

compared to the other combinations of the feature extraction and segmentation methods, the 

combinations ResNet + UNet and MobileNet + UNet achieved the highest mean IOU of 0.87. 

Two important observations are drawn from the evaluation results. First, using skip connections 

and separable depthwise convolutions are important strategies to extract representative visual 

features from GSV images to support subsequent transportation asset segmentation. As seen in 

Table 1, the ResNet-based and MobileNet-based models achieved an average mean IOU (across 

all the segmentation methods) of 0.82 and 0.82, respectively. The CNN-based and VGG-based 

models only achieved an average mean IOU of 0.76 and 0.64, respectively. ResNet uses a set of 

residual blocks (i.e., convolution and identify blocks, as per Figure 2), which formulate the 

output layers of each block to learn residual functions with reference to the layer inputs. Such a 

residual learning configuration allows for substantially increasing the depth of the networks to 

better capture distinctive visual features, yet without negatively affecting the efficiency and 

performance of model optimization. On the other hand, MobileNet utilizes depthwise separable 

convolutional layers, which apply a separate filter only at one input channel (instead of at 

multiple channels at once). Depthwise separable convolution layers can generate outputs same as 

those generated by traditional convolution layers, but they require much less parameters to 

reduce the size of the model and improve the performance of feature extraction. The evaluation 

results also suggest that incorporating depthwise separable convolutions into residual blocks 

could allow for benefiting from the advantages of both ResNet and MobileNet to further improve 

the performance of visual feature extraction from GSV images. 

Second, concatenating down-sampled feature maps and up-sampled feature maps to further up-

sample the maps for pixel-wise classification shows effectiveness in segmenting transportation 

infrastructure assets from GSV images. As seen in Table 1, the UNet-based models achieved an 

average mean IOU (across all the feature extraction methods) of 0.85, which is higher than the 

IOUs by the FCN-32-based, FCN-8-based, and SegNet-based models (IOU = 0.57, 0.80 and 0.82, 

Accuracy =  
∑ Pii

 𝐶
 𝑖=0

∑ ∑ Pij
 𝐶
𝑗=0

 𝐶
𝑖=0

 (1) 

Class-wise IOU(i) =  
|A ∩ B |

|A ∪ B |
 (2) 

Mean  IOU =  
1

C
∑ Class-wise IOU(i) 

   𝐶

𝑖=0
 (3) 
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respectively). SegNet, compared to FCN-8, achieved a slightly higher IOU. This could be 

because SegNet uses more up-sampling and transpose convolution operations than FCN-8. UNet, 

compared to SegNet, further conducts convolutions on the concatenated feature maps (i.e., up-

sampled maps and their corresponding down-sampled maps), which allows UNet to achieve a 3% 

higher IOU than SegNet. The evaluation results, thus, suggest that encoder-decoder-based 

segmentation methods, such as SegNet and UNet, are generally more effective than FCN-based 

methods in segmenting transportation assets from GSV images. In future research efforts, other 

types of encoder-decoder-based methods, such as VNet and WNet, can be evaluated to assess if 

they can further improve the performance of GSV image segmentation. 

Table 1: Results for Evaluating the Performance of Deep Learning Methods in Segmenting 

Transportation Infrastructure Assets from GSV Images. 

Feature 

extraction 

method 

Segmentation 

method 

Class-wise IOU 
Mean 

IOU Background Road Sidewalk Vehicle Bike Lane 

CNN 

FCN8 0.86 0.89 0.72 0.45 0.82 0.75 

FCN32 0.82 0.86 0.70 0.39 0.71 0.70 

UNet 0.95 0.86 0.87 0.53 0.82 0.81 

SegNet 0.90 0.91 0.79 0.50 0.85 0.79 

VGG 

FCN8 0.89 0.92 0.79 0.45 0.86 0.78 

FCN32 0.49 0.27 0.05 0.00 0.00 0.15 

UNet 0.96 0.93 0.54 0.55 0.92 0.84 

SegNet 0.91 0.90 0.76 0.51 0.85 0.79 

ResNet 

FCN8 0.95 0.96 0.86 0.55 0.91 0.84 

FCN32 0.81 0.87 0.71 0.38 0.76 0.71 

UNet 0.98 0.97 0.91 0.58 0.93 0.87 

SegNet 0.95 0.94 0.59 0.56 0.90 0.85 

MobileNet 

FCN8 0.93 0.94 0.85 0.54 0.88 0.83 

FCN32 0.83 0.88 0.75 0.43 0.75 0.73 

UNet 0.98 0.97 0.90 0.58 0.93 0.87 

SegNet 0.95 0.94 0.59 0.56 0.90 0.85 

5. Conclusions, Limitations, and Future Work 

In this paper, a set of representative deep learning methods were evaluated in segmenting 

transportation infrastructure assets from GSV images. The evaluation results show that the 

ResNet + UNet and MobileNet + UNet methods achieved the highest mean IOU of 0.87 – 

indicating the suitability of these methods for segmenting transportation assets from GSV images. 

In addition, two conclusions were also drawn from the results. First, incorporating depthwise 

separable convolutions into residual blocks could allow for better extracting distinctive visual 
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features from GSV images to support subsequent segmentation. Second, encoder-decoder-based 

methods are more suitable than FCN-based methods in segmenting GSV images. 

Two main limitations of this study are acknowledged. First, as a pilot study, this paper focused 

on evaluating CNN-based feature extraction methods and FCN-based and encoder-decoder-

based segmentation methods. Other methods, such as multiscale and pyramid network-based and 

attention-based methods, were not evaluated. In their future work, by following the evaluation 

methodology presented in this paper, the authors plan to further evaluate the performance of 

other prominent deep learning methods in segmenting GSV images. Second, the size of the 

dataset used in the evaluation is limited. For example, the dataset in this study mainly covers 

transportation assets in Manhattan, NYC, but does not cover other areas in the nation. A larger 

and more diverse GSV dataset can be curated and used for evaluation in the future.  

In their future work, the authors will focus their research efforts on three main directions. First, 

developing a new deep learning-based image segmentation method, based on the findings of this 

study, to better segment transportation assets from GSV images. The segmentation is the first 

step toward large-scale transportation infrastructure condition assessment. Hence, the 

segmentation method to be developed will need to achieve an IOU of over 95% to reduce the 

number of errors propagating into the subsequent assessment steps. In addition to GSV images, 

the method will also be applied to segment transportation assets from images captured by the 

cameras on autonomous vehicles and/or reported by citizens. Such images would also be 

valuable for transportation infrastructure condition assessment, because they are more dynamic 

and can better capture update-to-date infrastructure conditions. Second, developing new deep 

learning methods for detecting, localizing, and quantifying transportation asset damages in the 

segmented images that include key transportation assets (instead of assessing damages using 

unsegmented images to improve performance of damage condition assessment). Third, 

conducting data-driven investigations to understand the relationship between transportation 

infrastructure condition and citizen well-being to support well-being informed infrastructure 

investment decision making.  
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