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Abstract. Structural inspection is essential to improve the safety and sustainability of infrastructure 

systems, such as bridges. Therefore, several technologies have been developed to detect defects 

automatically and accurately. For example, instead of using naked eye for bridge surface defect 

detection, which is subjective and risky, Light Detection and Ranging can collect high-quality 3D 

point clouds. This paper presents the Surface Normal Enhanced PointNet++ (SNEPointNet++), 

which is a modified version of the well-known PointNet++ method applied to the task of concrete 

surface defect detection. To this end, a point cloud dataset from three bridges in Montreal was 

collected, annotated, and classified into the three classes of cracks, spalls, and no-defects. Based on 

the comparison between the results (IoU) from the proposed method and similar research done on 

the same dataset, there are at least 54% and 13% performance improvements in detecting cracks and 

spalls, respectively. 

1 Introduction 

Structural inspection is essential to improve the sustainability and safety of infrastructure 

systems (e.g., bridges). Therefore, several technologies have been recently developed to detect 

defects automatically and accurately. Light Detection and Ranging (LiDAR) scanners have 

proven their benefits in identifying surface defects of bridges, such as cracks and spalls. Olsen 

et al. (2010) proposed a slicing analysis to quantify the spalling volume of large-scale structural 

elements based on the cross-sectional slices of the point cloud data. Other approaches based on 

damage-sensitive features such as curvature (Teza et al., 2009), distance and gradient (Liu et 

al., 2010), and surface normal (Guldur and Hajjar, 2017) have also been proposed. For 

localization and quantification of concrete surface spalls, Kim et al. (2015) introduced a new 

automated technique using Terrestrial Laser Scanner (TLS), which was applicable for defects 

larger than 4 mm in depth. Guldur et al. (2015) first used both graph-based and surface normal-

based methods considering RGB and XYZ coordinates of points to detect the defects, and then 

applied clustering to group the defect points into individual defects. Those methods are sensitive 

to noise, uneven density, and complicated structures (Te et al., 2018).  

Recently, the use of Deep Learning (DL)-based methods has been increasing in the construction 

industry. DL is applied for classification, semantic segmentation, and instance segmentation of 

point clouds. In terms of bridge inspection, DL classification aims to investigate the existence 

of defects without giving further information about their location or boundary. Compared to 

classification, semantic segmentation is more detailed requiring each point to be labeled 

individually and each class can be visualized with a specific color. Instance segmentation 

provides an even more detailed analysis by segmenting the points and assigning an ID to each 

instance in a class (Hafiz and Bhat, 2020).  

Qi et al. (2017a) presented the first novel point-based method, called PointNet, to learn the 

features of each point using shared Multilayer Perceptrons (MLPs), which is a supplement of 

feedforward network, and global features using symmetrical pooling functions. However, 

PointNet has two main shortcomings: (1) lack of local context learning and (2) translation 

invariance limitation (Qi et al., 2017b). To overcome these limitations, in another work Qi et 
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al. (2017b) proposed PointNet++, which has hierarchical feature learning by using multiple 

vanilla PointNet learners with different scales.  

This paper aims to take advantage of both point cloud data and DL-based semantic 

segmentation to detect concrete surface defects by applying a modified version of a well-known 

DL method, called PointNet++ (Qi et al., 2017b). The proposed method is called Surface 

Normal Enhanced PointNet++ (SNEPointNet++). 

2 Methodology 

PointNet++ architecture can be categorized into two main sections: (1) Sampling and grouping, 

(2) feature propagation. The goal of the sampling and grouping section is to address the two 

main limitations of lack of local context and translation invariance in the original PointNet 

paper. To this end, first a set of center points are sampled from input data using the furthest-

point sampling algorithm, then neighboring points around each sampled center point are 

determined and grouped using query ball. While this approach includes the local context, since 

the density of point clouds is not unified in all parts of a real dataset, the resulting neighborhood 

may vary depending on the selected center points (translation variance). To address this 

problem, PointNet++ employs multi-scale and multi-resolution grouping. Finally, each center 

point and its corresponding neighborhood are input into the Vanilla PointNet to obtain local 

features. After obtaining the desired features, in the second section the features are propagated 

back into the original input size so as to obtain the label of each point (segmentation). To this 

end, interpolation layers are required, corresponding to the sampling and grouping layers used 

in the previous section. Furthermore, the output of each interpolation layer is first concatenated 

with the input of the corresponding sampling and grouping layer through skip connections, for 

improved performance, before being fed into a unit PointNet. Finally, the extracted features are 

passed through two fully connected PointNet units to obtain the label of each point. 

Considering that PointNet++ semantic segmentation method was originally designed to detect 

indoor building elements, it cannot be applied in an off-the-shelf manner to the task of concrete 

bridge defect detection. As such, four main aspects differentiate this study from the original 

one, as explained below. 

1. Creating a large high-quality point cloud dataset 

A sufficient point cloud dataset is a key issue in the point-based semantic segmentation of 

surface defects. Unlike point clouds, many images of concrete cracks and spalls are available 

online, which can be used for training a DL model. Strict safety regulations, availability, and 

accessibility complications in scanning a bridge are the main reasons for the lack of point cloud 

datasets. Therefore, this study aims to provide a high-quality point cloud dataset to be used in 

surface defect detection by different groups of researchers. Furthermore, several data 

augmentation approaches such as shifting, flipping, and rotating can be applied to generate a 

bigger dataset based on the available one. In this work, the collected point clouds were tripled 

by flipping vertically and horizontally, however, rotation was not applied because it can alter 

the characteristics of some defects (e.g. orientation of shear cracks) 

2. Redefining the attributes of points to better capture the main features of defects 

Unlike the original PointNet++, finding two identical elements in one class is impossible, which 

causes some difficulties in the learning process. However, almost all cracks and spalls have two 

main characteristics; they are deeper and darker than their adjacent areas. Therefore, if trained 

properly, the network can learn to use these defining characteristics to distinguish between 

different types of defects and improve its performance.  
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This study proposes using normal vectors, as an input feature for training SNEPointNet++, in 

addition to the point location and color features, which are collected during scanning. The use 

of normal vectors for spall localization has also been suggested in other works such as Kim et 

al. (2015), which developed a methodology based on the changes in the depth and normal 

vectors of defects. Ideally, the normal vector of the no-defect area and the deepest point of a 

defect are perpendicular to the XZ plane, and the deviation between two adjacent normal 

vectors, identifying the potential presence of a defect. In the original PointNet++ work, the 

normalized coordinate values of (X’, Y’, Z’) are also used, which provide the network with the 

relative location of each point. However, since the changes in depth indicate defect existence 

and Y’ dedicates the depth of each point, only this feature is employed in SNEPointNet++. It 

is computed based on Equation 1 (Qi et al., 2017a).  

𝑌′ = 𝑦𝑖 /𝑦𝑚𝑎𝑥 (1) 

where 𝑦𝑚𝑎𝑥 is the maximum value of 𝑦𝑖  in each segment. As shown in Figure 1, a reference 

plane matching the damaged surface is used to calculate the depth of the points of the defect 

(yi) with respect to that surface. It can be seen that the value of 𝑌′ increases with the depth of 

the defect. As such, in the SNEPointNet++ method, each point is represented by a 10-

dimensional vector with values of x, y, z, R, G, B, Nx, Ny, Nz, and Y’. 

 

Figure 1: Cross Section of a Sample of Normal Vector and Depth of a Defect Point. 

It should be noted that unlike the original PointNet++, in SNEPointNet++, 2D convolving for 

wrapping the dataset is performed on the XZ surface using the blocks with the given size. 

3. Addressing the issue of imbalanced data for priority classes 

The imbalanced class distribution is one of the main challenges in this research. Because not 

only the number of defects in each class but also their size are much different. Moreover, the 

largest part of the dataset belongs to the no defect class, which has the least priority. As a result, 

a weighted softmax cross-entropy loss function is applied to increase the contribution of the 

minority classes (spalls and cracks), which have priority.  

4. Applying sensitivity analysis to adjust the hyperparameters in order to better capture the 

features of small defects.  

The hyperparameters related to the network architecture and the dataset should be adjusted in 

case of using different datasets and attributes. The range of each hyperparameter is selected to 

cover the most promising values. The two main hyperparameters, which are considered in this 

paper are number of sub-layers and sampling size of each sublayer. Sub-layers in PointNet++ 

are responsible for extracting the features from the sampled and grouped points. The learning 

capacity of a neural network increases exponentially with its depth (i.e., number of sub-layers) 

and polynomialy with its width (i.e., number of nodes) (Montufar et al., 2014). Therefore, a 

sensitivity analysis on the number of sub-layers is performed to obtain the optimal performance. 

On the other hand, multiple sampling sizes is one of the advantages of PointNet++. Deeper 

network makes the opportunity of increasing the variety of sampling sizes. Although all defects 

ymax 
y

i
 

�⃗⃗� 𝑖 

x 

y 

Reference plane 

370



 

 

29th International Workshop on Intelligent Computing in Engineering (EG-ICE) 

 

are small, their sizes vary in a wide range. Therefore, the sampling sizes should satisfy large 

spalls as well as small cracks. 

The best combination of hyperparameters are selected based on the following three performance 

metrics, which are computed using Equations 2-4. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  (3) 

𝐼𝑜𝑈 = 𝑇𝑃 (𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁)⁄  (4) 

where TP, FN, TN, and FP represent True Positive, False Negative, True Negative, and False 

Positive, respectively. 

3 Case Study 

3.1 Data Collection and Preparation 

The input of the proposed method, which is the 3D point cloud dataset, was scanned from four 

reinforced concrete bridges in Montreal using a FARO Focus3D scanner (FARO Technologies 

Inc., 2012). The 3D Faro laser scanner is equipped by a camera, which automatically captures 

images during scanning and detects the color of each point. CloudCompare (Girardeau-

Montaut, 2020) is a 3D point cloud processing software. Afterwards, the scanned point clouds 

were registered and the irrelevant points (i.e., buildings, trees) were removed. Then, several 

parts were segmented out of the scanned bridge surface, and the Z-axis of the canonical 

coordinate system was set in the vertical direction. Normal vectors were calculated and three 

attributes (Nx, Ny, and Nz) were added to each point. Finally, the point cloud was manually 

annotated and labeled into three classes: cracks, spalls, and no-defect. The statistical 

information of the dataset is summarized in Table 1. Figure 2 demonstrates the distribution of 

the dataset based on segment density. 

Table 1: Statistics of the Annotated Dataset Before Augmentation. 

Dataset 

Number 

of 

segments 

Number 

of 

points 

Cracks spalls No-defect 

Number 

of cracks 

Number 

of points 

Number 

of spalls 

Number 

of points 

Number 

of points 

Training & 

Evaluation 
81 21,313,285 475 182,430 588 1,252,551 19,878,304 

Testing 21 5,628,620 120 64,269 185 682,614 4,881,737 

Total 102 26,941,905 595 246,699 773 1,935,165 24,760,041 
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Figure 2: Distribution of Dataset Segments Based on Density. 

The prepared dataset is further tripled in size by flipping the original dataset once horizontally 

and once vertically (Figure 3). The implementation and model training were performed using 

TensorFlow-GPU 1.15.1, python 3.6, and Cuda 11.0. The point cloud dataset attributes and the 

corresponding labels were concatenated and stored into NumPy format files. Then, the 

annotated point clouds were wrapped and normalized inside the blocks and saved in HDF5 

format. The number of points in each block and block sizes variables can be adjusted in this 

step.  

 

Figure 3: Data Augmentation. 

3.2 Training and Testing 

Data processing was performed on a LAMBDA workstation, with 3 NVIDIA RTX A6000 

GPUs and an AMD Ryzer Threadripper 3960x 24-core CPU. Most of the algorithms are 

developed in Python 3.8. The number of batches and initial learning rate were assumed 24 and 

1e-3, respectively. The learning rate decayed 50% every eight epochs until the minimum value 

of 1e-5 was reached.  

The original network includes two sets of 4-layer networks. In this study, four, five, and six 

sublayers were considered to find the effective depth. The widths of defects vary between 0.2 

cm (i.e., hairline cracks) and 50 cm (i.e., severe spalls). Therefore, a relatively wide range of 

2.5 cm to 50 cm was considered for the sampling size of each sub-layer. The five sublayers 

with the sampling sizes of 2.5 cm, 5 cm, 10 cm, 20 cm, and 30 cm resulted in the most efficient 

(b) Horizontally flipped segment (c) Vertically flipped segment (a) Original annotated segment 
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network performance in terms of both crack and spall semantic segmentation. The testing 

results and the architecture of SNEPointNet++ are shown in Table 2 and Figure 4, respectively. 

Table 2: Testing Results (%). 

Sampling size in each layer (cm) Cracks Spalls 

1 2 3 4 5 Precision Recall  IoU  Precision Recall  IoU  

2.5 5 10 20 30 73.3 93.0 69.2 89.9 92.0 82.5 
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Figure 4: Architecture of SNEPointNet++. 

4 Discussion  

The recent image-based methods have reached around 98% (Le et al., 2021) to 99% (Vignesh 

et al., 2021) recalls in concrete surface defect classification. However, classification is not the 

appropriate approach to find the semantic information of each point individually, which is the 

objective of this research.  

Compared to the recent image-based semantic segmentation methods, SNEPointNet++  results 

in 1-6% (Hoskere et al., 2020; Fu et al., 2021; Wang et al., 2022) and 1% higher IoU (Hoskere 

et al., 2020) in terms of crack and spall detection, respectively. Although Lee et al. (2019) 

trained a model with the highest precision in crack semantic segmentation, SNEPointNet++ 

leads to 19% higher recall. 

To compare point cloud-based surface defect detection methods, they are categorized into three 

groups based on the types of defects (i.e., cracks, spalls, and both). The crack detection methods 

are incomparable because of using different scales (i.e., error) or visualization to show the 

results. Although the dataset of Valença et al. (2017) included the cracks with 0.1 mm to 4 mm 

thickness, the minimum detectable crack width was 1 mm. Turkan et al. (2018) proposed the 

only DL-based method in this category, which is not comparable due to showing the results 

based on error.  

In the case of spall detection, the best result of Kim et al. (2017) was 92% average recall and 

97 % average precision for ten samples with the sizes between 10 mm  10 mm  4 mm and 

100 mm  100 mm  7 mm. Due to scanning larger spalls in an ideal situation in terms of 

incidence angle and distance, better results are expected.  

The last group, which belongs to spall and crack detection methods, includes two studies. 

Unlike Guldur and Hajjar (2017) method, adapted DGCNN (Bahreini and Hammad, 2021) and 

SNEPointNet++ were evaluated using the same dataset. The IoU results show that the 
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efficiency of SNEPointNet++ is 10% and 24% higher than adapted DGCNN in terms of spall 

and crack detection, respectively.  

5 Conclusions and Future Work 

This paper presents a DL-based automated method for detecting two types of concrete surface 

semantic segmentation, including cracks and spalls, using point clouds. The basic benefits of 

PointNet++ are: (1) considering the features related to both images (i.e., RGB) and point cloud 

(i.e., x, y, z); (2) not converting point clouds into other representations (i.e., voxels, images); 

(3) considering both local and global features; and (4) using multi-scale and multi-resolution 

samples. However, applying the original PointNet++ does not result in high performance, and 

fundamental modifications are required based on the nature of defects and collected dataset. 

The contributions of this paper are: (1) Creating a large high-quality point cloud dataset, 

available upon request, for future research in concrete surface defect detection; and (2) 

Developing SNEPointNet++, which is a DL point-based semantic segmentation method for 

concrete surface defect detection. The proposed method is a modified version of PointNet++ to 

focus on two main characteristics of surface defects: normal vector and depth. 

The proposed technique is successfully validated through a dataset of four bridges in Montreal, 

Canada, which was tripled by augmentation. This dataset includes 1,785 cracks and 2,319 spalls 

with a minimum width of 2 mm and 5 mm, respectively. SNEPointNet++ can detect cracks and 

spalls with 93% (IoU: 69%) and 92% (IoU:83%) recalls, respectively. It can be concluded that 

considering the nature, size, and patterns of the classes is vital to train a high-performance 

model. Using different settings for the scanning quality and resolution during the data 

collection, and having the segments with different densities make SNEPointNet++ invariant to 

these factors. However, a high-quality dataset is still required to have an accurate defect 

annotation. 

As mentioned above, the lack of a huge dataset, which is crucial to train an accurate model, can 

be considered as the main limitation of this research. Moreover, the available dataset is limited 

to the surfaces of the bridge piers and abutments. Therefore, the model is not trained for curved 

surfaces. Despite using the weighted loss function for learning, the effect of the class-

imbalanced dataset on the results cannot be fully eliminated. As future work, the dataset can be 

expanded by scanning more bridges, using other augmentation approaches, and generating 

synthetic point cloud datasets. Furthermore, instance segmentation can be applied to extract the 

individual defects. Future work could also define more classes based on the level of severity, 

such as small, medium, and severe spalls. In addition, future work will aim to investigate the 

effect of RGB on the performance of SNEPointNet++ by training the network without color 

feature and comparing the results with the network outputs of this paper.   
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