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Abstract. Detecting construction equipment and classifying their activities are important steps for 
evaluating their performance and productivity on construction sites. To this end, many automated 
activity monitoring frameworks based on computer vision have been developed. However, most of 
the current state-of-the-art activity recognition methods for construction equipment are based on 
supervised deep learning methods. A major drawback of these approaches is that large, annotated 
datasets are required for each equipment and activity. To address this problem, this work adapts and 
customizes the self-supervised, spatiotemporal contrastive video representation learning method for 
excavator activity recognition. Self-supervised methods use the spatiotemporal information present 
in video frames as a source of information for pre-training a deep neural network without labels, 
which is then fine-tuned using a few labeled data. The results show the potential of this method, 
obtaining the recognition accuracy of 84.6% while using only 10% of the labeled data in an available 
dataset. 

1. Introduction

The traditional way of monitoring the activities of various construction equipment is time 
consuming and labor intensive, especially on large construction sites (C. Chen et al., 2020). 
Considering that a major step in any large scale construction project is earthmoving operations, 
excavator activity monitoring would enable site managers to make more informed decisions by 
providing them with the productivity and work cycle duration information (C. Chen et al., 
2020). Examples of such decisions include resource allocation, scheduling, and path planning 
(Kim et al., 2018).  

Recently, with the abundant use of surveillance cameras in construction sites (Kim and Chi, 
2019), various automated vision-based activity recognition methods have been proposed (Luo 
et al., 2020; C. Chen et al., 2020; Kim and Chi, 2019). Convolutional Neural Networks (CNN) 
are the main building block in all vision-based deep learning methods. For instance, Roberts 
and Golparvar-Fard (2019) applied a Hidden Markov Model (HMM) on the detection outputs 
of a CNN network to detect, track, and identify the activities of excavators and dump trucks. 
Kim and Chi (2020) combined CNN and Long Short-Term Memory (LSTM) architectures for 
activity recognition of excavators and dump trucks, while Slaton et al. (2020) used CNN and 
LSTM combination for detecting the sequential activities of excavators and roller compactors. 

The main limitation of above-mentioned 2D CNN-based methods is the separate extraction of 
spatial and temporal features (Li et al., 2020), which limits the efficiency of deep learning 
models to extract spatiotemporal data simultaneously. 3D CNN-based methods however, 
incorporate the spatiotemporal data extraction into a single architecture, which alleviates the 
above limitation. Chen et al. (2020) proposed a three-stage excavator activity recognition 
method in which excavators are first detected and tracked in consecutive frames. Then, the 
tracked frames are input into a 3D CNN network for activity recognition. Lou et al. (2020) used 
the You Only Look Once (YOLOv3) network in a multi-stage framework for worker activity 
recognition. Recently, Jung et al. (2021) proposed a single-stage architecture by combining 3D 
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CNN with attention mechanism for detecting the activities of multiple construction equipment, 
while Torabi et al. (2021) used a single-stage architecture called You Only Watch Once 53 
(YOWO53) for worker activity recognition. The current state-of-the-art methods for equipment 
and worker activity recognition, while achieving high performance, are based on supervised 
deep learning methods, which require large annotated datasets for each equipment/worker and 
each activity. Particularly, the fact that various types of construction equipment exist on the 
site, often varying in different phases of the project (Kim and Chi, 2021), poses major 
challenges for the development of a general supervised activity recognition method. 

One possible approach for avoiding the time-consuming and error-prone process of data 
annotation is using self-supervised methods. In recent years, many self-supervised methods 
have been proposed for learning visual features from large-scale unlabeled image and video 
datasets (Jing and Tian, 2021). A popular approach in self-supervised methods is to define a 
pretext task as the learning objective of the neural network, by which the output label is created 
from the input data itself (i.e., self-supervision). For instance, some self-supervised video 
representation learning methods exploit the sampling rate and playback speed information (Cho 
et al., 2020; Feichtenhofer et al., 2019; Yao et al., 2020), in which a model is trained to maintain 
the consistency between different representations of the same video at different sampling rates. 
Another common approach is to use the temporal order of frames or clips (Misra et al., 2016; 
Xu et al., 2019). Misra et al. (2016) proposed a temporal order verification task in which the 
model predicts whether or not the input frames have been shuffled or are in the correct order. 
Xu et al. (2019) extended this task by selecting short clips from an input video and training a 
model to predict the sequential order of input clips.  

Recently, contrastive learning-based self-supervised approaches have obtained the state-of-the-
art performance (T. Chen et al., 2020; Grill et al., 2020). In contrastive learning, the pretext task 
is to have the model produce consistent representations for different augmentations of the same 
input while increasing the difference with the augmentations of other inputs. Qian et al. (2021) 
proposed a spatiotemporal contrastive video representation learning (CVRL) method, which 
uses contrastive learning on spatiotemporally augmented clips extracted from the input video. 
Compared with supervised methods, self-supervised approaches are able to achieve similar 
performance (T. Chen et al., 2020) while requiring far less labeled training data. 

The main goal of this paper is to adapt and customize the self-supervised CVRL method for the 
task of excavator activity recognition. To this end, the CVRL method is first trained on a large 
dataset of unlabeled excavator activities collected from YouTube and local construction sites. 
Then, it is fine-tuned on a limited annotated dataset. While several works have tried to address 
the problem of construction equipment detection using limited datasets (Kim and Chi, 2021; 
Xiao et al., 2021), to the best of authors’ knowledge this study is the first attempt to address the 
problem of excavator activity recognition using self-supervised approaches. 

2. Methodology 

The general framework in which self-supervised methods are applied is comprised of three 
main phases. The first phase is to use the selected self-supervised learning (SSL) method to pre-
train a neural network. The second phase is to use the pre-trained neural network in the down-
stream task to obtain high performance with a small, labeled dataset. Finally, the third phase is 
to test the performance of the model trained in previous two phases on the never-before-seen 
test data. CVRL (Qian et al., 2021) is a self-supervised contrastive video representation learning 
method. Self-supervised contrastive approaches, in general, try to minimize the distance 
between the outputs of the model for two different augmentations of the same video, while 
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maximizing their distance with the outputs of the model for augmentations of other videos. In 
this manner, the model is expected to extract context similarity in the input data without 
supervision (i.e., labels) (Jing and Tian, 2021). The pre-training phase using the CVRL method 
is done in five consecutive steps of temporal augmentation, spatial augmentation, clip encoding, 
projection, and loss calculation (Figure 1). The details of each step are provided in the following 
paragraphs. 

Considering that augmentations are at the core of contrastive approaches, the quality of the 
learnt representations is determined, in large part, by the choice of the applied augmentations. 
To this end, and to exploit the spatiotemporal information present in the videos, CVRL proposes 
a novel temporal augmentation method in which for an input video of length 𝑇, two clips with 
the temporal distance of ∆𝑡 are extracted, where ∆𝑡 is sampled from a linearly decreasing 
distribution over [0, 𝑇]. The intuition behind using this distribution, which discourages large ∆𝑡 
values, is to model the decrease in temporal correlation between extracted clips as the temporal 
distance between them increases. After sampling two temporally augmented clips from each 
video, in the second step the spatial augmentations of random cropping, resizing, horizontal 
flipping, color jittering, gray scaling, and Gaussian blurring are applied in a consistent manner 
to all of the frames in a clip (e.g., all of them are horizontally flipped). 

In the third step, the two augmented clips are input to the selected backbone model to obtain 
their respective encoding (i.e., representation). CVRL uses the common 3D ResNet (Hara et 
al., 2018) model as the backbone architecture. In contrastive learning, the model is trained to 
be invariant to the augmentations applied to be able to produce consistent representations for 
clips extracted from the same input video. However, information such as the color or object 
orientation might be important for down-stream tasks. Therefore, in the fourth step, encoding 
of each extracted clip is passed into a multi-layer projection head to map the encoded 
representations into an 𝑚-dimensional space. The use of projection head during training 
improves down-stream performance by limiting the effect of augmentation invariance to the 
projection output, on which the contrastive loss is calculated (T. Chen et al., 2020). Projection 
head is only used during the self-supervised training step and is later discarded. Customizing 
the projection space dimension plays a crucial balancing role between the quality of the learnt 
representation during the pre-training phase, and the performance of the model on down-stream 
tasks. A detailed inspection of the effect of different projection dimensions is presented in 
Section 3.3. 

Figure 1: Self-supervised pre-training of 3D ResNet backbone. 
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The final step is to calculate the contrastive loss. CVRL uses the InfoNCE loss (Oord et al., 
2019) on the spatiotemporally augmented clips. To apply the contrastive loss, given a batch of 
𝑁 input videos, two augmented clips are extracted from each video, resulting in 2𝑁 final clips 
per batch. For a positive pair of clips, i.e., a pair of augmented clips extracted from a single 
video, the rest of the 2(𝑁 − 1) clips in the batch are treated as negative samples. Assuming 𝑧 
and 𝑧 are a positive pair, the contrastive loss for this pair is calculated using Equation (1). 

 ℒ = − 𝑙𝑜𝑔
௫൫௦൫௭, ௭ೕ൯ ఛ⁄ ൯

∑ 𝟙ೖಯ ௫(௦(௭, ௭ೖ) ఛ⁄ )మಿ
ೖసభ

 (1) 

Where, 𝑠𝑖𝑚൫𝑧, 𝑧൯ represents the cosine similarity between two vectors, and 𝟙ஷ denotes an 
indicator function which equals 1 when 𝑘 ≠ 𝑖 and 0 when 𝑘 = 𝑖. 𝜏 is the temperature parameter 
which improves the performance of the model by increasing or decreasing its confidence in the 
output prediction (Hinton et al., 2015). Considering that 𝜏 changes the output class probabilities, 
it affects the calculated loss and subsequently the entire training process. Hence, careful 
adjustment of this hyperparameter is required for the given dataset and activity classes to obtain 
the best performance possible, as presented in Section 3.3. Finally, Equation 1 computes the 
loss for a positive pair of (𝑖, 𝑗) clips, the total batch loss is calculated over all positive pairs, both 
(𝑖, 𝑗) and (𝑗, 𝑖), in a batch. Considering that in contrastive learning the model learns by 
comparing the data in each batch, the size of batch plays a crucial role on the quality of the 
learnt representations (T. Chen et al., 2020). As such, careful customization of this value for 
the dataset at hand is of paramount importance as shown in Section 3.3. 

After self-supervised training, to evaluate the quality of the pre-trained backbone, the most 
common approach is linear evaluation (T. Chen et al., 2020; Oord et al., 2019). In linear 
evaluation, the weights of the pre-trained backbone are frozen and a linear classifier is trained 
on top of the backbone. Considering the limited learning capacity of a linear classifier, the test 
accuracy in linear evaluation is a proxy for the quality of the representation learnt by the 
backbone network. In CVRL, backbone network output is ℓଶ normalized before being fed into 
the linear classifier. Prediction loss is then calculated using the output of the linear classifier 
and the true data label. 

Finally, test data are used to obtain the final performance of the model. Following a common 
practice (Feichtenhofer et al., 2019), during testing ten clips are extracted from each input video 
by uniformly sampling along the temporal dimension. For each clip, the shorter spatial side is 
scaled to a size of 𝑛 pixels and three 𝑛 × 𝑛 crops are then taken along the longer spatial 
dimension to cover the entire frame, as an approximation to fully convolutional testing. The 
size 𝑛, is selected based on the frame size of the videos in the dataset and the input size of the 
model. Before predicting an activity class for the input video, the output of the softmax layer 
for the 30 views (10 clips × 3 crops) is averaged over. Afterwards, this averaged softmax value 
is used to obtain the predicted class of the model and the final test accuracy. 

3. Experiments 

3.1 Dataset Description 

The experiments were conducted on an excavator video dataset, collected from various sources 
including local construction sites, YouTube, and videos used in similar research works (Roberts 
and Golparvar-Fard, 2019). The excavator activities in the dataset include digging, swinging, 
and loading. The collected videos are from more than 25 different construction sites to add 
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more diversity to the collected dataset by including various site conditions, camera viewpoints, 
scales, and colors of the excavators. The overall statistics of the dataset are presented in Table 
1 and examples of each activity are shown in Figure 2.  

Table 1: Statistics of the Collected Excavator Dataset. 

Activity Type Number of Videos Number of frames 
Average video clip 

length (sec) 

Digging 295 64,436 7.28 

Swinging 476 51,441 3.60 

Loading 321 51,632 5.36 

Total 1,060 163,295 5.13 

 

 
(a) Digging (b) Swinging (c) Loading 

Figure 2: Samples from the Collected Dataset. 

3.2 Implementation Details 

The original CVRL method uses SGD optimization. However, in this work it was found that 
ADAM optimization algorithm yields better performance. As such, ADAM optimization 
algorithm with an initial learning rate of 0.16 is used. The learning rate is linearly warmed-up 
for 5 epochs followed by a half-period cosine learning rate decay strategy. The training is done 
using two NVIDIA RTX A6000 GPUs. Due to GPU memory limitations, a maximum batch 
size of 256 videos (512 augmented clips) is considered. During self-supervised training, two 
16-frame clips with a temporal stride of 2 are extracted from each video. To increase the 
variation in the applied spatial augmentations, horizontal flip, color jittering, and gray scaling 
are only applied 50%, 80%, and 20% of the time, respectively. The initial dimension of the 
projection space is set to 128 and the self-supervised training is performed for 300 epochs, with 
the temperature parameter set to 0.1. In contrast to the spatial augmentations applied during the 
self-supervised pre-training, during linear evaluation, only cropping, resizing, and flipping 
augmentations are applied.  

For linear evaluation, 32-frame clips with a temporal stride of 2 are used, and the training is 
carried out for 100 epochs with a batch size of 256 videos. The testing is done using the 30 view 
approach described in Section 2 with a crop size of 256 × 256 per clip. Training, evaluation, 
and testing data ratios are 80%, 10%, and 10%, respectively. More specifically, during self-
supervised pre-training, 80% of the data, without labels, are used to pre-train the 3D ResNet 
backbone model. During the linear evaluation, the backbone weights are frozen, and the 10% 
evaluation data are used to train the linear classifier added on top of the backbone. Finally, the 
performance of the overall framework is evaluated using the 10% test dataset, that was not used 
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in any of the previous two phases, to obtain a more accurate metric for the performance of the 
trained model.  

3.3 Experimental Results 

The results of linear evaluation on the test dataset for different configurations of the 
hyperparameters are shown in Table 2 using the common top-1 accuracy metric. In deep 
learning classification tasks, the final layer of a neural network (softmax), outputs a probability 
for each class and the final prediction of the network is obtained by finding the class that the 
network considers to be the most probable (top-1 accuracy). The initial hyperparameters in this 
work were originally selected in accordance with the hyperparameters suggested in the CVRL 
work. However, considering the differences between the excavator dataset used in this work 
and the Kinetics-400 (Kay et al., 2017) and Kinetics-600 (Carreira et al., 2018) human activity 
datasets used in the CVLR paper, a thorough ablation study on different configurations of 
hyperparameters was carried out. 

Table 2: Linear Evaluation Results. 

Batch size Temperature Projection dim. Learning rate Top-1 Acc. (%) 

32 0.1 128 0.16 59.5 

64 0.1 128 0.16 66.2 

128 0.1 128 0.16 75.5 

256 0.1 128 0.16 81.9 

256 0.05 128 0.16 80.3 

256 0.1 128 0.16 81.9 

256 0.5 128 0.16 67.7 

256 0.1 64 0.16 78.1 

256 0.1 128 0.16 81.9 

256 0.1 256 0.16 73.8 

256 0.1 128 0.32 70.1 

256 0.1 128 0.16 81.9 

256 0.1 128 0.1 84.6 

256 0.1 128 0.08 83.3 

As mentioned in Section 2, batch size plays a crucial role in the final performance of contrastive 
learning-based methods, due to the comparison done between positive and negative samples in 
each batch. As such, batch size is the first considered hyperparameter to customize for the 
available excavator dataset and activity classes. It can be seen from the results that the 
performance of CVRL steadily improves with increasing batch size as has been shown in other 
contrastive methods (Oord et al., 2019; Tian et al., 2020). Given the role of temperature 
parameter in the loss calculation and consequently, the entire training process, the temperature 
parameter is the next considered hyperparameter to customize. The importance and role of 
temperature parameter is also evident by the large variations in the final performance of the 
model for different values. It can be seen in Table 2 that the best performance is obtained for 
temperature parameter of 0.1 while for the value of 0.5 the performance drops significantly. 

The third considered hyperparameter is the projection dimension. As explained in Section 2, 
the trade-off between the quality of the pre-trained model and down-stream performance, is 
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determined by careful selection of the projection dimension. To this end, different dimensions 
for the projection space were also tested, with the projection dimension of 128 obtaining the 
best performance. Finally, changing the learning rate shows that the best performance is 
achieved with the learning rate of 0.1, which differs from the learning rate suggested by the 
CVRL work (0.32) by a large margin. Considering the significant difference between the 
performance of the model for learning rate values of 0.16 and 0.32 and the iterative approach 
of hyperparameter customization in deep learning methods, the results for the customization of 
batch size, temperature, and projection dimension hyperparameters are reported using the 
learning rate of 0.16. However, during the final customization of the learning rate 
hyperparameter, it is observed that the learning rate of 0.1 yields the best performance.  

It should be noted that as described in Section 3.2, only 10% of the dataset is used during linear 
evaluation phase, while the results shown in Table 2 are obtained using the never-before-seen 
test dataset. Hence, the CVRL model is able to obtain a high activity recognition accuracy of 
84.6% while reducing the labeled data requirement by a factor of 10. More generally, the results 
in Table 2 demonstrate the efficiency and applicability of using self-supervised approaches in 
the construction domain. 

4. Conclusion and future work 

In this work, the spatiotemporal Contrastive Video Representation Learning (CVRL) method 
was adapted and customized to the task of excavator activity recognition on construction sites. 
Extensive linear evaluation of the model and ablation analysis of various hyperparameters 
demonstrated the promising performance of the CVRL method, by obtaining the top-1 activity 
classification accuracy of 84.6% while using only 10% of the labeled data from the available 
dataset. More generally, the results show the applicability of using self-supervised methods for 
equipment activity recognition in the construction domain.  

Considering that the main advantage of the self-supervised approach is reducing the number of 
required labeled data, the future work includes addressing the problem of recognizing the 
activities of multiple equipment, which can enhance the applicability of vision-based 
monitoring during multiple phases of construction projects. Furthermore, while only 10% of 
the labeled dataset was used in this paper, a more detailed analysis of the ratio of labeled data 
used and the final classification accuracy of the model can further clarify the advantages and 
limitations of self-supervised approaches. 
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