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Abstract. Occupant behavior is a significant factor affecting building energy use and occupant 
comfort. Capturing occupant behavior, therefore, holds great promise toward human-centered 
building energy efficiency. However, existing methods for behavioral sensing and analytics are 
mainly based on intrusive sensing techniques (e.g., visual and acoustic sensing), which are known 
for infringing occupant privacy and have limited applicability. As such, the authors propose a novel 
nonintrusive approach for behavioral sensing and analytics. It uses (1) environmental chemical 
sensing to detect air composition changes caused by occupant behaviors, and (2) machine learning 
to learn from the air data to extract behavior information (e.g., occupancy and behavior type). This 
paper focuses on presenting the proposed approach and its evaluation in extracting occupancy 
information. The preliminary experimental results show that the proposed approach achieved an 
accuracy of 64.59% in sensing and analyzing occupancy, indicating the potential of the nonintrusive 
approach in supporting human-centered energy efficiency. 

1. Introduction

Buildings represent a source of enormous untapped energy efficiency potential. In the past 
decade, building energy intensity (energy use per square meter) has declined at an annual rate 
of around 1% (International Energy Agency, 2020). Nevertheless, the full potential of building 
energy efficiency has not yet been achieved. As estimated by the Internal Energy Agency (IEA), 
building energy intensity in 2030 needs to be 45% less than that in 2020, in order to tap into the 
full efficiency potential to achieve the universal energy access goal by the United Nations 
(International Energy Agency, 2021). The development of building energy codes and 
advancement in high-efficiency energy technology have contributed to the improvement of 
building energy efficiency, but are not sufficient to harness its full potential. Buildings are 
complex sociotechnical systems with dynamic human-building interactions (Lumpkin et al., 
2020). Because of the differences in the behaviors of building occupants, buildings often have 
significant variances in energy computation, even if they are designed under the same codes 
and equipped with the same energy technology (Van den Brom et al., 2019). Recent studies 
(e.g., Paone and Bacher, 2018; Jang and Kang, 2016; Rafsanjani and Ahn, 2016), thus, 
emphasize the importance of sensing and analyzing occupant behavior and incorporating the 
behavior into energy optimization for human-centered building energy efficiency to harness the 
untapped efficiency potential. 

However, sensing and analyzing occupant behavior is challenging because of two primary 
reasons. First, occupant behavior is of high diversity. As people spend on average more than 
90% of their time indoors (Al horr et al., 2016), the diverse types of human behavior that exist 
in the universe occur frequently in buildings. The behaviors of occupants in buildings include 
energy-use behaviors (e.g., adjusting thermostats, opening/closing windows, turning on/off 
lights, using electric appliances, etc.) and non-energy-use behaviors (e.g., leisure, office, and 
occupational behavior). Each high-level non-energy-use behavior has a multitude of sub-types. 
For example, leisure behavior includes reading, entertaining, cooking, etc. The diverse types of 
occupant behavior to be captured significantly challenge the capability of behavioral sensing 
systems. Second, occupant behavior is privacy-sensitive. Occupants generally do not prefer and 
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even are against being directly monitored. Studies (e.g., Tomah et al., 2016) show that occupant 
privacy is one of the most significant concerns in the era of urbanization and digitalization. 
Protecting occupant privacy becomes even more important in buildings, because buildings are 
private environments where people live, work, and study on a day-to-day basis. Hence, while 
we attempt to deploy sensing and analytics techniques to monitor occupants and their behavior, 
we must protect their privacy. 

To address these challenges, the authors propose a novel nonintrusive behavioral sensing and 
analytics approach for supporting human-centered building energy efficiency. The proposed 
approach leverages (1) environmental chemical sensing to detect air composition changes 
caused by different types of occupant behavior, without collecting sensitive private information 
from occupants, and (2) machine learning to learn from the air data to extract occupant behavior 
information (e.g., occupancy and behavior type). This paper, as a pilot study, focuses on 
presenting a proof-of-concept prototype developed to evaluate the feasibility of the proposed 
nonintrusive approach. The prototype includes two primary components: (1) a CO2 sensor-
based nonintrusive sensing system for collecting CO2 concentration data, and (2) a bidirectional 
long short-term memory (bi-LSTM)-based information extraction model for extracting 
occupancy information from the collected concentration data. 

2. State of the Art and Knowledge Gaps 

A body of research efforts have been untaken to sense and analyze occupant behavior using 
various techniques, including wearable sensors, object sensors, and cameras. Despite the 
importance of these efforts, two primary knowledge gaps are identified. First, there is a lack of 
methods that can sense and analyze the large number of occupant behavior types that exist. 
Existing behavioral sensing methods mainly rely on sensing techniques that are specialized in 
sensing certain types of behaviors. For example, wearable sensors, in addition to their adherence 
problems (e.g., people stop using wearable sensors with time), mainly leverage accelerometers 
to capture behaviors with distinctive motion patterns, such as different phases of exercising 
(Walker et al., 2016). Object sensors, such as Wi-Fi, passive infrared (PIR) sensors, and smart 
meters, provide a limited amount of behavioral information. For instance, Wi-Fi mainly 
captures the locations of occupants to derive occupant behaviors (Ding et al., 2021). However, 
location information alone is not enough because different behaviors can occur at the same 
location. PIR sensors mainly capture the motion of occupants (Yan et al., 2018), but are not 
able to detect occupant behaviors that are relatively stationary. Smart meters mainly monitor 
the energy use of electronic devices to analyze occupant behaviors in close connections with 
such devices (e.g., working) and are, thus, limited in sensing and analyzing behaviors that do 
not involve the use of electronic devices (Razavi et al., 2019). 

Second, there is a lack of methods for nonintrusive behavioral sensing and analytics. Occupants 
value their privacy, especially in indoor environments. As such, there is an evident need to 
conduct behavioral sensing and analytics in a nonintrusive manner to protect occupancy 
privacy. Visual sensing using cameras, compared to other sensing techniques such as those 
discussed above, is more capable of sensing different types of occupancy behavior. However, 
despite its advantages, visual sensing is often criticized for its privacy infringement issues, 
because it collects sensitive private information from occupants (e.g., facial features, body 
shape, etc.). Although there are privacy protection techniques (e.g., face blurring), people still 
feel uncomfortable under visual monitoring. For example, in many cases, people do not want 
to be monitored by video cameras even though they are informed that key visual features in the 
images frames of videos are anonymized, the images are 100% secure, and no other parties will 
have access to the images (Xu and Pombo, 2019).  
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3. Proposed Nonintrusive Behavioral Sensing and Analytics Approach  

To address the aforementioned knowledge gaps, the authors propose a novel nonintrusive 
behavioral sensing and analytics approach. The proposed approach leverages (1) environmental 
chemical sensors to nonintrusively sense occupant behavior based on air composition changes 
caused by occupant presence and occupant behaviors, without collecting any sensitive and 
private personal information; and (2) machine learning to learn from the air composition data 
to analyze and extract information that describes occupancy and occupant behavior (both 
energy-use and non-energy-use behavior). To evaluate the feasibility of the proposed approach, 
this paper, as a pilot study, focuses on presenting a proof-of-concept prototype, which leverages 
CO2 sensor-based nonintrusive sensing system and supervised deep learning for sensing and 
analyzing occupancy information. The prototype includes two primary components: 
nonintrusive behavioral sensing, and nonintrusive behavioral analytics. 

3.1 Nonintrusive Behavioral Sensing 

In this paper, the nonintrusive behavioral sensing was conducted using a CO2 sensor-based 
sensing system. A CO2 sensor was chosen and used in this pilot study because of three primary 
reasons. First, CO2 sensors are economical and are already equipped in most buildings. Second, 
CO2 sensors have a wide detection range, which allows for detecting CO2 concentration changes 
in all directions of an indoor space. Third, more importantly, the sensors only collect CO2 
concentrations and do not collect any sensitive and private personal information from occupants 
(e.g., facial and body features). The development of the sensing system included two primary 
steps: sensing system design, and sensing system calibration.  

Sensing System Design. The design of the proposed CO2 sensor-based sensing system is 
depicted in Figure 1. The sensing system includes a breadboard, an analog-digital converter, a 
general-purpose input/output (GPIO) extension board, and a Raspberry Pi. The CO2 sensor is a 
metal oxide semiconductor (MOS)-based sensor for collecting CO2 concentrations in the 
hosting environment. It includes a variable resistor to respond to and sense different levels of 
CO2 concentrations and a load resistor to control the sensitivity and accuracy of the sensor in 
responding to CO2 concentration changes. The CO2 concentrations collected by the sensor are 
in the form of analog signals, which are converted to digital signals by the analog-digital signal 
converter (a MCP 3008 chip in the design). The GPIO board transfers the digital signals into a 
machine-readable format and transmits the signals to a central processing unit (CPU) on the 
Raspberry Pi (which is a microcomputer with a graphic interface) for data storage. 

 

Figure 1: Design of Proposed Nonintrusive Sensing System. 
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Sensing System Calibration. The CO2 sensor needs to be calibrated to establish a baseline CO2 
concentration in the clean air. Without the calibration, the sensor would use the CO2 
concentration level at the time of deploying the sensing system in the hosting environment as 
the baseline, which could result in improper sensing of CO2 concentrations (e.g., concentrations 
that are lower than the concentration level at the deployment). The calibration aims to fix the 
resistance of the variable resistor to establish a resistance baseline according to the CO2 
concentration in the clean air. The sensor was calibrated by (1) pre-heating the sensor for 24 
hours without any data collection, (2) placing the sensor in a clean air environment (i.e., in a 
natural landscape), and (3) monitoring the resistance value until it becomes fixed to complete 
the calibration process.  

3.2 Nonintrusive Behavioral Analytics  

Nonintrusive behavior analytics aims to learn from the data collected using environmental 
chemical sensors to extract occupant behavior information. This paper focuses on extracting 
occupancy information from CO2 concentration data collected using the sensing system (as per 
Section 3.1). The analytics includes three components: outlier removal, data standardization, 
and deep learning. 

Outlier Removal.  Outlier removal was conducted to remove CO2 concentration data instances 
that deviate significantly from the other instances in the dataset. Two sources of outliers were 
identified: sensor malfunctions caused by the fluctuations in the conditions of the hosting 
environment (e.g., drastic humidity and temperature changes), and sensor overreactions (e.g., a 
sudden surge in CO2 concentrations caused by occupants directly exhaling to the sensor). Such 
outliers skew the distribution of the data and thus negatively affect the performance of the 
subsequent machine learning. As such, outliers were removed using the Pauta criterion (Li et 
al., 2016). The Pauta criterion was used because it is the standard outlier removal method for 
normally distributed data, such as the CO2 concentration data in this study. As per Equation (1), 
a data instance is considered as an outlier and thus removed, if the residual error between the 
instance and the mean of all the instances is greater than 3σ. In Equation (1), X is arithmetic 
mean of all data instances in the dataset, Xb is a data instance, Vb is residual error, and σ is 
standard deviation of all data instances. 

|Vb| = |Xb −  X |> 3σ (1) 

Data Standardization. Data standardization was conducted to scale the data in a way that the 
scaled data can center around a mean of zero. Data standardization allows training more robust 
machine learning models and was, thus, conducted in this study. The standard score (also 
referred to as the z-score), which is a numerical measure that describes the relationship between 
a data instance and the mean of all the data instances, was chosen for the standardization. The 
CO2 concentration data were standardized using Equation (2), where X is arithmetic mean of 
all data instances in the dataset, Xb is a data instance, σ is standard deviation of all data instances, 
and Zb is the z-score of data instance Xb (which represents the standardized value for Xb). 

𝑍b = (𝑋 −  𝑋) / σ (2) 

Deep Learning. A deep learning architecture was developed to learn from the standardized 
CO2 concentration data to extract occupancy information. It learns from CO2 concentrations 
from past and the current time intervals to predict the occupancy at the current time interval. As 
shown in Figure 2, the architecture includes three layers: an input layer, a bi-directional long 
short-term memory (bi-LSTM) layer, and a softmax output layer.  
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Figure 2: Learning Architecture for Extracting Occupancy Information from CO2 Data.  

The input layer takes vectors of CO2 concentrations at consecutive time intervals as input, e.g., 
{T-4, T-3, T-2, T-1, T}. In this study, a vector includes CO2 concentrations collected within a 
one-minute time interval. CO2 concentrations from previous intervals were also used to extract 
the occupancy information at the current interval T, because this allows enriching the features 
used for the extraction and capturing the sequential and temporal changes in the concentrations 
to inform the extraction. The LSTM layer maps each input vector into a hidden representation 
in a way that the temporal dynamics connecting the data and the nonlinear dynamics of the data 
are captured by the hidden representation. LSTM is a special recurrent neural network that 
includes “gate” structures to regulate the flow of information in the network. As shown in Figure 
2, LSTM includes three “gate” structures: a forget gate to decide which values of the previous 
state hT-1 and input xT-1 need to be preserved/remembered, an input gate to decide which values 
of the conveyor belt need to be preserved, and an output gate to decide what flows from the 
conveyor belt CT-1 to the state hT. In this study, a bi-LSTM layer was used, because it allows for 
capturing the flow of information about CO2 concentrations in both forward and backward 
directions to increase the amount of information (e.g., about temporal dynamics and 
nonlinearity) captured in the hidden representations for improved performance of occupancy 
information extraction. The output layer is a dense layer with the softmax activation function. 
The softmax function is a normalized exponential function to normalize the output of the 
learning architecture to a probability distribution over the desired output classes (i.e., occupancy 
categories in this study).  

4. Nonintrusive Behavioral Sensing and Analytics Prototype Implementation 

The behavioral sensing and analytics methods were implemented to develop a prototype system 
for evaluating the performance of the proposed nonintrusive approach. The implementation 
included four steps: (1) data collection, (2) dataset preparation, (3) algorithm implementation, 
and (4) performance evaluation.  

Data Collection. The method presented in Section 3.1 was followed to develop a CO2 sensor-
based behavioral sensing system. The developed sensing system was instrumented in an office 
room for a week (from November 23 to November 30, 2021). The room, which is a fan-shaped 
room with a radius of 14.8ft and located on the campus of Stevens Institute of Technology, 
serves as an office for five graduate students. Figure 3 shows the raw CO2 concertation data 
collected.  
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 Figure 3: Collected Raw CO2 Concentration Data. 

Dataset Preparation. Dataset preparation included dataset creation and human annotation. To 
create the dataset, the raw time-series concentration data, as shown in Figure 3, were segmented 
into a set of non-overlapping intervals, where an interval has a width of one minute and includes 
a total of 30 concentration readings (sampling frequency = two seconds). A ‘sliding window’ 
approach with a timestep of five was then used to create individual inputs for the learning 
architecture. For example, to extract the occupancy information at time interval T, the input 
included the concentration readings in intervals T-4, T-3, T-2, T-1, and T. The input used to 
extract occupancy information at T+1 included the readings at intervals at T-3, T-2, T-1, T, and 
T+1. Thus, the created dataset includes a total of 9,996 individual inputs. The dataset was 
randomly split into a training set and a testing set at a ratio of 7:3. Human annotation was 
conducted to mark-up the entire dataset with gold standard occupancy information. An office 
entrance and exit log was used to prepare the gold standard. The time of entrance and exit of an 
individual was manually recorded on the log, to count the gold standard occupancy for each 
time interval. 

Algorithm Implementation. The nonintrusive behavioral analytics algorithm (as per Section 
3.2) was implemented to train an occupancy information extraction model. The implementation 
was conducted using Keras (Keras, 2022), which is an open-source software library that 
provides a Python interface for artificial neural networks. The training included three steps. 
First, the hyperparameters for the learning algorithm were defined, as per Table 1. Second, the 
algorithm was initially trained for 1,000 epochs to identify the optimal number of epoch to 
avoid overfitting and underfiting. Based on the analysis of the relationship between training 
loss (categorical cross-entropy loss, as per Table 1) and trainng epoch number, the optimal 
epoch was identified as 700. As seen in Figure 4, the training loss after 700 epoches started 
become unstable, indicating model overfitting. Third, the algorithm was retrained using 700 
epochs, resuling in a final extraction model.  

Table 1: Hyperparameters of Nonintrusive Behavioral Analytics Algorithm. 

Hyperparameter Parameter Value 

Batch size 32 

Optimizer Adam 

Hidden representation/output layer dimension 250/6 

Activation function of output layer Softmax 

Loss function Categorical cross-entropy 
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Figure 4: Training Loss against Training Epoch. 

Performance Evaluation. The performance of the occupancy information extraction model 
was evaluated using four metrics: accuracy, precision, recall, and F-1 score. Accuracy, as per 
Equation (3), is the percentage of the number of correctly-extracted occupancy instances out of 
the number of all extracted occupancy instances. For each occupancy category: precision, as 
per Equation (4), is the percentage of the number of correctly-extracted occupancy instances 
out of the number of all extracted  occupancy instances for the category; recall, as per Equation 
(5), is the percentage of the number of correctly-extracted occupancy instances out of the 
number of instances that should be extracted for the category; and F-1 score, as per Equation 
(6), is the harmonic mean of the precision and recall. In Equations (3-5), TP is true positive, TN 
is true negative, FP is false positive, and FN is false negative. 

Accuracy =
TP + TN

TP + TN + FP + FN
 

(3) 

Precision =
TP

TP + FP
 

(4) 

Recall =
TP

TP + FN
 

(5) 

F-1 score =
2 × (Recall × Precision)

(Recall + Precision)
 

(6) 

5. Preliminary Experimental Results and Discussion 

Table 2 summarizes the performance results for sensing and analyzing occupancy using the 
proposed nonintrusive approach. Overall, using a CO2 sensor-based sensing system and bi-
LSTM, the proposed approach achieved an accuracy of 64.59% in extracting occupancy 
information. The preliminary results show the promise of the proposed approach in sensing and 
analyzing occupant behavior in a nonintrusive and hence more user-acceptable way.    

Two main sources of errors were identified. First, from the sensing perspective, only one type 
of environmental chemical sensors, CO2 sensor, was used in this pilot study. However, the 
results show that only using this single-type sensor is not sufficient for behavioral sensing and 
analytics (e.g., extracting occupancy information). As per Figure 5, the CO2 data exhibit a high 
degree of with-in class variance. For example, when the gold standard occupancy category is 
“4”, the CO2 concentrations sometimes show consistent periodical changes around a 
standardized parts per million (PPM) of -0.25. In some other cases, for the same category, the 
CO2 concentrations show drastic changes (e.g., surging abruptly to a standardized PPM of 0.75). 
Such a high degree of with-in class variances could be attributed to two reasons. On one hand, 
the sensing performance of environmental chemical sensors, such as the CO2 sensor, can be 
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affected by many factors in the hosting environment, such as ventilation, temperature, humidity, 
etc. For example, different humidity conditions may result in different sensor readings even 
when the occupancy remains the same. On the other hand, CO2 concentrations alone are not 
fully indicative of occupancy. For instance, CO2 may increase or decrease its concentration 
indoor due to window opening. In such cases, the collective patterns of multiple types of gases, 
such as CO and ethanol, may provide more discriminative information for machine learning to 
better extract occupancy information. As a result of such with-in class variances, some CO2 
concentration patterns that are different from other patterns used for model training but are for 
the same occupancy category were not captured and learned, which led to extraction errors. In 
their future work, the authors plan to incorporate additional sensors into the nonintrusive 
sensing system to capture the factors affecting the sensing performance (e.g., humidity, 
temperature, and lighting sensors) and other types of gases that are also indicative of occupancy 
and occupant behavior (e.g., ethanol, methane, and butane sensors). 

Table 2: Performance Results for Nonintrusive Occupancy Sensing and Analytics. 

  
Gold Standard Occupancy Performance Result 

0 1 2 3 4 5 Precision Recall F-1 score Accuracy 

E
xt

ra
ct

ed
 

O
cc

u
p

an
cy

 

0 1,104 76 89 58 14 39 80.00% 82.95% 81.45% 

64.59% 

1 53 115 79 28 2 7 40.49% 34.12% 37.04% 

2 60 88 335 94 8 4 56.88% 55.10% 55.97% 

3 58 49 95 328 18 15 58.26% 60.97% 59.58% 

4 27 1 2 23 24 11 27.27% 30.77% 28.92% 

5 29 8 8 7 12 31 32.63% 28.97% 30.69% 

 

 

Figure 5: Examples of with-in Class Variances in CO2 Concentration Data. 
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Second, from the machine learning perspective, the class imbalance and the ambiguity between 
adjacent occupancy categories also contributed the extraction errors. On one hand, as shown in 
Table 2, the occupancy categories/classes are naturally imbalanced. For example, the 
percentages of instances in occupancy categories “0” to “5” are 44.38%, 11.24%, 20.27%, 
17.94%, 2.6%, 3.57%, respectively. Such class imbalance caused instances in the majority 
classes (e.g., occupancy categories “2” and “3”) get sufficiently learned at the cost of 
insufficiently learning from those in the minority classes (e.g., occupancy categories “4” and 
“5”). On the other hand, the ambiguity between adjacent occupancy categories posed challenges 
for the extraction model to correctly extract occupancy information. For example, as shown in 
Table 2, a total of 94 instances, which belong to category “3”, were incorrectly extracted into 
category “2”. One of the primary reasons for such ambiguity could be the similarity between 
CO2 patterns in adjacent categories. For example, as shown in Figure 5, the ranges and patterns 
of CO2 concentrations for categories “2” and “3” are highly similar. In their future work, in 
addition to leveraging more types of sensors in the sensing systems to address the ambiguity, 
the authors also plan to incorporate data balancing methods (e.g., cost-sensitive learning) in the 
proposed behavioral analytics to address the class imbalance problem. 

6. Conclusions and Future Work 

In this paper, the authors proposed a novel nonintrusive approach for occupant behavioral 
sensing and analytics to better support human-centered building energy efficiency. The 
significance of this paper lies in that the paper is among the first to investigate the use of 
environmental chemical sensors to sense and analyze occupant behaviors in a truly nonintrusive 
way. The proposed approach senses and analyzes air composition changes caused by occupancy 
and occupant behaviors to enable the extraction of occupant behavior information. Such a novel 
nonintrusive approach would allow for capturing diverse occupant behaviors while significantly 
mitigating the privacy concerns raised by building instrumentations. A prototype system, which 
includes a CO2 sensor-based sensing system and a bi-LSTM-based occupancy information 
extraction model, was developed in this pilot study to evaluate the feasibility of the proposed 
nonintrusive approach. The prototype was implemented in sensing and analyzing CO2 
concentrations to extract occupancy information. The preliminary results show that the 
proposed approach achieved an accuracy of 64.59% in extracting occupancy information from 
CO2 concentration data. The results show the potential of the proposed approach in better 
sensing and analyzing occupant behavior (including energy-use and non-energy-use behaviors) 
for human-centered energy efficiency. 

In their future work, the authors plan to focus their research efforts on two main directions. 
First, incorporating multi-type environmental chemical sensors into the proposed nonintrusive 
sensing system to improve the capability of the behavioral sensing. Such sensors include sensors 
for sensing multiple types of gases (e.g., ethanol, ammonia, hydrogen sulfide, etc.) and sensors 
for sensing ambient conditions (e.g., temperature, relative humidity, etc.). Second, developing 
real-time, cost-sensitive machine learning methods that can extract information about 
occupancy and occupant behavior for multi-zone and multi-occupancy buildings in real time. 
This effort would offer opportunities for real-time, human-centered building operation and 
control to simultaneously maximize energy efficiency and improve occupant comforts. 
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