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Abstract. The proven power of Knowledge Graphs (KGs) to effectively represent lexical and 

semantic information about numerous and heterogeneous entities and their interconnectedness has 

led to the growing recognition of their potential in engineering disciplines. Meanwhile, a greater 

focus has been placed on graph embedding techniques to derive dense vector representations of 

KGs. Such representations could enable the use of conventional machine learning techniques over 

the content of KGs. However, in the context of building engineering, the quality of the graph 

embeddings could be problematic, mainly due to the relatively small size of the KGs that are created 

for individual buildings. This paper aims to investigate the effectiveness of applying KG embedding 

methods when the elements of the building are described narrowly within the KG. The results of our 

experiments confirm that proper use of data transformation techniques can significantly improve the 

quality of the feature representation for downstream tasks. 

1. Introduction

Due to the ubiquitous presence of graph (network) structures in many real-world phenomena, 

graph-oriented analytics has been the subject of interest in many fields of research (Goyal and 

Ferrara, 2018). Recently, both academia and industry practitioners have shown an increased 

interest in the notion of Knowledge Graphs (KGs). In general terms, a KG can be defined as a 

structured representation of facts about real-world or abstract subjects (Ji et al., 2022). Each 

KG is composed of nodes and edges (entities and relationships) which jointly represent facts 

(semantic descriptions) about different subjects in an explicit and machine-readable format.  

Successful applications of Knowledge Graphs (KGs) for purposes including but not limited to 

context-aware information retrieval and question-answering over knowledge bases, has 

attracted considerable attention in various engineering disciplines. The construction and 

building engineering sector have been no exception to this trend. The added value of KGs and 

their potential for open exchange and management of the built environment data has been most 

recently highlighted in (Pauwels et al., 2022).   

Despite their vast expressive power to represent knowledge in a structured way, manipulation 

of KGs is challenging for purposes such as statistical learning (Wang et al., 2017). To address 

these challenges, a fast-growing volume of research has been dedicated to represent the entities 

of the KG in the form of numerical vectors. In the context of graph analytics, this approach is 

known as graph embedding. Representation of the KG components in low-dimensional vector 

spaces will significantly facilitate applicability of the machine learning methods over the 

content of the KG. This way, further knowledge can be extracted from KGs when symbolic 

inference mechanisms are incapable of or inefficient in doing so.  

The effectiveness of the existing graph embedding techniques has been under investigation in 

various domains (e.g., bioinformatics, social network analysis) and the results have been 

encouraging (Goyal and Ferrara, 2018). Moreover, researchers have proposed novel embedding 

techniques that are customized to specifically cope with the content of KGs. However, the 

majority of the existing embedding techniques have been tested with large-scale graphs that 

usually contain billions of facts (Rossi et al., 2021), while the average size of a KG that is 
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constructed for an individual building (or small group of buildings) will be significantly smaller 

in scale. Moreover, the structural pattern of a building KG may be quite different from open-

domain KGs such as Wikidata. Hence, the applicability of the KG embedding techniques in the 

context of building engineering remains questionable.  

This paper aims to address the above-mentioned issue by examining the quality of the results 

of applying existing KG embedding algorithms over small-sized building KGs. To meet this 

objective, a case study approach was adopted. First, a working dataset was created whose 

content was extracted from existing reference models, which had originally been developed for 

building engineering intentions. Subsequently, a set of experiments were carried out with the 

purpose of deriving the embeddings of the building graph to be used as the input to a node 

classification model. The results of our experiments showed that despite the possibility of 

encountering challenges within the downstream machine learning phase (e.g., reduced 

applicability of linear models), careful curation of the embeddings (e.g., kernel approximation) 

can significantly improve the effectiveness of the derived feature vector for 

supervised/unsupervised learning. The remainder of the paper describes the required 

background, methods used, and experiments conducted, followed by the discussion and 

conclusion. 

2. Background 

2.1 KG definition and characteristics   

Following the recent successful adoption of KGs in various domains of practice, the volume of 

research publications on KGs has been increasing (Hogan et al., 2021). Despite the previous 

research efforts made to provide a widely-accepted formal definition of KGs, no such definition 

currently exists within the literature (Ji et al., 2022). Yet, in a general sense, a KG can be viewed 

as a graph composed of nodes and edges, which together provide formal descriptions of the 

entities of interest and their interconnectedness (Ehrlinger and Wöß, 2016; Hogan et al., 2021). 

In some of the reference publications, the incorporation of the KG content into formal 

ontologies and the use of the semantic reasoners has been essential to the definition of KGs 

(Ehrlinger and Wöß, 2016). Thanks to the reasoning power of formal ontologies, numerous 

implicit relationships can be automatically inferred and added to the original KG as new factual 

statements. Regardless of the way a KG is created, one of its outstanding potentials is its ability 

to preserve the “context” in data representation. The explicit representation of contextual 

correspondences within a KG provides the possibility of interpreting the data from different 

perspectives (Hogan et al., 2021). This is of great value to the development of various types of 

context-aware applications (information/knowledge retrieval, recommender systems, industrial 

chatbots, etc.) 

2.2 KGs in the built environment 

Most recently, Pauwels et al. (Pauwels et al., 2022) elaborated on the notion of KGs for the 

built environment. In their work, researchers put a significant weight on the principles of 

“linked data” and “semantic web” technologies, e.g., OWL (Web Ontology Language 

(McGuinness and Van Harmelen, 2004)) and RDF (Resource Description Framework (Lassila 

and Swick, 1998)). Thanks to the availability of the mature ontologies that currently exist for 

the built environment, KGs can be constructed practically to represent facts about the design, 

construction, and operation of the real-world built entities. The nodes of such KGs can refer to 

both real-world entities (e.g., a physical space) or virtual ones (e.g., average floor temperature 
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sensor (Balaji et al., 2018)), while the edges of the KG make reference to the semantic 

relationships that exist between the entities of the building. When incorporated into formal 

ontologies such as ifcOWL (buildingSMART, 2022), each pair of nodes linked via an edge 

(known as a triple) expresses a “fact” about the building, in an explicit and formal (machine-

readable) manner. However, the inclusion of detailed geometric descriptions as well as sensory 

observations in KGs is associated with considerable complexities and inefficiencies (Pauwels 

et al., 2022). Hence, from a practical perspective, the content of the KGs that are constructed 

for the built environments will mainly consist of lexical and semantic descriptions. 

Nevertheless, a large amount of valuable (semantic) information can be still represented within 

KGs that will be of great value to knowledge extraction purposes. 

2.3 KG representation learning 

The key motivation behind our current study is that with the help of the “semantic embedding” 

techniques, the contextualized information contained in the built environment KGs can be 

exploited for knowledge extraction using machine learning methods. Semantic embedding can 

be defined as encoding the semantics of the data (KG content in our case) into numeric vector 

representations (Bengio et al., 2013). In other words, KG embedding techniques can be used to 

generate a feature vector by which the textual information contained in KGs can be represented 

in a numeric form. Recently, there has been a growing interest in developing semantic 

embedding techniques that can effectively cope with the particular characteristics of KGs (i.e., 

dealing with lexical and semantic information). One of the relatively recent algorithms in this 

regard is RDF2Vec (Ristoski et al., 2019), which was originally proposed to learn vector 

representation of RDF-formatted KGs. However, the effectiveness of the existing techniques 

has been mostly tested over large-scale open-domain KGs (e.g., Freebase (Bollacker et al., 

2008) and Wikidata (Vrandečić and Krötzsch, 2014)), and rarely investigated in construction 

and building engineering research. 

2.4 Research gap and objectives 

Given the relatively significant small size of the KGs that are created for individual built 

environments, compared to the size of the open-domain benchmark KGs, the applicability of 

the existing KG-embedding techniques for the built environment needs to be carefully 

investigated. This study set out to contribute to filling this gap by focusing on the RDF-

formatted KGs that are built for individual buildings. Our main objective is to investigate the 

applicability of the RDF2Vec method by examining the usability of the generated embeddings 

in a node classification scenario. 

3. Methods and materials 

3.1 Data preparation 

To create a working dataset for the purpose of this study, we used two of the reference building 

models that are publicly available at (“BrickSchema.org”, 2022). These reference models, 

serialized in RDF format, are primarily intended for building engineering research purposes. 

They are representative examples of the use of the Brick schema (ontology) to deliver rich 

semantic descriptions of a building’s physical, logical and virtual assets and their relationships 

(“BrickSchema.org”, n.d.). Among the five reference models that were available at the time of 

our study (early January 2022), we selected the “Gates Hillman Center” (GHC) and 

“Engineering Building Unit 3B” (EBU) models, which contained approximately 35,000 and 
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8,000 relationships, respectively. The percentage of mapping the building’s actual data points 

to the entities of the used schema (Brick ontology) for the GHC and EBU models were 99% 

and 96%, respectively. The rationale behind the selection of these two models was to reinforce 

the validity of the results by performing our experiments using two datasets that were different 

in size. A summary of the description of the models is provided in Table 1. More details on the 

characteristics of the actual buildings and their associated semantic model can be found in 

(Balaji et al., 2018). 

Table 1: Summary of the description of the data. 

General 

description 

Description of the semantic models 

(KGs)  

Description of the created datasets 

(Target class statistics)  

Graph 

nodes 

Total 

relationships 

Unique 

relationships 

Train/Test 

samples 

Point/ 

subclass 

Location/ 

subclass  

Equipment/ 

subclass 

Gates Hillman 

Center (GHC); 

217k (ft2) floor 

space, Built 2009 

≈ 9.6k ≈ 35.7k 9 

1452 

 

364 

934 

Sensor 

475 

Room 

447  

VAV 

(variable air 

volume) 

Engineering 

Building Unit 3B 

(EBU); 150k (ft2) 

floor space, Built 

2004 

≈ 6.1k ≈ 8.4k 4 

576 

 

145 

238 

Sensor 

246 

Room 

237 

Damper 

Several SPARQL queries were conducted, over the two models mentioned above, to create two 

distinct datasets for the entities of interest, i.e., the entities for which the embeddings were 

calculated. Three distinct types, namely “Point”, “Location”, and “Equipment”, were 

considered as the target classes for the development of the datasets. It should be noted that for 

the “type” relationships, the original models only contained triples that indicated the subclasses 

of the three mentioned target classes. For example, while the model contained type relationships 

indicating the “Room” class, the fact that a room is a subclass of the “Location” class was 

absent from the model. Finally, each created dataset was split into a training set (80% of 

samples) and test set (20% of samples). The summary of the statistics for each created dataset 

can be seen in Table 1. 

3.2 Approach 

A summary of our approach towards the experimental evaluations conducted in this study is 

shown in Figure 1. Description of the three main modules depicted in the figure is given as 

follows: 

 

Figure 1: Proposed approach. 
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Semantic embedding learning. As mentioned in the previous section, we used the RDF2Vec 

algorithm to generate the embeddings for the instances of points, locations, and equipment in 

the created datasets. A Python implementation of RDF2vec (Vandewiele et al., 2020) was used 

in this study to calculate the KG embeddings. For all experiments, the size of the embeddings 

was set to 100. In other words, at each round of embedding calculation, a feature vector with 

100 dimensions was learned to represent the entities of interest in a continuous vector space. 

Embedding transformation. In the proposed approach, the embedding transformation module 

is responsible for maintaining the applicability of the generated embeddings for downstream 

tasks such as node classification as intended in the current study, as well as other tasks (e.g., 

exploratory data analysis, link prediction, etc.). Both linear and non-linear data transformation 

methods were considered for our embedding transformation module. In particular, we 

considered the following algorithms:  

Principal Component Analysis (PCA). As one of the most popular dimensionality reduction 

techniques, PCA was considered for the removal of those dimensions from the generated 

embeddings that express insignificant rates of explained variance among the data points. Using 

PCA, non-representative dimensions can be removed from the feature vector (noise reduction), 

which in turn can improve the overall computational performance for downstream machine 

learning. Moreover, 2D/3D visualizations of the embeddings based on the identified principal 

components can be used to intuitively observe the discriminative power of the learned vector 

representation. 

Kernel Principal Component Analysis (Kernel PCA). Despite its recognized strengths, there are many 

probable occasions in which linear PCA fails to find the linear separation between the dissimilar 

instances of the data. To tackle this issue, we considered the use of kernel approximation 

methods to find a projection of the embeddings (in higher dimensions) that allows for them to 

be linearly separated.   

t-SNE (t-distributed Stochastic Neighbor Embedding). T-SNE is highly effective for the 2D/3D 

visualization of high-dimensional data (Van der Maaten and Hinton, 2008). Given the relatively 

large size of the embeddings generated for each dataset (100 dimensions), we first used the t-

SNE algorithm to intuitively observe the distance at which the dissimilar embeddings (node 

types) were clustered apart from each other. 

Node classification. The ultimate goal of our node classification module is to assign a distinct 

“type label” to an unseen building node entity. In particular, the objective is to construct a model 

that takes the transformed (pre-processed) embeddings of a node that is a joint product of the 

two previous modules as input and gives a label of the class to which the node belongs to (object 

type) as output. With reference to the experimental setup that was used in this study for dataset 

creation, each node can only belong to one of the “Point”, “Location”, or “Equipment” classes.  

For the sake of model development, we tested the predictive performance of three different 

algorithms each from a different group of supervised learning methods. In particular, we used 

“Logistic Regression”, “Random Forest”, and “Multi-layer Perceptron” algorithms, which 

belong to linear, ensemble, and neural network machine learning models, respectively. For the 

sake of the evaluation metrics, we computed “accuracy score” and “F1-score” (harmonic mean 

of precision and recall) to compare the prediction performance of each trained model. 
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4. Results and discussion 

4.1 Experiments 

Before we address the experimental results, it should be noted that the codes and created 

datasets will be made available by request, for the benefit of the community and to ensure the 

reproducibility of the reported results. Moreover, it should be mentioned that the main purpose 

of this case study has been to highlight the potential benefits of KG embeddings for machine 

learning purposes in an industrial setting. Hence, an in-depth comparison of the existing 

techniques to derive and transform the embeddings, as well as hyper-parameter tuning for the 

methods used in the present work will be left to future research.     

In the first step of our experimental evaluations, we calculated the embeddings for the two 

datasets that were created for the purpose of this study. Figure 2 shows the results of the use of 

t-SNE to deliver 2D visualizations of the generated embeddings for GHC and EBU datasets, 

respectively. A closer look at Figure 2 reveals two key observations: First, the embeddings 

derived for none of the datasets were clustered quite far apart, thereby restraining the linear 

separation of the dissimilar classes. Second, while the distribution of the GHC embeddings 

follows a perceptible (circular) pattern, the embeddings generated for the EBU dataset seem to 

be more arbitrary.  

  

Figure 2: t-SNE visualization of embeddings for GHC (left) and EBU (right) datasets. 

To find a plausible explanation for the dissimilar behaviour of the two datasets, we looked at 

the underlying structure of the KGs upon which the embeddings were generated. As one can 

see from Table 1, while 9 unique relationships can be found in the GHC model, only 4 unique 

relationships were used to describe the entities of the EBU semantic model. Moreover, the ratio 

of total relationships to nodes, for the GHC model (≈ 35.7/9.6), is almost three times higher 

than that of the EBU model (≈ 8.4/6.1). Based on these comparisons it can be argued that the 

granularity of the semantic descriptions within the GHC model has been higher, comparatively. 

To further reinforce our argument, we conducted an exploratory analysis by running multiple 

queries (SPARQL queries) over the reference models (KGs). The results of our analysis 

confirmed that the structure of the description of the entities in the used KGs is comparatively 

different from each other, in terms of both syntactic and semantic characteristics. For example, 

while up to 6 unique relationships were used to describe the room entities inside the GHC 

model, only 2 relationships were used within the EBU model for the same purpose. Hence, it 
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can be concluded that different “modelling patterns”, i.e., using different terminology and 

structures to describe the entities of a building within a KG can lead to varying behaviours of 

the derived embeddings. However, answering the question of which modelling pattern leads to 

better data representation requires profound research considerations and is beyond the scope of 

the present study.  

  

Figure 3: PCA-based transformation of embeddings for GHC (left) and EBU (right) datasets. 

As mentioned in section 3.2, we considered the use of both linear and non-linear projection 

methods to improve the quality of the feature representation. The plots depicted in Figure 3 and 

Figure 4 show the results of the use of linear and kernel PCA, respectively, to deliver 3D 

visualizations of the transformed embeddings. As one can see from the comparison of the plots 

in Figure 3 and Figure 4, the used methods show competitive discriminative power. To 

quantitatively compare the quality of the feature representations, we calculated the variance of 

the projected samples. This step was taken to identify feature representation with lower variance 

as it points to a denser representation, which will be more favourable for statistical learning 

purposes. The results confirmed that for both datasets, kernel approximation outperformed 

linear PCA, in terms of delivering dense representations (see Table 2).   

  

Figure 4: Kernel approximation of embeddings for GHC (left) and EBU (right) datasets. 
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Table 2: Variance of the transformed embeddings calculated for 1st to 3rd principal components. 

 Linear PCA Kernel PCA 

GHC dataset 2.96 1.21 

EBU dataset 9.9 0.01 

Subsequent to obtaining encouraging results with the use of kernel PCA to find the projection 

of the generated embeddings in higher dimensions, the next step was to perform a 

dimensionality reduction step. To identify the effective number of principal components to be 

used for the representation of the training data, we used a base classifier (i.e., a Random Forest 

model with 100 decision trees) and observed the quality of the predictions as we changed the 

number of the components. As a result of taking this step, the size of the feature vector was set 

to 80 and 100 for the GHC and EBU samples, respectively. Hence, prior to the training and 

testing of our node classification models, we reduced the dimension of the feature vectors 

(embeddings) to decrease noise and improve the computational performance. After training 

three distinct classification models for each dataset, the test sets were introduced to the 

developed models to evaluate the quality of their predictions. The prediction performance 

scores of the trained models are presented in Table 3.   

Table 3: Summary of the node classification results. 

 Tested with GHC dataset  Tested with EBU dataset  

 
Random 

Forest 

Logistic 

Regression 

ML-

Perceptron 

Random 

Forest 

Logistic 

Regression 

ML-

Perceptron 

Accuracy 0.91 0.96 0.95 0.76 0.76 0.79 

F1-score 0.91 0.96 0.95 0.76 0.75 0.78 

It is apparent from Table 3 that the accuracy of the predictions made by the models that were 

trained with the GHC data is higher than that of those made by the models that were trained 

with the EBU dataset. The different size of the data used to train the two sets of the models can 

be mentioned as an immediate explanation for this observation. However, with reference to our 

earlier discussion of the effect of the structural differences in KG creation (e.g., granularity of 

the semantic descriptions), it is strongly possible that the lower performance of the models that 

were trained with EBU data, stems from the quality of the content of the KG.      

4.2 Implications to research and practice 

The results of testing our trained models confirmed that relatively accurate predictions of object 

types could be realized based purely on the embeddings of the lexical and semantic information 

that exist for a building entity inside the KG. Given the small size of the used KGs, in addition 

to the narrow semantic descriptions that existed for the building entities inside the KGs 

(particularly for the case of the EBU model), it can be concluded that even minimalistic 

semantic descriptions inside the individual building KGs can effectively contribute to the 

identification of latent semantic patterns. These findings can be of important value to various 

lines of research in the built environment. In particular, the research on the notion of Building 

Information Modelling (BIM), which has been traditionally abundant with rule-based 

approaches, can be advanced with the help of KG-oriented machine learning techniques for 

context-aware machine learning. In this respect, semantic enrichment of the building 

information models is one of the areas with the most potential in which KG embeddings can be 
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used to facilitate machine learning from graph-structured linked sources of building data. 

Among other worthwhile applications, context-aware information retrieval and Question-

Answering systems for the built environment can benefit from KGs and their embeddings. In 

fact, the learned embeddings could be used for the unsupervised clustering of the content of the 

building KGs. Then, by assigning relevant semantic tags to the identified clusters, the required 

information can be searched through contextually relevant information that is contained inside 

the most relevant clusters. Moreover, given the importance of query relaxation/approximation 

for effective discovery of meaningful information from semantic building models (Bennani et 

al., 2021), KG embeddings can be of value in this regard, as previous research has shown 

encouraging results in other domains (Mai et al., 2020; Wang et al., 2018). 

Finally, the key implications and values of our findings to research and practice can be 

summarized as follows: To the best of our knowledge, this work is among the very few existing 

papers that investigate the effectiveness of KG embedding techniques in the context of building 

engineering, while these techniques can have considerable implications in the realm of building 

analytics. In fact, while KGs can provide valuable background knowledge about the building, 

the corresponding embeddings provide ready-to-use numeric representations of that knowledge 

in continuous vector spaces. This allows the background knowledge about the building to be 

incorporated for downstream machine-learning tasks.  Most importantly, with the absence of 

the building’s geometry and operational time-series data in the KG (see section 2), entity 

embeddings can be used to generate vector representations of the lexical and semantic 

information that is contained in the KG, thereby facilitating “context-aware building analytics”.   

5. Conclusion 

This study set out to investigate the usefulness of applying KG embedding techniques to 

individual building KGs. Our results provided quantitative evidence that semantic 

representation learning techniques in combination with careful pre-processing of the learned 

embeddings can enable the use of machine learning techniques to find latent semantic patterns 

from the lexical content of the building KGs. We also found that the modelling pattern used to 

create a building KG, i.e., word synthesis and choice of the semantic relationships, is an 

important determinant of the quality of the generated embeddings (feature vector). Hence, the 

identification of best modelling practices for KG creation for individual buildings is an 

important direction for future research. Another important direction for future research would 

be to investigate the effectiveness of KG embedding methods for applications such as context-

aware information retrieval and Question-Answering from building KGs. 
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