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Abstract. The importance of evaluating the performance of electric power demand flexibility in 

buildings has increased in recent years due to the expected participation of demand resources in 

reliability-based grid services. All demand flexibility assessments involve a degree of uncertainty 

when measuring the magnitude of demand response events, due to the uncertainty in the 

counterfactual load estimation. The objective of this work is to understand how distinct factors 

contribute to uncertainty in measuring HVAC-enabled demand response in buildings. More 

specifically, we will vary two factors that are known to contribute to the uncertainty of the observed 

event: choice of baseline model and choice of assessment boundary. The practical implication of our 

analysis is to contribute to the design of improved measurement and verification protocols for 

demand flexibility in buildings.  

1. Introduction

1.1 Overview 

The value of electric power demand flexibility as a quantifiable and reliable grid resource is 

increasing with a modernizing electric grid. This is evident by the active participation of 

demand resources in energy and ancillary services markets within different regulatory bodies 

(FERC, 2021). Buildings are the largest part of these demand resources and the deployment of 

grid-interactive technologies in this sector is anticipated (Neukomm, Nubbe and Fares, 2019). 

A fundamental technology requirement for this transition is the development of improved 

performance assessments and trustworthy metrics that quantify their demand flexibility 

(Satchwell et al., 2021). Current measurement and verification (M&V) protocols were designed 

for an electric grid that benefited from but did not depend on demand flexibility. Performance 

assessments are critical for reliable system support, transparent financial settlements and, 

overall increasing the trustworthiness of demand resources (Goldberg and Agnew, 2013). The 

challenge in designing performance assessment protocols is that it involves the estimation of 

the unaltered baseline load, and this step inevitably introduces error between the real load 

modification and the measured load modification. Moreover, the effects of these errors are 

event-specific due to the varying accuracy of baseline models. The main approach to reduce the 

uncertainty, when measuring the real load modification, is to improve prediction accuracy 

through the choice of baseline model. Another known approach involves the choice of 

assessment boundary (i.e., level at which the demand flexibility is documented) which can 

improve the accuracy when measuring an event. These choices play a significant role in the 

design of M&V protocols and are the source of investigation for this paper. The objective of 

this work is to understand how the choice of baseline model and assessment boundary contribute 

to the measurement uncertainty of demand flexibility events. We will narrow our focus to 

heating ventilation and air conditioning (HVAC) flexibility in commercial buildings as it 

accounts for a substantial portion of flexible electricity consumption in the building sector (Roth 

and Reyna, 2019). Furthermore, we will extend the analysis to different climate zones 

(ASHRAE, 2019), given that HVAC demand flexibility heavily depends on this factor. The 

understanding of how these factors contribute to measurement uncertainty of demand flexibility 
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events can provide insight into the design of improved M&V protocols tailored to different 

requirements and applications.  

1.2 Existing Research 

Understanding the sources of measurement uncertainty for demand flexibility (DF) events has 

been an important topic in the design of M&V protocols (KEMA-XENERGY, 2003). As this 

problem is inherent to the value of demand flexibility, studies on comparing the accuracy of 

baseline models are common in settings beyond academic research (KEMA, 2011; Nexant, 

2017). Various demand flexibility baseline models have been proposed, but they all generally 

fall into the following categories: averaging, simple regression, and machine learning 

(Amasyali and El-Gohary, 2018). Of these, averaging models cover the majority of industry 

practice (IRC (ISO/RTO Council), 2018). Simple regression models, such as the time-of-the-

week and temperature model, have been proposed with an improved accuracy over averaging 

models (Taylor and Mathieu, 2015). Additionally, machine learning models, in recent years, 

joined the conversation due to their increased prediction accuracy (Zhang et al., 2021).  

Although literature for more accurate baseline models is ample, studies of the effect of baseline 

prediction on DF measurements is scarcer. Some works have investigated the uncertainty 

introduced by the source and frequency of the input data used on the model prediction  

(Coughlin et al., 2009; Granderson and Price, 2014). Similarly, a more recent work explored 

the bias of common baseline models when evaluating peak electricity load reduction 

(Granderson et al., 2021). One of the strengths of these studies is the use of real building 

experimental results as opposed to simulated. However, the main drawback is that the obtained 

results are not contextualized by the magnitude of potential DF events. A study that does have 

this context, evaluated the variability of DF measurements when using a specific time-of-the-

week and outdoor air temperature baseline model (Mathieu, Callaway and Kiliccote, 2011). 

One primary finding is that DF measurement error is primarily driven by baseline model error. 

However, validation of the source and magnitude of this error was complicated due to the 

comparison being done on only 95 observations throughout multiple buildings.   

The other factor explored in this study is the choice of assessment boundary on which to 

measure the DF event. The assessment boundary refers to the measurement level at which the 

DF event is documented (Schiller, Schwartz and Murphy, 2020). Although there are a few 

options for the assessment boundary, in this work we will focus on the HVAC and total building 

electricity consumption. The main difference between the two is that the building energy 

consumption is the combination of HVAC load and all other loads. The intuition is that, in some 

circumstances, divorcing controllable and non-controllable loads (i.e., sub-metering) has the 

potential to improve the accuracy of the measurement (Cappers et al., 2013). The mechanisms 

through which this could be true is two-fold. First, baseline models can have a more accurate 

fit at the HVAC boundary than total building because the explanatory variables commonly used 

have a more direct relation to power. Second, load modifications have a larger relative impact 

at more granular assessment boundaries. Several works have studied the accuracy trade-offs of 

submetering to obtain more accurate DF assessments (Ji et al., 2016; Lei, Mathieu and Jain, 

2021). However, these studies start with the assumption that the HVAC boundary will be more 

accurate and do not explore the trade-offs when compared to using total building power.  It is 

also important to note, that there are studies that have found that the choice of assessment 

boundary is inconsequential (Motegi et al., 2004). 

In this work, we cover the influence of these two factors by generating an extensive simulation 

dataset on which we empirically analyze their effects on measured DF events. There are four 

primary distinctions from prior works. First, we expand the comparison to five different 
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baseline models including averaging, simple regression, and machine learning. Second, we 

document the accuracy tradeoffs of the total building and HVAC assessment boundary. Third, 

we apply various performance metrics relative to the magnitude of the simulated events. Fourth, 

we analyze these factors for five different ASHRAE climate zones (ASHRAE, 2019). The 

expected outcome of these results is to inform the design of future M&V protocols. 

2. Proposed Approach 

To evaluate how the selected factors affect measurement uncertainty of demand flexibility we 

will first generate a dataset of simulated events. We will leverage this dataset to empirically 

analyze the contribution of each factor to measurement uncertainty. For clarity in comparison, 

we will group each building model instance as the following triple (Climate, 

Assessment Boundary, Baseline Model)and our dataset will consist of 50 such 

triples (5 climates × 2 boundaries × 5 baseline models). A visual abstract of the factors explored 

is shown in Figure 1. Section 2.1 describes the data generation process including a description 

of the building model used and the procedure to create the demand flexibility events.  Section 

2.2 describes the selected baseline models, description of the input features used, and the 

training/testing methodology model fitting. Section 2.3 summarizes the evaluation metrics used 

to compare the results from the triple instantiations. Finally, Section 2.4 condenses the key steps 

of the experimental plan to generate the data and calculate the proposed evaluation metrics.   

 

Figure 1: Factors explored - Climate Zone, Baseline Model, and Assessment Boundary (GPR – 

Gaussian Process Regression, ANN – Artificial Neural Network, SVR – Support Vector Regression, 

OAT- Time-of-week and outdoor temperature model, AVE – Mid4of6 Averaging Model) 

2.1 Model Description 

The selected testbed model to generate the dataset is the office building from the Modelica 

Buildings Library (Wetter et al., 2014) equipped with a variable air volume (VAV) reheat 

system with an implementation of the control sequence VAV 2A2-21232. It consists of a five-

zone layout shaped after one floor of the DOE Medium Office standard prototype building 

(Goel et al., 2014). Because this model only simulates HVAC load, we simulate all other non-

controllable loads (e.g., plug loads, lighting loads, etc.) as proportional to building occupancy 

and scaled accordingly. The occupancy was obtained from a separate agent-based stochastic 

occupancy simulator for office buildings (Chen, Hong and Luo, 2018). The same stochastic 

occupancy data is also used to model the internal thermal load that the HVAC simulation uses 

to balance thermal loads in the building. The simulation timestep is selected as 15 minutes given 

that it is a common resolution for the evaluation of demand resources (IRC (ISO/RTO Council), 

2018). For demand flexibility we generate load shedding events through a +2°F global 

thermostat reset for 1-hour duration for every hour during the occupied hours (Vindel et al., 
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2021). The evaluation period is 90 summer days, not including weekends or holidays. The 

selected period ensures the HVAC system is operating in cooling mode and the power 

consumption is engaged by both the fans and chiller.  

2.2 Baseline Models 

We select five candidate baseline models commonly used for building energy forecasting for 

demand flexibility M&V. Averaging-based models are commonly used in practice of which we 

select the Mid4of6 model (AVE) for this evaluation (KEMA, 2011). This model averages the 

load of the six most recent valid days, excluding the days with the highest and lowest energy 

consumption. The rest of the models evaluated are regression-based models. The simplest of 

these models is a piecewise linear model (OAT) that uses a time-of-the-week indicator and 

outdoor air temperature to predict electric load (Mathieu, Callaway and Kiliccote, 2011). The 

three remaining models are supervised machine learning models: artificial neural network 

(ANN, feed-forward, 4 hidden layers, 10-neurons per layer, sigmoid activation), support vector 

regression (SVR, radial basis function kernel, ε =0.1), and Gaussian process regression (GPR, 

squared-exponential kernel). The input features for all machine learning models are the same: 

outdoor air temperature, direct normal irradiance, global horizontal irradiance, relative 

humidity, time-of-day indicator. The test/train split for all regression-based models was 

obtained by generating two random datasets from geographically close weather files within the 

same climate zones as shown in Table 1 (ASHRAE, 2019). Note that a comparison between 

these machine learning models is difficult because of the variety of architectures and 

initialization parameters. However, for this work, our aim is not to optimize these model design 

decisions but to perform an initial comparison of the outputs and strengths of each model.  

Table 1: Test/Train Split Weather Data for Regression-based Models 

Climate Zone 1, Very Hot 2, Hot 3, Warm 4, Mild 5, Cold 

Train Data Miami, FL Houston, TX Atlanta, GA Baltimore, MD Chicago, IL 

Test Data Kendall, FL San Antonio, TX Athens, GA Arlington, VA Aurora, IL 

2.3 Evaluation Metrics 

The metrics we want to calculate are related to the difference between the observed shed and 

the real shed. Therefore, in this context, we consider the real shed, the measurand and the 

observed shed as the measurement. For smart grid applications, two metrics used are the median 

absolute percentage error (MdAPE) and the normalized mean bias error (NMBE). The first one 

measures the relative error of the observed measurement, accounting for the variability in the 

magnitude of the real shed events. We select the median, over the more common mean of the 

absolute percentage error, to filter out the effect of outlier events with very low magnitude 

sheds. The metric NMBE, on the other hand, indicates whether a particular baseline model 

instance generates a biased measurement of the real shed event. Positive values for NMBE 

indicate that the observed shed is lower than the real shed, and the opposite for negative values. 

Additionally, we calculate a metric called the reliability threshold estimate (REL). This 

reliability-inspired metric roughly estimates the frequency of a model falling within a specified 

threshold (Aman, Simmhan and Prasanna, 2015). For distributed energy resources participating 

in reliability-based grid services (e.g., contingency reserves) a commonly used threshold is  ε =
10% (Aman, Simmhan and Prasanna, 2015). A negative REL value indicates that most events 

were higher than the threshold, and value of -1 indicates that all events are beyond the threshold. 

The opposite holds for positive values of REL. To evaluate the performance of the baseline 
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models, independent of the simulated DF events, we will calculate the CVRMSE. Note that this 

metric is relative to the load (𝑃𝑖) and not to the magnitude of individual events. For reference, 

values for CVRMSE less than 25% are considered an acceptable fit for the measurement of 

energy and demand savings (ASHRAE, 2014).  

Table 2: Selected Evaluation Metrics 

Metric Target Equation 

(1) Median Absolute Percentage Error (%) Event MdAPE = median (|
𝑦𝑖 − �̂�𝑖

𝑦𝑖

| for 1, … , 𝑛)  × 100% 

(2)  Normalized Mean Bias Error (%) Event NMBE =
1

𝑛
∑

𝑦𝑖 − �̂�𝑖

𝑦𝑖

𝑛

𝑖=1

× 100% 

(3) Reliability Threshold Estimate (-) Event 

REL =
1

𝑛
∑ C(𝑦𝑖 , �̂�𝑖) 

𝑛

𝑖=1

 

C(𝑦𝑖 , �̂�𝑖 , ε) = {

1,   if |𝑦𝑖 − �̂�𝑖|/𝑦𝑖 < ε
0,   if  |𝑦𝑖 − �̂�𝑖|/𝑦𝑖 = ε

−1,   if |𝑦𝑖 − �̂�𝑖|/𝑦𝑖 > ε
 

 

(4) Coefficient of Variance RMSE (%)  Load CVRMSE =
1

�̅�
√

1

𝑛
∑(𝑃𝑖 − �̂�𝑖)

2
𝑛

𝑖

× 100% 

2.4 Experiment Plan 

A summary of the designed experimental plan and evaluation is presented in the steps below, 

and applied to all the selected climate zones:  

1. Simulate the building operation generating data for both nominal and load shedding events. 

Repeat this step for both training and testing weather conditions.  

2. Record electricity consumption for HVAC system and building total. Record all input 

features: outdoor air temperature, direct normal irradiance, global horizontal irradiance, 

relative humidity, time-of-day indicator. 

3. Using the nominal power consumption for the training weather, for both assessment 

boundaries, fit regression-based baseline models with their respective input features.  

4. Calculate the CVRMSE metric (Equation (4)) using the predicted baseline load for each 

model on both the test and training sets.  

5. Compute the measured sheds and real sheds by subtracting the average hourly difference 

between the true baseline consumption and observed load, as well as the predicted baseline 

consumption and observed load.   

6. Calculate all other evaluation metrics (Equations (1)- (3)) for all combinations of baseline 

model and assessment boundary.  

3. Results and Discussions 

The discussions are divided into two sections. Section 3.1 reports and analyses the baseline 

model results of all the triple instances. Section 3.2 interprets the results relative to the modelled 

demand flexibility events. The source code for the results presented and the dataset generated 

is hosted in a public repo in GitHub (https://github.com/INFERLab/DFUncertain-EGICE22/).  
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3.1 Baseline Model Performance 

The performance of all baseline model instances is summarized in Figure 2. The results shown 

in this section are not connected to the modeled demand flexibility events and are only a 

reflection of the baseline model fit using Equation (4). For all modeled instances, HVAC 

consumption was less than 50% of total building power consumption (44%,44%,42%,40% and 

37% for climate zones 1-5 respectively). The average Coefficient of Variation of the Root Mean 

Square Error (CVRMSE) for the building assessment boundary, for all models, is 6.95% and 

8.90% for training and testing respectively. For the HVAC boundary the average CVRMSE for 

training and testing are 8.22% and 11.50%. Additionally, the maximum CVRMSE value for 

any triple instance is 24.47%. As mentioned earlier, some guidelines suggests that CVRMSE 

values below 25% are considered a good model fit (ASHRAE, 2014). Hence, by this guideline, 

all models performed below this minimum performance threshold. In fact, on the test data, 90% 

of triples had CVRMSE < 15%. Another observation is that using the CVRMSE metric, the 

HVAC assessment boundary performed slightly worse than the building boundary. This is 

primarily because the metric is associated with the magnitude of the total electricity 

consumption. Hence the same magnitude error has different CVRMSE values at different 

assessment boundaries.  

 

Figure 2 Baseline Model Performance Summary on Test Dataset (CVRMSE > 15% marked with *) 

The performance of all models did not appear to consistently vary by climate zones. One notable 

exception to this finding is the AVE model at the HVAC boundary, and less so at the building 

boundary. The AVE model performs progressively worse when going from a hotter to a colder 

climate. The reason for this is that climate zones defined as “cold” have significantly more 

variability in daily environmental conditions than other climates that are consistently hot. 

Because of the inductive bias of AVE-type models, intra-day variability is expected to hinder 

performance. A similar decrease in performance was not observed for all other models. This is 

an interesting finding, particularly for the HVAC boundary, given that the power consumption 

is directly affected by weather conditions. For building power, the relations between 

environmental input features and power are less direct. The OAT model has the best 

performance for all climate zones at the building boundary. One explanation for this could be 

that this model captures the schedule-nature of all non-controllable loads by generating an 

independent model for each timestep. Although our dataset has a stochastic input for the non-

controllable loads, these are derived from a scheduled input. This limitation is not particular to 

our model, but a general drawback of most building energy models. The ANN model was the 

best performing model using HVAC power consumption. One explanation for this is that the 

ANN model is able to capture the non-linear behavior of HVAC consumption better than the 

OAT linear model. Although the GPR model has a lower performance than the ANN and OAT 

model, one of the advantages of this model is that it outputs uncertainty measures over 
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predictions. The trade-off in performance for certain applications could be compensated by the 

probabilistic output of the model.  

3.2 Event-specific Performance 

As described earlier, we model events by generating synthetic load shed events through a 1-

hour global thermostat reset. For each event, we can calculate a real shed (𝑦𝑖) by subtracting 

the average real baseline load and the DF event load for the 1-hour period.  It is essential to 

emphasize that the real shed value is independent of assessment boundary. When the baseline 

model outputs a prediction for the baseline load, at either boundary, we can calculate a measured 

load shed (�̂�𝑖) by subtracting the average predicted load and the DF event load. Finally, for each 

event, we calculate the relative error (((𝑦𝑖 − �̂�𝑖)/ 𝑦𝑖) × 100%). For example, let us assume that 

a DF event is calculated to have a 20kW average real shed magnitude. If the baseline model 

underpredicts the baseline load by 4kW, meaning that the measured shed is 16kW, the relative 

event error is +20%. A boxplot distribution of the relative event error for all triples is shown for 

the testing data in Figure 3.  

The choice of figure as a boxplot distribution is to show the variability in relative event error. 

While most relative errors are close to 0% the variance of the distribution provides a visual of 

the expected measurement uncertainty. Figure 3 has limits for relative event error capped at 

+200% and -200%. Although there are events with relative errors beyond these thresholds (only 

2.25% of events), they were considered outliers when calculating the interquartile range of the 

boxplot distribution. These events are outside the range because they were low magnitude 

events and not because of significant baseline model error. Not surprisingly, the model 

performance discussed in Section 3.1 is a good predictor of the performance when measuring 

DF events. However, the baseline model performance measured by Equation (4) is not able to 

capture the large gap in event-specific performance driven by the choice of assessment 

boundary. For all models, measuring the events using an HVAC power baseline model resulted 

in lower error on average. More specifically, for the test data this constituted in a reduction in 

MdAPE from 34% to 21%, on average. Regardless of the assessment boundary, in reference to 

these experiments, the MdAPE values can be considered high for certain grid services. Similar 

conclusions have been obtained regarding the expected measurement error for demand 

resources (Mathieu, Callaway and Kiliccote, 2011). Nevertheless, the true magnitude of the 

expected relative error should be subject to a more comprehensive study than the one presented.  

  

Figure 3 Boxplot distribution of relative event errors for all triple instances for Test Dataset 
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Figure 4 Event-specific metrics for Test Dataset 

Figure 4 summarizes the event-specific metrics for the test dataset. As mentioned before, the 

MdAPE pane visually recapitulates the improvement in measurement accuracy when using the 

HVAC assessment boundary. Overall measurement bias is an important factor given that 

under/over-estimation of DF events have different implications for a grid service. In our 

experiments, most models exhibit low bias (i.e., NMBE close to 0%). However, for some 

models, we find that there is a tendency of a positive bias. In other words, the measured shed is 

less than the real shed. Interestingly, this conclusion agrees with existing research studies that 

state that baseline models tend to understate the achieved load reductions (Coughlin et al., 2009; 

Granderson et al., 2021). This could result in a systematically lower compensation for the 

building that provided the services. Finally, the low values for the REL metric expose existing 

limitations of demand flexibility as a reliability resource. For all instances, a measured event 

was found more likely to be beyond the 10% threshold used for the REL metric. This is 

represented by all triple instances having a negative REL value. This motivates the need for 

more accurate baseline models, or other non-baseline methods to achieve the minimum 

performance thresholds required by certain grid services.   

4. Conclusion 

In this paper we present an analysis of how the choice of baseline model and assessment 

boundary affect the measurement uncertainty of demand flexibility events. We generate an 

extensive dataset of simulated demand flexibility events by varying these two factors for five 

different climate zones. Lastly, we calculate performance metrics on this dataset to compare the 

performance of each instance. In our analysis we found several conclusions: 

• Baseline error performance metrics alone, without the context of the magnitude of the 

demand flexibility events, are not a good indicator of the expected event measurement 

error.  
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• More accurate event measurements can be obtained by using the HVAC assessment 

boundary than using the building assessment boundary. This comprises of an event MdAPE 

reduction from 34% to 21%, on average.  

• The choice of baseline model should be made considering the assessment boundary. For 

example, averaging models can be appropriate for hotter climates at the building boundary, 

while machine learning approaches can be more accurate for variable climates at the HVAC 

boundary.    

• Although most models exhibit low bias, some models tend to underrepresent the magnitude 

of the real event.  

We identify several avenues for future work. Given that measurement uncertainty is inherent 

and unavoidable for demand flexibility, we recognize the need for methods that communicate 

the expected uncertainty associated with specific events. This can help improve the trust of grid 

operators when leveraging demand resources for reliability. Furthermore, in this work we do 

not explore the aggregate assessment boundary. Measurement uncertainty at the aggregate level 

has the potential to be lower given that it can be reduced over a large population of buildings. 

Measurement uncertainty at this boundary has the potential to be lower than the ones explored 

in this work. Finally, extending this analysis to real building data is necessary because there can 

be added uncertainties that cannot be accounted with a simulation model.   
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