
29th International Workshop on Intelligent Computing in Engineering (EG-ICE) 

Linking Early Design Stages with Physical Simulations using Machine 

Learning 
Structural Analysis Feedback of Architectural Design Sketches 

Rasoulzadeh S., Senk V., Kovacic I., Reisinger J., Füssl J., Hensel M. 

TU Wien, Austria 

shervin.rasoulzadeh@tuwien.ac.at  

Abstract. State-of-the-art workflows within Architecture, Engineering, and Construction (AEC) 

industry are still caught in sequential planning processes. Digital design tools founded in this domain 

often lack proper communication between different stages of design and relevant domain 

knowledge. Furthermore, decisions made in the early stages of design, where sketching is used to 

initiate, develop, and communicate ideas, heavily impact later stages, offering the need for fast 

feedback to the architectural designer to proceed with adequate knowledge regarding design 

implications. Accordingly, this paper presents research on a novel AEC workflow based on a 4D 

sketching application targeted for architectural design as a form-finding tool coupled with two 

modules: (1) Shape Inference module, which is aided by machine learning enabling automatic 

surface mesh modelling from sketches, and (2) Structural Analysis module which provides fast 

feedback with respect to the mechanical performance of the model. The proposed workflow is a step 

towards a platform integrating implicit and explicit criteria in the early stages of design, allowing a 

more informed design leading to increased design quality. 

1. Introduction

Architecture, Engineering, and Construction (AEC) shapes our built environment, having 

substantial environmental, cultural and economic influence on society. However, among the 

least digitised industries, it is still caught in silo-thinking and sequential planning processes, as 

experts from different disciplines must work together and communicate with each other 

throughout different stages of the design. Moreover, the flow of information exchange between 

these domain-experts with various domain-knowledge within current workflows has been 

challenging, thus, deflecting optimised progression. In this context, Architecture, Computer 

Science, Engineering, and Mathematics disciplines can be connected to develop advanced 

computational design tools to combine implicit (e.g. aesthetical, cultural, or emotional) and 

explicit knowledge (e.g. functional, environmental, economic), bringing radical innovations. 

One such innovation can be brought by introducing a workflow that allows fast feedback 

already in the early stages of design. 

Considering the overall workflow, many critical decisions can occur when a design is in its 

most rough form, namely a sketch (Mahoney, 2018). Sketching is used to initiate, develop, and 

communicate ideas while allowing the architectural designer to easily tap into his/her intuition 

to ideate and explore the solution space. In the early stages of design, sketching serves as a 

visual thinking and architectural form-finding process to the designer and, subsequently, as a 

visual reference for a computer-aided design (CAD) modelling expert. Moreover, the modelling 

procedure allows further communication with other downstream processes, such as structural 

analysis and computer-aided engineering (CAE) simulations (Eissen et al, 2008, Yu et al, 2021). 

However, the 3D modelling process is often too time-consuming, and simultaneously, the 

design intention might not be captured accurately and can be misinterpreted. Also, on the other 

hand, structural analysis is an essential part of the design, which studies and predicts the 

behaviour of structure's fitness subject to different loads, materials, etc, which is usually not 
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taken into account in the early stages of design. Therefore, reconciling these various domain 

experts can cause delays, conflicts, and undesirable design compromises.  

In this setting, a workflow targeting the early stages of design can address two main challenges. 

First, the workflow should capture the design intention behind the various parts of the sketch 

and subsequently translate it into an appropriate (non-) parametric geometry format to be used 

in different softwares without requiring a modelling expert. Recent advances in Machine 

Learning (ML) have demonstrated an increasing ability regarding surface modelling and shape 

reconstruction from sketch data which can be taken into account for this purpose. Second, fast 

feedback provision with respect to the mechanical performance of the model is of great 

importance in unfolding the strength and weaknesses of the structure. Such feedback enables 

the architectural designer to modify his/her design accordingly in the early stages, where the 

design is still amenable to substantial improvements. 

Building upon the above statements, this paper introduces a novel AEC workflow coupled with 

computational support, enabling the integration of digital design and structural analysis tools in 

the early stages of design aided by ML, resulting in quick iteration over the design cycle, 

increased design quality, and better supervision of structural implications of the design in the 

early stages. This workflow is based on a developed 4D sketching application with Unity 

Engine targeted for architectural design as a form-finding tool simulating traditional sketching 

behaviour with paper and pen but allowing the sketch creation in 3D space through tablet and 

stylus while capturing temporal data as of the fourth dimension. It is noteworthy that the sketch 

creation is guided by different geometric shapes that are used as canvases for stroke projection. 

The workflow starts by sketching an architectural element followed by passing the sketch to 

the Shape Inference module, which outputs the reconstructed surface mesh of the sketch. 

Hence, the reconstructed surface mesh is processed in the Structural Analysis module, whereby 

feedback based on the mechanical performance of the design is sent back to the sketching 

application. As a proof of concept, the most fundamental architectural element, namely a wall, 

is used throughout the pipeline to demonstrate the efficiency of the proposed workflow. 

This paper is structured as follows. First, a brief overview of the state-of-the-art on novel AEC 

workflows targeting early stages of design and sketching applications taking the structural 

analysis part into account is given. Then, the proposed workflow, along with its two main 

modules, including the Shape Inference and Structural Analysis and come along- required pre-

processing and post-processing steps are explained thoroughly. However, details of the 

sketching application and its main interaction techniques other than the type of data it provides 

is not explained as it is not in the scope of this paper. Finally, the current state of the workflow 

is discussed, and an overview of the future outlooks is given. 

2. Related Works 

Various researches have been targeting the early stages of design to automate and integrate 

modelling and performance simulations. In the context of 3D sketches, (Mahoney et al, 2018) 

presents the prototype of a 3D sketching system to enhance the design exploration in the early 

stages. The prototype is aided by machine learning which enables the translation of sketch into 

an intermediate description followed by a reconstruction function that translates this description 

into a 3D form. The reconstruction function and a set of libraries containing various geometric 

elements enable the designer to refine the solution space and produce different outputs from the 

same sketch. Another recent work is CASSIE (Yu et al, 2021), a conceptual modelling system 

leveraging freehand mid-air gestures coupled with a neatening framework producing a 

connected 3D curve network from the sketch. The curve network is subsequently surfaced, 

providing an output amenable for presentation, structural analysis, or manufacturing. 
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A few sketching systems integrating structural analysis have been introduced as well. However, 

they only work with 2D sketches and are developed for mainly educational purposes. The 

FEAsy (Murugappan et al. 2007), is a sketch-based environment for structural analysis in the 

early stages of design in which users can transform, simulate, and analyse their finite element 

models through freehand sketching within this environment. The tool is coupled with a 

beautification module, which simplifies and represents the sketch in a more meaningful way 

prior to the finite element analysis. STRAT (Peschel et al, 2008) is another tool for solving truss 

problems. Using the freehand sketch of the truss, this tool allows the designer to determine 

unknown forces in it with the aid of a sketch recognition system. 

Many researches address supporting the architectural designer in the early stages of design 

throughout structural recommendations and performance simulations. (Ampanavos et al, 2021) 

trained a Convolutional Neural Network (CNN), which iteratively generates structural design 

solutions for the sketches of the plans accompanied by real-time guidance before formalisation 

into CAD software. Other works used ML as surrogate models to speed-up simulations that are 

time-consuming to be employed in the early stages of design. (Nie et al, 2020) uses a CNN for 

predicting stress fields in 2D linear elastic cantilevered structures. Successively, (Jiang et al, 

2021) achieved a fast mechanical analysis by introducing a new network architecture called 

StressGAN for predicting 2D von Mises stress distributions in solid structures. However, in 

contrast to recent works in this area that either focus on a specific stage of the design flow such 

as modelling, or only work with certain types of (non-) parametric geometries in terms of 

dimension, this paper presents a workflow where automation of modelling and structural 

analysis happens within 3D space which is relatively more challenging. Simultaneously, 

connectivity between different stages of design is prioritised to reach a harmonious integration 

of sketching, modelling, and structural simulations. 

3. Proposed Workflow: From Shape Inference to Structural Analysis Feedback 

The proposed workflow begins with 3D sketching within the developed sketching application 

by an architectural designer. The sketch's 3D polylines and the associated temporal data are 

recorded throughout the sketching procedure. Afterwards, as the sketching finishes, the sketch's 

constituent 3D polylines are sent into the Shape Inference module for surface mesh inference. 

The employed reconstruction algorithm in this module digests point cloud data as input. Thus, 

the 3D polylines must be converted into a 3D point cloud in the pre-processing step. 

Subsequently, the Shape Inference module outputs the reconstructed surface mesh of the 

original sketch. Given that the surface mesh will be further processed in the Structural 

Analysis module, the outputted surface mesh must be post-processed to create an appropriate 

input format for the aforementioned module. As the obtained surface mesh is in 3D format, it 

must be transformed into a volume mesh prior to being sent to the Structural Analysis module. 

Furthermore, boundary conditions, loads, and material information are added to the volume 

mesh before the finite-element analysis (FEA) starts off. Ultimately, the output of this late 

module, including the displacements and stresses, is linked and sent back to the sketching 

application to be further visualised by the designer. The visualisation assists the architectural 

designer so he/she can improve the design in an acknowledged way regarding the structural 

implications of his/her design in the early stages. Depicted in the Figure 1, the general overview 

of the key steps in the proposed workflow can be seen. 

In the subsequent sections, the surface reconstruction algorithm employed in the Shape 

Inference and its theoretical background are explained thoroughly. Additionally, the pre-

processing and post-processing steps that come along with the Shape Inference module are 

discussed. Finally, the Structural Analysis module operations and linkage of its output back to 

the sketching application is described subsequently. 
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Figure 1: Overview of the proposed workflow containing two main modules allowing fast structural 

analysis feedback in the early stages of design. 

3.1 Shape Inference 

Once the sketching part is finished, the artist-drawn sketch must be converted into the intended 

3D geometric format suitable for other downstream (non-) parametric and engineering 

applications. Extensively Artificial Intelligence (AI)-based surface mesh reconstruction 

algorithms have been developed for such a scenario, aiding 3D shape reconstruction from 2D 

and 3D sketches (Xu et al, 2014, Guillard et al, 2021). The 3D polylines drawn in the sketching 

application in our framework can be easily converted into a  point cloud. Therefore, surface 

mesh reconstruction algorithms using point cloud data as input are straightforward and 

reasonable choices to embark on. To do so, a surface mesh reconstruction algorithm called 

Points2Surf (Erler et al, 2020) is leveraged to obtain a solid surface mesh of the sketched wall. 

In contrast to other Machine Learning (ML)-based surface reconstruction algorithms 

(Vakalopoulou et al, 2018, Park et al, 2019), Points2Surf is patch-based and independent from 

classes, leading to a better generalisation ability on unseen inputs, making it a reasonable option 

to get started.  

In order to create a proper input format from the sketch data to be fed to this algorithm, specific 

steps need to be performed as pre-processing. In addition, a post-processing procedure must 

generate suitable mesh data for structural analysis. Each of these is described in more detail in 

the following. 

Pre-Processing 

In order to utilise the Points2Surf algorithm, firstly, the sketched wall must be converted into a 

point cloud from its constituent 3D polylines. To locate 3D points along the drawn 3D polylines, 

at every frame at which the Unity Engine's Update function gets called, the contact point of the 

ray originating from the camera intersecting the drawing surface is recorded and stored as a 3D 

point coordinate. Accordingly, a 3D point cloud of the whole sketch is obtained by merging the 

individual 3D polylines' point clouds into one (see Figure 2). Also, prior to feeding the point 

cloud into the Points2Surf network, as part of the pre-processing, the point cloud must be 

centred at the origin and scaled uniformly to fit within the unit cube. Additionally, within the 

developed sketching application, while sketching 3D polylines, the designer can set the width 
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parameter for the brush based on his/her willingness, giving thickness to the sketched element. 

However, due to the nature of the point sampling strategy of the sketch, this thickness parameter 

is discarded. The absence of the explicit thickness in the point cloud creates a problem for the 

Points2Surf reconstruction algorithm since it is trained on solid objects with front and back 

sides. To solve this issue, normal vectors along the point cloud of the sketch are estimated, and 

points are moved along them to give the point cloud a slight implicit thickness. Normal 

estimation is done by finding adjacent points and calculating their principal axis using 

covariance analysis. The covariance analysis algorithm outputs two opposite directions as the 

normal candidates making them not consistently oriented across the point cloud. In that case, 

normals are aligned with respect to the tangent planes computed from the point cloud (Hoppe 

et al, 1992). 

 

 
(a) 

 
(b) 

Figure 2: (a) The sketch of a wall drawn in the sketching application, and (b) The corresponding 

obtained point cloud. 

Points2Surf 

As previously stated, the aim is to reconstruct a surface mesh from a 3D point cloud 𝑃 =
 {𝑝1, 𝑝2, . . . , 𝑝𝑁}. The authors of Points2Surf take zero-set of the Signed Distance Function 

(SDF) 𝑓𝑆 as a suitable representation for surfaces for training a neural network:  

 

𝑆 = 𝐿0(𝑓𝑆) = {𝑥 ∈  𝑅3 | 𝑓𝑆(𝑥)  =  0} (1) 

 

The approach taken in Points2Surf consists of the point cloud fed into a neural network with an 

encoder-decoder architecture, generating a latent vector and approximating the SDF through 

encoder and decoder, respectively: 

 

𝑓𝑆(𝑥) ≈ 𝑓�̃�(𝑥) = 𝑠(𝑧),  𝑤𝑖𝑡ℎ 𝑧 = 𝑒(𝑃) (2) 

 

where 𝑧 is the latent vector obtained through the encoder 𝑒 from the point cloud 𝑃, and 𝑠 is the 

decoder conditioned on the latent vector 𝑧. However, encoding a surface with a single latent 

vector affects the accuracy and generalisation ability of the network. Consequently, the authors 

propose factorising the SDF into two factors: absolute distance 𝑓𝑆
𝑑 and sign of the distance 𝑓𝑆

𝑠, 

where each of them is estimated through separate encoders 𝑒𝑑 and 𝑒𝑠, respectively. To estimate 

the absolute distance at a query point 𝑥, local neighbourhood 𝑝𝑑 from the point cloud 𝑃 is 

chosen and fed to encoder 𝑒𝑑. Furthermore, since the interior/exterior of the surface cannot be 

reliably determined from a local neighbourhood, encoder 𝑒𝑠 is trained on a global subsample 

𝑝𝑠 computed from the point cloud 𝑃 for every query point 𝑥 to estimate the sign of the distance. 

Moreover, the authors found out that instead of having two separate decoders for each, sharing 

information between the two latent vectors 𝑧𝑑 and 𝑧𝑠 benefits the network, resulting in the 

following formulation: 
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(𝑓𝑃
�̃�(𝑥), 𝑓𝑃

�̃�(𝑥)) = 𝑠(𝑧𝑑 , 𝑧𝑠),  𝑤𝑖𝑡ℎ 𝑧𝑑 = 𝑒𝑑(𝑝𝑑) 𝑎𝑛𝑑 𝑧𝑥
𝑠 = 𝑒𝑠(𝑝𝑠) (3) 

 

where 𝑠 is the decoder containing the 𝑧𝑑 and 𝑧𝑠 as its inputs, outputting the distance 𝑓�̃� and the 

sign of the distance 𝑓 �̃�. Afterwards, the surface 𝑆 can be reconstructed by applying the 

Marching Cubes (Lorensen et al, 1987) to the estimated SDF 𝑓�̃� × 𝑓 �̃�. Figure 3 demonstrates 

the overview of Points2Surf architecture. 

 

 

Figure 3: Points2Surf architecture. Image taken from (Erler et al. 2020). 

The network architecture used for encoders 𝑒𝑑 and 𝑒𝑠 are the same as the PointNet (ََََQi et al, 

2017), where a feature representation for each point is computed through a 5-layer Multi Layer 

Perceptron (MLP) neural network . Also, the decoder 𝑠 consists of a 4-layer MLP that takes as 

input the concatenated feature vectors 𝑧𝑑 and 𝑧𝑠 and outputs the two aforementioned SDF 

factors. Assuming the ground-truth surfaces are available during the training for supervision, 

the above network is trained in an end-to-end manner regressing the distance and classifying 

the sign as positive or negative based on the interiority and exteriority, respectively. Two 

separate loss functions are used for the distance and the sign of the distance for the training 

procedure. Firstly, 𝐿2-based regression is used for the distance: 

 

𝐿𝑑(𝑥, 𝑃, 𝑆) = |𝑡𝑎𝑛ℎ (|𝑓�̃�(𝑥)|) − 𝑡𝑎𝑛ℎ (|𝑑(𝑥, 𝑆)|) |2
2 (4) 

 

where 𝑑(. , . ) is the ground-truth distance between the query point 𝑥 and surface 𝑆. Secondly, 

for sign of the distance classification, the binary cross-entropy loss 𝐻 is used as follows: 

 

𝐿𝑠(𝑥, 𝑃, 𝑆) = 𝐻 (𝜎 (𝑓 �̃�(𝑥)) ,  [𝑓𝑆(𝑥) > 0]) (5) 

 

where 𝜎 is the logistic function converting the sign logits to probabilities, and [𝑓𝑠(𝑥) > 0] is 
equal to 1 when 𝑥 resides in the exterior of the surface and is equal to 0 otherwise. Altogether, 

the network is optimised with the following loss function compromising of the summation over 

these two losses for all shapes and query points of the training set: 

 

∑ ∑ 𝐿𝑑(𝑥, 𝑃, 𝑆) + 𝐿𝑠(𝑥, 𝑃, 𝑆)

𝑥∈𝑋𝑆(𝑃,𝑆)∈𝑆

      (6) 

The dataset that has been chosen to train the network on is the ABC dataset (Koch et al, 2019). 

This dataset includes a collection of one million CAD models. The authors of the Points2Surf 

have picked 4950 clean watertight meshes for training and 100 meshes for validation and test 

sets. Ultimately, for the inference on the point clouds of the sketches drawn in the developed 

sketching application, we have chosen and utilised the best pre-trained model based on the 

ablation results trained for 250 epochs. Depicted in Figure 4, a curved wall sketch's 3D 
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polylines, its 3D point cloud representation, and the reconstructed surface mesh by the 

Points2Surf algorithm can be seen. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4: (a) The sketch of the curved wall drawn in the developed sketching application, (b) The 

point cloud of it, and (c) The reconstructed surface mesh. 

Post-Processing 

To translate the obtained surface mesh via Points2Surf into a format suitable for structural 

analysis, several post-processing steps must be employed, as discussed next. The reconstructed 

surface mesh may not be smooth enough and contain noise over its entirety, given that the 

density of the sampled points might differ in different parts of the sketch as the drawing speed 

varies. Due to the nature of the sampling strategy within the UnityEngine that is employed in 

the pre-processing step, very fast sketching of 3D polylines may leave empty areas in the 3D 

point cloud of them, and thus, the reconstructed surface mesh might be rugged. To solve this 

challenge, Laplacian smoothing (Vollmer et al, 1999) is employed to remove the noise and 

smooth the surface mesh. After smoothing, verifying the watertightness of the surface mesh is 

required. A watertight mesh can be defined as a mesh that is edge manifold, vertex manifold 

and not self-intersecting. A non-manifold triangle mesh is necessary to be able to carry out the 

mechanical structural analysis using finite element-based methods. Thus, the approach 

introduced in the ManifoldPlus (Huang et al, 2020) is adopted to convert the reconstructed 

surface mesh into a watertight one. ManifoldPlus extracts watertight manifolds from surface 

meshes using the exterior faces between the occupied and the empty voxels and a projection-

based optimisation method. Subsequently, the reconstructed surface mesh is prepared for the 

application of suitable boundary conditions required for the structural analysis. Within this 

context, it is considered that the virtual ground that exists in the sketching application is the 

surface where boundary conditions are prescribed. Therefore, the surface mesh has been 

levelled at its bottom part, a feature that might not automatically exist due to the absence of 

domain knowledge encoded in the Points2Surf reconstruction method. To enforce planarity, the 

reconstructed surface mesh is sliced with a plane and capped subsequently, see Figure 5, for the 

reconstructed surface mesh and its corresponding smoothed variant with a planar bottom. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5: The reconstructed surface mesh of a curved wall viewed from different angles (top-row) and 

its corresponding smoothed variant with a planar bottom (bottom-row). 

Tetrahedralization 
Finally, the smoothed, watertight surface mesh with a planar bottom is translated into an 

analysis-ready volume mesh using the TetWild (Hu et al, 2018) engine, a quite robust engine 

that does not require any user interaction. The quality of the resulting volume mesh is a direct 

function of the target mesh size, controllable by a tolerance parameter, denoting how much 

deviation from the initial surface mesh is permitted. Figure 6 shows the curved wall discretised 

with first-order linear tetrahedral elements obtained by the TetWild engine. 

 

 

Figure 6: The volume mesh of the curved wall generated by the TetWild engine. 

3.2 Structural Analysis 

The finite element method is used to analyse the response of the sketched structure and assess 

its mechanical performance. Apart from the geometrical features, which are well defined by the 

post-processed volume mesh, the definition of material behaviour, boundary conditions and 

external loads are required together with the selection of an appropriate FE solution strategy. 

Problem Definition 

Regarding the definition of the material behaviour, we are currently working on implementing 

a material database in the sketching application as well as developing a micromechanics-based 

model to predict elastic properties for a wide range of bio-composites. In future, the user will 

have the possibility to select a broad range of different materials. So far, the materials used for 

our testing scenarios are described with isotropic, linear elastic constitutive models. 

The material behaviour is thus fully defined by two parameters only, the Young’s modulus 

along with the Poisson’s ratio. The limitation to linear elastic material models is made to 

provide FE solutions almost in real-time and, thus, allowing for rapid feedback to the designer. 

Naturally, it is possible to extend the material database and the underlying models at any time, 

e.g. by taking direction-dependency and nonlinear material behaviour into account. 
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Displacement boundary conditions, as displayed in Figure 7(a), are automatically applied at the 

bottom surface, which is therefore made planar, as described in the previous section. In more 

detail, a fixed boundary is considered, where all displacement degrees of freedom in the 3D 

space (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) are restricted and therefore set to zero for every node. All other surfaces are 

considered free surfaces. 

At last, external loads have to be defined. For this purpose, we focused on deadweight first, 

where only the density of the material in the database has to be additionally taken into account. 

Furthermore, in the first step, point loads are added at predefined positions to resemble selected 

loading states of interest, as illustrated in Figure 7(b). At this point, this is done manually within 

the FE software ABAQUS, for reasons to test the consistency and functionality of the proposed 

workflow. Subsequently, an automatic linking of the sketching tool and the FE program should 

take place via Python code. This allows the designer to define any loading and to mechanically 

pre-test his design already in the sketching application. 

 

 
(a) 

 

 
(b) 

Figure 7: (a) Visualisation of the displacement boundary conditions at the bottom surface and (b) 

placement of a concentrated load on a predefined position (node) on the wall. So far, for the 

calculations,  the implicit ABAQUS/Standard solver is used. The computed output variables involve 

the 3D nodal displacements as well as 3D stress- and strain fields of the whole body, which can be 

transferred back to the sketching application. 

Linking the Output Back to the Sketching Application 

Computation results, such as the comparison between initial undeformed and deformed 

configuration (obtained by adding the computed displacements to the original nodal 

coordinates) are again visualised in the sketching application, as seen in Figure 8. For this 

purpose, the structure is converted back to a surface mesh. A heat map and a legend are also 

added to highlight the zones with large displacements. Other modelling results which can be 

visualised are stresses and strains in every direction, principal stresses, plastic strains (if plastic 

material behaviour is considered) or any other output fields of common FE software. Figure 8 

shows the visualisation of the von Mises stresses – a common stress quantity governing yield 

for ductile materials such as steel. 

This graphical illustration helps the designer to immediately assess the mechanical performance 

of the sketched structure. If certain displacements are particularly large, or stresses exceed the 

material strength, the designer can immediately react, e.g. by changing the geometry, the used 

material, or by adding additional support to the structure. 
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(a) 

 
(b) 

Figure 8: (a) Deformed configuration with highlighted displacements as well as (b) Deformed 

configuration with visualised von Mises stresses. 

4. Conclusion and Future Work 

The early stages of design are mainly the process of exploration and ideation. It is also well 

understood that the decisions made at this stage have a significant impact down the line. 

However, lack of proper communication among disciplines as well as data and information 

losses between design stages makes it time-consuming and simultaneously results in a 

decreased design quality. As a step toward improving state-of-the-art workflows within AEC 

industry, this paper introduces and showcases a novel workflow automating the geometry 

creation followed by fast structural analysis feedback provision at the early stages of design 

where sketching is used for form-finding. Further improvements are envisioned at different 

parts of the proposed workflow. Primarily, regarding the Shape Inference module, a more 

sophisticated approach based on machine learning capturing design intention directly from 3D 

polylines and its coupled attributes such as timestamp, pressure, tilt, etc, generating parametric 

geometry is quite interesting and challenging to be further researched on and developed. 

Moreover, regarding the Structural Analysis module, just the boundary conditions are detected 

automatically and transferred to ABAQUS so far, while additional information such as material 

and loads can be recognised and carried to this module as well. In the future, we will be able to 

draw fixed boundaries, sketch loads and select materials from a database already within the 

sketching tool. Also, the integration of warnings shall be implemented, for instance, if 

displacements or stresses exceed certain critical values. It is also intended to integrate the Shape 

Inference and Structural Analysis modules and codes directly into the sketching application, to 

not rely on third-party programming interfaces and softwares, making it more of a unified tool. 

At last, the geometry can be exported to be further used in different CAD and computer graphics 

tools for tasks such as lighting simulations, paneling, and structural optimization. 
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