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Abstract. Determining the optimal design of geometry in building models is an essential task for 

architects and engineers. Although many constraints are considered, only a small part is currently 

integrated into digital models as design knowledge. Current software products do not support the 

declarative approach of creating constraints and permissible ranges to parameter values. The reason 

is the algorithmic complexity in analyzation and evaluation of such a constraint model. In this paper 

the problem is summarized and a solution for the computation of possible ranges is presented. It 

makes use of existing algorithms. This research is part of the so-called geometric constraint 

satisfaction problem (GSCP). Although former approaches exist, they weren’t applicable to the 

general case. The success of this approach is shown for a selected example. Future steps are 

discussed. These would be required for a modelling software benefitting from this approach. 

1. Introduction

The state of the art in the creation of digital building models including 3D geometry requires 

an iterative process. This includes the placement of building objects and checking whether the 

current model meets certain requirements. These requirements comprise rules from standards 

and laws, but also originate from project contracts, architectural design intent, feasibility of 

building processes or valid geometric consistency. The paradigm of parametric modeling is 

common for adjusting a model to certain requirements, creating variants or reducing the time 

needed for subsequent modifications. Therefore, input parameters and computation rules are 

used to create a computational system. This can be used for an efficient recomputiation of a 

solution whenever a parameter value gets changed. One approach is the modeling of 

dependencies between the parameters as a computational plan. This concept distinguishes 

between input and output parameters and can be represented as a directed acyclic graph with 

edges describing the computational direction. A different approach is the use of so-called 

constraints which includes dependencies between parameters with no predefined computational 

direction. The approach is declarative and usually requires a solver with sophisticated 

algorithms to obtain solutions. That’s because, a computational plan has to be identified or an 

equation system has to be solved. In complex models including many dependencies the 

computational plan and the feasible values for the parameters cannot be obtained easily because 

of the structural properties of the modeled problem. 

Current modeling software like Autodesk Revit 2022, AutoCAD 2022, ArchiCAD 25 by 

Graphisoft is based on the principle of parametric design, but does only support single values 

for each parameter value. The basic principle - although not explicitly mentioned by the 

companies and not every piece of information is presented to the user – is apparently history-

based design and its variants (Shah, 2001). History-based design requires a strict modeling 

direction. Although variational design by constraints (Shah, 2001) is also supported in these 

software products, it is limited to 2-dimensional sketches as parts of the construction history 

tree. In practice these limits prevent a massive use of constraints regarding the optimization of 

design. Nevertheless, there exist practical approaches for optimizing the design, e.g. generative 

methods or machine learning. As a limitation, these approaches allow only as many constraints 
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as needed for ensuring a single solution can be computed. Additional constraints cannot be 

considered or have to be validated iteratively. Alternative visions describe a software 

environment which can be used to control the number of variants by adding, removing or 

modifying requirements. Variants would be ready for examination and for adjusting the limits 

(Bettig et al. 2005, p. 8). Valdes et al. (2016) expect such approaches to increase the consistence 

of a model and the reduction of errors. 

Another limit in current CAD and modeling software is the support for exactly one existing 

value for each parameter or coordinates. This principle known as point-based design leads to 

the situation where the possible ranges of parameter values are not clearly evident. In contrast 

to that, the idea of set-based design was introduced by the Japanese automobile company 

Toyota (Sobek et al. 1999) and has the goal of representing all sections of the design space. The 

design is refined by narrowing and cutting the remaining design space until the project 

converges to a point-based state (Liker et al. 1996, p. 167). Applying the idea of set-based 

design to digital models was already proposed for building projects (Gil et al. 2008). Yannou 

et al. (2013) developed a small model of interval values for parameters and computed possible 

values using interval arithmetic. Assuming a working software product supporting set-based 

design there are different workflows which are of interest for engineers and architects. They 

accumulate in questions like: 

• What are the possible values for a parameter considering all other parameters and their 

dependencies? 

• How can a solution be found which fulfills different criteria and how can these criteria 

be formulated as a query? 

• How can the available solution space be visualized? 

Currently there exists no known CAD (computer-aided design) or modeling software which 

supports set-based design using intervals for the ranges of parameters and constraints for 

describing the dependencies in geometry. The idea of developing such kind of tools has not yet 

been realized, but Bettig et al. (2005) state, the benefits would be significant especially in 

planning processes of the building industry. 

The implementation of algorithms to answer the raised questions requires a large effort, but is 

highly useful for engineering or architectural design tasks. This paper focuses on algorithms 

needed to compute efficiently the available range of parameters for geometry considering all 

modeled constraints. As the underlaying problem is the computation of solutions of linear 

equations – therefore also nonlinear equations – with interval values is NP-hard (Kreinovich 

and Lakeyev, 1996), this research has the goal of combining existing algorithms which are 

highly efficient in computing these ranges. The presented solution combines existing 

algorithms especially from the field of interval computation. It is capable of solving arbitrary 

systems, can be applied to any constraint graph and is independent of structural properties of 

the problem in the sense of completeness. This includes systems that are weak or strongly 

under-constraint as well as well-constraint systems. Linear and non-linear equations are 

supported. The direction of dependency between parameters has not to be determined as there 

has no difference to be made between input and output parameters. The presented example is 

intentionally small, because the complexity of constraint systems usually increases sharply with 

the number of objects. Relating thereto, it is difficult to describe and to explain plainly the 

structure of a constraint system. Research in presenting structures of constraint systems is 

beyond the scope of this paper. This paper has a focus on the computational aspect. It also 

introduces the idea of set-based design, the geometric constraint satisfaction problem and 

interval computation which aren’t widespread, especially their combination. 
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2. Methodology 

2.1 Geometric Constraint Satisfaction Problem 

Geometric constraint systems - a special case of constraint systems - include geometric objects 

like points, lines, circles, etc. and geometric constraints like orthogonal lines, parallel lines, 

coincident points. Geometric constraints describe the relations of geometric objects in a 

semantical way. This is different to numeric constraints which can be regarded as linear or 

nonlinear equations. Nevertheless, it’s possible to describe geometric constraints as numerical 

constraints using one or more equations. The description of a constraint system is declarative 

which means the problem itself is described instead of the so-called imperative approach which 

prescribes the steps to solve the problem. Because of missing information about the way of 

solving, this is regarded as the geometric constraint satisfaction problem (GCSP) as a part of 

the field of constraint satisfaction problems (CSP). 

According to Hoffmann and Joan-Arinyo (2005), Joan-Arinyo (2009), Bettig and Hoffmann 

(2011) and Sitharam et al. (2019) there exist different approaches of solving GCSP: An 

algebraic approach by solving equation systems; theorem proving by analyzing axioms linked 

to theorems; a logic-based approach by assumptions and axioms which get solved with a rule-

based reasoner rewriting the constraint system to generate procedural solving steps and graph-

based by dividing the constraint graph into subproblems and using known solution strategies 

for the subproblems 

Solving algorithms heavily depend on the properties of the constraint system. Various 

algorithms only solve systems that are serializable (Sitharam et al. 2019, p. 145 and 152). This 

includes an ordered processing of the constraint graph to create a construction plan or creating 

a triangular equation system. Complex systems exist which are not serializable thus need a more 

sophisticated solver. These systems are called “variational” (Sitharam et al. 2019, p. 145) as 

their parts are mutually dependent. This is usually the case whenever the number of included 

dependencies is significantly increased. 

Another significant property is the existence of solutions. In the case of exactly one solution of 

the CSP the system is regarded as well-constraint. This is the intended state in a point-based 

modeling approach. Over-constraint (no possible solution) and especially well-constraint 

systems can usually be handled by all solving algorithms. In contrast to this, under-constraint 

systems suffer from the multiple solution problem. This is also referred to as the root 

identification problem regarding CSP represented as an equation system. The problem is the 

non-existence of a criteria for choosing one solution from the set of solutions. Although 

Shimizu et al. (1997) state that the user usually sets too less or too many constraints. In this 

paper it is assumed that under-constraint systems are the intended standard case as the set-based 

design proclaims. The well-constraint case occurs as the special case when a single final 

solution is found and the design process finishes. 

2.2 Interval Arithmetic 

The representation of intervals and their arithmetic was introduced by Moore (1966). There 

exist various publications, research projects and also a standard (IEEE Std 1788-2015) which 

is based on the floating-point number standard IEEE Std 754-2008. The main theorem in the 

calculation with intervals is the inclusion isotonicity of the projection. Every function has to 

guarantee the inclusion of the solution despite of any rounding errors or discontinuity. 

Dependent on the function and the variant of arithmetic, the operation is not necessarily bi-total 

apart from rounding errors. This is usually the case for arithmetics only supporting exactly one 
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interval as a result for a function. Variants for interval arithmetic can be mainly classified in 

“traditional” interval arithmetic which results in a maximum of one interval and real numbers 

as bounds and the extended interval arithmetic which can have infinite bounds and supports 

results of more than one interval (Kulisch 2013, p. 140). The extended interval arithmetic can 

handle divisions by intervals including 0 more accurately by introducing more cases for 

divisions. This is also true for e.g. the square root function. 

An important effect in the calculation of intervals is the interval dependency problem. It occurs 

whenever a variable with an interval value is used more than once in a formula or calculation 

sequence. For example, using the variable 𝐴 = [−2, 2] in a calculation of A² = [0, 4] leads to a 

different result than multiplying the variable separately 𝐴 ⋅ 𝐴 = [−4, 4]. The square function 

considers 𝐴 to be the same variable, whereas the multiplication does not consider the obvious 

dependency of the two factors. This leads to an overestimation of the result. The interval 

dependency problem is the main difference between computation with intervals and with single 

real numbers, especially in the evaluation of results. 

2.3 Interval Constraint Satisfaction Problem 

Interval constraint systems are a special case of numeric constraint systems. Every variable is 

defined for the domain 𝕀ℝ and constraints describe the arithmetic relation between variables. 

The vector of all values of each and every variable in an interval constraint system is called box 

(Moore et al. 2009, p. 15). A box spans in the n-dimensional space. Different queries arise to 

an interval constraint system and solving these queries is usually affected by the interval 

dependency problem. Possible queries are: Finding one arbitrary solution, finding the range of 

valid values of one or more variables, finding the minimum or maximum of a function also 

known as rigorous optimization. Searching for the range of all variables is the analogion to 

searching the ranges of parameters in a geometric constraint system. The quality of a box of 

values for a constraint system can be categorized by a certain level of consistency.  

Lower consistencies, like arc-consistencies (Mackworth 1981; Miguel et al. 2001) and box-

consistencies do not consider multiple occurrences of variables and thus the interval 

dependency problem. In contrast to these lower consistencies, the more rigorous hull-

consistencies do consider them. The kB-consistency guarantees that the intervals of k-1 other 

variables are consistent to a variable (Lhomme 1993). This leads to the (n+1)B-consistency 

where n is the number of all variables. This is also called the global hull-consistency (da Cruz 

2003, p. 81) and guarantees that the lower and upper bound of every interval in a box is a 

solution to the interval constraint satisfaction problem and all other solutions lay in between 

those bounds. Although, approaches exist which can compute the solution space regarding a 

certain precision (Fränzle et al. 2007), this paper focus on the global hull-consistency which 

can be computed with a reduced effort. 

3. Existing Approaches 

According to Bettig and Hoffmann (2011), computing the valid values of parameters is an open 

question of GCSPs. A former approach for polygons is presented by Hoffmann and Kim (2001). 

The presented algorithm is actually only applicable to linear 1-dimensional problems. It 

computes the range of a single dimensional constraint which is going to be adjusted. The 

extended approach by van der Meiden (2008) can be used for 2-dimensional cases with 

distances and angles. His goal is the computation of the valid parameter range of exactly one 

so-called variant parameter. He uses a constructive graph-based approach by computing special 

points where the variant parameter has critical values. These are used to determine the minimum 
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and maximum of the range. Hidalgo Garcia (2013, chapter 4) examined the work of Meiden 

and proofed that the minimum and maximum can be determined but also disjunctive domains. 

An approach for using intervals in modeling and solving GCSPs have been introduced by Nahm 

et al. (2006). They used a prototype of a CAD software for modeling geometric and non-

geometric data in early stages of design under a strong uncertainness. They used an interval 

propagation algorithm which is strongly limited as it cannot solve equations simultaneously 

though is not applicable for the general case to create the global hull-consistency. 

Wang et al. (2007) also used constraint-based modeling with intervals for geometry objects. 

They solve the equation system by piece-wise linearization with the Gauss-Seidel method. This 

can narrow intervals, but suffers from the interval dependency problem and cannot create the 

global hull-consistency in every case. Their presented example is solvable with the simpler 

HC4 algorithm developed by Benhamou et al. (1999). Kirchner and Huhnt (2018) used the 

HC4’s sub algorithm HC4Revise to compute the global hull for tree-structured constraint 

graphs which are proven to be free from the interval dependency problem (Benhamou et al. 

1999). 

In summary, there is no known approach yet for computing the global hull-consistency 

efficiently and apply it for the computation of valid ranges of all parameters for a GCSP. These 

ranges are defined by a lower bound and an upper bound which are each part of at least one 

solution. 

4. Proposed Approach 

The presented concept includes the transformation of geometric constraints to numeric 

equations including all parameters as possible interval values. The graph-based representation 

of the parameters and constraints is transformed to a set of equations and variables. Each 

constraint is represented by one or more equations and each parameter represents one variable. 

An example for a transformed equation is given in figure 1. 

 

Figure 1: Orthogonal constraint for two lines and its equation after transformation. 

As common geometric constraints are based on non-linear equations the resulting equation 

system is non-linear. Additional non-geometric constraints can also be included as equations. 

It is possible to have more, equal or less variables than equations as this is covered by all chosen 

algorithms. 

210



 

 
29th International Workshop on Intelligent Computing in Engineering (EG-ICE) 

 

The used interval computation library has to support at least the basic mathematical operations 

and functions like square or square root. This is the minimal set for the most common 

geometric constraints. Additionally, set operations like union and intersection are required. For 

effective solving of interval constraint systems the implementation has to be capable of 

computing the inverse functions of all operators and functions. An optional requirement which 

improves the solving process is the differentiation of every equation. This can be realized by 

automatic differentiation. 

The main algorithm to compute the lower and upper bound of each parameter is the global hull 

by da Cruz (2003). This is an efficient algorithm to compute the (n+1)B-consistency for an 

arbitrary case independently of the structure of the constraint graph. The main algorithm uses a 

set of subalgorithms for reducing the search space. The subalgorithms are heuristics to 

accelerate the steps to exclude certain parts of the search space which are proven to not include 

a solution. As there exists a variety of usable heuristics, the proposed approach includes the 

well-known algorithms HC4 (Benhamou et al. 1999) and Interval Newton method. The Interval 

Newton method is the interval extension of the Newton-Raphson method considering the first 

derivative for in- and exclusions. 

5. Results 

5.1 Implementation Details 

The implementation uses a self-developed Java library for interval arithmetic and operations 

based on the multiple-precision datatype BigDecimal of the Java standard. The multiple-

precision approach is noticeably slower, but it offers more control over rounding modes and 

precision in mathematical operations. This is necessary as the control of rounding modes for 

native IEEE754- floating-point datatypes is not supported by the Java language. The lack of 

speed is acceptable for research, but is not intended to be used in end-user software. The library 

also includes the support for extended interval arithmetic which supports more sophisticated 

case distinction for operations like division or square root. Especially division which is crucial 

for the Interval Newton method leads to disjunctive interval with a reduced overestimation in 

the intermediate results. 

The implemented geometry model is a boundary representation (B-rep) coupled with 

parameters and constraints. The basic shapes polygon, line and boundary are used to create 

solids with faces. Only points include a parameter for each coordinate. Extended shapes like 

e.g. rectangles can be constructed by adding parameters and constraints to basic shapes. Every 

shape can be assigned to one functional unit. Every functional unit might represent a digital 

building element or another element of design or modelling purpose. The objects also can carry 

a set of parameters which are connected to the parameters of the contained shapes. 

A number of geometric constraints is implemented including e.g. parallel lines or orthogonal 

lines. Additionally, arithmetic constraints for further constraining parameter values are 

available. They include e.g. the basic mathematic operations and the equality constraint. 

Although the parameters, shapes, functional units, constraints and assignment relations are part 

of a graph representation for analyzation and visualization purposes, a graph is not a 

requirement for the algorithms. The essential data needed for the computation consists of the 

equations and variable included in the set of constraints. 
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5.2 Applied Example 

The algorithm was successfully applied to different models like the examples given by 

Hoffmann and Kim (2001) or Wang et al. (2007). The results correspond with each other. 

An example in detail is based on the widely used parametric model of an extruded rectangular 

wall. This is similar to the IfcWallStandardCase in the straight case as described by IFC4.2. 

The wall is described by its thickness and height and two points forming a line in an XY-plane 

for placement. These parameters are sufficient for the creation of a geometric representation. 

The parameter length is also added and represents the distance between the two points – P1 and 

P2 – forming the placement line. For a valid solid the points P3 and P4 are needed to form the 

base rectangle with P1 and P2 and P5, P6, P7 and P8 to form the top rectangle. The four side faces 

are also rectangles formed by pairs of points each from the base and the top. A 3-dimensional 

sketch is shown in figure 2. 

 

Figure 2: The parameters and vertices of the example extruded rectangular wall. 

The included constraints for modelling are: orthogonally with oriented distance parameter 

between line and point in a XY-plane (Orth-O-Dist-XY), oriented distance parameter in z-

direction (O-Dist-Z), XY-coordinates of two points equal (Eq-XY), distance parameter of two 

points (Dist-XY). The constraint graph is shown in figure 3. 

 

Figure 3: The constraint graph of the example extruded rectangular wall including the 

interrelationships between points, constraints and parameters. 
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Please note, this is one possible constraint graph. A set of possible variants for constraints in a 

parametric model of the extruded rectangular wall exists. They share the same parametric 

behavior. 

The example includes 27 variables (3 coordinates for each of the 8 points and 3 parameters for 

the wall) and 27 equations. A computational run with initial values and the resulting global hull 

is given in table 1. The computation was limited to the third decimal place. 

Table 1: Selected variables and their initial values and their value after computation for the example.  

Variable Initial value Computed global hull 

P1.x [3] [3] 

P1.y [0, 1] [0, 1] 

P2.x [3, 4] [3, 4] 

P2.y [5] [5] 

P3.x ]- ∞, ∞[ [3.39, 3.710] 

P3.y ]- ∞, ∞[ [5, 5.15] 

P4.x ]- ∞, ∞[ [2.39, 2.709[ 

P4.y ]- ∞, ∞[ [0, 1.15] 

Thickness [0.3, 0.6] [0.3, 0.6] 

Height [2.2] [2.2] 

Length ]0, ∞[ [4, 5.099] 

The computed global hull corresponds with the expected results. Because of the freedom of 𝑃1 

in x- and 𝑃2 in y- direction the length of the wall is computed with the lower bound of 4 and 

the upper bound of 5.099 as the wall can be placed vertically or slightly diagonally. The possible 

diagonal placement and 𝑃3𝑃4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   always has to be parallel to 𝑃1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   by a distance of the thickness, 

results in intervals instead of single values for the coordinates of 𝑃3 and 𝑃4. 

6. Conclusion and Outlook 

This paper presents a solution on the problem of computing ranges of parameters for arbitrary 

geometric constraint systems. The computational result is equivalent to the (n+1)B-consistency. 

The solution transforms the geometric constraints to a set of equations and combines existing 

algorithms for interval computation to find the relevant solutions for the lower and upper bound 

of ranges. This is approach can handle under-constraint and well-constraint systems for non-

linear equations. The results are promising, although a valid comparison to existing approaches 

is still missing. 

This way of modeling using intervals and constraints requires a change in the way on how to 

create and work with parametric models. It requires the user to approach an intended solution 

by exploring the design solutions and is similar to set-based design. 

The limit of this approach is the computational effort which is unpredictable for complex 

models as it depends on the used heuristics and the structure of the constraint system. This 

means a solution to an apparently complex system is found in a short period of time, but there 

exist simple examples which can take a long time in the worst case. This is usually the case if 

a large part of the solution space has to be checked, because it can’t be excluded early. Another 

limit is the requirement of partly continuous mathematical functions excluding piecewise-
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defined functions. The fixed set of geometry objects for one computation is inherent and limits 

the applications. The approach does not include models which can have parameters that change 

the geometric topology e.g. the number and the different types of geometry objects and 

parameters. This is limited because all constraints have to be transformable to an equation 

system with a fixed number of variables and equations before the computation can start. 

There are different directions of research to pursue. One obvious option is using this approach 

for parametric studies of different engineering domains. This is promising as it makes it possible 

to compute valid ranges of input parameters for given intervals of output parameters. Also, 

bigger models have to be created and get tested. The used algorithms are suitable for concurrent 

computation, but the performance has not been systematically investigated. Optimizations in 

code are assumed to increase the computational efficiency noticeably. This also has to be 

compared to existing interval arithmetic libraries and approaches. 

An open question is the applicability of the entire set-based approach. This would require 

further research on proper visualizations of the solution space, comparison of different solutions 

and analyzing and querying of constraint systems for certain solutions.  

Remarks 

This work is a part of a PhD thesis published 2021 only available in German language: 
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