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Abstract. Together with roads, rails and tunnels, bridges represent ubiquitous infrastructure 

objects holding an essential role in transportation. Nevertheless, due to the elevated age of many 

bridges, structural deficiencies are becoming more common. Digital Twins in conjunction with 

Building Information Modelling (BIM) may significantly support asset management but are only 

now garnering more attention for infrastructure objects. To ease the transition towards creating 

digital twins for existing constructions, this work presents a method for automated segmentation of 

bridge point clouds based on images using convolutional neural networks. For this purpose, 

semantic segmentation is used for labelling the photographs captured during laser scanning. The 

classifications masks of this image-based approach are then projected back into 3D, resulting in a 

labelled point cloud ready for further processing and building component reconstruction. 

1. Introduction

The shift towards digitization has led to a notable transformation in the architecture, 

engineering and construction (AECO) industry. Since its introduction, Building Information 

Modelling (BIM) is being adopted in civil engineering for digital design and construction and 

is also seen in the life cycle and asset management due to apparent benefits for data handling 

and exchange (Blankenbach 2018). While the IFC data model has matured for real estate 

objects over the past years (Borrmann et al. 2018), an extension of it tailored towards 

infrastructure objects is only recently being pushed forward (Borrmann et al. 2019). This 

development makes sense, as infrastructure objects are commonly encountered in everyday 

life. It also emphasizes the role of BIM, which serves as the origin for the concept of the term 

“digital twin” in construction and describes data-driven systems for the monitoring, 

maintenance and management of objects throughout their life cycle (Sacks et al. 2020; 

Errandonea, Beltran and Arrizabalaga 2020). 

However, the creation of semantic-rich 3D models representing the actual (as-is) state of the 

construction as important basis for digital twins is a notable challenge, as up-to-date plans are 

rarely present or incomplete as repairs and restructuring may have taken place over the life 

span of the construction. In consequence, reality capture techniques such as laser scanning or 

photogrammetry must be used for as-is data acquisition, followed by elaborative manual 

modeling based on the collected data. This step requires specialized modelling software, 

trained staff and time. Automated as-is modelling is therefore a hot topic in both, research and 

the industry, as it cuts down on modelling time and costs. Typically, this process can be 

broken down into four stages as illustrated in Figure 1. 

Capturing and surveying represent the first of these stages and have improved notably over 

the past years due to unmanned data capturing platforms (drones), laser scanning systems and 

capturing methods in general having evolved towards high accuracy, low-cost, ease-of-use 

and fast capturing (Blankenbach 2018). Because of some capturing methods suffering from 

reduced accuracy, preprocessing aims to rectify the impact of sensor noise and artefacts to 

clean up the point cloud data and guarantee optimal conditions for semantic segmentation and 
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modelling. Segmentation is typically achieved using geometric algorithms; however methods 

based on machine learning are becoming an increasingly more popular option. While 

segmentation can be performed to extract specific regions of interest and planar patches, it can 

also be used to find and label specific objects and structures. Finally, these are then used to 

create suitable building components and construct the final 3D model. Depending on whether 

or not additional information has been gathered during the segmentation step, it may be added 

to the model alongside semantic attributes. This means that segmentation and modelling are 

closely intertwined, as the model quality will strongly depend on the segmentation quality. 

 

Figure 1: Stages of the Scan-to-BIM process. The presented approach covers the segmentation and 

classification stages. 

Both, segmentation and classification may also be combined into one single step commonly 

referred to as semantic segmentation. Supervised machine learning methods are already 

increasingly being used for this purpose, with Deep Learning (DL) in particular holding much 

potential. However, (supervised) DL requires a large amount of training data with high 

variability and annotated point clouds are rare or even not available for many construction 

types like bridges. As part of a larger research project with the overarching goal of 

automatically deriving digital bridge models from survey data, we try to tackle this problem 

by a multi-stage semantic segmentation workflow.  

Arising from the lack of point cloud training data, this contribution presents an image-based 

classification approach where 2D semantic segmentation results are transferred to 3D point 

clouds (cross-domain matching) in order to achieve point cloud segments which can 

afterwards be refined using prior knowledge. The approach is driven by the fact that photos 

are usually taken in addition to a point cloud as part of the surveying. The approach is 

depicted in Figure 2 and shows a neural network performing an initial instance-based pre-

segmentation on photos. Segmentation masks then being projected as a coarse segmentation 

into the point cloud, in order to then carry out a fine segmentation. The advantage of this 

approach is that on one hand, training data (photos of infrastructure objects) is publicly 

available (e.g. on the internet) and can also be produced quite easily and quickly. On the other 

hand, due to neural networks being famous for their performance in image classification 

tasks, the point cloud data required for training within the fine segmentation step being rather 

scarce. Although the approach still holds potential for improvement, the presented results 

prove that it already delivers solid results when combined with suitable post-processing 

techniques, making it a promising tool for the integration into modelling workflows.  
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Figure 2: Overall workflow for infrastructure point cloud semantic segmentation. This work deals with 

the image segmentation part and generation of a pre-segmented point cloud. 

2. Related Works 

For years, machine learning methods for point clouds have been an ongoing research topic in 

the field of robotics with most early approaches using the then widely-used Support Vector 

Machines (SVM) alongside hand-crafted features (Brodu and Lague 2012). At roughly the 

same time, neural networks and deep learning have gained more traction in object 

recognition, as their requirements for large training data sets and computational power were 

starting to get satisfied. Since the massive success of neural networks for image classification 

and the subsequent improvements of their architecture in the following years (Krizhevsky, 

Sutskever and Hinton 2017), early experiments in voxel-based approaches such as VoxNet 

(Maturana and Scherer 2015). In the face of their limitations, native 3D-based neural 

networks such as PointNet (Qi et al. 2016) have been developed. Interestingly, hybrid 

approaches which combine information from the point cloud and image domains have been 

presented as well (Sindagi,  Zhou, and Tuzel 2019). 

In an effort of exploiting the high accuracy of image-based neural networks, a handful 

approaches have already been developed to act as indoor object classifiers (Su et al. 2015, 

Stojanovic et al. 2019). These methods classify isolated objects or pre-segmented point clouds 

by rendering them from different viewports and classifying the resulting images. Adaptations 

for use with automated driving have been made as well (Wolf et al. 2019), proving that this 

approach can not only be applied to outdoor environments, but even has a better chance of 

classifying objects in their spatial context than most native 3D approaches. 

When it comes to capturing training data, MLS has become widely used for capturing large 

infrastructure objects, as it benefits from high mobility and capturing speeds (Ma et al. 2018). 

Due to the application of machine learning in the field of automated driving being pushed into 

focus recently, urban point cloud data sets captured with MLS such as KITTI (Fritsch, Kuehnl 

and Geiger 2013) and Paris-Lille-3D (Roynard, Deschaud and Goulette 2018) have become 

popular benchmarks for the detection of cars, pedestrians and road elements. The crux 

however lies in the fact that these datasets are not concerned with infrastructure objects such 

as bridges. Consequently, 3D training data specifically for bridges is highly-limited, rendering 

3D-based neural networks unsuitable for bridge component classification. 
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Given this context, image-based classification approaches like the one employed in this work 

represent the best option for 3D classification tasks where training is either sparse or non-

existent. Image datasets are rather ubiquitous, with the COCO dataset (Lin et al. 2014) being 

one well-known example and even datasets with bridge data (albeit with labels for cracks and 

damages rather than components) are available (Bianchi and Hebdon 2021). 

This accessibility of existing data makes image-based semantic segmentation a valuable tool 

for the underlying point cloud classification problem. Due to these techniques being part of 

the digital twin reconstruction process, their role in capturing the bridge’s state and updating 

the digital model accordingly aligns well with the goal of maintenance and damage tracking 

of the Industry 4.0 movement (Shim et al. 2019). 

3. Methodology 

The presented image-based workflow for point clouds can be subdivided into four 

incremental stages: neural network training, image-based semantic classification, 3D 

projection and post-processing. 

3.1 Neural Network Training 

As discussed earlier, the problem of obtaining specific training data for bridges poses a 

problem due to the lack of labelled bridge images. However, transfer learning represents a 

solution to this problem (Zhu et al. 2021, Kora et al. 2022). Neural networks for image 

classification typically consist of a feature detection body where distinct features are 

recognized and a classification head which associates these features with one of the output 

classes. Transfer learning describes the process of modifying a pre-trained network such that 

the features learned in the body are kept, while the classification head is being re-trained and 

adapted for a new set of object classes. Thus, training is drastically reduced and as an added 

benefit, the time-consuming and tedious hyper parameter tuning process is omitted. 

 

3.2 Image-based Semantic Segmentation 

For the classification of the captured images, Mask R-CNN network (He et al. 2017), an 

extension of Faster R-CNN was used. Mask R-CNN relies on a feature detection backbone 

such as ResNet, ResNeXt or SpinNet for feature detection and uses RoIAlign for proposing 

Regions of Interest (RoI). These regions are subsequently classified by one network branch, 

while a second branch predicts an object mask for each RoI. Due to Mask R-CNN generating 

not only object bounding boxes and annotations, but also pixel-accurate classification masks, 

the resulting regions of interest are well-suited for projection into 3D point clouds, given the 

camera’s extrinsic and intrinsic parameters. 

 

3.3 3D Projection and Postprocessing

Extrinsic camera parameters represent spatial camera parameters in 3D space and encompass

location and orientation parameters. They can be captured directly through GNSS/IMU data

and tracking of scan positions when using drones, TLS and MLS systems or, if camera sys-

tems without GNSS/IMU are used, can additionally be reconstructed through image 

matching methods. Intrinsic parameters on the other hand represent the focal length,
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coordinates of the principal point and distortion parameters of the camera and are therefore 

needed to describe mathematically and physically how captured images are projected onto the 

image plane. Typically, a camera calibration process is used to estimate intrinsic parameters 

and the type of distortion present in the images. Using the extrinsic and intrinsic camera 

parameters, it is possible to project the 3D point cloud into the camera’s image plane. 

 

Figure 3: Point cloud projection for the solving occlusion problem through depth map generation. This 

process requires intrinsic and extrinsic camera parameters to render out each point's distance from a 

given camera position. 

As apparent from their lack of 3D information, a naive projection of 2D images into point 

clouds will run into the problem of labelling points occluded by the ones in front of them, 

leading to many points being labelled incorrectly. Regular photographs are missing the 

required depth information, but through use of the extrinsic and intrinsic camera parameters, 

point clouds can be aligned with the images, thus bringing them into the camera’s view 

frustum. In a process inspired by computer graphics, this allows for the calculation of each 

point’s distance to the camera. By rendering out these distances into a depth map (also 

referred to as z buffer or depth map), it is possible to solve the depth occlusion problem. As 

shown in Figure 3, the depth map is created by constructing a view matrix from the extrinsic 

parameters and projection matrix from the intrinsic parameters and multiplying all visible 

points with it. In the case of multiple points falling into the same pixel of the depth map, only 

the one with the smallest distance to the camera is kept for labelling, due to it occluding the 

ones behind it. 

Once the projection process is complete, candidate labels for each point are post-processed 

using majority voting. Most points are typically visible from multiple views, which can lead 

to contradicting labels due to classification masks potentially overlapping, being imprecise or 

in some cases belonging to the wrong class. The majority voting allows for these problems to 

be resolved in a simple yet effective way, but shows potential for improvements due to its 

ignorance towards geometric structures. 

4. Experiments

For training, a variety of images ranging UAS (Unmanned Aerial System) survey data taken 

by the TU Munich to images taken from Internet search engines as well as selfrecorded 

images and those from bridge inspections were used. Validation was performed on survey 

data of two different bridges. The first survey was done using a camera-equipped UAS. 

Based on the captured video footage, a point cloud was reconstructed, meaning that image 

data and a point cloud suffering from quality degradations characteristic of image recon-

struction techniques were available. A second survey was performed using a geodetic 
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terrestrial laser scanner (TLS) equipped with a NIKON D800 camera and based on 20

scan positions 140 pictures and a high-quality point cloud were obtained. In both cases,

intrinsic and extrinsic camera parameters were known.

 

Figure 4: Left: Sample image of the provided training data set. Right: Training and validation loss for

Mask R-CNN on the given training dataset.

For the classification of the captured images, a Mask R-CNN network with a backbone

network consisting of a ResNet with 50 layers which has been pre-trained on the COCO

dataset (Lin et al. 2014). To improve classification accuracy, transfer learning was applied,

where the original network was modified and retrained on a hand-annotated bridge dataset to

detect and classify bridge abutment, railing and deck components. The corresponding data set

for retraining was created from around 600 hand-annotated images (a sample image is

depicted in Figure 4, left) and expanded using typical data augmentation operations such as

cropping, rescaling and mirroring to make the resulting classifier more robust. Training and

validation loss dropped sharply during the first 600 iterations, before slowly converging as

indicated by Figure 4 (right).

As shown in Figure 5, results for classification show that the trained network performs

favourably for most images and can reliably detect the three object classes (abutment, railing

and deck) within the images regardless of camera distance and angle to the object. Detection

masks, however, have a tendency towards displaying a jagged rather than smooth border,

making these regions somewhat unreliable. Masks for the railing class are occasionally

slightly imprecise, which may be a result of their fine structure which allows for objects

behind them to still be visible. Projections of the classification masks into the point cloud

result in a decent segmentation of the bridge components alongside some unpleasant artefacts

(see Figure 5, right column). While the majority voting algorithm and depth occlusion are

capable of resolving glaring issues, additional post-processing would improve result quality

even further.

Despite different camera parameters, TLS survey data was processed analogously to the

UAS data. Results for this dataset are similar in terms of robustness but also present dif-

ferent challenges. Unlike the UAS survey data, where the bridge is always in frame, it also 

contains images in which the bridge not visible. One should note that as a form of nega-

tive control, the resulting classification masks of these images are empty and thus do not

contribute to the overall point cloud classification process. Additionally, some scans were

acquired underneath the bridge and show components which are typically occluded from view

when looking at it from an outside perspective and were not included in the training data set.

Reliability of classifications masks in these regions is therefore lower, such that components

are occasionally correctly recognized despite the lack of training data but also oftentimes
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incorrectly labelled or not recognized. This issue can be resolved through retraining with the 

appropriate images though. 

 

Figure 5: Results of image-based segmentation for two different bridges. Top left: Image captured by a

UAS with superimposed segmentation masks. Top right: Point cloud with labels from multiple view-

points projected onto it. Bottom left: Image captured during TLS survey with superimposed classifica-

tion masks. Bottom right: TLS point clouds with labels from multiple viewpoints projected onto it.

Another challenge occurs for images where the bridge is visible from an oblique angle (shown

in Figure 5, bottom left) and where the perspective results in a severely reduced resolution of

the deck and railing components. Classification masks have a tendency to be less accurate in

both cases, as the lower resolution of these areas makes it harder to make out defining

features, such that deck and railing components are more likely to be confused for one another

as apparent in Figure 5 (bottom right). A projection of these masks into the point cloud labels

the abutment consistently correctly, but segmentation of deck and railing can suffer from

degraded quality in aforementioned cases. While the method already works admirably well in

most cases, this factor proves that retraining and further post-processing e.g. using spatial and

geometric reasoning is required to achieve a more consistent result quality.

5. Discussion and Outlook 

As shown by the early results, the presented approach provides a viable way of semantic 

segmentation for point clouds using supervised machine learning and is capable of bypassing 

the current scarcity of point cloud training data. Semantic segmentation is used to generate 

object masks, which are projected onto the point cloud. Occlusions specific to camera 

perspectives are being simulated by rendering out a depth map using the underlying camera 

parameters. Afterwards, a post-processing cleans up point labels to improve result quality by 

means of a majority voting for point with multiple overlapping regions. Among the observed 
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challenges are inaccurate region borders, misclassifications of low-resolution regions and 

occasional outliers. Further investigations into the performance of image classification are 

currently being carried out, involving commonly-used metric such as Intersection over Union 

(IoU), precision and recall. An investigation of the same metrics for the labelled point clouds 

are of major interest as well. 

Aside from the image segmentation quality which can be improved by adding more data to 

the training process, the most apparent way of dealing with inaccurate results and improving 

segmentation quality lies in the post-processing step. The success of earlier works in image 

classification, where post-processing has led to improvements of the overall results, points 

towards the same conclusion (Tivive and Bouzerdoum 2006). In its current state, the overall 

process does not take the spatial context into account and is thus limited when it comes to 

dealing with wrong or incomplete labels. Methods such as 3D-nearest neighbour labelling for 

unlabelled points are obvious methods to include, but more sophisticated methods which pre-

segment the 3D point cloud and then propagate labels inside these segments are more 

promising. In a similar vein, the use of spatial reasoning for correcting labels based on object 

height, surface structure and orientation should yield improved results and will help clean up 

undesirable classification artefacts. This sort of prior knowledge can also be integrated into 

the machine learning process itself to further lessen the impact of limited training data (von 

Rueden et al. 2021) and improve results further, as indicated in Figure 2. 

Extensions for post-processing and an introduction of new classes for a more granular 

segmentation will be another issue worth investigating, as bridges consist of more 

components than the ones represented in this work. Especially automated reconstruction will 

benefit from this factor, as the presented image-based segmentation can help inform the 

choice of reconstruction algorithm for each individual building component. After all, with the 

current scarcity in labelled point cloud data for infrastructure objects, the presented approach 

thus represents a key element automated reconstruction workflows. 
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