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Abstract. Computer vision techniques have been introduced recently to assist with visual 
surveillance of jobsite activities. However, multiple reality capture devices are needed to guarantee 
uninterrupted view of key objects. We propose to use deep learning with reinforcement learning 
(RL) to create a self-navigating active vision camera. The trained RL camera gains sufficient 
spatiotemporal knowledge to fix its gaze on an object by dynamically adjusting its position and view 
angle. We use a deep Q-learning network (DQN) to decide whether to move or rotate the camera to 
monitor moving forklifts in a 360-degree video. Results show that the RL camera can find a new 
position and angle with better view of the forklift in 73% of cases, and in the remaining 27% of 
cases, the visibility of the forklift remains unchanged. This indicates the effectiveness of the RL 
agent in locating the object of interest in complex and dynamic real-world settings. 

1. Introduction

In recent years, the number of photos and videos collected daily by various digital capture 
devices has exponentially increased. In 2020 alone, 1.43 trillion digital images were captured 
with more than 91% taken on mobile phones (Canning, 2020). This growth in the volume of 
visual data can be in part attributed to the ubiquity of mobile devices (e.g., smartphones, 
tablets), digital cameras, and unmanned aerial vehicles (UAVs) also known as drones with 
onboard cameras. Visual data is also widely utilized to record construction fieldwork and 
commonly used to document progress reports, complement requests for information (RFIs), 
prepare safety training materials, and litigate claims. Moreover, continuous and unobtrusive 
monitoring of jobsite activities is key to work progress measurement and monitoring safety 
compliance on construction sites. Advancements in computer vision (CV) and artificial 
intelligence (AI) have created new solutions to automate visual surveillance tasks. For example, 
Nath and Behzadan (2020a) applied deep learning (DL) to detect common construction objects 
(e.g., building, equipment, worker) in real-time under diverse visual conditions. Nath et al. 
(2020b) and Fang et al. (2018) proposed DL techniques to monitor workers’ compliance with 
regulations pertaining to the use of personal protective equipment (PPE) (i.e., hard hat, safety 
vest). 

While the uptake of AI integration into construction practices is expected to continue, the next-
generation construction and manufacturing systems will enable humans and AI to collaborate 
in more meaningful ways (NSF, 2020, Autodesk, 2020), as evident by the success of similar 
efforts in other domains such as medicine (McCoy et al., 2020, Tschandl et al., 2020), data 
science (Wang et al., 2019), and business management (Sowa et al., 2021). A key prerequisite 
to the successful completion of complex machine-operated tasks with vision-based AI is the 
ability of the machine to understand the content and context of its surroundings. In a nutshell, 
it is critical for an AI-enabled machine to not only know what objects are located in its 
proximity, but also infer the spatiotemporal relationships between those objects. This crucial 
ability, however, may be hindered for several reasons. In a constantly evolving workspace such 
as a construction site, for example, objects are often on the move and frequently occlude one 
another. In fact, occlusion is a major impediment to the performance of CV algorithms (Hoiem 
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et al., 2011). A previous study, for instance, has found a significant drop in the performance of 
facial recognition systems when the face is partially occluded (Ekenel and Stiefelhagen, 2009). 
Similarly, when an AI algorithm is used by a fixed-viewpoint camera to monitor the workspace 
for safety compliance or progress evaluation, the visual recognition task may yield low accuracy 
because of workers and equipment not being fully visible due to displacement or occlusion. A 
rhetorical solution to this problem is to move the camera (i.e., adjust the viewpoint) or install 
multiple cameras so that objects of interest always appear sufficiently visible. However, due to 
the constantly evolving nature of construction sites and cluttered workspaces, and the need for 
continuous calibration and installation, this approach will translate into a daunting task, 
consuming a significant amount of project resources. 

To address the abovementioned challenge, this study proposes to design an active vision camera 
capable of navigating in the scene and operating autonomously while searching for the optimal 
viewpoint from which occlusion-free scenes can be captured for a given task. To validate the 
performance of the designed methods, an AI-enabled drone camera (with 2 degrees of freedom) 
is trained with reinforcement learning (RL) and tested in an active work environment. 

2. Literature review
DL is a subset of machine learning (ML) and is characterized as a neural network with more 
than three layers (Chollet, 2021). Deep learning models have been successfully trained to 
perform tasks in various fields including but not limited to visual recognition (Krizhevsky et 
al., 2017), natural language processing (Deng and Liu, 2018), and self-driving vehicles (Rao 
and Frtunikj, 2018). RL, on the other hand, expands the traditional boundaries of ML by 
dynamically training a function to take optimal actions given the environment states based on 
continuous feedback to maximize its cumulative reward. RL was first tossed in the early 1980s 
in psychology, to describe a trial-and-error methodology where animals learn and change 
specific behaviors based on their perceived experiences (Busoniu et al., 2010). Similarly, 
modern RL algorithms rely on trial-and-error to train computational agents to make decisions. 
In the late 1990s, the use of RL was expanded to other domains including robotics (Kormushev 
et al., 2013), game playing (Szita, 2012), and industrial process control (Nian et al., 2020). 
In an RL problem, the learner is referred to as agent, and everything in the surrounding, that the 
agent can interact with, is called the environment (Chollet, 2021; Géron, 2019; Sutton and 
Barto, 2018; Szepesvári, 2010). At any given time, the part of the environment that is accessible 
to the agent can be described in a mathematical form that is called the state of the environment. 
The RL agent can perform an action to transition from the current state to the next state of the 
environment. When an agent performs an action, it also receives feedback from the environment 
indicative of the merit of the action in meeting the ultimate learning goal of the problem. This 
feedback is described in a numerical form and referred to as reward (Chollet, 2021; Géron, 
2019; Sutton and Barto, 2018; Szepesvári, 2010). 
With advancements in processing speed and computing power, conventional RL algorithms and 
neural network architectures have been combined to form new Deep RL paradigms (Henderson 
et al., 2018). For example, the AlphaGo algorithm, trained with RL and deep neural networks, 
can win a game against a human player almost 100% of the time (Silver et al., 2016; Silver et 
al., 2017). Other important Deep RL applications include autonomous driving, industry 
automation, and natural language processing (NLP) (Zhang et al., 2018; Nguyen et al., 2020). 
In the civil engineering domain, RL and Deep RL have been primarily leveraged in 
transportation applications including traffic signal control (Lin et al., 2018; Muresan et al., 
2019; Tan et al., 2019; Rasheed et al., 2020; Xu et al., 2020) and speed limit control (Wu et al., 
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2018). For example, Wu et al. (2018) proposed a Deep RL-based model for dynamic control of 
posted speed limits in response to prevailing traffic. They defined variable speed limit (VSL) 
controllers as RL agents and trained them with the deep deterministic policy gradient (DDPG) 
algorithm. For this particular application, the state variables of the RL environment were the 
occupancy rate (reported by loop detectors) of each merge, upstream, and on-ramp lane, while 
the reward function was based on total travel time, crash probability, and vehicular emission. 
Compared to a baseline scenario where no speed control was used, trained agents were able to 
dynamically change vehicle speed limits in each traffic lane based on the traffic flow. Results 
indicated a reduced average travel time (ATT), by nearly 40 seconds, and fewer vehicle 
emergency braking by approximately 6%. 
In another study, Muresan et al. (2019) trained and validated a Deep Q-learning Network 
(DQN) to control the duration of traffic lights. In a nutshell, DQN refers to the use of Q-learning 
algorithm for Deep RL model training (Li, 2017). Since such networks can leverage the 
advantages of deep convolutional neural networks (CNN), they are widely used in CV 
applications (Li, 2017, Jang et al., 2019). Using a simulated intersection with psycho-physical 
cars, Muresan et al. (2019) proceeded to represent the state space by a bit-level matrix that 
described the queue length, signal state, and time of the day. In each second, the RL agent took 
one of the two actions, namely continuing the current phase or commencing the next phase. 
Subsequently, the agent was rewarded or penalized based on the traffic discharge and waiting 
times of the vehicles. The DQN model, trained with 61 days of simulated data, reduced the 
average delay by 32% compared to an actuated controller, and by 37% compared to the fixed 
time control of traffic lights. Mullapudi et al. (2020) explored the use of DQN to enable a 
stormwater system to dynamically adapt its response to a storm by controlling distributed assets 
including valves, gates, and pumps. In a simulated storm environment, the state was described 
by water level and flow sensor readings. At any given time, considering the state, an RL agent 
took the action of opening a valve or turning on a pump. The agent was trained with three 
different reward functions. In the first function, the agent received a positive reward for 
maintaining the outflow below a specific threshold and a negative reward otherwise. In the 
second function, the agent was rewarded for reaching flows that were close to the desired flow 
threshold. Finally, in the third function, the agent received the highest reward for keeping the 
basin empty. It was found that the trained RL agent could immediately observe the impact of 
its control actions and make adjustments in a 4 km2 simulated stormwater network. Yao et al. 
(2020) applied DQN to long-term pavement maintenance planning by representing the state of 
the environment using 42 features that described pavement condition. The action space was 
composed of three features, namely maintenance types, maintenance materials, and distress 
treatment, which considering different combinations, formed a total of 38 actions (i.e., types of 
treatment) including “do nothing”. Furthermore, the reward function was defined as the 
increase or decrease in cost effectiveness after taking each action. Using two case studies, the 
researchers demonstrated the ability of the RL agent to reduce maintenance cost and length of 
the pavement segment that had to be maintained, ultimately leading to better maintenance 
strategies that maximized the long-term cost effectiveness in a 15-years period. Lastly, dos 
Santos et al. (2013) proposed an RL-based method to control and transport structural 
components to designated locations and assemble truss-like 3D structures in a real-world 
constrained but dynamic environment. The state of the environment in this case was composed 
of the status of the components as well as the location of the robot. The RL agent was rewarded 
based on the assembly sequence and the selection of structural elements for each assembly 
point, with an error in assembly leading to a negative reward (i.e., penalty). The developed 
approach reduced the tedious task of developing an assembly plan by allowing robots to 
efficiently assemble and construct multiple 3D structures. 
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Despite past efforts in designing RL or Deep RL algorithms in civil engineering applications, 
successful use cases of these methods in the construction domain are yet to be documented. 
While the majority of previous work has devised simulated environments with controlled 
parameters, the efficacy of DL or Deep RL agents in real-world settings where environment 
parameters are subject to change remain largely unknown and needs to be investigated and 
benchmarked. In particular, jobsite safety and accident prevention is an active area of research 
with real implications (OSHA, 2019). Therefore, the goal of the research presented in this paper 
is to make new strides in enabling the application of Deep RL for safety monitoring in real-
world settings. Particularly, an RL agent with active vision capability is trained to locate and 
monitor forklifts in a dynamic workspace with the ultimate goal of alerting workers of imminent 
contact collisions (e.g., due to the worker and forklift moving too close to each other, or the 
worker moving into the blind spot of the forklift). In addition to safety applications, 
uninterrupted monitoring of equipment can be of value to supply chain management, asset 
management, resource allocation, and productivity assessment. 

3. Methodology 

The environment. In this study, the environment is generated from a warehouse operation 
360°-video (obtained from YouTube under Creative Commons license), which is hereinafter 
referred to as Pictor-360 video. As shown in Figure 1, each frame of this video encompasses a 
360° panoramic view of the warehouse. The resolution of each frame is 5120×1080 from which 
a 420×420 window is cropped to mimic the camera view of an autonomous drone. At each time 
step, the drone can rotate 11.25° to left or right (i.e., rotation along the yaw axis) and 5° upward 
or downward (i.e., rotation along the pitch axis). These actions result in translating the 420×420 
window by 160 pixels along the horizontal direction or by 60 pixels along the vertical direction, 
as shown in Figure 1. In total, there are 32 horizontal positions and 12 vertical positions for 
each of the 699 frames of the video, resulting in 32×12×699=268,416 discrete states of the RL 
environment. 

 

Figure 1: A sample frame of the Pictor-360 video and extracted camera views by taking different 
actions (source video courtesy of Direct Relief under CC BY license). 

Q-learning. In each state, the RL agent can take one of the five actions of moving “up”, 
“down”, “left”, “right”, or “do nothing”. The RL agent would take the action that will ultimately 
lead to the maximum reward. The value of the action in each state is called action value or Q-
value (Géron, 2019, Szepesvári, 2010, Sutton and Barto, 2018), and mathematically denoted as 
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𝑸(𝑺𝒕, 𝒂), where 𝑺𝒕 is the state at time 𝒕 and 𝒂 is the action. Therefore, the agent learns to take 
the action with the maximum Q-value, i.e., 𝐚𝐫𝐠𝐦𝐚𝐱𝒂𝑸(𝑺𝒕, 𝒂). The term Q-learning refers to 
the algorithm for learning Q-values through iteration (Sutton and Barto, 2018). Equation (1) 
expresses the mathematical formulation for Q-learning, where 𝜶 is the learning rate, 𝒓𝒕 is the 
reward received at time 𝒕, and 𝜸 is the discount factor. Through this Equation, the model updates 
the Q-value for an action 𝒂 at state 𝑺𝒕, from 𝑸𝒐𝒍𝒅(𝑺𝒕, 𝒂) to 𝑸𝒏𝒆𝒘(𝑺𝒕, 𝒂). The value of reward 
𝒓𝒕 is defined based on the intersection over frame (IoF), which is defined as the percentage of 
the bounding box area of the forklift that intersects with the viewing frame of the RL camera. 

𝑄)*+(𝑆, , 𝑎) = 𝑄-./(𝑆, , 𝑎) + 𝛼[𝑟, + 𝛾max01𝑄(𝑆,23, 𝑎′) − 𝑄-./(𝑆, , 𝑎)]	 (1) 

3.1 Model Architecture 

In this experiment, we propose to use a DQN model to predict the Q-values corresponding to 
the five actions named above (i.e., “up”, “down”, “left”, “right”, “do nothing”). For this 
purpose, the 420×420 RGB image viewed by the RL camera, is resized to a 224×224 resolution 
using bicubic interpolation (Shan et al., 2008). As shown in Figure 2, a VGG-16-based model 
is utilized to extract features. The choice of VGG-16 is due to its high performance in 
classifying numerous real-world objects (Simonyan and Zisserman, 2014). The VGG-16 
network is amended with three convolution blocks, each consisting of a convolution with 
exponential linear unit (ELU) activation function, followed by a max-pooling layer. Features 
are then flattened and connected with a dense layer with 64 nodes. The final output layer 
consists of 5 nodes to output individual Q-values corresponding to the five actions. 

 

Figure 2: The architecture of the DQN model adopted for the Pictor-360 experiment. 

3.2 Model Training 
A well-known dilemma in training an RL agent is the exploration vs. exploitation problem. The 
goal of exploration is to allow the RL agent to take random actions to visit new states that were 
not previously traversed. However, exploitation describes a learning process where the RL 
agent takes the best action (a.k.a., greedy action) based on current knowledge to reinforce its 
learning (Géron, 2019, Sutton and Barto, 2018). In this paper, we adopt 𝜀-greedy policy where 
at each state, the RL agent will explore a randomly selected action with probability 𝜀 (0 ≤ 𝜀 ≤
1), and exploit this greedy action with probability 1 − 𝜀 (Géron, 2019; Sutton and Barto, 2018). 
Particularly, we start with a high 𝜀 (𝜀456 = 1.0) to encourage the agent to explore. However, 
as the agent becomes mature through training, we linearly decay the value of 𝜀 to reach a 
minimum value (𝜀478 = 0.1) so to focus the attention of the agent on exploiting its previously 
learned knowledge. The training stops at that minimum value to avoid overfitting. 
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In any given time step, the experience of the RL agent is composed of the following elements: 
current state, action taken, reward received, next state, and a Boolean value (i.e., true or false) 
indicating if the next state is the terminal state. To expedite training, in any one iteration, the 
agent is trained on multiple experiences (a.k.a., batch of experience) simultaneously rather than 
on a single experience (Schaul et al., 2015; Géron, 2019; Sutton and Barto, 2018). To train the 
model more effectively, we adopt a scheme called experience replay (Schaul et al., 2015; 
Géron, 2019; Sutton and Barto, 2018) where a fixed number of past experiences are stored in 
the RL agent’s memory. In each iteration, several sample experiences are randomly drawn from 
the stored experiences and a sample batch of experience will be generated to train the RL agent. 
Particularly, we use a batch of size 200 and a deque data structure of 400,000 capacity to store 
the experiences. Also, we do not train the model during the first 2,000 iterations (a.k.a., warm-
up period) and use these iterations only to gather enough experiences to fill up the deque 
memory. A complete list of the training hypermeters is presented in Table 1. 

Table 1: Hyperparameters for the Pictor-360 experiment. 

Category Hyperparameter Value 

Environment Number of states 268,416 

Number of actions 5 

Image resolution 420×420 

# Time steps in each episode 100 

Reward Step reward IoF 

Discount factor, 𝛾 0.995 

Policy 𝜀!"#  1 

𝜀!$%  0.1 

𝑛$&'("&$)%  10,000,000 

Experience  Deque memory size 400,000 

Batch size 200 

Training Number of iterations 10,000,000 

Warm-up period 2,000 steps 

Target model update interval 2,000 steps 

Optimizer Adam 

Learning rate 0.00001 

4. Results and Discussion 

Figure 3 shows the average reward received by the RL agent in 1,000-episode intervals. It can 
be seen that the model achieves higher rewards over time. During the test episode, the RL agent 
starts from 1,024 randomly selected positions to find better visibility of the forklift. The IoF at 
the very first frame is called initial IoF (𝐼9) while the maximum IoF achieved during one test 
episode is called maximum IoF (𝐼:). Figure 4(a) displays the 𝐼9 versus 𝐼:. In this Figure, the 
45° equality line represents the positions where 𝐼: = 𝐼9, i.e., the IoF of the forklift remains 
unchanged. In this experiment, all (100%) of the points are on or above the equality line (i.e., 
𝐼: ≥ 𝐼9), and 73% of the points are above the equality line (i.e., 𝐼: > 𝐼9). This finding implies 
that in 73% of the times the RL agent has found a position from where the forklift was more 
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visible, indicating the effectiveness of the RL agent in successfully locating the object of 
interest in complex and dynamic real-world settings. It is worth noting that in the remaining 
27% of cases, the visibility of the forklift was preserved at the same level, and in no cases, the 
movement of the RL agent resulted in lower visibility. Figure 4(b) exhibits the percentage of 
times that the RL agent was able to find a better position from different initial IoFs. The Figure 
shows that when the initial IoF is low (e.g., 0.0-0.1), the RL agent can improve visibility in 
65% of the times. However, if the initial IoF is higher (e.g., > 0.1), the RL agent performs better 
in improving visibility (i.e., 80% of the times or more). 

 
Figure 3: Average reward received in 1,000-episode intervals during training. 

 

(a) 

 

(b) 

Figure 4: Improvement in visibility for finding forklifts in the warehouse, for various initial positions 
of the camera – (a) initial vs. maximum visibility, and (b) % improvement for various initial 

visibilities. 

5. Summary and Conclusion 
Continuous and unobtrusive monitoring of jobsite activities is critical for safety monitoring, 
supply chain management, asset management, resource allocation, and productivity assessment. 
In this paper, we introduced a self-navigating camera capable of finding a moving object of 
interest (i.e., forklift) by autonomously browsing a real-world warehouse environment. We 
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trained a DQN with RL to provide situational awareness to the camera. Particularly, the RL 
agent was trained to take one of the five actions of moving “up”, “down”, “left”, “right”, or “do 
nothing” to navigate through the environment. The value of reward was determined based on 
the IoF between the bounding box of the forklift and the viewing window of the RL camera. 
The model was validated with a 360-degree video of a real-world warehouse operation. Results 
indicated that starting from a random initial position, the RL agent was able to successfully find 
a moving forklift by autonomously browsing the warehouse environment, and in 73% of the 
times, improve the visibility of the tracked object. This, for example, exceeds the 71% true 
positive rate in detecting objects in still images, as reported by Caicedo and Lazebnik (2015). 
One of the major challenges in conducting RL experiments in real-world settings is to evaluate 
the models thoroughly and safely without compromising the safety of human participants or 
causing unwanted damage to physical assets. Therefore, a potential direction of future work 
will be to conduct experiments in controlled real-world environments as a first step toward 
improving the performance of RL models in a wide variety of applications such as construction 
safety, warehouse operations, smart spatiotemporal surveillance, and post-disaster search and 
rescue operations. Another potential implementation challenge is the inference time which can 
undermine the usefulness of the developed RL models for real-time decision-making. A 
potential way to reduce inference time is to perform neural network pruning by reducing 
redundant layers (Pi et al., 2021). 
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