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Abstract. The building design process requires architects to consider interdisciplinary knowledge 

and data support based on the vision of sustainable development. In this context, we develop a 

process-integrated, dynamic machine assistance to support the decision-making process for building 

designers in the early design phases. In this paper, we present 1. a framework for integrating data-

driven models with knowledge-based methods that provide multi-objective assistance considering 

energy performance and embodied environmental impact; 2. the alignment of the methods in the 

design process and respective decision situations to disclose the potential situated design space 

including its uncertainty ranges as well as detailed strategy suggestions. A case of real-world 

building data serves to illustrate and validate the approach. The research presented in this paper is 

part of research aiming at assistance by augmented intelligence for sustainable building design 

decision support. 

1. Introduction

The vision of sustainable development already demands consideration in the early building 

design phases. To address this challenge, various design support tools have been developed to 

provide information in different aspects: building performance simulation (BPS) tools such as 

EnergyPlus, Sefaira (Østergård, Jensen & Maagaard, 2016), and data-driven machine learning 

methods (Seyedzadeh, Rahimian, Glesk & Roper, 2018) for energy performance evaluation, 

etc. Embodied emissions are accounted for by BIM-based life cycle assessment (LCA) tools, 

such as (CAALA, 2019) and (One Click LCA® software, 2022). While in fact, these tools are 

implemented based on different principles, requiring building designers to access 

interdisciplinary knowledge and data to estimate building performance. This creates the design 

space in the early design phases (Østergård, Jensen & Maagaard, 2017) and involves 

intertangled interdependencies and complexity, which surpasses the capacity of conventional 

design methods. Although the digitalization trend supports the integration of different 

methodologies, both data-driven and domain knowledge-based, up to now, the synergy of both 

methodologies is not integrated into design processes at different development levels. 

For building energy performance, energy consumption information is relatively easily 

accessible via smart meter measurements with a particular set of building characteristics 

representation, such as building geometric features, activity behavior, material properties, etc. 

(Hensen & Lamberts, 2019). A diverse dataset is available via large-scale records in the real 

world from existing buildings or generated by validated simulation under first-principles 

methods. Such a dataset is suitable for data-driven approaches, or more specifically, machine 

learning approaches for supervised learning to capture the implicit relationship between inputs 

and outputs. The trained model (after learning from the dataset) is fit for a certain range of 

interpolation or extrapolation for new cases, which brings the model the advantage of 

flexibility. The effectiveness and accuracy are well-proved in many domains (Bélisle, Huang, 

Le Digabel & Aimen E. Gheribi, 2015; Thessen, 2016; Jia & Ma, 2017). Comprehensive 

reviews report the wide acceptance of data-driven approaches in our domain in the aspect of 
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energy performance (heating, cooling, lighting, etc.) and consumption prediction (Westermann 

& Evins, 2019; Amasyali & El-Gohary, 2018).  

Knowledge-based methods required in this study for LCA, are involved in the sustainable 

building design process (Schneider-Marin & Lang, 2020; Hollberg, Tschetwertak, Schneider & 

Habert, 2018). They widely exist in the general engineering process for solving specific 

problems. Related first-principles tools require detailed information input that is typically not 

accessible at early design phases or suggests a level of precision that might obscure the potential 

outcomes of various construction types. The shared characteristics of these problems are: The 

data acquisition is relatively implicit; The calculation or assessment process requires induction, 

reasoning, and referring to other background knowledge with limited information. In this 

context, knowledge representations from experts are inevitably more effective and 

interpretable, which conducts the gap between knowledge-based and data-driven approaches in 

the general engineering domain and raises the research need for method integration. In most 

current design processes embodied emissions are evaluated at a later phase when most 

construction and material decisions have already been made. The prediction of embodied 

emissions in early design phases is subject to significant uncertainties due to a lack of detailed 

information (Schneider-Marin, Harter, Tkachuk & Lang, 2020; Harter, Singh, Schneider-

Marin, Lang & Geyer, 2020). Bridging the gap between the lack of information in early design 

phases and the LCA methodology to predict embodied emissions has been identified as a 

significant research gap (Theißen, Höper, Wimmer, Zibell, Meins-Becker, Rössig, Goitowski 

& Lambertz, 2020). 

In this study, we propose a general framework to integrate both data-driven and knowledge-

based approaches. We intend to investigate the path of integration toward multi-objective 

support applied to the sustainable building design domain. In this case, both energy 

performance and embodied environmental impact are selected as objectives. The novelty of this 

framework is as follows: 

• We propose an integrative modelling approach: By introducing decomposition

knowledge from design, LCA and BPS simultaneously into the data generation process

for data-driven model training, while both approaches share the same representation of

building modelling.

• The approach combines the advantages of the flexibility and interpretability from both

approaches with the shared information for supporting well-informed decision-making.

• The combined information of building environmental impact and energy performance

evaluation makes trade-off analysis in the design space as an assistance for the early

design phase accessible.

The remaining sections of the paper are organized as follows: Section 2 introduces example 

methodologies implemented in the framework in this study; Section 3 sets up a real-world case 

study in the early design phase scenario; Section 4 discusses the results, and Section 5 concludes 

the paper.  

2. Methodologies for LCA and energy performance evaluation integration

The general illustration of the integrative evaluation process is presented schematically in 

Figure 1. In this process, buildings are represented by a digital model exhibiting parametric 

features based on indicators. We exclusively focus on two indicators: energy performance 

(heating load / total energy consumption) and embodied environmental impact (global warming 

potentials, GWP). By integrating approaches including data-driven (Chen & Geyer, 2022) and 
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knowledge-based methods (Schneider-Marin, Tanja Stocker, Oliver Abele, Johannes Staudt, 

Manuel Margesin & Werner Lang) for prediction, uncertainty evaluation, and model 

interpretation, we create a shared feature list for implementing both approaches simultaneously 

to align with the design scenario. Eventually, indicators, uncertainties information, and model 

explanations are integrated to provide valuable insights for designers to conduct answers for 

“what-if” questions. This process of providing users with possible “assumptions” with regard 

to defined features as a potential design space with intervention consequences is called machine 

assistance (Chen & Geyer, 2022). 

 

Figure 1: Performance evaluation: different approaches under the machine assistance framework 

2.1 Data-driven modelling for operational energy 

For the energy performance, we used a synthetic dataset generated by parametric BPS to train 

machine learning models to capture relationships between building features and heating load/ 

total energy consumption. Since we applied the framework to the building early design phase 

scenario, one characteristic should be necessarily included: the evaluation of information 

uncertainties. To represent this process, a probabilistic, tree-based surrogate model – NGBoost 

(Duan, Avati, Ding, Thai, Basu, Ng & Schuler, 2020) is chosen to fulfill the requirements 

mentioned above: Instead of generating output as a point prediction, the design of the algorithm 

involves the uncertainties quantification process, which provides insights into the output range 

within the set of feature input descriptions.  

Furthermore, we consider the model explainability of the data-driven model for informed 

decision support. An interpretation method: SHAP (Lundberg & Lee, 2017), is integrated to 

analyze the feature importance and assumption consequences. Eventually, the combination 

improves the reusability of data-driven models by generalization and trustworthiness by 

explainability (Geyer, Singh & Chen, 2021). The result with the training process explanation is 

shown in section 3.3. For further parametric fine-tune detail and extension material, we refer to 

(Duan et al., 2020; Chen & Geyer, 2022). 

2.2 Knowledge-based LCA evaluation methods integration 

For the embodied emissions (GWP), we rely on a knowledge-based method where a database 

of material properties is enriched via expert input and knowledge regarding construction types 

and physical properties, such as thermal properties, is added to calculate results based on simple 

geometric models (Schneider-Marin, Tanja Stocker, Oliver Abele, Johannes Staudt, Manuel 

Margesin & Werner Lang). The database is fed with a multitude of options possible at an early 
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design stage resulting in a range of outcomes. Additional modules can be integrated for cost, 

maintenance, repair, replacement, end-of-life, and environmental costs. This method enables 

users without LCA expertise to make decisions in early design phases based on reliable primary 

data collected in a knowledge-based decomposed LCA database (“Knowledge Database” on 

the basis of the publicly available database Ökobaudat (Bundesministerium des Innern, für Bau 

und Heimat, 2022)). This material database is enriched with expert knowledge regarding 

different construction types, including material composition and quantities of typical building 

components. Their quantities are determined by external requirements, such as energy standards 

or structural properties.  

In this paper, we investigate different isolation standard properties as one part of material 

functionality in the case study. Materials are then classified according to their applicability 

based on the location of material and the functionality it fulfills. To organize the building 

elements according to their respective locations, we refer to the cost groups (Kostengruppen, 

KG) based on the German standard DIN 276 (Siemon, Speckhals & Siemon, 2021). In this 

study, we only consider KG 300 (building structure and finishes). The resulting building part 

properties are combined with geometric data extracted from digital models available as IFC 

files to predict the embodied emissions for a complete building. 

3. Case study  

3.1.  Design scenarios 

To test the described method, we used a case study of a real-world building design of a mixed-

use building. The described project is called the Building.Lab on a tech campus in Regensburg, 

Germany (see Figure 2). The function of this 2308 sqm building is office and seminar use as 

well as housing. It consists of 4 above-ground stories and one underground level with a concrete 

skeleton structure. As we are studying an early design phase, the precise façade composition 

has not been determined yet. The housing areas are located in the south, and their balconies also 

function as passive solar protection. The larger seminar rooms are oriented to the north and can 

therefore be well illuminated by a high percentage of window area while avoiding overheating. 

The building is arranged in a U-shape around an atrium that extends across all stories. 

 

Figure 2: Building.Lab conceptual & BIM model illustration; Source: Lang Hugger Rampp GmbH / 

Bayerischer Bauindustrieverband e.V. 

The case study examines the building design for three different window-to-wall ratios (WWR 

= 0.2, 0.4, 0.6), three different isolation standards (base, medium, high), and two shading 

options (External-Shading, Low-HGC-Value). Table 1 shows areas of the various building 

components for the real-world variant with a WWR of 0.4. 
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Table 1: Areas of building components (window-to-wall ratio = 0.4) 

Cost group Subdivision Description Area 

KG_320 - Foundation 966 m² 

KG_330 -     

 KG_330 A Exterior wall underground 416 m² 

 KG_330 B/C Exterior wall above ground (load bearing & non-load bearing) 901 m² 

KG_334 - Windows 600 m² 

KG_340 -     

 KG_340 A Internal wall (load bearing) 1088 m² 

 KG_340 B Internal wall (non-load bearing) 1478 m² 

KG_350 - Ceilings/Floors 1945 m² 

KG_360 - Roof (Building) 583 m² 

  Roof (Garage) 369 m² 

3.2.  Data description 

To generate data that allow well-generalizing models, we created a dataset based on the target 

scenario for the data-driven and knowledge-based performance evaluation. A parametric model 

for a generic H-shape office building has been developed that covers a wide configuration 

variety of building components and zones. The number of floors was set to four with an 

additional basement. Besides the basement, all floors have the same floor plan scheme. The 

modelling platform was Grasshopper (Robert McNeel & Associates, 2022). A high-level 

simulation interface for EnergyPlus, Honeybee (Ladybug Tools | Honeybee) was chosen. Figure 

3 presents an illustrative sample.  

 

Figure 3: Floor plan scheme of generic H-shape office building and samples 

For the dataset generation, the varied parameter list is shown in Table 2. 

Table 2: List of input features 

Parameters Description  

Standard of U-Values Base, Medium, High 

Façade Horizontal-Windows (WWR: 0.19-0.30), Vertical-Windows (WWR: 0.20-

0.46), Ribbon-Windows (WWR: 0.55-0.68)1 
Shading External-Shading, Low-HGC-Value 

Courtyard width Narrow – 7, Wide – 13 [number of raster segments] 

(17.5, 20, 22, 24.5, 30, 34, 38, 42) [m] 
Floor height 3.4 [m] 

Orientation 0, 30, 60, 90 [°] 

Grid length 2.5, 2.8, 3.1, 3.5 [m] 
(Floor areas: 1150, 1400, 1800, 2250, 2700) [m²] 

1 window-to-wall ratio 

Besides these parameters, every combination, i.e., the full factorial, has been simulated, which 

resulted in 1152 simulated samples. Construction and HVAC system were kept constant. For 
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the construction, an external thermal insulation composite system (ETICS) was modelled with 

a massive generic material with a heat capacity of 1100 J/kg·K and 900 J/kg·K for the slabs. 

Furthermore, we defined three sets of u-values which would scale the thickness of the thermal 

layer accordingly. In this context, we selected three well-accepted energy standards in Germany 

and referred to u-values requirements as three isolation categories (base, medium, and high), as 

shown in Table 3.  

Table 3: U-value requirements under different isolation standards [W/m²K.] 

Standard of U-Values 
Base: GEG (2020 German 

Energy Act for Buildings) 

Medium: NZEB (Net 

Zero Energy Building) 

High: Passive 

House 

- Base plate 0.2625 0.206 0.15 

- Roof 0.15 0.135 0.12 

- Exterior wall, bearing, 

above ground 
0.21 0.18 0.15 

- Exterior wall, bearing, 

under ground 
0.2625 0.206 0.15 

- Window 0.975 0.888 0.8 

The HVAC system is modelled with an ideal load air system template from EnergyPlus as it 

provides good comparability of loads at an early stage of the design. For zone programs, the 

open office area was modelled with 0.057 people/m² and conference areas with 0.053 

people/m². As for shading mechanism, either windows with a solar-heat-gain-coefficient 

(SHGC) of 0.5 and an additional shading layer with the reflectance of 0.5, and transmission of 

0.4 will be activated as soon as zone temperatures rise above 25°C or windows with a low 

SHGC of 0.3 have been modelled.  

3.3.  Model training  

The surrogate model (NGBoost) consists of a set of Classification and Regression Trees 

(CART), which requires the input features in the form of integer or float (Loh, 2011). Only 

semantic features in the dataset require label-encoding by transferring descriptions into 

numerical categories. In this context, three features require feature engineering:  

IsolationStandard, Façade, and Shading.  

The training process randomly splits the dataset into training (80%) and test (20%) sets. We set 

input features as in Table 2 with the prediction target of building heating load and total energy 

consumption. Since the dataset is relatively simple, models are trained by the default setting of 

hyperparameters (Schuler, 2020). 

For the performance evaluation, we selected the most typical metrics in the BPS domain (Vogt, 

Remmen, Lauster, Fuchs & Müller, 2018) as well as in machine learning regression prediction 

tasks: Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), 

Normalized Root Mean Square Error (NRMSE) and R-squared (R2). Table 4 presents the model 

performance based on the test set. 

Table 4: Accuracy metrics of model result 
 

RMSE MAPE NRMSE R2 

Heating Load 0.3246 0.2529% 0.8137 0.9986 

Total Energy Consumption 0.4450 0.2091% 1.0868 0.9971 

The result shows a decent performance for the data-driven approach, the average errors of both 

models are lower than 1%. More specifically, we see that the performance of the heating load 

model is better than the total energy consumption prediction. The reason behind it is intuitive: 
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total energy consumption depends on more implicit factors, e.g., cooling, equipment, and 

lighting load. To sum up, the surrogate model based on feature representation in Table 2 is 

capable to capture the building energy performance accurately. 

Additionally, NGBoost as the surrogate model provides the output as a set of Gaussian 

distribution parameters: loc and scale, which stands for mean (point prediction) and standard 

deviation (uncertainty range), respectively. Figure 4 and Figure 5 illustrate how different input 

features impact point output and uncertainty range in the task of heating load and total energy 

consumption prediction. 

  
Figure 4: Feature importance for heating load prediction 

  

Figure 5: Feature importance for total energy consumption prediction 

For heating load prediction, Figure 4 shows that the design of shading, isolation standard 

choices, and floor height affects the point prediction (mean value of the output) the most, 

followed by building geometry, especially the internal wall area. For output uncertainties, 

options of shading, façade, and grid length have the most effects in the uncertainty range 

(standard deviation of the output). Similar feature importance is also observed for the task of 

total energy consumption prediction (Figure 5) with regard to the question, of which shading 

option and building façade features should gain the most attention in consideration of building 

energy performance.  

3.4.  Results 

For the building operational energy, the prediction presents regular patterns aligned with 

isolation standard and WWR iterations, as shown in Figure 6: The heating load varies between 

80 and 115 kWh/m2 per year, which increases with higher WWRs and decreases with higher 

isolation standards. The same patterns are observed in total energy consumption as well. The 

consumption increases with higher WWR with the option of low-HGC-value strengthening this 

trend. Compared with heating load, it contains more factors: Intuitively, we observed that with 

the higher isolation standard, external shading, and lower WWR, the total energy consumption 

drops accordingly.  
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Figure 6: Heating load and total energy consumption prediction under different isolation standard, 

window-to-wall ratio (WWR), and shading combinations 

Some interesting quantitative insights are worth mentioning from Figure 6: In heating load 

prediction, the range of energy consumption is partially overlapped between adjacent insulation 

standards. Compared to the isolation standard difference, the impact of different WWRs is 

relatively small. The reason is the assumption of state-of-the-art glazing and shading that allows 

windows to level out higher heat transfer losses by solar gains without overheating in summer. 

Such information provides designers with valuable benchmarks and alternative scenarios, 

enabling them to involve other factors (cost, CO2 emissions, etc.) for further decision support. 

For the embodied emissions, the predictions show that the GWP increases for higher isolation 

standards as shown in Figure 7. The increase in GWP related to improved isolation standards 

is relatively small compared to the overall embodied emissions. For the given concrete 

construction type, the predictions for three WWRs show that the GWP decreases with the 

increasing ratio of windows with the option of low-HGC-value.  

 

Figure 7: Embodied emissions (GWP) prediction under different isolation standard, window-to-wall 

ratio (WWR), and shading combinations 

The simultaneous presentation of operational energy and embodied emissions predictions 

allows designers to evaluate parameters such as isolation standards, WWR, and shading options 

at early stages and adjust their design accordingly for further development and trade-off 

analysis. Based on these predictions, we recognized that the increase of embodied emissions 
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for a higher isolation standard is comparatively small compared to the impact of emissions 

resulting from operational energy.  

3. Discussion 

In this paper, we explored the integration path of data-driven methods and knowledge-based 

methods for building design machine assistance. The key pillar of the integration depends on 

the connection between the available data description (features) and the knowledge-based 

methods’ representation.  

From the result of the case study, we generated alternative design scenarios in different isolation 

standards & window-to-wall ratio (WWR) combinations with shading options and evaluated 

energy performance and embodied impact. This combined information and required data are 

accessible in the early design phase. Both approaches contain the potential to further enhance 

the ability of general assistance scenarios in future research: For data-driven methods, 

involving, e.g., a component-based modelling process (Geyer et al. 2018) or hybrid-model 

approach (Chen, Guo & Geyer, 2021) would provide further insight into the energy 

performance at the building component level with better modelling flexibility and 

interpretability. For knowledge-based methods, based on the trade-off analysis, indicators to 

represent building cost factors would enhance the machine assistance practicability. 

To explore the path of data-driven method integration into domain knowledge-based approach 

in general scenarios, it is vital to invest efforts in aligning representations to bridge exposed 

features from digital models and knowledge. For example, to provide designers with useable 

feedback regarding the overall life cycle impact of the design decisions taken, the operational 

energy results would have to be converted to GWP based on realistic primary energy scenarios. 

In this context, the integration between data-driven methods and knowledge-based methods is 

not only necessary in the feature representation process, but also vital for output interpretations.  

Finally, although we particularly checked the availability of data during the early design phase 

to ensure practicality, the evaluation of information utility has not been addressed, especially 

when generated suggestions are inter-disciplinary. From this perspective, the investigation of 

the designers’ feedback based on the integrated decision support is, in our opinion, worth further 

research. A related study on user effect has been carried out for the component-based prediction 

of operational energy planned to be repeated, including the new methods (Singh, Deb & Geyer, 

2022). 

4. Conclusion 

This study presents a step toward a machine assistance framework for the building design 

process that achieves multi-objective decision support. This framework serves as augmented 

intelligence to accelerate the digitalization process of user decision-making assistance in 

domains that require not only data-driven support but also knowledge-based analysis, such as 

early building design.  The structure organized by components and modules allows for the 

generalization of data-driven models aligned to domain knowledge. Moreover, this approach 

forms a basis for data and knowledge integration from which the design process will immensely 

benefit. The integration allows for involving operational energy and embodied environmental 

impact at an early design phase and raises the reconsideration of the design process toward the 

objective of sustainable development in our domain. 
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