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Abstract. Imbalance between consumption and supply in grids causes a challenge to electricity
utilities, leads to grid instability and results in failures of the grid. Traditionally, the demand for
power is satisfied by increasing supply which is costly and against environmental regulations.
Instead, demand response strategy harmonises the demand at the customer side e.g the utilities
offer rates to customers to reduce their consumption at specific times of the day. While most
research focuses on finding a strategy on just one side in this work, we approach it with an
end-to-end reinforcement learning based methodology such that optimal strategies for parties are
achieved with training on historical records. Agents are trained for individual customers and the
electricity utilities for finding the optimal policies for the consumption, hence manifesting a
multi-agents and multi-tiers approach. The new method achieves the full potential of a proactive
framework for implementing the demand response strategy.

1. Introduction

Residential districts in 2019 represented 26% of final energy consumption in the EU1 and
compensating on the electrical grid seems to be possible by new innovations in renewable
energy. As well, energy storages can help align peaks of renewable energy generation with
peaks of consumption. However, their integration and adoption into the grid infrastructure
takes time and requires extensive investigations regarding the reliability and usability.
Demand response (DR) strategy aims to create stability by making the demand side flexible
and shifts peak demand by providing customers with economical offers. But forcing
customers to delay the usage of home appliances, undesired temperature set-points and the
effort needed for acquiring information about prices and the consumption patterns create
discomfort and dissatisfaction. Reinforcement learning (RL) has been successfully adopted in
energy resource management such as electric vehicles, heating ventilation and air
conditioning (HVAC) systems and storage management. The challenge in front of DR strategy
is about its ability to minimise customer discomfort and integrate their feedback. Model-free
RL seems to be the potential methodology very adaptable to its environment and can directly
integrate human feedback into the decision making with least user intervention. Most of the
research studies that considered human comfort focus on single-agent systems with
demand-independent prices Vazquez and Nagy (2019). Moreover, modelling the electricity
prices as demand-dependent variables might lead to the risk of shifting the consumption peak
instead of shaving it.

We propose IM2DR, a system based on RL to coordinate multi-agent systems participating in
the DR program with demand-dependent prices. As discussion concerning implementing a
DR program in the EU begins, data shows that the peak reduction from DR programs in the
US was only 6.6% of the peak demand in 2015. Vazquez and Nagy (2019) argued that the
reason is that electricity is a commodity whose value is way higher than its price for the
customers. Electricity customers generally will not give up their comfort for a lower bill.

1 eurostat: Statistics Explained
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Therefore, the implementation of DR strategy depends on offering more convenient
economical savings than discomfort of customers. Moreover, the framework is required to be
both automated and able to minimise user discomfort as much as possible. As Vazquez and
Nagy (2019) also provided an overview of different scenarios for implementing the DR
strategy with RL, districts connected to a grid require some sort of dynamic coordination.
IM2DR introduces an end-to-end solution, where the regulatory-tier (Service Providers agent)
coordinates the automation-tier (CUstomer multi-agents). Assuming that the market is elastic,
customers receive their hourly rate from the regulatory-tier and the automation-tier schedule
the appliances. As a consequence, the demand curves are flattened and the consumption peaks
are shaped during high demand time of the day. The CityLearn simulation environment,
empowered by EnergyPlus, provided a framework to implement the method and train the
agents on historical records. We achieved the optimal policies for the individual agents by
decoupling the training procedure and using the Soft Actor Critic algorithm Haarnoja (2018).
To our knowledge this is the first study that models the supply and demand together.

2. Literature Review

Vazquez and Nagy (2019) discussed that a group of districts where the consumption
independently is controlled under demand-independent prices is not a multi-agent approach.
Moreover, they explained that if considering demand-dependent prices, the actions of any
district has impacts on the price of electricity, and as the decisions taken by others. Vazquez
and Detjeen (2019) demonstrated a multi-agent RL schema for load shaping in a model-free
and decentralised manner where the price of electricity increases linearly with the total
electricity demand of all the districts. The multi-agent framework was improved by
introducing MARLISA that uses a reward with individual and collective goals, and the agents
predict their own future consumption and share this with each other following a
leader-follower framework Vazquez and Henze (2020). It is also unclear how RL can control
a multitude of energy systems in a scalable coordinated way. Hence, Park (2019) presented
LightLearn, an automating system for district lighting and HVACLearn for HVAC system
Park (2020). GridLearn considers grid into the account Pigott (2021).

Lu (2019) proposes a novel incentive based demand response algorithm for smart grid
systems with RL, aiming to help the electricity utilities to purchase energy resources from its
customers to balance energy fluctuations. Game theoretic methods and simulations based on
RL are used to analyse electricity market equilibrium as well. Liang (2020) adopts a deep
deterministic policy gradient algorithm to model the bidding strategies of utilities companies.
However all of these studies just modelled the electricity market and none of them took
optimization over demand (finding an optimal strategy for scheduling the appliances) into
consideration.

CityLearn is an open source OpenAI Gym environment for testing RL for energy optimization
Vazquez and Dey (2020). Its objective is to standardise the evaluation of RL agents such that
algorithms can be easily compared. CityLearn allows the easy implementation of agents to
change their demand aggregation by controlling storages of energy. Currently, CityLearn
allows controlling the storage of domestic hot water, and chilled water, for sensible cooling
and dehumidification. CityLearn also has models of air-to-water heat pumps, electric heaters,
solar photovoltaic arrays, and the pre-computed energy loads of the districts from EnergyPlus
simulations Crawley (2000) which include space cooling, dehumidification, appliances,
domestic hot water, and solar generation. Refer to the CityLearn challenge Nagy (2021) for
further information.
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3. Problem Formulation

Modelling of the DR strategy and automating the customers electricity consumption requires
understanding how different players interact in the market. Figure 1 shows an overview of the
electricity market. Such, the service provider works as a middleman in the wholesale market
with grid operators and in the retail market with customers. Therefore, the role of service
provider can be represented as an agent, namely the SP agent which regulates the
consumption of automation-tier, where CU multi-agents operate. CU multi-agents automate
the energy consumption of individual districts by scheduling the appliances and storages.

Figure 1: Left, the schematic of the electricity market. Right, demonstration of the system
methodology.

DR strategy is an optimal policy in which the SP agent proactively coordinates the
consumption of districts by offering some type of discounts in the form of incentive rates for
convincing them to reduce the consumption and CU multi-agents schedule the entire
appliances in order to satisfy the residents comfort and assuring the overall consumption is
optimised using storages and domestic power generation. Lu (2019) introduced an RL based
method for modelling the retail market and we will follow a similar approach in this paper.
The parameters for modelling the retail market and implementing the incentive-based DR
strategy is listed in Table 1. CU multi-agents are modelled in CityLearn as it is described in
Vazquez and Dey (2020). The parameters for the simulation have been chosen in such a way
that each district has a different attitude in the DR program.

3.1 Service Provider Model

The SP agent offer such that the costumer at time needs to drop the curtailableλ
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3.2 Customer’s Regulatory-tier Model

The customers aim to maximise their outcome from the trade with the SP agent by finding a
good balance between the gain from the incentive package and discomfort by:φ

𝑛,ℎ
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𝑚𝑎𝑥
ℎ=1

𝐻

∑ (ρ. λ
𝑛,ℎ

. ∆𝐸
𝑛,ℎ

𝑐𝑢𝑟𝑡 − (1 − ρ). φ
𝑛,ℎ

(∆𝐸
𝑛,ℎ

𝑐𝑢𝑟𝑡))

where /2 .φ
𝑛,ℎ

(∆𝐸
𝑛,ℎ

𝑐𝑢𝑟𝑡) =  µ
𝑛

(∆𝐸
𝑛,ℎ

𝑐𝑢𝑟𝑡)
2

+ ω
𝑛
∆𝐸

𝑛,ℎ
𝑐𝑢𝑟𝑡

The consumption drops are calculated as follows defined with a set of parameters
characterising the customers and the market.
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3.3 Objective Function for Regulatory-tier

The SP agent needs to find an optimal policy such that it maximises the gains of both sides of
the trade by:
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3.4 Objective Function for Multi-agents Automation-tier

CU multi-agents minimise the consumption but this time integrating the SP agent
contributions by introducing and that may reflect, e.g., the∆𝐸
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While CU single-agents schedule the home appliances by minimising the very first term. The
action and state space are defined in CityLearn with the simulation episode of a year.

4. Reinforcement Learning for Achieving the Optimal Policy

Showing that each tier’s contribution in the electricity market is a Markov Decision Process
(MDP) and therefore can be modelled by RL methodology has been discussed by Lu (2019)
and Vazquez and Dey (2020) in detail. Therefore, the optimal policy for the market consists of
a policy for the regulatory-tier (SP agent) which implements the DR strategy as well as
individual optimal policies of the CU agents that minimise the consumption and are trained
against the SP agent’s policy. Because of the decoupled nature of the problem, we can obtain
the policies for the SP agent and the CU agents independently by training on the historical
records using an off-policy algorithm like Soft Actor Critic (SAC). SAC optimises a
stochastic policy to maximise a trade-off between expected return and entropy, a measure of
randomness in the policy Haarnoja (2018).
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4.1 Multi-tier Training Procedure

In order to train the agents from different tiers, we take advantage of the decoupled nature of
the problem such that the SP agent is trained with an episode of a month (the SP agent is
aware of which month it is) on the historical consumption records from the districts in which
CU single-agents schedule the consumption. Training single-agents is carried out in the
CityLearn environment as well. CU multi-agents are later trained by integrating
already-trained SP agent in the training loop such that any district participating in the DR
program needs to be aligned with the policy of the SP agent as depicted in Figure 1. We
remark that the entire training and integration of the SP agent is carried on curtailable
consumption.

Table 1: List of parameters for modelling the SP agent.

Parameters Definition

, , and𝑝
ℎ

λ
𝑛,ℎ

λ
𝑚𝑖𝑛
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𝑚𝑎𝑥
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𝐾
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(curtailable) Consumption for customer at𝑛
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Number of districts, simulation length,
trade-off and elasticity at time ℎ

, andφ
𝑛,ℎ

 µ
𝑛

ω
𝑛

Discomfort of customer at time with the𝑛 ℎ
flexibility and the attitude parameters

Figure 2: Consumption of all districts over a year. Bar chart shows consumption ranges over
samples in August.

5. Simulation and Result

The SP agent is modelled in OpenAI Gym and later integrated in the CityLearn environment
for training CU multi-agents. The CityLearn environment provides nine different districts
with different architecture, thermal behaviour and occupancies. Several climate zones exist as
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well. The thermal behaviour is modelled in EnergyPlus and is given as input to CityLearn. We
run the algorithm of each stage five times to evaluate the statistical properties of the agents. In
the following sections, we provided plots of medians, minimums or maximums of the
generated samples at time to explain the different expected outcomes of the DR programℎ
compared with single-agents performance.

5.1 Configuration and Scenarios

Figure 2 shows the maximum net consumption of nine districts over a year. To evaluate the
DR program, we want to see if we can flatten the consumption peak in August. Moreover, for
the purpose, we choose climate zone five where the curtailable consumption is the cooling
demand such that the DR program requests participants drop the cooling consumption.
Imitating the customers dropping their cooling consumption is implemented by subtracting
the amount from the cooling demands calculated by EnergyPlus. As Figure 2 depicts the
consumption range in August, we choose district one, six and seven with high consumption
participating in the DR program in July, August and September. The rest will join the first and
second half of the year according to Table 2 to evaluate the RL inherent bias towards
maximising short term rewards Vazquez and Henze (2020).

Table 2: Participation in the DR program for simulations.

Districts Participation program

One, six and seven July, August and September

Two, three and four The first half of the year

Five, eight and nine The second half of the year

Figure 3: Daily drops and incentives statistics over several free rollouts of the SP agent.

5.2 Training and Evaluating of the SP Agent

In order to show the statistics of the optimal policy of the SP agent, we plotted the hourly net
incentives and drops over several rollouts from the SP agent in Figure 3. Plots show the
nontrivial statistics of the policy which has different behaviors for districts reflecting the
impact of parameters characterise districts in DR programs e.g. district one has tendency to
drop more for receiving less rates.
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5.3 Integration of the SP Agent and Performance of CU Multi-gents

The SP agent impacts the multi-agents environment by introducing consumption drop
and which is assumed to zero for simplicity. The SP agent takes∆𝐸

𝑛,ℎ
𝑐𝑢𝑟𝑡 Φ(λ

𝑛,ℎ
, ∆𝐸

𝑛,ℎ
𝑐𝑢𝑟𝑡)

action at time as a form of offering incentives and will be informed about the realised drops𝑛
at time which are the state of the environment under the corresponding action. The realised𝑛
drops are calculated based on the difference between the actual and expected curtailable
consumption. The expected curtailable consumption needs to be predicted in the best scenario
but here for simplicity, we calculated it by creating a template by taking maximum over
generated samples obtained from repeating single-agents training. Figure 4 gives a good
comparison of the consumption of nine districts in August and the metrics introduced in
CityLearn e.g. see the arrows for changes of the range over samples. Moreover, the daily and
monthly drops for district one, six and seven over a year and in August. The plots illustrate
the maximums over the samples interpreted as the worst outcome.

Figure 4: CU multi-agents performance compared to single-agents. Top, depicts some
indicator’s ranges. Bottom, presenting the consumption in different time frames.

5.4 Statistics and Insights

To have more insights about the SP agent, we calculated the histogram of free rollouts drawn
from the SP agent. We also calculated the same free rollouts statistic when the states for all
districts are forced to zero except district one (shown by arrow in Figure 5). Comparing them
shows that the policy for each district proactively changes based on the contributions of the
others. Figure 5 also shows those statistics when the SP agent is integrated with CU
multi-agents. The statistics completely changed and the minimums over the samples tended to
cover the whole range meaning the SP agent adapted to the task. We evaluate CU
multi-agents by comparing the unrealised and realised daily drops presented in Figure 5. The
unrealised drops are obtained by the free rollout of the SP agent and the consumption
scheduled by CU single-agents. We can interpret it as such that CU multi-agents’ policies
seem to integrate well with the SP agent’s policy after going through a round of training.
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Figure 6 shows that the districts in the second half of the year program are able to maintain
the consumption reduction despite pressures from previous months therefore, IM2DR seems
not to be inherently biased towards consuming less energy now at the expense of consuming
more later. For those in the first half of the year program, the reduction propagates to the
entire year supporting the same claim as well. Even though the consumption are characterised
to be less elastic in the middle of the day the net daily consumption over the year show a
significant reduction during this time across all participants showing that the IM2DR tends to
flatten the high peak hours, daily plots in Figure 4 and 6.

Figure 5: Top, histograms of drops and incentives for the SP agent in different scenarios.
Bottom, consumption with CU single and multi-agents.

6. Guideline for Real Life System Implementation

We proceed now to the real life implementation of IM2DR. As depicted in Figure 7, the
service provider collects the consumption records of all districts over time and (re)trains the
SP agent. At the beginning of the year, each customer receives a deal concerning the offers
via the system as a message shown in the UI. Individuals can see the possible options of the
consumption reductions in the UI e.g. shifting the cooling setpoints with two degrees can
fulfil the deal. After agreeing partially on the offer, the service provider receives them. Then
CU multi-agents will go through (re)training with considering the agreement, and schedule
the appliances for the year.
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Figure 6: Consumption comparison of districts participating in the half of the year DR
program.

Figure 7: Real life implementation of the system.

Meanwhile the service provider needs to do some maths over the deals for estimating the
expectations. It becomes challenging when dealing with agents with stochastic policies. If you
collect a good amount of run sessions, by looking at consumption range over all samples at a
specific time, following the procedure in Figure 8, one gets a rough estimate of the

110110



29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

consumption expectation bounds e.g. see the arrows for August. In this way, a baseline can be
estimated for the DR program.

Figure 8: Calculating DR program expectation’s outcomes for the service provider.

7. Conclusion and Future Work

We have introduced an end-to-end system for implementing DR strategy that lets the
customer's automation agents schedule the appliances while the service provider agent
harmonises the market by creating balance between demand and response. On the other hand
we obtained a set of optimal policies with which the service provider proactively coordinates
the consumption and customers in the program schedule their appliances. The customers are
modelled by a set of parameters in the DR program therefore, for future work, it is the very
first step to investigate the external realisation of those parameters related to the comfort of
the residents in terms of heating, cooling and air conditioning. Overall such an automated
decision making is more sensible if customers also receive the offers during the year in form
of monthly, weekly or daily offers. This leads to retraining CU multi-agents for the rest of the
year achieving a policy that is suboptimal for the entire year but is an optimal policy for the
rest of the year. And integrating different SP agents optimised with different time scales e.g.
one for daily and one for weekly offers. Moreover, looking into alternative rewards can show
more insights since the incentive and reductions contain the MDP states of the other agents so
it helps the agents to reach a better policy during training.
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