
29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

Enabling Federated Interoperable Issue Management in a Building and

Construction Sector

Oraskari J. 1, Schulz O. 1, Werbrouck J.1,2, Beetz J.1
1 Chair of Design Computation, RWTH Aachen, Germany, 2 Department of Architecture and Urban

Planning, Ghent University, Belgium

jyrki.oraskari@dc.rwth-aachen.de, schulz@dc.rwth-aachen.de, jeroen.werbrouck@ugent.be

Abstract. A Common Data Environment (CDE) is an agreed-upon source of information on

building-related projects to collect, manage, and exchange data between stakeholders. The approach

in the AEC domain is to use buildingSMART’s BIM Collaboration Format (BCF) as the digital

issue communication part of CDEs. Contrasting with the federated nature of the AEC industry,

CDEs are typically organised in a centralised fashion. This work proposes a potential transition of

BCF into a distributed environment that serves as an example for further developments in the

distribution of CDEs and CDE-independent data management. We show how a single source of truth

over the project data and the advantages of the central approach can be realised in a distributed setup

using a Solid architecture environment, enabling decentralised authentication and stakeholders’

ability to control their data.

1. Introduction

In recent years, multiple international standards and specifications have been agreed upon to

facilitate the information exchange in the Architecture, Engineering and Construction (AEC)

industry. According to ISO 19650, a Common Data Environment (CDE) is defined as an

agreed-upon source of information for a building-related project (ISO 19650-1, 2018). It should

serve as a single source of truth and is therefore helping to structure the information and data

exchange process in the course of a project between the different stakeholders.

The German standard DIN SPEC 91391-1 (2019) extends on the ideas of ISO 19650 and

emphasises that a CDE for a building can change during the different phases of its life. Hence,

there is a need for the different CDEs to communicate. The specification’s authors suggest that

standardised RESTful interfaces should be used to ensure the exchange of information

containers between different CDEs at the BIM maturity stage 2.

A standardised approach for digital issue communication in AEC projects is the BIM

Collaboration Format (BCF), which is commonly used in combination with CDEs (Preidel et

al., 2018). BCF exists in two flavours: a file-based version and a centrally organised, server-

based approach (van Berlo and Krijnen, 2014), allowing project managers and clients to study

the entire body of issue descriptions via APIs to infer insights into the design team’s work.

Figure 1: Abstraction of buildingSMART's OpenCDE APIs, originally presented by Yoram Kulbak

and Pasi Paasiala in October 20191. The BCF API is part of buildingSMARTs OpenCDE APIs.

92https://doi.org/10.7146/aul.455.c200

jyrki.oraskari@dc.rwth-aachen.de
schulz@dc.rwth-aachen.de
jeroen.werbrouck@ugent.be

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

BuildingSMART International regards this server-based approach as part of the OpenCDE

APIs1 (Figure 1). Using BCF enables the user to communicate problems on a component-by-

component basis, making BCF an integral part of the planning process. It supplements

conventional e-mail communication about issues and can be seen as a central interface for

communicating changes in the model. Hence, we focus on this format for this work.

Even though the standards mentioned above describe the exchange of information in detail,

implementation remains scarce regarding container-based information exchange or the

interconnection of CDEs. While streamlining information exchange is beneficial to the industry

as a whole, it is not for commercial CDE providers. As in many sectors, the construction

industry has followed the general trend toward Big Data and built data-driven ecosystems that

centralise as much data as possible on their central servers. There are many challenges in this

model. Data access is regulated via vendor-specific APIs, which often limit query parameters.

Duplicated data in the silos can lead to a situation where the users do not have a single source

of truth, making it harder to get insights into the project’s status. Also, the legal aspects and the

responsibilities of the data content, like the General Data Protection Regulation (GDPR) in the

European Union, are harder to control if the data is not at the hands of their producers. The

Solid initiative (Mansour et al., 2016) aims to change the overall course into a model where

individual players control the data produced by them and about them. These players need a

decentralised authentication mechanism included in the Solid specification for this to work.

This work proposes a potential transition of BCF into a distributed environment that can serve

as an example for further developments in the distribution of CDEs and CDE-independent data

management. We show how a single source of truth over the project data and the advantages of

the central approach can be realised in a distributed environment, which enables decentralised

authentication, lower risk of system failure, and stakeholders’ ability to control their data.

The paper is structured as follows: the next section introduces the technologies and related

works regarded for this paper. Section 3 describes the proposed way to express the federated

structure of BCF data on the Solid platform. The paper concludes with a discussion on the

proposed framework, including prospects on this topic.

2. Background

This section describes the background technologies on which the proposed framework will be

based and related research projects. Although this paper bases heavily upon Semantic Web

technologies, an elaborate discussion on these topics is outside the scope of this work. For a

deeper understanding of technologies such as the Resource Description Framework (RDF) and

the SPARQL Protocol, and RDF Query Language (SPARQL), the reader is referred to (Hendler

et al., 2020).

2.1 BIM Collaboration Format and Common Data Environments

In the context of the ongoing establishment of open BIM processes, the need for a

communication interface arose in order to be able to transmit information and issues within the

models in a software-independent manner. Therefore, the BIM Collaboration Format (BCF) –

a buildingSMART standard - was developed to provide a software- and vendor-neutral

1 OpenCDE-API Documentation: https://github.com/buildingSMART/OpenCDE-

API/tree/master/Documentation (Accessed 20.02.2022)

93

https://github.com/buildingSMART/OpenCDE-API/tree/master/Documentation
https://github.com/buildingSMART/OpenCDE-API/tree/master/Documentation

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

exchange format for model-based issue communication2. Three main parts - Topics, Comments

and Viewpoints - together form the main structure behind BCF and are all connected to a Project

concept:

1) The Topic carries general information about an issue. It uses properties like a current

status, a definition of the type of Topic, the person who created it and who is responsible

for fixing it.

2) Viewpoints are used to connect the format to BIM by providing a virtual camera located

inside the model that looks at the scene that is part of a current discussion. They can

also provide links to specific building elements by stating their GUID in a list.

3) A Comment concept provides the textual information and an author in a discussion. It

is linked to the Topic and can reference a Viewpoint as well.

The BCF data can either be exchanged in a file-based format using BCF XML3 or by using a

server (van Berlo and Krijnen, 2014) via a REST API (called BCF API4) that returns its

information in a JSON format. Even though the data can be serialised in two different ways,

the overall concept behind both formats is the same, and the structures of BCF API and BCF

XML differ only slightly. For example, BCF Servers - using the BCF API - often allow

archiving and downloading of the Project and its issues as a file in the BCF XML format.

Since the communication in an open BIM process is usually an integral part of many workflows,

it is often integrated directly into a Common Data Environment (CDE) (Preidel et al., 2018),

which serves as a single source of truth throughout the planning and construction phase.

Research regarding the decentralisation of these CDEs can also be observed. In Werbrouck et

al. (2019), the authors suggest a decentralised CDE based on Solid principles, whereas Tao et

al. (2021) describe a CDE distributed via a blockchain. The latter example also combines the

principles of a CDE with BCF by distributing them as BCF XML over the blockchain.

2.2 bcfOWL

Since the current BCF serialisations lack the general contextual information and shared

metamodels that RDF solutions have, the bcfOWL ontology (Schulz et al., 2021) was created

to bring together the worlds of issue communication and Linked Data. In the proposed linked

data model, BCF issues are stored as RDF triples and can be queried using SPARQL.

Additionally, the different concepts for the Topics – defined in the BCF Extensions – can be

enriched with further semantics. Therefore, the Extensions in bcfOWL can be used as a gateway

to other ontologies in the context of Linked Building Data (LBD).

The ontology is not introducing new concepts to BCF and has semantic interoperability with

BCF XML and BCF API. A converter can be created to serialise bcfOWL data into the standard

BCF JSON and XML formats. Thus the ontology can serve as a shared foundation for both

formats. By using SPARQL to query the data stored as bcfOWL, it is also possible to overcome

the accessibility limitations of BCF caused by its hierarchical structure, as described in (Schulz

and Beetz, 2021).

2 BIM Collaboration Format (BCF) - An Introduction https://technical.buildingsmart.org/standards/bcf/ accessed

28.02.2022
3 BCF XML: https://github.com/BuildingSMART/BCF-XML accessed 24.01.2022
4 BCF API: https://github.com/buildingSMART/BCF-API accessed 24.01.2022

94

https://technical.buildingsmart.org/standards/bcf/
https://github.com/BuildingSMART/BCF-XML
https://github.com/buildingSMART/BCF-API

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

2.3 Authenticated Data Federation on the Web

Using the Linked Data Platform (LDP) specification5, the Web of data can be accessed and

managed using the read-write operations of the Hypertext Transfer Protocol (HTTP) standard

version 1.1, the basis of data communication for the World Wide Web.

LDP incorporates the Linked Data principles (Bizer et al., 2009) of Tim Berners-Lee into a data

container architecture. LDP relies on containerisation, where an ldp:Container refers to a

specific, dereferenceable RDF graph listing its resources (ldp:contains). By dereferencing the

container URL, it is easy to discover and, in turn, dereference its content (RDF or non-RDF) in

a chain of HTTP requests. As container URIs are also RDF resources themselves, nesting

containers is possible, resulting in a data organisation system that resembles file storage on a

computer – yet now file paths are URLs.

While LDP on its own is well-suited for serving open data on the Web, it does not specify

access-control mechanisms for protected datasets. Where a centralised data store often relies

upon local storage of credentials, this is no viable option in a decentral environment. Since a

client may combine hundreds of web resources to find what it needs, it is not feasible to

maintain an account for these sources separately.

Established technologies like OpenID Connect (OIDC)2 allow outsourcing this part of identity

management to specialised identity providers (IDPs) that act as a service in the middle, e.g.,

Facebook, Google, or GitHub. The Solid initiative (Mansour et al., 2016; Sambra et al., 2016)

eliminates the need for a third party: it provides the specifications to create an online identity

based on a personal URL (a “WebID”6) on a domain chosen by the user. An office can thus

become its own IDP and maintain its credentials for authenticating against decentralised

construction management services (Werbrouck et al., 2019). A WebID is associated with a

Personal Online Data storage (“Pod”): a data vault based on the LDP specification but now

enabling fine-grained access control to containers and resources defined using the Web Access

Control (WAC) 7 ontology. The resources that govern access control in Solid, ACL (Access

Control List) resources use the WAC ontology to link specific access rights to specific WebIDs,

agent groups (vcard:Group) or (un)authenticated agents (acl:Agent or acl:AuthenticatedAgent).

This way, it can be easily verified by a Solid Pod provider whether an actor can interact with a

resource in a specific way: read, append, write or control, i.e., modifying the ACL document

itself.

Apart from the ACL resources that govern access rights, the Solid specifications define ‘.meta’

resources: RDF resources that contain metadata statements related to an ldp:Container instance.

A .meta resource is served upon dereferencing a container URL. The details of .meta resources

are yet to be agreed upon within the Solid community, but by default, they include the LDP

containment triples and modification dates. Attaching a custom, persistent .meta resource to a

Solid container with domain-specific metadata is possible.

2.4 LBDserver

A related initiative that uses Solid to store AEC data in a decentral way is the ongoing

LBDserver project (Werbrouck et al., 2021). This project proposes data structures to discover

project resources, metadata storage and cross-document linking of heterogeneous datasets using

5 Linked Data Platform: https://www.w3.org/TR/ldp/ accessed 28.01.2022
6 WebID 1.0: https://www.w3.org/2005/Incubator/webid/spec/identity/ accessed 31.01.2022
7 Web Access Control, https://solid.github.io/web-access-control-spec/, accessed 31.01.2022

95

https://www.w3.org/TR/ldp/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://solid.github.io/web-access-control-spec/

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

the LBDserver vocabulary8. Throughout this paper, we will re-use certain patterns proposed in

the LBDserver ecosystem (Section 3). However, where the LBDserver proposes a very generic

way for data organisation, the BCF specification has a distinct way of structuring BCF-related

datasets. As this is standardised within the AEC industry, we will maintain this way of data

organisation in this work.

3. Federated BCF projects

In this section, we sketch the outline for the setup of federated BCF projects. Therefore, we

combine domain-agnostic Web specifications from the Solid ecosystem with domain-specific

concepts proposed in the bcfOWL and LBDserver initiatives. Section 3.1 describes an

organisational structure for discovering and managing federated BCF data. The project

becomes a federated graph in such a setup: the union of contributions stakeholders make on

their own “office server”, shared using WebIDs. Similarities with the existing BCF API and

BCF XML will be drawn where relevant. Based on Solid’s existing Web Access Control

specifications, an access-control layer is devised upon this organisational structure.

3.1 Project Discovery

To make federated BCF projects easily discoverable, we base upon the aggregation structures

proposed in the LBDserver. This means that an office can maintain its projects in a root

ldp:Container on its Pod, i.e., the Project Repository. The URL of this registry is referenced in

the office’s WebID (lbds:hasProjectRegistry). A project registry has sub-containers for each

project the Pod owner participates in (‘project access points’). These sub-containers, in turn,

have pointers to the contributions (‘partial projects’) of each stakeholder, including the

contribution of the owner of the Pod, which we identify by a </local/> sub-container

(Werbrouck et al., 2022). The first type is “virtually contained”, and the second type is

effectively hosted by this container on the Solid Pod. Thus, by dereferencing the project access

point, a client discovers a list of federated partial projects.

8 The LBDserver vocabulary, https://w3id.org/lbdserver#, accessed 08/02/2022

Figure 2: LBDserver patterns for project discovery. The project access point allows finding

contributions in the federated project network.

96

https://w3id.org/lbdserver

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

This paper focuses on arranging the BCF data (i.e. Projects, Topics, Viewpoints and Comments)

inside a Pod, leaving the storage of auxiliary resources (e.g. PDF documents, IFC models) out

of scope. In this regard, we suggest a tree-like structure that mimics the routes in the BCF API

and the folder structure in BCF XML (Figure 3), in contrast to the flattened approach in the

LBDServer.

The metadata resource corresponding with the </local/> folder (i.e. at the top level) contains

general information about the Project, such as its name, what BCF Extensions it contains and

how they are defined. Furthermore, it links to one or many sub-containers that contain

information about the Topics belonging to the Project, using dedicated sub-properties of

“ldp:contains”. These properties are described in detail in the following section.

3.2 Project organisation

Sub-containers containing BCF Topics are identified with the RDF predicate

"bcfOWL:hasTopicsContainer". Each Topic is itself located in a sub-container in this container,

described with a metafile that contains the Topics information in bcfOWL and links to its

Viewpoints and Comments by using the predicates “bcfOWL:hasViewpointsContainer” and

“bcfOWL:hasCommentsContainer”. These sub-containers correspond in their structure to the

Topics route defined in the BCF API by including Viewpoints and Comments. Each Viewpoint

is a container in itself. The Comment is represented as a resource (Figure 3). The Viewpoint, in

turn, contains more concepts, such as a Snapshot (e.g. .png or .jpeg) or a Perspective Camera.

If we take a closer look at this hierarchy (Figure 3), we can see that there are many similarities

to the server routes of the BCF API. Whereas in BCF XML, each issue is located in its folder

(identified by the GUID of the Topic). The Topic is summarised together with the Comments

in a Markup file. The BCF API provides all this information as hierarchically organised REST

API URI patterns that are accessed sequentially. The BCI APIs sequence is mainly preserved

in our proposed structure and allows finding data using standardised endpoints. Apart from the

fact that every partial project acts as a “partial BCF server” on its own, which means they need

Figure 3: Comparison between the structure of the container-based BCF Solid approach and the BCF

API (buildingSMART). The structure of the BCF API is not discoverable by the client without

previous knowledge of the standard (it is implied). The BCF Solid approach implements a machine-

readable discovery pattern (RDF graph) by linking to its sub-containers.

97

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

to be queried using multiple HTTP requests, a client will not experience a difference between

a Solid-based Topics container and a centralised one. A single Pod can be used as a complete

BCF server without referencing external partial projects. However, the same infrastructure can

be used to federate the project’s information.

However, some benefits arise with the RDF-based organisational approach compared with the

mere implementation of standardised API routes. Although in an LDP (Solid) environment,

similar endpoint patterns to the BCF API are used, these endpoints are also semantically

described using the metadata files. Instead of just receiving BCF JSON responses from the

server, the server describes what each container entails and what its metafiles depict. The

information is easily discoverable in these containers on the Pod. Because resources are stored

as files but served in a REST API, it combines the file-based BCF XML and the service-oriented

BCF API approaches.

Furthermore, the links to the sub-containers do not have to be restricted to local resources and

can point to any number of other Pods from other stakeholders. Thus, a distributed

communication of issues is achieved, in which each participant can store remarks and additions

in their Pod.

Lastly, this approach allows the dynamic discovery of data. Although the proposed tree

structure mimics the BCF API and the BCF XML structure, it is not the only possible

configuration. The property-based discovery of containers and sub-containers allows a client to

discover how a project is organised. However, this resource could have been stored in a

completely different location. An external service may then present this data “as if” it is

compliant with a specific standard such as BCF.

3.3 Access Control and Groups

In a decentral project, each office may maintain access control to the resources they contribute.

The WAC ontology supports acl:AgentGroup-s, which point to a vcard:Group instance,

referencing its members (vcard:hasMember) via their WebID. For each project, an office can

publish one or more groups containing the employees’ WebIDs (e.g., ‘localEmployees.ttl’).

The ACL that governs the resources in the local project folder can then grant these groups

specific access rights. For instance, the responsible project manager in the office gets

acl:Control rights and the acl:Read and acl:Write rights of the other employees working on this

project. Agent groups defined by other project stakeholders (i.e., hosted in their project

container) are granted only acl:Read permissions. Although the above describes a project-

specific approach, this works similarly for resource-specific access rights.

3.4 Project interaction

This paper does not yet tackle the challenges of a complete workflow, where people create,

comment, and update new and existing Issues. When we take the update of an issue as an

example, the question must be asked, where this update will be stored in the distributed system.

A possible option is that the person who creates the update is storing the new issue - or just the

updated content – on their Pod and notifies the original Pod of the issue of its existence.

Thereby, when the issue gets queried, it returns a reference to its new version. This option

allows tracing the complete history of the Topic without ever really deleting or changing

existing data. However, it also creates much redundancy that could, in the long run, influence

the performance of the queries. Another option that is more in line with the current

implementation of the BCF API is to implement a logging system that keeps track of the

changes by the users. This topic is further discussed in Oraskari et al. (2022).

98

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

4. Proof of Concept

A proof of concept was created to demonstrate the feasibility of the proposed framework for

federated management of BCF data. This includes using the Solid Community Server9, an open-

source implementation of the Solid specifications. The data used in this demonstration is based

on the BIM models of the DC chair at RWTH Aachen University10.

To emulate the federated environment, three Pods were set up, containing a total of six issues:

- The Pod owned by the project architect office contains four topics

- The Pod owned by the HVAC engineer contains one topic

- The Pod owned by the structural engineer contains one topic

In this demonstrative scenario, Oliver, working at the engineering office, wants an overview of

the current issues registered for the DC chair project. He is registered at the Architect Office’s

Pod in the list of employees assigned to this project (Listing 1).

Listing 1: the employee group (http://pod.myoffice.org/Projects/8b71315b-7db2-4b35-a1e9-

fcddaf8556f5/groups#committed)
<#committed> a vcard:Group ;

 dc:created "2022-02-22T22:22:22Z"^^xsd:dateTime ;

 dc:modified "2022-02-22T22:22:22Z"^^xsd:dateTime ;

 vcard:hasMember <http://localhost:3000/oliver/profile/card#me> ,

 <https://localhost:3000/jeroen/profile/card#me> .

Every stakeholder’s </local/> partial projects contain an .acl file that references this group and

assigns to acl:Read rights to its members (Listing 2). Of course, editing rights (acl:Write,

acl:Append) can be granted in the partial project provided by the architect’s office itself.

Listing 2: access rights for employee group in Listing 1
<#us>

 a acl:Authorization;

 acl:agentGroup <http://localhost:3000/office/Projects/8b71315b-7db2-4b35-a1e9-

fcddaf8556f5/groups#commited> ;

 acl:accessTo <./>;

 acl:default <./>;

 acl:mode acl:Read, acl:Write, acl:Append .

First, the available partial projects need to be discovered. The SPARQL query covers this:

SELECT ?partial WHERE {<> lbds:aggregates ?partial}

As indicated in Figure 3, the organisation of partial projects corresponds with the BCF API

specification data patterns. Because these are standardised routes, further discovery is not

necessary, and the Web client can send the following (authenticated) requests to each of the

partial projects:

GET {partial project}/topics

This will yield an LDP container with pointers to the contained Topics, which can now be easily

retrieved and presented in a GUI. This series of HTTP requests is not identical to those required

to access the BCF API. However, they can be easily implemented under the hood by a BCF

server to expose federated information to conform to the standard. In that case, the server acts

as a middleware to regulate access to information on the stakeholder Pods.

9 Solid Community Server, https://github.com/solid/community-server, accessed 28.01.2022
10 Demo dataset: https://github.com/Design-Computation-RWTH/EG-ICE_2022_BCFdemo accessed 28.02.2022

99

https://github.com/solid/community-server
https://github.com/Design-Computation-RWTH/EG-ICE_2022_BCFdemo

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

5. Discussion and Conclusion

The translation of BCF into a Solid environment introduces its main concepts in a federated

setup, using the Solid specifications and the Linked Data Platform. This way, issue

communication can be spread over multiple Pods that belong to different stakeholders. Project

stakeholders are no longer solely identified by their e-mail addresses, as implied by the BCF

user concept. Instead, the use of semantically rich WebIDs for offices and employees allows

the dynamic creation of user groups (e.g. defined by role or participation) and the re-use of

credentials in multiple federated Projects. A project team from an architectural stakeholder can

define its members in their Pod and manage who has access to the Project data and who does

not. The resulting group (vcard:Group) is then linked to BCF Project data to control access.

Hence, it becomes possible to define more granular access rights for the different roles on the

Project pod. This corresponds to the structures in the federated construction industry.

The decentral authentication mechanism, as defined in the Solid specifications, does not require

the server to store the login credentials for every user. The service is just responsible for

verifying if the access rights associated with a given WebID allow a user to interact with a

specific resource in a specific way. The need for the user to create an account for every service

is thereby removed by using WebIDs.

Future developments in this area include investigating the guaranteed availability of the

federated data to prevent the loss of project information (either accidentally or intentionally).

Furthermore, a notification system between Pods in the network will enable automated

synchronisation (e.g. when someone updates a Topic or creates a new Comment). In this paper,

we proposed a tree-like structure that combines the traits of BCF XML and the BCF API. The

URL routes of the BCF API thereby serve as a means to access the individual containers.

Information in these containers is stored in a .meta file, and the different containers holding the

BCF data are linked via bcfOWLs properties. We have shown that BCF projects information

can be queried using a one-stop access point implemented using distributed Solid architecture

and offered as a single source of truth. In the platform, authentication can be self-hosted, and

the stakeholders can manage their data using a tree-like structure that mimics the hierarchical

pattern of the BCF API endpoints. It was also shown that the data authorisation enforcement

can be set using the container architecture of the Solid specification.

Since BCF is a member of the OpenCDE API family, we hope this research can serve as a

template for further research on aligning AEC standards with future-proof concepts for

federation on the Web.

Acknowledgements

This research is funded by the Research Foundation Flanders (FWO) as a Strategic Basic

Research grant (grant no. 1S99020N) and by the EU through the H2020 project BIM4REN

grant (grant no. 820773).

References

Bizer, C., Heath, T., Berners-Lee, T., 2009. Linked Data - The Story So Far. Int. J. Semantic Web Inf.

Syst. 5, 1–22. https://doi.org/10.4018/jswis.2009081901

100

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

DIN SPEC 91391-1 Common Data Environments (CDE) for BIM projects - Function sets and open data

exchange between platforms of different vendors - Part 1: Components and function sets of a CDE; with

digital attachment, 2019.

Hendler, J., Gandon, F., Allemang, D., 2020. Semantic Web for the Working Ontologist: Effective

Modeling for Linked Data, RDFS, and OWL. Morgan & Claypool.

ISO 19650-1 Organization and digitization of information about buildings and civil engineering works,

including building information modelling (BIM) - Information management using building information

modelling - Part 1: Concepts and principles, 2018.

Mansour, E., Sambra, A.V., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A., Aboulnaga, A., Berners-

Lee, T., 2016. A Demonstration of the Solid Platform for Social Web Applications, in: Proceedings of

the 25th International Conference Companion on World Wide Web, WWW ’16 Companion.

International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva,

CHE, pp. 223–226. https://doi.org/10.1145/2872518.2890529

Oraskari, J., Schulz, O., Beetz, J., 2022. (in press) Towards describing version history of BCF data in

the Semantic Web, in: Proceedings of the 10th Linked Data in Architecture and Construction Workshop.

Preidel, C., Borrmann, A., Mattern, H., König, M., Schapke, S.-E., 2018. Common Data Environment,

in: Borrmann, A., König, M., Koch, C., Beetz, J. (Eds.), Building Information Modeling: Technology

Foundations and Industry Practice. Springer International Publishing, Cham, pp. 279–291.

https://doi.org/10.1007/978-3-319-92862-3_15

Sambra, A., Mansour, E., Hawke, S., Zereba, M., Greco, N., Ghanem, A., Zagidulin, D., Aboulnaga, A.,

Berners-Lee, T., 2016. Solid : A Platform for Decentralized Social Applications Based on Linked Data.

Schulz, O., Beetz, J., 2021. Image-documentation of existing buildings using a server-based BIM

Collaboration Format workflow., in: EG-ICE 2021 Workshop on Intelligent Computing in Engineering.

Presented at the EG-ICE, Berlin.

Schulz, O., Oraskari, J., Beetz, J., 2021. bcfOWL: A BIM collaboration ontology, in: Proceedings of the

9th Linked Data in Architecture and Construction Workshop. Presented at the LDAC2021,

Luxembourg.

Tao, X., Das, M., Liu, Y., Cheng, J.C.P., 2021. Distributed common data environment using blockchain

and Interplanetary File System for secure BIM-based collaborative design. Autom. Constr. 130, 103851.

https://doi.org/10.1016/j.autcon.2021.103851

van Berlo, L., Krijnen, T., 2014. Using the BIM Collaboration Format in a Server Based Workflow.

Procedia Environ. Sci., 12th International Conference on Design and Decision Support Systems in

Architecture and Urban Planning, DDSS 2014 22, 325–332.

https://doi.org/10.1016/j.proenv.2014.11.031

Werbrouck, J., Pauwels, P., Beetz, J., Mannens, E., 2021. Data Patterns for the Organisation of Federated

Linked Building Data, in: Proceedings of the 9th Linked Data in Architecture and Construction

Workshop. Presented at the LDAC2021, Luxembourg.

Werbrouck, J., Pauwels, P., Beetz, J., van Berlo, L., 2019. Towards a Decentralised Common Data

Environment using Linked Building Data and the Solid Ecosystem.

Werbrouck, J., Pauwels, P., Beetz, J., Mannens, E., 2022. LBDserver - a Federated Ecosystem for

Heterogeneous Linked Building Data. (Under review).

101

