
29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

A Redundancy-free IFC Storage Platform For Multi-model Scenarios based

on Block Hash

Li S.1, Gao G.1,2,*, Wang W.3, Liu H.1, Zhu S.1, Gu M.1,2
1School of Software, Tsinghua University, Beijing, China, 2Beijing National Research Center for

Information Science and Technology(BNRist), Tsinghua University, Beijing, China, 3State Key

Laboratory of Rail Transit Engineering Informatization (FSDI), China

gaoge@tsinghua.edu.cn

Abstract. This paper proposes a block hash (BH) method for efficiently storing multiple Industry

Foundation Classes (IFC) models in the database. We find that there are lots of duplications when

we store different models or different versions of a model into the database because of the temporal-

spatial correlation of data between these models. The main idea of our approach is to divide these

model files into appropriate blocks and to calculate the hash values of these blocks to reuse the them

in different models. These blocks should not be too small in case too many nodes need to be

compared, nor should they be too large in case it is difficult to find identical blocks to share between

different models. So the BH method is proposed to efficiently make the database redundancy-free.

For the experiments we use multi-versions of multiple models of a same project to validate this

method. The experimental results show that our method is practicable and efficient.

1. Introduction

Building Information Modeling (BIM) technology has been widely applied in the construction

industry. Since every stage of a facility will involves multiple institutions, data resource sharing

becomes significant and urgent. BuildingSMART proposed Industry Foundation Classes (IFC),

a standardized, digital description of the build asset industry. It provides an international

standard for many different applications and promotes the exchange and sharing of data. As a

way to exchange a BIM file between different software, IFC is designed to be non-redundant

and concise in a monolithic file. However, with the application of BIM becoming more and

more collaborative, and the model size becoming increasingly larger, non-file based BIM

sharing platform is becoming necessary. These platforms, such as CDE (Common Data

Environment), FM (Facility Management platform) and Archiving, etc., usually provide storing,

querying, managing and viewing functions for multiple BIM models supported by database.

Typically, many of these models may be different parts of a same project, or different versions

of a same design, or generated by the same team, so the data in these models may have temporal

or spatial correlation. The well-designed inner structure of the IFC file cannot prevent the large

amount of duplicate data across these models.

So many people try to extract IFC model information and store it in different types of databases.

Nevertheless, the existing approaches seem inefficient for some multi-model task scenarios.

In this work, we proposed the block hash (BH) method to merge the duplicate nodes in IFC

files. This method takes advantage of the structure of IFC. It not only reduces the space cost of

the storage, but also reduces the upload time required for the storage. Based on this method, we

have established a redundancy-free IFC storage platform. In the platform we provide the

interfaces for saving and querying information from multiple models. we adopt MongoDB for

the underlying database of the platform for its good applicability and great read performance in

the case of high load. Moreover, the block hash method may also be used for storage based on

other databases. The current experimental results show that BH method is very effective in

handling with multi-model tasks. And it also has good scalability for subsequent research.

74https://doi.org/10.7146/aul.455.c198

mailto:gaoge@tsinghua.edu.cn

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

2. Related Works

2.1 Model Storage in BIM

IFC has many expression formats like the SPF (STEP Physical File) format, XML, JSON and

so on. The SPF format includes HEADER and DATA two parts. HEADER is used to record

some meta data such as IFC Schema version, model name and description etc. DATA is for the

real model data which is organized according to the IFC specification.

Krijnen and Beetz (Krijnen and Beetz, 2016) put forward the method of using HDF5 to store

IFC models, which greatly reduces the querying time of some components such as obtaining

the largest window in the model. This method is more advantageous than the traditional formats

in many aspects. But there are still difficulties in data sharing and updating.

These file-based methods mentioned above are still unstructured or semi-structured. This makes

it difficult to realize the data features urgently needed by BIM, such as data management,

sharing and updating. Therefore, more people are exploring other storage methods like using

databases or blockchain to store BIM model to solve these problems.

BuildingSMART is carrying out the experiment of using SQLite to store IFC model. The

purpose is to provide a standard format of SQLite to store IFC data. In the aspect of relational

database, Li et al. stored IFC model into ORACLE database in order to verify the feasibility of

IFC database storage idea (Li et al., 2016). The experiment proved the feasibility of lossless

storage of IFC data by database, but the actual speeds were not satisfactory. Beetz et al.

proposed BIM Server of BerkeleyDB which is a key-value database (Beetz et al., 2010). The

architecture realized the conversion from IFC file to database by building a service layer and

the KeyValueStore Interface was provided to connect to different databases. But so far, only

the open source BerkeleyDB Java Edition database is realized (opensourceBIM, 2021). Yuan

et al. also adopted the column-oriented database HBase to store IFC model (Yuan and Shihua,

2017). Jiang and Wu put forward the method of storing IFC by using Elastic Search framework

and the graph database Neo4j. However only the spatial data of IFC model was stored (Jiang

and Wu, 2018). In 2019, Gao et al. proposed to use knowledge base and graph database to store

IFC model data. This method was mainly used to improve the efficiency of automatic model

checking (Gao et al., 2019).

Apart from the methods mentioned above, there are some storage systems such as the BIM-

server (Singh, Gu and Wang, 2011). These achievements indicate that structured storage of

BIM data is promising. The purpose of this research is to provide a general hashing method to

effectively compare the differences between different models or versions. It is helpful to reduce

the duplicate data and get the difference easily.

2.2 Model Compression in BIM

IFC has excellent structural design, which can reuse data to reduce storage space. However due

to the different IFC export algorithms adopted by different applications, there will be some

duplicate nodes in one model. Especially some fundament types like IfcCartesianPoint and

IfcPropertySingleValue will have some duplicate instances. There are some compression

algorithms to remove these like the IFCCompressor which compresses the IFC files by line by

line (Sun et al., 2015) and ACC4IFC which takes the default value into consideration (Du et al.,

2020). The basic ideas of these algorithms are very concise. They want to remove the duplicate

nodes and reuse the left one to make the model as small as possible. And the facts have proved

that these methods can effectively compress IFC models. These algorithms mainly focus on the

compression of single model. But the more important problem that this research intends to solve

75

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

is the duplicate data between different models especially different versions of the same model

like Figure 1. Although we can still use similar methods to compress these models but there

will be some problems and we will discuss in the methodology and experiment section.

Figure 1: The elements shared in different model versions.

In addition to the content-based compression methods, there are also some other compression

algorithms like the mesh simplification (Algorri et al., 1996; Cignoni et al., 1998) and so on.

Most of these methods simplify the geometric information of the model and will lose some fine

geometric information. In this study we want to keep all the information in the origin model

and we will not use these lossy compression methods.

3. Research Methodology

In this section, we mainly present the methodology how we implement hashing algorithm and

the way we build our platform based on BH.

Every release of the IFC specifications has strict regulations on every node type. The

inheritance diagram (or specification) of IfcRoot in IFC2X3 is presented below.

ENTITY IfcRoot

ABSTRACT SUPERTYPE OF (ONEOF (IfcPropertyDefinition, IfcRelationship, IfcObjectDefinition));

GlobalId : IfcGloballyUniqueId;

OwnerHistory : IfcOwnerHistory;

Name : OPTIONAL IfcLabel;

Description : OPTIONAL IfcText;

UNIQUE

UR1 : GlobalId;

END_ENTITY;

It’s clear to figure out every parameter in this basic type. There are some reference parameters

like the OwnerHistory. According to the specification we can define one IfcOwnerHistory node

here or reference another node whose type is IfcOwnerHistory.

The size of one node is determined by these parameters. Assuming that the average size of one

certain type is s and the file size is S, we can get that:

S = ∑ st × ct

t∈types

 (1)

where the ct means the number of the node whose type is t.

76

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

It can be seen from Equation (1) that in order to reduce the storage space of IFC models, we

can reduce the size of a single node or the number of nodes. It is obvious that we can use one

algorithm similar to the content-based compression algorithms to compare these models as one

to remove the duplicate nodes. However, the number of nodes is too large to deal with and the

different content makes it hard to compare these nodes one by one. The hash algorithm is used

to convert an arbitrary node into an encrypted output of a fixed length and it helps to decrease

the complexity of comparison. Our platform adopts MD5 (Rivest and Dusse, 1992) as the hash

algorithm, so each hash is 16bytes long. The number of nodes in a 200MB IFC file is about

3000000, which means that about 45.78MB of hash data needs to be saved.

If we get rid of the hash method, although we don’t need to save these hashes, the comparison

between different lengths of content will become more difficult. Each new model uploading

will need to load all the models which is impossible for the current hardware. So, it is necessary

to reduce the number of hashes, that is, the number of nodes, in order to speed up the calculation.

For the above reasons it’s important to merge some nodes as one whole part to participate in

the procession.

3.1 Calculate one block from IFC model

Because of the reference relationship in IFC structure, the algorithm can start from one node

that is not referenced by other nodes, and recursively find all the referenced nodes to form a

data block. However, this will cause a lot of duplicate nodes. For example, there is usually only

one IfcOwnerHistory node in one IFC model and all other nodes that inherit from IfcRoot

reference to this one. And the above blocking strategy will cause this node to be repeated tens

of thousands of times, resulting in a sharp increase in storage space. So, in this circumstance,

the nodes with many references should also be partitioned and the equation of S becomes:

S = st + ∑ Bst′
× Qt′

t′∈refs

 (2)

S ≈ ∑ Bst
× ct × (1 − Qt)

t′∈types

 (3)

where Bst
 means the block starts with the node whose type is t, st means the average size of

node whose type is t, refs means other node types referenced by type t, and Qt represents

whether the node is the head node, which can be expressed as Equation (4).

𝑄𝑡 = {
0, 𝑡 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑒𝑎𝑑 𝑡𝑦𝑝𝑒
1, 𝑡 𝑖𝑠 𝑛𝑜𝑡 ℎ𝑒𝑎𝑑 𝑡𝑦𝑝𝑒

 (4)

If every type is the head type, the Equation (3) degenerates to Equation (1) which means

calculating hash for each line.

According to the above analysis, it can be concluded that in order to reduce the data expansion,

the key is to define the head type. Therefore, the following BH method is proposed.

1. Considering that the header nodes are easy to create index, all types with GlobalId need

to be used as header type.

2. Count the quantities of nodes corresponding to each type of all IFC models in this

project and save them.

3. Start from the nodes with GlobalId to find the referenced nodes recursively. The number

of referenced nodes corresponding to each type in the recursion process is counted and

saved.

77

javascript:%20void(0)

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

4. Divide the referenced number of this type by the number of nodes, and set a threshold.

When the result is greater than this threshold, the Q value of this type is set to 0.

The change of the threshold will result in the following results: If the threshold value is too

high, most types will not be partitioned. It will result in excessive data redundancy. If the

threshold value is too low, it will lead to a large number of types. In extreme cases, it will

degenerate into Equation (1). Therefore, the factors to be considered when setting the threshold

include the configuration of the server for storage, the total model size of the project, the

network situation for uploading and the general configuration of the computer hardware for

uploading IFC files, etc.

Since the project models may be constantly increasing from the beginning of the project, the

threshold cannot be accurately calculated. Considering the various factors that affect the storage

space, querying efficiency and processing speed, we can finally roughly estimate a threshold

range according to the required hash quantity and storage space. If the total number of nodes is

in the order of tens of millions, it is hoped that the number of hashes can be reduced to the

previous 1/4. In this algorithm, the threshold can be selected in the range of 4-6.

3.2 Calculate hash for each block.

After we get the blocks of the model, we require removing the duplicate blocks. Calculating the

hash for each block is necessary. For there is only one header in each block, we can replace the

reference with the node itself in this header. In this way we can get one node that combines all

nodes in this block like the nodes #13 and #14 in Figure 2 which replace the reference in #7

and # 12. And the final block is only related to the existing blocks like #14. It should be noted

that the existing blocks not only refer to the blocks in this model, but also include the blocks in

the other uploaded models. Therefore, the line number cannot be duplicated and must be

incremented even in different models. Then we will calculate hash for #13 and #14 using the

text. Although the hashing algorithms are sensitive to changes like adding or removing just one

whitespace. We will pay attention to the IFC models derived from other applications like Revit

for it’s hard to modify the IFC model itself currently. So, the format of IFC is fixed and we can

ignore some small changes.

Figure 2: Example to Calculate BH.

3.3 Hash comparison based on the node block

The way to store and query all hash data has a strong impact on the upload time. Here we use

the Redis and bloomfilter (Bloom, 1970) to store and query hash data. To accelerate this process,

we also add the local cache to save the known results. When querying whether this value exists,

first we need to look for it in local hash cache, next the local bloomfilter and finally the Redis

until we get the precious consequence. The process can be shown as Figure 3.

The bloomfilter essentially holds an array of bits of length m. K (k<m) positions of each data

are calculated by k hash functions, and the corresponding position is set to 1 in the array. The

78

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

structure can be shown as Figure 4. When querying, the data is also calculated by these k hash

functions to get the corresponding positions. If the corresponding positions are all 1, it is proved

that the data may exist. If one of them is 0, the data must not exist. It is originally a plug-in in

Redis. We will load these data into one local self-developed bloomfilter before the upload starts

to reduce the impact of network delay.

Figure 3: Hash Querying Process.

Figure 4: Bloomfilter Structure.

3.4 Creating block index in the database

After the model is uploaded, the index that indicates the reference between different nodes and

some other indexes will be constructed, which will also include composite index. All

subsequent query processes are based on these indexes. These indexes include the GlobalId

index, the model index, the reference blocks index etc. According to the document of MongoDB,

for a compound multikey index, each indexed document can have at most one indexed field

whose value is an array. So here we can create as more as possible compound indexes apart

from those who have two fields whose value is an array to help the data querying.

4. Experiments and Results

4.1 Test environment and models

First of all, we need to set up our platform. It includes MongoDB and Redis two databases. To

reduce network delay, we recommend to deploy them on one server or two servers located in

the same high-speed LAN (1GbE we used in our experiments). We chose the latter in order to

present the experimental results better. The following experiments were performed on two

79

https://docs.mongodb.com/manual/core/index-compound/#std-label-index-type-compound

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

laptop computers both equipped with an Intel Core i7-10700F CPU (2.9 GHz), 32GB RAM and

128G hard disk.

For the experimental models we selected three models from different floors of the same building.

We removed parts of these models and got another three models that we called the second

version (V2). Figure 5 presents the first version (V1) and V2 of these models. There are so

many similar elements like pipelines, walls between different models or different versions. All

the evaluations were performed on the six models. The sizes of the six models are 353MB,

360MB, 261MB, 196MB, 11.4MB and 10.8MB from a to f in Figure 5. We used three methods

to upload the models, namely BH, line hash (LH) which means calculating hash line by line

and no hash (NH) which means just storing every line of the IFC models. Two experiments

were carried out for each method and tested removal of the spatial and temporal redundancy

respectively. Because we will not change the BH strategy in the whole experiment, so the results

are independent of the order of upload, which represents the addition or deletion of some parts.

As for the modification, we can regard it as deletion and then addition. So, these experiments

are enough to cover the common operations in the real-world version.

(a) (b)

(c) (d)

(e) (f)

Figure 5: Test models. These models are from the basements of the same building. (a), (c), (e) are V1

models and (b), (d), (f) are V2 models.

80

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

4.2 Evaluation of removing structural redundancy.

We uploaded all the V1 models to test these methods and the Table 1 shows the upload results.

Table 1: Upload V1 models results.

Upload

method
Time (m)

MongoDB

space (MB)

No. of Block or

Line

Redis Mem

(MB)
Mem (GB)

BH 20 788.7 + 400.6 2899510 220.72 5.1

LH 132 653.6 + 682.2 6577498 489.17 5.3

NH 120 993.5+ 940.4 10578153 0 9.3

The occupied MongoDB space is divided into two parts because we need to build some index

for querying. In order to be more intuitive, we show this part of data separately. The first part

is the model data and the second is the index data. The index space is positively correlated with

the number of hashes because we need to build index for every node.

Comparing the results of LH and NH, we can find that there are so many duplicate data between

different models. The method LH can effectively remove these duplicate data but because of

too many hashes, the speed, occupied Redis memory and index space are not satisfactory. By

BH, we reduced the number of hashes to 27% of NH and 44% of LH. Although the space

occupied by model data of BH is bigger than LH, the index takes up much less space than the

other two methods. Due to less hashes, BH is six times faster than the other two methods and

Redis takes less memory. Too many nodes will cause frequent reading and writing of a small

amount of data for MongoDB and Redis, which will greatly affect the upload speed. The

maximum memory occupied by the program during running is also reduced.

4.3 Evaluation of removing version redundancy.

We uploaded the V2 models on the basis of experiment 4.2 and get the final results which are

show in Table 2. Except for the time and memory, all the remaining records are the sum of two

experiments.

Table 2: Upload V2 models results.

Upload

method
Time (m)

MongoDB

space (MB)

No. of Block or

Line

Redis Mem

(MB)
Mem (GB)

BH-V1 20 788.7 + 400.6 2899510 220.72 5.1

BH-V2 15 1.0 GB + 696 3772968 286.05 4.8

LH-V1 132 653.6 + 682.2 6577498 489.17 5.3

LH-V2 98 826.1 +1.2GB 7455914 566.72 3.2

NH-V1 120 993.5+ 940.4 10578153 0 9.3

NH-V2 102 1.9GB+1.78GB 20090161 0 9.1

According to the NH results, the line number of V2 is almost the same as V1. In this experiment

the method LH removed more nodes and the proportion of remaining nodes in the total

decreased from 62% to 37%. In the method BH, the number of blocks is just about 1.3 times of

V1. All these indicate that these two methods can remove lots of redundant data between model

versions. It is still the number of nodes that causes the other two methods to be slow. Although

there is no hash in NH means we don’t need to calculate, save and query the hash, too many

nodes will still cause slow writing to MongoDB and large memory consumption. At the same

81

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

time the index space is also a factor that cannot be ignored. There are so many nodes we will

never query or get. It’s a waste to build index for these nodes. If we take the index space into

consideration, BH’s space occupation will become the lowest. The other advantages of BH are

the same as experiment 4.2.

5. Conclusion

In this work, we have implemented the redundancy-free IFC storage platform which is based

on the BH method. Compared with the other method like the traditional storage ways or the

other hash methods, this approach has the following advantages:

• There is a lot of redundancy between different models or different versions. BH can

help to remove these duplicate data and save space.

• Compared with other method, BH can greatly improve efficiency by reducing the

number of hashes. This method can reduce the reading and writing times of the database,

and organize IFC data more efficiently.

• The memory required for BH operation and Redis is lower which makes it better used

in practical application.

By BH and other improvements we built the redundancy-free IFC storage platform. The

advantages of this platform largely match the current BIM development trend-fast data sharing

and exchange. However, due to the huge amount of data, storage based on database cannot

completely replace file-based storage at present. In this study, MongoDB, a non-relational

database is used to store IFC model data, and some algorithms such as BH and hash querying

acceleration are proposed by using the structural characteristics of IFC, which greatly improves

the usability of BIM database.

This proposed method has been successfully approved that BH is effective. But there are still

some problems to be solved, such as how to reach the optimality, build more efficient indexes

or make the database support more IFC data. The future research may explore how to modify

the current database technology and make it more suitable for the massive, rapid-changing BIM

data.

Acknowledgement

This work was supported by the State Key Laboratory of Rail Transit Engineering

Informatization (FSDI) "Research on the framework of Enterprise Railway BIM collaborative

platform" and the 2019 MIIT Industrial Internet Innovation and Development Project "BIM

Software Industry Standardization and Public Service Platform". The conclusions herein are

those of the authors and do not necessarily reflect the views of the sponsoring agency.

References

Algorri, M.E. and Schmitt, F. (1996, August). Mesh simplification. In Computer Graphics

Forum (Vol. 15, No. 3, pp. 77-86). Edinburgh, UK: Blackwell Science Ltd.

Beetz, J., van Berlo, L., de Laat, R., & van den Helm, P. (2010, November). BIMserver. org–

An open source IFC model server. In Proceedings of the CIP W78 conference (p. 8).

Bloom, B.H., (1970). Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7), pp.422-426.

82

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

Cignoni, P., Montani, C. and Scopigno, R. (1998). A comparison of mesh simplification

algorithms. Computers & Graphics, 22(1), pp.37-54.

Du, X., Gu, Y., Yang, N., & Yang, F. (2020). IFC File Content Compression Based on

Reference Relationships. Journal of Computing in Civil Engineering, 34(3), 04020012.

Jiang, S., Wu, Z. (2018). Research on Cloud Storage and Retrieval Method of BIM Spatial

Relational Data. Journal of Graphics, 39(5), p.835.

Gao, G., Zhang, Y., Liu, H., Li, Z., Gu, M. (2019). Research on IFC Model Checking Method

Based on Knowledge Base. Journal of Graphics, 40(6), p.1099.

Krijnen, T., & Beetz, J. (2016). Efficient binary serialization of IFC models using HDF5. In

Proceedings of the 16th International Conference on Computing in Civil and Building

Engineering (ICCCBE2016) Osaka, Japan.

Li, H., Liu, H., Liu, Y., & Wang, Y. (2016). AN OBJECT-RELATIONAL IFC STORAGE

MODEL BASED ON ORACLE DATABASE. International Archives of the Photogrammetry,

Remote Sensing & Spatial Information Sciences, 41.

opensourceBIM, (2021). Database Versioning · opensouceBIM/BIMserver Wiki · Github,

https://github.com/opensourceBIM/BIMserver/wiki/Database---Versioning, accessed January

2022.

Rivest, R. and Dusse, S., (1992). The MD5 message-digest algorithm.

Singh, V., Gu, N., & Wang, X. (2011). A theoretical framework of a BIM-based multi-

disciplinary collaboration platform. Automation in construction, 20(2), 134-144.

Sun, J., Liu, Y. S., Gao, G., & Han, X. G. (2015). IFCCompressor: A content-based

compression algorithm for optimizing Industry Foundation Classes files. Automation in

Construction, 50, 1-15.

Yuan, C., & Shihua, Y. (2017). Research on HBase-based BIM Model Storage Technology.

Journal of Information Technologyin Civil Engineering and Architecture, 9(4), 74-81.

83

