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Abstract. In the process of building construction, the semantic understanding of building 

point clouds provides potential solutions for efficient building quality supervision, progress 

monitoring, and sub-system deviation analysis. However, the lack of suitable public labeled 

datasets, the low degree of color discrimination and the particularity of multi-system 

coexistence in construction scenes have brought certain challenges to semantic 

segmentation of point clouds. But rich semantic information in related Industry Foundation 

Classes(IFC) can be used to synthesize effective labeled data. Our main contributions are 

as follows:1) We propose a synthetic conversion method from BIM model to point cloud, 

and construct a synthetic dataset for construction scenes based on IFC. 2) We segment the 

colorless point cloud of the construction scene into five types (IfcSlab, IfcBeam, IfcWall, 

IfcColumn, IfcDistributionFlowElement) with Point Transformer and use focal loss to 

improve the segmentation accuracy of small-area components with synthetic data for data 

enhancement. 

1. Introduction

In the building life cycle, the construction phase is a key part to control the quality of the entire 

building, but the traditional way of building supervision relies more on manual inspection. The 

development of 3D laser scanning technology has enabled us to collect and understand 

buildings more conveniently and quickly. Recently, there have been many related studies to 

achieve great progress on point cloud semantic recognition, but they either focus on the indoor 

scenes which contain too many components that are not applicable in the construction scene 

(such as furniture) or only focus on the segmentation of building structural systems (walls, 

beams, slabs, columns) without considering the piping system. In the existing building datasets, 

there are few public datasets only for construction scenes with rich semantic information 

annotations, and also meet the standard for the classification of component types in IFC. At the 

same time, the low degree of color discrimination and the special types of components included 

in the construction scene bring challenges to the point cloud segmentation in the construction 

scene. We found that many IFC models corresponding to construction scenes have not been 

used. If the rich semantic information in IFC can be used to synthesize effective labeled data, 

the problem of data shortage in real construction scenes can be solved.  

Not only for the analysis of deviations between components within a single system, but also for 

subsystem component division, especially when MEP systems and structural systems coexist, 

to meet the regulatory requirements of different systems, we propose an IFC-based point cloud 

semantic segmentation system for building electromechanical coexistence construction 

scenarios.  

The main contributions are as follows: 1) We propose a synthetic conversion method from BIM 

model to point cloud, and construct a synthetic dataset for construction scenes based on the 
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classification of component types in IFC. 2) We segment the colorless point cloud of the 

construction scene into five types (IfcSlab, IfcBeam, IfcWall, IfcColumn, 

IfcDistributionFlowElement) with Point Transformer and use focal loss to improve the 

segmentation accuracy of small-area components with synthetic data for data enhancement. 

2. Related Work 

Quality supervision, progress monitoring, and deviation analysis of buildings in the past relied 

more on manual inspection and has not yet formed a perfect automated process. With the 

development of 3D scanning technology, point clouds have gradually become a format for fast 

scanning and fully expressing building. Point cloud data of buildings under construction can be 

obtained directly or indirectly through laser scanners and RGB-D cameras. Without the 

limitations of image resolution and multi-perspective image processing, the point cloud data 

obtained by laser scanning is more accurate and suitable for the acquisition of construction data 

of large construction scenes, which is also the way we use in our method. 

In order to propose a more automated and efficient solution in quality supervision, progress 

monitoring, and deviation analysis of buildings, many methods have been proposed to compare 

as-built and as-planned buildings. There are two main categories: one is Scan-vs-BIM (Bosché 

et al., 2014; Rebolj et al., 2017; Tran et al., 2019) and the other is Scan-to-BIM (Murali et al., 

2017; Avetisyan et al., 2020; Bosché et al., 2015). The former does not require complete 

modeling of the building, focusing on the comparison of the corresponding structures; the latter 

requires a complete modeling of the building and further analysis based on the modeling results. 

But in both approaches, understanding the semantic information of architectural point clouds is 

crucial. Traditional point cloud segmentation methods are widely used such as methods based 

on area growth which are over-reliance on the selection of seed points and require trade-offs 

between accuracy and efficiency, and methods based on model fitting such as k-means 

clustering algorithms which still need to manually determine K values. 

Compared with traditional segmentation methods, methods based on deep learning can extract 

high-dimensional features from training data better and cluster better.  TangentConv 

(Tatarchenko et al., 2018) projects the 3D point cloud onto the 2D plane, which will lose 

information and not make full use of the spatial features such as the sparseness of the point 

cloud. At the same time, the selection of the projection plane may also seriously affect the 

recognition accuracy. OCTNET (Riegler et al., 2017) converts irregular point cloud data into 

the expression of point cloud voxels and uses coefficient-based convolution to reduce 

computation and memory consumption. Despite this, the loss of geometric information due to 

point-to-voxel conversion is still unavoidable. The Pointnet series of deep learning networks 

that can directly input 3D point cloud output segmentation results is a point-level segmentation 

method which completely retains the geometric information of point clouds. Pointnet (Qi et al., 

2017a)extracts global features for all point cloud data, Pointnet++ (Qi et al., 2017b) can extract 

local features at different scales, through multi-scale combination and multi-resolution 

combination which ensure better feature extraction. However, it’s still not sufficient to learn 

local features of points, so other methods such as graph convolution are proposed. DGCNN 

(Phan et al., 2018)introduced a new module Edgeconv to extract the local features of point 

clouds, and learn the semantic information of point sets by dynamically updating the graph 

structure. But the direction information between points is ignored. 

These methods have been applied to building elements(such as walls, floors). Based on Stanford 

Large-Scale 3D Indoor Spaces(S3DIS) dataset, Collins (2020) uses DGCNN network to divide 

4 classes (pipe system, wall, slab, stair), without taking into account the distinction between 
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walls and columns, which are common and important structures in construction scenarios. Kim 

et al(2020) automatic pipe and elbow recognition from three-dimensional point cloud model of 

industrial plant piping system using the convolutional neural network without considering the 

segmentation of large-area structural components except for the specific subdivision of the pipe 

categories in the MEP system. Correspondingly, Kim et al. (2021) uses DGCNN network to 

divide five types(wall, beam, ceiling, floor and column), without considering the pipe system 

at all. However, in the construction scene, the structure and the pipe system are often integrated, 

and because the distribution of pipe is generally close to the wall or near the beam, it will have 

a certain impact on the division of the two systems. Therefore, how to accurately distinguish 

between two systems and multiple categories within the system also has certain challenges. At 

the same time, the classification criteria in these articles are not unified with the IFC standards, 

which are important in the field of architecture. 

Furthermore, the above deep learning-based methods require a large number of point cloud 

datasets similar to the application scenario, but the existing datasets including S3DIS, 

Scannet,etc contain a large number of interior furniture and the scene color is diverse, which 

are quite different from the construction scene. Due to the high cost of the manual labeling point 

cloud, there are very few point cloud datasets only for construction scenarios that are public 

and meet IFC standards. Considering many IFC files including rich semantic information of the 

building itself in the design stage have not been used, IFC-based method of synthesizing data 

is a good choice. Ma, Czerniawski and Leite (2020) proposes a method of synthesizing data, 

from Revit to point cloud. But it still doesn't shed its reliance on the S3DIS dataset. Therefore, 

we propose a synthesis method for construction scenarios closely integrated with IFC, and use 

the synthesis dataset for data enhancement. 

With the significant improvement achieved by the transformer and self-attention models in the 

image domain, the introduction of self-attention mechanisms on point clouds has been 

motivated. Point transformer (Engel et al., 2021) introduces a local-global attention mechanism 

to combine global and local features which are used to obtain the relationship and shape 

information between points. Point transformer has achieved state of the art in classification and 

segmentation tasks. 

Therefore, to provide a better solution for multi-system and multi-component semantic 

understanding of construction scenes, we propose a method of synthesizing point cloud datasets 

to solve the problem of lack of labeled construction buildings dataset; On the basis of data 

enhancement of synthetic datasets, we use Point transformer to divide construction point clouds 

into five categories (IfcSlab, IfcBeam, IfcWall, IfcColumn, IfcDistributionFlowElement) to 

solve the problem of semantic understanding when multiple systems coexist in the construction 

scene; and focal loss is introduced to solve the problem of unbalanced component samples in 

the construction scene.  

3. Methodology  

The method is mainly divided into two parts: Synthetic dataset based on IFC and Semantic 

segmentation of building point clouds  based on Point transformer. 

3.1 Constructive Conversion Method from BIM to Point Cloud 

Nowadays, more and more related products in the construction industry provide data exchange 

interfaces based on the IFC standard. Especially in construction scenarios. Synthetic  point 

cloud data based on IFC files can effectively make up for the lack of data in construction 

scenarios. 
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The flow chart of the entire BIM to point cloud conversion is as follows: 

 

Figure 1: The flow chart of the entire BIM to point cloud conversion. 

 

Synthesize Point Clouds from IFC.The first step is to construct building foundation 

components datasets automatically. We start from the IFC file of the actual building and 

generate a synthetic data set for training. In the first step, we convert the files from the industry 

foundation class format (.ifc)  to obj format files (.obj) for each object based on CBIMS 

software platform. Second, we performed point cloud sampling and labeling from the mesh of 

the obj files for each foundation components class (such as wall, column, pipe, door, window, 

etc) through open3D. The sampling method is not random sampling but uniform sampling 

according to the size of the area. At the same time, the unit of length and area in IFC is unified 

into meters. 

Label Classification and Data Cleaning Based on IFC Standards.There are more than 20 

common types of IFC in construction scenarios according to statistics, but the main data types 

are IfcSlab, IfcBeam, IfcWall, IfcWallStandardCase, IfcColumn, IfcDoor, IfcWindow, 

IfcFlowFitting...These are also the main component in the construction process. According to 

the business needs of component identification in the construction scene, the IFC type is merged 

and finally focused on the following five types: IfcSlab, IfcBeam, IfcWall, IfcColumn, 

IfcDistributionFlowElement. IfcWall is a mixed representation of IfcWallStandardCase, and 

IfcDistributionFlowElement is a mixed representation of all categories related to IfcFlow. 

IfcBuildingElementProxy is deleted because of not a key category during construction, IfcGrid 

is deleted due to the existence only in IFC and not in actual buildings, and the remaining types 

are included in the other category. 

Extract Different Small Blocks from Point Clouds.Since the point clouds extracted from 

the multi-story building are too large, which is not conducive to segmentation, we divide the 

point cloud data obtained in the previous step into blocks. Different from the point cloud 

voxelization operation, we only convert a large-scale point cloud into a small-scale point cloud 

according to certain rules, and there is no change for base objects.IfcSpace and floor elements 

are two kinds of available information. IfcSpace-based separation methods have certain 

limitations due to the lack of IFC files containing complete IfcSpace information, as well as 

inaccuracies at the edges of the room. Therefore, we first cut multi-story buildings into single-

story buildings, then randomly cut on the XY plane of single-story buildings. Finally, the 

optimal division results are obtained after testing different block sizes through experiments.  

3.2 Semantic Segmentation  Based on Point transformer and Focal Loss  

Semantic Segmentation Network.Point transformer is the classification and segmentation 

network for point clouds proposed by Oxford University et al, which has been verified to 

perform well on many point clouds datasets like S3DIS. And the most important design layer 
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is Point transformer layer. This layer is invariant to arrangement and cardinality, so it is 

essentially suitable for point cloud processing. Besides, U-net structure is used in semantic 

segmentation, including 5 encoders and 5 decoders. The encoder uses Transition Down and 

Point transformer Block to down-sampling and extracts features, and the decoder uses 

Transition Up and Point transformer Block to up-sampling and mapping feature. Figure 3 shows 

the structure of Point transformer. 

 

Figure 4 : The structure of Point transformer. 

Based on Point transformer, we segment the construction scene point cloud into the above five 

types of components with the synthetic point cloud dataset obtained in the previous step as data 

enhancement and compared the effects of different ways of division on semantic segmentation 

through experiments. 

Focal Loss Replaces Cross-entropy Loss. In the construction scene, the number and area of 

slabs and walls are large, and the relative sample number of columns, beams, and pipes is 

relatively small, which leads to the problem of multi-class sample imbalance. Therefore, we 

replace the cross-entropy loss function with the focal loss function, and give different weights 

to different categories according to the number of sample points and the difficulty of 

segmentation, so as to improve the segmentation effect.  

𝐿𝑜𝑠𝑠𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑐 log(𝑝𝑖𝑐)

𝑀

𝑐=1𝑖

 
(1) 

𝐿𝑜𝑠𝑠𝑓𝑜𝑐𝑎𝑙 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑐 ∗ 𝛼𝑐(1 − 𝑝𝑖𝑐)𝛾 𝑙𝑜𝑔(𝑝𝑖𝑐)

𝑀

𝑐=1𝑖

 

(2) 

Equations (1) and  (2) represent the loss calculation formulas of cross-entropy loss and focal 

loss in multi-classification where 𝑀 is the number of label, 𝑦𝑖𝑐  (symbolic function)is 1 if 

ground truth is c, else 0, 𝑝𝑖𝑐 is predicted probability that the observed sample i belongs to the 

class c, 𝑎𝑐 is the weight of class c and 𝛾 is the hyperarameter adjusted according to experiments. 

In the experiment, we set 𝛾 = 0.2, and 𝛼 is adjusted according to the number of samples. 

MLP

Point transformer

Transition Down

Transition Up

(N,32) (N/4,64) (N/16,128) (N/64,256) (N/256,512) (N/64,256) (N/16,128)(N/4,64)(N/256,512) (N,6)(N,32)
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4. Experiments  

4.1 Point Cloud Collection on Real Construction Scenes 

The Trimble x7 laser scanner was used in the point cloud collection process with a scanning 

accuracy of 2mm. There are two types of scanned construction scene buildings. The first 

collection scene is on the tenth floor of a residential building under construction, covering an 

area of about 490 square meters. Most of the scenes are wall, beam, and slab structures, without 

electromechanical pipelines and column components; the second scene is a square in a square. 

On the first floor of the basement, the actual scanned model area is about 8,000 square meters. 

In addition to the basic wall, beam, and slab structures, it includes a large number of column 

structures and electromechanical pipe structures. 

Due to the large amount of data collected on-site results in the high memory usage, the point 

cloud data was down-sampled under the premise of meeting the accuracy requirements, and the 

minimum point distance of the final point cloud was 0.03m. The region is also divided to eight 

sub-scenarios. 

4.2 Synthetic Dataset for Construction Scenes 

According to the synthetic conversion method from BIM to point cloud proposed in Section 3, 

the design model( IFC) of the construction building is converted to a synthetic point cloud 

dataset on the construction site. Each scene is a single-story building, not containing decorations 

such as furniture, and the basic components such as beams, columns, and walls occupy the 

majority. Figure 4 shows one of these synthetic data scenarios.  

 

Figure 4: One Sysnthetic Scene. 

We optimized the size of the block and slide into the Point transformer on synthetic datasets. 

Considering whether the column can be included in a block facade, we set the minimum block 

size to 1m, and test the segmentation accuracy on the synthetic dataset under different parameter 

configurations(see Table 1). In the experiment, block=2.5m and slide=1m achieved the highest 

accuracy. 
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Table 1: The effect of different blocks and slides on the segmentation accuracy of synthetic datasets. 

Block size Slide Accuracy 

5 2.5 0.74 

2.5 1 0.88 

1 0.5 0.62 

4.3 Semantic Segmentation Results  

Through comparison of different block divisions, we choose the optimal parameter (block = 

2.5m, slide size = 1m) to generate the segmentation dataset, and then segment on the synthetic 

data and the real dataset scanned in Section 4.1. 

Table 2: Compare results using S3DIS for enhancement and synthetic data for enhancement. 

Class Acc(S3DIS+real) Acc(synthetic+real) 

IfcSlab 0.990 0.990 

IfcBeam 0.758 0.783 

IfcWall 0.960 0.966 

IfcColumn 0.559 0.905 

Table 2 shows the results of comparative experiments using S3DIS for enhancement and 

synthetic data for enhancement. Since there is no pipe in S3DIS, we only chose four real sub- 

scenarios including only four types (IfcSlab, IfcBeam, IfcWall, IfcColumn), to compare the 

experimental results obtained by using S3DIS for enhancement and synthetic data for 

enhancement. It shows that indoor datasets like S3DIS that contain a large number of furniture, 

stairs, and other irrelevant components and have high color discrimination are not suitable for 

construction scenarios. However, when the synthetic dataset proposed in this paper is used for 

data enhancement, the segmentation accuracy on beams and columns is improved to a certain 

extent.  

Table 3: Compare segmentation accuracy of five types under cross-entropy loss and focal loss. 

Class 
Acc(cross entropy 

loss) 
Acc(focal loss) 

IfcSlab 0.960 0.951 

IfcBeam 0.679 0.794 

IfcWall 0.915 0.837 

IfcColumn 0.122 0.422 

IfcDistributionFlowElement 0.695 0.746 

In order to better distinguish pipe in the MEP system and important structural components, we 

added four construction sub-scenarios containing pipe and structural categories. At the same 

time, in order to improve the segmentation effect of beams and columns, we use focal loss 

function.  We compared the segmentation accuracy of five types under cross entropy loss and 

focal loss(see Table 3). We compared IOU of five types under cross-entropy loss and focal 

loss(see Table 4). 
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Table 4: Compare IOU of five types under cross entropy loss and focal loss . 

Class 
IOU(no focal 

loss) 
IOU(focal loss) 

IfcSlab 0.905 0.913 

IfcBeam 0.470 0.431 

IfcWall 0.677 0.640 

IfcColumn 0.106 0.248 

IfcDistributionFlowElement 0.612 0.655 

Table 4 shows that after replacing the loss function with our segmentation network, the 

segmentation accuracy of beams, columns, and pipes is improved, especially for columns, while 

the segmentation accuracy of beams and walls remains unchanged. Figure 5 shows three real 

sub-scene segmentation results, the left column is ground truth, and the right column is the 

segmentation result.  

 

Figure 5: Three real sub-scene segmentation results, the left column is ground truth, and the right 

column is the segmentation result. 

IfcSlab

IfcBeam

IfcWall

IfcColumn

IfcDistributionFlowElement
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5. Conclusion & Outlook 

In this paper, a more efficient solution is proposed for multi-system multi-component semantic 

understanding, from generating data, to proposing methods and solving special difficulties in 

construction. In view of the lack of synthetic data of construction buildings, we propose a method for 

generating synthetic point cloud datasets from IFC, which automatically generates annotated synthetic 

point cloud datasets. Aiming at the problem of non-uniform component classification standards, we use 

IFC as a reference to determine the category of segmentation objects to ensure the unification of 

upstream and downstream tasks. Aiming at the inaccurate segmentation of multi-category components 

in multiple systems, we use synthetic datasets for data enhancement, segment the construction point 

cloud into five categories(IfcSlab, IfcBeam, IfcWall, IfcColumn, IfcDistributionFlowElement) with a 

better segmentation network Point transformer, and introduce focal loss to solve the problem of 

unbalanced component samples in construction scenes. We hope that more good methods can be 

proposed in the future to solve the problem of semantic information understanding in more subdivided 

categories for construction scenarios. 
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