
29th International Workshop on Intelligent Computing in Engineering (EG-ICE) 

Modeling and Validating Temporal Rules with Semantic Petri-Net for 
Digital Twins 

Liu H.1, Song X.2, Gao G.1,3,*, Zhang H.1,3, Liu Y.1,3, Gu M.1,3 
1 Tsinghua University, China. 2 Portland State University, United States. 3 Beijing National Research 

Center for Information Science and Technology (BNRist), China.  
gaoge@tsinghua.edu.cn 

Abstract. Semantic rule checking on RDFS/OWL data has been widely used in the construction 
industry. At present, semantic rule checking is mainly performed on static models. There are still 
challenges in integrating temporal models and semantic models for combined rule checking. In this 
paper, Semantic Petri-Net (SPN) is proposed as a novel temporal modeling and validating method, 
which implements the states and transitions of the Colored Petri-Net directly based on RDFS and 
SPARQL, and realizes two-way sharing of knowledge between domain semantic webs and temporal 
models in the runtime. Several cases are provided to demonstrate the possible applications in digital 
twins with concurrent state changes and dependencies. 

1. Introduction

The digital twin technology integrates spatio-temporal data with domain semantic models, 
which enables tracking and simulating the change of building components, users and 
environment over time. There have been various applications of digital twins in construction 
and asset management stages in the construction industry. 

Semantic rule checking on RDFS/OWL data have been widely used in the construction industry 
(Pauwels, et al., 2015; Beach, et al., 2015; Zhang, et al., 2019). At present, semantic rule 
checking is mainly performed on static models, in which the properties and relationships do not 
change in time. There have been researches about spatio-temporal rule checking, such as 
extending SPARQL for querying geometries (Battle and Kolas, 2011; Zhang, et al., 2018) and 
time periods (Koubarakis and Kyzirakos, 2010). However, digital twin applications usually 
have more complicated temporal states than just time periods, and also rule constraints to decide 
whether a state change is allowed. Such rules are closely related to semantic properties and 
relationships, so there is a requirement in integrated semantic and temporal rule checking. 

Temporal modeling methods such as Finite State Machines (FSM) (Mealy, 1955; Moore, 1956), 
Colored Petri-Nets (CPN) (Jensen, 1987) and Business Process Modeling Notation (BPMN) 
(Decker, et al., 2010) are used in modeling the temporal states and rules. Related researches 
have focused on the interaction between temporal models and semantic webs. However, there 
are still challenges in two-way sharing of knowledge in the runtime for supporting integrated 
semantic and temporal rule checking. 

In this paper, based on the CPN method, the Semantic Petri-Net (SPN) is proposed as a novel 
temporal modeling method. The temporal states and transitions are defined in RDFS, and the 
temporal transition rules are represented in SPARQL statements. As a result, SPN can run on 
semantic engines like Apache Jena and dotNetRDF, which enables direct usage of the vast 
semantic information in the domain semantic web such as ifcOWL (Beetz, et al., 2009) in the 
runtime of the temporal model. Experiments are performed to show the SPN application cases 
in modeling concurrent state change with dependencies and implementing automatic agents in 
the process maps. 
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2. Related Work

2.1 Temporal Modeling Methods 

FSM is a popular method for modeling temporal states in the information industry. FSM 
represents a temporal model with a finite set of states, an input alphabet, and a global transition 
function defining the next state on each input. FSM is suitable for modeling systems in response 
to various signals or events, so that analysis tools such as temporal logic checking can be 
performed on the system. 

BPMN is commonly used in engineering and project management, which represents events, 
activities and gateways in process maps. BPMN is suitable for modeling concurrent systems 
with multiple participants, such as a streamlined workflow. In the construction industry, BPMN 
is introduced in the Information Delivery Manual (IDM) (buildingSMART, 2010) method for 
representing the process maps of BIM data exchange. 

Petri-Net and its variant methods are also widely used in modeling concurrent systems, among 
which the CPN is a method with both formality and ease of use. A Petri-Net is a graph with 
“places” to store tokens, “transitions” to consume and generate tokens, and “arcs” as the 
connection between places and transitions. CPN is a type of high-level Petri-Net with rules on 
places, transitions and arcs. Each token in a CPN can have an attached data value named a 
“color”, which must be defined in a finite “colorset”. A CPN can be equivalently unfolded to 
low-level Petri-Nets without colors, which enables mathematic tools (such as state space 
analysis and place invariant analysis) for applying temporal logic computation on the 
concurrent systems (Jensen and Kristensen, 2009). 

CPN is powerful in modeling and analyzing both sequential and concurrent systems, and both 
FSM and BPMN can be implemented using CPN. It is also known that the extended CPN with 
an infinite colorset is Turing-complete (Peterson, 1980). In this paper, the Semantic Petri-Net 
is proposed based on the CPN, with the purpose to extend the ability in accessing the knowledge 
in semantic webs, and meanwhile to keep the downward compatibility to the mathematic tools 
for Petri-Nets. 

2.2 Interaction between Temporal Models and Semantic Webs 

Related researches have focused on the interaction between temporal models and semantic webs. 
The researches can be classified into the following topics. 

Describing the static structure of a temporal model using an ontology. The contents of the 
ontologies are mainly about the temporal models themselves, but not much domain knowledge 
is included. The described temporal models include FSM (Belgueliel, et al., 2014), BPMN 
(Natschläger, 2011; Rospocher, et al., 2014; Annane, et al., 2019) and Petri-Nets (Gašević, 2004; 
Ma and Xu, 2009; Zhang, et al., 2011). 

Knowledge-based generation of temporal models. Based on the knowledge graph of a certain 
domain, a temporal model is generated to perform as a runnable agent, for implementing a 
certain task such as a classifier (Yim, et al., 2011) or a workflow simulator (Wang, et al., 2007; 
Arena and Kiritsis, 2017). In such researches, domain knowledge is introduced in initializing 
the temporal models, but is no longer be referred to in the runtime. 

Knowledge sharing in the runtime of temporal models. Such researches try to transfer 
information in the runtime either from the semantic web to the temporal model or in the opposite 
way. The Petri-Nets over Ontological Graphs (PNOG) (Szkoła and Pancerz, 2017) uses 
knowledge from the semantic web in the runtime of a Petri-Net, in which the tokens are with 
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hierarchical classification, and the synonyms and hyponyms rules are supported. Knowledge-
driven FSM (Moctezuma, et al., 2015) and DARPA Agent Markup Language (DAML) 
(Hendler, 2001) write the structure and the current state of an FSM into the semantic web, so 
that the current state and next states can be queried through a SPARQL endpoint. 

Compared with the previous researches, the idea in this paper is to implement a runnable Petri-
Net based on a semantic engine, for realizing the two-way sharing of knowledge between 
domain semantic webs and temporal models in the runtime, so that the SPARQL statements 
can be used inside the temporal model as transition rules concerning domain knowledge, and 
also outside the temporal model as domain queries concerning current temporal states. 

A more detailed literature review of researches on knowledge sharing between temporal models 
and semantic models can be found in reference (Cheng and Ma, 2016). 

3. Semantic Petri-Net 

The definition of SPN is provided in section 3.1. The representation of SPN structure in RDFS 
is shown in section 3.2. The implementation of SPN rules in SPARQL is shown in section 3.3. 
The downward compatibility of SPN is discussed in section 3.4. 

3.1 The Definition of SPN 

For a semantic web 𝐖, let 𝚺 be its vocabulary, which is a finite set of terms (including literals 
and URIs) that are allowed in the semantic web. Using 𝚺 as the colorset, the definition of SPN 
inherits from CPN, which is a tuple 

SPN = ⟨𝚺, 𝐏, 𝐓, 𝐀, 𝐍, 𝐂, 𝐆, 𝐄, 𝐈 ; 𝐖⟩  (1) 

P, T, A, N are about the structure of an SPN, and C, G, E, I are about the rules in the SPN. P 
is the set of places, T is the set of transitions, A is the set of arcs, and N is the assignment of 
each arc to link one place and one transition. C is the assignment of a subset of allowed colors 
to each place. G is the set of guard rules, which assigns each transition with a rule that returns 
a boolean value, deciding whether this transition is enabled. E is the set of arc expressions, 
which assigns each arc with an expression that returns a multiset of tokens, deciding which 
tokens to consume (place-to-transition arcs) or to generate (transition-to-place arcs). I is the 
assignment of an initial multiset of tokens to each place. Usually, the places are drawn as circles, 
the transitions are drawn as boxes, the arcs are drawn as directed arrows, and the tokens are 
drawn as little dots contained in the places. 

The unit of the behavior of CPN is a “binding”. A transition has a set of arguments, which is 
shared in the guard rules and the arc rules. A binding is an assignment of values to each 
argument, and a transition is enabled when the guard rule returns true, and there are enough 
tokens to consume in each input place according to the returned values of the corresponding arc 
expressions. SPN inherits the binding behavior of CPN, which is implemented by evaluating 
SPARQL queries and handling the tokens in the RDF graph. 

3.2 SPN Structure Representation in RDFS 

The RDFS classes and properties for representing SPN structures are with the namespace 
“spn:”. The classes and properties for representing SPN structures are listed in Table 1. 

Transitions. A transition is of the class spn:Transition, which may have a guard rule 
related with spn:guardRule. The arguments used in the guard rule and all related arcs are 
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related with spn:hasArg. If the guard rule is not assigned, by default the transition is always 
enabled as long as enough input arguments are provided in a binding. 

Places. Based on the Linked Data Platform (LDP) standard (W3C, 2015), the spn:Place is 
defined as a subclass of ldp:Container, in which the contained tokens are linked with 
ldp:contains. By implementing SPN place based on LDP container, the SPN place can be 
used in maintaining dynamic relationships in RDF, and the HTTP requests defined in the LDP 
standard can be adopted in manipulating the contained tokens in the SPN place. The 
spn:colorRule defines the allowed colors for the place, which can return a boolean value 
deciding whether a token is allowed. The spn:initRule defines the rule to get the initial 
tokens for the place. 

Arcs. The spn:Arc is the abstract superclass for arcs, which must relate one place with 
spn:relPlace and one transition with spn:relTransition. The spn:Arc has two 
subclasses: spn:ArcT2P is for arcs pointing from a transition to a place, and spn:ArcP2T 
is for arcs pointing from a place to a transition. An arc must have at least one argument with 
spn:hasArg, and all arguments must also be assigned to the related transition. An arc 
expression can be related with spn:arcExpr to calculate the tokens to be consumed or 
generated. When there is only one argument, the arc expression can be null and the argument 
is directly consumed or generated. 

Table 1: SPN structure components in RDFS. 

Class Property Range Cardinality Description 

spn:Transition 

spn:guardRule spn:Rule 0:1 
A boolean rule deciding whether 
the transition is enabled. 

spn:hasArg spn:ArgDef 1:? 
Definition of arguments used in 
guard rules and arc rules. 

spn:Place 

ldp:contains rdfs:Resource 0:? Contained tokens. 

spn:colorRule spn:Rule 0:1 
A boolean rule deciding whether a 
token is allowed in the place. 

spn:initRule spn:Rule 0:1 A rule assigning initial tokens. 

spn:Arc 

spn:relPlace spn:Place 1:1 Related place. 

spn:relTransition spn:Transition 1:1 Related transition. 

spn:arcExpr spn:Rule 0:1 
An arc expression deciding which 
tokens to consume or to generate. 

spn:hasArg spn:ArgDef 1:? 
Definition of arguments, must be a 
subset of the arguments of the 
related transition. 

3.3 SPN Rule Implementation in SPARQL 

The SPN rules are formed as a tree structure in RDFS, in which each leaf node has a SPARQL 
statement. The classes and properties for representing SPN rules are listed in Table 2. 

The spn:Rule is the abstract superclass of all SPN rule nodes, which has the following 
subclasses:  

 The spn:SPARQLRule contains a SPARQL statement. 
 The spn:ConstantRule contains a constant which can be any URI or literal value. 
 The spn:CompoundRule contains multiple sub-rules connected by a logical operator 
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(AND, OR, XOR, or NOT), and each sub-rule returns a boolean value. Specifically, there 
can be only one sub-rule with a NOT operator. 

 The spn:ConditionRule contains an “if” sub-rule returns a boolean value, and 
with the true and false conditions returned by the “if” sub-rule, the “then” and “else” 
sub-rules are checked respectively. 

The rule nodes compose a rule tree structure, in which each leaf node should be an 
spn:SPARQLRule or an spn:ConstantRule. The SPARQL statements can be ASK 
queries returning a boolean value, or SELECT queries returning the queried tokens from the 
semantic web.  

The spn:ArgDef is the class for defining the name and allowed types of an argument, which 
can be assigned to the transitions and arcs. The name of the argument is used as the input 
variable in SPARQL statements.  

Table 2: SPN rule components in RDFS. 

Class Property Range Cardinality Description 

spn:SPARQLRule spn:hasSPARQL xsd:string 1:1 The SPARQL statement of the rule 

spn:ConstantRule spn:hasValue rdfs:Resource 1:1 The constant value of the rule 

spn:CompoundRule 

spn:operator xsd:string 1:1 
The logical operator. The allowed 
values are AND, OR, XOR, and NOT. 

spn:subRule spn:Rule 1:? 
The sub-rules connected by 
operator. 

spn:ConditionRule 

spn:if spn:Rule 1:1 
The “if” condition rule, which must 
return a boolean value. 

spn:then spn:Rule 1:1 
The “then” condition rule when 
“if” condition returns true. 

spn:else spn:Rule 1:1 
The “else” condition rule when “if” 
condition returns false. 

spn:ArgDef 

spn:argName xsd:string 1:1 The argument name. 

spn:argType rdfs:Class 0:? 
Allowed argument types in a 
binding. 

3.4 Downward Compatibility of SPN 

In CPN, the tokens are unrelated and the rules are static, so that the actions in a far-away 
transition do not change the behavior of a local transition, which is essential for the analysis of 
concurrent systems. While in SPN, the latent connections between tokens are introduced from 
domain semantic webs, so the local behavior may change due to a far-away transition. The 
benefit is that the structure of the Petri-Net can be simplified without explicitly representing the 
coupled states. However, the downward compatibility of SPN is necessary to ensure that the 
concurrency analysis methods for CPN are still applicable for SPN. 

The conversion of the SPN to an equivalent CPN can be inspired by the “unfolding” of a CPN 
to lower-level Petri-Nets. Figure 1(a) shows an example unfolding of a CPN. A colored place 
is represented as multiple non-colored places corresponding to each allowed color of this place. 
A transition with conditions can be represented as multiple sub-transitions dealing with each 
condition, which can always be established by listing all possible bindings due to the “finite 
colorset”. 
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In this section, a three-step unfolding process for SPN is proposed for obtaining an equivalent 
CPN, as shown in Figure 1(b).  

Step 1: putting all variables of the domain semantic web inside the SPN. This ensures a 
“static domain semantic web” condition, in which the latent connections in the domain semantic 
web are not changeable by external editing operations. This can be done by representing all 
variable items in the domain semantic web as LDP containers, and representing the editing 
operations as transitions connected to the containers, since the LDP method is recommended 
for maintaining variable members and relationships in a semantic web. 

Step 2: splitting latent semantic connections into explicit arcs. The SPARQL rules in SPN 
may concern latent connected remote tokens. In the “static domain semantic web” condition, 
for each SPARQL rule, a finite set of concerned remote tokens can be listed, and then a finite 
set of concerned remote places which may contain such tokens can be listed. As a result, the 
latent semantic connections can be split into explicit arcs. For each remote place, a pair of arcs 
are added for fetching the remote tokens and sending them back to keep the remote place 
unchanged. 

Step 3: implementing SPARQL rules in CPN. Similar to the unfolding of CPN, due to the 
“finite vocabulary”, the SPARQL rules can always be equivalently implemented in CPN, at 
least by listing all possible conditions of the bindings. There are also related researches about 
simplified unfolding methods (Liu, et al., 2012) rather than listing the bindings, which is out of 
the scope of this paper. 

                 
(a) unfolding a CPN to non-colored Petri-Net.    (b) unfolding an SPN with latent connections to CPN. 

Figure 1: Examples of unfolding CPN and SPN. 

4. Application Cases 

In this section, two cases are provided to demonstrate the applications of SPN in modeling state 
changes with dependency in the construction industry: dependency checking in the construction 
process, and automatic agent for building information delivery. The system is developed based 
on the dotNetRDF as a SPARQL query engine. The experiments are performed on a PC with a 
3.60GHz processor and 16GB of physical memory. 

4.1 Case 1:  Dependency Checking in Construction Process 

The digital twin for modeling the construction process of an asset can be represented as a spatio-
temporal model in which each building object changes the state from “unbuilt” to “built”. There 
are various dependency rules for deciding whether a state change is allowed, such as the amount 
of material and tools, the time period constraint, the state of host objects, or some permission 
files. In this section, an SPN use case is provided for modeling the construction process and 
checking the state change dependencies. A sample model of an office building (NIBS, 2012) is 
used in the experiment, as shown in Figure 2(a). The input data is a schedule of the starting and 
ending times for the construction phases of the levels, in which each phase corresponds to a 

…
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discipline, including structure (ST), architecture (AR) and mechanical-electrical-plumbing 
(MEP), as shown in Figure 2(b).  

     

 
(b) The input schedule data for 4 levels.           (c) The SPN structure and dependency relationships. 

proj:T_Level_End_Struct  a                     spn:Transition; 
                         bimspn:disciplineTag  "STRUCT"; 
                         spn:guardRule         proj:cprule_0; 
                         spn:hasArg            "?TOKEN". 

proj:cprule_0  a             spn:CompoundRule; 
               spn:operator  "NOT"; 
               spn:subRule   proj:sprule_1. 

proj:sprule_1  a              spn:SPARQLRule; 
               spn:hasSPARQL  "ASK { 
                         ?place a spn:Place.  
                         ?place bimspn:disciplineTag ?dTag1.  
                         ?SELF  bimspn:disciplineTag ?dTag2.  
                         ?place bimspn:stateTag ?sTag.  
                         FILTER (?dTag1 = ?dTag2 && ?sTag != 'END')  
                         ?TOKEN ifc4:containsElements/ifc4:RelatedElements ?elem.  
                         ?place ldp:contains ?elem. }". 

(d) The RDF representation of an example transition and its guard rule nodes. 

Figure 2: A use case of SPN in dependency checking in the construction process. 

For each type of building objects, the states are represented as a series of places, and the 
dependencies are represented as the guard rules of the transitions. Small building components 
have two states (uninstalled and installed), and large components like walls and slabs have three 
states (not-started, in-processing and finished). The generated SPN structure is with 70 places 
and 43 transitions, as shown in Figure 2(c), with latent semantic connections as dashed arrows. 

The states of the levels are concerned in the guard rules of other building objects with the 
“IfcRelContainedInSpatialStructure” relationships. The relationships between 
building objects are also included. For example, the openings must be installed during the 
construction of the host walls, and the installation of windows and doors must be after the finish 
of the host openings and walls. Other constraints added into the guard rules include maximum 

(a) The sample model. 
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allowed tokens in each place, maximum triggering count allowed in one day for each transition, 
and minimum time span since the last state change for each token. In our experiment, there are 
in total 135 rules added to the SPN. Figure 2(d) shows the RDF representation of an example 
transition that ends the structure construction phase of levels, in which the guard rule requires 
that for each level (the “?TOKEN”), all structural objects contained in the level must be at the 
end place before the level is allowed to end the phase. 

On initializing the model, the 4 levels and 7140 building objects from the IFC model are 
dispatched to the starting places as tokens. In our experiment, a clock ticks to simulate the days 
going by, and the guard rules are checked on each day to trigger the enabled transitions. The 
result shows whether the schedule is reasonable, or some sub-processes would stop with objects 
unfinished. In the experiment, the 90-days simulation finishes in 712 seconds with rules 
checked 441162 times and transitions triggered 8200 times in total. 

Considering a real digital twin application, the transitions can be triggered manually or by 
sensors, and the guard rules are checked to ensure that the state changes are allowed, and to 
provide next-day recommendations according to a current state. 

4.2 Case 2: Automatic Agent for Information Delivery Process 

IDM is a standard method defining the process maps, use cases and information requirements 
in the delivery of BIM data between multiple parties. The SPN can be used to represent the 
process map, so that the states of the process can be queried through SPARQL. If automatic 
agents are included in the process map, the agent workflow can also be implemented in SPN.  

   
(a) A partial BPMN process map for BIM data exchange. 

  

(b) The SPN implementation of the agent with MVD checking module. 

  

(c) The structure of an MVD checking pipe. 

Figure 3: A use case of SPN in modeling the information delivery process. 
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The IDM method uses Model View Definition (MVD) for checking the compliance of data with 
information requirements. The MVD checking can be triggered by an automatic agent. Figure 
3(a) shows a partial process map of BIM data exchange, in which an agent performs MVD 
checking on receiving the model to decide whether accept it. Figure 3(b) is the representation 
of the process map in SPN. Specifically, if the data is in RDF, the MVD checker can also be 
implemented with SPN. Figure 3(c) is the structure of a “checking pipe” for implementing the 
MVD checking process. An MVD rule is composed of an applicability rule and a constraint 
rule for a certain type of root entities. In running a checking pipe, first, the root entities are 
fetched from the model into place P1; next, the applicability rule is performed to filter the 
applicable entities into place P2; then, the constraint rule is performed for filtering the passed 
entities into place P3, and leaving unpassed entities in place P2. 

In our experiment, the property existence rules from IFC4 Reference View MVD 
(buildingSMART, 2018) are used. An SPN is generated with 119 checking pipes and 1865 rule 
nodes. Using the same model in Figure 2(a) as input, the checking pipes are performed 
concurrently and the checking task finishes in 253 seconds. 

 

5. Conclusion and Future Work 

In this paper, the SPN is proposed as a novel temporal modeling and validating method directly 
based on RDFS and SPARQL, which realizes two-way sharing of knowledge between domain 
semantic webs and temporal models in the runtime. Compared with the current semantic model 
checking methods for BIM data, the SPN method explores a new scenario where the rule 
constraints are not only about the entities and relationships, but also about the process. Several 
cases demonstrate the ability of SPN in integrated rule checking involving both semantic 
information and temporal states, which shows the possible usage in digital twins with 
concurrent state changes and dependencies. 

One topic for future work is to improve the usability of the current method. A more user-
friendly way to compose the state model and define the constraints is needed for spreading the 
application in real projects. Another interesting topic is applying various concurrency analyses 
(such as state space analysis and place invariant analysis), and also involving logical quantifiers, 
especially those for temporal logic (such as Linear Temporal Logic and Computation Tree 
Logic) in SPN models, which can be helpful in complicated digital twin applications such as 
resource allocation and optimization. 
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