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III. English summary

Digital technologies are gaining an increasingly prominent role in Danish primary and lower 

secondary school mathematics education. The expectations are that digital technologies can support 

students’ development of mathematical competencies. However, studies have demonstrated that the 

insertion of digital technologies into school mathematics does not automatically correspond to 

increased student learning outcomes (OECD, 2015). In fact, digital technologies can both produce 

marvels and cause disasters in mathematics teaching and learning (Niss, 2016). How digital tools are 

implemented seems to be essential. It is, therefore, a crucial research objective to unveil how didactic 

sequences may be designed for the efficient implementation of digital tools. 

The overarching purpose of this dissertation is to identify guidelines for the design of didactic 

sequences that exploit potentials of dynamic geometry environments (DGEs) in relation to supporting 

students’ development of mathematical reasoning competency in Danish lower secondary school. 

The dissertation consists of five papers and this summarizing report – which, altogether, seeks to shed 

light on the abovementioned purpose by first examining what the potentials of DGEs in relation to 

reasoning competency are according to previous mathematics education research (paper I) and then 

examining the extent to which these potentials are currently utilized in Danish lower secondary school 

(paper II). Based on these initial studies, guidelines are identified for the design of didactic sequences 

that utilize these potentials to support students’ development of mathematical reasoning competency 

(papers I, III, IV and V). 

Methodologically, a mixed methods approach was applied with a qualitative priority. The quantitative 

data were collected from a web-based questionnaire that was developed and distributed to lower 

secondary school teachers. Anchored in design-based research methodology, the qualitative data were 

collected in connection with the design, testing and redesign of a didactic sequence in five different 

school classes. The data that were collected in the iterations of design are screencast recordings, 

videos, interviews, audio recordings and students’ written products. 

The results from the project can coarsely be summarized as follows: In the review of mathematics 

education research, four DGE potentials were identified in relation to mathematical reasoning 

competency: dragging, feedback, measuring and tracing (paper I). The results of the survey indicate 

that these potentials are only exploited to a limited extent in lower secondary schools (paper II). The 

utilization of the potentials is described in guidelines that comprise a learning trajectory in terms of 
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students’ cognition, task design and the role of the teacher. The a priori guidelines that are 

theoretically developed initially (paper I) are subsequently refined empirically based on the data that 

emerged in the design-based research (papers III, IV and V), leading to a posteriori guidelines 

(Chapter 5). 

The dissertation was completed in the period 1 January 2018–31 December 2020. 

IV. Dansk resume

Digitale teknologier får en stadig mere fremtrædende rolle i grundskolens matematikundervisning. 

Forventningerne er at digitale teknologier kan understøtte elevers udvikling af matematiske 

kompetencer. Imidlertid viser studier at brugen af digitale teknologier ikke garanterer større 

læringsudbytte (OECD, 2015). Faktisk kan digitale teknologier både bidrage til mirakler, men også 

forårsage katastrofer i matematikundervisningen, og det lader til at være af essentiel betydning 

hvordan undervisningen omkring IT-værktøjet designes (Niss, 2016). 

Formålet med denne afhandling er at identificere principper for design af undervisning, der udnytter 

potentialer ved dynamiske geometri miljøer i forhold til at understøtte elevers udvikling af 

matematisk ræsonnementskompetence i grundskolens udskoling. 

Afhandlingen består af fem papers og denne kappe, som tilsammen søger at belyse det ovennævnte 

overordnede formål ved først at undersøge hvilke potentialer der er ved DGE ifølge tidligere 

matematikdidaktisk forskning (paper I), for derefter at undersøge i hvilken udstrækning disse 

potentialer udnyttes aktuelt i grundskolens udskoling (paper II). Med udgangspunkt i disse indledende 

studier identificeres guidelines til design af undervisningsforløb der udnytter disse potentialer til at 

understøtte elevers udvikling af matematisk ræsonnementskompetence (paper I, III, IV, V). 

Metodisk anlægges et mixed methods design med kvalitativ prioritet. De kvantitative data indsamles 

i form af et web-baseret spørgeskema som blev udviklet og distribueret til udskolingslærere. 

Forankret i design-based research metodologi indsamles de kvalitative data i forbindelse med design, 

test og re-design af et undervisningsforløb i fem forskellige skoleklasser. De data, der indsamles i 

designiterationerne, er screencast-optagelser, video, interviews, lydoptagelser og de studerendes 

skriftlige produkter. 

Resultaterne fra projektet kan groft sammenfattes som følger: 
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I gennemgangen af matematikdidaktisk forskning, identificeres fire DGE-potentialer i relation til 

matematisk ræsonnementskompetence; dragging, feedback, måling og sporing (papir I). Resultaterne 

fra spørgeskemaundersøgelsen viser, at disse potentialer kun udnyttes i begrænset omfang i 

grundskolens udskoling (papir II). Udnyttelsen af potentialerne er beskrevet i guidelines, der omfatter 

en læringsbane med hensyn til elev kognition; opgave design og lærerens rolle. A priori guidelines, 

der oprindeligt er teoretisk udviklet (paper I), videreudvikles efterfølgende empirisk, baseret på de 

data, der fremkommer i design-based research delen (paper III, IV og V), hvilket fører til a posteriori 

guidelines (kapitel 5). 

Afhandlingen er gennemført i perioden d. 1 januar 2018 til d. 31 december 2020. 
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1. Introduction 

1.1. Problem and motivation 

Over the last decade, dynamic geometry environments (DGEs hereinafter) – in particular, GeoGebra 

(https://www.geogebra.org/) – have become popular and extensively used in Danish primary and 

lower secondary school (Blomhøj, 2016; Jankvist et al., 2018; Ministeriet for børn, undervisning og 

ligestilling, 2016). In fact, in 2018, Denmark was the country in the world with the most unique users 

on the GeoGebra website relative to the size of the population (M. Hohenwarter, personal 

communication, April 4, 2018). 

Studies have shown that DGEs contain potentials that may be exploited in activities to support 

students’ development of mathematical reasoning (e.g., Arzarello et al., 2002; Baccaglini & Mariotti, 

2010; Edwards et al., 2014; Laborde, 2001; Leung, 2015). From this perspective, the trend of 

increased DGE usage in Denmark may be considered a positive development, especially in light of 

the fact that students’ reasoning abilities are apparently underdeveloped in Denmark (Jessen et al., 

2015; Larsen & Lindhart, 2019). However, even if DGE usage is widespread, students’ accessibility 

to digital tools, such as DGEs, does not guarantee a greater learning outcome (OECD, 2015). In fact,  

the very same piece of digital technology can give rise to “marvels” as well as to “disasters” 
in mathematics education. This means that no ICT system, hard or soft, is, in and of itself, 
good or bad for mathematics education. (Niss, 2016, p. 247) 

The way that DGE is used, and the way students appropriate it, seems to be essential (Jones, 2005). 

The motivation underlying this project partly stems from the hypothesized problem that the utilization 

of DGE potentials in relation to mathematical reasoning is limited in Danish primary and lower 

secondary school, despite the fact that DGEs (GeoGebra in particular) are quite popular. 

The Danish KOM framework1 (Niss & Højgaard, 2011, 2019; Niss & Jensen, 2002),2 which is used 

in the Danish curriculum, describes the development of mathematical reasoning in terms of 

possession of mathematical reasoning competency. The notion of mathematical competencies has 

gained growing attention in mathematics education research all around the world, although 

1 The KOM framework, an acronym for “competencies and mathematical learning”, was published in Danish in 2002 and 
in English in 2011. 

2 Note that Jensen and Højgaard are the same author who changed their surname between publications. 
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conceptualizations of the notion differ (Niss et al., 2016). According to Niss et al. (2016), it is 

important that we understand and develop educational practices that may support students’ 

development of mathematical competencies. 

Fostering, developing and furthering mathematical competencies with students by way of 
teaching is a crucial […] priority for the teaching and learning of mathematics [...] We now 
need to understand the specific nature of the contexts and other factors that help create such 
progress. (Niss et al., 2016, p. 630) 

Departing from this point of view, it is important that we understand the specific factors that are 

involved in the context of DGE teaching/learning when the educational aim is to support students’ 

development of mathematical reasoning competency. It is important to unveil how thoughtfully 

designed DGE teaching/learning sequences can contribute to creating “marvels” in Danish lower 

secondary school mathematics, as well as around the world. That is the endeavor that this project 

aims to contribute toward. 

1.2. A brief historical view on DGE internationally and in Denmark 

Since the introduction of DGEs in the early 1980s, the programs have assumed an increasing presence 

in mathematics classrooms in countries all over the world and now play a nontrivial role in 

mathematics teaching and learning at several educational levels. The very first program, the 

Geometric Supposer, was developed by Judah L. Schwarz and Michal Yerushalmy in the early 1980s 

at MIT’s Educational Development Center, and it could run on Apple II (Oldknow, 1997). Early 

educational research studies on the Geometric Supposer highlighted the possibility for students to 

create geometry that could complement the traditional emphasis in geometry teaching on the 

comprehension of deductive mathematical systems and the fact that it allowed students to efficiently 

test conjectures with great speed (Yerushalmy & Houde, 1986). The Geometric Supposer allowed 

students to study predefined shapes but did not have draggable objects – which was the next step in 

the evolution of programs that came with Cabri Géomètre, developed by Jean-Marie Laborde in the 

mid-to-late 1980s (http://www.cabri.net/cabri2/historique-e.php; Laborde & Laborde, 1995), and 

Geometer’s Sketchpad, created by Nicholas Jackiw (Jackiw, 1991). Cabri Géomètre was widespread 

in France and the UK, while Geometer’s Sketchpad was prevalent in the US (Oldknow, 2001). These 

programs, which were similar in many aspects, provided construction tools of objects such as points 

and lines, as well as tools that could be used in the Euclidian plane, such as an angle bisector or 

reflections in a line, and granted the possibility of measuring figures and making calculations with 
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them. One difference between the programs was that in Cabri, the user would select the operation 

first and then the objects to which the operation should be performed, whereas in Geometer’s 

Sketchpad, you would first select the objects and then the operation (Oldknow, 2001). Several other 

programs were developed in the years to come – for example, Geometry Inventor (Clements, 1995), 

Thales (Fabricz et al., 1990) and Cinderella (http://www.cinderella.de; Richter-Gebert & 

Kortenkamp, 2000). As the hardware platforms improved quickly over time, so did the affordances 

of the DGE software. GeoGebra was developed by Markus Hohenwarter in 2001/2002 during his 

master’s thesis (Hohenwarter, 2002), and it offered a new bidirectional combination of DGEs and 

computer algebra systems (CAS) allowing for a closer linkage of visualization potentials, which were 

separated programs in previous software (Hohenwarter et al., 2009; Hohenwarter & Fuchs, 2004). 

According to Hollebrands and Lee (2012), more than 40 DGEs had been developed by 2012. 

In Denmark, Viggo Sadolin developed the program GeomeTricks (Sadolin, 1997), which was sold to 

more than 600 schools and translated to 10 languages, however, development on the program stopped. 

A study from 2009 showed that 90% of the teachers in primary and lower secondary schools in 

Denmark rarely or never used DGEs in their teaching (Vejbæk, 2011). Nonetheless, as mentioned 

previously, DGE usage has grown rapidly since then, and there are signs that DGEs have become a 

visible part of mathematics education in Danish primary and lower secondary school (Blomhøj, 2016; 

Jankvist et al., 2018; Ministeriet for børn, undervisning og ligestilling, 2016). This may in part be due 

to the fact that substantial economic resources have been used in Denmark over the last decade to 

boost the usage and accessibility of digital tools in education (Undervisningsministeriet, 2015). 

Another plausible explanation for the increased usage of DGE can be found in the establishment of 

the Danish GeoGebra Institute in 2009, whose aim was to promote digital tools integration in 

mathematics teaching by developing free GeoGebra resources and offering courses for teachers, as 

well as to build a national network of experts to further support GeoGebra integration (Misfeldt & 

Andresen, 2010). The institute was connected to the International GeoGebra Institute (Hohenwarter 

& Lavicza, 2007), which aimed to establish national self-sustaining local user groups (Hohenwarter 

& Lavicza, 2011). 

The increased usage of DGEs may also be attributed to the curricular development in Denmark. In 

the curriculum Klare Mål, “Clear Objectives” (Uddannelsesstyrelsen, 2001), which included binding 

final objectives for the central areas of knowledge and skills that were demanded at the end of the 

teaching of mathematics in primary and lower secondary schools, dynamic geometry was not 
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mentioned at all. The curriculum was revised in 2009 with the Fælles Mål 2009 Matematik “Common 

Goals 2009 Mathematics” (Undervisningsministeriet, 2009). In the new curriculum, the use of DGEs 

is not mentioned as a part of the binding final objectives of required knowledge and skills but is 

mentioned 22 times as a suggestion for certain, primarily geometrical, activities. The curriculum was 

revised again in 2014 (Undervisningsministeriet, 2014), and the use of DGEs was mentioned more 

directly in the learning goals as a guiding learning aim so that students, already after having completed 

grade 3, should have “knowledge of methods for drawing simple planar figures, including with a 

dynamic geometry program” (Undervisningsministeriet, 2014, p. 9). Digital tools and DGEs are 

similarly mentioned in the learning goals for grade 6 and grade 9 (Undervisningsministeriet, 2014). 

1.3. Previous research on DGE and reasoning competency 

An elaborated account of previous research on dynamic geometry environments in relation to 

mathematical reasoning competency is presented in the first paper (Højsted, 2020a), to which the 

reader is referred, however, a few words are delivered here to set the scene.  

While several researchers have studied the effects of introducing DGEs in mathematics education in 

terms of students’ cognition (e.g., Arzarello et al., 2002; Jones, 2000; Laborde, 2005b), fewer have 

focused on the teaching involved in successfully implementing DGE activities for certain educational 

goals. According to Komatsu and Jones (2018), the role of the teacher in this implementation process 

is, in fact, an understudied topic, and the same applies to the study of DGE task design related to 

specific learning aims (see also Sinclair et al., 2016). Yet advances have been made – with some 

researchers outlining task design models or principles developed in relation to DGE usage for 

particular learning aims, such as exploration, reasoning, conjecturing and proving (see Baccaglini-

Frank et al., 2017; Fahlgren & Brunström, 2014; Leung, 2011; Lin et al., 2012; Komatsu & Jones, 

2018; Olsson, 2019; Sinclair, 2003). Others have developed models in order to evaluate the quality 

and suitability of tasks in relation to the affordances provided by DGEs (Trocki, 2014; Trocki & 

Hollebrands, 2018). While the role of the teacher is understudied, a pertinent contribution in this area 

is that of the Theory of Semiotic Mediation (TSM) (Bartolini-Bussi & Mariotti, 2008), which 

highlights the role of the teacher in supporting students’ development of mathematical meanings as 

they are working in activities that are centered around the use of artefacts, such as a DGE. This project 

is theoretically anchored in the TSM – which is, therefore, described in more detail in Chapter 2. 

Even though several studies deal with issues that concern DGEs and, in some cases, learning aims 

related to reasoning competency in one way or another, there are no previous studies that have 
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specifically aimed at supporting the implementation process concerning the utilization of DGE 

potentials to support students’ development of mathematical reasoning competency. 

1.4. The issues addressed by the dissertation – research questions 

Acknowledging the issue raised by Niss et al. (2016) on the need for research to understand the 

specific factors and contexts that can foster the development of mathematical competencies and to 

address the hypothesized problem of the low utilization of DGE potentials in relation to reasoning 

competency, this project seeks to understand how teaching with DGEs can be designed to utilize its 

potentials in relation to fostering students’ development of mathematical reasoning competency in 

the context of Danish lower secondary school teaching. 

This endeavor is guided by three overarching research questions, of which the first and second may 

be considered as auxiliary questions that are posed in the process of answering the third and main 

research question. 

Since the aim of the project revolves around the utilization of DGE potentials in relation to reasoning 

competency, it is pertinent to investigate what these potentials comprise. The meaning of “potential” 

in this project is affordances of DGEs – which are not available in other typical mathematics education 

tools, such as paper and pencil. In that light, the first research question is: 

1. What are the potentials of DGEs in relation to supporting students’ development of reasoning 

competency? 

As mentioned in section 1.2, the motivation to conduct this research study partly stems from an 

underlying hypothesis that the potentials of DGEs, such as GeoGebra, are not utilized in Danish lower 

secondary schools, even if DGE software is indeed popular. The hypothesis is that DGEs are 

predominantly used as a substitution for the paper and pencil environment. To investigate this 

hypothesis, the second research question is put forward: 

2. To what extent are the potentials currently utilized in Danish lower secondary school? 

Answering the second question is not only interesting in relation to the mentioned hypothesis, it may 

also give insights that are valuable in the design of teaching, which is on the agenda in the third 

research question. Based on the work produced in questions one and two, the main research question 

of the project may be formulated. 
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3. Which research-based guidelines feature in the design of teaching that utilizes DGE potentials

in order to support students’ development of reasoning competency?

1.5. The structure of the thesis – chapters and papers 

In addition to the papers, the thesis consists of seven chapters that outline the research project, acting 

as a summarizing report around the papers. The main objective of the chapters is to disseminate a 

coherent report of the whole research project, which the papers by themselves do not, and to elaborate 

on issues that are not described in detail in the papers, such as a thorough unfolding of the 

methodological and theoretical considerations and discussions of these, as well as the results. 

Additionally, the summarizing report aims to elaborate on the relationship between the individual 

papers and their placement in the project. A brief overview of Chapters 2–7 is presented next, 

followed by an overview of the papers in the thesis. 

Chapter 2 is devoted to elaborating upon two of the major conceptual frameworks that the project 

draws upon: the KOM framework and its reasoning competency (Niss & Højgaard, 2011) as well as 

the TSM (Bartolini-Bussi & Mariotti, 2008). These frameworks are described to some extent in the 

papers; however, the journal-based paper format presents limitations for in-depth descriptions of the 

kind that is put forward in this chapter. After the elaboration, the research questions are revisited in 

light of the conceptual frameworks. At the end of Chapter 2, other theoretical constructs that are 

utilized in the project are briefly mentioned. 

Chapter 3 portrays the three types of methodological approaches applied in the project, the 

hermeneutic approach to literature reviewing, the quantitative approach deployed for the survey and 

the design-based research (DBR) approach. The chapter outlines how these methodological choices 

can address the three research questions and provides an account of the considerations and choices 

made and how that is reflected in each paper. The chapter also describes the data collection process, 

as well as how the data were analyzed. Finally, ethical considerations are elaborated upon. 

Chapter 4 describes the results of the research, referring to the results from each of the papers. The 

chapter concludes with a section that summarizes the results. 

Chapter 5 unfolds a discussion that involves discussing the results and proposing refinements to the 

a priori guidelines based on the empirical outcome, as well as producing a synthesis in the form of a 

condensed model. The suitability of the methodological and theoretical choices is reflected upon in 

light of the results that they produced. The relationship between the individual papers, and their 
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relationship to the overall project, is also considered. Validity and reliability are also discussed using 

notions from DBR, as are the notions of generalizability and trustworthiness. 

Chapter 6 delivers a concise conclusion to the project by reiterating the research questions and 

referring to the results that answer the questions. 

Chapter 7 shares some considerations concerning the novelty of the research results obtained, 

referring to other research in the field, and finally, some comments concerning dissemination to 

praxis are shared. 

Following the chapters, the thesis contains five research papers, all of which contribute to dealing 

with the research questions. A short description of the papers is provided below, describing the aim 

of the papers and their contribution to the overall research project. 

Paper I is entitled Guidelines for Utilizing Affordances of Dynamic Geometry Environments 

to Support Development of Reasoning Competency. It is based on a literature review that was 

conducted to unveil the potentials of DGEs in relation to reasoning competency, thereby 

addressing the first research question. As the title suggests, the focus of the paper is to not only 

present literature review results but also develop a priori guidelines based on them. The paper, 

therefore, partly contributes to answering the third research question. The paper is published in 

Nordic Studies in Mathematics Education. Notice that the table format guidelines are attached as 

an appendix in the paper due to page limits of the journal. 

Paper II is entitled Teachers Reporting on Dynamic Geometry Utilization Related to 

Reasoning Competency in Danish Lower Secondary School. This paper elaborates on the 

development and analysis of a survey aiming to investigate to what extent the potentials, which 

were uncovered in the review, are utilized in lower secondary schools. The paper is directly relevant 

in answering the second research question; however, it also gives insights into Danish DGE 

teaching practice, which is used later in the project in answering the third research question. A short 

version of the paper was presented at the 14th International Conference on Technology in 

Mathematics Teaching in Essen, Germany, and published in the conference proceedings. It was 

developed into a journal paper afterward and published in Digital Experiences in Mathematics 

Education. 

Paper III is entitled Analyzing Signs Emerging from Students’ Work on a Designed Dependency Task 

in Dynamic Geometry, and it was coauthored with Professor Maria Alessandra Mariotti. The paper 

reports on the design principles used in the design of the initial tasks of a didactic sequence and, based 

on the data, evaluates the design. A brief earlier version of the paper was presented at Madif–12: the 
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12th research seminar of the Swedish Society for Research in Mathematics Education in Växjö, 

Sweden, and published in the conference proceedings. The paper was then further developed into a 

journal paper and submitted to the International Journal of Mathematical Education in Science and 

Technology, of which it is now in review. 

Paper IV is entitled A “Toolbox Puzzle” Approach to Bridge the Gap between Conjectures and Proof 

in Dynamic Geometry. The paper sheds light on a type of task design that is intended to support 

students’ development of inferential arguments. The paper was presented at MEDA2, the 10th ERME 

Topic Conference, Mathematics Education in the Digital Age, which was hosted online from Linz, 

Austria. The paper was published in the conference proceedings. 

Paper V is entitled Guidelines for the Teacher – Are They Possible? and the present author coauthored 

it with Professor Maria Alessandra Mariotti. The paper reports on the design and implementation of 

teacher guidelines in the final iteration of the DBR study. The paper has been submitted to NORMA 

20 – the Ninth Nordic Conference on Mathematics Education, which was postponed and is due to 

take place in Oslo, Norway, in June 2021. 

2. Choosing conceptual frameworks

The choice of defining the mathematical aims of the project in the terminology provided by the KOM 

framework’s description of competencies was made at the start of the project and is justified by two 

central arguments. First, the notion of competencies, or different conceptualizations of the idea of 

competencies, has gained increasing attention around the world due to considerations of the fact that 

it is not sufficient to define mathematics and mathematical expertise by means of mathematical 

subject matter only (Niss et al., 2016). Acknowledging the importance of aligning mathematics 

education with the teaching and learning of competencies, it, therefore, becomes an important 

research aim to understand the particular potentialities in different contexts in which competencies 

can be fostered, such as the context of DGE usage (Niss et al., 2016). Second, in Denmark, the KOM 

framework is integrated into the curriculum at many educational levels – including lower secondary 

schools, where the framework significantly influences the description of students’ mathematical 

learning goals. For that reason, considering that this project is situated in the context of Danish lower 

secondary schools and concerns mathematical reasoning, it is deemed relevant and appropriate to 

define the learning aims in terms of the KOM framework and its reasoning competency. 
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The TSM (Bartolini-Bussi & Mariotti, 2008), was chosen – as it addresses issues related to the 

teaching and learning of mathematics in the context of digital tools, which are not expanded in detail 

in the KOM framework. The theory provides a framework for describing the complex relationship 

between artefacts; students’ cognitive development; and the teacher’s role. More specifically, the 

relationship between tasks performed with artefacts, such as DGEs, and students’ development of 

mathematical meanings in relation to the artefact activity and the role of the teacher in supporting this 

development. During the review phase and development of paper I, the framework was found to be 

useful to theoretically anchor the project since this is exactly the focus of the project – with the artefact 

being a DGE that is used in activities to foster the development of mathematical meanings that are 

coherent with the constituents of reasoning competency – and, importantly, because the project also 

aims to focus on the role of the teacher. The choice of using the TSM is further elaborated in section 

2.1.1., after the presentation of notions from the KOM framework. 

2.1. The KOM framework and its reasoning competency 

What does it mean to master mathematics? What are the constituents of mathematics as a subject? 

These are some of the questions posed and discussed by Niss (1999, 2000, 2002) around the turn of 

the millennia – which, ultimately, lead to the development of the Danish KOM framework (Niss & 

Højgaard, 2011, 2019; Niss & Jensen, 2002). The framework was a reaction, or one could say an 

attempt at a remedy, to a disease in mathematics education known as “syllabusitis” (Blomhøj & 

Jensen, 2007; Lewis, 1972). This notion of “syllabusitis” was discussed by Jensen (1995) as a disease 

that leads one to confuse the syllabus with actual expertise or competence. It is, according to Niss 

(1999, 2000, 2002), not sufficient to define mathematics and mathematical mastery by means of 

stating mathematical subject matter – that is, reducing mathematics to a list of topics in a syllabus. 

Niss: “It [subject matter] does not hit the nail on the head. It is, of course, a nail, but it does 
not hit the head of the nail. The crucial thing is something else. The crucial thing is the way 
you go about mathematics, and the approaches you have, and the ideas you have, and the 
abilities you have to behave in the mathematical situations, to act, that is. The KOM project 
is, after all, an action-oriented enterprise.” (Sloth & Højsted, 2016, p. 80, translated from 
Danish) 

16



To fight “syllabusitis” in mathematics education, the KOM framework attempts to describe what 

mathematical mastery entails across mathematical topics and educational levels, not in terms of 

mathematical subject matter (although this is, of course, an important constituent) but rather in terms 

of mathematical ability. It introduces a competency-based approach comprising eight mathematical 

competencies. The framework highlights what it means to be able to do mathematics and defines 

mathematical competency as “a well-informed readiness to act appropriately in situations involving 

a certain type of mathematical challenge” (Niss & Højgaard, 2011, p. 49). Although each of the 

competencies has its own identity, they are all interwoven – as illustrated in the so-called KOM flower 

(Figure 1), which elucidates that the competencies are not separate or clearly delineated but rather 

that there are overlaps between them. For example, 

reasoning competency is closely related to problem 

handling and modelling competencies, as it involves 

justification of decisions/actions within the 

mobilization of these competencies. The KOM flower 

is a visual representation of the competencies divided 

into two groups. Being able to ask and answer in, with 

and about mathematics characterizes the four 

competencies on the left side, while being able to deal 

with the language and tools of mathematics relates to 

the four competencies on the right side. In the KOM framework, the eight mathematical competencies 

are described separately and in relation to the mathematics teacher’s work (Niss & Højgaard, 2011, 

pp. 83–109) – where examples, as well as didactic and pedagogical comments, are given. In general, 

the competencies have an active component and a passive component, where the passive side of a 

competence typically consists of being able to understand and follow when others use the 

competence, while the active part of mastering the competence involves being able to act according 

to its characteristics. 

As mentioned previously, the competency that is in focus in this project is the reasoning competency. 

In the description of reasoning competency, reasoning itself is defined as “a chain of argument […] 

in writing or orally, in support of a claim” (Niss & Højgaard, 2011, p. 60). The reasoning competency 

is situated on the left side of KOM flower and therefore concerns the ability to ask and answer in, 

with and about mathematics. The active aspects of the reasoning competency comprise the ability to 

Figure 1: KOM flower (Niss & Højgaard, 2011, p. 1) 
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create and present formal, as well as informal, arguments, while the passive aspect refers to the 

ability to follow and evaluate arguments made by others. The competency involves 

understanding what a mathematical proof is and how this differs from other forms of 
mathematical reasoning, e.g. heuristics based on intuition […] understanding of the logic 
behind a counter example […] to uncover the basic ideas in a mathematical proof, including 
distinguishing between main lines of argument and details […] the ability to devise and carry 
out informal and formal arguments (on the basis of intuition) and hereby transform heuristic 
reasoning to actual (valid) proofs. (Niss & Højgaard, 2011, p. 60) 

Niss and Højgaard (2011) further state that mathematical argumentation and mathematical reasoning, 

in general, are oftentimes juxtaposed with justification of mathematical theorems and that reasoning 

competency not only includes these aspects but also concerns the ability to assess “the validity of 

mathematical claims” in general, such as “the justification of answers and solutions,” and being able 

to convince “yourself and others of the possible validity of such” (Niss & Højgaard, 2011, p. 60). 

It follows from the description of reasoning competency that proof is a part of mathematical reasoning 

– that is, it is considered as a particular form of mathematical reasoning. However, there are different 

interpretations of the meaning of the notion of proof, which the KOM framework does not directly 

address. Mariotti (2012) puts forward two extremes in such interpretations: 1) proof as the product of 

theoretical validation of already stated theorems and 2) proof as the product of a proving process, 

which includes exploring and conjecturing, as well as proving conjectures. In the context of school 

mathematics, the notion of proof has largely shifted to the process of proving, partly because of the 

facilitation of experimentation by digital technologies (Sinclair & Robutti, 2013). NCTM (2008) 

offers a reasoning and proof cycle, which consists of the exploration of a mathematical problem or 

context, making a conjecture about the problem/context and, finally, providing justification for the 

conjecture. Even though the KOM framework does not address proof in this sense, the interpretation 

of proof as a process resonates with the emphasis in the KOM framework on the ability to act when 

faced with mathematical challenges – the ability to investigate and do mathematics. Therefore, in this 

thesis, proof is understood as a process, and DGE potentials in the proving process are included. 

The degree to which a person (e.g., a student) possesses a competency is described according to three 

measures in the KOM framework (Niss & Højgaard, 2011). One measure is the degree of coverage, 

which indicates to what extent the student can mobilize the different aspects of the competency (e.g., 

both the passive aspect and the active aspect of the competency). Another measure concerns a 
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student’s radius of action in relation to the competency. It specifies the range of situations and 

contexts in which the student may be able to activate the competency. The third measure pertains to 

a student’s technical level, which concerns how difficult the problem or situation at hand is and, 

therefore, how advanced the necessary activation of the competency is. If we exemplify these three 

measures in relation to reasoning competency, then we might say that a student who is able to follow 

an inferential argument put forward by his peer and yet is unable to produce and communicate such 

an argument by himself not only possesses some degree of coverage of reasoning competency but 

also lacks some degree of coverage since he currently only manages the passive aspect. If the student 

can string together coherent deductive steps to validate a conjecture in the area of geometry but cannot 

do so in the area of statistics, then we might say the student has a limited radius of action. The student 

could be able to follow and produce complicated and technically advanced reasoning, for example, 

in a complex proof with many steps utilizing several theorems and therefore can be considered to 

possess a high technical level. It is clear that the measures have a subjective character because 

ascertaining what constitutes a high technical level is, of course, relative to the precondition of the 

students, and it depends, in particular, on the student’s age and peers. What is considered as a high 

technical level in grade 1 may be considered as trivial in grade 9 and similarly between students of 

the same age in different countries. 

The KOM framework is integrated into the curriculum design at most levels of mathematics education 

in Denmark. The current curriculum for primary and lower secondary school “Fælles Mål” – therefore 

describes the required learning goals in terms of expected possession of mathematical competencies, 

as well as the subject matter that the competencies should be mobilized in relation to 

(Undervisningsministeriet, 2014). The competency approach is, however, not only limited to 

Denmark, as it has previously shaped the foundation for the PISA assessment and analytical 

framework for mathematics (OECD, 2017) and has had an impact on mathematics education around 

the globe (for a detailed account, see Niss et al., 2016). 

Niss and Højgaard (2019) published an updated version of the framework, which included some 

revisions to the description of reasoning competency. In the revised version, the authors highlight and 

elaborate upon mathematical argumentation, while proof plays a less prominent role. However, the 

constituents of reasoning competency remain the same (Niss & Højgaard, 2019). I will mainly refer 

to reasoning competency as it was described in Niss and Jensen (2011) in this thesis because much 
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of the work in this Ph.D. project started before the revised version of the KOM framework was 

published. 

2.1.1. KOM and digital tools 

The KOM framework does not allocate much attention explicitly to digital tools in the teaching and 

learning of mathematics (Højsted et al., 2020). It does, however, include two more aspects that are 

relevant and worth mentioning in relation to the aims of this project. First, there is the aids and tools 

competency, whose characteristics are “knowing [the] possibilities and limitations of, and being able 

to use, aids and tools” (Niss & Højgaard, 2011, p. 68), referring not only to digital tools but also to 

all tools that are used in mathematics education. While the tools and aids competency does describe 

that students need to be able to use and know about strengths and weaknesses of digital tools, it offers 

limited analysis in relation to the acquirement of the competency (Jankvist et al., 2018). Second, the 

KOM framework also lists six mathematics teacher competencies, which outline “a range of specific 

mathematical, didactic and pedagogical competencies” (Niss & Jensen, 2011, p. 85). The teacher 

competencies outline the practice of a mathematics teacher in broad terms and do not directly address 

teaching that involves the use of digital tools (Højsted et al., 2020). Since the project goals relate to 

exactly that – teaching and learning with DGEs – it is necessary to complement the KOM perspective 

with theoretical constructs that can shed light on the specific context of mathematics teaching and 

learning with digital tools. 

2.2. The TSM 

In the TSM, Bartolini-Bussi and Mariotti (2008) expand on the relationship between the use of 

artefacts, such as DGEs, and students’ cognitive development from a Vygotskyan point of view 

(Vygotsky, 1934/1978). Bartolini-Bussi and Mariotti (2008) discuss the notion of artefacts, referring 

to the distinction put forward in Rabardel’s (1995) instrumental approach between an artefact and an 

instrument. An artefact is a material or symbolic object (e.g., a DGE) designed to be used for specific 

purposes. This implies that certain knowledge is necessary to use the artefact according to the 

purposes for which it was designed. The notion of an instrument includes exactly this cognitive part 

that enables the usage of the artefact for a specific purpose. The instrument comprises both artefact 

components and cognitive utilization schemes, which empowers the subject to use the artefact for 

some purpose; hence, it becomes an instrument for the subject for a certain class of situations 

(Vérillon & Rabardel, 1995). Rabardel (1995) denotes the evolution of artefacts into instruments, 

which can be a long and complex process, as instrumental genesis. The instrumental approach has 
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proven powerful to outline important aspects related to students’ behaviors in artefact-centered 

activities; however, Bartolini-Bussi and Mariotti (2008) point out, 

The instrumental approach has to be further elaborated in order to match the complexity of 
classroom activity and in particular that of the teaching learning of mathematics, in fact it may 
provide a frame to analyse the cognitive processes related to the use of a specific artefact and 
consequently what will be considered its semiotic potential. (p. 749) 

Hence, complementing the cognitive perspective in the instrumental approach and matching the 

complexity of mathematics classroom activity, the TSM attempts to characterize how teachers can 

utilize the possible ways of using an artefact, such as a DGE, to support the teaching and learning 

process (Bartolini-Bussi & Mariotti, 2008). 

TSM builds on Vygotsky’s (1934/1978) notion of semiotic mediation. From this perspective, the 

construction and usage of artefacts is embedded in human activities, and these artefacts contribute 

not only to solving tasks but also at the level of cognition (i.e., shaping ways of human thinking). 

Vygotsky hypothesized that cognitive development is advanced through two “lines”: the natural line, 

which pertains to elementary mental functions, and the social/cultural line, which comprises the 

higher mental functions. The social/cultural line is interesting from the point of view of mathematics 

learning in school, and particularly two notions coined by Vygotsky that are related to cognitive 

development are of interest: the zone of proximal development (ZPD) and internalization (Vygotsky, 

1934/1978). According to the notion of the ZPD, development of higher mental functions is possible 

because of a collaboration between individuals occupying asymmetrical roles in a social setting in 

relation to knowledge – for example, the asymmetrical relationship between students and the teacher 

in relation to mathematical knowledge. Cognitive development of higher mental functions is 

described as a process of internalization. The internalization process has 

two main aspects: it is essentially social; it is directed by semiotic processes. In fact, as a 
consequence of its social nature, external process has a communication dimension involving 
[the] production and interpretation of signs. That means that the internalization process has 
its base in the use of signs. (Bartolini-Bussi & Mariotti, 2008, p. 750) 

The basic didactic hypothesis of the TSM is that signs, which are produced from activities with an 

artefact, are socially elaborated. Signs are to be interpreted broadly here – referring to not only any 

type of signs that a subject might produce, most commonly natural language, but also gestures such 

as pointing, clicking on a computer screen (e.g. on icons in GeoGebra) or developing written signs 
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(including sophisticated semiotic systems, such as the formalism commonly produced by 

mathematicians). 

The TSM addresses students’ initial production of artefact signs as the artefact is used and on the 

following transformation into mathematical signs. This distinction of these two types of signs is made 

to highlight that the personal meanings underlying the artefact signs initially produced by the student 

do not necessarily match the mathematical meanings, which an expert mathematician (the teacher) 

would recognize. However, through social interaction, the mathematics teacher can mediate the 

evolution from personal meanings to mathematical meanings and thereby support the students’ 

production of mathematical signs. 

Bartolini-Bussi and Mariotti (2008) discuss the fact that working with an artefact to solve a task can 

produce both personal meanings and mathematical meanings and use the notion of the semiotic 

potential of an artefact to describe the duality of meanings that may emerge. The semiotic potential 

of an artefact may be exploited in order to guide the evolution of mathematical meaning, consistent 

with the educational goal of a didactic sequence. Specifically, an artefact activity may be followed 

by a classroom discussion in which the teacher may identify the students’ personal signs and interpret 

their underlying meaning and then by means of social interaction – for example, by posing questions 

and highlighting certain student answers, the teacher may mediate the development of mathematical 

meanings. 

 

Figure 2: Semiotic potential of an artefact and the teacher’s mediation (Mariotti & Maracci, 2011) 
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When a teacher is aware of the semiotic potential of an artefact (i.e., the duality of meanings it may 

provoke) and the artefact is used in a designed didactical sequence to exploit its semiotic potential, 

then the teacher uses the artefact as a tool of semiotic mediation (Bartolini-Bussi & Mariotti, 2008). 

Mariotti (2012) emphasizes that the analysis of the semiotic potential of an artefact may be considered 

as the core of any teaching design. She describes how the exploitation of the semiotic potential 

includes the following: 

The orchestration of didactic situations, where students face designed tasks that are expected 
to mobilise specific schemes of utilisation, and consequently, situations in which students are 
expected to generate personal meanings. […] the orchestration of social interactions during 
collective activities, where the teacher has a key role in fostering the semiotic process required 
to help personal meanings, which have emerged during the artefact-centred activities, develop 
into the mathematical meanings that constitute the teaching objectives. (Mariotti, 2012, 
p. 170) 

From this perspective, the aim of the first and third research questions of uncovering DGE potentials 

in relation to reasoning competency and developing guidelines to utilize these potentials can be 

related to analyzing the semiotic potential of DGEs in relation to reasoning competency and 

elaborating upon the possible exploitation of the uncovered semiotic potential. 

2.2.1. The didactical cycle 

Once the a priori analysis of the semiotic potential of an artefact in relation to a certain learning goal 

(e.g., reasoning competency) has been conducted, and a didactic sequence has been designed with the 

aim of exploiting this semiotic potential, then the TSM framework also models the teaching and 

learning process – that is, the evolution of personal meanings into mathematical meanings. According 

to the TSM, this evolution can occur through iterations of didactic cycles that each contain three 

different types of activities (Mariotti & Maracci, 2011). The first type is activities with the artefact 

that are the initial activities at the beginning of each cycle in which the students work with the artefact 

to solve tasks. The task-based activities are designed to intentionally foster the production of signs 

that are linked to the use of the artefact. This is followed by the second type of activity, activities of 

individual writing, in which the students are requested to engage in semiotic activities aiming to 

provide written productions that reflect on the artefact-centered activities that they previously 

engaged in. For example, the students can be requested to describe what they experienced when they 

solved a task that requested them to drag certain geometrical objects in the DGE. These written 

23



productions can then become the point of departure in the discussions that follow afterward in the 

classroom. The third type of activity concerns exactly that – classroom discussions, which are of 

utmost importance in the TSM because the development of mathematical reasoning competency is, 

as mentioned previously, considered as the development of higher mental functions (which, according 

to the ZPD, is possible in a collaboration between individuals occupying asymmetrical roles in 

relation to knowledge in social interactions). The main role of the teacher in this activity is that of 

fostering the students’ evolution toward mathematical meanings, which might be done by analyzing 

and discussing the students’ written texts and highlighting various solutions in collective discussions. 

The objective is to develop “shared meanings having an explicit formulation de-contextualized from 

the artefact use, recognizable and acceptable by the mathematicians’ community” (Mariotti & 

Maracci, 2011, p. 94). 

2.2.2. Teacher actions 

Bartolini-Bussi and Mariotti (2008) give an account of their data analysis of the actions of the teacher 

coming from teaching experiments (Falcade, 2006; Falcade et al., 2007). They identified a recurrent 

teacher action pattern and characterized four types of teacher actions in relation to the teachers’ role 

in fostering the evolution of mathematical signs: 

• “Ask to go back to the task

• Focalize on certain aspects of the use of the artefact

• Ask for a synthesis

• Synthesize” (Bartolini-Bussi & Mariotti, 2008, p. 775)

The first teacher action, ask to go back to the task, is used in situations when the teacher identifies 

the need for the students to recall their experience with the artefact for solving the task. Going back 

to the task formulation reactivates the artefact context and provides the opportunity for students’ 

personal signs to emerge or re-emerge. The action is obviously fitting to use at the start of a classroom 

discussion; however, it is also relevant to use whenever there is a need for the students to recall the 

personal meanings that emerged in the artefact activity – for example, if the discussion has turned 

into unwanted paths. Focalize on certain aspects of the use of the artefact follows the first teacher 

action. After the discussion and reactivation of the artefact context has led to a rich net of signs, then 

there is a necessity for the teacher to focus the students’ attention on pertinent aspects of the 

experience by emphasizing certain signs that are shared and highlight shared meanings related to 
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these signs, which are coherent with the educational aim of the activity (Bartolini-Bussi & Mariotti, 

2008). 

The third teacher action, ask to synthesize, aims to make the students generalize and decontextualize 

the meanings that emerged in the specific experience with the artefact. The teacher does so by asking 

the students to condense and report what has been discussed in the classroom. This teacher action is 

expected to contribute to a shared environment where the teacher can introduce mathematical 

terminology. The final teacher action, synthesize, concerns the need for the teacher to provide the 

mathematically acceptable signs and formulations – stating the validity of the signs from a 

mathematical point of view, which the students can now consider as the final product of the evolution 

of the initial personal signs (Bartolini-Bussi & Mariotti, 2008). 

2.2.3. Analyzing the process of semiotic mediation 

If we consider the basic didactic hypothesis of the TSM, which is based on the internalization process 

and conveys that signs that are produced from activities with an artefact, are socially elaborated, then 

it is inferable that to analyze the internalization process, we may direct our attention to students’ 

production and usage of signs in social interactions. Consequently, the evolution of student meanings 

may be analyzed by identifying the signs that students produce in social activities – such as verbal 

utterances, written signs or DGE actions – and interpreting the meanings underlying these signs. In 

particular, the evolution of meanings can be highlighted by identifying specific chains of signs – for 

example, chains of relations of signification (Bartolini-Bussi & Mariotti, 2008). 

2.3. Revisiting the research questions in light of the theoretical constructs 

The research questions that were formulated in Chapter 1 already refer to the reasoning competency. 

This reflects the fact that the choice of describing the mathematical aims of the project in relation to 

the KOM framework and its reasoning competency was already made at the start of the project. 

However, while the KOM framework is suitable for describing the educational goals in terms of the 

reasoning competency, it does not, as mentioned previously, allocate much attention to the context of 

digital tools in mathematics teaching and learning, even if we consider the aids and tools competency 

and the six mathematics teacher competencies. Therefore, the TSM is included to provide a frame 

focusing on the relationship between artefacts and cognitive development, as well as on the essential 

mediating role of the teacher. After the introduction of terminology from the TSM, we can add 

nuances to the research questions that were posed. The aim of the first research question, which was 
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to uncover potentials of DGEs in relation to supporting students’ development of reasoning 

competency, may now, in light of the TSM, be reformulated as the analysis of the semiotic potential 

of DGEs in relation to students’ development of mathematical reasoning competency. 

1. What is the semiotic potential of DGEs in relation to students’ development of reasoning

competency?

The second research question, which relates to the actual usage of the potentials in Danish lower 

secondary schools, can be rephrased as follows: 

2. To what extent is the semiotic potential of DGEs in relation to reasoning competency currently

exploited in Danish lower secondary schools?

At the time of writing papers I and II, which attempt to answer these first two questions, the project 

was not fully anchored in the TSM frame but rather in a state of exploring which theoretical constructs 

were suitable in relation to the overarching aim of developing DGE guidelines in relation to reasoning 

competency. Therefore, the above formulations may be put forward in hindsight, but in reality, the 

theoretical framing of the project was still in process as the first two research questions were being 

pursued. Hence, this is reflected in the research questions that are put forward in papers I and II. In 

fact, the anchoring of the project in the TSM started as a consequence of the review that is elaborated 

in the first paper. 

The third and main research question of the project, which relates to the design of guidelines that 

utilize the potentials of DGEs in relation to reasoning competency, can be nuanced substantially by 

concepts from the TSM and may, in fact, be divided into several sub questions (a, b and c), 

3. Which research-based guidelines feature in the design of teaching that utilizes the semiotic

potential of DGEs in relation to reasoning competency?

Examining paper III, which focuses on analyzing students’ signs that emerge in specific artefact tasks, 

it is quite directly linked to the theoretical frame provided by the TSM. The sub question that is 

answered in paper III is the following:  

a. As students work on a designed dependency task, which type of signs emerge that are related

to the use of the dragging tool and can be seen as evidence of students’ awareness of the

logical relationship between the geometrical properties in play? How can the unfolding of the

semiotic potential from this case contribute to the formulation of guidelines?
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Paper IV, instead, is centered on a specific part of KOM’s reasoning competency – namely, the 

characteristic of being able to develop a heuristic argument into theoretical validation through a 

specific task design and didactic implementation. The following sub question is addressed: 

b. How can students’ conjecturing activities in DGE be combined with theoretical validation, to

make theoretical validation a meaningful activity for the students?

Paper V focuses specifically on the role of the teacher and outlines the design that implements the 

four teacher actions from the TSM frame into guidelines for the teacher to manage the classroom 

discussion. The paper addresses the following sub question: 

c. In what ways do the teaching guidelines support the teacher in holding classroom discussion;

to what extent is the support consistent with our expectation; and based on the collected data,

which revisions can we propose?

2.4. Other theoretical constructs 

While reasoning competency and the TSM constitute the main overarching conceptual frameworks 

in this project, other theoretical constructs are drawn upon in order to formulate the guidelines and 

analyze them, to formulate task design principles and to shed light on the empirical data. These 

constructs include the following: the instrumental approach and the distinction between utilization 

schemes and instrumented techniques (Artigue, 2002; Drijvers et al., 2013; Guin & Trouche, 1999); 

van Hiele’s (1986) model of five levels of mathematical thinking; the epistemic and pragmatic value 

of techniques that are performed with artefacts (Artigue, 2002); the distinction between 

spatiographical and theoretical levels of a figure (Laborde, 2005a); several DGE specific constructs, 

such as the distinction between robust and soft constructions (Healy, 2000; Laborde, 2005b) or 

different dragging modalities (Arzarello et al., 2002); the notion of proof as an explanation (de 

Villiers, 2007); and the design heuristic of Prediction–Observation–Explanation (White & Gunstone, 

2014). 

The constructs are elaborated ad hoc in the papers. 

3. Methodological approaches, data collection, and data analysis

In this chapter, the methods that were applied in the project are described and justified, referring to 

the research questions. Furthermore, the data collection process of the project is elaborated upon, 

followed by ethical considerations that were taken. Finally, the data analysis approaches of the project 
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are elaborated upon. Methods, data collection and data analysis are already described to a certain 

extent in the papers; however, in this chapter, an overview is also provided to highlight the alignment 

of the work and add details that were omitted in the papers because of space limitations of the journal 

and conference paper formats. 

3.1. Methods 

Answering the research questions necessitates considerations as to which methodological approaches 

should be included in the design of the study. One often distinguishes between quantitative and 

qualitative methods (Glatthorn, 1998), but one can also combine the two perspectives in a mixed 

methods design (Johnson et al., 2007), of which there are several typologies that may be suitable for 

various types of research goals (Creswell & Clark, 2011). Viewing the approaches from the point of 

view of the philosophy of science, then, on the one hand, the quantitative perspective is rooted in a 

view of knowledge that is related to positivism, where one collects and processes data that can be 

expressed in numbers. On the other hand, the qualitative perspective is linked to a phenomenological 

perception of knowledge, where concepts such as meaning and understanding are in focus (Glatthorn, 

1998). The position within the philosophy of science that supports the mixed methods approach is 

American pragmatism – which argues for the use of mixed methods approaches, if it is an advantage 

in the research context, either because such an approach provides better answers to the questions one 

seeks or because it is easier to implement (Frederiksen, 2015). In this project, the mixed methods 

methodology is applied with a qualitative priority, which means that the quantitative method serves 

a secondary role, while greater emphasis is placed on the qualitative method (Cresswell & Clark, 

2011, p. 65). The type of mixed method appropriated is related to what Creswell and Clark (2011) 

refer to as a multiphase design, also known as the sandwich design (Sandelowski, 2003). It occurs 

when 

an individual researcher or [a] team of investigators examines a problem or topic through an 
iteration of connected quantitative and qualitative studies that are sequentially aligned, with 
each new approach building on what was learned previously to address a central program 
objective. (Creswell & Clark, 2011, p. 100) 

As previously mentioned, the third research question constitutes the central objective of the project. 

However, accomplishing the central objective involves building on the results identified in the work 

produced from the studies that address the first and second research questions (see Figure 3). 
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Figure 3. The connected quantitative and qualitative studies in the project

The project is methodologically branched into three parts, corresponding to the threefold research 

question. Each branch is elaborated upon in the following sections. 

3.1.1. The literature review 

The first research question involved identifying potentials and challenges with DGEs in relation to 

teaching that aims to support students’ development of reasoning competency. A review of previous 

DGE literature was deemed to be a suitable method to give insights into what these potentials may 

comprise. 

The review was methodologically anchored in the hermeneutic framework for literature reviewing 

(Boell & Cecez-Kecmanovic, 2010, 2014). A characteristic of the hermeneutic approach is that initial 

research questions and keywords do not lock in the scope of the review from the outset. Instead, they 

function precisely as that – initial research questions and keywords, which can be refined or changed 

if it is found meaningful to do so along the way. Since reading literature obtained by an initial search 

can expand one’s understanding of the field, this may inform new keywords and revised research 

questions, giving rise to new searches and reading. Through repetition of this process, a better and 
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deeper understanding of the field may be accumulated. Boell and Cecez-Kecmanovic (2010) question 

the suitableness of systematic review strategies for Ph.D. students: 

A deeper understanding of the research problem is gained as the literature review progresses, 
with the researcher becoming more aware of what questions are most relevant or pressing. 
Systematic review strategies are therefore ill equipped to address research that cannot be 
precisely formulated in the form of closed questions before starting the review process. Claims 
by proponents of systematic reviews that this method is suitable for research students 
undertaking a PhD (Kitchenham, 2004) are therefore open to question. (Boell & Cecez-
Kecmanovic, 2010, p. 131) 

This review method was chosen, following the advice of the authors, since I was uncertain of the 

conceptualization used in literature in the field of DGEs and reasoning competency, and of the scope 

of the literature. Therefore, the flexible and accumulative process offered by this method seemed 

conducive. 

Applying the method involved operationalizing the main characteristics of reasoning competency so 

that it was possible to conduct searches in databases to locate literature that is related to reasoning 

competency. Since the specific KOM meaning of reasoning competency is not widely used in 

mathematics education research, it was not feasible to search by directly using reasoning competency 

as the search word. Instead, several search words were used, initially “reasoning,” “conjecture,” 

“justify” and “proof” to represent reasoning competency, and these were combined with synonyms 

of a DGE, “dynamic geometry,” “geometry software,” “geometry technology” and “interactive 

geometry,” using AND/OR operators to search the MathEduc3 and ERIC4 databases for relevant 

publications. The initial search was followed by citation tracking, as well as new searches that 

included the search words “counterexample,” “argumentation” and “heuristic proof” and searches 

focusing on specific theoretical constructs, specifically “instrumental genesis,” “semiotic mediation” 

and “Hiele.” 

The constituents of reasoning competency were also important in the sorting, selection, critical 

assessment and argument development phases of the method (Boell & Cecez-Kecmanovic, 2010) 

because they acted as the lens used to sort and analyze the acquired literature to extrapolate which 

affordances of DGEs can be considered as potentials when the educational aim is to foster students’ 

3 https://www.zentralblatt-math.org/matheduc/  

4 https://eric.ed.gov/  
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development of reasoning competency. Note that the notion of “potential” is used in this context to 

refer to affordances of DGEs, which are novel in comparison to affordances that are provided by other 

common mathematics education resources – in particular, in comparison to pencil, paper, ruler and 

compass geometry. 

The results of this work, which is described in the first paper (Højsted, 2020a), forms the basis of the 

following work on the second and third research questions. There is an overlap between the review 

and the DBR process. In fact, a priori guidelines are developed in this first paper, which connects it 

quite clearly to the third research question. The aim of the review was, therefore, not only to identify 

potentials and challenges with DGE but also to form the basis needed to develop a priori guidelines 

for teaching that utilize these potentials to foster students’ development of reasoning competency 

(described in further detail in section 3.1.3). 

3.1.2. The survey 

Answering the second research question requires quantitative data from across the country, which a 

survey can provide. This quantitative method was therefore applied in the form of a web-based 

questionnaire that was developed and administered using SurveyXact5 to Danish lower secondary 

school mathematics teachers. 

The survey development process involved formulating questions that could provide insights as to 

what extent the DGE potentials (dragging, feedback, measuring and tracing) identified in the review 

synthesis (Højsted, 2020a) are utilized in the teachers’ mathematics classrooms. However, it could 

not be expected that the lower secondary school teachers were familiar with the DGE terminology 

predominantly used in scientific discourse (Hansen & Andersen, 2009). The task at hand was 

therefore to consider which questions could cover what I wanted to know while being formulated in 

a manner that was expected to resonate with the discourse used by a typical lower secondary school 

mathematics teacher. This was not a trivial task – in particular, with regards to certain DGE elements 

(e.g., dependent and nondependent objects, invariants) that were difficult to present using everyday 

language while maintaining a clear and concise formulation. However, some explanatory texts were 

used prior to certain questions, which may have alleviated possible misunderstandings. Additionally, 

5 https://www.surveyxact.com/ 
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a short video was shown to the respondents to explain what was meant by “free objects” and “locked 

objects” in GeoGebra prior to questions that involved these concepts (see Figure 4). 

 

Figure 4. Snapshot from the questionnaire in which a short explanatory video is embedded 

Nineteen multiple-choice questions were formulated, in which the teachers were asked to assess how 

frequently certain tools in GeoGebra were used in particular ways and to solve specific tasks. Since 

GeoGebra is by far the most popular DGE in Danish lower secondary schools, I chose to formulate 

questions concerning GeoGebra usage instead of DGE usage, thereby making the questions more 

recognizable and clearer for the participants. The multiple-choice questions were assigned a five-

point Likert scale spanning a spectrum of frequency of usage from “always” to “never,” as well as an 

answer option of “don’t know” (Allen & Seaman, 2007). In addition to the multiple-choice questions, 

four open-ended questions, as well as some background questions, were developed. The purpose of 

the open-ended questions was to get detailed and rich answers that would allow for a deeper and more 

nuanced analysis concerning certain questions regarding GeoGebra utilization – for example to get 

the teachers’ points of view of what they consider to be important potentials of GeoGebra. The 
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background questions allowed for discerning the respondents according to certain categories (e.g., 

which grade they primarily teach). 

Developing a questionnaire involves considering which types of questions may be fruitful to acquire 

the information one seeks. Hansen and Andersen (2009) argue that a question often has three 

dimensions: (i) a dimension concerning the content, which can either relate to something factual, 

something cognitive, or revolve around attitudes to something and an evaluation of something; (ii) a 

time dimension – a question enquires about the past, the present or the future; and (iii) a response 

dimension, where there are either preconstructed response categories or open response options. 

From this perspective, starting with the content dimension, all but two of the questions in the 

questionnaire are factual questions (Hansen & Andersen, p. 105) – for example, asking the teachers 

if their students’ task work includes constructing “robust figures.” The remaining two questions can 

be characterized as attitude questions of an evaluative nature (Hansen & Andersen, p. 106), as the 

teachers were prompted to evaluate the potentials of GeoGebra. In the time dimension, it was chosen, 

for the sake of clarity, that all the questions should enquire about the present time, using phrases such 

as “Do students work on investigating figures …?” In relation to the response dimension, the 

questionnaire contained, as mentioned, mainly closed preconstructed response categories but also 

four open-ended questions. 

Certain questions were posed to unveil the types of tasks that the teachers give to their students. The 

rationale for posing these questions was, on the one hand, to investigate to what extent the hypothesis 

that GeoGebra primarily serves as a substitute to paper and pencil. On the other hand, the answers to 

these questions could also indirectly reveal if the potentials were utilized – for example, if the students 

primarily work on tasks made for the paper and pencil environment, in which dragging is not possible. 

Before initiating the survey, it was decided to test it through a small pilot survey. Pilot studies can 

have many functions (Schreiber, 2008, pp. 624–625), but in this case, the purpose was to investigate 

whether the respondents could understand the questions as it was intended, as well as to get an initial 

impression of what sort of answers could be expected in the open-ended questions. The pilot group 

consisted of 16 master’s students studying mathematics education at Aarhus University. 

Approximately two-thirds of the pilot group students had a background as primary and lower 

secondary school mathematics teachers (grades 0–10), while the remaining third had a background 

in upper secondary school mathematics teaching (grades 11–13). Therefore, the pilot group was 
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reasonably well suited in terms of their background, and in practice, the pilot proved useful, leading 

to minor revisions of the questionnaire. 

The methods of distribution of the questionnaire were twofold. On the one hand, a link for self-

enrolment to the questionnaire was administered through the email list of the comprehensive Danish 

mathematics counselor network,6 which reaches mathematics counselors and resource persons in 

primary and lower secondary schools in 97 of the 98 municipalities in Denmark. The link was 

accompanied with a text containing information about the survey and asking the mathematics 

counselors to share the link with their colleagues. On the other hand, a link for self-enrolment was 

posted on two popular Facebook groups for Danish lower secondary mathematics teachers – namely, 

“We Who Teach in Lower Secondary Schools”7 and “GeoGebra Hangouts.”8 

Although web-based surveys have become a predominant method in educational research (Fan & 

Yan, 2010; Saleh & Bista, 2017), researchers point to the issue of low response rate and completion 

in web-based surveys, with some estimates showing it to be 11% lower than other survey modes (Fan 

& Yan, 2010). 

Certain steps were taken concerning design and language (Fan & Yan, 2010) in order to compensate 

for the low response rates expected with the online survey format. These steps include that the survey 

was structured so that easier questions came first in order to get respondents started and that the 

questions were formulated as clearly and concisely as possible, with video and explanatory texts 

added. Another important issue related to response rates are assurances of privacy and confidentiality 

(Saleh & Bista, 2017). The first page of the survey contained an introduction assuring the respondents 

of their anonymity and explaining exactly which information about them would be collected and for 

what purpose. A consent box was also added, which the participants had to tick to advance. A further 

step was to add a monetary incentive for the respondents, which increases participant response and 

completion (Göritz, 2010; Saleh & Bista, 2017). The incentive took form as a lottery with a single 

prize of DKK 4000 for the winner. To participate in the lottery, the respondents were required to 

complete the questionnaire and fill in their names and email addresses in a separate box. The names 

6 https://phabsalon.dk/matnet/om-dmn/  

7 https://www.facebook.com/groups/1827579010797172/ 

8 https://www.facebook.com/groups/geogebrahangouts/  
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and email addresses were needed to identify and contact the winner, but it also provided the possibility 

of checking for double entries. 

The study and results are described and analyzed in the second paper (Højsted, 2020b). The analysis 

centered on certain questions for the sake of a focused dissemination, yet the conclusions provide an 

accurate account of the whole dataset. The questionnaire in its entirety can be viewed in appendix A. 

3.1.3. DBR 

To address the third research question, the DBR methodology was applied, adhering to the principles 

and advice laid out by Bakker and van Eerde (2015). The approach was chosen because DBR serves 

“an explanatory and advisory aim – namely, to give theoretical insights into how particular ways of 

teaching and learning can be promoted” (Bakker & van Eerde, 2015, p. 431). Seeing as the objective 

at hand in the third research question was to develop guidelines for teaching that utilizes potentials 

of DGEs in relation to supporting students’ development of reasoning competency, it was expected 

that the approach could contribute to that end – specifically, by developing theoretical insights into 

how teaching with DGEs for this particular aim may be approached. Since such teaching was not 

expected to be found in the current praxis, it was necessary to design such activity to be able to study 

it. 

The DBR approach has gained increased attention as a research methodology in mathematics 

education since the early 1990s (Artigue, 1994, 2009; Brousseau & Balacheff, 1997; Freudenthal, 

1991; The Design-Based Research Collective, 2003; Wittmann, 1995). The main constituents of DBR 

involve the design of educational materials such as computer tools or educational activities. The 

approach usually comprises of cycles of three phases each: (i) preparation and design of the 

educational materials, (ii) testing of the educational materials in a teaching experiment and (iii) a 

retrospective analysis of the collected data from the teaching experiment. The design process is 

anchored in theory, and hypotheses about the expected outcome are described a priori. Through 

iterations of testing and redesigning the educational materials, new insights may be gained concerning 

the design, and new theory development may arise. Hence, the design of learning environments is 

interwoven with theory testing and development. Bakker and van Eerde (2015) argue that the strength 

of DBR lies in its potential of connecting educational practice and theory since it is centered on theory 

development concerning domain-specific learning, as well as the steps designed to guide that 

learning. Therefore, DBR generates beneficial resources (e.g., educational materials) as well as 
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systematic insights into the possible utilization of these resources in education (Bakker & van Eerde, 

2015, p. 430; McKenney & Reeves, 2012; Van den Akker et al., 2006). 

Next, the main characteristics of DBR are introduced, as well as what is understood by theory and 

theory development, before the manner in which the approach was applied in the project is presented. 

Characteristics of DBR and the role of theory 

Bakker and van Eerde (2015, pp. 452–453) summarize five of the main characteristics of DBR: (1) 

the purpose of DBR is to “develop theories about learning and the means that are designed to support 

that learning” (Bakker & van Eerde, 2015, p. 452). (2) DBR is an interventionist approach. DBR 

interventions are usually situated in natural learning situations in schools, which can provide better 

ecological validity compared to controlled laboratory situations. (3) DBR has prospective and 

reflective components. The prospective part refers to the hypothesized learning, which is theorized 

before the teaching experiment, while the reflective part refers to the analysis of what is actually 

observed in the teaching experiment and how it matches conjectures made beforehand. (4) The nature 

of DBR is cyclical, with each cycle consisting of a design phase, a teaching experiment and a 

retrospective analysis that then feeds a new design phase. (5) The theory under development is usually 

humble and specific (see hypothetical learning trajectories below) since it is developed for a specific 

domain. However, it may contain elements of generality that may be applicable to other contexts. 

The role of theory is central to DBR, and it is the element that distinguishes it from certain other 

approaches, such as action research (Bakker & van Eerde, 2015). However, the notion of theory is 

somewhat ambiguous in mathematics education research, with far ranging research perspectives 

being utilized (Niss, 2007) to understand and explain the complex and multifaceted phenomena 

involved in mathematics learning and teaching (Bikner-Ahsbahs & Prediger, 2010). The role of 

theory in DBR that is used in educational research can be categorized into five types of theory 

(diSessa & Cobb, 2004). These types of theories, which are described below, vary in terms of 

generality, from grand theories to context-specific theories. 

• “Grand theories (e.g., Piaget’s phases of intellectual development; Skinner’s behaviorism)

• Orienting frameworks (e.g., constructivism, semiotics, sociocultural theories)

• Frameworks for action (e.g., designing for learning, Realistic Mathematics Education)

• Domain-specific theories (e.g., how to teach density or sampling)
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• Hypothetical Learning Trajectories (Simon, 1995) or didactical scenarios (Lijnse, 1995)

formulated for specific teaching experiments.” (Bakker & van Eerde, 2015, p. 437)

DBR projects may utilize theories on different levels in the same project, for example grand theories, 

frameworks for action and a specific hypothetical learning trajectory. It is, in fact, recommended to 

do so; however, it is necessary to ensure alignment between the different types of theories and the 

research design (Bakker & van Eerde, 2015). 

The hypothetical learning trajectory is a central instrument in DBR. It is used to describe the learning 

aim that specifies the path to be taken in a particular teaching experiment. It also defines the learning 

activities expected to foster the specified learning aim, as well as hypotheses about the expected 

evolution of students’ understanding as a consequence of the suggested learning activities. The basis 

for theory development lies in the coordination between the hypothetical learning trajectory and the 

empirical results gathered in the teaching experiment (Bakker & van Eerde, 2015). 

DBR applied in the project 

The main product developed in this project is guidelines for the design of educational activities that 

utilize potentials of DGEs to support students’ development of reasoning competency. In the frame 

of DBR, the guidelines take the form of a hypothetical learning trajectory that is developed to reach 

the specified project goal. The term “guidelines” was chosen to represent hypothetical learning 

trajectory/didactical scenarios, which are commonly used terms in DBR (Bakker & van Eerde, 2015). 

Using the guidelines, educational activities are designed that serve the role of testing the guidelines 

to empirically qualify and revise them. 

(i) Preparation and design

As mentioned previously, there was an overlap between the review and the DBR part of the project 

because the development of the guidelines started with the review. As a part of the preparatory phase, 

the aim of the review was precisely to develop a priori guidelines based on an analysis of DGE 

literature. To do so, it was necessary to identify potentials and challenges with DGEs when the 

educational goal is to foster students’ development of reasoning competency. It was also necessary, 

in the review process, to unveil which dimensions the guidelines should entail and which theoretical 

constructs were useful for this aim. The guidelines are aligned, theoretically, to the TSM model 

(Bartolini-Bussi & Mariotti, 2008), which is utilized in the project as a framework for action. The 

guidelines include the analysis of the semiotic potential of DGEs in relation to students’ development 
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of reasoning competency. The TSM is in itself anchored in the orienting frameworks of semiotics and 

sociocultural theories (Vygotsky, 1934/1978). 

Results from the survey provided updated insights into DGE utilization in lower secondary schools, 

which was also valuable in the design process. These results include the indications that a DGE was 

used as a substitute to solve paper and pencil tasks and the lack of focus on developing students’ 

awareness of the dependencies that are mediated as invariants during dragging – for example, being 

aware of the difference between free and locked objects in DGEs (see more in Højsted, 2020b). 

Consequently, tasks were designed aiming to foster this awareness. 

In addition to the review and the survey, the preparatory phase involved analyzing several materials 

that were relevant for the design. These included task design literature, textbooks and teaching 

materials, online materials such as GeoGebra applets,9 Danish lower secondary school mathematics 

exam items and the existing curriculum in order to investigate how aims concerning both reasoning 

competency and DGE are elaborated. 

On the basis of this work, a didactic sequence was designed. The sequence included the design of 15 

tasks adhering to the a priori guidelines described in Højsted (2020a), as well as other considerations 

that were taken into account. The considerations comprised not only criteria for task design but also 

limitations that were applied, which had nothing to do with the learning aims but were consequences 

of pragmatic research limitations. For example, it was necessary to keep the workload manageable in 

terms of data collection and, not least, in terms of data analysis and dissemination. It was decided to 

aim for a three-week didactic sequence. The tasks were designed referring directly to GeoGebra since 

it is the commonly used DGE in lower secondary schools in Denmark. 

Below is a summary of the overarching criteria and principles that guided the design of the tasks in 

the didactic sequence: 

• The tasks of the didactic sequence referred in its entirety to most of the levels described in the

guidelines (Højsted, 2020a).

• At least one of the four potentials (dragging, feedback, tracing and measuring) (Højsted,

2020a) was utilized in each of the tasks of the sequence.

9 https://www.geogebra.org/materials 
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• Most of the five types of tasks identified in the review (Højsted, 2020a) were included in

different variations.

• The design heuristic of Predict–Observe–Explain (White & Gunstone, 2014, pp. 44–65) was

incorporated in the task design (see more in Højsted & Mariotti, 2020a).

• The design invention of the toolbox puzzle approach (Højsted, 2020c) was used in the tasks

in which the students were to verify their conjectures.

• Certain task design choices were taken that are not specific to DGE tasks but rather serve the

intention of mobilizing characteristics of reasoning competency in a generic manner. For

example, it was chosen and incorporated into the tasks that the students would work in pairs,

and in some subquestions, they were asked to describe how they expected DGE constructions

to behave and to justify their assumptions to each other. The choice reflects the aim of

fostering the students’ abilities to communicate and put forward justifications for

mathematical claims, which is an element of reasoning competency. The choice also served

the research purpose of providing a “window” into the students’ thinking processes as they

were solving the tasks.

• The design attempted to create a connection between the tasks so that insights gained from

one task were utilized in subsequent tasks.

Several other criteria were considered; however, during the design phase, it became evident that it 

would be difficult to adhere to too many criteria. Therefore, compromises and decisions had to be 

made, favoring certain criteria, while others had to be relegated. One such decision that is worth 

mentioning concerns the openness and explorative nature of the tasks. The initial idea was to have 

quite open tasks without too much guidance (Olsson & Granberg, 2019) so that the students could 

get engaged in a mode of problem solving and use the possibilities of exploration in DGEs to get 

answers. However, solving such tasks takes time, and since there were many types of tasks that 

needed to be tested according to other criteria, it was decided to go with guided explorations as one 

of the pragmatic solutions to the problem of too many considerations and a short implementation 

period. A more fine-grained account of the task design rationale for some tasks is presented in the 

structure of objective, hypothesis and choices in paper III (Højsted & Mariotti, 2020a). 

The tasks used in the didactic sequence from iteration 2 are available in appendix B. Other materials 

were designed as a part of the didactic sequence. These include a document to the teacher concerning 

the aim of the tasks (see appendix C), a lesson plan, the desired students’ answers to each task and 
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PowerPoint slides for the teacher to use during classroom discussions. Following the TSM model, the 

lesson plan included iterations of working on tasks, followed up by teacher-led classroom discussions. 

Between the second and the third design iterations (see the next section), teacher guidelines were 

developed to support the teacher in facilitating the classroom discussions. The teacher guidelines 

were developed based on the TSM frame adapted in an attempt to make it understandable for the 

teacher. The teacher guidelines included a description of the didactic cycle, a description of four 

general teacher actions to be used in the classroom discussions, a scheme containing descriptions of 

the mathematical aim of each task, the personal signs that could be expected to emerge from the 

activity (hypothetical and based on previous iterations) and possible teacher actions as a response to 

the signs that are expected to emerge (see appendix D). 

Since the term “guidelines” is used in relation to two products now, it is worth distinguishing between 

the different usages, to avoid confusion. The overall research aim, in accordance with the third 

research question, is to develop guidelines for the design of didactic sequences utilizing potentials of 

DGEs to foster students’ development of reasoning. The above mentioned teacher guidelines, which 

were developed to support the teacher in managing the classroom discussions, are only one 

component of the didactic sequence design. 

(ii) Testing of the educational materials in a teaching experiment

The didactic sequence was tested, analyzed and redesigned in three design cycles, including the pilot 

study (see Figure 5). 
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Figure 5. An overview of the schools and classes involved in the iterations of testing 

The schools in the project had participated in previous experiments that are unrelated to this project; 

hence, a line of communication was available. Five teachers showed interest and agreed to be a part 

of the project: two teachers from school A, two from school B and one from school C. Each teacher 

participated with one class. 

Prior to the start of each intervention, meetings were held with the teachers to go through and discuss 

the teaching material in order to develop a shared understanding of the aim of the sequence and get 

the teachers’ views on the material, including their suggestions for improvements. The discussions 

also served as an opportunity to unveil the experience and preconditions of the teachers and their 

students in relation to GeoGebra proficiency and to reasoning competency. In the third iteration, the 

teacher guidelines were also discussed prior to the intervention. In the ongoing intervention, short 

meetings were held with the teacher after each lesson to discuss how it went and prepare for the next 

lesson. 

I, as the researcher, assumed a teacher-supporting role during the didactic sequence in classes 1–4, 

especially during the start-up phase. The involvement varied in the classes based on the 

confidence/requirements of the teachers for support. In class 5, the teacher carried out all the teaching, 

while I remained as an observer for the entirety of the sequence, except for an introduction to the 

project at the start. This was chosen because in the third iteration, the research focus was particularly 
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on the role of the teacher, with the aim of testing how the teacher managed the classroom discussion 

in light of the teacher guidelines developed for this purpose. 

The experiment with class 1 was a bit of an outlier compared to all the other classes due to 

circumstances surrounding the teacher who was responsible for this class. The teacher, contrary to 

expectations, did not teach eighth grade at the time of the intervention, and therefore, class 1 had to 

be a ninth-grade class. The class also had other activities planned, which meant that they could only 

participate in the project for two weeks instead of the planned three weeks. Nonetheless, it was still 

deemed valuable to collect first impressions from this class, particularly in relation to the testing of 

data collection equipment and setup. 

Class 2 was an eighth-grade class, as were the remaining classes in the experiment. The experiment 

in class 2 ran as an immediate extension of the first class; therefore, apart from minor adjustments, 

the material used was the same in both classes. Similarly, the didactic sequence material was nearly 

identical in classes 3 and 4. Hence, the majority of the design changes occurred between iterations. 

Data were collected in the form of screencast of students’ work in the DGE; videos of three chosen 

groups from each class (only two groups in class 5), which were chosen in collaboration with the 

teacher so that the groups represented a spectrum with regards to mathematical background from low-

achieving students to high-achieving students; audio recordings of the chosen groups (in the second 

and third iterations); interviews with the teachers; students’ written products; and video recordings of 

the whole class. 

(iii) Retrospective analysis of the collected data from the teaching experiment

Retrospective analysis was performed after each iteration, which included task-oriented analysis 

(Bakker & van Eerde, 2015). The analysis of data aimed to identify to what extent the outcome of the 

educational activities lived up to the expected learning outcome that was hypothesized beforehand 

and, on the basis of this analysis, how the educational activities should be redesigned and, 

consequently, how the guidelines, on which the educational activities were based, should be revised. 

During the research project, it became clear that it was necessary to sharpen the analytical focus in 

order to qualify the outcome of the research and keep the workload manageable. The guidelines and 

the resulting didactic sequence contained many layers of learning aims. Instead of developing a 

coarse-grained analysis of each of these layers in the whole didactic sequence, it was deemed more 

useful to make a fine-grained analysis of selected aspects that might provide insights to the research 
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community. Therefore, even though the design involved elements from each level of the guidelines, 

the analysis centered on certain aspects of the design and, hence, on certain elements of the guidelines. 

A deciding factor for the choice of foci was that the results from the survey (Højsted, 2020b) indicated 

a lack of focus in Danish lower secondary schools on students’ awareness of free and locked objects 

in DGEs, which is a part of step one in the guidelines. In addition, as described in paper I (Højsted, 

2020a), the dimensions of task design and the role of the teacher are underdeveloped. Consequently, 

the choice was made to focus the research analytically by zooming in on level 1 in the guidelines and, 

in that context, on task design and the role of the teacher anchored in the TSM, in addition, to zooming 

in on the toolbox puzzle approach that was designed to support the students in verifying their 

conjectures. 

The outcome of this analysis is reported in paper III (Højsted & Mariotti, 2020a), zooming in on level 

1 in the guidelines; in paper IV (Højsted, 2020c), zooming in on the toolbox puzzle approach; and in 

paper V (Højsted & Mariotti, 2020b), zooming in on the development of guidelines for the teacher. 

3.2. Data collection and analysis 

As mentioned already, data were collected in different forms in the three parts of the project and 

analyzed in different ways. 

The data analyzed in the review comprised 136 peer-reviewed publications. The characteristics of 

reasoning competency had the crucial function of acting as the analytical lens in the sorting and 

selection of the data to identify the potentials of DGEs in relation to reasoning competency and inform 

the development of a priori guidelines. 

The data from the questionnaire consisted of answers from 700 teachers teaching in primary and 

lower secondary schools. The data were sorted for the analysis so that only full answers were 

included, and only answers from teachers that teach in lower secondary schools, which was the age 

group of interest. Therefore, paper II deals with data from 220 respondents that fit those criteria. 

Certain questions were chosen for presentation in the paper II analysis in the form of frequency tables, 

as well as a categorization of the teachers’ comments into an open-ended question. The results of the 

analysis presented was chosen so that it would reflect the results from the survey as a whole – that is, 

adding further results would not contribute to the synthesizing result or revise the conclusion. An 

overview of all of the questions and the full 700 answers is provided in appendix A. 
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As mentioned previously, data from the DBR part of the project was collected in the form of 

screencast recordings of the students’ work on the computer, external video recordings of three 

chosen groups from each class (only two groups in class 5), audio recordings of chosen groups in the 

second and third iterations, interviews with the teachers, students’ written products and videos of 

classroom discussions. 

The screencast software chosen was OBS Studio (https://obsproject.com/). The software allowed for 

the inclusion of a webcam recording as a part of the screen recording, which made it easier to identify 

who was talking. This function was not used initially but proved to be a necessary step that became 

evident after the pilot study. The data collected in the pilot study was deeply affected by sound 

problems. It was difficult to decipher what the students were saying because of overlapping voices. 

The webcam video helped with this matter. Another remedy used from iteration 2 onward was to 

relocate the chosen groups for external video in the classroom so that there would not be too much 

noise from neighboring classmates. A third and efficient remedy was to secure extra audio recordings 

of the chosen groups using quality audio recorders. The quality of the data from the pilot study was 

too poor to be used directly in the analysis and therefore served primarily as a testing ground for the 

second iteration in terms of data collection. 

The data analysis in paper III used screencast data, external video, transcripts from audio recordings 

and students written products from class 3 and 4 (mainly 3) in the second iteration. These data were 

analyzed in the TSM frame – searching for signs that emerged in the artefact activity and interpreting 

the underlying meaning of the students’ signs and comparing the results to the expected outcome 

hypothesized a priori from the task design point of view, leading to an evaluation of the task design 

principles. 

Data analysis in paper IV used data from class 3 and 4 (mainly 4) in the second iteration. Screencast, 

external video, audio recordings and written products were used in the analysis; however, due to the 

eight-page limit of conference papers, which paper IV was restrained to, only data from external 

video, written products and transcripts of audio recordings were presented in the paper. Due to the 

same reason of space limitations, I decided to omit the fact that the study was theoretically anchored 

in the TSM, both concerning the (semiotic) potential of DGEs in relation to conjectures and proof 

and the presentation of the results of analysis of two students’ work on the toolbox puzzle approach 

(the unfolding of the semiotic potential). 
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The data presented in paper V stem from class 5 in the third iteration. Data were collected in the form 

of videos of the whole class and selected groups, screencast recordings of all groups, audio recordings 

and written products from the students. Data were also collected by interviewing the teacher before 

and after the teaching experiment and after each teaching session through a semi-structured interview. 

In the paper, only transcripts from the classroom discussion and the teacher interview after the first 

lesson were presented and analyzed. 

Table 1 below provides an overview of the methods applied, data collected and analysis conducted 

in the papers of the project.

Paper Method/type of 

research 

Data collected Data analysis 

1. Hermeneutic 

framework for 

literature reviewing 

136 peer-reviewed 

publications. 

Identifying the potentials of DGEs in 

relation to reasoning competency. 

Informing the development of a priori 

guidelines. 

2. Quantitative study – 

questionnaire 

Answers from 220 Danish 

lower secondary school 

teachers 

Identifying the utilization of DGE 

potentials. Using frequency tables. 

Categorizing comments. 

3. Qualitative study – 

design-based 

research 

Videos, screencast, 

transcripts from audio 

recordings, written 

products coming from 

iteration 2, class 3 

Analyzing the unfolding of the 

semiotic potential. Interpreting 

students’ emerging signs. Evaluating 

task design principles related to a 

dependency task. 

4. Qualitative study – 

design-based 

research 

Videos, screencast, 

transcripts from audio 

recordings, written 

products coming from 

iteration 2, class 4 

Analyzing the unfolding of the 

semiotic potential. Interpreting 

students’ emerging signs to evaluate 

the task design related to the toolbox 

approach. 

5 Qualitative study – 

design-based 

research 

Videos, screencast, 

transcripts from audio 

recordings, written 

products, and semi-

Analyzing the unfolding of the 

semiotic potential. Analyzing the 

teachers’ management of the 

classroom discussion to evaluate the 

45



structured interview 

coming from iteration 3, 

class 5 

designed teaching guidelines. 

Analyzing interview transcripts. 

Table 1. An overview of methods and data in the project 

3.2.1 Ethical considerations 

An important part of research ethics concerns the treatment of the people involved in the research 

(Vetenskapsrådet, 2017). There were participants in the data collection process of the survey and in 

the DBR part, which clearly required ethical considerations. The purpose and scope of the data 

collection, the duration of the storage of the data and the way it would be used in anonymized form 

was explained to all participants prior to their participation, and their consent to these conditions was 

required for them to participate. In the web-based survey, these conditions were explained on the first 

page of the survey, and it contained a box that the respondents had to tick to participate. Since there 

was a lottery, the respondents that wanted to participate in the lottery had to enter their names and 

their email addresses, which made the data particularly sensitive; however, this part of the data was 

deleted as soon as the lottery winnings were transferred to the lottery winner. 

In the DBR iterations, which involved video recordings, consent forms were handed to the students 

from each class, which explained the purpose and scope of the data collection, the duration of storage 

of the data and the way it would be used (in anonymized form for research purposes only). The 

students and their parents were required to sign the consent form for the students to participate in the 

project. Informed consent was also collected from the teachers. 

While undertaking this project, I have, to the best of my abilities, tried to live up to the principle of 

honesty “developing, undertaking, reviewing, reporting and communicating research in a transparent, 

fair, full and unbiased way” (ALLEA, 2017, p. 4) and emphasized other national and international 

ethical standards: credibility, integrity, responsiveness, transparency and accountability (ALLEA, 

2017; Ministry of Higher Education and Science, 2014). 

4. Results 

This chapter outlines the results of the project, referring to the papers and briefly describing the results 

that each paper provided. The chapter concludes with a section that summarizes the results in a list. I 
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suggest reading the papers in their entirety before or after this chapter if they have not been read 

already. 

4.1. Review to identify potentials and develop a priori guidelines 

Paper I: Guidelines for Utilizing Affordances of Dynamic Geometry Environments to Support 

Development of Reasoning Competency (Højsted, 2020a). 

The purpose of the paper was, on the one hand, to unveil potentials of DGEs in relation to reasoning 

competency. Potentials in this context refer to affordances of DGEs that are not available with other 

common mathematics education tools – in particular, contrasting DGE with paper, pencil, ruler and 

compass geometry. Four potentials were identified: dragging, feedback, measuring and tracing. On 

the other hand, the aim was to develop a priori guidelines for the design of didactic sequences that 

utilize these potentials and to discover which dimensions the guidelines should entail. At the time of 

writing this paper, the project was not yet theoretically anchored in the TSM. In fact, the review phase 

was used to explore and decide which theoretical constructs were suitable to answer the overarching 

research questions of the project and contribute to the development of guidelines. The instrumental 

approach (Artigue, 2002), the TSM (Bartolini-Bussi & Mariotti, 2008), and the van Hiele model of 

levels (van Hiele, 1986) were used. The utilization of the potentials was described in three dimensions 

of guidelines: students’ cognition, task design and role of the teacher. More specifically, the 

guidelines comprise a learning trajectory description of cognitive progression that is elaborated in 

terms of utilization schemes and instrumented techniques, five types of task design that are expected 

to foster this progression and the role of the teacher in facilitating this process. Finally, the guidelines 

convey the expected mobilization of reasoning competency, which is a consequence of this work. 

4.2. The questionnaire 

Paper II: Teachers Reporting on Dynamic Geometry Utilization Related to Reasoning Competency 

in Danish Lower Secondary School (Højsted, 2020b). 

The aim of the paper was to unveil to what extent the four potentials are utilized in Danish lower 

secondary schools and give insights into the current DGE teaching practice, which could be used in 

the design of the didactic sequence. 

Analysis of the data indicates that dragging and measuring are used to some extent, feedback is used 

less and tracing is almost not used at all. There are signs that the paper and pencil environment has 
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been substituted with DGEs to solve tasks that were originally designed for paper and pencil, meaning 

that the new potentialities offered by DGEs are not used. The teacher most often highlights the 

pragmatic value of techniques. The results also indicate that the awareness of locked and free objects 

in GeoGebra is not a particular focal point – which, in the guidelines, is placed at level 1. Since locked 

and free objects are the manifestations of the geometrical properties of figures, which are mediated 

perceptually in DGEs during dragging as a consequence of both Euclidean theory and software design 

choices, they are important to be understood in order to be able to interpret what happens on screen. 

It was decided to focus on this finding concerning dependency relations in DGEs in the design of the 

initial tasks of the didactic sequence and in the consequent analysis, which is presented in paper III. 

There are methodological and analytical issues in the study, one being that the data does not constitute 

a representative sample of lower secondary school mathematics teachers. In fact, as explained in the 

paper, the respondents may be considered as “super users,” which reflects what we can infer from the 

results. That is, if these teachers do not use the potentials, then it is likely that the average teacher 

does not either. 

4.3. DBR – empirical development of the guidelines 

As explained in the Methods section, a didactic sequence was designed on the basis of a priori 

guidelines in Højsted (2020a) and then tested and redesigned in three design cycles. The design 

contained elements referring to each level of the guidelines; however, in the retrospective analysis, 

certain aspects were chosen and brought to focus for a fine-grained analysis in order to qualify the 

research outcome and keep the workload manageable. This resulted in three papers, zooming in on 

different aspects of the guidelines. 

4.3.1. Zooming in on level 1 of the guidelines – dependency tasks 

Paper III: Analysing Signs Emerging from Students’ Work on a Designed Dependency Task in 

Dynamic Geometry (Højsted & Mariotti, 2020a). 

The paper presents a fine-grained account of the task design principles of the initial tasks of the 

didactic sequence. The principles are presented in the structure of objective, hypothesis and choices, 

which we developed to ensure coherency and alignment between overarching learning objectives 

hypotheses about the types of tasks and choices made at the micro level of design. This structure also 

offers a systematic and explicit support for connecting the design process to the revisions suggested 

based on the empirical data. 
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The results elicit students’ difficulties in predicting and interpreting the hierarchical nature of 

dependencies in DGE and show that the students, in fact, expect dependencies to be nonhierarchical. 

The data shows that high-achieving students describing the behavior of constructions during dragging 

refer to the specific elements of the figure (e.g., points or line segments) to describe the dependencies 

between geometrical properties of the figure, while low-achieving students refer to their global 

appearance, with their justifications referring neither to the construction process nor to geometrical 

properties. The suggested revisions convey that it is necessary to include specific prompts in the task 

design in order to shift the students’ attention onto specific elements of constructions and that it seems 

necessary to explicitly ask students to explain any unexpected observation for active reflection to 

occur. While the role of the teacher is not in focus in the paper, some analyses and reflections are 

oriented toward the inappropriateness of the teacher in not facilitating an awareness of the 

impossibility of dragging the derived objects in the task. 

4.3.2. Zooming in on students’ proofs and the toolbox puzzle design 

Paper IV: A “Toolbox Puzzle” Approach to Bridge the Gap between Conjectures and Proof in 

Dynamic Geometry (Højsted, 2020c). 

Results from this paper concern the design of tasks from the latter stage of the didactic sequence that 

focus on supporting students’ production of inferential arguments to verify conjectures that they have 

made in DGEs. The generic structure of the “toolbox puzzle” tasks is prediction and guided 

exploration leading to students’ production of conjectures, followed by a proof as an explanation 

activity, using the toolbox. The toolbox contains axioms and theorems, as well as a support drawing, 

and serves the purpose of supporting the students in developing an inferential argument since they 

have no previous experience with this. Hence, looking for the explanation becomes solving the 

puzzle, using the pieces that are in the toolbox. The idea is then that after several such tasks, the 

toolbox can be empty. 

The presented case of two high-achieving students indicates that the task design can foster an 

interplay between the production of conjectures in DGEs and deductive reasoning. The students 

argued theoretically to explain what they initially guessed and investigated empirically in the DGE. 

Importantly, the activity of theoretical validation seemed to make sense to them, even if they were 

already convinced by the empirical investigation. The students seemingly had to get acquainted with 

the structure of the toolbox puzzle approach before it became meaningful for them. Most students 

found it difficult to write down what they otherwise could explain verbally and by using gestures. 
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Medium- to low-achieving students struggled with deductive reasoning, with some only managing 

the conjecturing activity. 

4.3.3. Zooming in on the role of the teacher 

Paper V: Guidelines for the Teacher – Are They Possible? (Højsted & Mariotti, 2020b). 

This paper reports on the design and implementation of teacher guidelines to manage classroom 

discussions in the last iteration of the DBR cycles. The guidelines were anchored in the TSM frame 

utilizing the notions of the didactic cycle and the four categories of teacher actions in an adapted 

version. More precisely, a condensed text was offered to the teacher introducing the didactic cycle 

and the four categories of teacher actions, followed by a table to be used in the classroom discussion 

in relation to each task. The table contained a description of (1) the intended mathematical meanings, 

which is the educational aim of each task; (2) the students’ personal meanings expected to emerge 

from the activity; and (3) corresponding teacher action advice to the teacher with specific examples 

and comments. Results of the analysis coming from the first classroom discussion, as well as from an 

interview with the teacher, are presented. The results show that the teacher neglected two of the 

teacher actions and followed the guidelines only to a limited extent. A dilemma appears in the results 

– the teacher indicates that the guidelines must be shorter, while the data suggests that the teacher

needs to grasp more of the theoretical frame or understand it better. It seems difficult to communicate

theoretical assumptions using guidelines in this form, which indicates that the guidelines must

somehow be flexible in relation to different teachers’ pedagogical paradigms. A critical issue emerges

from the results – how to communicate a theoretical frame in the form of condensed guidelines in

light of teachers’ different pedagogical paradigms?

4.4. Summary of results 

The results from the papers may be coarsely summarized as follows: 

Paper I 

• Four DGE potentials in relation to reasoning competency were identified: dragging,

feedback, measuring and tracing.

• The utilization of the potentials was described in three dimensions of a priori guidelines –

students’ cognition, task design, and the role of the teacher – and related to the expected
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mobilization of reasoning competency. The guidelines convey a hierarchical learning 

trajectory. 

Paper II 

• There are indications that the potentials are scarcely used in Danish lower secondary schools 

and that DGE is used as a substitute of the paper and pencil environment. 

• Teachers most often highlight the pragmatic value of techniques. 

• Awareness of free and locked objects seems not to be a particular focal point, which is 

therefore addressed in the design of the didactic sequence. 

Paper III 

• Design principles are presented in the systematic structure of objective, hypothesis and 

choices. 

• Danish lower secondary school students intuitively expect dependencies in DGEs to be 

nonhierarchical. 

• High-achieving students refer to geometrical properties and specific elements of the 

constructions to justify their behavior during dragging, while low-achieving students refer to 

their global appearance and not geometrical properties. 

• It seems necessary to include prompts that shift students’ attention to specific elements of 

constructions and require explanations for unexpected observations in order for active 

reflection to occur. 

Paper IV 

• The “toolbox puzzle” task design can foster an interplay between the production of 

conjectures in DGEs and deductive reasoning. 

• Theoretical validation seemed to be meaningful for the students in this approach. 

• Students found it difficult to produce written arguments. 

• Medium- to low-achieving students struggled with deductive reasoning, with some only 

managing the conjecturing activity. 

Paper V 

• It is difficult to communicate theoretical aspects in the form of guidelines, at least in the 

chosen design form of a condensed text and a table. 
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• Dilemma: The data suggest that more of the theoretical frame must be shared with the teacher 

and the importance of key aspects must be elaborated. However, according to the teacher, the 

guidelines must be shorter. 

• The guidelines must somehow be flexible enough to be adapted to different teachers’ 

pedagogical paradigms. 

5. Discussion 

This chapter examines pertinent issues, starting with the development of guidelines based on the 

theoretical and empirical results and providing a synthesis in the form of a model. Afterward, the 

guidelines are discussed, including how they were made and who might be possible stakeholders. The 

connection between the papers and their contribution toward the overall project, as well as certain 

findings from the papers, are discussed. Finally, I reflect on the suitability of the methodological and 

theoretical choices made, referring to notions of validity, reliability, generalizability and 

trustworthiness. 

5.1. The development of guidelines – providing a synthesis 

What exactly do the guidelines comprise, how did they come to be and how have they evolved? 

The a priori guidelines comprised a theoretically developed hierarchical learning trajectory 

elaborating on students’ cognition, task design and the role of the teacher in relation to the 

development of mathematical reasoning competency in DGE activities. The guidelines were 

developed based on previous research in the field and contained five steps of progression (0–4) that 

are unfolded in Højsted (2020a) and in the appendix attached to that paper. The steps related to 

students’ cognition can briefly be summarized as follows: 

(0) Having basic DGE proficiency – awareness of tools for construction and measurement. 

(1) Discerning free and locked objects. 

(2) Discerning direct and indirect invariants – awareness of certain dragging and measuring 

modalities for exploration and conjecturing. 

(3) Exploiting DGE feedback to find counterexamples to conjectures and investigate pseudo-

objects. 

(4) Theoretically verifying the conjectures. 
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To each of the steps, there is an elaboration of types of tasks that may foster such progression, the 

role of the teacher in facilitating this evolution and which part of reasoning competency the activity 

is expected to mobilize. 

These a priori guidelines that were theoretically designed initially were subsequently empirically 

revised based on findings from the DBR iterations. The refinement, which is spread out in the papers, 

is now condensed in the following. After having engaged in a fine-grained analysis of the empirical 

data related to level 1 in the guidelines (Højsted & Mariotti, 2020a), the toolbox puzzle approach at 

level 4 (Højsted, 2020c) and the role of the teacher (Højsted & Mariotti, 2020b), a succinct summary 

is made based on the analysis gained from the papers. Refinements are stated in relation to the three 

aspects that were chosen as analytical foci, rather than reiterating the whole learning trajectory from 

the first paper (Højsted, 2020a), and a condensed model is suggested. 

Level 1 of the guidelines is reformulated into “developing an interpretative frame” that comprises 

being able to discern free and locked objects and possessing awareness of the hierarchical nature of 

dependencies in a DGE. Essentially, it concerns being able to interpret what happens on screen during 

dragging by means of mathematical reasoning referring to logical dependencies between geometrical 

properties as well as software design reasons. As seen in paper III, this ability is nontrivial, and 

students’ awareness of this fact can certainly not be taken for granted. It is, therefore, a necessary 

focus point to consider if the educational aim is to exploit the dragging tool. The data suggest that 

working with dependency tasks and construction tasks (Højsted, 2020a; Højsted & Mariotti, 2020a; 

Mariotti, 2012), using the design heuristic Predict–Observe–Explain (White & Gunstone, 2014), may, 

indeed, trigger an intellectual curiosity related to the functioning of the program and the geometry 

that is embedded. However, it seems necessary to explicitly ask the students to explain any 

unexpected observation for active reflection to occur or else they may just move on. It is essential in 

a classroom setting that the teacher is aware of the semiotic potential of DGEs and his mediating role 

in fostering the evolution of this interpretative frame. The designed task type “dependency tasks” is 

added to the task column. 

The toolbox puzzle approach showed potential in connecting the development of DGE-based 

conjectures with that of deductive argumentation. The fact that the toolbox puzzle activity became a 

sensemaking activity for the students is promising and supports the approach of introducing proof as 

an explanation, at least in the context of students being required to undertake theoretical validation 

of DGE-generated conjectures that they are already empirically convinced of. Level 4 is reformulated 
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in the task column so that it now incorporates “toolbox puzzle tasks.” Further refinements of the 

design may consider steps to support medium- to low-achieving students in developing inferential 

arguments and, generally, support students’ production of written argument. 

The section concerning the role of the teacher is elaborated to include the structure of the guidelines 

produced for the teacher to manage the classroom discussion in the third iteration. The guidelines are 

developed to support the teacher in performing their mediating role. The guidelines comprise a 

condensed text introducing the didactic cycle and the four categories of teacher actions, as well as a 

table. The table describes the intended mathematical meanings, which the DGE tasks are meant to 

evoke; the expected student signs and underlying meanings, which are expected to emerge in the 

classroom discussion (based on previous experience and hypothetical scenarios); and the possible 

actions of the teacher in relation to these signs. As seen in paper V, the implementation of the 

guidelines was not particularly effective. In fact, the data suggest that it is difficult to communicate 

underpinnings of an elaborate theoretical frame such as TSM using the design of condensed 

guidelines (Højsted & Mariotti, 2020b). Nevertheless, the idea and structure of these teacher 

guidelines for managing classroom discussions still seems worth pursuing, although it calls for more 

reflection on how to interface with teachers so that the guidelines become effective. This agenda, 

which is at the core of the articulation between theory and practice, will be pursued further in 

forthcoming research. Meanwhile, the structure of intended meanings, expected meanings and teacher 

actions is incorporated into the guidelines. 

Figure 6 provides a revised synthesis and a considerably condensed model of the guidelines for the 

design of didactic sequences that was initially presented in paper I. 
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Figure 6. A condensed model of a posteriori guidelines for the design of didactic sequences to utilize the semiotic potential of dynamic 
geometry environments in order to foster students’ development of reasoning competency (tasks described in Baccaglini-Frank et al., 
2013, 2017, 2018; Baccaglini-Frank & Mariotti, 2010; Højsted, 2020a, 2020c; Højsted & Mariotti, 2020a, 2020b; Komatsu & Jones, 
2018; Mariotti, 2012) 

As was the case in paper I, the first column in the model indicates steps of progression going from 0–

4; however, even if the steps are hierarchical, they are not to be considered as discrete or clearly 

continuous. For example, the development of several steps may occur at the same time, and they also 

overlap to some extent. 

The second column describes the types of DGE tasks that can support each level of progression, while 

the third column indicates which characteristics of mathematical reasoning competency this work 

may mobilize. 

The important mediating role of the teacher is modeled as going across the specific artefact tasks to 

the students’ progression and toward reasoning competency. This symbolizes the role of the teacher 

in fostering the evolution of students’ signs and underlying meanings that emerge in the DGE task 

work toward mathematical signs and meanings – which, in this case, are the constituents of reasoning 

competency. The mediation of the teacher is supported by the teacher guidelines, which comprise a 

description of the intended mathematical meanings that the task is meant to foster; the expected 

student signs and underlying meanings, which are hypothesized a priori and empirically developed; 
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and finally, the possible actions of the teacher, which are based on the four teacher actions presented 

by Bartolini-Bussi and Mariotti (2008). 

The guidelines are formulated at a level above the concrete design of a didactic sequence, meaning 

that the development of a didactic sequence based on these guidelines requires that further choices 

are made in relation to the concrete sequence design. In that sense, the guidelines are prior to a 

concrete sequence and serve as the foundation or guiding principles for designing didactic 

sequences with DGEs when reasoning competency constitutes the educational aim. Further choices 

made in the design of the concrete didactic sequence are elaborated and exemplified in Højsted and 

Mariotti (2020a) and in section 3.1.3. of this dissertation. On the one hand, certain details that proved 

valuable in the data from the project are omitted in such a condensed model presented in Figure 6, 

which does not report on detailed design choices – for example, design choices such as working in 

pairs with requests of predicting and justifying assumptions to each other to foster reasoning 

competency or the utility of using the heuristic of Predict–Observe–Explain (White & Gunstone, 

2014), while requesting explanations for any unexpected observation, to trigger active reflection. On 

the other hand, the synthesized guiding principles in the condensed model afford flexibility in relation 

to the concrete design and possible pedagogical approaches. 

These revised guidelines constitute the outcome that addresses the project’s answer to the third and 

final research question. 

5.2. How is it possible to change praxis and is it reasonable to do so? 

Who are the guidelines for? In principle, the guidelines may be useful for anyone interested in 

designing didactic sequences that utilize potentials of DGEs in relation to fostering students’ 

development of mathematical reasoning competency. However, closing in on some imaginable 

stakeholders, then the current research format formulation of the guidelines may, in particular, be 

interesting for researchers in mathematics education and preservice mathematics education educators, 

perhaps also curriculum stakeholders or mathematics textbook authors. Adaptation and reformulation 

are likely necessary to reach lower secondary school teachers themselves. This is planned in further 

dissemination, which is explained in Chapter 6. 

The important issue emerging from the results reported in paper V on the implementation of teacher 

guidelines for classroom discussions (Højsted & Mariotti, 2020b) deserves more reflection and 

further work to more effectively implement the structure of intended meanings, expected meanings 

56



and teacher actions. It seems more steps must be taken to elaborate on the TSM frame if these 

guidelines should become more effective. However, the problem of conveying an elaborate 

theoretical frame in a condensed manner seems difficult to solve, and the dilemma is that while more 

elaboration seems necessary, the teacher wants shorter guidelines. A possible path going forward 

could be to make the guidelines flexible, taking into account teachers’ possible different pedagogical 

paradigms. Exactly what that would mean is not yet clear. Perhaps it may comprise identifying what 

the absolute core concepts that must be elaborated are and clearly conveying to the teacher that an 

awareness of these concepts is fundamental for the implementation of this type of didactic sequence. 

Another path could be to seek alternative ways of interfacing with teachers by, for example, other 

mediums than written text. The most obvious being the use of videos or some online interaction, 

perhaps in the form of video packages conveying the core pedagogical approach and communicating 

theoretical aspects with concrete examples from teachers acting in a classroom discussion. The role 

of the teacher has only been one of the focus points in this dissertation, and not too much data has 

been disseminated on this issue, perhaps leaving more questions unanswered than answered; 

however, the crucial role of the teacher for making the teaching material successful was clearly 

recognized from the collected data in the five classes. Supporting all teachers in successful 

implementation seems to be a critical issue. 

Another point of discussion emerging from the results is whether it is reasonable to spend the required 

time in school mathematics education for students to become proficient in a DGE such as GeoGebra 

in order to foster the development of reasoning competency in relation to geometry, which may well 

be fostered in other ways (e.g., using a ruler and a compass). According to the guidelines, the 

development of an interpretative frame related to the DGE is important to perform some of the 

activities that are subsequently suggested – for example, searching for indirect invariants (cf. Lopez-

Real & Leung, 2006). This interpretative frame comprises an awareness of the program rules that 

govern the DGE, which includes those that are a consequence of Euclidian theory, as well as rules 

that are choices made by the software developers and perhaps not that relevant from a mathematical 

point of view. From the midpoint task in the project data (Højsted & Mariotti, 2020a, 2020b), we can 

see that it is not a trivial task and that students intuitively expect dependencies in DGEs to be 

nonhierarchical. The necessity of an interpretative frame is also indicated by Duval (2017): 

the instrumental construction of shape figures, particularly using software, impart a reliability 
and objectivity to them allowing to use them for heuristic experiments. But here too, for that 
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kind of activity, “seeing” is important because the effective use of a tool requires that we 
anticipate what can be done and obtained. (p. 58) 

The following questions then arise: How much time and effort is reasonable to spend on learning the 

intricacies of a software in order to reach the level necessary to be able to perform activities that 

actually comprise the mathematical goals? And is it reasonable to expect that teachers will possess 

this interpretative frame, knowing the difference between what is mathematically relevant and what 

is not? Of course, this deliberation is relevant for the use of any digital or nondigital tool in 

mathematics education, including the ruler and compass. Compared to many other tools, GeoGebra 

is, in fact, rather intuitive and is an easy tool, according to the teachers (Højsted, 2020b). 

Another way of viewing this discussion point is that mathematics, as a discipline, has developed in 

tune with technology and the natural sciences through history (Misfeldt, 2013), as have the means by 

which we gain access to mathematical objects. It could be argued that dragging in DGEs is indeed a 

mathematical activity and being able to justify the behavior of objects during dragging in DGEs, 

including the behavior that is not a consequence of Euclidean theory, can be considered as a 

mathematical activity. If this premise is accepted, then students (and teachers) must learn the rules of 

the “new game” for experiencing geometry (cf. Leung, 2015; Lopez-Real & Leung, 2006). 

5.3. Revisiting the conceptual frameworks 

It is engaging to consider, in retrospect, what the affordances and limitations of the DBR-related 

choices that were made are – in particular, the connection between DBR and the conceptual 

frameworks that were utilized (KOM’s mathematical reasoning competency and TSM). 

The choice of describing the educational goal using mathematical reasoning competency from the 

KOM framework required due consideration during the initial phase of the project – in particular, 

during the review process and the development of a priori guidelines. Mathematical reasoning 

competency does not address a particular topic, which may be more common in DBR, and reasoning 

competency is not commonly used in DGE research internationally; therefore, there was a need for 

operationalizing the competency, compartmentalizing it into a form that could be useful to identify 

pertinent previous research and develop a priori guidelines. The reasoning competency approach 

thoroughly influenced the development of guidelines and the design of the didactic sequence, not 

only in relation to the types of tasks that were deemed suitable but also concerning the choices made 

at the level of task formulation, such as requesting the students to justify claims to each other. The 
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Predict–Observe–Explain design heuristic proved valuable in relation to reasoning competency since 

it inherently requires justifications from the students. In summary, although the use of the KOM’s 

mathematical reasoning competency required operationalization and compartmentalization to be used 

in the DBR approach, there were no conflicts or difficulties as such. 

To what extent is the TSM frame and DBR compatible? Reflecting on this issue, it seems that the 

choice of anchoring the project in the TSM frame gave occasion to strokes of serendipity in relation 

to the DBR part of the project because there were overlaps in certain aspects. TSM and DBR both 

contain elements of didactic design, and the design is grounded in an a priori analysis. Hence, the 

hypothetical learning trajectory, from DBR methodology, coincides with the analysis of the semiotic 

potential of the artefact (DGE in this case) from the TSM frame. The same overlap is applicable in 

the development of tasks designed to exploit the semiotic potential of DGEs uncovered in the a priori 

analysis. The proposed analysis of the unfolding of the semiotic potential from the TSM frame also 

coincides with the retrospective analysis from DBR. 

Another beneficial output from anchoring the DBR in TSM in relation to DBR lies in the analytical 

focus of TSM on the emergence of signs and the appreciation of all relevant forms of signs (gestures, 

verbal utterances, written products or on-screen DGE actions) produced by the students. This 

corresponds well with the use of data triangulation, which is advised in DBR (see section 5.4.1. on 

internal validity). 

The TSM frame also proved valuable in determining which aspects were to be developed in the DBR 

– particularly the focus in the TSM frame on the role of the teacher, which influenced the design of

the teacher guidelines.

5.4. Revisiting methodological choices 

As presented in Chapter 3, the methods applied in the project are threefold, used in a multiphase 

design (Creswell & Clark, 2011) with a qualitative priority, and the results play different roles in the 

pursuit of the overarching research goals. A reasonable question that arises is why this methodological 

choice? The justification is that this approach was deemed suitable considering the research questions: 

(1) To bring to light potentialities of DGE in relation to reasoning competency; no other approach

other than a literature review seems relevant. (2) To uncover the extent to which these potentials are

utilized in lower secondary schools in Denmark requires data from across the country, and a survey

can provide exactly that. Additional qualitative studies could have further qualified the answer to the
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second research question by, for example, conducting follow-up interviews with teachers from the 

survey. It would, in fact, have been interesting to interview one teacher from each of the categories 

in paper II (Højsted, 2020b). However, it was deemed to require too many resources, considering 

other important aspects of the project. (3) DBR was considered suitable in the quest to develop 

guidelines for teaching that utilizes potentials of DGEs in relation to supporting students’ 

development of reasoning competency because it serves “an explanatory and advisory aim – namely, 

to give theoretical insights into how particular ways of teaching and learning can be promoted” 

(Bakker & van Eerde, 2015, p. 431). Since teaching that utilizes potentials of DGEs in relation to 

reasoning competency in lower secondary schools was not expected to be found in the current praxis, 

it was necessary to design such activity in order to be able to study it. 

The aligned quantitative and qualitative studies build on what was learned previously to address the 

overarching research objective. The papers, which are a consequence of the methodological choices, 

are, therefore, linked in several ways. 

5.4.1 The interconnectedness of the papers 

The relationship between each individual paper and the overall project may be highlighted referring 

to the research questions. The first paper addresses research question 1, the second paper addresses 

research question 2 and papers III, IV and V all address research question 3. 

However, the papers are also interconnected. The first paper is clearly connected to the DBR part of 

the project because the first paper entails not only review results but also an unfolding of the a priori 

guidelines that are utilized in the DBR part of the project. Hence, paper I can be conceived of as the 

preparatory phase that paves the way for papers III, IV and V. Paper I is, in fact, also connected to 

paper II because the potentials that were unveiled in the review laid the foundation of the development 

of the survey, which is the research focus in paper II. Since paper II examined the practice of lower 

secondary school teachers with regards to DGE potentials, it provided insights that were taken into 

consideration in the DBR part of the project. In fact, the task design that is in focus in paper III on 

dependency relationships in a DGE is a direct consequence of the survey results in paper II, which 

indicated that dependency relationships mediated by DGE were not a point of focus in Danish lower 

secondary schools. Another methodological choice concerns the mathematical aim of the project. 
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5.4.2 Using the whole of mathematical reasoning competency as the learning aim 

As described in Chapter 2, mathematical reasoning competency entails several characteristics and can 

be considered a quite broad learning aim. The choice of focusing on all characteristics of reasoning 

competency, therefore, led to a learning trajectory that contained many layers of learning aims. One 

could, in fact, argue that the learning aim was too broad because thoroughly addressing each level of 

the guidelines would require the development of a didactic sequence that would stretch over a long-

term experiment rather than the 15-lesson intervention that was developed in the project. Even the 

15-lesson sequence that was tested and redesigned in 5 different classes produced so much data that 

I decided to analytically focus my attention on certain parts – that is, zooming in on level 1 of the 

guidelines, the toolbox puzzle approach and the role of the teacher in classroom discussions. Hence, 

on the one hand, the choice to maintain mathematical reasoning competency in its entirety as the 

learning goal resulted in a learning trajectory that was broad in relation to the allocated resources in 

the project, and as a consequence, I had too much data. In retrospect, it may well have been sufficient 

to focus my attention only on some parts of reasoning competency in the project – for example, on 

the ability to transform heuristic reasoning into actual proofs. It may also have been sufficient to focus 

only on task design or perhaps only on the role of the teacher. However, on the other hand, the 

guidelines provide a holistic coherent learning trajectory of DGE utilization aiming to foster students’ 

development of mathematical reasoning competency, including important aspects of the teaching and 

learning process (i.e., students’ cognition, task design and the role of the teacher). As a research 

outcome, this seems to be a quite useful contribution to the research field as well as for stakeholders 

(such as preservice mathematics teacher educators, textbook developers and mathematics educators 

at other levels) – even if the guidelines are primarily theoretically anchored and only, to some extent, 

empirically refined. Further empirical work and analysis of the data are already ongoing. Taking these 

aspects into consideration, I am content with the chosen approach. 

5.4.3. Validity and reliability in DBR 

Bakker and van Eerde (2015) propose that validity and reliability can be addressed in DBR studies 

using the notions of internal and external validity, as well as internal and external reliability. 

Internal validity “refers to the quality of the data and the soundness of the reasoning that has led to 

the conclusions” (Bakker & van Eerde, 2015, p. 444). A technique that may be applied to improve 

the internal validity of a DBR study is the use of data triangulation in the retrospective analysis 

(Bakker & van Eerde, 2015). The many sources of data (transcripts, video, screencast, written 
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products and teacher interviews) collected in the project allowed for this type of analysis. In fact, the 

theoretical anchoring in the TSM, which encourages an analytical focus on the emergence of signs in 

all relevant forms of expressions (e.g., gestures, verbal utterances, written products or on-screen DGE 

actions), facilitates that data triangulation is applied. In terms of internal validity, this points to an 

inherent analytical strength of the TSM frame. 

External validity refers to the generalizability and transferability of the results. These issues concern 

questions about 

how we can generalize the results from these specific contexts to be useful for other contexts 
[…] The challenge is to present the results (instruction theory, HLT [hypothetical learning 
trajectory], educational activities) in such a way that others can adjust them to their local 
contingencies. (Bakker & van Eerde, 2015, p. 444) 

The guidelines can be considered a Danish context-specific theoretical contribution concerning the 

utilization of DGE potentials in relation to fostering students’ development of reasoning competency 

empirically refined in certain aspects. However, as mentioned in Chapter 1, the notion of 

competencies is gaining traction in curricula around the world, even if different terminology may be 

used. Therefore, the guidelines may easily be adjusted to contexts situated in countries that have 

adopted learning aims that resemble reasoning competency or contain elements of reasoning 

competency as well as learning aims concerning DGE and geometry. 

Some of the results reported in the papers are of a general nature and can reasonably be conceived to 

be nonspecific to the Danish context (e.g., from paper III – the students’ intuitive expectations 

concerning dependencies in DGE, low-achieving students’ reference to global appearance of figures 

and the promising potential of the design heuristic Predict–Observe–Explain in relation to reasoning 

competency). 

Internal reliability in DBR “refers to the degree of how independently of the researcher the data are 

collected and analyzed” (Bakker & van Eerde, 2015, p. 445). Bakker and van Eerde (2015) mention 

two techniques to improve internal reliability: to collect data with objective devices and discuss 

episodes of data with colleagues for peer examination. In the project, these techniques were utilized, 

on the one hand, by collecting data with video, screencast and audio devices and, on the other hand, 

by extensively discussing episodes of data with the coauthor of papers III and V. 

External reliability concerns the replicability of the study – which, in the context of DBR, requires 

“that it is clear how the research has been carried out and how conclusions have been drawn from the 
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data” (Bakker & van Eerde, 2015, p. 445). In the Methods section and the dissemination of the results 

of the research project, attempts were made to report on the process as thoroughly and candidly as 

possible (to the best effort of the author) so that the reader, in a transparent manner, may follow the 

project’s process and results. 

5.4.4. Trustworthiness 

Another conducive perspective to reflect on the methodological quality of the study is Schoenfeld’s 

(2007) concept of trustworthiness. Generally, when assessing the quality of a study, the concepts of 

validity and reliability are used (Blaxter et al., 2010). These notions are used in the previous section; 

however, the notion of trustworthiness is also addressed here, complementing the prior elaboration. 

Trustworthiness includes five subconcepts – the first two of which set requirements for mathematical 

didactical conceptual frameworks, while the last three, are more relevant for assessing the quality of 

empirical research. The first subconcept is what Schoenfeld (2007) calls rigor and specificity, and it 

contains the idea that one must be consistent, precise and thorough when describing theoretical 

concepts or actions that are to be used in relation to a study. Considering the rigor and specificity of 

the project, I have unfolded the two conceptual frameworks (KOM’s reasoning competency and the 

TSM) in Chapter 2, describing the constituents that are relevant for the project in relation to the design 

of each study and in terms of analyzing the data in the papers of the dissertation. In the Methods 

section, I have described how the design of the different studies was based on the understanding and 

operationalization of the concepts from the KOM framework and the TSM. 

The next subconcept, replicability (Schoenfeld, 2007), concerns the consideration that a study must 

be presented in enough details so that key aspects of a study could be repeated or further developed 

by others. As mentioned before, to adhere to this concept, I tried to present the methodology 

comprehensibly by including details that may seem not too important yet contributing to make it clear 

to how each study was performed. The details permit that others, will understand justifications and, 

if they prefer, build on the ideas, which is precisely the idea in the requirement of replicability. 

The subconcept multiple sources of evidence (Schoenfeld, 2007) is about triangulation. It considers 

the fact that it is better for a study to have multiple perspectives on the same object of study because 

something that is visible through one lens is not always visible through another. As mentioned in the 

previous section, there were many sources of data in the DBR part of the project (transcripts, video, 

screencast, written products and teacher interviews), facilitating that data triangulation was applied. 
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The same cannot be said in relation to the questionnaire; however, the inclusion of open-ended 

questions did provide qualitative nuances that could complement the quantitative data. The last 

subconcept is related to the generality and importance (Schoenfeld, 2007) of a study, which concerns 

how widely the results are applicable as well as whether the study is important. 

We can discuss the generalizability of the results gathered from the survey (Højsted, 2020b). As 

mentioned in the Methods section and in paper II, the population of the survey was not representative 

of the average Danish lower secondary school mathematics teacher. In fact, the respondents may be 

considered as “super users” because of the way the survey was distributed and because their reporting 

on GeoGebra usage was high. The case resembles what Flyvbjerg (2006, p. 14) denotes as a critical 

case – which “can be defined as having strategic importance in relation to the general problem” 

because it can provide the possibility to generalize in the form of “if it is valid for this case, it is valid 

for all (or many) cases” and, conversely, “if it is not valid for this case, then it is not valid for any (or 

only few) cases” (Flyvbjerg, 2006, p. 14). Using this rationale, we can generalize by inferring that 

since the “super users” in the survey did not use the potentials to a great extent, then the average 

lower secondary school teacher likely does so to an even lesser extent. The results from the survey 

are important because while there are indications that GeoGebra is widely used, no previous research 

has analyzed how it is used in Danish lower secondary schools. 

The results presented from the cases in papers III, IV and V related to DBR are not claimed to be 

generalizable, even though some results may well be. Rather, these results serve as an existence proof 

(Schoenfeld, 2007) of what is possible in average/above-average Danish lower secondary school 

classes with this approach and serve to confirm/invalidate the hypothesized learning trajectory. While 

the results from the cases may not be generalized as quantitative studies can, they can give valuable 

insights from one specific context that may be transferable to other contexts. In fact, good case 

narratives can provide irreducible quality and capture phenomena that cannot be captured by 

quantitative data (Flyvbjerg, 2006), such as the findings described in paper III (Højsted & Mariotti, 

2020a) that students intuitively expect dependencies in DGEs to be nonhierarchical and high-

achieving students refer to geometrical properties and specific elements of the constructions to justify 

their behavior during dragging, while low-achieving students refer to their global appearance and not 

geometrical properties. This is also exemplified in paper IV’s findings (Højsted, 2020c) that the 

“toolbox puzzle” task design can foster an interplay between the production of conjectures in DGEs 

and deductive reasoning while being a meaningful activity for students. Additionally, providing 
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insights into the difficulty of sharing with a teacher the underpinnings of an elaborate theoretical 

frame in condensed teacher guidelines from paper V. 

In conclusion, while some generalization can be made in relation to the survey, the DBR studies offer 

limited warranted generality in the form of existence proofs (Schoenfeld, 2007, p. 89). However, 

Schoenfeld (2007) asserts that such studies can “bring important issues to the attention of the field, 

make theoretical contributions, or have the potential to catalyze productive new lines of inquiry” 

(p. 89). I would argue that this is the case with the local theoretical contribution concerning DGEs in 

relation to the reasoning competency provided in this project – which, hopefully, can contribute 

toward better DGE utilization in Danish lower secondary schools and be useful for other contexts. 

6. Conclusion

In this dissertation, I set out to answer the following three overarching research questions: 

1. What are the potentials of DGEs in relation to supporting students’ development of reasoning

competency?

2. To what extent are the potentials currently utilized in Danish lower secondary school?

3. Which research-based guidelines feature in the design of teaching that utilizes DGE potentials

in order to support students’ development of reasoning competency?

I have investigated these research questions, which were refined after adopting the theoretical frame 

of the TSM, by engaging in mixed methods research studies, using a multiphase design with a 

qualitative priority. I have reported on these studies in five individual papers – which are connected 

and, as a whole, have contributed to addressing the research questions in the form of theoretical and 

empirical contributions. 

Addressing the first research question, I identified from the review that the potentials of feedback, 

dragging, measuring and tracing in DGEs may be exploited in relation to fostering students’ 

development of mathematical reasoning competency. The potentials are not separate domains; in fact, 

dragging may be considered a crucial potential that intervenes in the other three potentials. 

To answer the second research question, I found indications from the survey that these potentials are 

scarcely utilized in Danish lower secondary schools, that DGEs are used to solve paper and pencil 

tasks and teachers highlight the pragmatic values of techniques afforded by the software. 

65



Finally, in relation to the third research question, from the DBR approach, I identified guidelines in 

three dimensions describing a learning trajectory in terms of students’ cognition, types of DGE tasks 

that utilize the potentials and mobilize different characteristics of reasoning competency and an initial 

structure of guidelines for the teacher to manage classroom discussions. The guidelines were initially 

developed theoretically and, in part, refined empirically. 

The guidelines were formulated at a level that can serve as the guiding principles for the design of 

didactic sequences to utilize potentials of DGEs in order to foster students’ development of reasoning 

competency. Hence, certain choices must be made in the actual utilization of the guidelines, which 

means there is flexibility in relation to the concrete design. The choices and rationales that were made 

in the project design are reported in part in Højsted and Mariotti (2020a) and in part in section 3.1.3. 

– one choice being the use of the design heuristic of Predict–Observe–Explain (White & Gunstone,

2014), which proved promising.

7. Contribution to the research field and praxis

Without reiterating all the results, this project’s novel research contribution can coarsely be 

summarized into two main constituents: First, the project provides insights into the actual DGE usage 

of Danish lower secondary school teachers, showing that the potentials in relation to reasoning 

competency are scarcely utilized and teachers mainly refer to the pragmatic value of techniques 

performed with DGEs. Although Vejbæk’s (2011) report on data from 2009 investigated if DGEs 

were being used, no up-to-date quantitative research exists on how teachers actually incorporate 

DGEs in Danish lower secondary schools. Internationally, the findings are in alignment with results 

in Bozkurt and Ruthven’s (2017) and Ruthven et al.’s (2004) qualitative studies, which showed that 

teachers mainly refer to the added pace and productivity that technology provided. 

Second, the project provides a Danish context-specific theoretical contribution (which is empirically 

refined at certain levels) in the form of guidelines containing a holistic learning trajectory in relation 

to the design of didactic sequences that utilize potentials of DGEs for the purpose of fostering lower 

secondary school students’ development of mathematical reasoning competency. While there are 

studies that have developed task design principles or models in relation to DGEs (e.g., Fahlgren & 

Brunström, 2014; Lin et al., 2012; Komatsu & Jones, 2018; Olsson, 2019), none have done so in the 

particular context of fostering the development of reasoning competency. 
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Thus, the project provides some insights in relation to Niss et al.’s (2016) call for the need to 

understand the particular factors and contexts that help foster the development of mathematical 

competencies. 

The next step in disseminating the project results is concentrating on reaching praxis. As a stroke of 

fortune, a new national center for the development of mathematics teaching, abbreviated NCUM 

(www.ncum.dk), was recently established in Denmark. The purpose of the center is to disseminate 

knowledge about mathematics teaching, making applicable research-based knowledge available to 

teachers and educators. The center plans to do so, in part, by developing “knowledge packets” that 

teachers can use. The results from this project can suitably be adapted and fed into one such 

knowledge packet that may advice teachers on how to utilize potentials of DGEs in relation to 

fostering students’ development of reasoning competency, thereby contributing to the presence of 

thoughtfully designed DGE teaching/learning sequences and hopefully creating “marvels” in Danish 

lower secondary school mathematics. 
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Guidelines for utilizing affordances 
of dynamic geometry environments 

to support development of 
reasoning competency

ingi heinesen højsted

This article reports on guidelines developed based on an extensive research litera-
ture review investigating the potentials of dynamic geometry environments (DGEs) 
when the educational aim is to support students’ development of mathematical 
reasoning competency. Four types of potentials were identified – feedback, drag-
ging, measuring, and tracing – and used in three dimensions of guidelines: students’ 
cognition, task design, and the role of the teacher. Using constructs from the Instru-
mental approach, the Theory of semiotic mediation, and the van Hiele model of levels, 
affordances and guidelines are elaborated upon and their potentials for reasoning  
competency are analyzed.

Research on dynamic geometry environments (DGE) affordances has 
revealed potentials regarding the development of students’ mathemati-
cal reasoning (e.g. Leung, 2015; Edwards et al., 2014). This is promis-
ing, because there is research in Denmark and internationally indicating 
that students’ reasoning abilities are inadequate (e.g. Jessen et al., 2015; 
Hoyles & Healy, 2007). ICT is accessible at all levels of the Danish educa-
tional system, so, in principle, the potentials are available in the mathe-
matics classrooms. However, students’ access to DGEs does not guaran-
tee greater learning outcome. The manner in which DGEs are used is 
essential (Jones, 2005). Therefore, it is an important research objective 
to develop guidelines for fruitful teaching with DGEs. 

Since DGEs can be used for different purposes, it is necessary to clarify 
the mathematical aim of the teaching guidelines. The notion of mathe-
matical competencies, which has gained substantial traction in mathe-
matics education, can be used for this purpose. Niss et al. (2016) call 
for research into teaching that can support students’ development of  
mathematical competencies.

Ingi Heinesen Højsted 
Aarhus University
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Fostering, developing and furthering mathematical competencies 
with students by way of teaching is a crucial […] priority for the 
teaching and learning of mathematics [...] We now need to under-
stand the specific nature of the contexts and other factors that help 
create such progress. 	 (Niss et al., 2016, p. 630).

Focusing on reasoning competency in relation to using DGEs, this study 
aims to contribute to this end by asking: Which research-based guide-
lines may be formulated for teaching with DGEs in order to support students’  
development of reasoning competency?

The main question gives rise to two auxiliary questions: (i) Which affor-
dances of DGEs can be considered as potentials when the educational aim is 
to support students’ development of reasoning competency? In addition, (ii) 
Which dimensions should such research-based guidelines entail?

To address these questions, a review is undertaken of existing DGE 
research, using reasoning competency as the searching and sorting lens. 
The review findings serve a dual purpose – to establish which dimensions 
the guidelines should entail, and to identify DGE affordances that can be 
considered potentials for reasoning competency. Theoretical constructs 
from the literature that are found to be useful in the conceptual deve-
lopment of the guidelines are also included. On the basis of this work, an 
analysis of the possible development of reasoning competency in relation 
to DGEs is conducted, and finally, to answer the main research question, 
guidelines are suggested. Since reasoning competency plays a crucial role 
in the article, an elaboration of the notion is in order.

The KOM framework and its reasoning competency
The KOM framework 1 introduces a competency-based approach com-
prising eight mathematical competencies, illustrated in the so-called 
KOM flower (figure 1). The framework is integrated in the Danish mathe-
matics education curriculum, and has also had an impact on mathema-
tics education around the globe (e.g. OECD, 2017; for a detailed account, 
see Niss et al., 2016). 

In the reasoning competency (hereinafter referred to as RC), reason-
ing is defined as ”a chain of argument […] in writing or orally, in support 
of a claim” (Niss & Højgaard, 2011, p. 60). RC consists of the ability to 
create and present formal and informal arguments, as well as the ability 
to follow and evaluate arguments made by others. It involves understand-
ing what a mathematical proof is, the role of counterexamples, and the 
difference between a proof and other forms of mathematical reason-
ing, such as explanations based on examples. In addition, it includes the 
ability to develop an argument based on heuristics into a formal proof. RC 
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is not only about justification of mathematical theorems, but also about 
creating and justifying mathematical claims in general, such as answers 
to questions and solutions to problems (Niss & Højgaard, 2011). In this 
article, the notion of proof is understood as the product of a proving 
process (Mariotti, 2012), which includes exploration and conjecturing as 
well as proving conjectures. 

A person’s attainment of a competency is qualified in three dimen-
sions: Degree of coverage indicates to what extent the characteristics of 
the competency can be activated. Radius of action refers to the situations 
and contexts in which the competency can be mobilized, while techni-
cal level describes how advanced the mobilization is (Niss & Højgaard, 
2011). To exemplify with regard to RC, a person might be able to follow 
reasoning put forward by others, but unable to put forward reasoning 
herself, thereby lacking in degree of coverage. She might be able to follow 
mathematical reasoning in the area of statistics but not in geometry and 
therefore has a limited radius of action. She might be able to follow comp-
licated and technically advanced reasoning and therefore has high a tech-
nical level. The dimensions have a subjective character, since, for example, 
a high technical level depends on a person’s age and peers.

Review method
The review was anchored in the hermeneutic framework for literature 
reviewing (Boell & Cecez-Kecmanovic, 2010, 2014), which fundamen-
tally perceives the literature review as a non-linear process of gradually 
developing an understanding of and insights into a domain of research. 
The approach consists of two intertwined hermeneutic circles, the search 

Figure 1. KOM flower (Niss & Højgaard, 2011, p. 1)
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and acquisition circle and the analysis and interpretation circle (see figure 
2). The steps in the circles are carried out in an iterative process, thereby 
approximating a deeper understanding of the area of interest. 

Applying the method
The initial idea was to operationalize RC into search words to cover 
central characteristics of the competency, and combine these with syno-
nyms of dynamic geometry. The initial search was made in the Math-
Educ 2 and ERIC 3 databases, using the search words ”dynamic geometry”, 
”geometry software”, ”geometry technology”, ”interactive geometry” and 
”proof”, ”reasoning”, ”conjecture”, and ”justify”, which, after sorting and 
checking for items occurring twice, gave a total of 151 items. 62 items 
were found to be irrelevant after studying their abstracts, giving a total 
of 89 items that were selected and acquired to be read. Furthermore, pro-
ceedings from the CERME 4 technology TWGs were searched. After 
reading literature acquired from the primary search, interesting refe-
rences were identified and followed (citation tracking) (Boell & Cecez-
Kecmanovic, 2014) and, if suitable, added to the review. In addition, after 
reading and gaining some insight into the area of interest (mapping and 
classifying), adjusted search words were used in focused searches, and 
the operationalization of RC was refined with the search words ”coun-
terexample”, ”argumentation”, and ”heuristic proof” in combination with 
synonyms of dynamic geometry. Other focused searches were related to 
theory, specifically ”instrumental genesis” and ”semiotic mediation” and 
”Hiele” combined with dynamic geometry. A total of 136 publications 
were included to be examined in the review. The definition of RC played 

Figure 2. The hermeneutic framework for the literature review process (Boell & 
Cecez-Kecmanovic, 2014, p. 264)
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a decisive role in the review process, as it influenced the choice of search 
words and the sorting and selection of literature, and was the perspective 
used in the critical assessment of the mapped literature, helping to decide 
which DGE potentials and dimensions of guidelines were relevant. The 
argument development which is the synthesizing result of the literature 
review is unfolded in the following chapter.

Results
The aim of the review process was to address two issues (corresponding to 
the two auxiliary research questions): (i) to find the potentials of DGEs in 
relation to RC, and (ii) to inform the development of guidelines for teach-
ing, i.e. use the literature to understand what dimensions the guidelines 
should entail, including which theoretical constructs may prove useful 
for this endeavor. 

In the following section, theoretical constructs are introduced that 
were identified in the review to be useful in sharpening the guidelines 
conceptually. Then the argument development leading to the potentials 
is presented, followed by review findings leading to the dimensions of 
the guidelines, which are unfolded subsequently. Figure 3 provides an 
overview of the structural development of the guidelines that will be 
presented in the following sections. 

Three theoretical findings to be used in the guidelines
Many studies from the review (e.g. Bretscher, 2009; Alqahtani & Powell, 
2015; Gómez-Chacón, 2012; Gómez-Chacón et al., 2016) are embedded in 
the Instrumental Approach, which involves the process of instrumental 
genesis (Artigue, 2002; Guin & Trouche, 1999). According to this point of 
view, an artefact (such as DGEs) is not an instrument for a student from 
the outset, but becomes an instrument when the student can use the 
artefact in some meaningful way (Vérillon & Rabardel, 1995). Building on 

Figure 3. Structural argument development of the guidelines
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Vergnaud’s (2009) notion of schemes, instrumental genesis characterizes 
how subjects develop utilization schemes, which are cognitive schemes 
intertwining technical knowledge and mathematical knowledge. In a 
scheme-technique duality (Drijvers et al., 2013), these mental schemes 
evolve along with instrumented techniques for using the artefact to 
solve specific tasks. The instrumented techniques are the observable  
manifestation of the students’ utilization schemes. 

Several DGE studies (e.g. Falcade et al., 2007; Mariotti, 2012; Ng & 
Sinclair, 2015) are anchored in the Theory of semiotic mediation (Barto-
lini-Bussi & Mariotti, 2008). Emerging from a Vygotskian (1978/1934) 
perspective, the theory describes how teachers can exploit the possible  
ways of using an artefact (such as DGEs). In the semiotic perspective, the 
teaching and learning process is characterized as an evolution of signs 
such as gestures, verbal utterances, or DGE-mediated actions. The theory 
addresses students’ initial production of situated signs as the artefact is 
used and on the following evolution into mathematical signs, which can 
be mediated by the teacher through social interaction as the teacher con-
nects mathematical meaning to the evoked signs. Bartolini-Bussi and 
Mariotti (2008) use the notion of the semiotic potential of an artefact 
to describe the duality of emergent personal meanings and the possible 
mathematical meanings evoked by using an artefact. Mariotti (2012) con-
siders the analysis of the semiotic potential of an artefact to be the core 
of any teaching design, and exploiting the potential involves: 

the orchestration of didactic situations where students face designed 
tasks that are expected to mobilise specific schemes of utilisation […] 
the orchestration of social interactions during collective activities, 
where the teacher has a key role in fostering the semiotic process 
required to help personal meanings, which have emerged during the 
artefact-centred activities, develop into the mathematical meanings 
that constitute the teaching objectives” 	 (Mariotti, 2012, p. 170)

Similarly to other DGE research (e.g. Jones, 2000; Idris, 2009; Kaur, 2015; 
Forsythe, 2015), utility is found in the van Hiele model of levels in order 
to relate the students’ cognitive progression to a model of mathematical 
thinking. Van Hiele (1986) outlined how students’ progress through five 
levels of mathematical thinking. The hierarchical structure has been 
criticized, as studies have found that students can be at several van Hiele 
levels in different situations (Burger & Shaugnessy, 1986). However, the 
levels may be thought of as different modes of thinking (Papademetri-
Kachrimani, 2012; Forsythe, 2015) that can be activated in different situa-
tions. The latter understanding of the levels is adopted in this article and 
used in relation to students’ cognition. Levels 1–4, which are relevant for 
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this article, are elaborated upon: (1) Recognition. Students visually recog-
nize figures intuitively by their global appearance. (2) Analysis. Students 
can describe the properties of a figure, but do not interrelate properties 
of figures. (3) Ordering. Students order the properties of figures by short 
chains of deductions and understand the interrelationships between 
figures. (4) Deduction. Students understand deduction and the role of 
axioms, theorems, and proof.

Potentials of DGEs in relation to RC
As a result of the review, four types of DGE affordances were identified 
as potentials 5 regarding students’ development of RC: feedback, drag-
ging, measuring, and tracing. DGEs are designed to mimic theoretical 
systems, such as Euclidean geometry, essentially creating a microworld 
in which activities follow the theoretical system governing the environ-
ment (Balacheff & Kaput, 1997). This signifies the existence of an inhe-
rent feedback function in the environment, since only objects which are 
possible in Euclidean geometry can be constructed. In a pencil and paper 
environment, there is no control on behalf of the paper over impossible  
constructions, allowing for imprecision, for example in a triangle where 
the medians do not intersect in the same point. Furthermore, dynamic 
geometrical figures can be constructed in the environment, so that 
certain properties are conserved when the figure is manipulated by use 
of the drag mode. The relationship between the elements of the figure 
is locked in a hierarchy of dependencies determining the outcome of a 
dragging action (Hölzl et al., 1994). This allows students to explore the 
figure by dragging free points to discover invariant properties of the 
figure, i.e. properties that are conserved. In a ”robust” construction, the 
properties are conserved when free points are dragged. On the contrary, 
in a ”soft” construction, not all properties are conserved (Healy, 2000; 
Laborde, 2005a).

Types of invariants have been classified to elaborate their role in con-
jecturing and reasoning (e.g. Leung, 2015; Baccaglini-Frank & Mariotti,  
2010). Baccaglini-Frank and Mariotti (2010) suggest discernment 
between direct invariants, which are invariants in the construction that 
are defined directly by DGE commands used to complete the construc-
tion, and indirect invariants, which are those that arise as a consequence 
of the theory of Euclidean geometry, which governs the DGE. If a student 
is aware of the direct invariants of a construction and through explora-
tion discovers indirect invariants, the activity might lead the student to 
make a conjecture (this will be discussed further in the section on task 
design). Many DGEs contain measuring tools that allow students to take 
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measurements of, for example, angles, lengths, areas, and perimeters of 
constructions. If free points of the construction are dragged, causing the 
measures to change, the measurements are updated instantly and con-
tinuously. Therefore, it is possible for the students to discover invariant 
relationships between measures (Olivero & Robutti, 2007). In addition, 
many DGEs contain the possibility of tracing an object, so that the path 
can be visualized from a dragging action. In this way, tracing combined 
with dragging can be used to discover underlying invariant relationships 
(Baccaglini-Frank & Mariotti, 2010; Leung, Baccaglini-Frank & Mariotti, 
2013). The affordance of visually representing geometric invariants when 
using the drag mode is considered a key feature of DGEs in relation to the 
development of mathematical reasoning, the ability to generalize results, 
and conjecturing in geometry (e.g. Arzarello et al., 2002; Laborde, 2001; 
Leung, 2015; Baccaglini & Mariotti, 2010; Edwards et al., 2014), which are 
some of the characteristics of RC.

Dimensions of the guidelines
The review showed that since its introduction, DGE research has had 
shifts in focus (see for example Jones, 2005; Mariotti, 2006; Laborde et 
al., 2006; Hollebrands et al., 2008; Olive et al., 2009; Sinclair & Robutti, 
2013). In broad strokes, three dimensions of research could be identi-
fied. Initially, research focused on the learner, with some early contribu-
tions addressing student cognition (e.g. Arzarello et al., 2002; Hölzl et al., 
1994). More recently, focus has shifted to design of adequate tasks to meet 
learning aims (e.g. Lin et al., 2012; Komatsu & Jones, 2018; Fahlgren & 
Brunström, 2014), as well as to the role of the teacher (e.g. Mariotti, 2006; 
Bartolini-Bussi & Mariotti, 2008). Sinclair et al. (2016) state that although 
research on DGE affordances is vast, task design and teacher practice 
remain understudied, a statement echoed by Komatsu and Jones (2018). 

Findings from all three dimensions are relevant in relation to deve-
loping guidelines for teaching. Consequently, it was decided that the 
research-based guidelines should encompass findings regarding students’ 
cognition, task design, and the role of the teacher. 

Students’ cognition
Several studies on students’ cognition in DGE-related work are embedded 
in instrumental genesis (e.g. Leung et al., 2006; Bretscher, 2009; Baccaglini-
Frank & Mariotti, 2010; Hegedus & Moreno-Armella, 2010; Gómez-
Chacón, 2012). From this point of view, it may be described that the stu-
dents need to develop instrumented techniques and utilization schemes 
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with the DGE, in order for it to become a personalized instrument where 
exploration for invariants can occur in, primarily, conjecturing activi-
ties (e.g. Baccaglini-Frank & Mariotti, 2010). What do such utilization  
schemes (and corresponding instrumented techniques) entail? 

The technique of exploring figures for invariants by dragging pre-
sumes that the students are aware of the relationship between the ele-
ments of a figure which determine the outcome of a dragging action, 
corresponding to van Hiele levels 2–3 (vH lvls 2–3) (Hölzl et al., 1994). 

For example, understanding why the midpoint C in line segment AB will 
move when the free points A or B are dragged in figure 4, and why it is 
not possible to drag point C. This requires an awareness of the theoreti-
cal properties of figures which are mediated perceptually by the DGE 
(vH lvl 2). Therefore, the dragging technique/scheme to explore for inva-
riants involves moving between the spatiographical and theoretical levels 
(Laborde, 2005b) which students need to coordinate. The spatiographical 
level refers to the perceptual appearance of a figure, while the theoreti-
cal level refers to the theoretical properties of a figure. Arzarello et al. 
(2002) describe how a DGE can potentially link the spatiographical level 
to the theoretical level in ascending and descending processes (vH lvl 1–2). 
Ascending happens when the students shift from the perceptual level 
to the theoretical level, while descending happens when the students 
shift from theory to perception. For example, if a student has made a 
conjecture about the theoretical property AC = CB in the construction 
in figure 4, she might validate it by a dragging test. The theoretical con-
jecture is confirmed perceptually in a descending process. On the other 
hand, if a student is unaware of the theoretical properties, the activity 
of dragging may prompt a shift towards awareness of the theoretical 
properties, since the properties are mediated perceptually by the DGE in 
the form of invariants (the property AC = CB remains). The perceptual 
output may result in theoretical awareness in an ascending process. Arza-
rello and colleagues (2002) found that students exploring geometrical 
figures by dragging in DGEs shift back and forth between empirical and  

Figure 4. Midpoint C is locked in the relationship AC = CB
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deductive reasoning in ascending and descending processes. Many studies 
have found that DGEs can support students in connecting empirical and 
theoretical mathematics (e.g. Lachmy & Koichu, 2014, Baccaglini-Frank & 
Mariotti, 2010; Mariotti, 2006; Guven et al., 2010; Hadas et al., 2000; Jones, 
2000; Laborde, 2005b). Even though DGEs can present opportunities for 
students working on the proving process (Laborde 2000; Olivero, 2002; de 
Villiers 2004; Sinclair & Robutti 2013), particularly in the production of 
conjectures, DGEs can also present challenges because of the strong link 
to the spatiographical level (Sinclair & Robutti, 2013). From the perspec-
tive of the Theory of semiotic mediation, the students’ personal meanings 
underlying the initial situated signs stemming from the DGE activity do 
not necessarily relate to the theoretical aspects of the DGE constructions. 
However, the teacher can mediate the evolution of mathematical mean-
ings and mathematical signs, which is needed if the students are to notice 
theoretical relationships in the DGE activity (vH lvl 2–3). 

Additionally, comprehension of direct and indirect invariants is 
required. The students need to understand the difference between inva-
riants caused by the construction and invariants caused by the rules of 
Euclidean geometry in order to investigate a construction to make con-
jectures (see example in next section) (vH lvl 3). Furthermore, exploration 
of invariants requires capacity regarding certain dragging techniques/
schemes. Research on ways of dragging in DGEs has resulted in a clas-
sification of several dragging modalities, which can broadly be divided 
into two categories (Hölzl, 2001; Leung, 2015): (1) Dragging for searching/
discovering, containing dragging modalities where the student drags in 
order to explore the figure for new properties. For example: wandering 
dragging – dragging randomly to try to discover regularities or interesting 
configurations; guided dragging – dragging basic points to make a particu-
lar shape; maintaining dragging – realizing an interesting configuration 
and trying to keep the specific property invariant while dragging (notic-
ing a soft invariant); and (2) Dragging for testing, encompassing the drag-
ging modalities in which the students drag to test an expected reaction 
from the construction. For example, the dragging test – dragging objects 
in order to see if the construction maintains desired properties, i.e. if it 
is robust; the soft dragging test – testing a conjecture about a soft inva-
riant (Arzarello et al., 2002; Baccaglini-Frank & Mariotti, 2010). Similarly, 
measuring modalities for searching and testing have been classified into 
two broad categories: measuring for discovery – wandering measuring, 
guided measuring, perceptual measuring; and measuring for testing – 
validation measuring, proof measuring (Olivero & Robutti, 2007). Stu-
dents’ development of instrumented techniques and utilization schemes 
for dragging and measuring to explore, develop and test conjectures is 
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a prerequisite for working on tasks that can support students’ progres-
sion of RC. In addition, the development of schemes and techniques for 
utilizing tracing and the feedback function of DGEs can be valuable in 
order to work on tasks that may mobilize students’ RC, which will be 
explained in the next section.

Task design
The literature review revealed several types of task design in DGEs. Some 
studies report on task design principles or models for task design (e.g. 
Lin et al., 2012; Komatsu & Jones, 2018; Fahlgren & Brunström, 2014; 
Olsson, 2017), while some have developed models to assess task quality 
(e.g. Trocki, 2014; Trocki & Hollebrands, 2018) in relation to DGEs in 
general, and with focus on reasoning and proof (Baccaglini-Frank et al.,  
2013, 2017, 2018; Leung, 2011; Sinclair, 2003). Models for task design will 
not be introduced in this article, but using the perspective of RC, five 
types of task design were identified as having the potential of mobi-
lizing students’ development of different characteristics of RC, thereby  
potentially increasing students’ degree of coverage of RC.

Construction tasks. (1) The students can be supported in creating and 
justifying mathematical claims in general by offering tasks similar to 
what Mariotti (2012) coined ”construction tasks”, which require the stu-
dents to construct robust figures with specified invariants using limited 
construction commands. Such a task could involve constructing a robust 
square using only construction commands such as points, line segments, 
lines, perpendicular lines (some might prefer not to allow this command), 
circles, and intersection points (see figure 5). The students have to describe 
the procedure and explain why the figure remains invariant, which is to 
create and justify a mathematical claim in terms of the RC. Dragging is 
an instrument to confirm the validity of the construction. This type of 

Figure 5. Constructing a robust square using specified construction commands
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task can help students to develop an awareness of direct invariants, and 
is therefore a valuable prelude to working on conjecturing open tasks, 
which is described next. 

Direct indirect invariants. (2) If a student has developed an awareness 
of the constructed direct invariants, then the discovery of indirect inva- 
riants through dragging can lead to conditional ”if-then” conjectures, 
with the direct invariants being the premise for the indirect inva-
riants (Baccaglini-Frank & Mariotti, 2010, Lachmy & Koichu, 2014). For 
example, a conjecturing open task for students could be to construct 
∆ ABC, the midpoints of two of the sides, and to draw a line segment
connecting these midpoints (figure 6).

In exploring the construction by dragging free points, students can dis-
cover the invariant parallelism of DE and AC, which was not a property 
of the initial construction. The potential of measuring can also be used to 
discover the invariant relationship of length DE being half of length AC. 
These conjectures can, with guidance from the teacher (discussed later), 
lead to a proof process of the midpoint theorem. In this case, dragging and 
measuring are tools to investigate the theoretical properties of the figure.

Maintaining dragging. (3) The usage of robust constructions has been 
prevalent in DGE teaching (Ruthven et al., 2005), but in a slightly diffe-
rent type of task, the students can be prompted to make a soft construc-
tion and to try to discover the conditions for which some property is 
maintained, using the maintaining dragging modality (Baccaglini-Frank 
& Mariotti, 2010). For example, a simple task for students could be to con-
struct line segments AB and BC and look for the positions of B which 
satisfy AB = BC, using trace activated on point B. By interpreting the trace 
path shown in figure 7, the students can discover and perhaps conjecture 
that points which are equidistant from two given points would all lie on 
the perpendicular bisector of the line segment joining the two points. 
In this case, the potential of tracing is utilized to unveil an underlying 
invariant.

Pseudo-objects. (4) By offering tasks instigating students to construct 
non-constructible pseudo-objects (Baccaglini-Frank et al., 2013, 2017 

Figure 6. Direct and indirect invariants in a robust construction
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2018), abilities in proving by means of contradiction can evolve. A pseudo-
object contains contradictory properties with regard to Euclidean theory, 
and it is therefore not possible to construct in a DGE. As students attempt 
to construct the pseudo-object, (e.g. figure 8 or 9) the feedback affordance 
provided by DGEs can assist the student in realizing the impossibility of 
the construction. Designing such tasks involves identifying proto-pseudo 
objects, which are objects that have the potential of becoming pseudo-
objects for the students, for example a triangle in which two angle bisectors  
are perpendicular (Baccaglini-Frank et al., 2013, 2017, 2018). 

Figure 7. Maintaining the property AB = BC in a soft construction with trace activated

Figure 8. Starting from two perpendicular lines g and f (the angle bisectors) and 
reflecting AC in them

Figure 9. Investigating the pseudo-object by constructing the triangle first and then 
dragging and measuring
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Hidden conditions. (5) Another aspect of RC is to understand the role of 
counterexamples. To this end, the potential of dragging can be utilized 
by designing tasks, which prompts students to discover counterexamples 
to conjectures as they manipulate constructions. The conjectures may be 
given in the task description or discovered by the students themselves. 
Komatsu and Jones (2018) suggest that such heuristic refutation tasks 
could include ambiguous diagrams with ”hidden conditions”, exempli-
fied in figure 10 with the accompanying task: ”there are four points A, 
B, C, and D on circle O. Draw lines AC and BD, and let point P be the 
intersection point of the lines. What relationship holds between ∆ PAB 
and ∆ PDC? Write your conjecture. (2) Prove your conjecture.” (Komatsu 
& Jones, 2018, p. 9). The students might argue that ∠ BPA = ∠ DPC (verti-
cal angles are equal) and that ∠ ABP = ∠ PCD (inscribed angle theorem), 
hence ∠ PAB ∼ ∠ PDC. 

But when the students are prompted to drag points A, B, C and D, they 
might discover local counterexamples to the conjecture, such as figure 11, 
and be motivated to revise their conjecture.

Figure 10. Diagram with ”hidden conditions”,  inviting insufficient conjectures

Figure 11. Counter-example to the conjecture, AC parallel to BD
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4.6 Role of the teacher
The teacher plays an important role in helping students to transform per-
sonal meanings into mathematical meanings as described by Bartolini-
Bussi and Mariotti (2008). To do so, the teacher should be conscious of the 
mathematical goal of the DGE class activity, and should use opportuni-
ties to emphasize mathematical meanings of the DGE-mediated signs. 
When teaching, discussing or giving feedback, the teacher should identify 
emerging signs, and try to inject mathematical meaning into these signs 
(Bartolini-Bussi & Mariotti, 2008). The teacher can guide the students to 
understand the mathematical implications of the feedback provided by 
the DGEs as well as the mathematical meaning of dragging, measuring, 
and tracing. As the students produce initial situated signs and develop 
personal meanings in relation to feedback, dragging, measuring, and 
tracing, the teacher can mediate the evolution of mathematical mean-
ings and signs. RC includes the ability to present formal arguments and 
to develop arguments based on heuristics into formal proofs (Niss & Høj-
gaard, 2011). In order to further progress the students’ degree of coverage,  
the teacher needs to engage the students in proving their conjectures. 
This, however, does not happen automatically. Some studies (e.g. Mar-
rades & Gutiérrez, 2000; Connor et al., 2007) even suggest that explo-
ratory use of DGEs can inhibit the progression of students’ deductive 
proving, since the students are empirically convinced that a fact is evident, 
and do not see the point of having to prove it (again). However, studies 
also show that DGE exploration does not have to jeopardize this pro-
gression (Lachmy & Koichu, 2014; Sinclair & Robutti, 2013). Researchers  
highlight the important role of the teacher in guiding and motivating the 
students towards justifying their conjectures and towards applying a theo- 
retical approach (e.g. Mariotti, 2012; Arzarello et al., 2002). De Villiers 
(2007) argues against questioning the conviction that empirical methods 
give, or trying to convince students to undertake theoretical verification 
to further verify what they already find evident, but stresses that instead 
the teacher should motivate the students by asking ”why” the fact is 
evident. Trocki (2014) argues that motivation and guidance for students 
to connect informal exploration and conjecturing to theoretical justifi-
cation might also be incorporated into the DGE task itself, for instance 
by including questions that prompt students to justify their conjectures. 

The possession and development of RC in relation to DGEs
Based on the review results presented in chapter four, we can analyze 
how the development of RC may be supported with DGEs using the ter-
minology in the KOM framework concerning a person’s attainment of 
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a competency. As previously mentioned, the attainment is described in 
three dimensions: degree of coverage, radius of action, and technical level.

Degree of coverage
It is evident from the findings that the development of students’ pos-
session of various characteristics of the RC can be supported by utiliz-
ing DGE potentials (task types 1–5), thereby increasing the students’ 
degree of coverage of RC, in particular the ability to create and present 
informal arguments, because the dragging arguments are empirically 
based on invariant relationships discovered in many examples. Hence, 
focus is primarily on the exploration and conjecturing phase of the proof 
process. For example, the direct/indirect invariants task (task type 2) 
illustrates how dragging and measuring might be utilized in the con-
jecturing phase of conditional statements. Similarly, the soft invariant 
task illustrates how dragging, measuring, and tracing can be utilized in 
exploring and conjecturing about equidistant points and the perpendi-
cular bisector of the line segment joining them. However, with guidance 
from the teacher, the students’ abilities in relation to the second phase of 
the proof process – validating the conjecture – can also evolve, thereby 
expanding the students’ degree of coverage of RC. While validating the 
conjecture, the students might primarily work outside the DGE, but they 
are likely to return to verify/refute their progress as found by Olivero 
and Robutti (2007). As mentioned, RC consists not only of being able to 
reason yourself, but also of being able to follow and evaluate reasoning 
put forward by others (Niss & Højgaard, 2011). This may be incorporated 
in the teaching design, in order to support the students’ development of 
their degree of coverage of RC, by organizing the teaching environment in 
a way that encourages the students to collaborate (e.g. to work in pairs). 
It can also be explicitly addressed in the tasks themselves, e.g. by asking 
the students to explain their reasoning to each other, in pairs and in class 
discussions. Additionally, they can be required to evaluate the reasoning 
put forward by others. When the students manage to validate their con-
jectures deductively, the teacher (or perhaps prompts in the task) should 
highlight the difference between the theoretical proof and the conjecture 
to foster an understanding of the difference between the two – which is a  
characteristic of the RC.

Radius of action
As the students work on the aforementioned types of tasks (1–5), their 
radius of action regarding RC may expand, because they can progressively 
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activate their RC in an increasing amount of subject matter. Covering a 
variety of areas in geometry in the task design will further this agenda.  
Furthermore, the students’ radius of action may be promoted, since they 
develop the ability to activate their RC in the context of using a DGE 
for this purpose.

Technical level
The students’ progression within the technical level of RC can also be 
supported, particularly if consecutive tasks demand higher levels of rea-
soning from the students, for example by successively increasing the 
number of steps needed in the chain of reasoning to solve the task or 
the number of presuppositions needed to prove a conjecture. As pre-
viously mentioned, the degree of difficulty regarding the technical level 
of RC involved in solving a certain task has a subjective character, as it 
depends on the educational level of the students trying to solve the task. 
The guidelines do not address a particular educational level; however, if 
we take Danish lower secondary school as an example and look at the 
task example used to characterize task type 3, then we can imagine that 
the task is not too demanding with regard to students’ technical level of 
RC, while the example in task 2 is more complicated, even though the 
conjecturing phase of the example in task 2 may be relatively simple, 
proving the conjecture involves a few steps and demands a higher degree 
of technical level of RC. 

Formulating guidelines for teaching with DGEs to support RC
Based on the findings from the review on DGE literature and the subse-
quent analysis (auxiliary questions (i) and (ii)), guidelines are suggested 
in table 1 in appendix A. In essence, the guidelines are an analysis of 
the semiotic potential of DGEs when the educational aim is to support 
students’ development of RC, with the analysis building on previous 
research in the field.

There are six columns in the table; the first column holds steps of 
progression 0–4, in which steps 2–3 have a subset of steps. The van Hiele 
levels of mathematical thinking are also indicated in the first column. 
Although the guidelines are presented in steps of a hierarchical nature, 
and van Hiele’s levels are used, they are not considered discrete or 
clearly continuous, which can be seen with some overlapping descrip-
tions in steps 1 and 2 (a, b, c, and d). In addition, it may well be that the 
development of several steps can occur at the same time, for example  
developing an understanding of free and locked objects (step 1) at the 

93



ingi heinesen højsted

Nordic Studies in Mathematics Education, 25 (2), 71–98.

same time as developing basic DGE proficiency (step 0). Columns two 
and three address the dimension of students’ cognition using the notions 
of instrumented techniques and utilization schemes 6. Column four 
indicates what kind of tasks might mobilize the desired techniques and 
schemes, while column five describes the role of the teacher in facilitat-
ing the process. Column six describes which characteristics of the RC 
the DGE-mediated activity is expected to mobilize. 

Below, some comments are added to each step of progression.

0	 Basic DGE proficiency regarding commands of construction and 
measuring is needed to work on tasks which can support the 
development of RC.

1	 Being able to discern between free and locked objects requires 
that the students are aware of the theoretical properties of figures 
(vH lvl 2). Additionally, an awareness of theoretical relationships 
between the elements of a figure or between figures is required  
(vH lvl 3).

2	 (a, b, c and d) Awareness of the hierarchy of dependencies which 
determine the dragging outcome is necessary. This covers an 
understanding of free points, direct invariants, and robust and 
soft constructions (vH lvl 2–3). Furthermore, the ability to discern 
between direct and indirect invariants is required in, for example, 
conditional ”if-then” conjecturing (vH lvl 3–4). Comprehension of 
certain dragging modalities and measuring modalities can support 
the exploration for conjectures. Tasks which support this cognitive 
development and the degree of coverage of RC include: construc-
tion tasks that encourage creation and assessment of mathematical 
claims, as well as understanding of direct invariants (vH lvl 2–3); 
conjecture open tasks which encourage construction (robust and 
soft) of direct invariants that bring on indirect invariants and allow 
for exploratory work in order to support the development of the 
first phase of the proof process (vH lvl 3–4).

3	 (a and b) Understanding and being able to exploit the feedback 
function inherit in the DGE to investigate the construction of non-
constructible pseudo-objects in order to foster abilities in proving 
by means of contradiction (vH lvl 3–4); understanding and being 
able to exploit the feedback function inherit in the DGE to find 
counterexamples to conjectures about diagrams with hidden  
conditions (vH lvl 3–4).

94



Nordic Studies in Mathematics Education, 25 (2), 71–98.

utilizing affordances of dynamic geometry environments

4	 Being able to prove the conjectures. The role of the teacher is 
important in motivating the students towards theoretical valida-
tion of their conjectures to develop the second phase of the proof 
process (vH lvl 4). The teacher can encourage the students to return 
to the DGE in order to verify/refute their progress as they are 
proving their conjectures.

Concluding remarks
The process of answering the research questions comprised of search-
ing the literature for DGE affordances that are considered potentials in 
relation to supporting students’ development of RC, and of identify-
ing which dimensions the guidelines should entail. Four DGE potentials 
were identified: feedback, dragging, measuring, and tracing. The utiliza-
tion of these was described in three dimensions of the guidelines: stu-
dents’ cognition, task design, and role of the teacher. The guidelines in 
Appendix A contain five steps of progression, in which the dimensions 
are addressed and the expected mobilization of RC is described. 
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Notes

1	 The English translation of the acronym is Competencies and mathematical  
learning. The KOM framework was published in Danish in 2002 and in 
English in 2011. In 2019, an updated version of the framework was proposed 
by the authors (Niss & Højgaard, 2019). 

2	 https://www.zentralblatt-math.org/matheduc/ 

3	 https://eric.ed.gov/ 

4	 Congress of the European Society for Research in Mathematics Education.

5	 To clarify, the notion of ”potential” is used here regarding affordances of 
DGEs which are not easily available in other common mathematics educa-
tion mediums, in particular the pencil and paper environment. It could be 
argued that the possibility of constructing, for example, a circle or a regular 
polygon is an affordance of DGEs, but it is not a major addition compared 
to the pencil and paper environment, and therefore not considered a  
potential in this review.

6	 The table provides a broad description. A fine-grained analysis is needed 
at the level of schemes, e.g. rules of action, operational invariants etc. 
(Vergnaud, 2009).
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Appendix A

Steps of 
progres-
sion

Guidelines Aim

Students’ cognition Tasks Teacher’s role Reasoning 
competency

Instrumented 
techniques

Utilization 
schemes

(during instruc-
tion, discussions 
and feedback) 
Generally: Iden-
tifying emerging 
signs and pro-
gressing towards 
mathematical 
meanings.

Degree of  
coverage: which 
characteristic is 
activated.

0. Basic DGE 
proficiency, van 
Hiele levels 1–2.

Students need to 
develop technical 
proficiency with 
the DGE. They 
need to be able 
to use the differ-
ent commands 
for constructing, 
measuring, and 
dragging.

Technical and 
mathematical 
knowledge about 
the commands 
of constructing, 
measuring, and 
dragging.

Tasks which 
require the stu-
dents to use the 
commands of the 
DGE. E.g. con-
structing points, 
lines, line seg-
ments, parallel 
lines and circles, 
finding inter-
section points, 
measuring angles, 
lengths, areas etc. 
and dragging these 
objects.

Highlighting 
the mathemati-
cal meaning in 
DGE-mediated 
activities, e.g. con-
structing a circle 
with two mouse 
clicks (definition 
of a circle), or the 
mathematical 
meaning of drag-
ging as a way of 
varying the exist-
ing construction, 
such as varying 
coordinates of a 
point.

Prerequisites for 
working on con-
jecturing tasks 
and for justifying 
mathematical 
claims.

1. Free and 
locked objects, 
van Hiele levels 
2–3.

Making construc-
tions with free 
and locked objects. 
Dragging/measur-
ing to investigate 
the construction.

Understanding 
the difference 
between free and 
locked objects. 
This requires 
attention to and 
comprehension 
of the theoretical 
properties of con-
structions. 

Construction 
tasks which high-
light the diffe- 
rence between 
free and locked 
objects. E.g. 
constructing 
two points and a 
midpoint between 
them. Describe 
why you can/
cannot drag some 
points.

Focus on the 
mathemati-
cal relationship 
between elements 
of the construc-
tion which deter-
mine whether the 
objects are free 
or locked, which 
means focus on 
the theoretical 
aspects of figures, 
e.g. the mathemat-
ical meaning of a 
midpoint.

Justify mathe-
matical claims. 
Prerequisite for 
working on con-
jecturing tasks.

2a. Robust con-
structions, van 
Hiele levels 2–3.

Making robust 
constructions 
with dependencies 
between elements 
in the construc-
tion, so that some 
desired properties 
remain invariant 
when free objects 
are dragged. Drag-
ging/measuring 
to investigate the 
construction.

Understanding 
that direct invari-
ants occur because 
of the theoretical 
properties induced 
in the construc-
tion. 

Tasks that require 
the student to 
construct figures 
in which some 
properties remain 
invariant during 
dragging. ”Con-
struction tasks” 
(Mariotti, 2012). 
E.g. constructing a 
quadrilateral with 
one right angle.

Highlighting 
and encourag-
ing student focus 
on the theoretical 
properties of the 
figure. E.g. right 
angles require per-
pendicular line seg-
ments. Invariants 
occur because of the 
mathematcal rela-
tionship between 
elements of the 
figure.

Justify mathe-
matical claims. 
Prerequisite for 
working on con-
jecturing tasks. 
Exploring and 
conjecturing.

2b. Soft con-
structions, van 
Hiele levels 2–3.

Making soft con-
structions with 
non-dependencies 
between some 
elements in the 
construction, so 
that some desired 
properties remain 
invariant only when 
certain conditions 
are satisfied. Drag-
ging/measuring and 
tracing to investi-
gate the construc-
tion.

Understanding 
that direct non-
invariants occur 
because of the lack 
of dependencies 
between theo-
retical properties 
induced in the 
construction. 

Tasks which 
require the 
student to con-
struct figures with 
soft invariants, 
in which some 
properties can be 
maintained only 
under certain 
conditions. E.g. 
finding the posi-
tions of point B for 
AB = BC. 

Highlighting 
and encouraging 
student focus on 
the theoreti-
cal properties of 
the figure. E.g. 
meaning of per-
pendicular bisec-
tor. Non-invari-
ants occur because 
of the mathemati-
cal relationship 
between elements 
of the figure.

Justify mathe-
matical claims. 
Exploring and 
conjecturing.

Table 1. Research-based guidelines for mathematics teaching with dynamic geometry 
environments to support students’ development of reasoning competency.
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utilizing affordances of dynamic geometry environments

2c. Dragging/ 
measuring 
modalities for 
exploration, van 
Hiele levels 2–3.

Being proficient 
in different drag-
ging/measuring 
modalities: Drag-
ging for search-
ing/dragging for 
testing; measuring 
for searching/
measuring for 
testing.

Understanding 
fruitful dragging 
and measuring 
modalities in 
order to explore 
constructions to 
unveil indirect 
invariants and 
make conjectures. 
Including the 
”maintaining drag-
ging” modality for 
soft invariants.

Tasks requiring 
the students to 
make conjectures 
by dragging and 
measuring in 
certain ways in 
order to notice 
indirect invari-
ants. This includes 
tasks with soft 
invariants.

Explaining and 
illustrating how 
to drag free points 
with different 
aims: Randomly, 
looking for invari-
ance of properties 
and measures, 
maintaining a 
property (main-
taining dragging).

Justify mathe-
matical claims. 
Prerequisite for 
working on con-
jecturing tasks. 
Exploring and 
conjecturing.

2d. Direct and 
indirect invari-
ants, van Hiele 
level 3.

Constructing 
direct invariants 
which induce 
indirect invariants 
because of Euclid-
ean theory. Drag-
ging/measuring 
to investigate the 
construction.

Understanding 
the difference 
between direct 
and indirect invar-
iants, and the con-
nection between 
them.

Tasks requiring 
the students to 
make construc-
tions with direct 
invariants, where 
dragging free 
points in the 
construction also 
unveils (surpris-
ing) indirect 
invariants.

Explaining and 
highlighting that 
direct invariants 
can induce indirect 
invariants because 
of the ”rules of 
Euclidian geom-
etry”. E.g. lines 
perpendicular to 
parallel lines are 
parallel. Introduc-
ing the ”if-then” 
relationship 
between direct and 
indirect invari-
ants. Stressing the 
empirical nature of 
the conjecture.

Justify mathe-
matical claims. 
Exploring and 
conjecturing.

3a. Feedback: 
non-construct-
ible pseudo 
objects, van 
Hiele levels 3–4.

Constructing, 
measuring and 
dragging to test 
the possibility of 
an object.

Understand-
ing the feedback 
function inher-
ent in the DGE, 
and thereby the 
possibility of 
exploring whether 
objects can be 
constructed.

Tasks instigating 
the students to 
construct non-
constructible 
pseudo-objects. 

Highlighting 
and encouraging 
student focus on 
the theoretical 
properties of the 
non- constructible 
figure. Injecting 
mathematical 
meaning into the 
students’ evolving 
signs of conflic-
tions regarding 
the object.

Exploring and 
conjectur-
ing. Abilities in 
proving by means 
of contradiction 
can be developed.

3b. Feedback: 
Counterexam-
ples to conjec-
tures, van Hiele 
levels 3–4.

Constructing 
figures and explor-
ing (dragging, 
measuring) in 
order to find coun-
terexamples to 
conjectures.

Understanding 
the feedback func-
tion inherent in 
the DGE. Under-
standing how a 
counterexample 
forfeits the con-
jecture.

Tasks which 
prompt students 
to discover coun-
terexamples to 
conjectures as 
they manipulate 
constructions. 
Such tasks could 
include diagrams 
with hidden 
conditions, and 
the tasks should 
explicitly prompt 
the students to 
find counterex-
amples.

Highlighting 
and encouraging 
student focus on 
the theoreti-
cal properties of 
the figure which 
underlie the con-
jecture to which 
counterexamples 
are to be found. 
Injecting mathe-
matical meaning 
into the students’ 
evolving signs 
regarding the 
object.

Exploring and 
conjecturing. 
Understanding 
the meaning and 
role of counter-
examples.

4. Proving the 
conjectures 
from steps 2b, 
2c, 2d, 3 and 4, 
van Hiele level 4.

Using DGEs to 
verify/refute pro-
gress on proving 
the conjectures.

Understand-
ing the feedback 
function inherent 
in the DGE, and 
thereby the possi-
bility of verifying/
refuting conjec-
tures.

Follow-up tasks 
requiring the 
students to prove 
their conjectures. 
Students can work 
outside the DGE, 
but return to 
verify/refute their 
progress.

Motivate the 
students to under-
take theoretical 
verification by 
asking ”why” their 
conjecture is true 
instead of dismiss-
ing the empirical 
evidence provided 
by the DGE (De 
Villiers, 2007).

Abilities in 
proving; develop-
ing an argument 
based on heuristics 
into formal proof. 
The difference 
between a proof 
and other forms 
of mathematical 
reasoning such as 
explanations based 
on examples.

103



ingi heinesen højsted

Nordic Studies in Mathematics Education, 25 (2), 71–98.

Ingi Heinesen Højsted
Ingi Heinesen Højsted is a PhD student at Danish School of Education, 
Aarhus University. His main interests include STEM education, mathe-
matical competencies and teacher knowledge, particularly regarding 
primary and lower secondary school.

ingi@edu.au.dk

104



Paper II 

105



Teachers Reporting on Dynamic Geometry Utilization
Related to Reasoning Competency in Danish Lower
Secondary School
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Abstract
The article describes the development and analysis of a quantitative study investigating
to what extent the potential of dynamic geometry environments (DGEs), in relation to
mathematical reasoning competency, are utilized in lower secondary schools in Den-
mark (grades 7–9). The study entails a questionnaire, which was developed on the basis
of an extensive review that uncovered four potentials of DGEs in relation to reasoning
competency: feedback; dragging; measuring; tracing. 220 Danish lower-secondary
mathematics teachers completed the questionnaire. Analysis indicates that the poten-
tials of measuring and dragging are utilized to some degree, feedback to a lesser degree,
while tracing is almost non-existent. Furthermore, there are signs that DGEs are used as
a substitute for the paper-and-pencil environment to solve tasks that were originally
designed for paper and pencil. Possible improvements of praxis are discussed and the
integration of the results into praxis in further research is elaborated upon.

Keywords Dynamicgeometryenvironments .GeoGebra.Reasoningcompetency.Survey

Digital technologies are widely implemented in Danish primary and lower secondary
schools, in part due to heavy investment from the Ministry of Education over the last
couple of decades (e.g. Undervisningsministeriet 2015). Consequently, the availability
and usage of digital technologies has become commonplace in mathematics education
at all levels in Denmark. In primary and lower secondary school, the dynamic geometry
software GeoGebra is particularly popular. This can be considered a positive outcome,
since many studies highlight the affordances of dynamic geometry environments
(DGEs hereafter), as potentials in supporting students’ development of mathematical
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reasoning, conjecturing and in proving (e.g. Jones 2000; Leung 2015; Edwards et al.
2014).

In the optic of the Danish competency framework (KOM)1 (Niss and Jensen 2002;
Niss and Højgaard 2011, 2019), these potentials are related to reasoning competency.
However, it seems that the manner in which the affordances are utilized (if they are) is
essential (Jones 2005). The motivation behind this study stems partly from an under-
lying assumption that the potentials of DGE, such as GeoGebra, are not made use of in
Danish lower secondary school, even if the software is indeed popular. The assumption
is that DGEs are predominantly used as a substitution for the paper-and-pencil
environment.

No previous quantitative research exists regarding how teachers actually incorporate
DGEs in Danish lower secondary schools. I could not find quantitative results on the
matter internationally either. However, qualitative studies on the use of technology in
mathematics education have shown that teachers refer to the added pace and produc-
tivity provided by technology (Ruthven et al. 2004.) In Bozkurt and Ruthven’s (2017)
case study of an expert secondary school teacher, one who was “recognised as having
successfully developed and integrated use of GeoGebra in his classroom practice” (p.
312), the teacher referred to the crucial affordances of GeoGebra as being accuracy and
speed, as well as dragging and the feedback of the environment allowing for discovery-
oriented tasks.

In order to gain insight into this area, the study described in this article aims to
investigate how DGEs are actually used in lower secondary school in Denmark, with
particular interest in their potential in relation to reasoning competency, by posing the
following research question:

To what extent do Danish lower secondary school (grade 7–9) mathematics
teachers utilize the potentials of DGEs, in relation to mathematical reasoning
competency, in their classroom?

The problem is investigated by analysing the results from a questionnaire, which was
developed for Danish lower secondary school teachers. In this article, the development,
results and analysis of the questionnaire is presented. Firstly, the research question calls
upon an elaboration of what mathematical reasoning competency constitutes, as well as
what is meant by potentials of DGEs. This is on the agenda in the following section.

Theoretical Constructs for Developing the Questionnaire
and Analysing the Results

Reasoning competency (RC hereafter) is one of eight mathematical competencies in the
KOM framework (Niss and Jensen 2002; Niss and Højgaard 2011, 2019), which
introduces concepts to describe what mathematical mastery entails across mathematical

1 KOM is an acronym for “Kompetencer og matematiklæring”, which translated to English means “Compe-
tencies and mathematics learning”. It was first published in Danish (Niss and Jensen 2002) and subsequently
translated into English (Niss and Højgaard 2002/2011). In 2019, Educational Studies in Mathematics
published an article from the authors with minor revisions to the framework. Note that ‘Jensen’ and ‘Højgaard’
is the same author whose surname has changed between publications.
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subject matter and educational level in a competency-based approach. The framework
has influenced the curriculum at all levels in mathematics education in Denmark. In the
lower secondary school curriculum, mathematics common goals, learning goals are
described both in terms of the expected subject matter knowledge and student posses-
sion of the mathematical competencies (Børne- og Undervisningsministeriet 2019).
Rasmussen et al. (2017) found that lower secondary school mathematics teachers do
use and adhere to the common goals.

The KOM framework has also influenced mathematics education in other parts of
the world (Niss et al. 2016), for instance, by shaping the foundation of the PISA
assessment and analytical framework for mathematics (OECD 2017). In what follows,
the main constituents of RC are elaborated upon: for a full account, the interested reader
is directed to Niss and Højgaard (Niss and Højgaard 2002/2011).

The core of RC constitutes the ability to create and carry out both informal and
formal arguments in order to justify mathematical claims, as well as to be able to
follow and evaluate such argumentation put forward by others. Additionally, it
entails understanding what a mathematical proof is, including the role of counter-
examples. It also comprises the ability to discern proof from other forms of
mathematical reasoning, such as example-based explanations and being able to
develop such arguments into formal proof. Furthermore, it is about creating and
justifying mathematical claims in general, such as answers to questions and
problems (Niss and Højgaard 2002/2011).

As argued in Højsted (2019a), the notion of proof, in the context of school
mathematics, may be understood as a process which involves exploring, conjecturing
and justifying, and not merely theoretical validation of already-stated theorems
(Arzarello et al. 2002, 2007; Mariotti 2012; NCTM 2008). In part, this may be due
to the facilitation to experiment and investigate provided by digital technologies such as
DGEs (Sinclair and Robutti 2013). The understanding of proof as a process resonates
with the abilities to investigate and do mathematics described in the KOM framework.
Therefore, it is argued, that RC also entails exploration and conjecturing (Højsted
2019a).

Potentials of DGEs in Relation to RC

In order to formulate questions that investigate to what extent the potentials of DGEs in
relation to RC are being utilized in lower secondary school, it is first necessary to
describe what these potentials are. To this end, the results from an extensive review into
the potentials of DGEs in relation to supporting students’ development of RC were
used (Højsted 2019a, 2019b). The meaning of ‘potential’ in this context is affordances
of DGEs, which are not available in other typical mathematics education tools, such as
paper and pencil.

Four RC potentials were extrapolated in the synthesis of the review: feedback;
dragging; measuring; tracing (Højsted 2019a). These are not separate domains; drag-
ging especially intervenes in all three other potentials. It is particularly in relation to
conjecturing that they were deemed to be potentials. A short elaboration of the
potentials is presented here.

Since DGEs mimic theoretical systems, typically Euclidean Geometry, they offer an
environment in which only constructions that abide by the rules of the theoretical
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system can be constructed (Balacheff and Kaput 1997). Therefore, the DGE inherently
provides feedback to the user, e.g. by not allowing for imprecise measurements or
constructions that contradict Euclidian theory. Figures constructed in the environment
can also be manipulated dynamically by dragging. The elements of a dynamic figure
are locked in a hierarchy of dependencies, which decide the outcome of a dragging
action (Hölzl et al. 1994). The dependencies are in fact the theoretical properties of the
figure, which are decided by the construction method and by the theory of Euclidean
Geometry governing the system. These properties remain invariant during dragging,
which allows for discovery of the theoretical properties of constructions in Euclidian
Geometry. Therefore, dragging in DGE can link the perceptually mediated appearance
of a figure to the theoretical properties of the figure, which Laborde (2005b) refers to as
moves from the spatio-graphical level to the theoretical one.

Arzarello et al. (2002) classified different ways of dragging in DGEs, which can
broadly be divided into two categories: dragging to search/discover and dragging to test
(Leung 2015). ‘Robust’ constructions are those that resist to the so-called ‘dragging
test’ (Arzarello et al. 2002), which means that the properties of the figure are conserved
during dragging. On the contrary, in ‘soft’ constructions not all properties are conserved
(Healy 2000; Laborde 2005a). Dragging may be performed on a soft construction in
order to discover the conditions for which some property is maintained – using the
maintaining dragging modality (Baccaglini-Frank and Mariotti 2010).

Beginning with The Geometer’s Sketchpad, most DGEs, including GeoGebra,
contain measuring tools, which can be used to find the measures of various objects
in a construction. When figures are manipulated dynamically, the measurements are
updated instantly. Students may also use the maintaining dragging modality
(Baccaglini-Frank and Mariotti 2010) to fix the value of a measurement and thus
determine whether a property is invariant. Additionally, the possibility of tracing an
object during dragging offers the possibility of visualizing underlying invariant rela-
tionships of the construction, for instance in soft constructions in which a property is
maintained when dragging is performed in a particular manner (Baccaglini-Frank and
Mariotti 2010).

In the analysis of results, utility is found in Artigue’s (2002) distinction between
pragmatic and epistemic values of techniques. In this optic, a technique is a way of
solving a task, and the pragmatic value of a technique refers to the productive potential
of said technique, e.g. how efficient it is or to how many situations to which it may be
applied. The epistemic value concerns the manner in which the technique promotes
understanding of the mathematical object at hand.

Method

Developing the questionnaire consisted of a careful back-and-forth process of for-
mulating questions that would investigate whether the DGEs’ potentials related to
RC were being utilized, while at the same time being formulated concisely and
clearly to lower secondary school teachers. A web-based questionnaire was devel-
oped, which consisted of nine multiple-choice questions, in which a five-point Likert
scale was used, as well as one open-ended question and some background informa-
tion questions.
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The questionnaire was distributed through two platforms; (1) a link for self-
enrolment to the questionnaire was sent through the email list of the Danish national
maths counsellor network with participation from 97 of the 98 municipalities of
Denmark; (2) a link for self-enrolment was posted on two popular Facebook groups
for Danish lower secondary school teachers, “GeoGebra Hangouts” and “We who teach
in lower secondary school”. In order to combat the usual problem of low participation
response and completion in web-based questionnaires, steps were taken with regard to
design and language (Fan and Yan 2010), and a monetary incentive was included
(Göritz 2010) in the shape of a lottery with a prize of DKK 4000,- to a single winner.
Respondents were required to add their names and email in order to take part in the
lottery. This also gave the opportunity to check for double entries.

GeoGebra is by far the most popular DGE in lower secondary school in Denmark.
Consequently, it was decided, for the sake of clarity, to formulate the questionnaire
directly towards GeoGebra usage instead of more general ‘DGE usage’. However,
GeoGebra is a system that includes not only the geometry environment, but also CAS,
a spreadsheet, etc. Therefore, in every question it was explicitly specified that the
question was related to the ‘geometry part’ of GeoGebra. In the analysis of the data,
results are presented from multiple-choice questions in the form of frequency tables and
then analysed. The method used to analyse the open-ended question is presented in the
open-ended question section.

Results and Ensuing Analysis

220 lower secondary school teachers completed the questionnaire.2 Results and anal-
ysis from one background question (Q0), nine multiple-choice questions (Q1–9) and
the open-ended question (Q10) are presented here. This section is divided into four sub-
sections, the first three corresponding to the three types of questions mentioned.

Background Question Q0: The Extreme Population of the Study

Albeit not directly related to the research question, it is relevant to mention the results
from question Q0, which was a background question, in order to shed some light on the
population of the study. Since the teachers participating in the questionnaire are not a
representative sample of the entire population, it is pertinent to consider what kind of
data sample we have at hand. Even though we cannot conclude with certainty, certain
arguments about the population may be put forward.

Results from Q0 (Table 1) show that the respondents frequently include GeoGebra
in their mathematics classroom practice.

Based on the results from Q0 (in combination with the fact that the questionnaire
was among other means distributed on the Facebook group “GeoGebra Hangouts”,
which essentially is a group for people interested in GeoGebra), and that participation
in the survey was through self-enrolment, it is reasonable to infer that the majority of
respondents in the survey are teachers who actually use GeoGebra regularly in their

2 There are approximately 4000 mathematics teachers in grades 7–9 in Denmark.
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mathematics classes. Perhaps it is even reasonable to assume that many of the respon-
dents are teachers who are somewhat enthusiastic about GeoGebra.

Hence, it is important to consider that the respondents are not representative of the
average Danish lower secondary school mathematics teacher population, but instead
may be considered as a case of an extreme population (in regard to DGE usage). The
results could therefore be interpreted in that light. For example, if it is found that the
respondents in this population do not utilize the potentials of a DGE in relation to RC,
then we may surmise that the average teacher does not either.

Multiple-Choice Questions Q1–9

Some questions were posed to find out which types of tasks the teachers give to their
students: this was partly done in order to investigate the hypotheses that GeoGebra is
merely used as a substitute for the paper-and-pencil environment. Partly, the results from
these questions would also indirectly indicate whether the potentials are being utilized or
not. For instance, if the students primarily work on tasks in GeoGebra, which were made
for paper-and-pencil geometry, it is a strong indication that potentials such as dragging are
not involved in the tasks, since dragging is not possible in paper-and-pencil geometry.

As can be seen from the results to Q1 (Table 2), a large proportion of the students seem
to be working on such paper-and-pencil tasks, which indicates that the hypothesis holds
some truth. However, the results fromQ2 show that many teachers adapt paper-and-pencil
tasks. Therefore, it cannot be ruled out that some teachers adapt the paper and pencil tasks
in such a way that some of the four potentials, which are linked to the RC, are utilized.

Table 1 A background question on the rate of GeoGebra usage

N = 220 Q0. How often do you and your students use
the geometry part of GeoGebra in the mathematics class?

Every week 35.9%

Every other week 39.5%

Once a month 17.3%

Every other month 4.1%

Less 3.2%

Table 2 Q1 and Q2 regarding types of task

N = 220 Always Frequently Occasionally Rarely Never Don’t
know

Q1. Do students work on tasks in the geometry
part of GeoGebra, which were originally
made for paper-and-pencil geometry?

14.5% 38.6% 35.5% 9.1% 2.3% 0.0%

Q2. Do students work on tasks that were
originally made for paper-and-pencil
geometry, which you have adapted to be
used in the geometry part of GeoGebra?

6.8% 34.1% 40.5% 11.4% 5.5% 1.8%
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A premise for investigating theoretical properties of figures by dragging is that
the students hold some understanding of the difference between free and non-free
objects. Question Q3 (Table 3) aimed at finding out if students work on under-
standing this difference. It was expected that some teachers might not know what
free and non-free objects were. Therefore, a short video was shown prior to Q3,
along with an explanatory text, in which it was illustrated how two free points
could be dragged, while their constructed mid-point could not. The predominant
answers were occasionally (35.9%) and rarely (30.5%), which indicates that it is
not something on which a lot of time is spent. Moves from the spatio-graphical
level to the theoretical one (Laborde 2005b) are unlikely to occur if the students
do not realise that the perceptually mediated appearance of the figure during
dragging in DGEs is linked to the theoretical properties of the figure.

Results from Q4 show that more time is used on constructing robust figures. Consid-
ering that understanding the difference between free and non-free objects is necessary to
construct them, this result is somewhat contradictory, but perhaps it is because the teachers
discern between the implicit understanding needed to construct robust figures and time
spent explicitly focusing on the difference between free and non-free objects, as two
distinct activities. Q5 was aimed directly at finding out if dragging was being used as a
means to investigate the theoretical properties of figures. An example was given of
properties that can remain invariant under dragging (the medians of a triangle meeting
at a point), because it was expected that some teachers might not understand the meaning
of “investigating figures, to see which properties are maintained during dragging”.

The teachers predominantly responded that their students occasionally (47.3%) or
frequently (33.2%) engage in such activity, which are higher rates than in Q3 and Q4, and
also a higher rate than expected beforehand. It is also somewhat surprising in light of the
responses to Q2, since tasks which were originally made for a paper-and-pencil environ-
ment would not include prompts requiring dragging to investigate theoretical properties of
figures. Nevertheless, the results do suggest that the potential of dragging is used regularly
by students to investigate the properties of figures. It indicates that potentials of DGEs
linked to the exploration and conjecturing part of the RC are utilized to some degree.

Table 3 Q3–Q5 concerning tasks focusing on theoretical properties and dragging

N = 220 Always Frequently Occasionally Rarely Never Don’t
know

Q3. Do students work on understanding the
difference between free objects and non-free
objects in the geometry part of GeoGebra?

5.0% 13.2% 35.9% 30.5% 15.0% 0.5%

Q4. Do students work on constructing
so-called ‘robust’ figures, i.e. figures that
retain certain properties, when the free ob-
jects of the figure are dragged, in the ge-
ometry part of GeoGebra?

1.4% 24.1% 46.8% 17.7% 10.0% 0.0%

Q5. Do students work on investigating figures
to see which properties are maintained
during dragging in the geometry part of
GeoGebra (e.g. that the medians of a
triangle meet at a point)?

5.0% 33.2% 47.3% 10.9% 2.7% 0.9%

Digital Experiences in Mathematics Education
112



Looking at results from Q6 and Q7 (Table 4), we can see that measuring takes
place at a relatively high rate compared with dragging. In fact, it was also the
highest rate compared with all other questions, also those that are not included in
this article. In Q6, a full two-thirds of the teachers who responded reported that
their students frequently work with measuring figures. Or course, Q6 does not
reveal what sort of measuring is done. For instance, it could be the sort of
measurement of figures which might as well be done with paper and pencil.
However, Q7 gives more nuanced insight by asking more specifically about the
measuring activity. The teachers report that their students frequently (41.4%) and
occasionally (43.6%) work with measuring in combination with dragging in order
to investigate invariant measurements.

One way of utilizing the feedback potential of DGEs is with tasks that instigate the
students to construct non-constructible figs. Q8 (Table 5) reveals that 45.5% of teachers
reported that their students occasionally work on such tasks, while 32.5% responded
that their students rarely do so. Of course, there are also other ways of utilizing the
feedback potential.

The results from Q9 indicate that possibility of tracing is unfamiliar to the teachers.
The teachers mainly responded that their students rarely (34.1%) and never (45%) work
with the trace command. It can be concluded that the potential of tracing to visualize
underlying invariant relationships of constructions in conjecturing tasks that yield
development of RC is yet to be utilized, for example in maintaining dragging tasks
(Baccaglini-Frank and Mariotti 2010).

Table 5 Q8 and Q9 on non-constructible figures and tracing

N = 220 Always Frequently Occasionally Rarely Never Don’t
know

Q8. Do the students work on tasks in the
geometry part of GeoGebra where they are
asked to try to construct figures which
cannot be constructed?

0.9% 10.5% 45.5% 32.7% 10.5% 0.0%

Q9. Do the students work with the trace
command in GeoGebra?

0.5% 1.4% 16.4% 34.1% 45.0% 2.7%

Table 4 Q6 and Q7 on measuring

N = 220 Always Frequently Occasionally Rarely Never Don’t
know

Q6. Do students work on measuring figures in
the geometry part of GeoGebra?

12.7% 66.8% 18.6% 0.9% 0.5% 0.5%

Q7. Do students work on measuring figures
combined with dragging, in order to
investigate how the measures change in the
geometry part of GeoGebra (e.g. that the
sum of angles in a triangle remains at 180°)?

5.9% 41.4% 43.6% 5.9% 3.2% 0.0%
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Open-Ended Question Q10

Since the goal of the questionnaire was to find out to what extent the four potentials
were being used, the following open-ended question was put forward:

Q10: What do you think are the greatest affordances (if any) of the geometry part
of GeoGebra?

As mentioned, there were 220 lower secondary school teacher respondents in the
survey; however, many of them provided several comments in their answers. These
were separated into individual comments, giving a total of 357 comments to be
analyzed. Hence, the individual response from many respondents included different
comments that were assigned to different categories. In the examples of comments
provided in this article, the full answers from the respondents are given, but the part of
the answer that is in bold, is what caused it to be placed in the particular category,
which is being exemplified. The other parts of the full answer may have been assigned
to other categories.

One way of investigating the research question of the article was to count how often
the four potentials were explicitly mentioned in the respondents’ comments: no explicit
mention of dragging, tracing or feedback was found in the comments. Seven comments
explicitly included measuring as an affordance, but none of them was in relation to the
dynamicity of measures, which allows for exploration of invariant measures. An
example of a measuring comment is:

(i) It [GeoGebra] is precise. It is able to calculate/measure (e.g. area/perimeter/
angles etc.).

Even though the affordances are not mentioned explicitly, additional analysis and
categorization of the comments can unveil some clues on whether or not the
potentials are indeed utilized. Therefore, categories were developed by reading
through the comments and developing categories to fit the characteristics of the
respondents’ answers. Each successive comment was classified either into previ-
ously developed categories or into a new category, which was developed ad hoc.
Finally, some categories were merged, resulting in six categories, as shown in
Fig. 1.

The most common type of comment belonged to the category ‘Efficiency and
precision’ (27%). The comments in this category were characterized by their reference
to the possibility of making constructions faster or more precisely in GeoGebra,
presumably compared with paper and pencil. The measuring comment in example (i)
was attributed to this category because of the mentioning of precision. Other examples
are:

(ii) Fast and precise drawings [‘drawings, a translation of tegninger, is often used
synonymously with ‘constructions’ by lower secondary school teachers in
Denmark].

(iii) That you can quickly construct and measure figures.
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Another large category, ‘Easy tool’ (14%), contains comments that refer to the acces-
sibility of the software. Examples of such comments are:

(iv) Easy to use.
(v) Intuitive user interface. Large supply of tools. Straightforward guidance on

the screen, when a tool is selected.

A common feature of the comments in these two categories (‘Efficiency and precision’
and ‘Easy tool’) is the reference to the pragmatic value of the techniques, which are
performed with the tool, presumably in comparison with the pragmatic value of the
techniques performed in a paper-and-pencil environment, in relation to the same
mathematical object. It may indicate a lack of respondent reflection on the epistemic
value of the techniques or perhaps it reflects that a DGE is used to solve paper-and-
pencil tasks, and therefore the difference in epistemic value of the techniques is not
experienced eminently by the respondents.

The comments in these two categories do not directly refer to the four potentials. It
may be argued that the reference to precision is related to the feedback potential, but the
comments in these categories do not indicate that the feedback function is related to
reasoning about constructions or making conjectures, but rather to alleviate poor
construction skills in the paper-and-pencil medium. The finding supports the indication
that many Danish lower secondary school teachers use GeoGebra as a substitute for the
paper-and-pencil medium.

The category ‘Experimenting/discovery’ (16%) contains comments which are, as
might be expected, characterized by reference to the possibility either of experimenting
or of discovering. The comments typically do not state what the purpose of
experimenting is, or what the experiments might yield, as exemplified in comment
examples (vi) and (vii).

27%

16%

14%

11%

11%

21%

Q10. What do you think are the greatest affordances 
(if any) of the geometry part of GeoGebra?

Efficiency and precision Experimen�ng/ discovery
Easy tool Dynamic
Students' mo�va�on and learning Other

357 comments

Fig. 1 Categories of comments to Q10
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(vi) It is an easy tool. Good for investigating. Draws nicely. Good for measuring.
(vii) It is fast and easy to investigate and try things and there are many tools that

make the work easier for the students.

Some of the comments do state the purpose of the experimenting, indicating discovery
of relationships or truth of geometrical properties.

(viii) That your work is precise. That you can conclude relationships on the basis
of investigations.

(ix) Easy and clear. The students can easily experiment with the tasks, e.g. the
relationship between area and length of sides.

The category ‘Dynamic’ (11%) contains comments which directly refer to the
dynamicity of the software. In the analysis, a merger with the ‘Experimenting/discov-
ery’ category was considered, but a great deal of the comments in the ‘Dynamic’
category merely express that it is dynamic, without further elaboration. Therefore, the
categories were kept separate, even if they overlapped in some instances. Examples of
comments from the Dynamic category are:

(x) That it is dynamic.
(xi) Fast solutions. Dynamic. The students work all of the time with mathematical

concepts through the tools (e.g. perpendicular bisector, angle bisector). Motivat-
ing. Promotes development – more knowledge all the time.

Although many of the comments in the ‘Dynamic’ and ‘Experimenting/discovery’
categories do not describe what or how it is dynamic, and what is or how it is being
investigated, it is reasonable to surmise that the comments refer to the epistemic value
of the techniques that are carried out in DGEs, in comparison with the epistemic value
of the techniques performed in the paper-and-pencil environment. The comments in
these categories also indicate that dragging is utilized to some degree, even though it is
not explicitly stated, because experimenting, discovery and comments on dynamicity
are likely related to dragging activity. For the same reason, it may be conceived that
measuring in combination with dragging is utilized to some degree. Hence, the results
support the indication that some Danish lower secondary school teachers use some of
the potentials of DGEs in relation to RC.

The ‘Students’motivation and learning’ category (11%) contains comments referring to
students being motivated by using the software or that the software supports students’
learning either in general or in support of weaker students who might have problems, e.g.
with fine-motor skills. The category ‘Other’ (21%) includes a variety of different comments,
including a good portion describing the possibilities for solving tasks by drawing to find the
solution (constructing) and some regarding visual or geometrical support. The comments
from these last two categories do not refer to the four potentials.

Methodological and Analytical Issues

As mentioned previously, the questions posed to the teachers aimed at investigating to
what extent the four potentials related to RC in Højsted (2019a, 2019b) were utilized.
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However, even if the four potentials were utilized, it cannot be assumed in itself that the
teachers are using DGEs in a manner coherent with supporting students’ development
of RC. For example, even though the teachers may report positively to Q7, indicating
that “students work on measuring of figures combined with dragging in order to
investigate how measures change”, it is not guaranteed that elements of RC are a
predominant learning goal of the students’ activity. A positive report from the teachers
in this case merely means that the potentials, which may be related to RC, are utilized to
some degree.

Another relevant issue is that teachers may interpret the questions posed in ways
which were not intended. Errors of this kind may be expected in relation to phrases
such as, “the difference between free objects and non-free objects” (Q3) and “robust
figures” (Q4), even if accompanying explanations of the terms were provided. In
addition, teachers may have interpreted Q3 to concern specific free and non-free objects
tasks, which they might work rarely on, or that they highlight this difference when
appropriate, which may be frequently.

Discussion

Keeping in mind the methodological and analytical issues of the study, the results
indicate that the potentials of DGEs in relation to RC, in particular measuring and
dragging, are to some degree utilized in Danish lower secondary school. The particular
utilization of the feedback potential in non-constructible tasks (Q8) seems also to be
present, although at a lower rate. It may be regarded as a positive result, especially since
dragging is considered to be a key feature of DGEs, one that affords a visual
representation of invariant geometrical phenomenon allowing for generalization, rea-
soning and conjecturing (e.g. Arzarello et al. 2002; Laborde 2002; Baccaglini &
Mariotti, 2010; Edwards et al. 2014).

However, the results from Q1 give rise to further questions about the actual
utilization of these potentials. The results from Q3 indicate that the understanding of
locked and free objects is not a particular focal point. As mentioned previously, the
locked and free objects are the manifestations of the theoretical properties of figures,
which are mediated perceptually in DGEs during dragging, thereby potentially linking
the spatio-graphical and theoretical levels (Arzarello et al. 2002). Perhaps the lack of
focus on this basic understanding can be linked to the students remaining at the spatio-
graphical level when dragging. If that is the case, the conjectures will not be anchored
in the theoretical properties of the figures, but at the spatio-graphical level.

Additionally, it seems that the tracing command is rarely used (Q9), which implies
that dragging with trace activated in order to highlight underlying invariant relation-
ships, is not presently utilized. 27% of the comments from the teachers in Q10 indicate,
implicitly, that dragging and measuring are utilized to some degree, since
experimenting, discovery and comments on dynamicity are likely related to dragging
and measuring activity. These comments are also found to highlight the epistemic value
of the techniques, which may be performed in DGEs. However, 41% of the comments
refer to the pragmatic value of the techniques, the cause of which might be that many
teachers use DGEs to solve paper-and-pencil tasks. Therefore, a considerable difference
in pragmatic value of the techniques may be experienced by the teachers, whilst the
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difference in epistemic value of the techniques may not be experienced significantly.
73% of the comments were found not to be related to the four potentials of DGE in
relation to RC.

Importantly, the extreme population of this survey must be taken into account in the
discussion of the results and in answering the research question. As mentioned, the
respondents are not representative of the average Danish lower secondary school
mathematics teacher population. In fact, many of the respondents are teachers who
regularly use GeoGebra in their classroom and may even be considered as “super
users”. Analysing the results in this light, it may be concluded that the four potentials
are scarcely utilized in Danish lower secondary school.

The results are in alignment with those from Ruthven et al. (2004), showing that
teachers mainly refer to the added pace and productivity provided by technology. There
were also teachers who highlight the possibility of experiment/discovering, similar to
Bozkurt and Ruthven’s (2017) case study of a recognised expert secondary school
teacher. However, only 16% of the comments were of this type.

Further Research: Integration of Findings into Practice

In order to improve the utilization of the potentials in relation to RC, it is
necessary to increase the availability of tasks that are actually made for utilizing
DGE potentials. Even though some teachers may adapt paper-and-pencil tasks, it
would be beneficial for them to have support in the form of guidelines. Several
DG task quality models have been suggested (e.g. Trgalova et al. 2011; Trocki and
Hollebrands 2018). It cannot be expected that teachers, without any guidance, will
adapt paper-and-pencil tasks into somewhat specialized tasks that utilize the
potentials of DGE in relation to RC, such as soft construction tasks that can be
solved by using the maintaining dragging model (Baccaglini-Frank and Mariotti
2010).

Additionally, it is necessary to highlight the mathematical meaning of free and
locked objects in instruction and tasks, in order to support the students in linking
the spatio-graphical and theoretical levels. This is important, since awareness of
the theoretical relationship between elements of a figure, which is mediated
perceptually by DGEs as invariants during dragging, is a premise for investigat-
ing figures in conjecturing and reasoning tasks, tasks which are characteristic of
RC.

The insights gained from this research are integrated into another on-going related
project (Højsted 2018), in which the aim is to develop guidelines for the design of
didactic sequences that utilize the potentials of DGEs in relation to students’ develop-
ment of the RC (initial guidelines reported in Højsted (2019a)). The survey results
suggest that the didactic sequence should include initial instruction and tasks aimed at
supporting the students in understanding the theoretical underpinnings of locked and
free objects, so that they can interpret the theoretical aspects of figures, which decide
how the figure reacts when elements of the figure are dragged. Implementing ‘con-
struction tasks’, as coined by Mariotti (2012), may support this process. It is also clear
that the sequence must take into account the likely lack of teacher and student
knowledge regarding the trace command and tasks instigating the construction of
non-constructible figs.
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In Conclusion

The study shows that Danish lower secondary school mathematics teachers scarcely
utilize the potentials of DGEs in relation to RC in their classrooms. The teacher’s
comments reveal that DGEs are mainly used for pragmatic reasons, in particular for
efficiency and precision. Additionally, there are indications that DGEs are used as a
substitute to solve tasks that were originally designed for paper and pencil. To support
the teachers’ integration of DGEs’ potentials into praxis, guidelines are being devel-
oped for the design of didactic sequences that utilize the potentials of DGEs in relation
to students’ development of the RC, which I hope to be able to report on in future
publications.
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Analysing signs emerging from students’ work on a designed 

dependency task in dynamic geometry1 

This article reports on the design and implementation of a didactic sequence in 

the frame of a design-based research study. The research hypothesis is that 

affordances of dynamic geometry may support awareness of logical relationship 

between geometrical objects. We elaborate on the task design principles used in 

the study and present analysis of four Danish grade 8 students (age 13-14) 

working in pairs on the very first task of the sequence. The Theory of Semiotic 

Mediation frames the design of the study and the analysis of data, which was 

collected in the form of screencast, video and written products. The results 

indicate that students expect dependencies to be non-hierarchical in DGE; that 

low achieving students describing the behaviour of constructions during dragging 

refer to their global appearance; that specific prompts in the task design can shift 

students attention on specific elements of constructions; and that explicitly asking 

the students to explain any unexpected observation seems to be necessary for 

active reflection. 

Keywords: dynamic geometry environments; task design principles; 

mathematical reasoning competency; design-based research; theory of semiotic 

mediation 

1. Introduction

In the vast research literature on dynamic geometry environments (DGE hereafter), 

several studies deal with the relation between DGE affordances and students’ 

mathematical reasoning, conjecturing and proof (e.g. Mariotti, 2012; Sinclair & Robutti, 

2013; Hollebrands, Laborde & Sträßer, 2008). A seminal affordance of DGE, is that 

dynamic geometrical figures may be constructed, which may be manipulated by 

dragging, while certain properties remain invariant. The relationship between the 

1 A brief earlier version of this article was presented at Madif–12, Växjö, January 15, 2020 
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elements of the figure is locked in a hierarchy of dependencies, determining the 

outcome of a dragging action (Leung, Baccaglini-Frank & Mariotti, 2013). These 

dependencies are linked to the theoretical properties of the figure, which are decided by 

the construction method, by the theory of Euclidean Geometry governing the system 

and by software design choices. Although the research literature on DGE affordances is 

comprehensive, Sinclair et al. (2016) state that task design and teacher practice remain 

understudied, a statement, which was reiterated by Komatsu and Jones (2018). An 

influential contribution in this domain is the Theory of Semiotic Mediation (TSM 

hereafter) (Bartolini-Bussi & Mariotti, 2008), which provides a framework for 

modelling the didactical integration of artefacts into school practice. The TSM provides 

a general frame for designing school activities aiming at exploiting the didactical 

potentialities offered by artefacts, in our case DGE, in relation to students’ development 

of mathematical meanings, and the role of the teacher in this regard. 

In this article, we report on the experimentation of a didactic sequence, which 

was carried out in lower secondary school in Denmark, focusing especially on the phase 

of task design. The aim of the entire didactic sequence concerns reasoning, conjecturing 

and proving. However, the results reported in this article concern the initial part of the 

sequence, in which the focus is on the role of the popular DGE software, GeoGebra, at 

fostering student awareness of theoretical properties of figures.  Specifically, we focus 

on the design of dependency tasks, which is tasks aimed at fostering students’ 

awareness of dependency properties in a GeoGebra figure (a detailed description is 

provided in section 4). 

In the next section, we briefly introduce key concepts from the TSM, after which 

the research question of this study is formulated. Afterwards, the method of the study is 

presented, followed by a description of the objectives, hypotheses and choices 
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concerning the task design of the initial tasks in the didactic sequence. Then we present 

the analysis of data from two pairs of students working on the very first task in the 

sequence. Finally, we discuss the results in light of the research question. 

2. Conceptual framework 

The TSM (Bartolini-Bussi & Mariotti, 2008) characterizes how students form meanings 

in relation to the use of an artefact to solve a task. The initial personal meanings 

developed by the students as they use the artefact to accomplish a specific task, may not 

match the mathematical meanings an expert mathematician (the teacher) would 

recognize. However, through a didactical intervention, the evolution into mathematical 

meanings may occur. Bartolini-Bussi and Mariotti (2008, p. 754) coined the term 

semiotic potential of an artefact to express the duality of possible personal meanings 

and mathematical meanings, which may be evoked by using an artefact in the solution 

of a specific task. Awareness of this potential enables the teacher (or researcher) to 

design tasks aiming to promote certain mathematical learning. As the students work on 

the tasks, they will produce signs in the form of verbal utterances, written products, 

gestures and on screen DGE interactions. Underlying these signs are personal meanings 

of the students. The meanings may, to a varying degree, be coherent with the 

mathematical meanings laid out as the objective of the task. The expert teacher may act 

as a mediator that supports the students’ evolution of mathematical meaning in relation 

to the artefact activity. The mediation may take place as the teacher interacts with the 

students, in particular in classroom discussions. When the artefact is intentionally used 

by the teacher who is aware of her/his pivotal role in managing this process, then it 

becomes a tool of semiotic mediation (Bartolini-Bussi & Mariotti, 2008, p. 754). 

In the TSM, cognitive development is described from a Vygotskian (1978/1930) 

point of view, as a process of internalization, which has “two main aspects: it is 
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essentially social; it is directed by semiotic processes. In fact, as a consequence of its 

social nature, external process has a communication dimension involving production 

and interpretation of signs.” (Bartolini-Bussi & Mariotti, 2008, p. 750). Therefore, the 

analysis of the internalization process may be oriented towards the analysis of the use of 

signs in social activities. In other words, the evolution of student meanings may be 

analysed by interpreting the signs the students produce, e.g., gestures, verbal utterances, 

written signs or DGE actions in social activities.  

The analysis may unveil to what extent the specific designed tasks can function 

as expected, fostering the unfolding of the semiotic potential of the artefact. Testing the 

effectiveness of task design consists in controlling if the students show the expected 

behaviour, referring to the expected personal meanings described in the a priori analysis 

(presented in section 4) that are consistent with the mathematical meaning that is the 

objective of the didactical intervention. The development of meanings can be 

highlighted by identifying specific semiotic chains, e.g. chains of relations of 

signification (Bartolini-Bussi & Mariotti, 2008, p. 756). 

As mentioned, the teacher plays an essential role in supporting the evolution of 

personal meanings toward mathematical meanings. However, interpreting and reacting 

in classroom discussions, sometimes on the spot, to signs produced by the students may 

be challenging for the teacher. Therefore, it may prove useful to accompany the design 

of the tasks both with the analysis of the semiotic potential and the description of the 

possible ‘unfolding’ of such a potential. In this way, the teachers can be equipped with 

guidelines concerning the type of signs, which can be expected to emerge as the 

students work on specific artefact tasks. In this light, the following research questions 

arise: As students work on a designed dependency task, which type of signs emerge that 

are related to the use of the dragging tool and can be seen as evidence of students’ 
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awareness of the logical relationship between the geometrical properties in play? How 

can the unfolding of the semiotic potential from this case contribute to the formulation 

of guidelines? 

3. Method and context

The study is part of a larger project that is methodologically anchored in design-based 

research (Bakker & van Eerde, 2015), which is characterized by its dual purpose of 

developing educational practice as well as theory about the domain specific teaching 

and learning of that practice. Design based research is therefore “claimed to have the 

potential to bridge the gap between educational practice and theory” (Bakker & van 

Eerde, 2015, p. 2). The aim of the project is to develop guidelines for designing didactic 

sequences that utilize the potentials of DGE in relation to students’ development of 

mathematical reasoning competency2 (Højsted, 2020a; 2018). Based on an initial 

theoretical analysis, a 15 lesson didactic design was developed and tested in three 

design iterations in three different Danish 8th grade classes (age 13-14). In this article, 

we present results from the second iteration.  

In our data collection, the students worked in pairs using GeoGebra on one 

computer to solve the tasks from a worksheet. The organization into pairs was chosen to 

foster interaction and communication in alignment with the request of production of 

signs that is a part of the TSM. In addition, from a methodological point of view, the 

organization into pairs allowed us as researchers to identify and analyse students’ 

personal signs emerging from the work with the artefact when they interact and 

2 The mathematical reasoning competency is one of eight mathematical competencies in the 

Danish KOM framework (Niss & Højgaard, 2019) 
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communicate. The pairing of students was also a consequence of task design choices in 

order to meet educational aims, e.g. requiring the students to explain and justify to each 

other, which is a characteristic of reasoning competency (we will elaborate further in 

section 4).  

Data was gathered in the form of screencast recordings from all groups and 

collection of students’ written products. In addition, three groups were chosen in each 

class for external video recording to allow for a richer collection of emerging signs. The 

groups were chosen in collaboration with the teacher to comprise a range of low to high 

attaining groups concerning mathematics achievement. 

The data is analysed by identifying the emerging signs/semiotic chains of the 

students, in order to make a synthesis of possible personal signs that the teacher may 

expect, and to review to what extent the meanings are aligned with the expected 

outcome of the task design. Finally, the design is evaluated in light of the analysis and 

some refinements of the design are proposed. In this article, we present data from two 

groups, one medium-high achieving group and from one low achieving group. We do, 

however, also refer to data from other groups in the analysis and concluding discussion. 

DGE are commonly used in Danish primary and lower secondary school 

(GeoGebra, in particular, is popular), and it is explicitly mentioned in the mathematics 

curriculum, e.g. describing that students should be able to draw/construct figures using a 

DGE at the end of grade 3 (Børne- og Undervisningsministeriet, 2019). Although DGE 

is common, there are indications that GeoGebra is mainly used as a substitute for the 

paper and pencil environment, and teachers highlight pragmatic means, in particular the 

efficiency and precision that the software offers (Højsted, 2020).  
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The students in this study had basic previous GeoGebra experience, which 

means that they knew the layout of the program, i.e. where the commands for 

construction are situated, and how to use some of these commands. 

4. Task design principles

The design of the initial tasks in the didactic sequence can be decomposed into three 

related dimensions. At the macro level, there is an objective, which describes the 

students’ learning aim. Then there is a hypothesis about the types of tasks, which may 

support the students to achieve the aim. Finally, there are choices made in the micro 

level of design, such as formulations in the task and descriptions of requested student 

activity. To ensure alignment, each choice should be coherent with the hypothesis, 

which in turn should be coherent with the objective. This structure is methodologically 

consistent with the predictive and advisory nature of design-based research (Bakker & 

van Eerde, 2015) and offers a systematic and explicit support for linking the design 

process to the revision. 

The learning objectives are twofold: (1) that the students develop an awareness 

of the logical dependency between geometrical properties of dynamic figures3 in 

GeoGebra. That involves being able to discern free and locked objects in GeoGebra, 

and to be aware of the fact that it is these relations between objects, which decide the 

3 Such dynamic figures are complex entities that represent geometrical objects (denoted “Cabri-

figures” by Laborde and Laborde (1995)), like others, they are images but they are images 

on the screen and the product of a digital construction. Any construction determines a logical 

relationship between geometrical properties of such dynamic figures, which are perceptually 

observable as invariants during dragging. 
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outcome of dragging. (2) That they are able to interpret the construction dependency 

geometrically as logical dependency. This requires geometrical attention to the 

theoretical relations induced in the construction procedure.  

The hypotheses concern both these objectives and are related to the semiotic 

potential of a DGE with respect to the logical dependency between geometrical 

properties of a constructed figure (Leung, Baccaglini-Frank & Mariotti, 2013; Mariotti, 

2014). The semiotic potential already described in relation to a construction task, is now 

reformulated from the perspective of the task design of a “dependency task” in terms of 

objective, hypotheses and choices. The hypotheses are based on the previous literature 

concerning the semiotic potential of tools in a DGE. Hypothesis (1): Since any 

constructed figure behaves according to the geometrical relationships defined by its 

construction procedure, students acting on a figure produced by a construction 

command can observe the invariance of a property or the invariance of a relationship 

between properties (Mariotti, 2014), and the perceived invariants can be related to the 

construction process. 

Hypothesis (2) concerns the semiotic mediation process. The students’ 

perception of the phenomena observable on the computer screen may be linked to a 

geometrical interpretation. Partly, this geometrical interpretation may occur 

spontaneously if the students utilize their previous geometrical knowledge, but in 

particular, such interpretation can be fostered by specific semiotic activities (discussing 

tasks in pairs, explaining and writing the description of what they observe), and most 

essentially, through the mediation of the teacher in classroom discussion. Even though 

hypothesis 2 is of utmost importance from a teaching/learning point of view, we will 

primarily focus on hypothesis 1 in this article. 
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The general choice of proposing the exploration of a constructed figure, is 

elaborated in the following five choices that are made at the micro level of the task 

design, in alignment with the hypotheses. (i) A construction is proposed that contains 

certain dependencies, leading to a clearly recognizable invariant. This choice is related 

to our aim of exploiting the semiotic potential of dragging in DGE to reveal invariance 

of properties. (ii) The students are requested to produce the construction with guidance. 

The choice reflects that the goal is to foster awareness of properties in the construction. 

Therefore, the students perform the commands themselves and in so doing are expected 

to reflect on which properties they are supposed to induce in the construction. In 

addition, they may interpret the behaviour of the construction after dragging, as a 

consequence of their construction method, and are therefore expected to reflect on the 

possible consequences of the construction steps. Some guidance was given in the form 

of accompanying pictures of commands, which may be useful to complete the 

construction, as well as a picture of the required construction (see example in figure 1). 

Choices (iii-v) are related to what White and Gunstone (2014, p. 44-65) refer to as 

Prediction-Observation-Explanation, and concern the selected types of requests for the 

students: The students are required to predict the result of an event, and to justify their 

prediction. Afterwards, they are required to report what they observe and explain their 

observation, resolving any differences between prediction and observation. (iii) The 

students are encouraged to predict, before they drag objects, what will happen on the 

screen when they drag certain points, and to justify their prediction to the co-student 

they are working with. Asking the students to predict the properties of the diagram 

before they drag, directs their reflections onto properties of the construction (the general 

objective) and may give rise to conflict, if what they observe does not coincide with 

their prediction. The conflict can provoke intellectual curiosity (Laborde, 2003). 
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Encouraging students to justify their prediction serves two aims; firstly, it supports the 

development of a mathematical attitude to look for a reason - to justify the conjecture. It 

can be named a social mathematical norm (Yackel & Cobb, 1996): when I formulate a 

statement, a reason should be provided. Secondly, it supports the production of reasons 

that can develop into mathematical reasons. Both these types of support concur with the 

aim of the students becoming able to justify mathematical claims to others, which is a 

characteristic of the mathematical reasoning competency (Niss & Højgaard, 2019, p. 

16). (iv) The students are encouraged to drag certain points and to describe what 

happens. This choice is added so that the students can confirm the expected outcome, or 

wonder why it did not go as expected and try to figure out why. Again, with the goal of 

students becoming aware of the relationship between the properties induced by the 

construction and the properties that appear invariant by dragging. (v) The students are 

encouraged to give an explanation concerning certain essential relations in the 

construction. This choice may direct the students’ attention to certain essential 

properties of the construction, again to pursue the main goal of developing awareness of 

the theoretical properties of the constructions, which decide the outcome of dragging. 

Choices (iii-v) are sometimes repeated for different elements of the same construction. 

We denote this type of task, which encourages the construction of a figure and 

consequent guided exploration of the dependencies in the figure, a “dependency task”. 

According to the TSM, the request of discussing and writing that accompanies 

each task constitutes the semiotic component of the design related to hypothesis (2); it is 

expected to trigger the semiotic mediation process that is rooted in the use of the 

artefact. What emerged from these semiotic activities will constitute the base on which 

the teacher is expected to plan the plot of the following classroom discussion. This 

material also constitutes the corpus of data, which the analysis of the unfolding of the 
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semiotic potential is based on. The specific choices concerning the role of the teacher in 

the classroom discussion will not be elaborated upon in this article. 

4.1. Task 1 – a dependency task 

In the data presented in this article, the students are working on the very first 

task of the sequence, which was a dependency task. Below we present the task 

formulation that is related to choices (i-iv)4:  

“1.a. Construct two points A and B in GeoGebra and the midpoint C between them. 

Use the midpoint command  

1.b. What do you think happens to the other points when you drag point A? Guess

first and justify your guess to your partner. 

Investigate afterwards, what happens? 

[…] 

1.d. What do you think happens with the other points when you drag point C? Guess

and justify first. 

Investigate afterwards, what happens?” 

Table 1. Task 1 – a dependency task. 

4 We omit the formulation of 1.c., 1.e. and 1.f. since it is not discussed in this article. 1.c. was a 

repetition of 1.b. in relation to point B, while 1.e. and 1.f. concern choice (v). 
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5. The unfolding of the semiotic potential – presentation and ensuing analysis

of students’ signs emerging from the activity

The organization into pairs and the requests (Predict-Observe-Explain) are expected to 

foster interaction and specifically communication. Therefore, the requests are expected 

to foster the emergence of signs and underlying these signs are personal meanings of the 

students. 

In the following, episodes in the form of transcripts, screen recordings, video 

and written work of students are analysed to interpret underlying meanings. Since we 

are interested in the unfolding of the semiotic potential, the analysis will focus on the 

production of signs related to the use of the artefact, and related to the idea of logical 

dependency between geometrical properties. We seek to identify emerging personal 

signs of the students in order to make a synthesis of possible personal signs that the 

teacher may expect, and thereby be preparing the teacher to support the evolution of 

mathematical meanings in the classroom discussion. In addition, the choices made in 

the task design are evaluated in light of the analysis, and refinements of the task design 

are proposed. 

5.1 The case of Dan and Jan 

The teacher described Dan and Jan as average achievers in the mathematics classroom. 

Unfortunately, the guessing part of their work on task 1.b was not recorded, but from 

the written work we can see that Dan and Jan have guessed “when you drag A, they will 

move along”. It seems that they think that both C and B will move.  

We now look at Jan and Dan’s emerging signs as they are investigating what 

happens (choice (iv)). When sequences of pictures are shown, the picture on the left is 

first in the chain.  
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8 Jan: Ok then we're trying to move it. (drags point A 
(Figure 1)) 

Figure 1. Screencast recording of Jan dragging point A with arrows added to specify 

dragging direction. 

9 Jan:  They move along in parallel. (gestures with his 
hand) [indicating that the three points A,B, C (or 
perhaps only A and C) move while remaining on a 
line, or moving on a trajectory that is related 
(Figure 2)] 

Figure 2. Video recording of Jan gesturing with his hand. Arrows are added to illustrate 

the direction of the movement. 

10 Dan: They move along in parallel, do you think we should 
write it? (writes down ’parallel’ on the line where 
the guess was written) 

12 Dan: Move along parallel, good. 
[…] 
17 Jan:  Just write they move along with them…  Or what do 

you call it? (gestures with hand) [indicating a line 
(Figure 3)] 
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Figure 3. Jan gesturing with his hand to indicate a line. 

18 Jan:  they are moving in a straight line. 
19 Dan: (writes and talks) Move along on a straight line 

Their written answers are shown in figure 4: 

Figure 4. Dan and Jan’s written answers to question 1.b. 

Translated: Pre investigation answer “When you drag A, they will move along in 

parallel” and post investigation answer “They move along on a straight line”. 

Note that “in parallel” was in fact added to their prediction answer after the 

investigation, meaning that they revised their guess based on the investigation. 
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5.1.1. Analysing task 1.b. 

If we take a closer look at the semiotic bundle5 (Arzarello, Paola, Robutti & Sabena, 

2009; Arzarello, 2006) consisting of the verbal utterance from line 9. “They move along 

in parallel” and the accompanying gesture (movement of Jan’s hand), we may, from a 

semiotic perspective, interpret the underlying personal meaning being that the points are 

moving while remaining on an invisible segment, although this is not expressed fully 

yet. The unexpected usage of the notion parallel is an interesting geometrical 

interpretation given by the students. It is not appropriate from a mathematical point of 

view; however, the movement perceived must somehow remind them of the notion of 

parallelism. We can make the hypothesis that they use this sign, ‘parallel’, consistently 

with its use in the common language. Acatully, such an expression – move along in 

parallel - is commonly used in Danish to indicate that something is happening at the 

same time. The use of this expression in order to describe what is observed is also 

compatible with some figural aspects of the geometrical meaning that these students 

may have for these expressions; for instance, parallel lines may be evoked by the 

movement of the points. 

In lines 17-18 Jan refines his own expression, “move along in parallel”, into an 

expression that somewhat more accurately describes what happens, they move along on 

5 Arzarello (2006) introduced and elaborated (Arzarello, Paola, Robutti & Sabena, 2009) the 

terms semiotic set and semiotic bundle. A semiotic set comprises three components: signs; 

modes of production/transformation of signs; and relationships among signs. A semiotic 

bundle is a collection of semiotic sets and a set of relationships between the semiotic sets of 

the bundle (Arzarello, 2006, p. 281). 
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a straight line. This strengthens the indication that “moving along parallel” meant 

moving along on an invisible segment.  

By saying “they move”, they seemingly indicate that point B moves, which it 

does not. Perhaps the students are preoccupied with the global change of appearance of 

the construction and once they have identified the invisible line connecting the points, 

then, in their view, point B follows the movement of the other points, as a part of the 

line, in a rotation about itself. However, it is also possible that “they move” refers only 

to points A and C, and that the students are expressing that if A is moved approximately 

along a straight line trajectory, the midpoint C will move also on a linear trajectory, and 

this will be parallel to the trajectory of point A. 

It is noteworthy that the students do not describe the invariant AC=BC, but that 

they do describe that the points remain on an invisible segment. Perhaps it is less 

immediate to notice covariant lengths than noticing mutual positions. It is consistent 

with the gestalt rules of perception, in which perception of a form is conceived as a 

global structure (Wertheimer, 1958). In our specific case, the gestalt rule of similarity 

seems to guide the students’ organisation. The rule asserts that there is a tendency to see 

a form so that similar aspects are grouped. Dan and Jan seem to “see” the similarity of 

the movement of points A and C (and perhaps B), remaining on a trajectory that is 

related.  

If we analyze the signs from Dan and Jan in relation to the aim of choice (iv) 

The students are encouraged to drag certain points and to describe what happens, we 

may surmise that the outcome of dragging was not quite what they expected, because 

they try to reformulate what happens based on the investigation. They proclaim, “they 

move along in parallel”, which is then further refined into “they move along in a 

straight line”. However, the students do not explicitly connect what happens during 
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dragging with the theoretical properties induced by the construction, neither in the first 

guessing nor after the investigation. No explication of the movement that they observe 

is given referring to the construction process or to the geometrical properties induced by 

such construction. Although the students do indeed drag and describe what happens, 

they do not guess or “see” what was aimed for. This might be explained by formulation 

of the task. The students are asked to guess and investigate “what happens to the other 

points”. The formulation does not refer to a possible geometrical interpretation of what 

can be observed. No explicit question is posed about the interpretation of the 

phenomenon that can be observed. There are many possible answers to the question 

“what happens”. It does not necessarily mean that choice (iii-iv) are invalid in terms of 

accomplishing the hypotheses, but rather that the realization of the choices may need to 

be refined. The formulation of the request of observation is too generic, consequently 

the answer is generically controlled by the basic rules of perception and a perceptual 

apprehension is privileged instead of a more discursive apprehension (Duval, 1995) 

that could orient the observation on the two segments AC and BC, into which the 

original segments AB is divided, and on their congruence. 

5.1.2. Task 1.d data.  

As shown previously, task 1.d. is also related to choices (iii) and (iv), but now it is point 

C that is to be dragged. 

We now return to Dan and Jan as they are about to make a guess. The screen at 

that moment is captured in figure 5. 
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Figure 5. Screencast recording as Dan and Jan make their guess to task 1.d. 

33 Jan:  I think that when you move point C, then they move 
[probably means A and B] 

34 Jan:  just like (moving his hand up and down as if it was 
a line (Figure 6)) 

 

Figure 6. Jan moving his hand up and down. 

35 Jan:  so if we move it here, and then drag it [talking about 
point C], then they move like this (moving hand up 
and down again)  

36 Dan:  move along in parallel. 
37 Jan:  hm, it is called parallel?... (moves his hand i 

horizontal direction (Figure 7)) 

 

Figure 7. Jan moves his hand in a horizontal direction. 

38 Jan:  Yes parallel to 
39 Dan:  Horizontally 
40 Jan: Like if you have a stick (Figure 8) 
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Figure 8. Jan uses his hand to represent a stick 

41 Jan: and lift it in the middle (Figure 9) 

Figure 9. Jan gestures holding the imaginary stick by its centre and moves it up and 

down. 

42 Dan: and in parallel 
43 Dan: The sides [the extreme of the stick] move along 
44 Jan: Exactly 
45 Dan: [writing and talking] The sides move along 
[…] 
48 Jan: Let's try (Tries to drag C)  
49 Jan: Nothing is happening... It should. 
50 Dan: Nothing happens, huh. 
(They are puzzled) 
51 Jan: No… 
(Dan writes: nothing happened) 
52 Jan: (asks some other students) Did something happen 

for you with C? (does not get a response) 
53 Dan: Nothing happened 
54 Jan: You are not supposed to use this one? (clicks on 

Move graphics command), 
55 Dan: no, that one (indicating the move command) 
56 Jan: …What's next? (they move on to the next task) 

Written answers in figure 10: 
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Figure 10. Dan and Jan’s written answer to question 1.d. 

Translated: Pre investigation answer, “the sides move along like a stick” and 

post investigation answer “nothing happened”. 

5.1.3. Analysing 1.d. 

In lines 33-35, it seems that Jan is finding it hard to express in words what he expects, 

but his gesture suggests that he expects the invisible segment to be maintained, meaning 

that A and B will follow. Again, the students use “move along in parallel” (lines 36-38). 

However, Jan tries to express in more detail, or to refine the expression, that the 

extremes (A and B) will move along, as if they are extremes of a stick, which is gripped 

at its centre and raised (lines 40-41). They are puzzled when nothing happens (line 49-

51), which makes Jan enquire with other students and question whether or not they are 

using the correct command. However, they spend less than a minute on trying to find 

out why it was not possible to drag point C, before they move on to the next task 

without being able to find a good reason. 

If we interpret the meaning underlying these signs, it seems that the students, in 

particular Jan, is aware of the fact that there are relations between the points. Perhaps 

this awareness is not at the level of points, but certainly on the global level of the 

construction. It seems that the elements of the construction are considered integral one 

to each other and hence the construction is as a “rigid system”, to borrow a notion from 

physics. While this expression “stick” to talk about the configuration indicates that the 

students are aware of constrained relations induced by the construction, it also unveils 

that students do not intuitively expect that there should be a hierarchy of dependencies. 
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They envisage that the construction behaves as a stick would, i.e. if you lift a stick by its 

middle, the sides will follow, and vice versa. When they are puzzled, they look for an 

explanation in the technology. It seems that there is no awareness of the relationship 

between the functioning of the software and the Geometry that is embedded. However, 

the surprise does seem to awaken an interest. This may lead us to the hypothesis that a 

good choice would be to make the students observe a situation where they expect 

something to move together and on the contrary, it does not.  

In the view of the aim of choice (iii), it is evident that Jan tries to predict what 

will happen (lines 33-41), and the guess seems to some degree to be embedded in 

reflections on the relations stated in the constructions, however, it does not look as if he 

intends to justify his guess to Dan. It may be argued that his description of the 

construction moving like a stick, is in itself a justification of the movement, namely that 

the construction is “rigid”. Nevertheless, the justification is vague and the reflections 

remain at a global level of the construction, i.e. there is no mention of points or relations 

between points. If we consider the aim of choice (iv), then the students do indeed 

describe what happens, however, they make almost no effort to figure out why it is not 

possible to drag point C, and mainly they do not refer to properties induced by the 

construction. 

5.2. The case of Sif and Ole 

In this section, we present and analyse part of the data from two other students from the 

same classroom, Sif and Ole, also working on task 1. The teacher described Sif as a 

high achiever and Ole as an above average achiever in the mathematics classroom. They 

are about to make a guess to question 1.b: 
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18 Ole: Ehm, I think B stays in the same place and A will be 
moved and C will still be in the middle. [Pointing to 
the points onscreen with his finger while explaining] 

19 Sif: eh, B stays in the same place. And then 
20  Ole: C remains in the middle 
21 Sif: [writing the answer and talking] C will move, 

depending on A's... will move to stay in the middle. 
22 Sif: [Reading the text out loud] Investigate afterwards 

what happened. [Drags point A](Figure 11) 

Figure 11. Sif drags point A. 

26 Sif [writing and talking] We guessed right 
Their written answers are shown in figure 12: 

Figure 12: Sif and Ole’s written product. 

Translated: Pre investigation answer “B stays the same, C will move in order to 

remain in the middle” and the post investigation answer “we guessed right”. 

5.2.1. Analysing 1.b. 

Sif and Ole describe the expected movement of each point in the construction. Their 

expressions indicate an awareness of the fact that the relations induced by the 

construction will be maintained. The description is at the local level of points involved 
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in the construction: “B stays in the same place”, “A will be moved”, “C will still be in 

the middle” (line 18). We can also notice that the utterance about point C is elaborated 

upon to highlight that it will not stay in the same position but rather that “C remains in 

the middle” (line 20). Further, they indicate that C is dependent on A, “C will move, 

depending on A’s…” (line 21). We may interpret that the personal meanings underlying 

the expressed words are coherent with the meanings that the activity aims to foster, 

namely that there are relations between the geometrical objects, that these relations 

determine the dependency between the points and such relations decide the outcome of 

a dragging action. The students do in fact explicitly express such a dependency as the 

final result of a semiotic chain that evolves in the dialog between the two students. We 

can see how the meaning of dependence becomes more and more explicit in the 

semiotic chain: “still be”, “remains”, “move depending on A and move to stay in the 

middle”. In the last formulation – that is not reported in the written report – both the 

dependence relation and the specific property originating the dependence are made 

explicit. 

Considering the aim of choice (iii), the students do make a prediction based on 

the theoretical properties, which they induced in the construction. Sif also offers an 

explanation to the expected movement of point C, “C will move, depending on A's... 

will move to stay in the middle.”, but not for the other points. The students drag and 

confirm their prediction, which was the aim of choice (iv). 

5.2.2. Task 1.d. data 

The following occurred as Sif and Ole worked on task 1d: 

95 Sif:  [reading the text] What do you think happens to the 
other points when you drag point C? Guess and 
justify first.  

96 Ole: It's all moving together. 
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97 Sif: Then everything moves because C must be in the 
middle. Then they will move in relation to C? [the 
tone indicates a question and she looks at Ole]  

98 Ole: I think so.  
99 Sif: Then one could imagine that it was just a line 

moving around (figure 13)  

 

Figure 13. Sif gestures with her hand to represent a line going through the three points. 

It looks like she moves her hand so that it remains parallel to the initial line. 

100 Ole: Yes exactly, in parallel.  
101 Sif: Okay, so we just say that everything will move 

relative to point C. [writing]  
103 Sif: Yes, because it must be in the middle in relation to 

C. [Sif tries to drag point C] 
104 Ole: Oh! 
105 Sif: One cannot move C. [Sif writes down] 
109 Sif:  Ehhh, and why can't you? ... 
[the teacher has stood next to them for a while, and decides to intervene] 
110 Teacher:  Why can't you move C? 
111 Ole: Eh, I don't know 
112 Teacher: Why can't you move the midpoint? 
113 Sif: It is perhaps because it is the midpoint in relation to 

the other two points. 
114 Teacher: What do you think you can move if it was? [it seems 

he is asking them what is possible to move] 
116 Sif:  A and B. 
117 Teacher:  Yes you can move on A and B because that was 

what he said [“he” means the researcher, which did 
an introduction to the material at the start of the 
lesson], you know, it's a dynamic program. That is, 
C will always be the midpoint, that is, C is 
automatically moved if A and B are moved. 

118 Ole:  Yes exactly. 
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119 Teacher: If you do not move A and B, then C stays the same. 
120 Sif:  Okay. [they move on to the next task] 

Written answers are shown in figure 14: 

Figure 14. Sif and Ole’s written answer to question 1.d. 

Translated: Pre investigation answer “Both points will move in relation to C” 

and post investigation answer “You cannot drag C”. 

5.2.3. Analyzing 1.d. 

We may interpret from line 96 “It's all moving together” that Ole intuitively expects 

that the construction will move as a rigid structure. This immediate expectation is 

similar to Dan and Jan’s “stick”, and can be observed in other groups as well. Sif 

understands Ole’s suggestion, elaborates upon it and justifies why it may be so, based 

on the construction. However, she is not completely sure (line 97). Although she says 

that the line moves “around”, her gesture suggests a movement remaining parallel with 

the initial position in an orthogonal translation (line 99). In this case, the semiotic 

bundle (speech +gesture) is used to express movement and the specific kind of 

movement. Because there is the need to express a particular kind of movement the 

combination between speech and gesture allows to express what otherwise, only 

verbally, would be very difficult to say. Ole notices the meaning of the gesture and 

makes it explicit (line 100).  

The students predict what will happen and justify their predictions, based on 

theoretical properties, which was the aim of choice (iii). The description of the expected 

global movement of the construction is interwoven with justifications based on local 
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elements such as “everything moves because C must be in the middle” (lines 97, 101, 

103). The surprising result of their dragging investigation leads them to wonder why C 

cannot be moved. It seems plausible that they would continue to work on this question 

if the teacher did not intervene, hence choice (iii) worked according to plan in this case. 

The initial teacher action is promising: first, he asks “why can’t you move point C” 

followed by a reformulation into “why can’t you move the midpoint”. This 

reformulation is not neutral, it highlights the theoretical status of point C. The 

intervention of the teacher moves from a general to a more specific question. Such a 

shift leads the student to immediately grasp the suggested geometrical perspective and 

guess (line 113). However, the teacher then unfortunately shifts the focus from non-

draggable to draggable points, to which the students correctly answer A and B. He 

explains what they already know, that C remains the midpoint, referring to an authority 

argument and to the software “that is what he said, you know, it’s at dynamic program” 

(line 117), and finally “If you do not move A and B, then C stays the same” (line 119). 

His explanation does not make it any clearer why C cannot be moved. What is observed 

can be explained both by geometrical reasons and by software design reasons. In 

GeoGebra, it is not possible to drag locked objects, which are derived from other 

objects by construction. However, other DGE6 allow dragging the dependent points too. 

The teacher’s intervention, which was not requested by the students, seems to close the 

door on the students’ investigation, and can be considered a missed learning 

opportunity. 

6 E.g. Geometer Sketchpad 3, as mentioned in Talmon & Yerushalmy (2004) 
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6. Discussion  

Referring back to our research question, and in relation to the results of the analysis 

presented above, we will discuss the type of signs that emerge as the students work on 

the designed dependency task in relation to the goals set out for the activity, and 

consider how the task design may be revised accordingly. 

We observe the recurring sign “move along in parallel” in the cases above. The 

sign has a particular meaning to the students, and the meaning comes from the artefact 

as they try to describe what can be observed after dragging and elaborate on what they 

expect. Specifically, it emerges when the students experience situations involving 

covariance. The explanation concerning the use of the notion “parallel” may be found in 

the fact that it is used commonly in the Danish language to mean “at the same time”. 

Thus, the students are using this expression not in a geometrical sense, but in a common 

sense. They attempt to describe what appears on the screen, but do not interpret it 

geometrically, and therefore, the outcome is not consistent with our didactical objective 

of introducing students to interpret the perceptual experience geometrically.  

Many students, including the students from the two cases presented, expect the 

construction to behave as a rigid structure during the dragging of derived points. This 

finding indicates that students do not immediately expect the relations between elements 

to be hierarchical that is based on interdependency. In fact, the students seem intuitively 

to view the construction as a rigid structure with non-hierarchical dependencies. Talmon 

and Yerushalmy (2004) observed related results in their study reporting on junior high 

students and graduate students in mathematics education. They found that the students 

predicted a dynamic behaviour that was “contrary to the behavior that would be 

expected based on the order of construction” (Talmon & Yerushalmy, 2004, p. 114). 

Our study contributes to elicit students’ (in our case lower secondary school students) 
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difficulties in predicting and interpreting the hierarchical dependencies in a DGE. This 

knowledge may be useful to the teacher if dependency tasks are to be introduced in the 

classroom, or if other tasks are introduced, in which the hierarchical nature of the 

environment is to be exploited. Focusing on the signs emerging in the data allows not 

only to confirm the difficulty that students face in recognizing dependency but also 

show the weakness, if not the inappropriateness of the teacher. The fact that the teacher 

only refers to the geometrical property may limit the interpretation of the phenomenon 

to geometrical reasons. What can be observed is explained both by geometrical reasons 

and by ‘software design’ reasons. What the students are to become aware of refers 

precisely to both. On the contrary, we can also foresee that a fruitful intervention could 

start from questioning the use of specific geometrical terms, for instance, asking for a 

geometrical interpretation of the expression moving in parallel. The contribution of 

TSM in this regard, is the hypothesis about the generative role that the emerging signs 

may have when taken as the base for a process aiming at developing their meanings 

towards geometrical meanings and the awareness of the link between DGE functioning 

and geometrical theory. 

From the case of Dan and Jan, and analysis of the data coming from other 

groups, we see that, in order to explain the on screen phenomena, some students refer 

neither to the construction process nor to geometrical properties. Instead, they use a 

global description of the construction, e.g. “they move along in parallel” or “the sides 

move along like a stick”. They seem not aware of the necessary attention to relations 

between local elements of the construction, and that they should interpret what happens 

on the screen in relation to the construction process. It may be useful to revise the task 

formulation concerning choices (ii-iii) to ask more directly about each element of the 

construction both in the pre investigation, and in the post investigation, in order to 
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support a geometrical interpretation of the phenomenon that can be observed, i.e. 

instead of asking “what happens when you drag point A?”, the question could be more 

focused, aimed at directing the attention on specific elements of the figure, e.g. “what 

happens to point B when you drag point A?” etc.  

Results from task 1d show that even though the students are surprised and 

intellectual curiosity arises (Laborde, 2003), they may just write what happened, and 

quickly move on to the next task (this happened in the case of Dan and Jan). Sif and Ole 

are also curious and seemingly want to find out why they cannot drag point C. 

However, a reflection comes from the teacher’s unfortunate action that seems to end the 

students’ investigation. The task may be reformulated so that, in case the figure 

obtained does not behave as predicted, then the students are encouraged to explain why. 

This may lead us to the hypothesis that a good task choice would encourage the students 

observe a situation where they expect something to unfold and on the contrary, this does 

not happen. Afterwards they must explain why. The general hypothesis could be: In 

front of something unexpected, an explanation rises… 

7. Conclusion 

The emerging signs from the unfolding of the semiotic potential of DGE presented in 

this study, in relation to a dependency task, suggests that students do not intuitively 

expect the dependencies in DGE to be hierarchical. This is a useful insight if one aims 

to exploit the hierarchical nature of the environment for some educational objective. 

The data indicates that the task formulation should be specific concerning the 

properties, which the students are required to focus their attention on. It seems 

particularly pertinent in order to direct low achieving students’ attention to the 

dependencies between the geometrical objects that constitute the learning aim.  
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The task design heuristic of Predict-Observe-Explain shows promising potential 

as a catalyst for intellectual curiosity that can trigger the question why, however, 

explicitly asking the students to explain any unexpected observation seems to be 

necessary for active reflection. 

The role of the teacher in the following phase of the collective classroom 

discussion was not discussed in this article, however, the episode with Sif and Ole 

exemplifies well how crucial the role of the teacher is. We plan to report on this 

important matter in future publications. 
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A “TOOLBOX PUZZLE” APPROACH TO BRIDGE THE GAP 
BETWEEN CONJECTURES AND PROOF IN DYNAMIC 

GEOMETRY1 
Ingi Heinesen Højsted 

Aarhus University, Danish School of Education, Copenhagen, Denmark; 
ingi@edu.au.dk  

The paper presents the findings of the analysis of two Danish grade 8 students 
working together to prove conjectures, which they formulated based on guided 
explorations in a dynamic geometry environment, in the frame of a design based 
research project. The case indicates that the designed task can bridge a connection 
between conjecturing activities in dynamic geometry environments and deductive 
reasoning. The students manage to explain theoretically, what is initially empirically 
evident for them in their exploration in the dynamic geometry environment. The 
proving activity seems to make sense for the students, as a way of explaining “why” 
the conjecture is true. Certain findings coming from other groups are also presented. 
Keywords: Dynamic Geometry Environments, Conjectures, Proof, Toolbox puzzle 
approach. 

INTRODUCTION AND THEORETICAL BACKGROUND 
An ongoing issue in the mathematics education research field concerns the role of 
dynamic geometry environments (DGE hereinafter) in relation to proof. Several 
studies highlight the potentials of DGE in relation to development of mathematical 
reasoning, abilities in generalization and in conjecturing (e.g. Arzarello, Olivero, 
Paola & Robutti, 2002; Laborde, 2001; Leung, 2015; Baccaglini-Frank & Mariotti, 
2010; Edwards et al., 2014). However, it is not clear whether such activities in DGE 
can support students’ development of abilities in deductive argumentation. Some 
studies indicate that the empirical nature of the DGE investigations may impede the 
progression of deductive reasoning (e.g. Marrades & Gutiérrez, 2000; Connor, Moss, 
& Grover, 2007). That is to say, once the students have explored a construction in 
the DGE and discovered some relationship, they may become so convinced by the 
empirical experience that it does not make sense for them to prove (again) what they 
“know”. However, other researchers suggest that students’ explorative work in DGE 
does not have to risk development of deductive reasoning (Lachmy & Koichu, 2014; 
Sinclair & Robutti, 2013). Seemingly, the didactic design surrounding the work in 
the DGE and the role of the teacher is of utmost importance (e.g. Mariotti, 2012). De 
Villiers (2007) argues against a common method, which is for the teacher to devalue 

1 A short earlier version of this paper was accepted for presentation at the 14th International Congress on Mathematical 
Education (ICME-14). 
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the result of the students’ empirical investigation as a means of motivating students 
to undertake theoretical validation. Instead, he suggests highlighting the role of proof 
as an explanation. The teacher may turn the theoretical validation into a meaningful 
activity for the students as a challenge to explain “why” their DGE investigations are 
true (de Villiers, 2007). Trocki (2014) suggests that motivating the students to 
theoretically justify their empirical explorations may also be incorporated into the 
task design itself.  
In light of the ongoing discussion in the field on the role of DGE in conjecturing and 
proof, the following research question arises: How can students’ conjecturing 
activities in DGE be combined with theoretical validation, to make theoretical 
validation a meaningful activity for the students? 
This research question is investigated as a part of a larger design-based research 
project, in which the overarching mathematical aim is to utilize potentials of DGE in 
order to support students’ development of mathematical reasoning competency, 
which is a notion from the Danish KOM framework (Niss & Højgaard, 2019). The 
KOM framework is a competency-based approach to describe what mathematical 
mastery entails, and it is integrated into lower secondary school curriculum as well as 
most other educational levels in Denmark. The mathematical reasoning competency 
includes abilities concerning reasoning, conjecturing and proving (Niss & Højgaard, 
2019, p. 16). The specific designed task that is reported upon in this paper aims at 
bridging a connection between students’ conjecturing activities in the popular DGE 
software, GeoGebra, and proving. However, diverging understandings exist 
regarding the meaning of the notion of proof in a teaching and learning context 
(Mariotti, 2012; Balacheff, 2008). Therefore, I will briefly impart what is implied by 
the notion of proof in the context of school mathematics, both in the research field 
and in this project.  
Mariotti (2012) elaborates on different understandings of proof in school context and 
unfolds two extremes; 1) proof as the product of theoretical validation of already 
stated theorems, and 2) proof as the product of a proving process, which includes 
exploration and conjecturing as well as proving conjectures. Sinclair and Robutti 
(2013) state that the view on proof in the context of school mathematics has largely 
shifted to comprise proof as a process, and that this may in part be attributed to the 
facilitation of experimentation provided by digital technologies. The KOM 
framework does not address proof using the same terminology, however, proof as a 
process resonates with the emphasis stated in the KOM framework concerning the 
ability to investigate and do mathematics (Niss & Højgaard, 2019). Therefore, in this 
project, proof is understood as a process that includes exploration, conjecturing and 
deductive reasoning.  
In the following sections, the method and educational context of the study is 
explained, followed by a description of the task design principles. Then a case is 
presented of two students working together on the task, followed by an analysis of 
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the data. Finally, some conclusions are made concerning the specific case, but also 
referring to results coming from other groups and to research aims going forward. 

METHOD 
The research project is anchored in the frame of design-based research methodology 
(Bakker & van Eerde, 2015). Based on analysis of DGE literature, a hypothetical 
learning trajectory was proposed (see more in Højsted, 2019; 2020a), leading to the 
development of a didactic sequence that included 15 tasks. The sequence design was 
also influenced by results from a survey (Højsted, 2020b). The didactic sequence was 
tested and redesigned in three design cycles in three different schools that each lasted 
approximately three weeks (14-16 lessons). The data presented in this paper is from 
the second design cycle. To investigate the research question in this paper, a 
“toolbox puzzle” task was designed with the aim of supporting the students to first 
formulate conjectures based on guided investigations in GeoGebra, and then to 
undertake theoretical validation of the conjectures.  
Data from each design cycle was acquired in the form of screencast recordings of the 
students’ work in GeoGebra; external video of certain groups (chosen in 
collaboration with the teacher to comprise a spectrum of high-low achieving 
students); and written reports that were collected from the students. 
In this paper, data is analysed from one pair of students, Ida and Sif, in order to 
investigate to what extent the toolbox puzzle design supports them in proving their 
conjectures and if the activity seems meaningful to them. Some results coming from 
other groups is also mentioned in the conclusion 

EDUCATIONAL CONTEXT 
The study took place in an 8th grade (age 13-14) mathematics classroom in Denmark 
during a period of three weeks. The students had some previous experience using the 
geometry part of GeoGebra, which is common in Denmark, since ability in relation 
to dynamic geometry programs are highlighted in the curriculum mathematics 
common aims already from grade 3 (BUVM, 2019). However, the students had no 
experience related to theoretical validation of conjectures or theorems, which is not 
surprising since it is almost non-existent in lower secondary school in Denmark, 
which is evident at curriculum level, in textbooks and in practice. In that light, it is 
no shock that Jessen, Holm and Winsløw (2015) found that Danish upper lower 
secondary school students lack in reasoning abilities. 

TASK DESIGN 
The initial tasks in the didactic sequence were designed to highlight the theoretical 
properties of figures, and how they are mediated by DGE in the form of invariants, 
e.g. by constructing robust figures in “construction tasks” (Mariotti, 2012). In
subsequent tasks, the students were engaged in constructing and investigating the
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constructions in order to make conjectures. Generally, the design heuristic of Predict-
Observe-Explain (White & Gunstone, 2014, p. 44-65) was applied to some extent in 
most tasks. The students were required to make a prediction concerning some 
geometrical properties, and to justify their prediction. Afterwards, they were to report 
what they observed and explain in case there were differences between prediction 
and observation, leading to conjectures about the geometrical constructions. 
Afterwards, the students were expected to explain why their conjectures were true. 
They were provided with a toolbox (on the right in figure 1) that contained theorems 
to be used in their argumentation. In the design, theoretical validation was portrayed 
to the students as an activity of finding out and explaining why conjectures are true, 
as suggested by de Villiers (2007). The toolbox was introduced to the students as a 
helping hand of already established truths comprising the necessary clues to find out 
why their conjectures were true, much like pieces to solve a puzzle. 
The task2 reported upon in this paper consisted of an initial construction part, 
followed by questions (Predict-Observe-Explain) to guide the students to discover 
and make a conjecture about the relationship of an exterior angle of a triangle with 
its interior angles. Finally, the students were encouraged to explain/prove the 
conjecture in a proof sheet (on the left in Figure 1), using a toolbox, which contains a 
support drawing as well as information (angle over a line is 180°, and the angle sum 
of a triangle is 180°) to be used in the argumentation.   

 

Figure 1: The proof sheet and toolbox. Solved by Ida and Sif 

THE CASE OF IDA AND SIF 
Ida and Sif were described by their teacher as medium to high achieving students. In 
the previous task, they found the proving activity and the toolbox to be confusing. 

2 Task 9a. Construct an arbitrary triangle and extend one of the sides. b. What is the relationship between the exterior 
angle c and the interior angles a and b? Guess first before you measure! [There is a figure with the mentioned angles on 
the task sheet]. c. Measure the angles and find the relationship. d. Drag to investigate which situations the relationship 
applies to. e. Discuss with your partner and make a conjecture about the relationship between the exterior angle and the 
interior angles. f. write the conjecture in the proof sheet. g. You can see in GeoGebra that it is true, but can you explain 
why it is true? Use the information from the TOOLBOX to argue. 
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The following excerpt ensues after Ida and Sif have constructed the figure from task 
9, they have guessed, investigated and put forward the correct conjecture (9a-9f) and 
are about to try to explain/prove why it is true (9g):  

516 Ida The sum of the two interior angles… [Writes the conjecture in the 
proof sheet (Figure 1) translated: “The external angle is as large as 
the sum of the two internal angles”] 

517 Sif Beautiful! Okay, now we have to prove it. Oh no… 
519 Sif Now that again… 
520 Ida a plus c equals b, and see. Basic Rule 1: The angle over a line is. The 

angle sum of a triangle is. [reading from the tool box] 
521 Sif Yes! I understand. Look… [points to the support drawing in the tool 

box] 
522 Ida Ohh. 
523 Sif Super! In here, that's what's missing. [points to angle b in the support 

drawing (see figure 2)]  

Figure 2: using the toolbox to explain 
… 
533 Sif And add this one here, to here. [pointing to angle b being added to 

a+c and to d respectively] 
534 Ida That's right, so it makes 180. AND it makes sense. Is there more to 

say? 
535 Sif That is… just how it is. 
536 Ida We know that the sum in a triangle is 180 degrees and that the sum… 

the angle sum of a line is 180 degrees. Therefore, when we are missing 
an angle here… 

In the events that follow, they write their answer (Figure 1), but express difficulty in 
doing so, because they expect that they must use algebra in their answer: 

574 Ida How do we write that in mathematical language? 
… 
595 Ida Ah okay! And a plus b and c yes. And b plus d it also gives 180 
597 Sif This one plus this one, is the same as these three. [pointing to b+d and 

a+b+c] 
598 Ida That's right. It's actually right. Oh, b plus d equals a plus b plus c 

because this makes 180, and this makes 180. 
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Analysis 
We can notice from lines 517-519 that Sif is not excited about the prospect of having 
to prove the hypothesis. In fact, it was observed in several groups, that the activity of 
theoretical validation was not enthusiastically undertaken immediately. It was also 
evident, that the proving part was the most challenging part of the task, which may 
partly explain the lack of enthusiasm. However, the mood towards the proving 
activity changed in the case of Ida and Sif, and in some other groups as well, when 
they had worked on 2-3 tasks of this type, which indicates that they had to get 
accustomed to the task design. Some of the difficulty may be attributed to the 
openness and unfamiliarity of the answer format, since several students could put 
forward their reasoning verbally, but struggled to write down their argumentation. 
Ida and Sif also struggle with this issue (line 574-590). However, they find it easier 
to write the answer in subsequent tasks, after the teacher explained that they could 
write their arguments using natural language narratives. 
In line 520, we see that Ida immediately turns to the toolbox information, reading 
aloud the two pieces of information provided, which indicates that she has realised 
the usefulness of the toolbox. Sif listens and seems to recognize that adding angle b 
to a+c and d respectively in both cases gives 180° (line 521-533), which she 
manages to support Ida to grasp and elaborate as well (line 534-536). They manage 
to reason deductively that their conjecture is valid, and after some struggle, write 
their answer algebraically (Figure 1). The sequence of utterances from the students 
indicate that it is a sense making activity for them, and that there seems to be 
intellectual satisfaction attached to their experience (line 534-536). 

CONCLUSION AND FORTHCOMING REPORTS 
The study indicates that the “toolbox puzzle” approach can bridge a connection 
between conjecturing activities in DGE and deductive reasoning. The students 
explained theoretically, what they initially guessed purely visually and secondly 
investigated empirically in DGE. Importantly, the activity of conducting the 
theoretical validation seemed to make sense to them.  
It was apparent that Ida and Sif had to become acquainted with the structure of the 
toolbox puzzle approach, before it became a sense making activity for them. This 
point was also evident in other groups. Additionally, several groups found it difficult 
to write down their arguments even though they could convince each other verbally 
and with the help of gestures. 
Most groups of students succeeded and seemed to enjoy the exploration and 
conjecturing part of the tasks in the sequence. However, medium-low achieving 
students struggled to string together coherent deductive reasoning, and some never 
managed to overcome the toolbox puzzle part of the task on their own.  
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Other aspects of interest in this study is to what degree the students use DGE as they 
are trying to make a deductive argument, and what role the DGE plays in this regard. 
There are some indications that the students go back to the DGE in order to 
exemplify arguments to each other. Notably, early analyses also show that some 
students return to DGE in order to verify what they have proven(!). In that case, even 
though proof as an explanation makes sense to the students, it does not highlight the 
status of their product. I.e. the value of theoretical validation is not yet appreciated. 
This interplay between the theoretical validation and ensuing DGE actions will be 
the focus of attention in the ongoing project, which I hope to report on in future 
publications. 
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We report on the design and implementation of teacher guidelines in a didactic sequence that was 
developed in the frame of a design-based research study. The guidelines are anchored in the frame 
of the Theory of Semiotic Mediation and the hypothesis was that the guidelines could support the 
teachers’ management in the classroom discussions. We elaborate on the teacher guidelines design 
and present results of analysis from a classroom discussion as well as an interview with the teacher. 
Our results show an implementation that was not particularly effective, and that the teacher followed 
the guidelines only to some extent. We discuss the dilemma of developing condensed guidelines while 
trying to convey underpinnings of an elaborate theoretical frame.  

Keywords: Teacher guidelines, dynamic geometry environments, the theory of semiotic mediation.  

Introduction and conceptual frameworks 
Since the introduction of dynamic geometry environments (DGE), ample research has been conducted 
to outline the potentialities of the software to foster students learning of mathematics (for an overview 
see Højsted, 2020). While there are many studies that have shed light on the students’ work in DGE 
from a cognitive point of view, not least in relation to mathematical reasoning, generalizations and 
conjecturing (e.g. Arzarello et al, 2002), there has been less research conducted in relation to the 
design of adequate tasks to utilize the potentials of DGE for specific mathematical learning aims, as 
well as the on the role of the teacher in the mathematics classroom in which the DGE potentials are 
to be utilized (Højsted, 2020; Komatsu & Jones, 2018). A promising framework that acknowledges 
the essential role of the teacher in artefact-based activities is the Theory of Semiotic Mediation (TSM) 
(Bartolini-Bussi & Mariotti, 2008). Taking a semiotic perspective, the TSM provides a model of the 
teaching and learning process centered on the role that a specific artefact can play because of its 
semiotic potential with respect to a specific mathematical meaning. The semiotic mediation process 
develops form the use of the artefact and students’ personal meanings emerging from that, towards 
the evolution of shared mathematical meanings, which is accomplished in a collective discussion 
managed by the teacher, who is expected to play a crucial role. The TSM frame describes organization 
of the teaching/learning sequence according to iterate didactic cycles, which comprise (1) activity 
with the artefact (2) production of signs (writing etc.), followed by (3) classroom discussion.  

The paper reports on part of a project whose overarching aim is to develop guidelines for the design 
of didactic sequences that utilize the potentials of a specific artefact, a DGE in relation to fostering 
students’ development of mathematical reasoning competency (Højsted, 2020; Højsted & Mariotti, 
2020). When we use the notion of mathematical reasoning competency, we refer to the Danish KOM 
framework description of reasoning competency (Niss & Højgaard, 2019).  
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In this paper, we report on our attempts to convey the rationale of the TSM by developing guidelines 
for the teacher. In particular, considering the delicate proactive role that the teacher is asked to play 
when managing a collective discussion, the guidelines intended to outline a general frame for the 
teacher’s purposeful interventions. Such a frame, empirically developed (Mariotti, 2013), consists of 
four categories of actions that the teacher can perform with the aim of fostering the process of semiotic 
mediation centered on the use of a particular artifact.  

The back to the task action asks the students to report on what they did. “The objective is that of 
reconstructing the context of the artefact” in order to make meanings “emerge in relation to that 
experience.” (Bartolini-Bussi & Mariotti, 2008, p. 775). 2. Focalize is complementary to the previous 
action, and aims at focusing on relevant aspects of task experience with respect to the intended 
mathematical meaning. 3. Ask for a synthesis action aims at fostering the move towards 
mathematical meanings by asking students to generalize and decontextualize the experience from the 
specific artefact task. 4. Give a synthesis complements the previous action and is used to support 
students’ synthetizing. 

The interventions of the first pair of categories refer to the unfolding of the expected semiotic potential 
of the given artifact, and aims at fostering students move from their experience with the artifact 
towards pertinent aspects that can be related to the mathematical meanings that constitute the 
educational goal. The second pair of interventions refer to the move towards the introduction of the 
expected mathematical meanings. 

In a previous experience (Højsted & Mariotti, 2020), students showed difficulties in grasping the 
hierarchical dependencies between objects in GeoGebra, while the teacher seemed not aware of this 
fact, and therefore could not help the students to interpret the onscreen phenomena sensibly. 

Considering that the teacher could not manage to help the students overcome this difficulty, we 
designed guidelines for the teacher, by implementing the didactic cycle and the teacher actions from 
the TSM frame. Our goal was that of providing the teacher support to interpret students’ difficulties 
and to intervene to make them overcome them. We propose the guidelines as the product of a design 
process, making explicit the principles of design and reporting on the a posteriori analysis of the 
implementation in the classroom. The analysis of the collected data is aimed at studying the effect of 
these guidelines. In this paper, we are therefore focused on answering the following research question: 

In what ways do the teaching guidelines support the teacher in holding classroom discussion; to what 
extent is the support consistent with our expectation; and based on the collected data, which revisions 
can we propose?    

We set out by briefly reporting on the methodological approach; the designed task and teacher 
guidelines; as well as the data collection. In the following results and analysis section, we look at the 
first classroom discussion after the students have worked on tasks 1 and 2 and at data from the 
subsequent interview with the teacher, in order to identify to what extent the teacher guidelines were 
used, and find out to what extent they were useful for the teacher. On this basis we suggest revisions 
and consider emerging issues in the concluding discussion. 
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Method, design and data collection 
This study is part of a design-based research project, which is methodologically characterized by its 
dual purpose of developing both educational practice and theory about practice, by means of iterations 
of design and testing of educational activities (Bakker & van Eerde, 2015). 

Based on an a priori analysis of the semiotic potential of DGE in relation to reasoning competency 
(Højsted, 2020), a didactic sequence was developed and tested in three iterations in Danish 8th grade 
(age 13-14) classes (Højsted & Mariotti, 2020). For the last iteration, we designed guidelines for the 
teacher. The criteria of design was to include the explication of key elements of TSM rationale: 
specifically, the notion of  didactic cycle, of semiotic potential of a DGE in relation to reasoning 
competency, and specific instructions about the management of the collective discussion, e.g. the four 
actions described above. We opted for a concise text written in a simple language, refraining from 
using too many technical terms.  

We met with the teacher prior to the experiment to discuss the guidelines, attempting to share 
hypotheses and design principles of the teaching material, which included tasks for the students, a 
task answer book for the teacher, and the guidelines for the teacher. 

The task and the teacher guidelines 

In this paper, we discuss data coming from the classroom discussion following the very first task, the 
“dependency task” (Højsted & Mariotti, 2020): 1.a. Construct two points A and B in GeoGebra and 
the midpoint C between them. Use the midpoint command […] 1.d. What do you think happens with 
the other points when you drag point C? Guess and justify first. Investigate afterwards, what happens? 

As mentioned, the teacher guidelines consisted of a two-page introduction describing the general 
structure of a didactic cycle and in particular, elaborated on the four categories of actions the teacher 
was expected to perform. The specific instructions that followed were organized into three main 
constituents, presented in a table: 1. a description of the educational aim of each task, 2. the personal 
meanings expected to emerge from the activity (hypothetical and experienced in previous design 
iterations), 3. and the corresponding possible teacher actions that the teacher is advised to perform, 
followed with specific examples and comments.  

The first classroom discussion was planned to take place after the students had worked on task 1 and 
2, marking the end of the first cycle. The guidelines advised the teacher to perform the first pair of 
actions (back to the task and focalize) in relation to each subtask, and then after discussing the whole 
of tasks 1 and 2, to ask for a synthesis and give a synthesis. We provide a sample from the table. 

Task 
no. 

Purpose of the task (the 
educational aim) 

Expected student meanings Possible teacher actions in the 
discussion 

… … … … 
1d Specific sub-goal: to become aware 

that in GeoGebra the derived points 
cannot affect the free objects that 
have defined them. I.e. that C 
cannot be moved because if you 
drag C, then A and B have 
to follow in order to maintain C as 
the midpoint, but this is not allowed 

Some students guess/expect 
that point C can be moved by 
direct dragging and that the 
other points will follow it as if 
the figure had a rigid/solid 
structure. Possible student 
guesses "They move together", 
”A and B follow in parallel ". 

Back to the task 
They probably won't say why C 
can't move. 
Focalize 
Therefore, ask the students about 
the construction process. How did 
point C come into the world? In 
this way, the focus can be oriented 
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in GeoGebra. A derived object (a 
child) cannot affect the objects 
from which it is defined (its 
parents). C is therefore a locked 
point. 

In contrast, derived objects can be 
moved if they do not affect the 
objects that have defined them, as 
we see in task 2. 

They will probably be 
surprised that one could not 
move C. And they will 
probably have a hard time 
explaining why, but possibly 
someone mentions that C 
cannot be moved because it is 
made based on the others. This 
can be highlighted in the 
discussion. 

towards C being a derived object 
from A and B. The terminology of 
children and parents can be used. C 
is a child of A and B (its parents). 
In GeoGebra you cannot move 
objects (children) that are derived 
from other objects (parents), if that 
requires that the parents follow. 

… … … … 
After 
1-2

The specific objectives in the sub-
tasks above contribute to the overall 
purpose of tasks 1 and 2: 
Understanding that it is dependency 
relations between geometrical 
properties of objects 
in GeoGebra that determine the 
outcome of dragging, and that these 
dependencies stem from the 
construction method, and its logical 
consequences from the geometric 
rules that govern the program. And 
that these relationships remain 
when you drag points. The goal is 
for students to describe the objects 
and dependencies in geometric 
terms. That they can justify what 
they see based on the objects, their 
dependency relationships and the 
construction method. 

After task 1 and 2, the 
students are expected to be 
thinking about the relationships 
in the constructions and to 
connect those with 
construction method. I.e. that 
they can describe how the 
figure behaves in GeoGebra 
referring to geometric 
properties. 

Ask for a synthesis 
For example, ask students what 
determines how a figure moves 
in GeoGebra, try to get them to say 
something general about the 
construction process and geometric 
properties. 
Give a synthesis 
Offer that there are dependency 
relationships between the objects 
in GeoGebra that determine the 
specific points’ behavior, and that 
these relationships stem from the 
construction method that 
induces logical consequences 
based on the geometric properties 
defined by construction. 

Table 1: The table from the guidelines for the teacher to hold classroom discussions. 

Our hypothesis was that the guidelines would support the teacher to hold effective classroom 
discussions and we expected the teacher to use the advice put forward in the table. 

Data collection and analysis 

The classroom data was collected in the form of video of the whole class and selected groups; in 
screencast recordings of all groups; audio recordings; and written products from the students. Data 
was also collected by interviewing the teacher before and after the teaching experiment and after each 
teaching session. Through a semi-structured interview, we asked the teacher about the guidelines, and 
the perceived usefulness of the guidelines from the point of view of the teacher.  

Results and ensuing analysis 
The teacher opened the discussion asking students to report on their responses to subtasks 1a-1c, 
which seemed straightforward for the students. GeoGebra is running on the whiteboard with the 
construction from the task performed. The discussion goes on until they reach subtask 1d. The 
teacher, apparently expecting the task to be more difficult, seems excited to discuss this task.  

172 Teacher: So I'm a little excited about this with point C, what do you think happens to 
points A and B when you drag in point C. What did you guess would happen 
here? Freja.  
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173 Freja: We guessed that nothing happens. 
174 Teacher: That nothing happened at all? 
175 Freja: No, we just thought that if it was that you dragged C that, either it would 

move, but we did not think it would get bigger, or that the C would not move. 
176 Teacher: Well so, if I drag this point, it would all move as if it were one line? [She 

simulates grabbing point C with her hand at the whiteboard, and simulates 
dragging it up and down] 

177 Freja: Yes, or it would remain as it is. 
The teacher starts with prompting students’ guesses (172), but though apparently using a back to the 
task action, the intended aim of this action – fostering students to express personal meanings – is not 
fulfilled. It is herself that explains the task formulation, and the following interactions show her gently 
but firmly guiding the discourse; she reiterates what the students say, (174, 186, 198, 219, 223, 230), 
but changing her tone to a question tone provides an implicit evaluation of the students’ suggestion. 
Freja seems to put forward two scenarios, it will not move, or it will move as a solid. The teacher 
simulates what Freja says, using the construction on the whiteboard (176). The teacher wants more 
signs to emerge, and asks others. 

185 Maja: Yes, so if you moved it up [point C], it would just straighten up like a triangle 
but still in the middle. 

186 Teacher: And get a triangle out of it, yeah okay interesting. 
… 

197 Freja: And the C it will get out of control. 
198 Teacher: It will get completely out of control. Yes. Okay! Interesting, so there were 

actually more suggestions here, what happened when you dragged it. Dima?  
Maja’s guess indicates some misunderstanding of midpoints, while Freja’s guess indicates that they 
did not have any explanation. To both answers, the teacher merely replies that it is interesting, and 
moves on, now to ask another student what actually happened. Several students describe that point C 
cannot be dragged. The teacher stops on this and asks students for a justification. 

217 Teacher: Why do you think that is? Why can't I do something about it Julie. 
218 Julie: Yeah because that's no point. 
219 Teacher: That is because it's no point. Okay, can you try to say a little more about that 

it's not a point. What is the difference between points A, B and then C? 
220 Julie: Because that's the midpoint.  
221 Teacher: Yes, but there's one such dot right there, so there's a point? 
222 Julie: Yes, but it's not blue. 
223 Teacher: It's not blue, okay. 

The student has noticed that point C is different than A and B, it even has a different color. When 
Julia says it is not a point, the teacher asks her to elaborate, helping her by asking what is the 
difference between the three points (line 219). This can be considered the start of a focalization 
action. However, she does not ask about the construction process, trying to foster awareness of 
derived objects, which was the advice given in the guidelines. Instead, she just asks why they cannot 
drag point C. The teacher asks others for more suggestions. 
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229 Tobias:  That is, A and B are points that you have made. 
230 Teacher: It's something I have made. 
231 Tobias:  Yeah, you didn't make point C. 
232 Teacher: Yes, okay. But I actually have, because I used that tool after all. Larso!? 
233 Larso: I think point C it just simulates the center of both points. 
234 Teacher: Yeah, okay. That's the same thing you would say Maja? 
235 Maja: Yes. 

Tobias suggests A and B were generated by the user, in contrast with the fact that the user did not 
generate C directly. The utterance “have made/didn’t make” could develop into the categories “Free 
points” / “derived points” and then into the relationship that derived points depend on free points. 
However, the teacher is not able to manage this evolution; she stops the semiotic process by talking 
about the use of the tool (232) in a manner that invalidates Tobias’ suggestion. Several students 
suggest that C is different to A and B (218, 220, 222, 231, 233, 235). The teacher did not perform 
further focalizing actions; thus, the students’ suggestions remained suggestions. Without reaching a 
consensus in class, or an accurate explanation, the teacher just moves on to the next task. It seems 
that the teacher has no clear view of the objective of the discussion.  

After discussing tasks one and two, the teacher did not ask for a synthesis or give a synthesis herself, 
even if the teacher guidelines advised her to do so. It seems she does not feel the need of that.  

Teacher interview 

Actually, in the interview after the teaching session, when asked about the teacher actions, the teacher 
seems to realize the synthesis was missing.  

114 Researcher: Were there any of the four teacher actions that you used, or perhaps used the 
most? And were there some that you didn’t use so much? 

115 Teacher: Ehm, I don’t know if… 
116 Researcher: You mentioned that one “back to the task” before. 
117 Teacher: Yeah, that one I think I managed to use it quite well. To ask ”what was the 

purpose”, “what have you investigated”, “ok, what was actually the purpose”, 
“what is our conclusion then”, or like that. Ehm… Yeah I don’t know… I 
think maybe I, except that one about give a synthesis, I think I used the others 
pretty much. 

During the classroom discussion, the teacher held the task answer book, and not the guidelines. She 
had read the guidelines beforehand, and decided that it was more important to have the answer book. 

38 Teacher: But that is mostly because when I am standing there, then I have to juggle, 
suddenly they have said something, and then I am about to confirm something 
wrong, then it is very nice to stand with the answer book. And if I should 
stand with both, then I would drown in papers, right. 

When asked about the usefulness of the guidelines, the teacher described that she had found them 
useful. The teacher apparently felt she had followed them, especially the general description of the 
four teacher actions. 
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62 Teacher: It was perhaps some of the general, so the general setup [pointing to the first 
part of the teacher guidelines that contain the four teacher actions] […] 

She indicated that the guidelines table contained too much information, and suggested that there 
should only be a few examples of questions to pose, in addition to the general teacher actions. 

70 Teacher: For sure in the following guidelines, I think, the first two [tasks] can be very 
detailed, but in the following, just a few proposals for questions […] 

Since the teacher did not use the questions or the terminology from the guidelines table during the 
classroom discussion, the question arises whether or not she had fully read them. Alternatively, 
perhaps she had forgotten some parts or did not understand everything, and since she did not look at 
the guidelines during the classroom discussion, she was unable to use them effectively.  

Concluding discussion 
From the data, we can conclude that only parts of the guidelines were acknowledged and only parts 
of the suggested interventions were performed. This is the case for the first pair of actions categories, 
back to the task and to some extent focalize, however, not for the second pair of actions, which were 
completely neglected. When guideline suggestions were followed what seems missing are some 
aspects of the general aim of the actions. For instance in the case of back to the task, although the 
teacher encourages students to express themselves, it seems difficult for her to let students elaborate 
on their own formulation without intervening and she does not leave the students to talk to each other. 
There is always an intervention of the teacher in response to the intervention of a student in a “ping-
pong” effect. The teacher recognizes that reacting ‘on the spot’ is difficult for her because she does 
not feel certain about the answer (line 38), which unveils that she feels that she has to confirm, or 
reject, what is said. Actually, this can explain the ‘ping pong’ pattern of the discourse; the reaction 
corresponds to the feeling of obligation for confirming. We wonder if the teacher would behave 
differently if explicitly advised to keep silent and wait for the students to fuel the conversation. 
Another example of missing aspects of the general aim is in the case of Tobias (229-232). 

The teacher indicates that the guidelines need to contain less information to be effective (line 70). A 
possible revision of the guidelines could consider condensing and incorporating the guidelines table 
into the answer book, giving more examples of questions and statements related to the four teacher 
actions for each task (or set of tasks). However, it is questionable if further condensing the guidelines 
would be helpful: in fact, the actions of asking for a synthesis and giving a synthesis seem not being 
appropriated by the teacher. From the point of view of the TSM frame, reaching a synthesis shared 
and elaborated by the whole class is a crucial part of the teaching and learning process.  

This leads us to a conclusion that emerges as a critical issue - to what extent should the theoretical 
frame be made explicit in the guidelines in order to give the teacher the conceptual tools to interpret 
the guidelines? If the teacher does not share the rationale of the TSM framework, it may happen that 
she disregards some key aspects, because she does not grasp their importance. We did not incorporate 
much of the underlying theoretical assumptions of the TSM frame in the guidelines, so we can make 
the hypothesis that it is one of the reasons the teacher did not use much of the guidelines. We suspect 
that the teacher was too far from this pedagogical perspective to really appropriate it.  
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The dilemma is that the teacher already suggests that the guidelines must be shorter, while the data 
suggests that more of the theoretical frame must be shared with the teacher, and the importance of 
key aspects must be elaborated.  

Seeing as the teacher only followed the guidelines to some extent, neglecting two of the teacher 
actions, and did not use the advice from the table, we can conclude that it is difficult to communicate 
theoretical aspects in the form of guidelines, at least in the chosen design form of a condensed text 
and the table. Perhaps the guidelines somehow need more flexibility to be adapted to different 
teachers’ pedagogical paradigms. Conversely, we can notice the important need of teachers’ 
flexibility and pedagogical awareness in presenting new activities with technological tools. 

More insights are needed on designing effective guidelines, which may be considered the core of the 
articulation between theory and practice. It requires reflecting on how to interface with teachers taking 
into account the diversity of their possible pedagogical paradigms, most of the time implicit. We 
intend to report more on this matter in forthcoming research. 
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