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A verified abstract machine for

functional coroutines

Tristan Crolard
CNAM, France

tristan.crolard@cnam.fr

March 4, 2015

Abstract

Functional coroutines are a restricted form of control mechanism, where
each continuation comes with its local environment. This restriction was
originally obtained by considering a constructive version of Parigot’s clas-
sical natural deduction which is sound and complete for the Constant
Domain logic. In this article, we present a refinement of de Groote’s ab-
stract machine which is proved to be correct for functional coroutines.
Therefore, this abstract machine also provides a direct computational in-
terpretation of the Constant Domain logic.
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1 Introduction

The Constant Domain logic (CD) is a well-known intermediate logic due to
Grzegorczyk [25] which can be characterized as a logic for Kripke frames with
constant domains. Although CD is semantically simpler than intuitionistic logic,
its proof theory is quite difficult : no conventional cut-free axiomatization is
known [31], and it took more than three decades to prove that the interpolation
theorem does not hold either [33]. However, CD is unavoidable when the object
of study is duality in intuitionistic logic. Indeed, consider the following schema
(called either D [25] or DIS [37]), where x does not occur free in B:

∀x(A ∨B) ` (∀xA) ∨B

The dual of this schema is (∃xA) ∧ B ` ∃x(A ∧ B) which is clearly valid in
intuitionistic logic. Thus bi-intuitionistic logic (also called Heyting-Brouwer
logic [37] or subtractive logic [11]), which contains both intuitionistic logic and
dual intuitionistic logic, includes both schemas.

Görnemann proved that the addition of the DIS-schema to intuitionistic
predicate logic is sufficient to axiomatize CD [23] (and also that the disjunction
and existence properties hold, so CD is still a constructive logic). Moreover,
Rauszer proved that bi-intuitionistic is conservative over CD [37]. As a conse-
quence, we should expect at least the same difficulties with the proof-theoretical
study of bi-intuitionistic logic as with CD. In particular, if we want to under-
stand the computational content of bi-intuitionistic logic, it is certainly worth
spending some time on CD.

Although there is no conventional cut-free axiomatization of CD, there are
some non-conventional deduction systems which do enjoy cut elimination. The
first such system was defined by Kashima [27] as a restriction of Gentzen’s se-
quent calculus LK based on dependency relations. Independently, we described
[9] a similar restriction using Parigot’s classical natural deduction [35] instead
of LK. Another difference lies in the fact that our restriction can also be formu-
lated at the level of proof-terms (terms of the λµ-calculus in Parigot’s system),
independently of the typing derivation. Such proof-terms, which are terms of
Parigot’s λµ-calculus, are called safe in our calculus [12]. The intuition behind
this terminology is presented informally in the introduction of this article as
follows:

“[...] we observe that in the restricted λµ-calculus, even if con-
tinuations are no longer first-class objects, the ability of context-
switching remains (in fact, this observation is easier to make in the
framework of abstract state machines). However, a context is now
a pair 〈environment, continuation〉. Note that such a pair is ex-
actly what we expect as the context of a coroutine, since a coroutine
should not access the local environment (the part of the environ-
ment which is not shared) of another coroutine. Consequently, we
say that a λµ-term t is safe with respect to coroutine contexts (or
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just safe for short) if no coroutines of t access the local environment
of another coroutine.”

In this paper, we provide some evidence to support this claim in the frame-
work of abstract state machines. As a starting point, we take an environment
machine for the λµ-calculus, which is defined and proved correct by de Groote
[18] (a very similar machine was defined independently by Streicher and Reus
[40]). Then we define a new variant of this machine dedicated to the execution
of safe terms (which works exactly as hinted above). Note that this modified
machine is surprisingly simpler than what we would expect form the negative
proof-theoretic results. We actually obtain a direct, meaningful, computational
interpretation of the Constant Domain logic, even though dependency relations
were at the beginning only a complex technical device.

As usual with environment machines, it was more convenient to encode vari-
ables as de Bruijn indices. Since safe λµ-terms have different scoping rules than
regular λµ-terms, the translation into de Bruijn terms should yield different
terms: safe λµ-terms need to use local indices to access the local environment
of the current coroutine, whereas regular terms use the usual global indices to
access the usual global environment.

As a consequence of this remark, we obtain a proof of correctness of the
modified machine which is two-fold. We first introduce an intermediate machine
with local indices, global environment and indirection tables, then we define two
functional bi-simulations (−)

?
and (−)

�
showing that this intermediate machine:

• bi-simulates the regular machine with global indices

• bi-simulates the modified machine with local environments

The combined bi-simulation then show that the modified machine is correct
with respect to de Groote’s regular machine:

Regular machine σ̃?0  · · ·  σ̃?n  σ̃?n+1  · · ·
↑ ? ↑ ? ↑ ?

Intermediate machine σ̃0  · · ·  σ̃n  σ̃n+1  · · ·
↓ � ↓ � ↓ �

Modified machine σ̃�0  · · ·  σ̃�n  σ̃�n+1  · · ·

The plan of the paper is the following. In Section 2, we first recall the notion
of safety [9], and then we present a simpler (but equivalent) definition of safety
which is more convenient for the proofs of correctness. In Section 3, we present
the regular and the modified machine. Finally, in Section 4, we detail the proof
of correctness: we describe the intermediate machine and the two functional
bi-simulations (all the proofs were mechanically checked with the Coq proof
assistant).
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1.1 Related works

Computational interpretation of classical logic

Since Griffin’s pioneering work [24], the extension of the well-known formulas-
as-types paradigm to classical logic has been widely investigated for instance by
Murthy [34], Barbanera and Berardi [2], Rehof and Sørensen [38], de Groote [19],
and Krivine [30]. We shall consider here Parigot’s λµ-calculus mainly because
it is confluent and strongly normalizing in the second order framework [35].
Note that Parigot’s original CND is a second-order logic, in which ∨,∧,∃,∃2

are definable from →,∀,∀2. An extension of CND with primitive conjunction
and disjunction has also been investigated by Pym, Ritter and Wallen [36] and
de Groote [19].

The computational interpretation of classical logic is usually given by a λ-
calculus extended with some form of control (such as the famous call/cc of
Scheme or the catch/throw mechanism of Lisp) or similar formulations of first-
class continuation constructs. Continuations are used in denotational semantics
to describe control commands such as jumps. They can also be used as a
programming technique to simulate backtracking and coroutines. For instance,
first-class continuations have been successfully used to implement Simula-like
cooperative coroutines in Scheme [22]. This approach has been extended in the
Standard ML of New Jersey (with the typed counterpart of Scheme’s call/cc
[26]) to provide simple and elegant implementations of light-weight processes (or
threads), where concurrency is obtained by having individual threads voluntarily
suspend themselves [39]. The key point in these implementations is that control
operators make it possible to switch between coroutine contexts, where the
context of a coroutine is encoded as its continuation.

Coroutines

The concept of coroutine is usually attributed to Conway [8] who introduced it
to describe the interaction between a lexer and a parser inside a compiler. They
are also used by Knuth [29] which sees them as a mechanism that generalizes
subroutines (procedures without parameters). Coroutines first appeared in the
language Simula-67 [15]. A formal framework for proving the correctness of
simple programs containing coroutines has also been developed [7]. Coroutine
mechanisms were later introduced in several programming language, for instance
in Modula-2 [42], and more recently in the functional language Lua [21].

In his thesis, Marlin [32] summarizes the characteristics of a coroutine as
follows:

1. the values of data local to a coroutine persist between successive occasions
on which control enters it (that is, between successive calls), and

2. the execution of a coroutine is suspended as control leaves it, only to carry
on where it left off when control re-enters the coroutine at some later stage.

That is, a coroutine is a subroutine with a local state which can suspend and
resume execution. This informal definition is of course not sufficient to capture
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the various implementations that have been developed in practice. To be more
specific, the main differences between coroutine mechanisms can be summarized
in as follows [20]:

• the control-transfer mechanism, which can provide symmetric or asym-
metric coroutines.

• whether coroutines are provided in the language as first-class objects, which
can be freely manipulated by the programmer, or as constrained constructs;

• whether a coroutine is a stackful construct, i.e., whether it is able to sus-
pend its execution from with nested calls.

Symmetric coroutines generally offer a single control-transfer operation that al-
lows coroutines to pass control between them. Asymmetric control mechanisms,
sometimes called semi-coroutines [14], rely on two primitives for the transfer of
control: the first to invoke a coroutine, the second to pause and return control
to the caller.

A well-known illustration of the third point above, called “the same-fringe
problem”, is to determine whether two trees have exactly the same sequence of
leaves using two coroutines, where each coroutine recursively traverses a tree
and passes control to other coroutine when it encounters a leaf. The elegance
of this algorithm lies in the fact that each coroutine uses its own stack, which
permits for a simple recursive tree traversal. Note however that there are also
other solutions of this problem which do not rely on coroutines [5].

Asymmetric coroutines often correspond to the coroutines mechanism made
directly accessible to the programmer (as in Simula or Lua), sometimes as a
restricted form of generators (as in C#). On the other hand, symmetric corou-
tines are generally chosen as a low-level mechanism used to implement more
advanced concurrency mechanisms (as in Modula). An other example is the
Unix Standard [41] where the recommended low-level primitives for implement-
ing lightweight processes (users threads) are getcontext, setcontext, swapcontext
and makecontext. This is the terminology we have previously adopted for our
coroutines [12]. However, since we are working in a purely functional frame-
work, we shall write “functional coroutines” to avoid any confusion with other
mechanisms.

More recently, Anton and Thiemann described a static type system for first-
class, stackful coroutines [1] that may be used in both, symmetric and asymmet-
ric ways. They followed Danvy’s method [16] to derive definitional interpreters
for several styles of coroutines from the literature (starting from reduction se-
mantics). This work is clearly very close to our formalization, and it should help
shed some light on these mechanisms. However, we should keep in mind that
logical deduction systems come with their own constraints which might not be
compatible with existing programming paradigms.
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x : Γ, Ax ` ∆;A

t : Γ, Ax ` ∆;B

λx.t : Γ ` ∆;A→ B
(I→)

t : Γ ` ∆;A→ B u : Γ ` ∆;A

t u : Γ ` ∆;B
(E→)

t : Γ ` ∆;A

throw α t : Γ ` ∆, Aα;B
(WR)

t : Γ ` ∆, Aα;A

catch α t : Γ ` ∆;A
(CR)

Table 1: Classical Natural Deduction

2 Dependency relations

Parigot’s original CND is a deduction system for the second-order classical logic.
Since we are mainly interested here in the computational content of untyped
terms, we shall simply recall the restriction in the propositional framework cor-
responding to classical logic with the implication as only connective (in Table 1).
We refer the reader to [9, 12] for the full treatment of primitive conjunction,
disjunction and quantifiers (including the proof that the restricted system is
sound and complete for CD).

Remark. We actually work with a minor variant of the original λµ-calculus,
called the λct-calculus, with a primitive catch/throw mechanism [10]. These
primitives are however easily definable in the λµ-calculus as catch α t ≡ µα[α]t
and throw α t ≡ µδ[α]t where δ is a name which does not occur in t.

Since Parigot’s CND is multiple-conclusioned sequent calculus, it is possible
to apply so-called Dragalin restriction to obtain a sound and complete system
for CD. This restriction requires that the succedent of the premise of the intro-
duction rule for implication have only one formula:

Γ, A ` B
Γ ` ∆, A→ B

Unfortunately, the Dragalin restriction is not stable under proof-reduction.
However, a weaker restriction which is stable under proof-reduction, consists
in allowing multiple conclusions in the premise of this rule, with the proviso
that these other conclusions do not depend on A. These dependencies between
occurrences of hypotheses and occurrences of conclusions in a sequent are de-
fined by induction on the derivation.

Example. Consider a derived sequent A,B,C ` D,E, F,G with the following
dependencies:

B, CA, D, E, F , G⊢
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Using named hypotheses Ax, By, Cz ` D,E, F,G, this annotated sequent may
be represented as:

Ax, By, Cz ` {z} : D, {x, z} : E, {} : F, {x, z} : G

Let us assume now that t is the proof-term corresponding to the above deriva-
tion, i.e. we have derived in CND the following typing judgment:

t : Ax, By, Cz ` Dα, Eβ , F γ ;G

then we could also obtain the same dependencies directly from t, by computing
sets of variables used by the various coroutines (where [] refers to the distin-
guished conclusion), and we would get:

• Sα(t) = {z}

• Sβ(t) = {x, z}

• Sγ(t) = {}

• S[](t) = {x, z}

There is thus no need to actually annotate sequents with dependency rela-
tions: the relevant information is already present inside the proof-term. Let us
recall how these sets are defined [12].

Definition 1. Given a term t, for any free µ-variable δ of t, the sets of variables
Sδ(v) and S[](u) are defined inductively as follows:

• S[](x) = {x}
Sδ(x) = ∅

• S[](λx.u) = S[](u)\{x}
Sδ(λx.u) = Sδ(u)\{x}

• S[](u v) = S[](u) ∪ S[](v)
Sδ(u v) = Sδ(u) ∪ Sδ(v)

• S[](catch α u) = S[](u) ∪ Sα(u)
Sδ(catch α u) = Sδ(u)

•
S[](throw α u) = ∅
Sα(throw α u) = Sα(u) ∪ S[](u)
Sδ(throw α u) = Sδ(u) for any δ 6= α

Definition 2. A term t is safe if and only if for any subterm of t which has
the form λx.u, for any free µ-variable δ of u, x /∈ Sδ(u) .
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Example. The term λx.catch α λy.throw α x is safe, since x was declared
before catch α and x is thus visible in throw α x. On the other hand,
λx.catch α λy.throw α y is not safe, because y is not visible in throw α y.
More generally, for any α, a term of the form λy.throw α y is the reification
of α as a first-class continuation and such a term is never safe. This can also
be understood at the type level since the typing judgment of such a term is the
law of excluded middle ` Aα;¬A.

Remark. You can thus decide a posteriori if a proof in CND is valid in CD
simply by checking if the (untyped) proof-term is safe.

2.1 Safety revisited

In the conventional λ-calculus, there are two standard algorithms to decide
whether a term is closed: either you build inductively the set of free variables
and then check that it is empty, or you define a recursive function which takes
as argument the set of declared variables, and check that each variable has been
declared.

Similarly, for the λµ-calculus there are two ways of defining safety: the pre-
vious definition refined the standard notion of free variable (by defining a set
per free µ-variable). In the following definition, Safe takes as arguments the
sets of visible variables for each coroutine, and then decides for each variable, if
the variable is visible in the current coroutine. For a closed term, Safe is called
with V,Vµ both empty.

Definition 3. The property SafeV,Vµ(t) by induction on t as follows:

SafeV,Vµ(x) = x ∈ V
SafeV,Vµ(t u) = SafeV,Vµ(t) ∧ SafeV,Vµ(u)

SafeV,Vµ(λx.t) = Safe(x::V),Vµ(t)

SafeV,Vµ(catch α t) = SafeV,(α 7→V;Vµ)(t)

SafeV,Vµ(throw α t) = SafeVµ(α),Vµ(t)

where:

• V is a list of variables

• Vµ maps µ-variables onto lists of variables

Remark. This definition can also be seen as the reformulation, at the level
of proof-terms, of the “top-down” definition of the restriction of CND from [6]
which was introduced in the framework of proof search.

As expected, we can show that the above two definitions of safety are equiv-
alent. More precisely, the following propositions are provable.
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Proposition 4. For any term t and any mapping Vµ such that FVµ(t) ⊆
dom(Vµ), we have: SafeV,Vµ(t) implies S[](t) ⊆ V and Sδ(t) ⊆ Vµ(δ) for any
δ ∈ dom(Vµ) and t is safe.

Proposition 5. For any safe term t, for any set V such that S[](t) ⊆ V, for any
mapping Vµ such that FVµ(t) ⊆ dom(Vµ) and Sδ(t) ⊆ Vµ(δ) for any δ ∈ FVµ(t),

we have SafeV,Vµ(t).

3 Abstract machines

In this section, we recall Groote’s abstract machine for the λµ-calculus [18], then
we present the modified machine for safe terms and we prove its correctness.
But before we describe the abstract machines, we need to move to a syntax
using de Bruijn indices, and to adapt the definition of safety.

3.1 Safe λct-terms

We rely on de Bruijn indices for both kind of variables (the regular variables
and the µ-variables) but they correspond to different name spaces. Let us now
call vector a list of indices (i.e. natural numbers), and table a list of vectors.
The definition of Safe given for named terms can be rephrased for de Bruijn
terms as follows. For a closed term, Safe is called with I, Iµ both empty and
n = 0.

Notation 6. *We write 8g8 for the term corresponding to variable with index
g. The rest of the syntax is standard for de Bruijn terms.

Definition 7. Given t: term, I: vector, Iµ: table and n: nat, the property

SafeI,Iµn (t) is defined inductively by the following rules:

n− g = k k ∈ I
SafeI,Iµn (8g8)

SafeI,Iµn (t) SafeI,Iµn (u)

SafeI,Iµn (t u)

Safe
(Sn::I),Iµ
Sn (t)

SafeI,Iµn (λt)

SafeI,(I::Iµ)
n (t)

SafeI,Iµn (catch t)

Iµ(α) = I ′ SafeI
′,Iµ
n (t)

SafeI,Iµn (throw α t)

8



Remark. Note that n is used to count occurrences of λ from the root of the
term (seen as a tree), and such a number clearly uniquely determines a λ on a
branch. Since they are the numbers stored in I, Iµ, a difference is computed
for the base case since de Bruijn indices count λ beginning with the leaf.

3.2 From local indices to global indices

In the framework of environment machines, the point of using de Bruijn indices
to represent variables is to point directly to the location of the closure in the
environment (the closure which is bound to the variable). On the other hand,
the intuition behind the safety property is that for each continuation, there is
only a fragment of the environment which is visible (the local environment of
the coroutine).

In the modified machine, these indices should point to locations in the local
environment. Although the abstract syntaxes are isomorphic, it seems better
to introduce a new calculus (since indices in terms have different semantics),
where we can also rename catch/throw as get-context/set-context (to be
consistent with the new semantics). Let us call λgs-calculus the resulting cal-
culus, and let us now define formally the translation of λgs-terms onto (safe)
λct-terms.

Remark. In the Coq proof assistant, it is often more convenient to represent
partial functions as relations (since all functions are total in Coq we would need
option types to encode partial functions). In the sequel, we call “functional” or
“deterministic” any relation which has been proved functional.

Definition 8. The functional relation ↓I,Iµn (t) = t′, with t: λgs-term, t′:
λct-term, I: vector, Iµ: table and n: nat, is defined inductively by the following
rules:

n− I(l) = g

↓I,Iµn (8l8) = (8g8)

↓I,Iµn (t) = t′ ↓I,Iµn (u) = u′

↓I,Iµn (t u) = (t′ u′)

↓(Sn::I),Iµ
Sn (t) = t′

↓I,Iµn (λt) = (λt′)

↓I,(I::Iµ)
n (t) = t′

↓I,Iµn (get-context t) = (catch t′)

Iµ(α) = I ′ ↓I
′,Iµ
n (t) = t′

↓I,Iµn (set-context α t) = (throw α t′)

The shape of this definition is obviously very similar to the definition of
safety. Actually, we can prove that a λct-term is safe if and only if it is the
image of some λgs-term by the translation.
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Lemma 9. ∀ I Iµ n t′, SafeI,Iµn (t′) ↔ ∃t, ↓I,Iµn (t) = t′.

3.3 Abstract machine for λct-terms

De Groote’s machine [18] is actually an extension of the well-known Krivine’s
abstract machine which has already been studied extensively in the literature
[17]. Moreover, this abstract machine can also be mechanically derived from
a contextual semantics of the λµ-calculus with explicit substitutions using the
method developed by Biernacka and Danvy [4], and it is thus correct by con-
struction.

3.3.1 Closure, environment, stack and state

Definition 10. A closure is an inductively defined tuple [t, E , Eµ] with t : term,
E : closure list, Eµ : stack list (where a stack is a closure list).

Definition 11. A state is defined as a tuple 〈 t, E, Eµ, S 〉 where [t, E , Eµ] is
a closure and S is a stack.

3.3.2 Evaluation rules

Definition 12. The deterministic transition relation σ1  σ2, with σ1, σ2:
state, is defined inductively by the following rules:

E(k) = [t, E ′, E ′µ]

〈8k8, E , Eµ,S〉 〈t, E ′, E ′µ,S〉

〈(tu) , E , Eµ,S〉 〈t, E , Eµ, [u, E , Eµ] :: S〉

〈λt, E , Eµ, c :: S〉 〈t, (c :: E), Eµ,S〉

〈catch t, E , Eµ,S〉 〈t, E , (S :: Eµ),S〉

Eµ(α) = S ′
〈throw α t, E , Eµ,S〉 〈t, E , Eµ,S ′〉

3.4 Abstract machine for λgs-terms (with local environ-
ments)

As mentioned in the introduction, the modified abstract machine for λgs-terms
is a surprisingly simple variant of de Groote’s abstract machine, where a µ-
variable is mapped onto a pair 〈environment, continuation〉 (a context) and not
only a continuation. For simplicity, we still keep two distinct environments in
the machine, Lµ and Eµ in a closure (but they have the same domain, which is
the set of free µ-variables). As expected, the primitives get-context and set-
context respectively capture and restore the local environment together with
the continuation.
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3.4.1 Closure, environment, stack and state

Definition 13. A closurel is an inductively defined tuple [t,L,Lµ, Eµ] where t:
term, L: closurel list, and Lµ: (closurel list) list, Eµ: stackl list (where a stackl
is closurel list).

Definition 14. A statel is defined as a tuple 〈 t,L,Lµ, Eµ,S 〉 where [t,L,Lµ, Eµ]
is a closurel and S is a stackl.

3.4.2 Evaluation rules

Definition 15. The deterministic transition relation σ1  l σ2, with σ1, σ2:
statel, is defined inductively by the following rules:

L(k) = [t,L′,L′µ, E ′µ]

〈8k8,L,Lµ, Eµ,S〉 l 〈t,L′,L′µ, E ′µ,S〉

〈(tu) ,L,Lµ, Eµ,S〉 l 〈t,L,Lµ, Eµ, [u,L,Lµ, Eµ] :: S〉

〈λt,L,Lµ, Eµ, c :: S ′〉 l 〈t, (c :: L),Lµ, Eµ,S ′〉

〈get-context t,L,Lµ, Eµ,S〉 l 〈t,L, (L :: Lµ), (S :: Eµ),S〉

Lµ(α) = L′ Eµ(α) = S ′
〈set-context α t,L,Lµ, Eµ,S〉 l 〈t,L′,Lµ, Eµ,S ′〉

4 Bisimulations

We first introduce the intermediate machine for λgs-terms, then we define two
functional bi-simulations (−)

?
and (−)

�
showing that this intermediate machine:

• bi-simulates the regular machine with global indices

• bi-simulates the modified machine with local environments

4.1 Abstract machine for λgs-terms (with indirection ta-
bles)

This intermediate machine for λgs-terms works with local indices, global environ-
ment and indirection tables. The indirection tables are exactly the same as for
the static translation of λgs-terms to safe λct-terms. However, the translation
is now performed at runtime. The lock-step simulation (−)

?
shows that trans-

lating during evaluation is indeed equivalent to evaluating the translated term.
The lock-step simulation (−)

�
shows that we can “flatten away” the indirection

tables and the global environment, and work only with local environments.

11



4.1.1 Closure, environment, stack and state

Definition 16. A closurei is an inductively defined tuple [t, n, I, Iµ, E , Eµ],
with t : term, n : nat, I : vector, Iµ : table, E : closurei list, Eµ : stacki list
(where a stacki is a closurei list).

Definition 17. A statei is defined as a tuple 〈 t, n, I, Iµ, E, Eµ, S 〉 where
[t, n, I, Iµ, E , Eµ] is a closurei and S is a stacki.

4.1.2 Evaluation rules

Definition 18. The deterministic transition relation σ1  i σ2, with σ1, σ2:
statei, is defined inductively by the following rules:

n− I(l) = g E(g) = [t, n′, I ′, I ′µ, E ′, E ′µ]

〈8l8, n, I, Iµ, E , Eµ,S〉 i 〈t, n′, I ′, I ′µ, E ′, E ′µ,S〉

〈(tu) , n, I, Iµ, E , Eµ,S〉 i 〈t, n, I, Iµ, E , Eµ, [u, n, I, Iµ, E , Eµ] :: S〉

〈λt, n, I, Iµ, E , Eµ, c :: S ′〉 i 〈t, (Sn), ((Sn) :: I), Iµ, c :: E , Eµ,S ′〉

〈get-context t, n, I, Iµ, E , Eµ,S〉 i 〈t, n, I, (I :: Iµ), E , (S :: Eµ),S〉

Iµ(α) = I ′ Eµ(α) = S ′
〈set-context α t, n, I, Iµ, E , Eµ,S〉 i 〈t, n, I ′, Iµ, E , Eµ,S ′〉

4.2 Lock-step simulation (−)?

Definition 19. The functional relation c? =c c
′, with c: closurei, c′: closure,

is defined by the following rule:

↓I,Iµn (t) = u E? =e E ′ E?µ =k E ′µ
[t, n, I, Iµ, E , Eµ]? =c [u, E ′, E ′µ]

where E? and E?µ are defined by element-wise application of ?.

Definition 20. The functional relation σ? =σ σ
′, with σ: statei, σ′: state, is

defined by the following rule:

[t, n, I, Iµ, E , Eµ]? =c [u, E ′, E ′µ] S? =s S ′
〈t, n, I, Iµ, E , Eµ,S〉? =σ 〈u, E ′, E ′µ,S ′〉

where S? is defined by element-wise application of ?.

12



4.2.1 Soundness

Theorem 21. ∀ σ1 σ2 σ
′
1,

σ1  i σ2 → σ?1 =σ σ
′
1 → ∃σ′2, σ′1  σ′2 ∧ σ?2 =σ σ

′
2.

4.2.2 Completeness

Theorem 22. ∀ σ′1 σ′2 σ1,
σ′1  σ′2 → σ?1 =σ σ

′
1 → ∃σ2, σ1  i σ2 ∧ σ?2 =σ σ

′
2.

4.3 Lock-step simulation (−)�

Definition 23. The functional relation c� =k c
′ with c: closurei, c′: closurel,

is defined by the following rule:

flatten n E I = L map (flatten n E) Iµ = Lµ E�µ =k E ′µ
[t, n, I, Iµ, E , Eµ]� =c [t,L,Lµ, E ′µ]

where S� and E�µ are defined by element-wise application of �, and the functional
relation (flatten n E I = L) is defined inductively by the following rules:

flatten n E nil = nil
E(n− k) = c c� =c c

′ flatten n E I = L
flatten n E (k :: I) = (c′ :: L)

Definition 24. The functional relation σ� =σ σ
′, with σ : statei, σ′: statel,

is defined by the following rule:

[t, n, I, Iµ, E , Eµ]� =c [u,L,Lµ, E ′µ] S� =s S ′
〈t, n, I, Iµ, E , Eµ,S〉� =σ 〈u,L,Lµ, E ′µ,S ′〉

4.3.1 Soundness

Theorem 25. ∀ σ1 σ2 σ
′
1,

σ1  i σ2 → σ�1 =σ σ
′
1 → ∃σ′2, σ′1  l σ′2 ∧ σ�2 =σ σ

′
2.

4.3.2 Completeness

Theorem 26. ∀ σ′1 σ′2 σ1,
σ′1  

l σ′2 → σ�1 =σ σ
′
1 → ∃σ2, σ1  i σ2 ∧ σ�2 =σ σ

′
2.

5 Conclusion and future work

We have defined and formally proved the correctness of an abstract machine
which provides a direct computational interpretation of the Constant Domain
logic. However, as mentioned in the introduction, this work is a stepping stone
towards a computational interpretation of duality in intuitionistic logic. Starting
from the reduction semantics of proof-terms of bi-intuitionistic logic (subtractive
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logic) [12], it should be possible to extend the modified machine to account for
first-class coroutines.

These results should then be compared with other related works, such as
Curien and Herbelin’s pioneering article on the duality of computation [13], or
more recently, Bellin and Menti’s work on the π-calculus and co-intuitionistic
logic [3] and Kimura and Tatsuta’s Dual Calculus [28].

Acknowledgments. I would like to thank Nuria Brede for numerous discus-
sions on the “safe” λµ-calculus and useful comments on earlier versions of this
work. I am also very grateful to Olivier Danvy for proof-reading this article,
and for giving me the opportunity to present these results at WoC 2015.
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LNCS, pages 224–238. Springer, 2009. 14

[29] D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental
Algorithms. Addison-Wesley, 2nd edition edition, 1973. 3

[30] J.-L. Krivine. Classical logic, storage operators and second order λ-calculus.
Ann. of Pure and Appl. Logic, 68:53–78, 1994. 3

[31] E. G. K. Lopez-Escobar. A Second Paper ”On the Interpolation Theo-
rem for the Logic of Constant Domains”. The Journal of Symbolic Logic,
48(3):595–599, 1983. 1

[32] C. D. Marlin. Coroutines: A Programming Methodology, a Language Design
and an Implementation. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1980. 3

[33] G. Mints, G. Olkhovikov, and A. Urquhart. Failure of interpolation in
constant domain intuitionistic logic. The Journal of Symbolic Logic, 78:937–
950, 9 2013. 1

[34] C. R. Murthy. Classical proofs as programs: How, when, and why. Techni-
cal Report 91-1215, Cornell University, Department of Computer Science,
1991. 3

[35] M. Parigot. Strong normalization for second order classical natural de-
duction. In Proceedings of the eighth annual IEEE symposium on logic in
computer science, 1993. 1, 3

[36] D. Pym, E. Ritter, and L. Wallen. On the intuitionistic force of classical
search. Theoretical Computer Science, 232(1-2):299–333, 2000. 3

[37] C. Rauszer. An algebraic and Kripke-style approach to a certain extension
of intuitionistic logic. In Dissertationes Mathematicae, volume 167. Institut
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The selection monad as a CPS translation

Jules Hedges

February 28, 2015

Abstract

A computation in the continuation monad returns a final result given a
continuation, ie. it is a function with type (X → R) → R. If we in-
stead return the intermediate result at X then our computation is called
a selection function. Selection functions appear in diverse areas of math-
ematics and computer science (especially game theory, proof theory and
topology) but the existing literature does not heavily emphasise the fact
that the selection monad is a CPS translation. In particular it has so
far gone unnoticed that the selection monad has a call/cc-like operator
with interesting similarities and differences to the usual call/cc, which we
explore experimentally using Haskell.

Selection functions can be used whenever we find the intermediate
result more interesting than the final result. For example a SAT solver
computes an assignment to a boolean function, and then its continuation
decides whether it is a satisfying assignment, and we find the assignment
itself more interesting than the fact that it is or is not satisfying. In game
theory we find the move chosen by a player more interesting than the
outcome that results from that move. The author and collaborators are
developing a theory of games in which selection functions are viewed as
generalised notions of rationality, used to model players. By realising that
strategic contexts in game theory are examples of continuations we can
see that classical game theory narrowly misses being in CPS, and that a
small change of viewpoint yields a theory of games that is better behaved,
and especially more compositional.
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1 Introduction

A selection function is a type-2 function ε : JX where

JX = (X → R)→ X

We can view the input k : X → R to such a function in several ways: as a
generalised predicate, as the context of a decision, or as a continuation. These
are emphasised respectively in topology [4], game theory [5] and proof theory
[7]. The earliest selection functions considered were computable instances of
Hilbert’s ε-operator (X → B) → X, which witness a computational form of
topological compactness. An operation ⊗ : JX×J Y →J (X×Y ), which is
the (left-leaning) monoidal product of the strong monad J , witnesses the fact
that the product of two compact spaces is compact. Remarkably this extends to
countable products, leading to the derivation of ‘seemingly impossible functional
programs’ [3] that search set-theoretically infinite but topologically compact
types such as N→ B (the Cantor space) in a finite amount of time.

It was noticed by Paulo Oliva that the product of selection functions is equiv-
alent to Spector’s bar recursion [8], a notoriously obscure computational feature
used to realise the axiom of countable choice via a double negative translation
and Gödel’s Dialectica interpretation. Bar recursion is important in the proof
mining programme because it can be used to interpret proofs of classical analy-
sis (including differential equations and ergodic theory) [14], but the computer
programs arising from such proofs via bar recursion, while provably correct, are
not well suited to human understanding.

The next step made by Escardó and Oliva was the connection with game
theory, by realising that economic rationality is modelled by the selection func-
tion

arg max : (X → R)→ X

which finds a point maximising a real-valued function (say, on a finite set X). By
generalising selection functions by replacing the booleans with R or an arbitrary
type R, the product of selection functions is seen to correspond to an well-known
and intuitive algorithm in game theory known as backward induction [5]. Since
proof interpretations using bar recursion can be rewritten using the product of
selection functions, we therefore obtain a computational interpretation of proofs
in classical analysis that is amenable to human understanding via game theory
[16].

The relationship to the continuation monad is immediately obvious: the
Hilbert ε-operator is a refined form of the quantifier

∃ : (X → B)→ B

and the operator arg max is a refined form of

max : (X → R)→ R

These functions are both computations in the continuation monad

K X = (X → R)→ R

1



Escardó and Oliva call any function with a type of this form a quantifier. More-
over the relationships

∃p = p(εp)

and
max p = p(arg max p)

define a monad morphism from the selection to the continuation monad. Thus
in proof theory the J-translation (or Peirce translation) [7] can be seen as a
refined form of the usual (generalised) double negative translation, and it would
be tempting to view the selection monad as a refinement of the continuation
monad. However things are not so clear, because call/cc of the selection monad
has a more specific type, and behaves differently.

In section 2 we will explain the (quite complex) bind operation of the selec-
tion monad using intuition from CPS, which previously has only been derived
in a purely formal way. In sections 3 and 4 we will discuss the call/cc-like oper-
ator that exists for the selection monad, and see its behaviour experimentally.
Finally in section 5 we will informally discuss ongoing work by the author and
others on applications of selection functions and CPS in game theory.

2 Two monads for CPS

We begin by recalling the usual intuition for the continuation monad, which
can be used to implement (delimited) continuations in a pure language such
as Haskell. We view all computation as being done relative to a continuation,
which takes the return value and chains it to the future of the computation.
Thus our computation has the shape1

· · · X R
k

We will call X the type of intermediate values, and R the type of final values.
The key idea of the continuation monad is that we always work relative to an
unknown continuation k, although we may fix the type R. (The ability to fix
R may have begun as a quirk due to Hindley-Milner typing, see [13], but it is
vital to many applications of selection functions.) We allow our functions to
have side-effects, modelled by functions X → MR for a suitable monad M . A
computation in the continuation monad is a function with type

K M
R = (X →MR)→MR

which computes a final result given a continuation.

1The diagrams in this paper are not intended to be formal, but rather as a possible aid to
intuition, which not every reader will find helpful. ‘Plain’ arrows are intended to live in the
Kleisli category of the base monad M , while arrows with quote marks around the name live
in the Kleisli category of either K M

R or J M
R .

2



To embed a pure value x : X we simply view it as the intermediate value,
and apply the continuation to it immediately:

ηK M
R
x = λkX→MR.kx

For the bind, suppose we have a computation ϕ : K M
R X and a family of com-

putations F : X → K M
R Y . Equivalently, F is a computation X → Y , which we

can run by supplying it with a continuation from Y . We form a computation
that has the shape

· · · X Y R
“F” k

The key to understanding the bind of both the continuation and selection
monads is that we have two views of a computation like this: we can ei-
ther view the intermediate result as being at X or Y . The ‘external’ view
of ϕ >>=K M

R
F : K M

R Y is that it is a computation with the intermediate result
being at Y . Suppose we are running this computation, so we have a continua-
tion k : Y → MR. To find the final result we move to the other view, and run
the computation ϕ by building it a longer continuation k′ : X → MR. Given
an intermediate value x : X we can now find the final result k′x because we
have the continuation k from Y : it is k′x = Fxk. Therefore the bind operator
for the continuation monad is given by

ϕ >>=K M
R
F = λkY→MR.ϕλxX .Fxk

This intuition for the continuation monad transfers directly to the selection
monad. Whereas a computation in the continuation monad computes the final
result given a continuation, a computation in the selection monad computes the
intermediate result instead. Thus the selection monad is

J M
R X = (X →MR)→MX

First, suppose we want to embed a pure value x : X as the intermediate
result. Given a continuation k : X → MR, we ignore the continuation and
simply return x, embedded as a computation in M :

ηJ M
R
x = λkX→MR.ηMx

For the bind operator of the selection monad we must again move between
the two views of the computation

· · · X Y R
“F” k

Suppose we have a computation ε : J M
R X and a family of computations

F : X → J M
R Y . To run ε >>=J M

R
F : J M

R Y we are given a continuation
k : Y → MR, and we must return an intermediate result at Y . Our first task
is to find a way to turn an intermediate result at X into one at Y . Suppose

3



we have an intermediate value x : X, so we have a computation Fx : J M
R Y

with intermediate value at Y . We can now run this computation with our con-
tinuation k, which yields an intermediate value at Y . Thus we have a function
f : X →MY given by

fx = Fxk

Now we can extend our continuation k with f to give a continuation k′ from X,
namely

k′x = fx >>=M k = Fxk >>=M k

By running the computation ε with this continuation, we obtain an interme-
diate result at X. Finally, we must apply the function f again to obtain an
intermediate result at Y , which is what we need. Written out explicitly, the
operator is

ε >>=J M
R
F = λkY→MR.(ελxX .Fxk >>=M k) >>=M λxX .Fxk

Obviously, the sheer complexity of this formula makes reasoning about pro-
grams in the selection monad very difficult. In practice, Haskell is a very useful
tool for qualitatively understanding the behaviour of such programs.

No published proof of the monad laws for the selection monad exists. The
original proof (in the absence of other side-effects) was generated by an equa-
tional reasoning tool written by Martin Escardó specifically for this purpose,
resulting in several pages of formal manipulations. For an arbitrary side-effects
the unit laws were checked by the author with several pages of equational rea-
soning, including use of functional extensionality (η-expansion). The associative
law seems to be impractical to check by hand, but the proof is found by Coq’s
tactic for intuitionistic logic. However previously the unit and bind operators
were considered purely formal objects (derived simply by proving them as theo-
rems of intuitionistic logic), and the intuitions developed in this section suggest
for the first time that it might be possible to find a human-readable proof, by
reducing to the monad laws for the continuation monad.

3 Call/cc for the selection monad

For building computations in the continuation monad we can use the call-with-
current-continuation operator. This has type

cc : ((X → K M
R Y )→ K M

R X)→ K M
R X

The input Φ to cc is called a continuation handler, which is a computation that
has access to the current continuation k : X → K M

R Y (we will use the letter k
to refer to an actual continuation, and k to refer to a continuation reified as a
computation in the continuation or selection monad). The current continuation
is just a computation X → Y in the continuation monad, and the purpose of ccΦ
is to call Φk where k is bound to the continuation of ccΦ. The implementation
of cc is given by

ccΦ = λkX→MR
1 .Φ(λxX , kY→MR

2 .k1x)k1

4



Given our description it is quite easy to read this formula. The parameter given
to Φ should be the continuation k1 reified as a function X → KM

R Y . We have
exactly that: given an input, we make the computation which ignores its own
continuation and uses k1 instead.

Put another way, we want to build a computation k to which we can apply
Φ. Consider the diagram

· · · X Y R
“k” k2

k1

In this diagram, X is the intermediate type at the point in the handler at which
the current continuation is invoked, and Y is the intermediate result when the
handler ends. We do not have a pure function X → Y , but we can build a CPS
computation k : X → K M

R Y by short-cutting with the continuation k1, that is,

kx = λkY→MR
2 .k1x

However, the principal type of the term cc is the far more general

((A→ B → C)→ (A→ C)→ D)→ (A→ C)→ D

We obtain the specific type ((X → K M
R Y ) → K M

R X) → K M
R X by setting

A = X, B = Y →MR and C = D = MR. In order that our computations are
in the selection rather than the continuation monad, we instead set C = MR
and D = MX. This implies that Y = R, and so B = R → MR. Thus cc has
the type

((X →J M
R R)→J M

R X)→J M
R X

This is the call-with-current-continuation operator for the selection monad. It
is equal (as an untyped λ-term) to the ordinary call/cc, and the difference in
behaviour comes from the different bind operator with which it is composed.

If we draw a similar diagram we get

· · · X R R
“k” k2

id

k1

We have the continuation k1 which gives us a final result given an intermediate
result at X, which is also the point at which the continuation is invoked in
the handler. The computation k, given its continuation k2, should return the
intermediate result. However instead we simply return k1x, which is really the
final result, which we arranged to have the same type. That is, we are implicitly
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assuming that k2 is always the trivial continuation, even though it might not
be. We could change the type to

((X → K M
R R)→J M

R X)→J M
R X

to emphasise that k returns a final rather than an intermediate result, but that
only moves our dishonesty elsewhere because to actually invoke the current
continuation in the handler we would need an ‘invoke-continuation’ function
with type K M

R R→J M
R R, which treats its final result as intermediate.

In the next section we will see experimental results about the operational
behaviour of this function, including when the whole computation is run with
a nontrivial continuation.

4 Programming with selection call/cc

This section uses the author’s implementation of the selection monad trans-
former from [10], and assumes some familiarity with monad transformers and
the syntax of Haskell. As an example we will take the simple CPS Haskell
program

trace :: (MonadIO m) => String -> m ()

trace = liftIO . putStrLn

foo :: ContT r IO Int

foo = do trace "In foo"

n <- callCC $ \k -> do trace "In handler"

m <- k 0

trace "Still in handler"

return (m + 1)

trace "In continuation"

return (n + 1)

When run interactively we obtain

ghci> runContT foo return

In foo

In handler

In continuation

1

This program demonstrates an important fact about call/cc: once the con-
tinuation is run, control is never returned to the handler. Thus while the contin-
uation logically returns a value and we can bind it to a variable, any code after
the continuation is called is unreachable. This is in contrast to the selection
monad, which we will see next.

The same program written in the selection monad is
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bar :: SelT Int IO Int

bar = do trace "In bar"

n <- callCC’ $ \k -> do trace "In handler"

m <- k 0

trace "Still in handler"

return (m + 1)

trace "In continuation"

return (n + 1)

By running this program we can see the execution trace:

ghci> runSelT bar return

In bar

In handler

In continuation

Still in handler

In continuation

3

As can be seen, there is a coroutine-like dialogue between the handler and the
continuation, with data flowing back and forth.

Like in the continuation monad, the continuation can be called from arbi-
trarily far inside a call stack. In particular we can write a product of selection
functions that has access to its current continuation. For example, we can write
a SAT solver that calls the current continuation with a dummy input once per
iteration:

sat :: Int -> SelT Bool IO [Bool]

sat n = do bs <- callCC’ $ \k -> sequence $ replicate n $

do b <- SelT ($ True)

liftIO $ putStr $ "b = " ++ show b ++ ", "

k []

return b

trace $ "Continuation called with " ++ show bs

return bs

This program is based on the verbose SAT solver in [10], and is designed to
exhibit as many unexplained patterns as possible. Given a particular formula
like

f :: [Bool] -> IO Bool

f bs = return $ bs!!0 && not(bs!!1) && bs!!2

we can run it by

ghci> runSelT (sat 3) f

b = True, Continuation called with []

b = True, Continuation called with []

b = True, Continuation called with []
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Continuation called with [True,True,True]

b = False, Continuation called with []

Continuation called with [True,True,False]

b = False, Continuation called with []

b = True, Continuation called with []

Continuation called with [True,False,True]

b = True, Continuation called with []

Continuation called with [True,False,True]

b = True, Continuation called with []

b = True, Continuation called with []

b = True, Continuation called with []

Continuation called with [True,True,True]

b = False, Continuation called with []

Continuation called with [True,True,False]

b = False, Continuation called with []

b = True, Continuation called with []

Continuation called with [True,False,True]

b = True, Continuation called with []

Continuation called with [True,False,True]

[True,False,True]

(Note that each time the current continuation is called with the empty list it
also calls the formula f , but the expressions which index the empty list, which
would result in a runtime exception, are not evaluated due to the lazy seman-
tics of Haskell.) It is already an open question how to explain patterns such
as TTT, TTF, TFT, TFT, TTT, TTF, TFT, TFT resulting from the operational
behaviour of the product of selection functions. The positions of the empty list
in this trace only seem to deepen the mystery.

5 Strategic contexts are continuations

The author and collaborators are developing a theory of games based on se-
lection functions, which will be informally described in this section. In a com-
putable game theory, the computations done by players are naturally CPS com-
putations, in the sense that the computation divides into two parts: first the
player computes a move, and then the rules of the game (and the other players)
use the move to compute the outcome. However the player’s computation of
a move is done with knowledge of how that move will be used to compute an
outcome, which makes it a CPS computation. In classical game theory a player
may have a finite set of choices X, and each choice determines a real number
kx : R called a utility. A fundamental assumption of classical game theory is
that rational players act so as to maximise their utility. We can view the con-
tinuation of the player’s decision as k : X → R, and the computation done by
the player is arg max : JRX. One reason that this is interesting is that the
product of selection functions computes Nash equilibria of sequential games of
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perfect information, by implementing an algorithm known as backward induc-
tion [6]. Thus what was apparently a fact of applied mathematics, concerning
the behaviour of interacting rational agents, in fact arises very naturally in a
theoretical setting.

An immediate application of these ideas is that we can easily generalise
some concepts in classical game theory to arbitrary selection functions, which
allows us to work with players who are not classically rational without having
to build a new game theory from scratch. This is applied to ‘context-dependent
choice’ in voting games in [11], where it is shown that the fixpoint operator
fix : J P

XX models a ‘Keynes agent’ who would like to vote for the winner of
an election, or a so-called Keynes beauty contest. Similarly the operator that
selects non-fixpoints models a ‘punk’ who would like to vote for anybody but
the winner, which corresponds to a one-shot minority game [12]. In general,
a ‘context-dependent agent’ may have preferences not just over outcomes, but
over the ways in which those outcomes are achieved. This formally gives no new
expressive power because the type of outcomes could be extended to include all
relevant information, but selection games are more convenient, and in particular
seem to be more scalable. To give a silly example, a million dollars earned is not
equivalent to a million dollars stolen. To model such ‘social concerns’ classically,
an explicit conversion rate between morality and dollars must be given globally
and encoded into the outcome structure of the game. With selection functions
this can be done instead on a per-agent basis.

We conclude by giving several research directions currently being explored
by the author and several collaborators. In each of these, the slogan ‘strate-
gic contexts are continuations’ is an important part of the author’s intuitive
understanding.

• Most importantly, the author has recently developed a graphical calculus
for game theory by extending string diagrams for monoidal categories [17].
The semantics of these string diagrams uses CPS very heavily: a diagram
generally represents some group of interacting agents, which is equivalent
to a ‘generalised agent’ with preferences over both strategies and con-
tinuations from computations of strategies. The categorical composition
and tensor product (which are primitive forms of sequential and parallel
composition, respectively) are both defined using (delimited) continuation
transformers, and cannot be written in a direct style.

• The way in which this graphical calculus differs from the ones used in
quantum theory is the way in which backward-causality is treated. Game
theory contains a quite restricted form of backward-causality due to agents
reasoning about future events. An agent is graphically connected to a
relevant future value by a feedback-like operation. Intriguingly there is
an extremely close analogy with shift/reset operators [1] here: a deci-
sion made by an agent is like ‘shift’ (it captures a continuation), and the
point in the future at which a value is designated as the outcome for an
agent is like ‘reset’ (it delimits a continuation). In the graphical calculus
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these also appear strongly analogous to the unit and counit of a compact
structure in category theory, which correspond to pair-production and
pair-annihilation in quantum mechanics.

• The first two points relate to defining games and solution concepts, but not
to computing solutions in general. In this direction, the author has used
various monad transformer stacks with the selection monad at the top.
For sequential games of perfect information this can be done in generality
using the product of selection functions, but to extend to simultaneous
and other games must be done on a per-effect basis. The most progress
has been made for nondeterministic games, in which agents can make
nondeterministic choices between several moves. (True nondeterminism is
essentially unknown in economic game theory; for a use in game theory in
computer scientist see [15, chapter 9].) The idea is to define a new ‘sum
of selection functions’ operator

⊕ : J M
R X ×J M

R Y →J M
R (X × Y )

which is analogous to the product of selection functions, but for simul-
taneous games. Games with nondeterministic strategies are noticeably
better behaved than either pure or mixed strategies, with solution spaces
carrying more structure.

• For infinite games, and games with mixed strategies, things are more in-
teresting and difficult. The author is bringing together many ideas from
functional programming, topology and category theory to attack these
problems. One starting point is that probability distributions form a
monad [9, 2] which carries additional topological structure.

Acknowledgments: The author is grateful to the anonymous reviewers for
their comments, and also gratefully acknowledges EPSRC grant EP/K50290X/1
which funded this work.
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A Modular Structural Operational Semantics

for Delimited Continuations
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Abstract

It has been an open question as to whether the Modular Structural Opera-
tional Semantics framework can express the dynamic semantics of call/cc.
This paper shows that it can, and furthermore, demonstrates that it can
express the more general delimited control operators control and shift.
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1 Introduction

Modular Structural Operational Semantics (MSOS) [23, 24, 25] is a variant of
the well-known Structural Operational Semantics (SOS) framework [27]. The
principal innovation of MSOS relative to SOS is that it allows the semantics of
a programming construct to be specified independently of any auxiliary entities
with which it does not directly interact. For example, function application can
be specified by MSOS rules without mentioning stores or exception propagation.

While it is known that MSOS can specify the semantics of programming
constructs for exception handling [7, 8, 23], it has been unclear whether MSOS
can specify more complex control-flow operators, such as call/cc [1, 9]. Indeed,
the perceived difficulty of handling control operators has been regarded as one
of the main limitations of MSOS relative to other modular semantic frameworks
(e.g. [28, Section 2]). This paper demonstrates that the dynamic semantics of
call/cc can be specified in MSOS, with no extensions to the MSOS framework
required. We approach this by first specifying the more general delimited control
operators control [16, 17, 32] and shift [11, 12, 13], and then specifying call/cc in
terms of control. In contrast to most other operational specifications of control
operators given in direct style (e.g. [16, 20, 22, 31]), ours are based on labelled
transitions, rather than on evaluation contexts.

We will begin by giving a brief overview of delimited continuations (Sec-
tion 2) and MSOS (Section 3). The material in these two sections is not novel,
and can be skipped by a familiar reader.

2 Delimited Continuations

At any point in the execution of a program, the current continuation represents
the rest of the computation. In a meta-language sense, a continuation can be
understood as a context in which a program term can be evaluated. Control op-
erators allow the current continuation to be treated as an object in the language,
by reifying it as a first-class abstraction that can be applied and manipulated.
The classic example of a control operator is call/cc [1, 9].

Delimited continuations generalise the notion of a continuation to allow rep-
resentations of partial contexts, relying on a distinction between inner and outer
context. Control operators that manipulate delimited continuations are always
associated with control delimiters. The most well-known delimited control op-
erators are control (associated with the prompt delimiter) [16, 17, 32] and shift
(associated with the reset delimiter) [11, 12, 13], both of which can be used to
simulate call/cc. The general idea of control and shift is to capture the current
continuation up to the innermost enclosing delimiter, representing the inner
context. We will give an informal description of control in this section. The
formal MSOS specification of control is given in Section 4, where we also specify
shift and call/cc in terms of control.

control is a (call-by-value) unary operator that takes a higher-order function
f as its argument, where f expects a reified continuation as its argument. When
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executed, control reifies the current continuation, up to the innermost enclosing
prompt, as a function k. That inner context is then discarded, and replaced with
the application f k. Other than its interaction with control, prompt is simply a
unary operator that evaluates its argument and returns the resulting value.

Let us consider some examples. In the following expression, the continuation
k is bound to the function (λx. 2 ∗ x), the result of the prompt application is
14, and thus the final result is 15:

1 + prompt(2 ∗ control(λk. k 7)) ; 15

A reified continuation can be applied multiple times, for example:

1 + prompt(2 ∗ control(λk. k(k 7))) ; 29

Furthermore, a continuation need not be applied at all. For example, in the
following expression, the multiplication by two is discarded:

1 + prompt(2 ∗ control(λk. 7)) ; 8

In the preceding examples, the continuation k could have been computed
statically. However, in general, the current continuation is the context at the
point in a program’s execution when control is executed, by which time some of
the computation in the source program may already have been performed. For
example, the following program will print ABB :

prompt( print ′A′ ; control(λk. (k () ; k ())) ; print ′B′ )  ABB

The command (print ′A′) is executed before the control operator, so does not
form part of the continuation reified by control. In this case, k is bound to
(λx. (x ; print ′B′)), and so B is printed once for every application of k.

Further examples of control can be found in the online test suite accompa-
nying this paper [30], and in the literature [16, 17].

3 Modular SOS

The rules in this paper will be presented using Implicitly Modular SOS (I-
MSOS) [25], a variant of MSOS that has a notational style similar to conven-
tional SOS. I-MSOS can be viewed as syntactic sugar for MSOS. We assume the
reader is familiar with SOS (e.g. [3, 27]) and the basics of MSOS [23, 24, 25].

The key notational convenience of I-MSOS is that any auxiliary entities
(e.g. stores or environments) that are not mentioned in a rule are implicitly
propagated between the premise(s) and conclusion, allowing entities that do not
interact with the programming construct being specified to be omitted from
the rule. Two types of entities are relevant to this paper: inherited entities
(e.g. environments), which, if unmentioned, are implicitly propagated from the
conclusion to the premises, and observable entities (emitted signals, e.g. excep-
tions), which, if unmentioned, are implicitly propagated from a sole premise to
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E → E′

throw(E)→ throw(E′)
(1)

val(V )

throw(V )
exc some(V )−−−−−−−−→ stuck

(2)

E
exc none−−−−−→ E′

catch(E,H)
exc none−−−−−→ catch(E′, H)

(3)

E
exc some(V )−−−−−−−−→ E′

catch(E,H)
exc none−−−−−→ apply(H,V )

(4)

val(V )

catch(V,H)→ V
(5)

Figure 1: I-MSOS rules for exception handling.

the conclusion. Observable entities are required to have a default value, which
is implicitly used in the conclusion of rules that lack a transition-rule premise
and do not mention the entity.

To demonstrate the specification of control operators using I-MSOS rules,
this paper will use the funcon framework [8]. This framework contains an open
collection of modular fundamental constructs (funcons), each of which has its se-
mantics specified independently by I-MSOS rules. The framework is designed to
serve as a target language for semantic specifications of programming languages,
intended to be specified by an inductive translation in the style of denotational
semantics. However, this paper is not concerned with the translation of control
operators from any specific language: our aim is to give MSOS specifications
of control operators, and the funcon framework is a convenient environment for
specifying prototypical control operators. Examples of translations into funcons
can be found in [8, 26].

We will now present some examples of funcons, and their specifications as
small-step I-MSOS rules. We typeset funcon names in bold, meta-variables in
capitalised italic, and the names of auxiliary entities in sans-serif. No familiarity
with the funcon framework is required: for the purposes of understanding this
paper the funcons may simply be regarded as abstract syntax.

Figure 1 presents I-MSOS rules for the exception-handling funcons throw
and catch [8]. The idea is that throw emits an exception signal, and catch
detects and handles that signal. The first argument of catch is the expression
to be evaluated, and the second argument (a function) is the exception handler.
Exception signals use an observable entity named exc, which is written as a label
on the transition arrow. The exc entity has either the value none, denoting the
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val(closure(ρ, I, E)) (6)

ρ(I) = V

env ρ ` bv(I)→ V
(7)

env ρ ` lambda(I, E)→ closure(ρ, I, E) (8)

E1 → E′
1

apply(E1, E2)→ apply(E′
1, E2)

(9)

val(V ) E → E′

apply(V,E)→ apply(V,E′)
(10)

val(V ) env ({I 7→ V }/ρ) ` E → E′

env ` apply(closure(ρ, I, E), V )→ apply(closure(ρ, I, E′), V )
(11)

val(V1) val(V2)

apply(closure(ρ, I, V1), V2)→ V1
(12)

Figure 2: I-MSOS rules for lambda calculus.

absence of an exception, or some(V ), denoting the occurrence of an exception
with value V . The premise val(V ) requires the term V to be a value, thereby
controlling the order in which the rules can be applied. In the case of throw, first
the argument is evaluated to a value (Rule 1), and then an exception carrying
that value is emitted (Rule 2). In the case of catch, the first argument E
is evaluated while no exception occurs (Rule 3). If an exception does occur,
then the handler H is applied to the exception value and the computation E is
abandoned (Rule 4). If E evaluates to a value V , then H is discarded and V is
returned (Rule 5).

Observe that rules 1 and 5 do not mention the exc entity. In Rule 1 it is
implicitly propagated from premise to conclusion, and in Rule 5 it implicitly
has the default value none. Also observe that none of the rules in Figure 1
mention any other entities such as environments or stores; any such entities are
also implicitly propagated.

Figure 2 presents I-MSOS rules for identifier lookup (bv, “bound-value”),
abstraction (lambda), and application (apply). Note that the closure funcon is
a value constructor [7] (specified by Rule 6), and thus has no transition rules of
its own. We present these rules here for completeness, as these funcons will be
used when defining the semantics of control operators in Section 4.
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4 I-MSOS Specifications of Control Operators

We now present a dynamic semantics for control operators in the MSOS frame-
work. We will specify control and prompt directly, and then specify shift, reset
and call/cc in terms of control and prompt. Our approach is signal-based in a
similar manner to the I-MSOS specifications of exceptions (Figure 1): a control
operator emits a signal when executed, and a delimiter catches that signal and
handles it. Note that there is no implicit top-level delimiter around a funcon
program—a translation to funcons from a language that does have an implicit
top-level delimiter should insert an explicit top-level delimiter.

4.1 Overview of our Approach

We represent reified continuations as first-class abstractions, using the lambda
funcon from Section 3. However, we do not maintain an explicit representation
of the current continuation in our semantics; instead, our approach is to con-
struct the continuation from the program term whenever a control operator is
executed. We achieve this by exploiting the way that a small-step semantics,
for each step of computation, traverses the program term from the root to the
current operation. Thus, for any step at which a control operator is executed,
not only will a rule for the control operator be applied, but so too will a rule for
the enclosing delimiter. At each such step, the current continuation of the con-
trol operator corresponds to an abstraction of that operator from the sub-term
of the enclosing delimiter, and thus can be constructed from that sub-term.
This is achieved in two stages: the rule for the control operator replaces the
occurrence of the control operator with a fresh identifier, and the rule for the
delimiter constructs the abstraction from the updated sub-term.

At a first approximation, this suggests the following rules:

fresh-id(I)

control(F )
control some(F,I)−−−−−−−−−−−→ bv(I)

(13)

E
control some(F,I)−−−−−−−−−−−→ E′ K = lambda(I, E′)

prompt(E)
control none−−−−−−−→ prompt(apply(F,K))

(14)

The premise fresh-id(I) requires that I be a fresh identifier. Rule 13 replaces the
term control(F ) with bv(I), and emits a signal containing the function F and
the identifier I. The signal is then caught and handled by prompt in Rule 14.
The abstraction K representing the continuation of the executed control oper-
ator is constructed by combining I with the updated sub-term E′ (which will
now contain bv(I) in place of control(F )). Note that although the signal entity
is named control, this name brings no inherent connection to the funcon control,
as entities live in a separate namespace to funcons.
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ρ(I) = V

meta-env ρ ` meta-bv(I)→ V
(15)

E1 → E′
1

meta-let-in(I, E1, E2)→ meta-let-in(I, E′
1, E2)

(16)

val(V ) meta-env ({I 7→ V }/ρ) ` E → E′

meta-env ρ ` meta-let-in(I, V,E)→ meta-let-in(I, V,E′)
(17)

val(V1) val(V2)

meta-let-in(I, V1, V2)→ V2
(18)

Figure 3: I-MSOS rules for meta-environment bindings.

4.2 The Meta-environment

There is one problem with the approach we have just outlined, which is that the
fresh identifier I is introduced dynamically when the control operator executes,
by which time closures may have already been formed. In particular, if control
occurs inside the body of an applied closure, and the enclosing prompt is outside
that closure, then the bv(I) funcon that is introduced by Rule 13 would be
evaluated in a closed environment that does not contain a binding for I.

To address this, we will make use of an auxiliary environment called meta-env
(meta-environment). This environment is used for bindings that should not in-
teract with bindings in the standard environment, such as via shadowing or
being captured in closures. In this paper, we will use the meta-environment
to essentially achieve the same effect as substitution (MSOS does not provide
a substitution operation, relying instead on environments). Figure 3 speci-
fies meta-bv(I), which looks up the identifier I in the meta-environment, and
meta-let-in(I, V,E), which binds the identifier I to the value V in the meta-
environment, and scopes that binding over the expression E. We will make use
of these funcons in the next subsection, where we give our complete specification
of control and prompt.

4.3 Dynamic Semantics of control and prompt

We specify control as follows:

E → E′

control(E)→ control(E′)
(19)

val(F ) fresh-id(I)

control(F )
control some(F,I)−−−−−−−−−−−→ meta-bv(I)

(20)
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Rule 19, in combination with the val(F ) premise on Rule 20, ensures that the
argument function is evaluated to a closure before Rule 20 can be applied.
Notice that Rule 20, in contrast to the preliminary Rule 13, uses meta-bv to
lookup I in the meta-environment.

We then specify prompt as follows:

val(V )

prompt(V )→ V
(21)

E
control none−−−−−−−→ E′

prompt(E)
control none−−−−−−−→ prompt(E′)

(22)

E
control some(F,I)−−−−−−−−−−−→ E′ K = lambda(I,meta-let-in(I,bv(I), E′))

prompt(E)
control none−−−−−−−→ prompt(apply(F,K))

(23)

Rule 21 is the case when the argument is a value; the prompt is then dis-
carded. Rule 22 evaluates the argument expression while no control signal is
being emitted by that evaluation. Rule 23 handles the case when a control sig-
nal is detected, reifying the current continuation and passing it as an argument
to the function F . Notice that, in contrast to the preliminary Rule 14, I is
rebound in the meta-environment.

Rules 19–23 are our complete I-MSOS specification of the dynamic semantics
of control and prompt, relying only on the existence of the lambda-calculus
and meta-environment funcons from figures 2 and 3. These rules are modular:
they are valid independently of whether the control operators coexist with a
mutable store, exceptions, or other effectful programming constructs. Our rules
correspond closely to those in specifications of control and prompt based on
evaluation contexts [16, 22]. However, our specifications communicate between
control and prompt by emitting signals, and thus do not require evaluation
contexts.

4.4 Dynamic Semantics of shift and reset

The shift operator differs from control in that every application of a reified
continuation is implicitly wrapped in a delimiter, which has the effect of sepa-
rating the context of that application from its inner context [5]. This difference
between control and shift is comparable to that between dynamic and static
scoping, insofar as with shift, the application of a reified continuation cannot
access its context, in the same way that a statically scoped function cannot
access the environment in which it is applied.
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A shift funcon can be specified in terms of control as follows:

E → E′

shift(E)→ shift(E′)
(24)

val(F ) fresh-id(K) fresh-id(X)

shift(F )→
control(lambda(K, apply(F, lambda(X, reset(apply(bv(K),bv(X)))))))

(25)

The key point is the insertion of the reset delimiter; the rest of the lambda-term
is merely an η-expansion that exposes the application of the continuation K so
that the delimiter can be inserted (following [5]). Given this definition of shift,
the reset delimiter coincides exactly with prompt:

reset(E)→ prompt(E) (26)

Alternatively, the insertion of the extra delimiter could be handled by the
semantics of reset rather than that of shift:

val(V )

reset(V )→ V
(27)

E
control none−−−−−−−→ E′

reset(E)
control none−−−−−−−→ reset(E′)

(28)

E
control some(F,I)−−−−−−−−−−−→ E′ K = lambda(I, reset(meta-let-in(I,bv(I), E′)))

reset(E)
control none−−−−−−−→ reset(apply(F,K))

(29)

The only difference between rules 21–23 and rules 27–29 (other than the funcon
names) is the definition of K in Rule 29, which here has a delimiter wrapped
around the body of the continuation. Given this definition of reset, the shift
operator now coincides exactly with control:

shift(E)→ control(E) (30)

This I-MSOS specification in Rules 27–30 is similar to the evaluation-context
based specification of shift and reset in [22, Section 2].
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4.5 Dynamic Semantics of abort and call/cc

The call/cc operator is traditionally undelimited : it considers the current contin-
uation to be the entirety of the rest of the program. In a setting with delimited
continuations, this can be simulated by requiring there to be a single delim-
iter, and for it to appear at the top-level of the program. Otherwise, the two
distinguishing features of call/cc relative to control and shift are first that an
applied continuation never returns, and second that if the body of call/cc does
not invoke a continuation, then the current continuation is applied to the result
of the call/cc application when it returns.

To specify call/cc, we follow Sitaram and Felleisen [32, Section 3] and first
introduce an auxiliary operator abort, and then specify call/cc in terms of con-
trol, prompt and abort. The purpose of abort is to terminate a computation (up
to the innermost enclosing prompt) with a given value:

E → E′

abort(E)→ abort(E′)
(31)

val(V ) fresh-id(I)

abort(V )→ control(lambda(I, V ))
(32)

The first distinguishing feature of call/cc is effected by placing an abort
around any application of a continuation (preventing it from returning a value),
and the second is effected by applying the continuation to the result of the F
application (resuming the current continuation if F returns a value):

E → E′

callcc(E)→ callcc(E′)
(33)

val(F ) fresh-id(K) fresh-id(X)

callcc(F )→ control(lambda(K,
apply(bv(K), apply(F, lambda(X, abort(apply(bv(K),bv(X))))))))

(34)

4.6 Other Control Effects

In Section 3 we presented a direct specification of exception handling using
a dedicated auxiliary entity. If throw and catch (Figure 1) were used in a
program together with the control operators from this section, this would give
rise to two sets of independent control effects, each with independent delimiters.
An alternative would be to specify exception handling indirectly in terms of
the control operators (e.g. following Sitaram and Felleisen [32]), in which case
the delimiters and auxiliary entity would be shared. MSOS can specify either
approach, as required by the language being specified.

Beyond the control operators discussed in this section, further and more
general operators for manipulating delimited continuations exist, such as those
of the CPS hierarchy [12]. These are beyond the scope of this paper, and remain
an avenue for future work.
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5 Related Work

A direct way to specify control operators is by giving an operational semantics
based on transition rules and first-class continuations. We have taken this direct
approach, though in contrast to most direct specifications of control operators
(e.g. [16, 20, 21, 22, 28, 31]) our approach is based on emitting signals via labelled
transitions rather than on evaluation contexts. Control operators can also be
given a denotational semantics by transformation to continuation-passing style
(CPS) [11, 15, 29, 31], or a lower-level operational specification by translation
to abstract-machine code [6, 17]. At a higher level, algebraic characterisations
of control operators have been given in terms of equational theories [16, 21].

Denotationally, any function can be rewritten to CPS by taking the continu-
ation (itself represented as a function) as an additional argument, and applying
that continuation to the value the function would have returned. A straightfor-
ward extension of this transformation [12] suffices to express call/cc, shift and
reset ; however, more sophisticated CPS transformations are needed to express
control and prompt [31].

Felleisen’s [17] initial specification of control and prompt used a small-step
operational semantics without evaluation contexts. However, this specification
otherwise differs quite significantly from ours, being based on exchange rules
that push control outwards through the term until it encounters a prompt. As
an exchange rule has to be defined for every other construct in the language,
this approach is inherently not modular. Later specifications of control and
prompt used evaluation contexts and algebraic characterisations based on the
notion of abstract continuations [16], where continuations are represented as
evaluation contexts and exchange rules are not needed. Felleisen [17] also gave a
lower-level operational specification based on the CEK abstract machine, where
continuations are treated as frame stacks.

The shift and reset operators were originally specified denotationally, in
terms of CPS semantics [11, 12]. Continuations were treated as functions, rely-
ing on the meta-continuation approach [11] which distinguishes between outer
and inner continuations. Correspondingly, the meta-continuation transforma-
tion produces abstractions that take two continuation parameters, which can
be further translated to standard CPS. A big-step style operational semantics
for shift has been given in [14]. A specification based on evaluation contexts is
given in [21], together with an algebraic characterisation.

Giving a CPS semantics to control is significantly more complex than for
shift [31]. This is because the continuations reified by shift are always delimited
when applied, and so can be treated as functions, which is not the case for
control. Different approaches to this problem have been developed, including
abstract continuations [16], the monadic framework in [15], and the operational
framework in [6]. Relying on the introduction of recursive continuations, [31]
provides an alternative approach based on a refined CPS transform. Conversely,
the difference between control and shift can manifest itself quite intuitively in
the direct specification of these operators—whether in our I-MSOS specifications
(Section 4.4), or in specifications using evaluation contexts [16, 21, 22, 31].
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As shown in [18], shift can be implemented in terms of call/cc and mutable
state, and from the point of view of expressiveness, any monad that is func-
tionally expressible can be represented in lambda calculus with shift and reset.
Moreover, control and shift are equally expressive in the untyped lambda cal-
culus [31]. A direct implementation of control and shift has been given in [19].
A CPS-based implementation of control operators in a monadic framework is
given in [15]. A semantics of call/cc based on an efficient implementation of
evaluation contexts is provided in the K Framework [28].

6 Conclusion

We have presented a dynamic semantics for control operators in the MSOS
framework, settling the question of whether MSOS is expressive enough for
control operators. Our definitions are concise and modular, and do not require
the use of evaluation contexts.

We have validated these semantics through a suite of 70 test programs,
which we accumulated from examples in the literature on control operators
([1, 2, 4, 6, 9, 10, 11, 16, 17, 20, 31]). The language we used for testing was
Caml Light, a pedagogical sublanguage of a precursor to OCaml, for which
we have an existing translation to funcons from a previous case study [8]. We
extended Caml Light with control operators, and specified the semantics of
those operators as direct translations into the corresponding funcons presented
in this paper. The generated funcon programs were then tested by our prototype
funcon interpreter, which directly interprets their I-MSOS specifications. The
suite of test programs, and our accompanying translator and interpreter, are
available online [30].

Acknowledgments: We thank Casper Bach Poulsen, Ferdinand Vesely and
the anonymous reviewers for feedback on earlier versions of this paper. We also
thank Martin Churchill for his exploratory notes on adding evaluation contexts
to MSOS, and Olivier Danvy for suggesting additional test programs. The
reported work was supported by EPSRC grant (EP/I032495/1) to Swansea
University for the PLanCompS project.
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Why all programmers want continuations

(but use callbacks instead)

Gabriel Kerneis

12 April 2015

Abstract: Have you ever wondered why callbacks are so pervasive in modern
programming languages, and yet so hated that there is such an idiom as “call-
back hell”? Have you ever scratched your head so hard that you started losing
your hair while debugging a maze of twisty little functions all alike? Have you
ever wished you could write straightforward, linear, synchronous code, and let
your programming language handle concurrency? This is 2015: why isn’t your
compiler able to link stack frames by itself as soon as you are writing asyn-
chronous code? As it turns out, your compiler can in fact do this for you, and
much more. It just needs a gentle push in the right direction.

This talk is a tutorial on escaping callback hell with promises and generators;
examples are in Javascript, but should be accessible to any interested program-
mer. We first build a minimal promise implementation from first principles,
discovering how the underlying hidden monad makes continuation-passing style
programming easier and safer. Then, we go one step further, and throw gen-
erators into the mix to recover a direct, coroutine style, restoring sanity and
reaching true enlightenment. We conclude with a brief tour of other popular
programming languages, and discover that the essential building blocks are al-
ready available in most cases. Educating users about them is left as an exercise
to the reader.

Acknowledgments: The author is grateful to Matt Greer and Jake Archibald
for their tutorials on promises, heavily reused in this presentation. He also
wishes to thank the many callback lovers (and the occasional continuation
haters!) he has pitched this talk to in the last few months. Their insight-
ful, if often fairly defensive, feedback has been the main motivation for giving
this talk.

Disclaimer: The opinions expressed in this tutorial are those of the author, and

do not necessarily reflect the official position of his employer. No callback has been

harmed during the preparation of this tutorial.
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Command injection attacks, continuations, and

the Lambek calculus

Hayo Thielecke
University of Birmingham

2 March 2015

Abstract

The notes show connections between command injection attacks, contin-
uations, and the Lambek calculus: certain command injections, such as
the tautology attack on SQL, are shown to be a form of control effect that
can be typed using the Lambek calculus, generalizing the double-negation
typing of continuations. Lambek’s syntactic calculus is a logic with two
implicational connectives taking their arguments from the left and right,
respectively. These connectives describe how strings interact with their
left and right contexts when building up syntactic structures. The cal-
culus is a form of propositional logic without structural rules, and so a
forerunner of substructural logics like Linear Logic and Separation Logic.
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E ::= E + E

| n

| return n

[[E1 + E2]] = λk.[[E1]](λx1 .[[E2]](λx2 .k(x1 + x2))

[[n]] = λk.k n

[[return n]] = λk.n

Figure 1: Control operator return and its continuation semantics

1 Introduction

The aim of these notes is to draw connections between three at first sight dis-
parate topics ranging from the practical to the theoretical side of computer
science:

1. Command injection attacks;

2. continuations and control effects;

3. the Lambek calculus, a presentation of syntax as a logic or type system

Depending on the reader’s background, the following may serve as an introduc-
tion to command injections, the Lambek calculus, or both. Continuations will
serve as the glue between these topics, so to speak, and a basic familiarity with
control operators and their typing is assumed.

We briefly recall some background on continuations. Continuations in one
form or another occur in many areas of computer science, ranging from com-
piling to logic. Like many fundamental concepts, they have been discovered
independently [21], and we may even see Gödel’s work on double negation as
one of the first such discoveries.

Consider an expression language with a control operator return, as given
in Figure 1. As shown in some of the earliest work on continuation seman-
tics [23], such a language can be given a semantics by taking a continuation as
a parameter.

For example, the expression

(return 42) + 666

evaluates to 42. Intuitively, this is because the evaluation context

(©+ 666)

has been discarded by the control operator.
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The typing of the continuation semantics is a generalized double negation:

[[E]] : (int→ int)→ int

The typical presentation of continuation passing, following Plotkin [19], uses
λ-calculus, but much of the machinery of continuations works in a more gen-
eral situation. If fewer structural rules are assumed (omitting Contraction and
Weakening), then connections with Linear Logic emerge [3, 9]. Lambek’s syn-
tactic calculus [15] goes further and removes the Exchange rule as well, making
it a canonical logic for reasoning about strings. Control operators, by giving
access to the current continuation, have an effect of the surrounding evaluation
context. Analogously, in the Lambek calculus, a binary operator has a syntactic
effect in the sense that it consumes some of its syntactic context, as given by
symbols to its left and right.

2 Command injection attacks

In programming language theory, one usually assumes that all matters of pars-
ing have been settled, so that the syntax is given as abstract syntax trees, rather
than raw sequences of symbols, before language features such as types or effects
are considered. However, complex software increasingly contains parsers and
interpreters of various kinds, some for full programming languages, others for
more restricted languages such as SQL or XML. Input to them is parsed at run-
time, and may originate from untrusted sources. Consequently, syntax becomes
a problem again, impacting the safety and security of the interpreters.

Command injection attacks form a large class of attacks on software (for
an overview, see texts on secure programming, such as Dowd et al [6]). They
may happen whenever user-malleable and potentially malicious fragments in
some syntax are spliced into a syntactic context such that the resulting string
is parsed and interpreted. It is crucial for the attack that the fragments to be
combined are raw text that still has to be parsed, rather than some structured
format such as abstract syntax trees. Of course an attacker could just inject
syntactically invalid gibberish and provoke parsing errors. Depending on the
robustness of error handling, that could amount to a mere nuisance or a denial
of service attack. However, command injection attacks are far more pernicious
by creating strings that are successfully parsed and therefore interpreted. By
gaining access to the interpreter to run code of their choosing, attackers can
violate integrity and confidentiality, rather than merely triggering errors.

SQL command injection [12] attacks are perhaps the best known example;
in this case the constructed strings are SQL queries that are interpreted by the
database management system. In some variants [12] of SQL command injection
attacks, the attacker relies on injecting code with side effects, such as a DROP

statement in SQL that destructively updates the database. In this paper we will
however concentrate on a class of attacks that do not require side effects in the
injected code and rely purely on syntactically subverting the constructed string.
The so-called tautology attack is a notorious example. Simply put, a malicious
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user injects the string OR 1 = 1, which when combined with a Boolean test
renders that test tautologically true and hence useless.

Command injection attacks are by no means confined to SQL injections.
They may arise whenever data is mixed with code in the broadest sense of the
word; for instance, XPath injection attacks are a recent example. So even if
SQL attacks are defeated by standard secure coding techniques, it is reasonable
to expect that more vulnerabilities and attacks will emerge as dynamic scripting
languages and XML/HTML based technologies proliferate, in which the mixing
of code and data or in-band signalling that security experts warn against is a
widespread risk.

At first sight, command injection attacks appear to be due to side effects in
the interpreted language. Indeed, some attacks rely on the presence of effect-
ful operations, such as inserting UPDATE or DROP in so-called “piggyback” SQL
command injection attacks. The tautology attack, however, afflicts the purely
functional language of Boolean expressions, and it does so by syntactic means
rather than any side effects. The “essence” [24] of such attacks can be made
precise in terms of parse trees. Intuitively, the programmer has an implicit un-
derstanding that the data supplied by the user should be slotted into the parse
tree of the query as a leaf, below the comparison to password. Instead, the
insertion of the operator OR rearranges the parse tree, so that the operator is
above the test, rendering it ineffective by disjunction with the tautology. In this
paper, we will focus exclusively on such syntactic attacks on purely functional
languages.

A simple example of a syntactic command injection attack is known as a
tautology attack. Suppose a dynamically constructed SQL query contains a
comparison of the string password to some string supplied by the user, in order
to check the user’s authorization. Details of SQL syntax are not important
here, but the idea of the syntactically malicious input is as follows. The query
is constructed by concatenating a string ending in “password = ’” with the user
input to construct a boolean expression. This test is part of an SQL statement,
as in“ SELECT * FROM table WHERE. . . ”. If the user supplies the input “foo”,
the concatenation contains the test “password = ’foo’”, as intended. In an
attack, the user injects an operator, by supplying the input “foo’ OR 1 = 1

--”. The resulting test is

password = ’foo’ OR 1 = 1

which always evaluates to true due to the tautology 1 = 1. Using this tech-
nique, attackers may read confidential data for other users, bypass password
authentication, and the like, with many variations on this theme of injecting
operators [12].

Given that the phenomenon of syntactic command injection is so general,
and independent of many details of the particular technologies being exploited,
we aim to address it at the appropriate level of abstraction. We would like to
reason about the syntactic effect, as it were, that a malicious input has on its
context, similar to the way that a type and effect system [16] lets us reason
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String with a hole: password = ©

Legitimate input: foo

Combined string: password = foo

Malicious input: foo OR 1 = 1

Combined string: password = foo OR 1 = 1

Figure 2: Tautology attack

about side effects. The effect can be subtle, as a malicious input string needs
to conform closely to the structure of the surrounding string it is intended to
attack. If for instance some delimiters are added to the latter, the original
attack string may fail and produce only something syntactically ill formed.

A central thesis of this paper is that the required logical tools are already
available in mathematical linguistics—perhaps surprisingly so. Lambek’s syn-
tactic calculus [15] describes syntax with two (left and right) function types
that capture how a phrase takes other phrases as arguments from the left or
right. Using these connectives, we will explain how the harmless input “foo”
differs from the malicious input “foo OR 1 = 1” that can take its place. In
essence, the malicious input is effectful in that it seizes part of its context, just
as a control operator does with its evaluation context. See Figure 2 (quotes are
elided for simplicity).

3 Syntax and the Lambek calculus

As context-free grammars and parser generators for them are universally used in
computer science, we will assume that the language we wish to reason about is
given by an unambiguous context-free grammar. We will then use the Lambek
calculus on top of the given grammar, not to define the language, but to describe
the way its phrases combine.

We recall that a context-free grammar G = (T,N,P, S) consists of a finite
set T of terminal symbols, a finite set N of non-terminal symbols, a start symbol
S ∈ N, and a finite relation P ⊆ N× (N∪T)∗ relating non-terminal symbols to
strings of symbols. The elements (A,α) of P are called the rules or productions
of the grammar, and often written as A ::= α. (We avoid the common notation
A→ α, as it clashes with that for function types.)

We follow some notational conventions for grammars [1]. We write terminal
symbols in typewriter font, as in “a” and “=”. Non-terminal symbols are ranged
over by A, B, C, while X and Y may be a terminal or a non-terminal symbol.
Sentential forms (strings that may contain both non-terminals and terminals)
are written as α, β, γ and δ. Words (strings of only terminal symbols) are
ranged over by w, v, u. The empty sequence is written as ε. The one-step

4



derivation relation ⇒ holds between any two strings of the form

β Aγ ⇒ β α γ

whenever there is a production (A,α) ∈ P. The reflexive transitive closure of

⇒ is written as
∗⇒.

A grammar is called unambiguous if there is no word w that has two different
parse trees with root S. If we assume our grammar to be unambiguous, we are
justified in speaking of “the” parse tree of a word. For a non-terminal symbol
A, we say A is useless if it does not participate in the derivation of any words,
that is, if there are no α, β and w such that

S
∗⇒ αAβ

∗⇒ w

We will assume that there are no useless non-terminals in the grammar (as
deleting them will not change the language of the grammar). If the grammar is
unambiguous and contains no useless symbols, the language of each non-terminal
is also unambiguous. Unambiguous grammars are important in practice because
compilers and interpreters compute meanings by induction over the parse tree;
if there could be more than one such tree for a given input, there might be
unintended outcomes.

When first reading about Lambek’s syntactic calculus, one may perhaps be
puzzled about whether to conceive of it as a form of syntax, a type system, or
a logic. It is in a sense all of these, and that flexibility may be an advantage.
There are two equivalent presentations of the calculus: the first as subtyping
(to use current terminology), the other as a propositional logic in the style of
Gentzen’s sequent calculus.

Before going into the formal definitions of the calculus, it may be helpful
to provide some intuition about its intended meaning, particularly compared to
context-free grammars. Suppose we want to express that the operator OR takes
a truth value T from the left and right, respectively, and produces a truth value.
Using context-free grammars, we could write a grammar rule like the following:

T ::= T OR T

(To keep the discussion simple, let us ignore the problem of ambiguous grammars
for the moment.) In the Lambek calculus, we would express the same syntactic
situation differently. We would say that there is a type of of words that produce
a T if a T is placed to the left of them, which we write as T ↘ T . Moreover,
there is a type of words that produce the latter type if another T is placed to
the right of them, which is written as (T ↘ T )↙ T . That gives us a type of
binary operators expecting a T on either side. Stating that OR is such a binary
operator amounts to a subtyping judgement for the type OR (which contains
exactly the word OR):

OR ≤ (T ↘ T )↙ T

A useful intuition to bear in mind when reading the syntactic calculus is that
the left-hand side is meant to be a subset of the right-hand side. In our example
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ϕ1 ◦ ϕ2 ≤ ψ

ϕ2 ≤ ϕ1↘ ψ

ϕ1 ◦ ϕ2 ≤ ψ

ϕ1 ≤ ψ↙ ϕ2

ϕ2 ≤ ϕ1↘ ψ

ϕ1 ◦ ϕ2 ≤ ψ

ϕ1 ≤ ψ↙ ϕ2

ϕ1 ◦ ϕ2 ≤ ψ

ϕ ≤ ϕ
ϕ1 ≤ ϕ2 ϕ2 ≤ ϕ3

ϕ1 ≤ ϕ3

ϕ1 ◦ (ϕ2 ◦ ϕ3) ≤ (ϕ1 ◦ ϕ2) ◦ ϕ3

(ϕ1 ◦ ϕ2) ◦ ϕ3 ≤ ϕ1 ◦ (ϕ2 ◦ ϕ3)

Figure 3: Lambek’s syntactic calculus, subtyping version

here, the set containing only OR is a subset of the set of binary operators, but
not necessarily conversely, as there may be other such operators. Note that
the order of writing is reversed compared to grammar rules: a grammar rule
A ::= B corresponds to B ≤ A.

If we also have 1 = 1 ≤ T , then we see that the partial application of OR to
it still expects a T on its left:

OR 1 = 1 ≤ T ↘ T

Thus we can construct various operators by partial application (currying), as
is familiar from functional programming. It would be possible to capture the
syntax of a language entirely with such judgements, without the need for a
context-free grammar. However, in our setting we assume a fixed grammar is
given, and we use the Lambek calculus for reasoning about fragments of words
like the OR 1 = 1 above.

We assume that a fixed context-free grammar

G = (T,N,P, S)

of interest is given, and we define a version of the syntactic calculus specific to
that grammar by using its symbols as the base types and importing its rules as
axioms.
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(A,X1 . . . Xn) ∈ P

X1 ◦ . . . ◦Xn ≤ A

ε ◦ ϕ ≤ ϕ ϕ ◦ ε ≤ ϕ

ϕ ≤ ε ◦ ϕ ϕ ≤ ϕ ◦ ε

Figure 4: Additional rules for subtyping

Definition 3.1 The types of (our variant of) the Lambek calculus are built
up from the (terminal or non-terminal) symbols of our context-free grammar
(ranged over by X) using the left and right arrow connectives as well as the
product connective.

ϕ,ψ, π ::= X (Grammar symbol in N ∪T)

| ϕ↘ ψ (Left implication)

| ψ↙ ϕ (Right implication)

| ϕ ◦ ψ (Product)

| ε (Empty string type)

Definition 3.2 (Syntactic calculus, subtyping variant) The syntactic cal-
culus consists of subtyping judgements of the form

ϕ ≤ ψ

where ϕ and ψ are defined as in Definition 3.1. The rules for ≤ are given in
Figures 3 and 4.

In the literature, the two implications are written as forward and backward
slashes, “/” and “\”. Reading such formulas can be tricky, particularly since
two conventions exist. Lambek’s notation places the result on top and reflects
whether parameters are taken from left or right; Steedman’s notation instead
emphasizes the directionality of functions by placing the parameter on the left
and the result on the right. We follow the Lambek style, but add arrowheads,
writing “↘” and “↙”, to make it easier to see where the parameter and where
the result is.

For reading nested implications, it is useful to bear in mind whether the
arrows are pointing inward or outward. The following two types are isomorphic:

(ϕ1↘ ψ)↙ ϕ2 and ϕ1↘ (ψ↙ ϕ2)
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Intuitively, it makes no difference whether a binary operator consumes its left
operand ϕ1 or its right operand ϕ2 first. We may write ϕ1↘ ψ↙ ϕ2 to mean
either of them, just as brackets can be omitted due to ◦ being associative. By
contrast, the two types where ψ occurs in a doubly negative position, as in:

(ϕ1↙ ψ)↘ ϕ2 and ϕ2↙ (ψ↘ ϕ1)

are genuinely different, even when ϕ1 = ϕ2. Such doubly-negated types will be
pertinent later on, particularly in Section 4.

The rules of the syntactic calculus are divided into those that are taken
directly from Lambek’s paper [15], gathered in Figure 3, and additional rules
we add in this paper for using of the calculus on top of a fixed context-free
grammar, presented in Figure 4.

In logical terms, the four rules for the implications in Figure 3 are quite
natural if one thinks of implications (or arrow types) as adjoints of conjunctions
(or products). In linear logic, the linear implication ( is adjoint to ϕ ⊗ (−).
In separation logic, the separating implication −−∗ is adjoint to the separating
conjunction ϕ ∗ (−). In the Lambek calculus, the product is not commutative,
so that (−) ◦ ϕ and ϕ ◦ (−) are not interchangeable. Consequently, there are
two different adjoints ↘ and ↙. The other four rules state that the subtyping
relation ≤ is reflexive and transitive, and that the product ◦ is associative.

The rules in Figure 3 are the logical core of the calculus that applies to
any language. In order to specialize the calculus to a particular language, we
need additional axioms. In our case here, we import all productions of the
given context-free grammar into the subtyping relation by adding axiom schemas
stating that the product of the symbols on the right-hand side of the production
is a subtype of the non-terminal symbol on the left of the production. Note that
the order of the subtyping is the reverse of the way grammars are written; it is
in reduction rather than derivation order. As we can have epsilon productions
(having an empty string on the right-hand side) in the grammar, we need to
represent the empty string ε in the syntactic calculus as well. We do so by
adding a type constant called ε and rules making it a left and right unit for
product. Logically, ε is a natural addition to the calculus, in that it is the
nullary analogue of Lambek’s binary ◦ connective. These rules are given in
Figure 4.

Lambek [15] also defines a sequent calculus, as this yields a decision pro-
cedure. In the literature, this sequent presentation is often referred to simply
as the Lambek calculus. The calculus has left and right rules for the connec-
tives, and it lacks all structural rules, going even further than Linear Logic and
Separation Logic by banishing the Exchange rule [28]. Hence it distinguishes
between a left and a right implication connective.

Definition 3.3 (Sequent presentation of the calculus) Let ϕ, ψ and π range
over types as in Definition 3.1. We let the capital Greek letters Φ,Ψ and Π
range over sequences of the form ϕ1 . . . ϕn, written without separating commas.
Judgements are of the form Φ / ϕ, using the inference rules listed in Figures 5
and 6.
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Φ / ϕ Ψ ψ Π / π
(↙l)

Ψ (ψ↙ ϕ) Φ Π / π

Φ ϕ / ψ
(↙r)

Φ / ψ↙ ϕ

Φ / ϕ Ψ ψ Π / π
(↘l)

Ψ Φ (ϕ↘ ψ) Π / π

ϕ Φ / ψ
(↘r)

Φ / ϕ↘ ψ

Φ ϕ ψ Ψ / π
(◦l)

Φ (ϕ ◦ ψ) Ψ / π

Φ / ϕ Ψ / ψ
(◦r)

Φ Ψ / ϕ ◦ ψ

Φ / ϕ Ψ ϕ Π / ψ
(cut)

Ψ Φ Π / ψ
(ax)

ϕ / ϕ

Figure 5: Sequent calculus variant of Lambek’s syntactic calculus

(A,α) ∈ P
(P/)

α / A

Φ Ψ / ϕ
(εL)

Φ ε Ψ / ϕ
(εR)

/ ε

Figure 6: Additional rules for sequents
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D

ε
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a
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D

ε

F

ε

Figure 7: Parse tree for a = b OR 1 = 1 and partial parse tree for a = ©

The Lambek calculus has a simple denotational semantics. In particular, the
two implications are interpreted as left and right language difference, product as
concatenation, and judgements are interpreted as language inclusion [28]. For
our version of the calculus, built on top of a context-free grammar, its semantics
is as follows:

Definition 3.4 The denotation of a type in the syntactic calculus is a set of
words, defined inductively as follows:

[[X]] = {w ∈ T∗ | X ∗⇒ w}
[[ϕ↘ ψ]] = {w ∈ T∗ | ∀v ∈ T∗.v ∈ [[ϕ]] implies v w ∈ [[ψ]]}
[[ψ↙ ϕ]] = {w ∈ T∗ | ∀v ∈ T∗.v ∈ [[ϕ]] implies w v ∈ [[ψ]]}

[[ϕ1 ◦ ϕ2]] = {w1 w2 ∈ T∗ | w1 ∈ [[ϕ1]] and w2 ∈ [[ϕ2]]}
[[ε]] = {ε}

The semantics of a logical context Φ = ϕ1 . . . ϕn is the same as that of the n-fold
product of ϕj , unless the sequence is empty, in which case it is the same as ε:

[[Φ]] = {ε} if Φ is the empty context

[[ϕ1 . . . ϕn]] = {w ∈ T∗ | w = w1 . . . wn where

w1 ∈ [[ϕ1]], . . . , wn ∈ [[ϕn]] }

4 Reasoning about syntactic effects

In this section, we first investigate a command injection attack as an example
of reasoning in the syntactic calculus. Building on what can be gleaned from
that example, we then place it into a wider context of types and effects.

We define a toy grammar of Boolean expressions that is sufficient for dis-
cussing tautology attacks. The grammar uses a standard technique to avoid am-
biguity and to ensure that conjunction binds more tightly than disjunction [1].
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An expression E is a disjunction of conjunctions C of equality tests T between
values V . A series of applications of AND is parsed as a C, but no OR can appear
in a C.

E ::= C F

F ::= OR C F

| ε

C ::= T D

D ::= AND T D

| ε

T ::= V = V

V ::= 1 | . . . | a | b | . . .

We will now reason about the interaction between malicious inputs and vul-
nerable contexts using the syntactic calculus in its logical variant. The presenta-
tion as a sequent calculus, with left and right rules for the connectives, may look
unfamiliar compared to type systems, which are usually in natural deduction
style. Nonetheless, elimination rules for the arrow types are derivable:

Φ / ϕ Ψ / ϕ↘ ψ
(↘e)

Φ Ψ / ψ

A symmetric elimination rule (↙e) exists for ↙. The proof for deriving (↘e)
is as follows:

Ψ / ϕ↘ ψ

Φ / ϕ
(ax)

ψ / ψ
(↘l)

Φ (ϕ↘ ψ) / ψ
(cut)

Φ Ψ / ψ

Now suppose we have some code in which a string variable is concatenated
with the string constant “a = ”. The judgement a = / T ↙ V tells us that the
incomplete test expects a value to its right. If we supply such a value, say b, we
infer using the derived elimination rule:

a = / T ↙ V b / V
(↙e)

a = b / T

Now consider the attack string b OR 1 = 1. The essential point is that the
attack reverses the role of operator and operand when concatenated with the
fragment a =. In our calculus that is captured by the judgement

b OR 1 = 1 / (T ↙ V )↘ E

To infer this, we first note that we can derive in the grammar

E
∗⇒ T OR 1 = 1
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which implies T OR 1 = 1 / E. From that, we construct the following proof:

(V, b) ∈ P
(P /)

b / V
(ax)

T / T
(↙l)

(T ↙ V ) b / T T OR 1 = 1 / E
(cut)

(T ↙ V ) b OR 1 = 1 / E
(↘r)

b OR 1 = 1 / (T ↙ V )↘ E

The two syntax fragments fit together to build an expression:

a = / T ↙ V b OR 1 = 1 / (T ↙ V )↘ E
(↘e)

a = b OR 1 = 1 / E

The fragment a = is now in the operand position of the application, rather than
the operator position it had in a = b / T .

As Figure 7 shows, the parse tree for a = b OR 1 = 1 does not arise from
completing the partial parse tree for a = © displayed to its right, where ©
indicates the “hole” position in the partial parse tree and syntax fragment.

The common name in the software security literature is Tautology attack,
as it is the tautology that renders the test trivially true. However, in terms
of reshaping the parse tree, the crucial ingredient is the fact that the injected
operator OR has a lower precedence that the adjacent operator =, as the low
precedence causes the OR node to move up in the parse tree.

Whether or not this way of combining pieces of syntax is an attack or a
useful way to build up strings depends on what type we consider the function
to have.

5 Double negation in command injection and
linguistics

Note that the string with the syntactic effect is very sensitive to the context on
which it has an effect. If we merely change the order in the latter, replacing
a = © with© = a, the original attack does not work anymore, producing only
an ungrammatical string. (In software security practice, that means attackers
may need some reverse engineering skills to craft malicious input that fits into
the syntactic context like a key into a lock.) The two connectives ↘ and ↙
capture such ordering accurately. For injecting into© = a, the attack string is
symmetric to the one above, with all implications reversed:

String has type fitting into context

b OR 1 = 1 (T ↙ V )↘ E a = ©

1 = 1 OR b E↙ (V ↘ T ) © = a
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The main use of the Lambek calculus and related formalisms such as cate-
gorial grammar has been in linguistics rather than computer science (although
Lambek’s original paper discusses examples from logic along with those from
natural language). Nonetheless, there are some intriguing parallels to the situ-
ations we have discussed.

Consider a naive syntax for English sentences. We have a type Sen of
sentences and a type Noun of nouns. Names like “Alice” and “Bob” have
type Noun. In the syntactic calculus, a transitive verb has a type like a binary
operator, for instance

knows / Noun↘ (Sen↙Noun)

So we can derive sentences like“ Alice knows Bob” in the same way as deriving
Boolean expressions like a = b OR 1 = 1. Lambek [15] observes that pronouns
like he and him may occur in some positions in which nouns may occur. However,
pronouns are more sensitive to their position, because“ he” has to occur to the
left of the verb, whereas “him” needs to be to the right of the verb. The calculus
captures this grammatical fact by giving the two different double negations as
the types of “he” and “him”:

String has type fitting into context

he Sen↙ (Noun↘ Sen) © knows Alice

him (Sen↙Noun)↘ Sen Alice knows ©

Compare the difference between injection to the left or the right of the
equality test discussed above.

6 Syntactic effects and control effects

Rather than supplying the expected type V , the attack string supplies a kind
of generalized double negation of V , or more precisely, a V inside the negative
position of two implications, as in

(ϕ1↙ V )↘ ϕ2 and ϕ2↙ (V ↘ ϕ1)

This typing generalizes the double negation of a formula A in logic, namely

(A→ ⊥)→ ⊥

The raising to a doubly-negated type is reminiscent of control operators in
programming languages, and specifically the way that continuation passing style
(CPS) introduces a form of double negation.

As a brief reminder of control operators, we consider the following simple
use of the control operator call/cc:

(call/cc(λk.42 + (k 2))) + 1
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Operationally, the current continuation is bound to the variable k when the
call to call/cc is evaluated. Continuations can be represented as evaluation
contexts [8], written as terms with a hole. In our example, the continuation
bound to k could be written as

©+ 1

where © stand for the hole. When k is invoked in the subexpression (k 2), the
value 2 is plugged into the hole of the continuation, and the whole expression
thereby evaluates to 2+1 = 3. If the operational semantics of control operators
is formalized in terms of evaluation contexts [8], a salient feature is that their
evaluation can move upward in the surrounding evaluation context. Compare
how in Figure 7 the injected operator OR moves upward in the parse tree from
where it was inserted by, so to speak, elbowing itself across the node labelled T .

The application (k 2) appears to be of type int, in that it can be used as
an argument of the operator +. The surrounding context, expecting an integer
to be supplied, can be thought of as a function from int to some answer type
Ans. If a value occurs in the context, it is passed to the function, yielding an
answer. However, if the expression inside the context has control effects, it
does not simply supply a value to its context. Instead, it takes the context as
an argument and manipulates it (in the example above, by discarding it and
using the continuation bound to k instead). Hence an expression with control
effects of direct-style type int has a continuation-passing type that is a double
negation of int:

(int→ Ans)→ Ans

In programming language semantics, these double negations are inserted by
continuation passing style transforms [19]. The resulting connection [11] to
classical logic has been studied intensely. As a further refinement of this typing
of control effects, an effect system can constrain how far up in the context the
effect may reach [16, 14, 25]. In an effect system, we can control how effectful
the argument of a function is. Suppose a function f : C → B is intended to
be pure, which means it has no effect. The function type for pure functions is

written as C
∅−→ B. However, if f calls a function passed as its argument, that

function also needs to be pure. In the effect system, we can express this by
giving a type of this form:

f : (A
∅−→ B)

∅−→ B

In an effect system, one often has a notion of sub-effecting, where a function
that has fewer latent effects can be used where one with potentially more effects
is expected. This fits well with out view here that a word with type ϕ also has
the the two double negations of ϕ as its type, but not conversely.

To sum up, we would like to draw the following analogy between an expres-
sion with control effects and a syntactic command injection attack string:
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Expression Context expects CPS type

(k 2) int (int→ Ans)→ Ans

b OR 1 = 1 V (T ↙ V )↘ E

1 = 1 OR b V E↙ (V ↘ T )

Whereas the transformation of lambda terms into continuation passing style
introduces nests of additional lambda abstractions, its analogue in the Lambek
calculus is silent, so to speak. If a word w expects some word v on its right, we
can regard v as expecting such a w on its left. So if v is a ϕ and w a ψ↙ ϕ,
then we can equally regard the same word v as a (ψ↙ ϕ)↘ ψ.

More formally, there are two derivable rules for introducing double negation:

Φ / ϕ
(dnil)

Φ / (ψ↙ ϕ)↘ ψ

Φ / ϕ
(dnir)

Φ / ψ↙ (ϕ↘ ψ)

These rules are derivable as follows:

Φ / ϕ
(ax)

ψ / ψ
(↙l)

(ψ↙ ϕ) Φ / ψ
(↘r)

Φ / (ψ↙ ϕ)↘ ψ

Φ / ϕ
(ax)

ψ / ψ
(↘l)

Φ (ϕ↘ ψ) / ψ
(↙r)

Φ / ψ↙ (ϕ↘ ψ)

We recognize the syntactic control effects in the Lambek calculus as a form
of continuation passing that goes even further in banishing structural rules than
linear continuations [9] or linearly used continuations [3].

It is instructive to compare and contrast the two double-negation introduc-
tions in the Lambek calculus with double-negation introduction in intuitionistic
and linear logic. Let us consider linear logic (as we can move from linear to in-
tuitionistic logic by adding the Weakening and Contraction rules). There is no
distinction between left and right implications, with only a single introduction
and a single elimination rule for the linear implication (:

Γ, A ` B
(( I)

Γ ` A( B

Γ ` A( B ∆ ` A
(( E)

Γ,∆ ` B
These rules give rise to a double negation introduction. Its proof relies on the
ability to exchange formulas in the context:

A( R ` A( R Γ ` A
(( E)

A( R,Γ ` R
(Exchange)

Γ, A( R ` R
(( I)

Γ ` (A( R) ( R

The corresponding proof term is λk.k x, or more precisely:

x : A ` λk.k x : (A( R) ( R
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In the Lambek calculus, by contrast, there is no need for λ-abstraction and
application. The continuation passing version of a word w is just w itself.

7 Conclusions

In computer science generally, the Lambek calculus, particularly when presented
as sequent calculus, is perhaps chiefly recognized as an early instance of a sub-
structural logic, dating from 1958. As such, it precedes Linear Logic [10] and
the Bunched Implications [20] logic underlying Separation Logic [22]. See van
Benthem’s overview [28] for a comparison to Linear Logic.

It is interesting to note that the other main scourges of software security
apart from command injection are memory corruption and unsafe resource us-
age, and that substructural logics have been successful in reasoning about mem-
ory and resource usage [13, 17, 22, 18].

Our view here of command injection as a kind of control effect that seizes
its context evolved from calculi for continuations [5, 8, 7] and type-and-effect
systems that make such control effects explicit in the types [11, 16, 14, 25].
Behind each continuation, it it possible to introduce another level of contin-
uations, sometimes called meta-continuations [5]. These additional levels of
continuations are particularly vivid in the syntactic calculus, as they are im-
plicitly always present due to the silent double-negation introduction, without
the need to write additional λ-abstractions. In linguistics, the double negation
introduction is also known as “type raising”. There are further examples of
effects similar to those of control operators, such as Montague’s semantics of
quantification. For an introduction aimed at computer scientists, see Barker’s
survey article [2].

For security policies or safety properties of programming languages, there
are usually dynamic (run-time) and static (compile-time) approaches. A num-
ber of tools have been developed that defend against command injection attacks
in a variety of languages [24]. For such tools, a major engineering challenge is to
integrate them with existing technologies such as SQL and scripting languages
with minimal intervention by programmers. While the use of parsing in such
defences is one of the starting points of the present paper, the focus here is
much more theoretical. Thiemann’s Grammar-based Analysis of String Expres-
sions [27] uses a language of types that appears closely related to the fragment
of the Lambek calculus without implications ↘ and ↙.

It remains a problem for future research to establish a formal connection
between syntactic effects (such as those due to command injections) and control
operators in the semantics of the language, given by parsing actions [26]. The
semantic action of a string with a syntactic effect (such as those arising in
command injections) may be conjectured to be equivalent to an expression with
a suitable control operator, most likely a form of delimited continuation, such
as shift/reset [4].
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A Quick Survey on Bisimulations for

Delimited-Control Operators

Dariusz Biernacki Serguëı Lenglet

April 12th 2015

Abstract

We present a survey of the behavioral theory of the delimited-control op-
erators shift and reset. We first define a notion of contextual equivalence,
that we then aim to characterize with bisimilarities. We consider several
styles of bisimilarities, namely normal form, applicative, and environmen-
tal. Each style has its strengths and weaknesses, and we provide several
examples to allow comparisons between the different kinds of equivalence
proofs.
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1 Introduction

Control operators for delimited continuations [9, 11] provide elegant means for
expressing advanced control mechanisms [9, 15]. Moreover, they play a fun-
damental role in the semantics of computational effects [12], normalization by
evaluation [3] and as a crucial refinement of abortive control operators such
as callcc [11, 24]. Of special interest are control operators shift and reset [9]
due to their origins in continuation-passing style (CPS) and their connection
with computational monads [12]. The control delimiter reset delimits the cur-
rent continuation and the control operator shift abstracts the current delimited
continuation as a first class value that when resumed is composed with the
then-current continuation.

Because of the complex nature of control effects, it can be difficult to de-
termine if two programs that use shift and reset are equivalent (i.e., behave in
the same way) or not. Contextual equivalence [20] is widely considered as the
most natural equivalence on terms in languages similar to the λ-calculus. The
intuition behind this relation is that two programs are equivalent if replacing
one by the other in a bigger program does not change the behavior of this big-
ger program. The behavior of a program has to be made formal by defining the
observable actions we want to take into account for the calculus we consider.
It can be, e.g., inputs and outputs for communicating systems [23], memory
reads and writes, etc. For the plain λ-calculus [1], it is usually whether the
term terminates or not. The “bigger program” can be seen as a context (a term
with a hole), and therefore two terms t0 and t1 are contextually equivalent if we
cannot tell them apart when executed within any context C , i.e., if C [t0] and
C [t1] produce the same observable actions.

The latter quantification over contexts C makes context equivalence hard to
use in practice to prove that two given terms are equivalent. As a result, one
usually looks for more tractable alternatives to contextual equivalence, such as
bisimulations. A bisimulation relates two terms t0 and t1 by asking them to
mimic each other in a coinductive way, e.g., if t0 reduces to a term t′0, then
t1 has to reduce to a term t′1 so that t′0 and t′1 are still in the bisimulation,
and conversely for the reductions of t1. An equivalence on terms, called bisim-
ilarity can be derived from a notion of bisimulation: two terms are bisimilar if
there exists a bisimulation which relates them. Finding an appropriate notion of
bisimulation consists in finding the conditions on which two terms are related,
so that the resulting notion of bisimilarity is sound and complete w.r.t. con-
textual equivalence, (i.e., is included into and contains contextual equivalence,
respectively).

Different styles of bisimulations have been proposed for calculi similar to
the λ-calculus. For example, applicative bisimilarity [1] relates terms by re-
ducing them to values (if possible), and the resulting values have to be them-
selves applicative bisimilar when applied to an arbitrary argument. As we can
see, applicative bisimilarity still contains some quantification over arguments to
compare values, but is nevertheless easier to use than contextual equivalence
because of its coinductive nature, and also because we do not have to consider
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all forms of contexts. Applicative bisimilarity is usually sound and complete
w.r.t. contextual equivalence, at least for deterministic languages such as the
plain λ-calculus [1].

In contrast with applicative bisimilarity, normal form bisimilarity [18] does
not contain any quantification over arguments or contexts in its definition. The
principle is to reduce the compared terms to values (if possible), and then to
decompose the resulting values into sub-components that have to be themselves
bisimilar. Unlike applicative bisimilarity, normal form bisimilarity is usually
not complete, i.e., there exist contextually equivalent terms that are not normal
form bisimilar. But because of the lack of quantification over contexts, proving
that two terms are normal form bisimilar is usually quite simple.

Finally, environmental bisimilarity [22] is quite similar to applicative bisim-
ilarity, as it compares terms by reducing them to values, and then requires the
resulting values to be bisimilar when applied to some arguments. However, the
arguments are no longer arbitrary, but built using an environment, which rep-
resents the knowledge accumulated so far by an outside observer on the tested
terms. Like applicative bisimilarity, environmental bisimilarity is usually sound
and complete, but it also allows for up-to techniques (like normal form bisim-
ilarity) to simplify its equivalence proofs. In contrast, the definition of up-to
techniques for applicative bisimilarity remains an open problem.

In this article, we propose a survey of our previously published work [6, 5,
7] on the behavioral theory of a λ-calculus extended with the operators shift
and reset. We first define a notion of contextual equivalence, that we aim to
characterize with the three styles of bisimilarities discussed above. We provide
several examples to show how to prove that two terms are equivalent with each
bisimulation style.

Section 2 presents the syntax and semantics of the calculus λS with shift and
reset we use in this paper. In this section, we also remind the definition of CPS
equivalence, a CPS-based equivalence between terms, and discusse the definition
of a contextual equivalence for λS . We look for (at least sound) alternatives of
this contextual equivalence by considering several styles of bisimilarities: normal
form in Section 3, applicative in Section 4, and environmental in Section 5.
Section 6 concludes this paper. Section 3 summarizes results presented in [6],
Section 4 results in [5], and Section 5 results in [7].

2 The calculus λS

In this section, we present the syntax, reduction semantics, and contextual
equivalence for the language λS studied throughout this article.

2.1 Syntax

The language λS extends the call-by-value λ-calculus with the delimited-control
operators shift and reset [9]. We assume we have a set of term variables, ranged
over by x, y, z, and k. We use the metavariable k for term variables representing
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a continuation (e.g., when bound with a shift), while x, y, and z stand for any
values; we believe such distinction helps to understand examples and reduction
rules. The syntax of terms and values is given by the following grammars:

Terms: t ::= x | λx.t | t t | Sk.t | 〈t〉
Values: v ::= λx.t | x

The operator shift (Sk.t) is a capture operator, the extent of which is determined
by the delimiter reset (〈·〉). A λ-abstraction λx.t binds x in t and a shift
construct Sk.t binds k in t; terms are equated up to α-conversion of their bound
variables. The set of free variables of t is written fv(t); a term is closed if
fv(t) = ∅.

We distinguish several kinds of contexts, represented outside-in, as follows.

Pure contexts: E ::= � | v E | E t
Evaluation contexts: F ::= � | v F | F t | 〈F 〉
Contexts: C ::= � | λx.C | t C | C t | Sk.C | 〈C 〉

Regular contexts are ranged over by C . The pure evaluation contexts1 (abbrevi-
ated as pure contexts), ranged over by E , represent delimited continuations and
can be captured by the shift operator. The call-by-value evaluation contexts,
ranged over by F , represent arbitrary continuations and encode the chosen re-
duction strategy. Filling a context C (respectively E , F ) with a term t produces
a term, written C [t] (respectively E [t], F [t]); the free variables of t may be cap-
tured in the process. We extend the notion of free variables to contexts (with
fv(�) = ∅), and we say a context C (respectively E , F ) is closed if fv(C ) = ∅ (re-
spectively fv(E ) = ∅, fv(F ) = ∅). In any definitions or proofs, we say a variable
is fresh if it does not occur free in the terms or contexts under consideration.

2.2 Reduction Semantics

The call-by-value left-to-right reduction semantics of λS is defined as follows,
where t{v/x} is the usual capture-avoiding substitution of v for x in t:

(βv) F [(λx.t) v] →v F [t{v/x}]
(shift) F [〈E [Sk.t]〉] →v F [〈t{λx.〈E [x]〉/k}〉] with x /∈ fv(E )
(reset) F [〈v〉] →v F [v]

The term (λx.t) v is the usual call-by-value redex for β-reduction (rule (βv)).
The operator Sk.t captures its surrounding context E up to the dynamically
nearest enclosing reset, and substitutes λx.〈E [x]〉 for k in t (rule (shift)). If a
reset is enclosing a value, then it has no purpose as a delimiter for a potential
capture, and it can be safely removed (rule (reset)). All these reductions may oc-
cur within a metalevel context F . The chosen call-by-value evaluation strategy
is encoded in the grammar of the evaluation contexts. Furthermore, the reduc-
tion relation →v is compatible with evaluation contexts F , i.e., F [t] →v F [t′]
whenever t→v t

′.

1This terminology comes from Kameyama (e.g., in [17]).
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Example 2.1 (fixed-point combinators). We remind the definition of Tur-

ing’s and Curry’s fixed-point combinators. Let θ
def
= λxy.y (λz.x x y z) and

δx
def
= λy.x (λz.y y z); then Θ

def
= θ θ is Turing’s call-by-value fixed-point combina-

tor, and ∆
def
= λx.δxδx is Curry’s call-by-value fixed-point combinator. In [8], the

authors propose variants of these combinators using shift and reset. They write
Turing’s combinator as 〈θ Sk.k k〉 and Curry’s combinator as λx.〈δx Sk.k k〉. We
use the combinators and their delimited-control variants as examples throghout
the paper, and we study in particular the equivalences between them in Exam-
ple 3.3.

There exist terms which are not values and which cannot be reduced any
further; these are called stuck terms.

Definition 2.2. A term t is stuck if t is not a value and t 6→v.

For example, the term E [Sk.t] is stuck because there is no enclosing reset;
the capture of E by the shift operator cannot be triggered. In fact, stuck terms
are easy to characterize.

Proposition 2.3. A term t is stuck iff t = E [Sk.t′] for some E, k, and t′ or
t = F [x v] for some F , x, and v.

We call control stuck terms terms of the form E [Sk.t] and open stuck terms
the terms of the form F [x v].

Definition 2.4. A term t is a normal form, if t is a value or a stuck term.

We call redexes (ranged over by r) terms of the form (λx.t) v, 〈E [Sk.t]〉,
and 〈v〉. Thanks to the following unique-decomposition property, the reduction
relation →v is deterministic.

Proposition 2.5. For all terms t, either t is a normal form, or there exist a
unique redex r and a unique context F such that t = F [r].

Finally, we write →∗v for the transitive and reflexive closure of →v, and we
define the evaluation relation of λS as follows.

Definition 2.6. We write t ⇓v t′ if t→∗v t′ and t′ cannot reduce further.

The result of the evaluation of a term, if it exists, is a normal form. If a
term t admits an infinite reduction sequence, we say it diverges, written t ⇑v.

As an example of such a term, we use extensively Ω
def
=(λx.x x) (λx.x x).

In the rest of the paper, we use the following results on the reduction (or
evaluation) of terms. First, a control stuck term cannot be obtained from a
term of the form 〈t〉.

Proposition 2.7. If 〈t〉 ⇓v t′ then t′ is a value or an open stuck term of the
form 〈F [x v]〉. (If t is closed then t′ can only be a closed value.)
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(λx.t) v = t{v/x} βv

(λx.E [x]) t = E [t] if x /∈ fv(E ) βΩ

〈E [Sk.t]〉 = 〈t{λx.〈E [x]〉/k}〉 〈·〉S
〈(λx.t0) 〈t1〉〉 = (λx.〈t0〉) 〈t1〉 〈·〉lift

〈v〉 = v 〈·〉val
Sk.〈t〉 = Sk.t S〈·〉
λx.v x = v if x /∈ fv(v) ηv

Sk.k t = t if k /∈ fv(t) Selim

Figure 1: Kameyama and Hasegawa’s axiomatization of λS

2.3 The Original Reduction Semantics

Let us notice that the reduction semantics we have introduced does not require
terms to be evaluated within a top-level reset—a requirement that is commonly
relaxed in practical implementations of shift and reset [10, 12], but also in
some other studies of these operators [2, 16]. This is in contrast to the original
reduction semantics for shift and reset [4] that has been obtained from the 2-
layered continuation-passing-style (CPS) semantics [9], discussed in Section 2.4.
A consequence of the correspondence with the CPS-based semantics is that
terms in the original reduction semantics are treated as complete programs and
are decomposed into triples consisting of a subterm (a value or a redex), a
delimited context, and a meta-context (a list of delimited contexts), resembling
abstract machine configurations. Such a decomposition imposes the existence
of an implicit top-level reset, hard-wired in the decomposition, surrounding any
term to be evaluated.

The two semantics, therefore, differ in that in the original semantics there are
no stuck terms. However, it can be easily seen that operationally the difference
is not essential—they are equivalent when it comes to terms of the form 〈t〉. In
the rest of the article we call such terms delimited terms and we use the relaxed
semantics when analyzing their behaviour.

The top-level reset requirement, imposed by the original semantics, does
not lend itself naturally to the normal-form and applicative bismulation tech-
niques that we propose for the relaxed semantics in Sections 3 and 4. We show,
however, that the requirement can be successfully treated in the framework of
environmental bisimulations, presented in Section 5.

2.4 CPS Equivalence

The operators shift and reset have been originally defined by a translation into
continuation-passing style [9]. This CPS translation induces the following notion
of equivalence on λS terms:

Definition 2.8. Terms t and t′ are CPS equivalent if their CPS translations
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are βη-convertible.

For example, the reduction rules t→v t
′ given in Section 2.2 are sound w.r.t.

the CPS because CPS translating t and t′ yields βη-convertible terms in the λ-
calculus. The CPS equivalence has been characterized in terms of direct-style
equations by Kameyama and Hasegawa who developed a sound and complete
axiomatization of shift and reset [17]: two λS terms are CPS equivalent iff one
can derive their equality using the equations of Figure 1.

The axiomatization is a source of examples for the bisimulation techniques
that we study in Sections 3, 4 and 5, and it allows us to relate the notion of CPS
equivalence to the notions of contextual equivalence that we introduce in the
next section. In particular, we show that all but one axiom are validated by the
bisimilarities for the relaxed semantics, and that all the axioms are validated by
the environmental bisimilarity for the original semantics. The discriminating
axiom that confirms the discrepancy between the two semantics is Selim—the
only equation that hinges on the existence of the top-level reset.

2.5 Contextual Equivalence

In this section, we discuss the possible definitions of a Morris-style contextual
equivalence for the calculus λS . As usual, the idea is to express that two terms
are equivalent iff they cannot be distinguished when put in an arbitrary context.
The question is then what kind of behavior we want to observe. In λS , the
evaluation of closed terms generates not only values, but also control stuck
terms. Taking this into account, we obtain the following definition of contextual
equivalence.

Definition 2.9. Let t0, t1 be closed terms. We write t0 C t1 if for all closed C ,

• C [t0] ⇓v v0 iff C [t1] ⇓v v1;

• C [t0] ⇓v t′0, where t′0 is control stuck, iff C [t1] ⇓v t′1, with t′1 control stuck
as well.

The relation C is defined on closed terms, but can be extended to open terms
using closing substitutions: we say σ closes t if it maps the free variables of t
to closed values. The open extension of a relation, written R◦, is defined as
follows.

Definition 2.10. Let R be a relation on closed terms, and t0 and t1 be open
terms. We write t0 R◦ t1 if for every substitution σ which closes t0 and t1,
t0σ R t1σ holds.

The relation C is not suitable for the original semantics, because they dis-
tinguish terms that should be equated according to Kameyama and Hasegawa’s
axiomatization. Indeed, according to these relations, Sk.k v (where k /∈ fv(v))
cannot be related to v (axiom Selim in Figure 1), because a stuck term cannot
be related to a value. In the next section, we discuss a definition of contextual
equivalence for the original semantics.
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2.6 Contextual Equivalence for the Original Semantics

To reflect the fact that in the original semantics terms are evaluated within an
enclosing reset, the contextual equivalence we consider for the original semantics
tests terms in contexts of the form 〈C 〉 only. Because delimited terms cannot
reduce to stuck terms (Proposition 2.7), the only possible observable action is
evaluation to values. We therefore define contextual equivalence for delimited
terms as follows.

Definition 2.11. Let t0, t1 be closed terms. We write t0 P t1 if for all closed
C , 〈C [t0]〉 ⇓v v0 iff 〈C [t1]〉 ⇓v v1.

The relation P is defined on all (closed) terms, not just delimited ones. The
resulting relation is less discriminative than C, because P uses contexts of a
particular form, while C tests with all contexts.

Proposition 2.12. We have C ⊆ P.

As a result, any equivalence between terms we prove for the relaxed semantics
also holds in the original semantics, and any bisimilarity sound w.r.t. C (like
the bisimilarities we define in Sections 3, 4, and 5.1) is also sound w.r.t. P.
However, to reach completeness, we have to design a bisimilarity suitable for
delimited terms (see Section 5.2).

The inclusion of Proposition 2.12 is strict; in particular, P verifies the axiom
Selim, while C does not. In fact, we prove in Section 5.2 that P contains the
CPS equivalence ≡. The reverse inclusion does not hold (for P as well as for C):
there exists contextually equivalent terms that are not CPS equivalent.

Proposition 2.13. 1. We have Ω P ΩΩ (respectively Ω C ΩΩ), but Ω 6≡ ΩΩ.

2. We have Θ P ∆ (respectively Θ C ∆), but Θ 6≡ ∆.

The contextual equivalences C and P put all diverging terms in one equiv-
alence class, while CPS equivalence is more discriminating. Furthermore, as
is usual with equational theories for λ-calculi, CPS equivalence is not strong
enough to equate Turing’s and Curry’s (call-by-value) fixed-point combinators.

As explained in the introduction, contextual equivalence is difficult to prove
in practice for two given terms because of the quantification over contexts. We
look for a suitable replacement (that is, an equivalence that is at least sound
w.r.t. C or P) by studying different styles of bisimulation in the next sections.

3 Normal Form Bisimilarity

Normal form bisimilarity [18] equates (open) terms by reducing them to normal
form, and then requiring the sub-terms of these normal forms to be bisimi-
lar. Unlike applicative and environmental bisimilarities (studied in the next
sections), normal form bisimilarity usually does not contain a universal quan-
tification over testing terms or contexts in its definition, and is therefore easier
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Definition of ? on values:

x ? y
def
= x y λx.t ? y

def
= t{y/x}

Definition of RNFη on normal forms and contexts

E [x] R E ′[x] x fresh

E RNFη E ′
〈E [x]〉 R 〈E ′[x]〉 F [x] R F ′[x] x fresh

F [〈E 〉] RNFη F ′[〈E ′〉]

v0 ? x R v1 ? x x fresh

v0 RNFη v1

E0 RNFη E1 〈t0〉 R 〈t1〉
E0[Sk.t0] RNFη E1[Sk.t1]

F0 RNFη F1 v0 RNFη v1

F0[x v0] RNFη F1[x v1]

Figure 2: Definitions of the operator ? and the relation RNFη

to use than the former two. However, it is also usually not complete w.r.t.
contextual equivalence, meaning that there exist contextually equivalent terms
that are not normal form bisimilar. This section summarizes the results in [6].

3.1 Definition

In the λ-calculus [21, 18], the definition of normal form bisimilarity has to take
into account only values and open stuck terms. In λS with the relaxed semantics,
we have to relate also control stuck terms; we propose here a first way to deal
with these terms, that will be refined in the next subsection. Deconstructing
normal forms leads to comparing contexts as well as terms. Given a relation R
on terms, we define in Fig. 2 an extension of R to normal forms and contexts,
writtenRNFη, which relies on an application operator for values ?. The rationale
behind the definitions of ? and RNFη becomes clear when we explain our notion
of normal form bisimilarity, defined below.

Definition 3.1. A relation R on terms is a normal form simulation if t0 R t1
and t0 ⇓v t′0 implies t1 ⇓v t′1 and t′0 R

NFη t′1. A relation R is a normal form
bisimulation if both R and R−1 are normal form simulations. Normal form
bisimilarity, written N, is the largest normal form bisimulation.

In this section, we often drop the “normal form” attribute when it does not
cause confusion. Two terms t0 and t1 are bisimilar if their evaluations lead to
matching normal forms (e.g., if t0 evaluates to a control stuck term, then so
does t1) with bisimilar sub-components. We now detail the different cases.

Normal form bisimilarity does not distinguish between evaluation to a vari-
able and evaluation to a λ-abstraction. Instead, we relate terms evaluating to
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any values v0 and v1 by comparing v0 ? x and v1 ? x, where x is fresh. As
originally pointed out by Lassen [18], this is necessary for the bisimilarity to
be sound w.r.t. η-expansion; otherwise it would distinguish η-equivalent terms
such as λy.x y and x. Using ? instead of regular application avoids the intro-
duction of unnecessary β-redexes, which could reveal themselves problematic in
proofs.

For a control stuck term E0[Sk.t0] to be executed, it has to be plugged into
an evaluation context surrounded by a reset; by doing so, we obtain a term of
the form 〈t0{λx.〈E′0[x]〉/k}〉 for some context E′0. Notice that the resulting term
is within a reset; similarly, when comparing E0[Sk.t0] and E1[Sk.t1], we ask for
the shift bodies t0 and t1 to be related when surrounded by a reset. We also
compare E0 and E1, which amounts to executing E0[x] and E1[x] for a fresh x,
since the two contexts are pure. Comparing t′0 and t′1 without reset would be
too discriminating, as it would distinguish contextually equivalent terms such
as Sk.〈t〉 and Sk.t (axiom S〈·〉). Indeed, without reset, we would have to relate
〈t〉 and t, which are not equivalent in general (take t = Sk′.v for some v), while
Definition 3.1 requires 〈〈t〉〉 and 〈t〉 to be related (which holds for all t; see
Example 3.2).

The open stuck terms F0[x v0] and F1[x v1] are bisimilar if the values v0 and
v1 as well as the contexts F0 and F1 are related. We have to be careful when
defining bisimilarity on (possibly non pure) evaluation contexts. We cannot sim-
ply relate F0 and F1 by executing F0[y] and F1[y] for a fresh y. Such a definition
would equate the contexts � and 〈�〉, which in turn would relate the terms x v
and 〈x v〉, which are not contextually equivalent: they are distinguished by the
context (λx.�)λy.Sk.Ω. A context containing a reset enclosing the hole should
be related only to contexts with the same property. However, we do not want
to precisely count the number of delimiters around the hole; doing so would
distinguish 〈�〉 and 〈〈�〉〉, and therefore it would discriminate the contextually
equivalent terms 〈x v〉 and 〈〈x v〉〉. Hence, the definition of RNFη for contexts
(Fig. 2) checks that if one of the contexts contains a reset surrounding the hole,
then so does the other; then it compares the contexts beyond the first enclos-
ing delimiter by simply evaluating them using a fresh variable. As a result, it
rightfully distinguishes � and 〈�〉, but it relates 〈�〉 and 〈〈�〉〉.

We now give some examples to show how to prove equivalences using normal
form bisimulation.

Example 3.2 (double reset). We prove that 〈t〉 N 〈〈t〉〉 by showing that R
def
={(〈t〉, 〈〈t〉〉)}∪ N is a bisimulation. First, note that the case 〈t〉 ⇓v E [Sk.t′] is
not possible because of Proposition 2.7. Suppose 〈t〉 ⇓v v. we prove that 〈t〉 ⇓v v
iff 〈〈t〉〉 ⇓v v. If 〈t〉 ⇓v v, then 〈〈t〉〉 →∗v 〈v〉 →v v. Conversely, if 〈〈t〉〉 ⇓v v,
then 〈t〉 cannot diverge or cannot reduce to an open stuck term (otherwise, 〈〈t〉〉
would also diverge or reduce to an open stuck term). Hence, we have 〈t〉 ⇓v v′,
which entails 〈〈t〉〉 →∗v 〈v′〉 →v v

′, which in turn implies v = v′ because normal
forms are unique. Consequently, we have 〈t〉 ⇓v v iff 〈〈t〉〉 ⇓v v, and v NNFη v
holds.

If 〈t〉 ⇓v F [x v], then there exists F ′ such that t ⇓v F ′[x v] and F = 〈F ′〉.

9



Therefore, we have 〈〈t〉〉 ⇓v 〈〈F ′[x v]〉〉. We have v NNFη v, and we have to
prove that 〈F ′〉 RNFη 〈〈F ′〉〉 to conclude. If F ′ is a pure context E , then we
have to prove 〈E [y]〉 R 〈E [y]〉 and y R 〈y〉 for a fresh y, which are both true
because N ⊆ R. If F ′ = F ′′[〈E 〉], then given a fresh y, we have to prove
〈F ′′[y]〉 R 〈〈F ′′[y]〉〉 (clear by the definition of R), and 〈E [y]〉 R 〈E [y]〉 (true
because N ⊆ R).

Similarly, it is easy to check that the evaluations of 〈〈t〉〉 are matched by 〈t〉.

Example 3.3 (fixed-point combinators). We study here the relationships be-
tween Turing’s and Curry’s fixed-point combinator and their respective variants
with delimited control [8] (see Example 2.1 for the definitions). First, we prove

that Turing’s combinator Θ is bisimilar to its variant ΘS
def
=〈θ Sk.k k〉. We build

the candidate relation R incrementally, starting from (Θ,ΘS). Evaluating these
two terms, we obtain

Θ ⇓v λy.y (λz.θ θ y z)
def
= v0, and

ΘS ⇓v λy.y (λz.(λx.〈θ x〉) (λx.〈θ x〉) y z) def
= v1.

We therefore extend R with (v0 ? y, v1 ? y), where y is fresh. These two new

terms are open stuck, so we add there decomposition to R. Let v′0
def
= λz.θ θ y z

and v′1
def
= λz.(λx.〈θ x〉) (λx.〈θ x〉) y z; then we add (v′0 ? z, v

′
1 ? z) and (z, z) for

a fresh z to R. Evaluating v′0 ? z and v′1 ? z, we obtain respectively y v′0 z and
y v′1 z; to relate these two open stuck terms, we just need to add (x z, x z) (for
a fresh x) to R, since we already have v′0 R

NFη v′1. The constructed relation R
we obtain is a normal form bisimulation.

In contrast, Curry’s combinator ∆ is not bisimilar to its delimited-control

variant ∆S
def
= λx.〈δx Sk.k k〉. Indeed, evaluating the bodies of the two values,

we obtain respectively x (λz.δx δx z) and 〈〈x (λz.(λy.〈δx y〉) (λy.〈δx y〉) z)〉〉, and
these open stuck terms are not bisimilar, because � is not related to 〈〈�〉〉 by
NNFη. In fact, ∆ and ∆S are distinguished by the context � λx.Sk.Ω. Finally,
we can prove that the two original combinators Θ and ∆ are bisimilar, using
the same bisimulation as in [18].

The bisimilarity N is sound w.r.t. contextual equivalence.

Theorem 3.4. We have N ⊆ C.

The following counter-example shows that the inclusion is in fact strict;
normal form bisimilarity is not complete.

Proposition 3.5. Let i
def
= λy.y. We have 〈〈x i〉 Sk.i〉 C◦ 〈〈x i〉 (〈x i〉 Sk.i)〉, but

〈〈x i〉 Sk.i〉 6N 〈〈x i〉 (〈x i〉 Sk.i)〉.

3.2 Proving the Axioms

We now show how the axioms can be proved using normal form bisimulation.
Because we work with the relaxed semantics in this section, we remind that the
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Selim axiom does not hold, as discussed in Section 2.5. The η-equivalence axiom
(ηv axiom) holds by definition of NNFη.

Proposition 3.6 (S〈·〉 axiom). We have Sk.〈t〉 N Sk.t.

Proof. We want to relate two stuck terms, so using normal form bisimulation, we
have to show 〈〈t〉〉 N 〈t〉 (proved in Example 3.2) and � NNFη � (a consequence
of the fact that N is reflexive).

Proposition 3.7 (〈·〉lift axiom). We have 〈(λx.t0) 〈t1〉〉 N (λx.〈t0〉) 〈t1〉.

Proof. We prove that R def
={(〈(λx.t0) 〈t1〉〉, (λx.〈t0〉) 〈t1〉)} ∪ {(t, t)} is a normal

form bisimulation. The terms 〈(λx.t0) 〈t1〉〉 and (λx.〈t0〉) 〈t1〉 reduces to a nor-
mal form iff 〈t1〉 reduces to a normal form, and according to Proposition 2.7,
we have two cases.

If 〈t1〉 ⇓v v, then 〈(λx.t0) 〈t1〉〉 →∗v 〈t0{v/x}〉 and (λx.〈t0〉)〈t1〉 →∗v 〈t0{v/x}〉.
Therefore, 〈(λx.t0) 〈t1〉〉 ⇓v t′′ iff (λx.〈t0〉) 〈t1〉 ⇓v t′′, and we have t′′ RNFη t′′,
as required.

If 〈t1〉 reduces to an open stuck term, then 〈t1〉 ⇓v 〈F [y v]〉 by Proposi-
tion 2.7. In this case, we have 〈(λx.t0) 〈t1〉〉 ⇓v 〈(λx.t0) 〈F [y v]〉〉 and also
(λx.〈t0〉) 〈t1〉 ⇓v (λx.〈t0〉) 〈F [y v]〉. We have 〈(λx.t0) 〈F 〉〉 RNFη (λx.〈t0〉) 〈F 〉
and v RNFη v by definition of R, as required.

Proposition 3.8 (βΩ axiom). If x /∈ fv(E ), then (λx.E [x]) t N E [t].

Proof. We prove that R def
={((λx.E [x]) t,E [t]), x /∈ fv(E )} ∪ {(t, t)} is a normal

form bisimulation. If (λx.E [x])t evaluates to some normal form, then t evaluates
to some normal form as well. We distinguish three cases. If t ⇓v v, then
(λx.E [x]) t →∗v E [v] (because x /∈ fv(E )), and E [t] →∗v E [v]. We obtain the
same term in both cases, and from there, it is easy to conclude.

If t ⇓v F [yv], then (λx.E [x])t ⇓v (λx.E [x])F [yv], and E [t] ⇓v E [F [xv]]. We
have to prove v RNFη v, which is obvious, and (λx.E [x])F RNFη E [F ]. Let z be
a fresh variable. If F is a pure context E ′, we have to prove (λx.E [x]) E ′[z] R
E [E ′[z]], which is clearly true. Otherwise F = F ′[〈E ′〉], and we have to prove
(λx.E [x])F ′[z] R E [F ′[z]], which is clearly true, and 〈E ′[z]〉 R 〈E ′[z]〉, which is
true as well because R contains the identity relation.

If t ⇓v E ′[Sk.t′], then we have (λx.E [x])t ⇓v (λx.E [x])E ′[Sk.t′], and E [t] ⇓v
E [E ′[Sk.t′]]. Let y be a fresh variable. We have to prove (λx.E [x]) E ′[y] R
E [E ′[y]], which is clearly true, and 〈t′〉 R 〈t′〉, which is true as well.

4 Applicative Bisimilarity

Applicative bisimilarity has been originally defined for the lazy λ-calculus [1].
The main idea is to reduce (closed) terms to values, and then compare the
resulting λ-abstractions by applying them to an arbitrary argument. In this
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(λx.t) v
τ−→ t{v/x}

(βv)
〈v〉 τ−→ v

(reset)
t0

τ−→ t′0

t0 t1
τ−→ t′0 t1

(leftτ )

t
τ−→ t′

v t
τ−→ v t′

(rightτ )
t
τ−→ t′

〈t〉 τ−→ 〈t′〉
(〈·〉τ )

t
�−→ t′

〈t〉 τ−→ t′
(〈·〉S)

λx.t
v−→ t{v/x}

(val)
x /∈ fv(E )

Sk.t E−→ 〈t{λx.〈E [x]〉/k}〉
(shift)

t0
E [� t1]−−−−−→ t′0

t0 t1
E−→ t′0

(leftS)
t

E [v �]−−−−→ t′

v t
E−→ t′

(rightS)

Figure 3: Labelled Transition System

section, we define a sound and complete applicative bisimilarity for the relaxed
semantics of λS . Our definition of applicative bisimilarity relies on a labelled
transition system, introduced first. We then define the relation itself, before
showing how it can be used on some examples. This section summarizes the
results in [5].

4.1 Labelled Transition System

One possible way to define an applicative bisimilarity is to rely on a labelled
transition system (LTS), where the possible interactions of a term with its envi-
ronment are encoded in the labels (see, e.g., [14, 13]). Using a LTS simplifies the
definition of the bisimilarity and makes easier to use some techniques in proofs,
such as diagram chasing. In Figure 3, we define a LTS t0

α−→ t1 with three
kinds of transitions, where we assume all the terms to be closed. An internal
action t

τ−→ t′ is an evolution from t to t′ without any help from the surrounding
context; it corresponds to a reduction step from t to t′. The transition v0

v1−→ t
expresses the fact that v0 needs to be applied to another value v1 to evolve,

reducing to t. Finally, the transition t
E−→ t′ means that t is control stuck, and

when t is put in a context E enclosed in a reset, the capture can be triggered,
the result of which being t′. We do not have a case for open stuck terms, because
we work with closed terms only.

Most rules for internal actions (Fig. 3) are straightforward; the rules (βv)
and (reset) mimic the corresponding reduction rules, and the compositional rules
(rightτ ), (leftτ ), and (〈·〉τ ) allow internal actions to happen within any evaluation
context. The rule (〈·〉S) for context capture is explained later. Rule (val) defines
the only possible transition for values. Note that while both rules (βv) and (val)
encode β-reduction, they are quite different in nature; in the former, the term
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(λx.t) v can evolve by itself, without any help from the surrounding context,
while the latter expresses the possibility for λx.t to evolve only if a value v is
provided by the environment.

The rules for context capture are built following the principles of comple-

mentary semantics developed in [19]. The label of the transition t
E−→ t′ contains

what the environment needs to provide (a context E , but also an enclosing reset,
left implicit) for the control stuck term t to reduce to t′. Hence, the transition

t
E−→ t′ means that we have 〈E [t]〉 τ−→ t′ by context capture. For example, in the

rule (shift), the result of the capture of E by Sk.t is 〈t{λx.〈E [x]〉/k}〉.
In rule (leftS), we want to know the result of the capture of E by the term

t0 t1, assuming t0 contains a shift ready to perform the capture. Under this
hypothesis, the capture of E by t0 t1 comes from the capture of E [� t1] by t0.
Therefore, as premise of the rule (leftS), we check that t0 is able to capture
E [� t1], and the result t′0 of this transition is exactly the result we want for the
capture of E by t0 t1. The rule (rightS) follows the same pattern. Finally, a
control stuck term t enclosed in a reset is able to perform an internal action (rule

(〈·〉S)); we obtain the result t′ of the transition 〈t〉 τ−→ t′ by letting t capture the

empty context, i.e., by considering the transition t
�−→ t′.

We now prove that the LTS corresponds to the reduction semantics →v and
exhibits the observable terms (values and control stuck terms) of the language.
The only difficulty is in the treatment of control stuck terms. The next lemma

explicit the correspondence between
E−→ and control stuck terms.

Lemma 4.1. If t
E−→ t′, then there exist E ′, k, and s such that t = E ′[Sk.s]

and t′ = 〈s{λx.〈E [E ′[x]]〉/k}〉.

The proof is direct by induction on t
E−→ t′. From this lemma, we can deduce

the correspondence between
τ−→ and →v, and between

α−→ (for α 6= τ) and the
observable actions of the language.

Proposition 4.2. The following hold:

• We have
τ−→=→v.

• If t
E−→ t′, then t is a stuck term, and 〈E [t]〉 τ−→ t′.

• If t
v−→ t′, then t is a value, and t v

τ−→ t′.

4.2 Applicative Bisimilarity

We now define the notion of applicative bisimilarity for λS . We write ⇒ for
the reflexive and transitive closure of

τ−→. We define the weak delay2 transition
α
=⇒ as ⇒ if α = τ and as ⇒ α−→ otherwise. The definition of the (weak delay)
bisimilarity is then straightforward.

2where internal steps are allowed before, but not after a visible action
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Definition 4.3. A relation R on closed terms is an applicative simulation if
t0 R t1 implies that for all t0

α−→ t′0, there exists t′1 such that t1
α
=⇒ t′1 and t′0 R t′1.

A relation R on closed terms is an applicative bisimulation if R and R−1 are
simulations. Applicative bisimilarity A is the largest applicative bisimulation.

In words, two terms are equivalent if any transition from one is matched by
a weak transition with the same label from the other. The relation A is sound
and complete w.r.t. contextual equivalence.

Theorem 4.4. We have A = C.

We give some examples showing how applicative bisimulation can be used
to prove the equivalence of terms.

Example 4.5 (double reset). We show that 〈〈t〉〉 A 〈t〉 holds by proving that R
def
={(〈t〉, 〈〈t〉〉)}∪{(t, t)} is a big-step applicative bisimulation. If 〈t〉 and/or 〈〈t〉〉
is open, then 〈t〉σ = 〈tσ〉 (and similarly with 〈〈t〉〉), for all closing substitution
σ, so we still have terms in R. With closed terms, the only possible (big-step)

transition is 〈t〉 v
=⇒ t′, which means 〈t〉 ⇓v v′

v−→ t′. But we have proved in

Example 3.2 that 〈t〉 ⇓v v′ iff 〈〈t〉〉 ⇓v v′. Consequently, we have 〈t〉 v
=⇒ t′

iff 〈〈t〉〉 v
=⇒ t′, and we have t′ R t′, as wished. The proof is shorter than in

Example 3.2 because we do not have to consider open stuck terms.

Example 4.6 (Turing’s combinator). We now consider Turing’s combinator

Θ and its variant ΘS
def
=〈θ Sk.k k〉. The two terms can perform the following

transitions.

Θ
v

=⇒ v (λz.θ θ v z)

ΘS
v

=⇒ v (λz.(λx.〈θ x〉) (λx.〈θ x〉) v z).

Assuming v = λx.t, we have to study the behaviour of t{(λz.θ θ v z)/x}, and
t{(λz.(λx.〈θ x〉) (λx.〈θ x〉) v z)/x}. A way to proceed is by case analysis on t,
the interesting case being t = F [x v′]. The resulting applicative bisimulation
one can write to relate Θ and ΘS is much more complex than the normal form
bisimulation of Example 3.3.

4.3 Proving the Axioms

As with normal form bisimulation (Section 3.2), we show how to prove Kameyama
and Hasegawa’s axioms (Section 2.4) except for Selim using applicative bisimu-
lation. In the following propositions, we assume the terms to be closed, since
the proofs for open terms can be deduce directly from the results with closed
terms.

Proposition 4.7 (ηv axiom). If x /∈ fv(v), then λx.v x A v.

Proof. We prove that R def
={(λx.(λy.t)x | λy.t), x /∈ fv(t)}∪ A is a bisimulation.

To this end, we have to check that λx.(λy.t)x
v0−→ (λy.t)v0 is matched by λy.t

v0−→
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t{v0/y}, i.e., that (λy.t) v0 R t{v0/y} holds for all v0. We have (λy.t) v0
τ−→

t{v0/y}, and because
τ−→ ⊆ A ⊆ R, we have the required result.

Proposition 4.8 (S〈·〉 axiom). We have Sk.〈t〉 A Sk.t.

Proof. We have Sk.〈t〉 E−→ 〈〈t{λx.〈E [x]〉/k}〉〉 and Sk.t E−→ 〈t{λx.〈E [x]〉/k}〉
for all E . We obtain terms of the form 〈〈t′〉〉 and 〈t′〉, and we have proved in
Example 4.5 that 〈〈t′〉〉 A 〈t′〉 holds.

Proposition 4.9 (〈·〉lift axiom). We have 〈(λx.t0) 〈t1〉〉 A (λx.〈t0〉) 〈t1〉.

Proof. A transition 〈(λx.t0) 〈t1〉〉
α
=⇒ t′ (with α 6= τ) is possible only if 〈t1〉 eval-

uates to some value v (evaluation to a control stuck terms is not possible ac-

cording to Proposition 2.7). In this case, we have 〈(λx.t0) 〈t1〉〉
τ
=⇒ 〈(λx.t0) v〉 τ−→

〈t0{v/x}〉 and (λx.〈t0〉)〈t1〉
τ
=⇒ 〈t0{v/x}〉. Therefore, we have 〈(λx.t0) 〈t1〉〉

α
=⇒ t′

(with α 6= τ) iff (λx.〈t0〉) 〈t1〉
α
=⇒ t′. From there, it is easy to conclude.

Proposition 4.10 (βΩ axiom). If x /∈ fv(E ), then (λx.E [x]) t A E [t].

Sketch. We first give some intuitions on why the proof of this result is harder
with applicative bisimulation than with normal form bisimulation. The difficult
case is when t in the initial terms (λx.E [x]) t and E [t] is a control stuck term
E0[Sk.t′]. Then we have the following transitions.

(λx.E [x]) t
E1−−→ 〈t′{λy.〈E1[(λx.E [x]) E0[y]]〉/k}〉

E [t]
E1−−→ 〈t′{λy.〈E1[E [E0[y]]]〉/k}〉

We obtain terms of the form 〈t′〉σ and 〈t′〉σ′ (where σ and σ′ are the above
substitutions). We now have to consider the transitions from these terms, and
the interesting case is when 〈t′〉 = F [k v].

〈t′〉σ τ−→ Fσ[〈E1[(λx.E [x]) E0[vσ]]〉] def= t0

〈t′〉σ′ τ−→ Fσ′[〈E1[E [E0[vσ′]]]〉] def= t1

We obtain terms that are similar to the initial terms (λx.E [x])t and E [t], except
for the extra contexts F and E1, and the substitutions σ and σ′. Again, the
interesting cases are when E0[v] is either a control stuck term, or a term of the
form F ′[k v′]. Looking at these cases, we see that the bisimulation we have to
define has to relate terms similar to t0 and t1, except with an arbitrary number
of contexts F ′ and substitutions similar to σ and σ′.

5 Environmental Bisimilarity

Like applicative bisimilarity, environmental bisimilarity reduces closed terms to
normal forms, which are then compared using some particular contexts (e.g.,
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Term generating closure

t R t′

t Ṙ t′
x Ṙ x

t Ṙ t′

λx.t Ṙ λx.t′
t0 Ṙ t′0 t1 Ṙ t′1

t0 t1 Ṙ t′0 t
′
1

t Ṙ t′

Sk.t Ṙ Sk.t′
t Ṙ t′

〈t〉 Ṙ 〈t′〉

Context generating closure

� R̈ �

F0 R̈ F1 v0 Ṙ v1

v0 F0 R̈ v1 F1

F0 R̈ F1 t0 Ṙ t1

F0 t0 R̈ F1 t1

F0 R̈ F1

〈F0〉 R̈ 〈F1〉

Figure 4: Term and context generating closures

λ-abstractions are tested by passing them arguments). However, the testing con-
texts are not arbitrary, but built built from an environment, which represents
the knowledge built so far by an outside observer. We give first the definition of
environmental bisimilarity for the relaxed semantics. We then discuss a defini-
tion of environmental bisimilarity which we can prove complete for the original
semantics. This section summarizes the results in [7].

5.1 Definition for the Relaxed Semantics

Environmental bisimulations use an environment E to accumulate knowledge
about two tested terms. For the λ-calculus [22], E records the values (v0, v1)
the tested terms reduce to, if they exist. We can then compare v0 and v1 at any
time by passing them arguments built from E . With the relaxed semantics of
λS , control stuck terms are also normal forms. To handle these, we allow envi-
ronments to contain pairs of control stuck terms, and we test them by building
pure contexts from E . To build these testing arguments from E , we define in
Figure 4 two closures that generate respectively terms and evaluation contexts.
Given a relation R on terms, we write Ṙ for the term generating closure and R̈
for the context generating closure. Even if R is defined only on closed terms,
Ṙ and R̈ are defined on open terms and open contexts, respectively. In this
section, we consider the restrictions of Ṙ and R̈ to respectively closed terms
and closed contexts unless stated otherwise.

Formally, an environment E is a relation on normal forms which relates values
with values and control stuck terms with control stuck terms; e.g., we define
the identity environment I as {(t, t) | t is a normal form}. An environmental
relation X is a set of environments E , and triples (E , t0, t1), where t0 and t1
are closed. We write t0 XE t1 as a shorthand for (E , t0, t1) ∈ X ; roughly, it
means that we test t0 and t1 with the knowledge E . We define environmental
bisimulation as follows.

Definition 5.1. A relation X is an environmental bisimulation if

1. t0 XE t1 implies:
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(a) if t0 →v t
′
0, then there exists t′1 such that t1 →∗v t′1 and t′0 XE t′1;

(b) if t0 is a normal form, then there exists a normal form t′1 of the same
kind as t0 such that t1 →∗v t′1 and E ∪ {(t0, t′1)} ∈ X ;

(c) the converse of the above conditions on t1;

2. E ∈ X implies:

(a) if λx.t0 E λx.t1 and v0 Ė v1, then t0{v0/x} XE t1{v1/x};
(b) if E0[Sk.t0] E E1[Sk.t1] and E ′0 Ë E ′1, then 〈t0{λx.〈E ′0[E0[x]]〉/k}〉 XE
〈t1{λx.〈E ′1[E1[x]]〉/k}〉 for a fresh x.

Environmental bisimilarity, written ≈, is the largest environmental bisimu-
lation. To prove that two terms t0 and t1 are equivalent, we want to relate them
without any predefined knowledge, i.e., we want to prove that t0 ≈∅ t1 holds;
we also write E for ≈∅. The relation E will be the candidate to characterize
contextual equivalence.

The first part of the definition makes the bisimulation game explicit for t0
and t1, while the second part focuses on environments E . If t0 is a normal
form, then t1 has to evaluate to a normal form of the same kind, and we ex-
tend the environment with the newly acquired knowledge. We then compare
values in E (clause (2a)) by applying them to arguments built from E , as in
the λ-calculus [22]. Similarly, we test stuck terms in E by putting them within
contexts 〈E ′0〉, 〈E ′1〉 built from E (clause (2b)) to trigger the capture. This is
similar to the way we test values and stuck terms with applicative bisimilarity
(Section 4), except that applicative bisimilarity tests both values or stuck terms
with the same argument or context. Using different entities (as in Definition 5.1)
makes bisimulation proofs harder, but it simplifies the proof of congruence of
the environmental bisimilarity.

The relation we obtain is sound and complete w.r.t. contextual equivalence.

Theorem 5.2. We have E = C.

We now give some examples showing how the notion of environmental bisim-
ulation can be used.

Example 5.3 (double reset). We have 〈〈t〉〉 E 〈t〉, because the relation

{(∅, 〈〈t〉〉, 〈t〉)} ∪ {(E , t, t) | E ⊆ I} ∪ {E | E ⊆ I}

is a big-step environmental bisimulation. Indeed, we know that 〈〈t〉〉 ⇓v v iff
〈t〉 ⇓v v, so we have to consider environments E of the form (v, v). Then, testing
these E suppose to take λx.t E λx.t and some arguments v0 Ė v1, and relate
t{v0/x} with t{v1/x}. Since the terms related by E are the same, we have in
fact v0 = v1, so we have to relate t{v0/x} with itself, hence the second set in
the definition of the bisimulation.
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Example 5.4 (Turing’s combinator). Proving that Turing’s combinator Θ is

bisimilar to its variant ΘS
def
=〈θ Sk.k k〉 using the basic definition of environmen-

tal bisimulation is harder than with applicative bisimulation (Example 4.6). We
remind that

Θ ⇓v λy.y (λz.θ θ y z)
def
= v0, and

ΘS ⇓v λy.y (λz.(λx.〈θ x〉) (λx.〈θ x〉) y z) def
= v1.

Therefore, we have to put (v0, v1) in an environment E . When we then test
v0 and v1, we use arguments v′0 and v′1 such that v′0 Ė v′1, and we compare
v′0 (λz.θ θ v′0 z) with v′1 (λz.(λx.〈θ x〉) (λx.〈θ x〉) v′1 z). Because we have two
different terms v′0 and v′1, we can no longer do a case analysis as suggested in
Example 4.6. To conclude with environmental bisimulation, we need bisimula-
tion up to context (see [7]).

5.2 Environmental Relations for the Original Semantics

The bisimilarities introduced so far are sound and complete w.r.t. the contextual
equivalence C of the relaxed semantics, but only sound w.r.t. the contextual
equivalence P of the original semantics (cf. Proposition 2.12). We now propose a
definition of environmental bisimulation adapted to delimited terms (but defined
on all terms, like P). Because control stuck terms cannot be obtained from the
evaluation of a delimited term, environments E henceforth relate only values.
Similarly, we write R v for the restriction of a relation R on terms to pairs of
closed values.

Definition 5.5. A relation X is a delimited environmental bisimulation if

1. if t0 XE t1 and t0 and t1 are not both delimited terms, then for all closed
E0, E1 such that E0 Ë E1, we have 〈E0[t0]〉 XE 〈E1[t1]〉;

2. p0 XE p1 implies

(a) if p0 →v p
′
0, then there exists p′1 such that p1 →∗v p′1 and p′0 XE p′1;

(b) if p0 →v v0, then there exists v1 such that p1 →∗v v1, and {(v0, v1)}∪
E ∈ X ;

(c) the converse of the above conditions on p1;

3. for all E ∈ X , if λx.t0 E λx.t1 and v0 Ė v1, then t0{v0/x} XE t1{v1/x}.

Delimited environmental bisimilarity, written ', is the largest delimited en-
vironmental bisimulation. As before, the relation '∅, also written F, is candi-
date to characterize P.

Clauses (2) and (3) of Definition 5.5 deal with delimited terms and envi-
ronments in a classical way (as in plain λ-calculus). The problematic case is
when relating terms t0 and t1 that are not both delimited terms (clause (1)).
Indeed, one of them may be control stuck, and therefore we have to test them
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within some contexts 〈E0〉, 〈E1〉 (built from E) to potentially trigger a capture
that otherwise would not happen. We cannot require both terms to be control
stuck, as in clause (2b) of Definition 5.1, because a control stuck term can be
equivalent to a term free from control effect. E.g., we will see that v F Sk.k v,
provided that k /∈ fv(v).

The next proposition shows that E is more discriminative than F.

Proposition 5.6. We have E ⊆ F.

A consequence of Proposition 5.6 is that we can use Definition 5.1 as a proof
technique for F. E.g., we have directly 〈(λx.t0) 〈t1〉〉 F (λx.〈t0〉) 〈t1〉, because
〈(λx.t0) 〈t1〉〉 E (λx.〈t0〉) 〈t1〉. The bisimilarity we obtain is sound and complete
w.r.t. P.

Theorem 5.7. We have F = P.

5.3 Examples

We illustrate the differences between E and F, by giving some examples of terms
related by F, but not by E. First, note that F relates non-terminating terms
with stuck non-terminating terms.

Proposition 5.8. We have Ω F Sk.Ω.

The relation {(∅,Ω,Sk.Ω), (∅, 〈E [Ω]〉, 〈E [Sk.Ω]〉), (∅, 〈E [Ω]〉, 〈Ω〉)} is a delim-
ited bisimulation. Proposition 5.8 does not hold with E because Ω is not stuck.

As wished, F satisfies the only axiom of [17] not satisfied by E.

Proposition 5.9. If k /∈ fv(t), then t F◦ Sk.k t.

Consequently, F◦ is complete w.r.t. ≡.

Corollary 5.10. We have ≡ ⊆ F◦.

As a result, we can use ≡ (restricted to closed terms) as a proof technique
for F. E.g., the following equivalence can be derived from the axioms [17].

Proposition 5.11. If k /∈ fv(t1), then (λx.Sk.t0) t1 F Sk.((λx.t0) t1).

This equivalence does not hold with E, because the term on the right is
stuck, but the term on the left may not evaluate to a stuck term (if t1 does not
terminate).

6 Conclusion

In our study of the behavioral theory of a calculus with shift and reset, we
consider two semantics: the original one, where terms are executed within an
outermost reset, and the relaxed one, where this requirement is lifted. For
each, we define a contextual equivalence (respectively P and C), that we try to
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� ≡ N A E F
relaxed semantics: C ( = = )
original semantics: P ( ( ( ( =

Figure 5: Relationships between the equivalences of λS (e.g., N ( C)

characterize with different kinds of bisimilarities (normal form N, applicative
A, and environmental E, F). We also compare our relations to CPS equiva-
lence ≡, a relation which equates terms with βη-equivalent CPS translations.
The relationship between all these relations is summarized in Figure 5.

When comparing term equivalence proofs, we can see that each bisimulation
style has its strengths and weaknesses. Normal form bisimulation arguably
leads to the simplest proofs of equivalence on average, as it does not contain
any quantification over arguments or testing contexts in its definition. For
example, the βΩ axiom can be easily proved using normal form bisimulation
(Proposition 3.8); the proof with applicative bisimulation is much more complex
(Proposition 4.10), and we do not know how to prove it with environmental
bisimulation.

However, normal form bisimulation cannot be used to prove all equivalences,
since its corresponding bisimilarity is not complete. It can be too discriminating
to relate very simple terms, like those in Proposition 3.5. Besides, normal form
bisimulation operates on open terms by definition, which requires to consider an
extra normal form (open stuck terms) in the bisimulation proofs. Applicative
and environmental bisimulations do not have these issues: their corresponding
bisimilarities are complete, and they operate on closed terms. As a result, the
proof that 〈〈t〉〉 is equivalent to 〈t〉 is shorter with applicative bisimulation than
with normal form bisimulation (compare Example 3.2 and Example 4.5). This
is also true, e.g., for the 〈·〉lift axiom (compare Proposition 3.7 and 4.9).

To summarize, to prove that two given terms are equivalent, we would sug-
gest to first try to use normal form bisimulation, and if it fails, try applicative
bisimulation, and next, environmental bisimulation. This strategy holds for the
relaxed as well as the original semantics, except if one wants to relate, e.g., a
control stuck term with a value (like with the Selim axiom): it is possible only
with the environmental bisimulation for the original semantics.
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ATM without Tears:

Prompt-Passing Style Transformation for Typed

Delimited-Control Operators

Ikuo Kobori∗ Yukiyoshi Kameyama∗ Oleg Kiselyov†

Abstract

The salient feature of delimited-control operators is their ability to modify
answer types during computation. The feature, answer-type modification
(ATM for short), allows one to express various interesting programs such
as typed printf compactly and nicely, while it makes it difficult to embed
these operators in standard functional languages.

In this paper, we present a typed translation of delimited-control op-
erators shift and reset with ATM into a familiar language with multi-
prompt shift and reset without ATM, which lets us use shift and reset
with ATM in standard languages without modifying the whole type sys-
tem. Our translation generalizes Kiselyov’s direct-style implementation
of typed printf, which uses two prompts to emulate the modification of
answer types. We prove that our translation preserves typing, and also
give an implementation in the tagless-final style which respects typing.

∗University of Tsukuba, Japan
†Tohoku University, Japan
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1 Introduction

Delimited continuations is part of continuations, the rest of computation, and
delimited-control operators provide programmers a means to access the current
delimited continuations. Since the delimited-control operators control/prompt
and shift/reset have been proposed around 1990 [8, 7], many researchers have
been studying them intensively, to find interesting theory and application in pro-
gram transformation, partial evaluation, code generation, and computational
linguistics. Today, we see their implementations in many programming lan-
guages such as Scheme, Racket, SML, OCaml, Haskell, and Scala.

However, there still exists a big gap between theory and practice if we work in
typed languages. Theoretically, the salient feature of delimited-control operators
is their ability to modify answer types. The term reset (3 + shift k -> k)

looks as if it has type int, but the result of this computation is a continua-
tion fun x -> reset (3 + x) whose type is int -> int, which means that
the initial answer type has been modified during the computation of the shift
term. While this feature, called Answer-Type Modification, allows one to ex-
press surprisingly interesting programs such as typed printf, it is the source of
the problem that we cannot embed the delimited-control operators in standard
languages. We can hardly expect that the whole type system of a full-fledged
language would be modified in such a way. With a few exceptions of Scala
[12] and OchaCaml [11], we cannot directly express the beautiful examples with
ATM as programs in standard languages.

This paper addresses this problem, and presents a solution for it. We will
give a translation from the language with ATM shift and reset into another
language with multi-prompt shift and reset without ATM. The translation is
a generalization of Kiselyov’s implementation of typed printf, which introduces
two prompts (tags for control operators) for the answer types before and after
the computation. The resulting term passes prompts of control operators dur-
ing computation, and following Continuation-Passing Style, we call is Prompt-
Passing Style (PPS).

The rest of this paper is organized as follows: Section 2 explains delimited-
control operators and answer-type modification by a simple example. Section 3
informally states how we simulate answer-type modification using multi-prompt
shift and reset, and Section 4 gives a formal account to it including formal
properties. Section 5 describes the syntax-directed translation and its property.
Based on the theoretical development, Section 6 gives a tagless-final imple-
mentation of shift and reset with answer-type modification as well as several
programming examples. Section 7 gives related work and concluding remarks.

2 Delimited-Control Operators and Answer-type
Modification

We introduce a simple example which uses delimited-control operators shift and
reset where the answer types are modified through computation.

1



The following implementation of the append function is taken from Asai and
Kameyama’s paper [1].

let rec append lst = match lst with
| [] −> shift (fun k −> k)
| x :: xs −> x :: append xs

in let append123 =
reset (append [1;2;3])

in
append123 [4;5;6]

The function append takes a value of type int list as its input, and tra-
verses the list. When it reaches at the end of the list, it captures the continuation
(fun ys -> reset 1 :: 2 :: 3 :: ys in the functional form) up to the near-
est reset, and returns the continuation as its result. We then apply it to the
list [4;5;6] to obtain [1;2;3;4;5;6], and it is easy to see that the function
deserves its name.

Let us check the type of append. At the beginning, the return type of
append (called its answer type) is int list, since in the second branch of the
case analysis, it returns x :: append xs. However, the final result is a function
from list to list, which is different from our initial guess. The answer type has
been modified during the execution of the program.

Since its discovery, this feature has been used in many interesting examples
with shift and reset, from typed printf to suspended computations, to coroutines,
and even to computational linguistics. Nowadays, it is considered as one of the
most attractive features of shift and reset.

Although the feature, answer-type modification, is interesting and sometimes
useful, it is very hard to directly embed such control operators in conventional
functional programming languages such as OCaml, as it requires a big change
of the type system; a typing judgment in the form Γ ` e : τ must be changed
to a more complex form Γ ` e : τ ;α, β where α and β designate the answer
types before and after the execution of e. Although adjusting a type system
in this way is straightforward in theory, it is rather difficult to modify existing
implementations of type systems, and we therefore need a way to represent the
above features in terms of standard features and/or mild extensions of existing
programming languages.

This paper addresses this problem, and proposes a way to translate away
the feature of ATM using multi-prompt control operators.

3 Simulating ATM with Multi-prompt shift/re-
set

In this section, we explain the basic ideas of our translation. Kiselyov imple-
mented typed printf in terms of shift and reset without ATM, and we have
generalized it to a translation from arbitrary terms in the source language.

2



Consider a simple example with answer-type modification: J〈5 + Sk.k〉K
in which S is the delimited-control operator shift, and 〈· · ·〉 is reset. Its answer
type changes through computation, as its initial answer type is int while its
final answer type is int->int.

Let us translate the example 1 where JeK denotes the result of the translation
of the term e.

We begin with the translation of a reset expression:

J〈e〉K = Pp.Pq.〈let y = JeKpq in Sqz. y〉p

where the primitive Pp creates a new prompt and binds the variable p to it.
For brevity, the variable p which stores a prompt may also be called a prompt.

The translated term, when it is executed, first creates new prompts p and q
and its body e is applied to the arguments p and q. Its result is stored in y and
then we execute Sqz.y, but there is no reset with the prompt q around it. Is it an
error ? Actually, no. As we will see the definition below, JeK is always in the form
λp.λq.e′ and during the computation of e′, Sp is always invoked. Hence e′ never
returns normally, and the “no-reset” error does not happen. Our invariants
in the translation are that the first argument (the prompt p) corresponds to
the reset surrounding the expression being translated, and the second argument
(the prompt q) corresponds to the above (seemingly dangerous) shift.

From the viewpoint of typing, for each occurrence of answer-type modifica-
tion from α to β, we use two prompts to simulate the behavior. The prompts p
and q generated here correspond to the answer types α and β, respectively.

We translate the term 5 to J5K = λp.λq. Spk. 〈k 5〉q and the term 〈5〉 is
translated (essentially) to:

Pp.Pq.〈let y = Spk.〈k 5〉q in Sqz. y〉p

When we execute the result, Sp captures its surrounding evaluation context
〈let y = [ ] in Sqz. y〉p, binds k to its functional form λx.〈let y = x in Sqz. y〉p,
and continues the evaluation of 〈k 5〉q. Then we get:

〈〈〈let y = 5 in Sqz. y〉p〉q〉p

and when this Sq is invoked, it is surrounded by a reset with the prompt q, and
thus it is safe. The final result of this computation is 5. In this case, since the
execution of the term 5 does not modify the answer type, the prompts p and q
passed to the term J5K correspond to the same answer type, but we will soon
see an example in which they correspond to different answer types.

A shift-expression is translated to:

JSk.eK = λp.λq.Spk′.let k = (λy.〈(λ .Ω)(k′y)〉q) in LeM

As we have explained, p is the prompt for the reset surrounding this expression,
hence Sp in the translated term will capture a delimited continuation up to the

1The precise definition of the translation is given later.
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reset (which, in turn, corresponds to the nearest reset in the source term). How-
ever the delimited continuation contains a dangerous shift at its top position,
so we must somehow detoxify it. For this purpose, we replace the captured con-
tinuation k′ by a function λy.〈(λ .Ω)(k′y)〉q in which the calls to k′ is enclosed
by a reset with the prompt q, and the dangerous shift in k′ will be surrounded
by it, sanitizing the dangerous behavior.

Let us consider the types of captured continuations in this translation. Sup-
pose the term Sk.e modifies the answer type from α to β. We use the prompts
p and q, whose answer types2 are β and α, respectively. In the source term, the
continuation captured by shift (and then bound to k) has the type τ → α. In
the translated term, the continuation bound to k′ has the type τ → β, since the
continuation was captured by a shift with the prompt p. After some calculation,
it can be inferred that the term λy.〈(λ .Ω)(k′y)〉q has the type τ → α, hence we
can substitute it for k. 3

We show the mechanism for detoxifying a dangerous shift by executing J〈5+
Sk.k〉K, which is equivalent to:

Pp.Pq.〈let y = Pr.((Srk.〈k 5〉q)+(Spk′.let k = λu.〈(λw.Ω)(k′ u)〉r in k)) in Sqz.y〉p

where the subterm starting with Sr is the translation result of 5, and the one
with Sp is that of Sk.k. In general, each subterm may modify answer types.
Hence, a term e1 + e2 needs three prompts corresponding to the initial, final,
and intermediate answer types. The prompt r generated here corresponds to
the intermediate answer type.

Evaluating this term in call-by-value, and right-to-left order (after generating
all the prompts) leads to the term: 〈let k = λu.〈(λw.Ω)(k′ u)〉r in k〉p where
k′ is the delimited continuation λx.〈let y = (Srk.〈k 5〉q) + x in Sqz.y〉p. The
result of this computation is λu.〈(λw.Ω)(k′ u)〉r, which is essentially equivalent
to λy.〈5 + y〉. To see this, applying it to 9 yields:

(λu.〈(λw.Ω)((λx.〈let y = (Srk.〈k 5〉q) + x in Sqz.y〉p)u)〉r) 9

 ∗〈(λw.Ω)〈let y = (Srk.〈k 5〉q) + 9 in Sqz.y〉p〉r

Srk.〈k 5〉q captures the context with the dangerous shift

 ∗〈〈(λu.〈(λw.Ω)〈let y = u+ 9 in Sqz.y〉p〉r)5〉q〉r
 ∗〈〈〈(λw.Ω)〈let y = 5 + 9 in Sqz.y〉p〉r〉q〉r
 ∗〈〈14〉q〉r which reduces to 14.

Thus, our translation uses two prompts to make connections to two answer
types, where prompts are generated dynamically.

2We assume that, our target language after the translation has multi-prompt shift and
reset, but no answer-type modification. Hence, each prompt has a unique answer type.

3Here Ω is a term which has an arbitrary type. Such a term can be expressed, as, for
instance, Pp.Spk.λx.x. Its operational behavior does not matter, as it will be never executed.
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(evaluation contexts) E ::= [ ] | eE | Ev | 〈E〉
(pure evaluation contexts) F ::= [ ] | eF | Fv

E[(λx.e) v] E[e{v/x}]
E[let x = v in e] E[e{v/x}]

E[〈v〉] E[v]

E[〈F [Sk.e]〉] E[〈e{λy.〈F [y]〉/k}〉] y is a fresh variable in F

Figure 1: Operational Semantics of Source Calculus

4 Source and Target Calculi

In this section, we formally define our source and target calculi.
The source calculus is based on Asai and Kameyama’s polymorphic extension

of Danvy and Filinski’s calculus for shift and reset, both of which allow answer-
type modification [6, 1]. We slightly modified it here; (1) we removed fixpoint
and conditionals (but they can be added easily), (2) we use value restriction
for let-polymorphism while they used more relaxed condition, and (3) we use
Biernacki et al.’s simplification for the types of delimited continuations [4].

The syntax of values and terms of our source calculus λATM is defined as
follows:

(values) v ::= x | c | λx.e
(terms) e ::= v | e1e2 | let x = v in e | Sk.e | 〈e〉

where λx.e and Sk.e bind x and k in e, resp.
Figure 1 defines call-by-value operational semantics to the language above.
The term [ ] denotes the empty context. Evaluation contexts are standard,

and pure evaluation contexts are those evaluation contexts that have no resets
enclosing the hole. Note that we use the right-to-left evaluation order for the
function applications to reflect the current OCaml compiler’s semantics.

The first two evaluation rules are the standard beta and let rules, where
e{v/x} denotes capture-avoiding substitution. The next two rules are those for
control operators: if the body of a reset expression is a value, the occurrence
of reset is discarded. If the next redex is a shift expression, we capture the
continuation up to the nearest reset and bind k to it.

Figure 2 introduces types and related notions. Types are type variables
(t), base types (b), pure function types (σ → τ), or effectful function types
(σ/α → τ/β), which represent function types σ → τ where the answer type
changes from α to β.

Figure 3 defines the type system of λATM. Type judgments are either Γ `p
e : τ (pure judgments) or Γ ` e : τ ;α, β (effectful judgments), the latter of
which means that evaluating e with the answer type α yields a value of type τ
with the answer type being modified to β. The typing rules are based on Danvy
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τ, σ, α, β ::= t | b | σ → τ | (σ/α→ τ/β)

A ::= τ | ∀t.A
Γ ::= ∅ | Γ, x : A

Figure 2: Types, Type Schemes and Type Environments

x : A ∈ Γ, τ < A
var

Γ `p x : τ

Γ ` e : σ;σ, τ
reset

Γ `p 〈e〉 : τ

Γ, x : τ → α `p e : β
shift

Γ ` Sx.e : τ ;α, β

(c is a constant of type b)
const

Γ `p c : b

Γ, x : σ ` e : τ ;β, γ
fun

Γ `p λx.e : σ/β → τ/γ

Γ `p e : τ
exp

Γ ` e : τ ;α, α

Γ ` e1 : σ/α→ τ/β;β, γ Γ ` e2 : σ; γ, δ
app

Γ ` e1e2 : τ ;α, δ

Γ `p e1 : σ → τ Γ `p e2 : σ
app-p

Γ `p e1e2 : τ

Γ `p v : σ Γ, x : Gen (σ; Γ) ` e : τ ;α, β
let

Γ ` let x = v in e : τ ;α, β

Figure 3: Typing Rules of the Source Calculus

and Filinski’s [6] except that we have let-polymorphism and clear distinction of
pure judgments from impure judgments following Asai and Kameyama [1].

In the var rule, τ < A means that the type τ is an instance of type scheme
A, and the type Gen (σ; Γ) denotes ∀t1, · · · ∀tn.σ where t1, · · · , tn are the type
variables that appear in σ but not appear in Γ freely. The delimited continu-
ations captured by shift expressions are pure functions (they are polymorphic
in answer types), and we use the pure function space τ → α for this purpose.
On the contrary, the functions introduced by lambda are, in general, effectful.
Accordingly, we have two rules for applications. Note that the body of a shift
expression is restricted to a pure expression, in order to simplify the definition
of our translation. This choice does not change the expressive power of the lan-
guage, since we can always insert a reset into the topmost position of the body
of a shift expression, to turn the body to a pure expression, without affecting
typability and operational behavior. The exp rule turns pure terms into effectful
terms.

The type system of the source calculus λATM enjoys the subject reduction
property. The proof is standard and omitted.
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We then define the target calculus λmpsr, which is a polymorphic calculus
with multi-prompt shift and reset (but without ATM). The calculus is similar, in
spirit, to Gunter et al.’s calculus with the cupto and set operators [9]. Besides
disallowing ATM, the target calculus differs from the source calculus in that
the control operators are named, to allow mixing multiple effects in a single
program. The names for control operators are called prompts for historical
reasons, and denoted by p, q, · · · . In our formulation, prompts are first-class
values and can be bound to ordinary variables x. Prompts are given as prompt-
constants, or can be generated dynamically by the P primitive. For instance,
evaluating Px.〈1 + Sxk.e〉x first creates a fresh prompt p and substitutes it for
x, then evaluate 〈1 + Spk.e〉p. This choice of the formulation closely follows
Kiselyov’s DelimCC library for multi-prompt shift/reset.

Types and typing environments are defined as follows:

τ, σ ::= t | b | σ → τ | τ pr

A ::= τ | ∀t.A
Γ ::= ∅ | Γ, x : A

where τ pr is the type for the prompts with the answer type τ . The syntax of
values and terms are defines as follows:

v ::= x | c | λx.e | p
e ::= v | e1e2 | Svx.e | 〈e〉v | Px.e | let x = v in e | Ω

where p is a prompt-constant. The control operators now receive not only
prompt-constants, but values which will reduce to prompts. The term Px.e
creates a fresh prompt and binds x to it. The term Ω denotes a non-terminating
computation of arbitrary types. It may be defined in terms of shift, but for the
sake of clarity, we added it as a primitive.

Evaluation contexts and evaluation rules are given as follows:

E ::= [ ] | Ee | vE | 〈E〉p
E[(λx.e)v] E[e{v/x}]

E[let x = v in e] E[e{v/x}]
E[Px.e] E[e{p/x}] p is a fresh prompt-constant

E[〈v〉p] E[v]

E[〈Ep[Spx.e]〉p] E[〈e{λy.〈Ep[y]〉p/x}〉p]

E[Ω] E[Ω]

Note that we use Ep in the second last rule, which is an evaluation context that
does not have a reset with the prompt p around the hole, and thus implies that
we capture the continuation up to the nearest reset with the prompt p.

Finally we give typing rules for the target calculus in Figure 4. The type
system of the target calculus is mostly standard except the use of prompts. In
the shift rule, the prompt expression v must be of type σ pr where σ is the
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x : A ∈ Γ, τ < A
var

Γ ` x : τ

(c is a constant of b)
const

Γ ` c : b
Γ ` v : τ pr Γ ` e : τ

reset
Γ ` 〈e〉v : τ

Γ ` v : σ pr Γ, x : τ → σ ` e : σ
shift

Γ ` Sv x.e : τ

Γ, x : σ ` e : τ
fun

Γ ` λx.e : σ → τ

Γ ` e1 : σ → τ Γ ` e2 : σ app
Γ ` e1e2 : τ

Γ ` v : σ Γ, x : Gen (σ; Γ) ` e : τ
let

Γ ` let x = v in e : τ

Γ, x : σ pr ` e : τ
prompt

Γ ` Px.e : τ

omega
Γ ` Ω : τ

Figure 4: Typing Rules of the Target Calculus

Jτ ;α, βK = JβK pr→ JαK pr→ JτK
JbK = b

JtK = t

Jσ → τK = JσK→ JτK
Jσ/α→ τ/βK = JσK→ Jτ ;α, βK

JτK = JτK
J∀t.AK = ∀t.JAK

JΓ, x : AK = JΓK, x : JAK

Figure 5: Translation for Types, Type Schemes and Type Environments

type of the body of the shift expression. A similar restriction is applied to the
reset rule. In the prompt rule, we can create an arbitrary prompt and binds a
variable x to it.

The type system enjoys the subject reduction property modulo the set of
dynamically created prompts which have infinite extents.

5 Translation

In this section, we give the syntax-directed translation from λATM to λmpsr,
which translates away the feature of answer-type modification. The translation
borrows the idea of Kiselyov’s implementation of typed printf in terms of multi-
prompt shift and reset, but this paper gives a translation for the whole source
calculus and also a proof of the type preservation property. Later, we will show
a tagless-final implementation of our translation which is another evidence that
our translation actually works type-safely.

Figure 6 presents the translation rules from λATM to λmpsr. As we have
explained in earlier sections, we emulate ATM from the type α to the type β in
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LxM = x

LcM = c

Lλx.eM = λx.JeK
Le1e2M = Le1MLe2M
L〈e〉M = Ppq.〈(λy.Sq .y)(JeKpq)〉p

Je1e2K = λpq.Prs.(Je1Krs)(Je2Kpr)sq
Jlet x = v in e2K = λpq.let x = LvM in Je2Kpq

JSk.eK = λpq.Spk′.((λk.LeM)(λy.〈(λ .Ω)(k′y)〉q)

JeK = λpq.Spk.〈kLeM〉q e is a pure term

Figure 6: Translation for Terms

terms of two prompts whose answer types are α pr and β pr. Hence the triple
τ ;α, β in the typing judgment is translated to the type JβK pr→ JαK pr→ JτK.

Figure 5 presents the translation rules for types, type schemes and type
environments. They are translated in a natural way except that the type for
effectful functions σ/α→ τ/β, which are translated to standard function types
but their codomains are the translation of the triples above.

We can show that our translation preserves typing.

Theorem 1 (Type preservation). If Γ ` e : τ ;α, β is derivable in the source
calculus λATM, then JΓK ` JeK : Jτ ;α, βK is derivable in the target calculus λmpsr.

Similarly, if Γ `p e : τ is derivable in λATM, so is JΓK ` LeM : JτK in λmpsr.

Proof. We will prove the two statements by simultaneous induction on the
derivations. Here we only show a few interesting cases.

(Case e = 〈e1〉) We have a derivation for:

Γ ` e1 : σ;σ, τ

Γ `p 〈e1〉 : τ

By induction hypothesis, we can derive JΓK ` Je1K : Jσ;σ, τK. Let Γ′ = JΓK, p :
JτK pr, q : JσK pr and Γ′′ = Γ′, y : JσK. We have the following derivation:

Γ′ ` p : JτK pr

Γ′′ ` q : JσK pr Γ′′ ` y : JσK

Γ′′ ` Sq .y : JτK

Γ′ ` λv.Sq .y : JσK→ JτK

Γ′ ` q : JσK pr

Γ′ ` p : JτK pr Γ′ ` Je1K : Jσ;σ, τK

Γ′ ` Je1Kp : JσK pr→ JσK

Γ′ ` Je1Kpq : JσK

Γ′ ` (λy.Sq .y) (Je1Kpq) : JτK

Γ′ ` 〈(λy.Sq .y) (Je1Kpq)〉p : JτK

JΓK ` Pp.Pq.〈(λv.Sq .v) (Je1Kpq)〉p : JτK

which derives JΓK ` L〈e1〉M : JτK.
(Case e = Sx.e1) We have a deviation for
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Γ, x : τ → α `p e1 : β

Γ ` Sx.e1 : τ ;α, β

By induction hypothesis JΓ, x : τ → αK ` Le1M : JβK is derivable. Let Γ′ =
JΓK, p : JβK pr, q : JαK pr, Γ′′ = Γ′, k′ : JτK→ JβK, and Γ′′′ = Γ′′, y : JτK, then we
have:

Γ′′ ` p : JβK pr

Γ′′, x : JτK→ JαK ` Le1M : JβK
Γ′′ ` λx.Le1M : (JτK→ JαK)→ JβK

Γ′′′ ` 〈(λ .Ω) (k′y)〉q : JαK
Γ′′ ` λy.〈(λ .Ω) (k′y)〉q : JτK→ JαK

Γ′′ ` (λx.Le1M) (λy.〈(λ .Ω) (k′y)〉q) : JβK
Γ′ ` Spk′. (λx.Le1M) (λy.〈(λ .Ω) (k′y)〉q) : JτK

JΓK ` λp.λq.Spk′. (λx.Le1M) (λy.〈(λ .Ω) (k′y)〉q) : JβK pr→ JαK pr→ JτK

which derives JΓK ` JSx.e1K : Jτ ;α, βK. (end of proof)
Hence our translation preserves typing. We think that our translation also

preserve operational semantics but its formalization is left for future work.

6 Tagless-final embedding in OCaml

We have implemented interpreters for the calculus in Figure 3 via the translation
presented in the previous section. To simplify the implementation, we have
eliminated let polymorphism from the source calculus.

Our implementation is based on Carette et al.’s tagless-final approach [5],
which lets one embed a domain-specific language in a metalanguage while pre-
serving typing of the embedded language. The syntax as well as the typing rules
of the embedded language are represented by a signature, and its semantics is
given as an interpretation of this signature. In this approach, type checking/in-
ference of the embedded language is reduced to that of the metalanguage, and
all representable terms and interpretations are type safe, by construction.

In this work, we choose OCaml plus multi-prompt shift and reset (imple-
mented in the DelimCC library) as the metalanguage. We embed our source
calculus λATM in this metalanguage, and give its semantics using our transla-
tion.

Figure 7 shows the module signature (called Symantics) for our source cal-
culus λATM, embedded in OCaml. Each function in the signature represents a
term-constructor of λATM, and its type encodes the corresponding typing rule.
The type ’ t pure means that the expression is pure and has the type ’ t. The
type (’ t , ’a, ’b) eff means that the expression has the type ’ t and has an
effect that modifies the answer type from ’a to ’b.

Note that, we can represent all and only typable terms in λATM as a combi-
nation of the functions defined in the signature, and the typability of embedded
terms are checked by the type system of OCaml; in other words, all representable
terms are typable when they are constructed.

In the tagless-final approach, operational semantics of the embedded lan-
guage is given as an interpretation of the Symantics signature, namely, a module
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module type Symantics = sig
type ’t pure
type (’t, ’a, ’b) eff
type (’s, ’t, ’a, ’b) efun
type (’s, ’t) pfun

val const : ’t −> ’t pure
val lam : (’s pure −> (’t, ’a, ’b) eff)

−> (’s, ’t, ’a, ’b) efun pure
val app : ((’s, ’t, ’a, ’b) efun, ’b, ’c) eff

−> (’s, ’c, ’d) eff −> (’t, ’a, ’d) eff
val appP : (’s, ’t) pfun pure −> ’s pure −> ’t pure
val shift : ((’t, ’a) pfun pure −> ’b pure)

−> (’t, ’a, ’b) eff
val reset : (’s, ’s, ’t) eff −> ’t pure
val exp : ’t pure −> (’t, ’a, ’a) eff
val run : ’t pure −> ’t

end

Figure 7: Signature of the Embedded Language

of type Symantics. An interpreter for our source language is shown in Figure
10 in the appendix. The interpreter interprets an embedded term in the meta-
language, using the translation introduced in this paper.

To write concrete examples, we extend the source language with primitive
functions, conditionals, and the fixpoint operator. Its signature SymP is shown
in Figure 9 in the appendix of this paper.

Using these modules, we can write programming examples such as list ap-
pend and prefix, shown in Figure 8 where we use syntax sugars for list-manipulating
functions defined in Figure 12. Running these examples gives correct answers,
as shown in the comments of the code in Figure 8.

In summary, we have successfully implemented our source language and the
translation into the target language using the tagless-final approach. We think
that this implementation provides another good evidence that our translation
is type preserving. Thanks to the tagless-final approach, our implementation is
extensible, and in fact, we added several primitive such as the fixpoint operator
in a type-safe way.

7 Related Work and Conclusion

In this paper, we have proposed type-preserving translation for embedding pro-
grams with ATM into those without. Our translation uses multi-prompt systems
and dynamic creation of prompts to emulate two answer types in effectful terms.
We proved type preservation and implemented in OCaml the translation using
the tagless-final style, which would add the “credibility” of our work.
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module Example (S: SymP) = struct
open LIST (∗ LIST module defines syntax sugars for lists.

∗)

let append = fixE (fun f x −>
ifE (null x)
(shift (fun k −> k))
(head (exp x) @∗ app (exp f) (tail @@ exp x)))

let res1 = run @@
appP (reset (app (exp append) (exp @@ list [1;2;3])))

(list [4;5;6])
(∗ res1 returns [1; 2; 3; 4; 5; 6] ∗)

let prefix =
fixE (fun f x −>
ifE (null x)
(shift (fun k −> list []))
(head (exp x) @∗ shift (fun k −> reset @@

(exp (appP k (list [])))
@∗ (exp (reset @@ app (exp2 k)

(app (exp f) (tail @@ exp x)))))))

let res2 = run @@
reset @@ app (exp prefix) (exp @@ list [1;2;3])

(∗ res2 returns [[1]; [1; 2]; [1; 2; 3]] ∗)
end

Figure 8: Programming Examples

Let us briefly summarize related work. Rompf et al. [12] implemented shift
and reset in Scala, that allow answer-type modification. Their source language
needs relatively heavy type annotations to be implemented by a selective CPS
transformation, and does not allow higher-order functions. Masuko and Asai [11]
designed a language OchaCaml, which is Caml light extended with shift and re-
set. OchaCaml fully supports ATM at the cost of redesigning the whole type
system and an extension of the run-time system. Wadler [13] studied monad-like
structures to express shift and reset with Danvy and Filinski’s type system [6].
Inspired by his work, Atkey [2, 3] proposed parameterised monads, which gener-
alize monads. Parametrised monads take two more type parameters to express
inputs and outputs, or initial states and final states. Unlike standard mon-
ads, parameterised monads can express answer-type modification. He studied
categorical foundation of parameterised monads. Kiselyov [10] independently
studied the same notion as parameterised monads, and gave an implementation
and a number of programming examples using it.

For future work, we plan to formally prove the semantics-preservation prop-
erty mentioned in this paper. Investigating other delimited-control operators
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such as shift0/reset0 and control/prompt with answer-type modification would
be also interesting.

Acknowledgments: We are grateful to the anonymous reviewers for their
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A Implementation of Interpreters

We show our tagless-final implementation of the source language and its inter-
pretation, which is based on our translation in the paper.

Figure 9 shows the signature for the extended language.

module type SymP = sig
include Symantics

val p2E : (’t1 −> ’t2 −> ’t3) −> (’t1, ’a, ’b) eff
−> (’t2, ’b, ’c) eff −> (’t3, ’a, ’c) eff

val pE: (’t −> ’u) −> (’t, ’a, ’a) eff
−> (’u, ’a, ’a) eff

val ifE : (bool, ’b, ’c) eff −> (’t, ’a, ’b) eff
−> (’t, ’a, ’b) eff −> (’t, ’a, ’c) eff

val fixE : (((’s, ’t, ’a, ’b) efun) pure −> ’s pure
−> (’t, ’a, ’b) eff) −> (’s, ’t, ’a, ’b) efun pure

end

Figure 9: Signature of the Extended Language

Figure 10 is an interpreter for the embedded language, which is a Symantics
module. As can be seen, our implementation reflects our translation to the
target language, which is OCaml plus DelimCC.

Figure 11 shows an interpreter for the extended language, which is a SymP
module.

We use syntax sugar for list-manipulating functions, which are defined in
the LIST module in Figure 12.

Here pE and p2E are primitives for lifting up one or two arguments prim-
itives, and fixE, ifE and exp2 are the fixpoint operator, conditional, and a
primitive to turn pure functions to effectful one, respectively.
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module R = struct
type ’t pure = unit −> ’t
type (’t, ’a, ’b) eff = ’b prompt −> ’a prompt −> ’t
type (’s, ’t, ’a, ’b) efun = ’s pure −> (’t, ’a, ’b)
eff
type (’s, ’t) pfun = ’s pure −> ’t pure

let coerce _ = failwith "unreachable"

let wrap x : ’a pure = fun () −> x
let unwrap : ’a pure −> ’a = fun x −> x ()

let const x = wrap x
let lam f = wrap f

let app e1 (e2: (’s, ’c, ’d ) eff) : (’t, ’a, ’d) eff =
fun p q −>
let r, s = new_prompt (), new_prompt () in
let v2 = wrap @@ e2 p r in
let v1 = e1 r s in
v1 v2 s q

let appP e1 e2 : ’t pure =
fun () −>
let v2 = unwrap e2 in
let v1 = unwrap e1 in
v1 (wrap v2) ()

let shift f : (’t, ’a, ’b) eff =
fun p q −>
Delimcc.shift p (fun k’ −>
unwrap @@ f @@ wrap (fun y −>

wrap @@ push_prompt q
(fun () −> coerce (k’ @@ unwrap y ))))

let reset e =
fun () −>
let p, q = new_prompt (), new_prompt () in
push_prompt p (fun () −> abort q @@ e p q)

let exp e =
fun p q −> Delimcc.shift p
(fun k −> push_prompt q (fun () −> k @@ unwrap e))

let run (x: ’t pure) : ’t = x ()
end

Figure 10: Interpretation of the Embedded Language
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module RP = struct
include R

let p2E f e1 e2 = fun p q −>
let r = new_prompt () in
let v2 = e2 p r in
let v1 = e1 r q in
f v1 v2

let pE f x = fun p q −> f (x p q)

let ifE b e e’ = fun p q −>
let r = new_prompt () in
if b p r then e r q else e’ r q

let rec fixE f : (’s, ’t, ’a, ’b) efun pure =
lam (fun x −> f (fun x −> fixE f x) x)

end

Figure 11: Interpretation of the Extended Language

module LIST (S: SymP) = struct
open S

let list x = const x
let (@∗ ) x y = p2E (fun x y −> x :: y) x y
let head x = pE List.hd x
let tail x = pE List.tl x
let null x = pE (fun x −> x = []) @@ exp x
let exp2 f = exp @@ lam (fun x −> exp @@ appP f x)

end

Figure 12: Syntax sugar for Lists
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Logical by need
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Call-by-need calculi are complex to design and reason with. When
adding control effects, the very notion of canonicity is irremediably
lost, the resulting calculi being necessarily ad hoc. This calls for
a design of call-by-need guided by logical rather than operational
considerations. This would allow for a direct extension to control
operators, given their strong connections with classical logic. This
work provides such logical by-need calculi rooted in linear head re-
duction.

After recalling linear head reduction, it is first reformulated thanks
to closure contexts stemming from Danos and Regnier’s sigma-equiv-
alence. This reformulation allows to extend linear head reduction to
the lambda-mu-calculus.

From the linear head reduction, a call-by-need calculus is then de-
rived in three main steps. This methodology is eventually validated
by the design of a classical by-need calculus, that is a lazy lambda-
mu-calculus.
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