
ATM without Tears:

Prompt-Passing Style Transformation for Typed

Delimited-Control Operators

Ikuo Kobori∗ Yukiyoshi Kameyama∗ Oleg Kiselyov†

Abstract

The salient feature of delimited-control operators is their ability to modify
answer types during computation. The feature, answer-type modification
(ATM for short), allows one to express various interesting programs such
as typed printf compactly and nicely, while it makes it difficult to embed
these operators in standard functional languages.

In this paper, we present a typed translation of delimited-control op-
erators shift and reset with ATM into a familiar language with multi-
prompt shift and reset without ATM, which lets us use shift and reset
with ATM in standard languages without modifying the whole type sys-
tem. Our translation generalizes Kiselyov’s direct-style implementation
of typed printf, which uses two prompts to emulate the modification of
answer types. We prove that our translation preserves typing, and also
give an implementation in the tagless-final style which respects typing.

∗University of Tsukuba, Japan
†Tohoku University, Japan

i



Contents

1 Introduction 1

2 Delimited-Control Operators and Answer-type Modification 1

3 Simulating ATM with Multi-prompt shift/reset 2

4 Source and Target Calculi 5

5 Translation 8

6 Tagless-final embedding in OCaml 10

7 Related Work and Conclusion 11

A Implementation of Interpreters 14

List of Figures

1 Operational Semantics of Source Calculus . . . . . . . . . . . . . 5
2 Types, Type Schemes and Type Environments . . . . . . . . . . 6
3 Typing Rules of the Source Calculus . . . . . . . . . . . . . . . . 6
4 Typing Rules of the Target Calculus . . . . . . . . . . . . . . . . 8
5 Translation for Types, Type Schemes and Type Environments . . 8
6 Translation for Terms . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Signature of the Embedded Language . . . . . . . . . . . . . . . 11
8 Programming Examples . . . . . . . . . . . . . . . . . . . . . . . 12
9 Signature of the Extended Language . . . . . . . . . . . . . . . . 14
10 Interpretation of the Embedded Language . . . . . . . . . . . . . 15
11 Interpretation of the Extended Language . . . . . . . . . . . . . 16
12 Syntax sugar for Lists . . . . . . . . . . . . . . . . . . . . . . . . 16

ii



1 Introduction

Delimited continuations is part of continuations, the rest of computation, and
delimited-control operators provide programmers a means to access the current
delimited continuations. Since the delimited-control operators control/prompt
and shift/reset have been proposed around 1990 [8, 7], many researchers have
been studying them intensively, to find interesting theory and application in pro-
gram transformation, partial evaluation, code generation, and computational
linguistics. Today, we see their implementations in many programming lan-
guages such as Scheme, Racket, SML, OCaml, Haskell, and Scala.

However, there still exists a big gap between theory and practice if we work in
typed languages. Theoretically, the salient feature of delimited-control operators
is their ability to modify answer types. The term reset (3 + shift k -> k)

looks as if it has type int, but the result of this computation is a continua-
tion fun x -> reset (3 + x) whose type is int -> int, which means that
the initial answer type has been modified during the computation of the shift
term. While this feature, called Answer-Type Modification, allows one to ex-
press surprisingly interesting programs such as typed printf, it is the source of
the problem that we cannot embed the delimited-control operators in standard
languages. We can hardly expect that the whole type system of a full-fledged
language would be modified in such a way. With a few exceptions of Scala
[12] and OchaCaml [11], we cannot directly express the beautiful examples with
ATM as programs in standard languages.

This paper addresses this problem, and presents a solution for it. We will
give a translation from the language with ATM shift and reset into another
language with multi-prompt shift and reset without ATM. The translation is
a generalization of Kiselyov’s implementation of typed printf, which introduces
two prompts (tags for control operators) for the answer types before and after
the computation. The resulting term passes prompts of control operators dur-
ing computation, and following Continuation-Passing Style, we call is Prompt-
Passing Style (PPS).

The rest of this paper is organized as follows: Section 2 explains delimited-
control operators and answer-type modification by a simple example. Section 3
informally states how we simulate answer-type modification using multi-prompt
shift and reset, and Section 4 gives a formal account to it including formal
properties. Section 5 describes the syntax-directed translation and its property.
Based on the theoretical development, Section 6 gives a tagless-final imple-
mentation of shift and reset with answer-type modification as well as several
programming examples. Section 7 gives related work and concluding remarks.

2 Delimited-Control Operators and Answer-type
Modification

We introduce a simple example which uses delimited-control operators shift and
reset where the answer types are modified through computation.

1



The following implementation of the append function is taken from Asai and
Kameyama’s paper [1].

let rec append lst = match lst with
| [] −> shift (fun k −> k)
| x :: xs −> x :: append xs

in let append123 =
reset (append [1;2;3])

in
append123 [4;5;6]

The function append takes a value of type int list as its input, and tra-
verses the list. When it reaches at the end of the list, it captures the continuation
(fun ys -> reset 1 :: 2 :: 3 :: ys in the functional form) up to the near-
est reset, and returns the continuation as its result. We then apply it to the
list [4;5;6] to obtain [1;2;3;4;5;6], and it is easy to see that the function
deserves its name.

Let us check the type of append. At the beginning, the return type of
append (called its answer type) is int list, since in the second branch of the
case analysis, it returns x :: append xs. However, the final result is a function
from list to list, which is different from our initial guess. The answer type has
been modified during the execution of the program.

Since its discovery, this feature has been used in many interesting examples
with shift and reset, from typed printf to suspended computations, to coroutines,
and even to computational linguistics. Nowadays, it is considered as one of the
most attractive features of shift and reset.

Although the feature, answer-type modification, is interesting and sometimes
useful, it is very hard to directly embed such control operators in conventional
functional programming languages such as OCaml, as it requires a big change
of the type system; a typing judgment in the form Γ ` e : τ must be changed
to a more complex form Γ ` e : τ ;α, β where α and β designate the answer
types before and after the execution of e. Although adjusting a type system
in this way is straightforward in theory, it is rather difficult to modify existing
implementations of type systems, and we therefore need a way to represent the
above features in terms of standard features and/or mild extensions of existing
programming languages.

This paper addresses this problem, and proposes a way to translate away
the feature of ATM using multi-prompt control operators.

3 Simulating ATM with Multi-prompt shift/re-
set

In this section, we explain the basic ideas of our translation. Kiselyov imple-
mented typed printf in terms of shift and reset without ATM, and we have
generalized it to a translation from arbitrary terms in the source language.

2



Consider a simple example with answer-type modification: J〈5 + Sk.k〉K
in which S is the delimited-control operator shift, and 〈· · ·〉 is reset. Its answer
type changes through computation, as its initial answer type is int while its
final answer type is int->int.

Let us translate the example 1 where JeK denotes the result of the translation
of the term e.

We begin with the translation of a reset expression:

J〈e〉K = Pp.Pq.〈let y = JeKpq in Sqz. y〉p

where the primitive Pp creates a new prompt and binds the variable p to it.
For brevity, the variable p which stores a prompt may also be called a prompt.

The translated term, when it is executed, first creates new prompts p and q
and its body e is applied to the arguments p and q. Its result is stored in y and
then we execute Sqz.y, but there is no reset with the prompt q around it. Is it an
error ? Actually, no. As we will see the definition below, JeK is always in the form
λp.λq.e′ and during the computation of e′, Sp is always invoked. Hence e′ never
returns normally, and the “no-reset” error does not happen. Our invariants
in the translation are that the first argument (the prompt p) corresponds to
the reset surrounding the expression being translated, and the second argument
(the prompt q) corresponds to the above (seemingly dangerous) shift.

From the viewpoint of typing, for each occurrence of answer-type modifica-
tion from α to β, we use two prompts to simulate the behavior. The prompts p
and q generated here correspond to the answer types α and β, respectively.

We translate the term 5 to J5K = λp.λq. Spk. 〈k 5〉q and the term 〈5〉 is
translated (essentially) to:

Pp.Pq.〈let y = Spk.〈k 5〉q in Sqz. y〉p

When we execute the result, Sp captures its surrounding evaluation context
〈let y = [ ] in Sqz. y〉p, binds k to its functional form λx.〈let y = x in Sqz. y〉p,
and continues the evaluation of 〈k 5〉q. Then we get:

〈〈〈let y = 5 in Sqz. y〉p〉q〉p

and when this Sq is invoked, it is surrounded by a reset with the prompt q, and
thus it is safe. The final result of this computation is 5. In this case, since the
execution of the term 5 does not modify the answer type, the prompts p and q
passed to the term J5K correspond to the same answer type, but we will soon
see an example in which they correspond to different answer types.

A shift-expression is translated to:

JSk.eK = λp.λq.Spk′.let k = (λy.〈(λ .Ω)(k′y)〉q) in LeM

As we have explained, p is the prompt for the reset surrounding this expression,
hence Sp in the translated term will capture a delimited continuation up to the

1The precise definition of the translation is given later.

3



reset (which, in turn, corresponds to the nearest reset in the source term). How-
ever the delimited continuation contains a dangerous shift at its top position,
so we must somehow detoxify it. For this purpose, we replace the captured con-
tinuation k′ by a function λy.〈(λ .Ω)(k′y)〉q in which the calls to k′ is enclosed
by a reset with the prompt q, and the dangerous shift in k′ will be surrounded
by it, sanitizing the dangerous behavior.

Let us consider the types of captured continuations in this translation. Sup-
pose the term Sk.e modifies the answer type from α to β. We use the prompts
p and q, whose answer types2 are β and α, respectively. In the source term, the
continuation captured by shift (and then bound to k) has the type τ → α. In
the translated term, the continuation bound to k′ has the type τ → β, since the
continuation was captured by a shift with the prompt p. After some calculation,
it can be inferred that the term λy.〈(λ .Ω)(k′y)〉q has the type τ → α, hence we
can substitute it for k. 3

We show the mechanism for detoxifying a dangerous shift by executing J〈5+
Sk.k〉K, which is equivalent to:

Pp.Pq.〈let y = Pr.((Srk.〈k 5〉q)+(Spk′.let k = λu.〈(λw.Ω)(k′ u)〉r in k)) in Sqz.y〉p

where the subterm starting with Sr is the translation result of 5, and the one
with Sp is that of Sk.k. In general, each subterm may modify answer types.
Hence, a term e1 + e2 needs three prompts corresponding to the initial, final,
and intermediate answer types. The prompt r generated here corresponds to
the intermediate answer type.

Evaluating this term in call-by-value, and right-to-left order (after generating
all the prompts) leads to the term: 〈let k = λu.〈(λw.Ω)(k′ u)〉r in k〉p where
k′ is the delimited continuation λx.〈let y = (Srk.〈k 5〉q) + x in Sqz.y〉p. The
result of this computation is λu.〈(λw.Ω)(k′ u)〉r, which is essentially equivalent
to λy.〈5 + y〉. To see this, applying it to 9 yields:

(λu.〈(λw.Ω)((λx.〈let y = (Srk.〈k 5〉q) + x in Sqz.y〉p)u)〉r) 9

 ∗〈(λw.Ω)〈let y = (Srk.〈k 5〉q) + 9 in Sqz.y〉p〉r

Srk.〈k 5〉q captures the context with the dangerous shift

 ∗〈〈(λu.〈(λw.Ω)〈let y = u+ 9 in Sqz.y〉p〉r)5〉q〉r
 ∗〈〈〈(λw.Ω)〈let y = 5 + 9 in Sqz.y〉p〉r〉q〉r
 ∗〈〈14〉q〉r which reduces to 14.

Thus, our translation uses two prompts to make connections to two answer
types, where prompts are generated dynamically.

2We assume that, our target language after the translation has multi-prompt shift and
reset, but no answer-type modification. Hence, each prompt has a unique answer type.

3Here Ω is a term which has an arbitrary type. Such a term can be expressed, as, for
instance, Pp.Spk.λx.x. Its operational behavior does not matter, as it will be never executed.

4



(evaluation contexts) E ::= [ ] | eE | Ev | 〈E〉
(pure evaluation contexts) F ::= [ ] | eF | Fv

E[(λx.e) v] E[e{v/x}]
E[let x = v in e] E[e{v/x}]

E[〈v〉] E[v]

E[〈F [Sk.e]〉] E[〈e{λy.〈F [y]〉/k}〉] y is a fresh variable in F

Figure 1: Operational Semantics of Source Calculus

4 Source and Target Calculi

In this section, we formally define our source and target calculi.
The source calculus is based on Asai and Kameyama’s polymorphic extension

of Danvy and Filinski’s calculus for shift and reset, both of which allow answer-
type modification [6, 1]. We slightly modified it here; (1) we removed fixpoint
and conditionals (but they can be added easily), (2) we use value restriction
for let-polymorphism while they used more relaxed condition, and (3) we use
Biernacki et al.’s simplification for the types of delimited continuations [4].

The syntax of values and terms of our source calculus λATM is defined as
follows:

(values) v ::= x | c | λx.e
(terms) e ::= v | e1e2 | let x = v in e | Sk.e | 〈e〉

where λx.e and Sk.e bind x and k in e, resp.
Figure 1 defines call-by-value operational semantics to the language above.
The term [ ] denotes the empty context. Evaluation contexts are standard,

and pure evaluation contexts are those evaluation contexts that have no resets
enclosing the hole. Note that we use the right-to-left evaluation order for the
function applications to reflect the current OCaml compiler’s semantics.

The first two evaluation rules are the standard beta and let rules, where
e{v/x} denotes capture-avoiding substitution. The next two rules are those for
control operators: if the body of a reset expression is a value, the occurrence
of reset is discarded. If the next redex is a shift expression, we capture the
continuation up to the nearest reset and bind k to it.

Figure 2 introduces types and related notions. Types are type variables
(t), base types (b), pure function types (σ → τ), or effectful function types
(σ/α → τ/β), which represent function types σ → τ where the answer type
changes from α to β.

Figure 3 defines the type system of λATM. Type judgments are either Γ `p
e : τ (pure judgments) or Γ ` e : τ ;α, β (effectful judgments), the latter of
which means that evaluating e with the answer type α yields a value of type τ
with the answer type being modified to β. The typing rules are based on Danvy

5



τ, σ, α, β ::= t | b | σ → τ | (σ/α→ τ/β)

A ::= τ | ∀t.A
Γ ::= ∅ | Γ, x : A

Figure 2: Types, Type Schemes and Type Environments

x : A ∈ Γ, τ < A
var

Γ `p x : τ

Γ ` e : σ;σ, τ
reset

Γ `p 〈e〉 : τ

Γ, x : τ → α `p e : β
shift

Γ ` Sx.e : τ ;α, β

(c is a constant of type b)
const

Γ `p c : b

Γ, x : σ ` e : τ ;β, γ
fun

Γ `p λx.e : σ/β → τ/γ

Γ `p e : τ
exp

Γ ` e : τ ;α, α

Γ ` e1 : σ/α→ τ/β;β, γ Γ ` e2 : σ; γ, δ
app

Γ ` e1e2 : τ ;α, δ

Γ `p e1 : σ → τ Γ `p e2 : σ
app-p

Γ `p e1e2 : τ

Γ `p v : σ Γ, x : Gen (σ; Γ) ` e : τ ;α, β
let

Γ ` let x = v in e : τ ;α, β

Figure 3: Typing Rules of the Source Calculus

and Filinski’s [6] except that we have let-polymorphism and clear distinction of
pure judgments from impure judgments following Asai and Kameyama [1].

In the var rule, τ < A means that the type τ is an instance of type scheme
A, and the type Gen (σ; Γ) denotes ∀t1, · · · ∀tn.σ where t1, · · · , tn are the type
variables that appear in σ but not appear in Γ freely. The delimited continu-
ations captured by shift expressions are pure functions (they are polymorphic
in answer types), and we use the pure function space τ → α for this purpose.
On the contrary, the functions introduced by lambda are, in general, effectful.
Accordingly, we have two rules for applications. Note that the body of a shift
expression is restricted to a pure expression, in order to simplify the definition
of our translation. This choice does not change the expressive power of the lan-
guage, since we can always insert a reset into the topmost position of the body
of a shift expression, to turn the body to a pure expression, without affecting
typability and operational behavior. The exp rule turns pure terms into effectful
terms.

The type system of the source calculus λATM enjoys the subject reduction
property. The proof is standard and omitted.

6



We then define the target calculus λmpsr, which is a polymorphic calculus
with multi-prompt shift and reset (but without ATM). The calculus is similar, in
spirit, to Gunter et al.’s calculus with the cupto and set operators [9]. Besides
disallowing ATM, the target calculus differs from the source calculus in that
the control operators are named, to allow mixing multiple effects in a single
program. The names for control operators are called prompts for historical
reasons, and denoted by p, q, · · · . In our formulation, prompts are first-class
values and can be bound to ordinary variables x. Prompts are given as prompt-
constants, or can be generated dynamically by the P primitive. For instance,
evaluating Px.〈1 + Sxk.e〉x first creates a fresh prompt p and substitutes it for
x, then evaluate 〈1 + Spk.e〉p. This choice of the formulation closely follows
Kiselyov’s DelimCC library for multi-prompt shift/reset.

Types and typing environments are defined as follows:

τ, σ ::= t | b | σ → τ | τ pr

A ::= τ | ∀t.A
Γ ::= ∅ | Γ, x : A

where τ pr is the type for the prompts with the answer type τ . The syntax of
values and terms are defines as follows:

v ::= x | c | λx.e | p
e ::= v | e1e2 | Svx.e | 〈e〉v | Px.e | let x = v in e | Ω

where p is a prompt-constant. The control operators now receive not only
prompt-constants, but values which will reduce to prompts. The term Px.e
creates a fresh prompt and binds x to it. The term Ω denotes a non-terminating
computation of arbitrary types. It may be defined in terms of shift, but for the
sake of clarity, we added it as a primitive.

Evaluation contexts and evaluation rules are given as follows:

E ::= [ ] | Ee | vE | 〈E〉p
E[(λx.e)v] E[e{v/x}]

E[let x = v in e] E[e{v/x}]
E[Px.e] E[e{p/x}] p is a fresh prompt-constant

E[〈v〉p] E[v]

E[〈Ep[Spx.e]〉p] E[〈e{λy.〈Ep[y]〉p/x}〉p]

E[Ω] E[Ω]

Note that we use Ep in the second last rule, which is an evaluation context that
does not have a reset with the prompt p around the hole, and thus implies that
we capture the continuation up to the nearest reset with the prompt p.

Finally we give typing rules for the target calculus in Figure 4. The type
system of the target calculus is mostly standard except the use of prompts. In
the shift rule, the prompt expression v must be of type σ pr where σ is the

7



x : A ∈ Γ, τ < A
var

Γ ` x : τ

(c is a constant of b)
const

Γ ` c : b
Γ ` v : τ pr Γ ` e : τ

reset
Γ ` 〈e〉v : τ

Γ ` v : σ pr Γ, x : τ → σ ` e : σ
shift

Γ ` Sv x.e : τ

Γ, x : σ ` e : τ
fun

Γ ` λx.e : σ → τ

Γ ` e1 : σ → τ Γ ` e2 : σ app
Γ ` e1e2 : τ

Γ ` v : σ Γ, x : Gen (σ; Γ) ` e : τ
let

Γ ` let x = v in e : τ

Γ, x : σ pr ` e : τ
prompt

Γ ` Px.e : τ

omega
Γ ` Ω : τ

Figure 4: Typing Rules of the Target Calculus

Jτ ;α, βK = JβK pr→ JαK pr→ JτK
JbK = b

JtK = t

Jσ → τK = JσK→ JτK
Jσ/α→ τ/βK = JσK→ Jτ ;α, βK

JτK = JτK
J∀t.AK = ∀t.JAK

JΓ, x : AK = JΓK, x : JAK

Figure 5: Translation for Types, Type Schemes and Type Environments

type of the body of the shift expression. A similar restriction is applied to the
reset rule. In the prompt rule, we can create an arbitrary prompt and binds a
variable x to it.

The type system enjoys the subject reduction property modulo the set of
dynamically created prompts which have infinite extents.

5 Translation

In this section, we give the syntax-directed translation from λATM to λmpsr,
which translates away the feature of answer-type modification. The translation
borrows the idea of Kiselyov’s implementation of typed printf in terms of multi-
prompt shift and reset, but this paper gives a translation for the whole source
calculus and also a proof of the type preservation property. Later, we will show
a tagless-final implementation of our translation which is another evidence that
our translation actually works type-safely.

Figure 6 presents the translation rules from λATM to λmpsr. As we have
explained in earlier sections, we emulate ATM from the type α to the type β in

8



LxM = x

LcM = c

Lλx.eM = λx.JeK
Le1e2M = Le1MLe2M
L〈e〉M = Ppq.〈(λy.Sq .y)(JeKpq)〉p

Je1e2K = λpq.Prs.(Je1Krs)(Je2Kpr)sq
Jlet x = v in e2K = λpq.let x = LvM in Je2Kpq

JSk.eK = λpq.Spk′.((λk.LeM)(λy.〈(λ .Ω)(k′y)〉q)

JeK = λpq.Spk.〈kLeM〉q e is a pure term

Figure 6: Translation for Terms

terms of two prompts whose answer types are α pr and β pr. Hence the triple
τ ;α, β in the typing judgment is translated to the type JβK pr→ JαK pr→ JτK.

Figure 5 presents the translation rules for types, type schemes and type
environments. They are translated in a natural way except that the type for
effectful functions σ/α→ τ/β, which are translated to standard function types
but their codomains are the translation of the triples above.

We can show that our translation preserves typing.

Theorem 1 (Type preservation). If Γ ` e : τ ;α, β is derivable in the source
calculus λATM, then JΓK ` JeK : Jτ ;α, βK is derivable in the target calculus λmpsr.

Similarly, if Γ `p e : τ is derivable in λATM, so is JΓK ` LeM : JτK in λmpsr.

Proof. We will prove the two statements by simultaneous induction on the
derivations. Here we only show a few interesting cases.

(Case e = 〈e1〉) We have a derivation for:

Γ ` e1 : σ;σ, τ

Γ `p 〈e1〉 : τ

By induction hypothesis, we can derive JΓK ` Je1K : Jσ;σ, τK. Let Γ′ = JΓK, p :
JτK pr, q : JσK pr and Γ′′ = Γ′, y : JσK. We have the following derivation:

Γ′ ` p : JτK pr

Γ′′ ` q : JσK pr Γ′′ ` y : JσK

Γ′′ ` Sq .y : JτK

Γ′ ` λv.Sq .y : JσK→ JτK

Γ′ ` q : JσK pr

Γ′ ` p : JτK pr Γ′ ` Je1K : Jσ;σ, τK

Γ′ ` Je1Kp : JσK pr→ JσK

Γ′ ` Je1Kpq : JσK

Γ′ ` (λy.Sq .y) (Je1Kpq) : JτK

Γ′ ` 〈(λy.Sq .y) (Je1Kpq)〉p : JτK

JΓK ` Pp.Pq.〈(λv.Sq .v) (Je1Kpq)〉p : JτK

which derives JΓK ` L〈e1〉M : JτK.
(Case e = Sx.e1) We have a deviation for

9



Γ, x : τ → α `p e1 : β

Γ ` Sx.e1 : τ ;α, β

By induction hypothesis JΓ, x : τ → αK ` Le1M : JβK is derivable. Let Γ′ =
JΓK, p : JβK pr, q : JαK pr, Γ′′ = Γ′, k′ : JτK→ JβK, and Γ′′′ = Γ′′, y : JτK, then we
have:

Γ′′ ` p : JβK pr

Γ′′, x : JτK→ JαK ` Le1M : JβK
Γ′′ ` λx.Le1M : (JτK→ JαK)→ JβK

Γ′′′ ` 〈(λ .Ω) (k′y)〉q : JαK
Γ′′ ` λy.〈(λ .Ω) (k′y)〉q : JτK→ JαK

Γ′′ ` (λx.Le1M) (λy.〈(λ .Ω) (k′y)〉q) : JβK
Γ′ ` Spk′. (λx.Le1M) (λy.〈(λ .Ω) (k′y)〉q) : JτK

JΓK ` λp.λq.Spk′. (λx.Le1M) (λy.〈(λ .Ω) (k′y)〉q) : JβK pr→ JαK pr→ JτK

which derives JΓK ` JSx.e1K : Jτ ;α, βK. (end of proof)
Hence our translation preserves typing. We think that our translation also

preserve operational semantics but its formalization is left for future work.

6 Tagless-final embedding in OCaml

We have implemented interpreters for the calculus in Figure 3 via the translation
presented in the previous section. To simplify the implementation, we have
eliminated let polymorphism from the source calculus.

Our implementation is based on Carette et al.’s tagless-final approach [5],
which lets one embed a domain-specific language in a metalanguage while pre-
serving typing of the embedded language. The syntax as well as the typing rules
of the embedded language are represented by a signature, and its semantics is
given as an interpretation of this signature. In this approach, type checking/in-
ference of the embedded language is reduced to that of the metalanguage, and
all representable terms and interpretations are type safe, by construction.

In this work, we choose OCaml plus multi-prompt shift and reset (imple-
mented in the DelimCC library) as the metalanguage. We embed our source
calculus λATM in this metalanguage, and give its semantics using our transla-
tion.

Figure 7 shows the module signature (called Symantics) for our source cal-
culus λATM, embedded in OCaml. Each function in the signature represents a
term-constructor of λATM, and its type encodes the corresponding typing rule.
The type ’ t pure means that the expression is pure and has the type ’ t. The
type (’ t , ’a, ’b) eff means that the expression has the type ’ t and has an
effect that modifies the answer type from ’a to ’b.

Note that, we can represent all and only typable terms in λATM as a combi-
nation of the functions defined in the signature, and the typability of embedded
terms are checked by the type system of OCaml; in other words, all representable
terms are typable when they are constructed.

In the tagless-final approach, operational semantics of the embedded lan-
guage is given as an interpretation of the Symantics signature, namely, a module

10



module type Symantics = sig
type ’t pure
type (’t, ’a, ’b) eff
type (’s, ’t, ’a, ’b) efun
type (’s, ’t) pfun

val const : ’t −> ’t pure
val lam : (’s pure −> (’t, ’a, ’b) eff)

−> (’s, ’t, ’a, ’b) efun pure
val app : ((’s, ’t, ’a, ’b) efun, ’b, ’c) eff

−> (’s, ’c, ’d) eff −> (’t, ’a, ’d) eff
val appP : (’s, ’t) pfun pure −> ’s pure −> ’t pure
val shift : ((’t, ’a) pfun pure −> ’b pure)

−> (’t, ’a, ’b) eff
val reset : (’s, ’s, ’t) eff −> ’t pure
val exp : ’t pure −> (’t, ’a, ’a) eff
val run : ’t pure −> ’t

end

Figure 7: Signature of the Embedded Language

of type Symantics. An interpreter for our source language is shown in Figure
10 in the appendix. The interpreter interprets an embedded term in the meta-
language, using the translation introduced in this paper.

To write concrete examples, we extend the source language with primitive
functions, conditionals, and the fixpoint operator. Its signature SymP is shown
in Figure 9 in the appendix of this paper.

Using these modules, we can write programming examples such as list ap-
pend and prefix, shown in Figure 8 where we use syntax sugars for list-manipulating
functions defined in Figure 12. Running these examples gives correct answers,
as shown in the comments of the code in Figure 8.

In summary, we have successfully implemented our source language and the
translation into the target language using the tagless-final approach. We think
that this implementation provides another good evidence that our translation
is type preserving. Thanks to the tagless-final approach, our implementation is
extensible, and in fact, we added several primitive such as the fixpoint operator
in a type-safe way.

7 Related Work and Conclusion

In this paper, we have proposed type-preserving translation for embedding pro-
grams with ATM into those without. Our translation uses multi-prompt systems
and dynamic creation of prompts to emulate two answer types in effectful terms.
We proved type preservation and implemented in OCaml the translation using
the tagless-final style, which would add the “credibility” of our work.

11



module Example (S: SymP) = struct
open LIST (∗ LIST module defines syntax sugars for lists.

∗)

let append = fixE (fun f x −>
ifE (null x)
(shift (fun k −> k))
(head (exp x) @∗ app (exp f) (tail @@ exp x)))

let res1 = run @@
appP (reset (app (exp append) (exp @@ list [1;2;3])))

(list [4;5;6])
(∗ res1 returns [1; 2; 3; 4; 5; 6] ∗)

let prefix =
fixE (fun f x −>
ifE (null x)
(shift (fun k −> list []))
(head (exp x) @∗ shift (fun k −> reset @@

(exp (appP k (list [])))
@∗ (exp (reset @@ app (exp2 k)

(app (exp f) (tail @@ exp x)))))))

let res2 = run @@
reset @@ app (exp prefix) (exp @@ list [1;2;3])

(∗ res2 returns [[1]; [1; 2]; [1; 2; 3]] ∗)
end

Figure 8: Programming Examples

Let us briefly summarize related work. Rompf et al. [12] implemented shift
and reset in Scala, that allow answer-type modification. Their source language
needs relatively heavy type annotations to be implemented by a selective CPS
transformation, and does not allow higher-order functions. Masuko and Asai [11]
designed a language OchaCaml, which is Caml light extended with shift and re-
set. OchaCaml fully supports ATM at the cost of redesigning the whole type
system and an extension of the run-time system. Wadler [13] studied monad-like
structures to express shift and reset with Danvy and Filinski’s type system [6].
Inspired by his work, Atkey [2, 3] proposed parameterised monads, which gener-
alize monads. Parametrised monads take two more type parameters to express
inputs and outputs, or initial states and final states. Unlike standard mon-
ads, parameterised monads can express answer-type modification. He studied
categorical foundation of parameterised monads. Kiselyov [10] independently
studied the same notion as parameterised monads, and gave an implementation
and a number of programming examples using it.

For future work, we plan to formally prove the semantics-preservation prop-
erty mentioned in this paper. Investigating other delimited-control operators

12



such as shift0/reset0 and control/prompt with answer-type modification would
be also interesting.

Acknowledgments: We are grateful to the anonymous reviewers for their
constructive comments. The first and second authors are supported in part by
JSPS Grant-in-Aid for Scientific Research B (No. 25280020).

References

[1] Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continu-
ations. In Proc. Fifth Asian Symposium on Programming Languages and
Systems, volume 4807 of Lecture Notes in Computer Science, pages 239–
254. Springer Berlin Heidelberg, 2007. 2, 5, 6

[2] Robert Atkey. Parameterised notions of computation. In Proceedings of the
Workshop on Mathematically Structured Functional Programming, Kures-
sare, Estonia, 2006. eWiC. 12

[3] Robert Atkey. Parameterised notions of computation. Journal of Func-
tional Programming, 19(3-4):335, June 2009. 12

[4] Malgorzata Biernacka and Dariusz Biernacki. Context-based proofs of ter-
mination for typed delimited-control operators. Proceedings of the 11th
ACM SIGPLAN conference on Principles and practice of declarative pro-
gramming, page 289, 2009. 5

[5] Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tagless,
partially evaluated: Tagless staged interpreters for simpler typed languages.
Journal of Functional Programming, 19(05):509, April 2009. 10

[6] Olivier Danvy and Andrzej Filinski. A Functional Abstraction of Typed
Contexts. Technical report, Computer Science Department, University of
Copenhagen, 1989. 5, 6, 12

[7] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings
of the 1990 ACM conference on LISP and functional programming, pages
151–160, New York, USA, 1990. ACM Press. 1

[8] Matthias Felleisen. The theory and practice of first-class prompts. In
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 180–190, New York, USA, 1988. ACM
Press. 1

[9] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of ex-
ceptions and control in ML-like languages. In Proceedings of the seventh
international conference on Functional programming languages and com-
puter architecture, pages 12–23, New York, USA, 1995. ACM Press. 7

13



[10] Oleg Kiselyov. Parametrized ’monad’. http://okmij.org/ftp/

Computation/monads.html#param-monad, 2006. 12

[11] Moe Masuko and Kenichi Asai. Caml Light + shift/reset = Caml Shift.
In First International Workshop on the Theory and Practice of Delimited
Continuations, pages 33–46, 2011. 1, 12

[12] Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class
polymorphic delimited continuations by a type-directed selective CPS-
transform. In Proceedings of the 14th ACM SIGPLAN international con-
ference on Functional programming, page 317, New York, USA, 2009. ACM
Press. 1, 12

[13] Philip Wadler. Monads and composable continuations. LISP and Symbolic
Computation, 7(1):39–55, January 1994. 12

A Implementation of Interpreters

We show our tagless-final implementation of the source language and its inter-
pretation, which is based on our translation in the paper.

Figure 9 shows the signature for the extended language.

module type SymP = sig
include Symantics

val p2E : (’t1 −> ’t2 −> ’t3) −> (’t1, ’a, ’b) eff
−> (’t2, ’b, ’c) eff −> (’t3, ’a, ’c) eff

val pE: (’t −> ’u) −> (’t, ’a, ’a) eff
−> (’u, ’a, ’a) eff

val ifE : (bool, ’b, ’c) eff −> (’t, ’a, ’b) eff
−> (’t, ’a, ’b) eff −> (’t, ’a, ’c) eff

val fixE : (((’s, ’t, ’a, ’b) efun) pure −> ’s pure
−> (’t, ’a, ’b) eff) −> (’s, ’t, ’a, ’b) efun pure

end

Figure 9: Signature of the Extended Language

Figure 10 is an interpreter for the embedded language, which is a Symantics
module. As can be seen, our implementation reflects our translation to the
target language, which is OCaml plus DelimCC.

Figure 11 shows an interpreter for the extended language, which is a SymP
module.

We use syntax sugar for list-manipulating functions, which are defined in
the LIST module in Figure 12.

Here pE and p2E are primitives for lifting up one or two arguments prim-
itives, and fixE, ifE and exp2 are the fixpoint operator, conditional, and a
primitive to turn pure functions to effectful one, respectively.

14

http://okmij.org/ftp/Computation/monads.html#param-monad
http://okmij.org/ftp/Computation/monads.html#param-monad


module R = struct
type ’t pure = unit −> ’t
type (’t, ’a, ’b) eff = ’b prompt −> ’a prompt −> ’t
type (’s, ’t, ’a, ’b) efun = ’s pure −> (’t, ’a, ’b)
eff
type (’s, ’t) pfun = ’s pure −> ’t pure

let coerce _ = failwith "unreachable"

let wrap x : ’a pure = fun () −> x
let unwrap : ’a pure −> ’a = fun x −> x ()

let const x = wrap x
let lam f = wrap f

let app e1 (e2: (’s, ’c, ’d ) eff) : (’t, ’a, ’d) eff =
fun p q −>
let r, s = new_prompt (), new_prompt () in
let v2 = wrap @@ e2 p r in
let v1 = e1 r s in
v1 v2 s q

let appP e1 e2 : ’t pure =
fun () −>
let v2 = unwrap e2 in
let v1 = unwrap e1 in
v1 (wrap v2) ()

let shift f : (’t, ’a, ’b) eff =
fun p q −>
Delimcc.shift p (fun k’ −>
unwrap @@ f @@ wrap (fun y −>

wrap @@ push_prompt q
(fun () −> coerce (k’ @@ unwrap y ))))

let reset e =
fun () −>
let p, q = new_prompt (), new_prompt () in
push_prompt p (fun () −> abort q @@ e p q)

let exp e =
fun p q −> Delimcc.shift p
(fun k −> push_prompt q (fun () −> k @@ unwrap e))

let run (x: ’t pure) : ’t = x ()
end

Figure 10: Interpretation of the Embedded Language

15



module RP = struct
include R

let p2E f e1 e2 = fun p q −>
let r = new_prompt () in
let v2 = e2 p r in
let v1 = e1 r q in
f v1 v2

let pE f x = fun p q −> f (x p q)

let ifE b e e’ = fun p q −>
let r = new_prompt () in
if b p r then e r q else e’ r q

let rec fixE f : (’s, ’t, ’a, ’b) efun pure =
lam (fun x −> f (fun x −> fixE f x) x)

end

Figure 11: Interpretation of the Extended Language

module LIST (S: SymP) = struct
open S

let list x = const x
let (@∗ ) x y = p2E (fun x y −> x :: y) x y
let head x = pE List.hd x
let tail x = pE List.tl x
let null x = pE (fun x −> x = []) @@ exp x
let exp2 f = exp @@ lam (fun x −> exp @@ appP f x)

end

Figure 12: Syntax sugar for Lists

16


	Introduction
	Delimited-Control Operators and Answer-type Modification
	Simulating ATM with Multi-prompt shift/reset
	Source and Target Calculi
	Translation
	Tagless-final embedding in OCaml
	Related Work and Conclusion
	Implementation of Interpreters

