
Why all programmers want continuations

(but use callbacks instead)

Gabriel Kerneis

12 April 2015

Abstract: Have you ever wondered why callbacks are so pervasive in modern
programming languages, and yet so hated that there is such an idiom as “call-
back hell”? Have you ever scratched your head so hard that you started losing
your hair while debugging a maze of twisty little functions all alike? Have you
ever wished you could write straightforward, linear, synchronous code, and let
your programming language handle concurrency? This is 2015: why isn’t your
compiler able to link stack frames by itself as soon as you are writing asyn-
chronous code? As it turns out, your compiler can in fact do this for you, and
much more. It just needs a gentle push in the right direction.

This talk is a tutorial on escaping callback hell with promises and generators;
examples are in Javascript, but should be accessible to any interested program-
mer. We first build a minimal promise implementation from first principles,
discovering how the underlying hidden monad makes continuation-passing style
programming easier and safer. Then, we go one step further, and throw gen-
erators into the mix to recover a direct, coroutine style, restoring sanity and
reaching true enlightenment. We conclude with a brief tour of other popular
programming languages, and discover that the essential building blocks are al-
ready available in most cases. Educating users about them is left as an exercise
to the reader.

Acknowledgments: The author is grateful to Matt Greer and Jake Archibald
for their tutorials on promises, heavily reused in this presentation. He also
wishes to thank the many callback lovers (and the occasional continuation
haters!) he has pitched this talk to in the last few months. Their insight-
ful, if often fairly defensive, feedback has been the main motivation for giving
this talk.

Disclaimer: The opinions expressed in this tutorial are those of the author, and

do not necessarily reflect the official position of his employer. No callback has been

harmed during the preparation of this tutorial.

1


