
A Modular Structural Operational Semantics

for Delimited Continuations

Neil Sculthorpe Paolo Torrini Peter D. Mosses

PLanCompS Project
Department of Computer Science

Swansea University
Swansea, UK

Abstract

It has been an open question as to whether the Modular Structural Opera-
tional Semantics framework can express the dynamic semantics of call/cc.
This paper shows that it can, and furthermore, demonstrates that it can
express the more general delimited control operators control and shift.

i

Contents

1 Introduction 1

2 Delimited Continuations 1

3 Modular SOS 2

4 I-MSOS Specifications of Control Operators 5
4.1 Overview of our Approach . 5
4.2 The Meta-environment . 6
4.3 Dynamic Semantics of control and prompt 6
4.4 Dynamic Semantics of shift and reset 7
4.5 Dynamic Semantics of abort and call/cc 9
4.6 Other Control Effects . 9

5 Related Work 10

6 Conclusion 11

List of Figures

1 I-MSOS rules for exception handling. 3
2 I-MSOS rules for lambda calculus. 4
3 I-MSOS rules for meta-environment bindings. 6

ii

1 Introduction

Modular Structural Operational Semantics (MSOS) [23, 24, 25] is a variant of
the well-known Structural Operational Semantics (SOS) framework [27]. The
principal innovation of MSOS relative to SOS is that it allows the semantics of
a programming construct to be specified independently of any auxiliary entities
with which it does not directly interact. For example, function application can
be specified by MSOS rules without mentioning stores or exception propagation.

While it is known that MSOS can specify the semantics of programming
constructs for exception handling [7, 8, 23], it has been unclear whether MSOS
can specify more complex control-flow operators, such as call/cc [1, 9]. Indeed,
the perceived difficulty of handling control operators has been regarded as one
of the main limitations of MSOS relative to other modular semantic frameworks
(e.g. [28, Section 2]). This paper demonstrates that the dynamic semantics of
call/cc can be specified in MSOS, with no extensions to the MSOS framework
required. We approach this by first specifying the more general delimited control
operators control [16, 17, 32] and shift [11, 12, 13], and then specifying call/cc in
terms of control. In contrast to most other operational specifications of control
operators given in direct style (e.g. [16, 20, 22, 31]), ours are based on labelled
transitions, rather than on evaluation contexts.

We will begin by giving a brief overview of delimited continuations (Sec-
tion 2) and MSOS (Section 3). The material in these two sections is not novel,
and can be skipped by a familiar reader.

2 Delimited Continuations

At any point in the execution of a program, the current continuation represents
the rest of the computation. In a meta-language sense, a continuation can be
understood as a context in which a program term can be evaluated. Control op-
erators allow the current continuation to be treated as an object in the language,
by reifying it as a first-class abstraction that can be applied and manipulated.
The classic example of a control operator is call/cc [1, 9].

Delimited continuations generalise the notion of a continuation to allow rep-
resentations of partial contexts, relying on a distinction between inner and outer
context. Control operators that manipulate delimited continuations are always
associated with control delimiters. The most well-known delimited control op-
erators are control (associated with the prompt delimiter) [16, 17, 32] and shift
(associated with the reset delimiter) [11, 12, 13], both of which can be used to
simulate call/cc. The general idea of control and shift is to capture the current
continuation up to the innermost enclosing delimiter, representing the inner
context. We will give an informal description of control in this section. The
formal MSOS specification of control is given in Section 4, where we also specify
shift and call/cc in terms of control.

control is a (call-by-value) unary operator that takes a higher-order function
f as its argument, where f expects a reified continuation as its argument. When

1

executed, control reifies the current continuation, up to the innermost enclosing
prompt, as a function k. That inner context is then discarded, and replaced with
the application f k. Other than its interaction with control, prompt is simply a
unary operator that evaluates its argument and returns the resulting value.

Let us consider some examples. In the following expression, the continuation
k is bound to the function (λx. 2 ∗ x), the result of the prompt application is
14, and thus the final result is 15:

1 + prompt(2 ∗ control(λk. k 7)) ; 15

A reified continuation can be applied multiple times, for example:

1 + prompt(2 ∗ control(λk. k(k 7))) ; 29

Furthermore, a continuation need not be applied at all. For example, in the
following expression, the multiplication by two is discarded:

1 + prompt(2 ∗ control(λk. 7)) ; 8

In the preceding examples, the continuation k could have been computed
statically. However, in general, the current continuation is the context at the
point in a program’s execution when control is executed, by which time some of
the computation in the source program may already have been performed. For
example, the following program will print ABB :

prompt(print ′A′ ; control(λk. (k () ; k ())) ; print ′B′) ABB

The command (print ′A′) is executed before the control operator, so does not
form part of the continuation reified by control. In this case, k is bound to
(λx. (x ; print ′B′)), and so B is printed once for every application of k.

Further examples of control can be found in the online test suite accompa-
nying this paper [30], and in the literature [16, 17].

3 Modular SOS

The rules in this paper will be presented using Implicitly Modular SOS (I-
MSOS) [25], a variant of MSOS that has a notational style similar to conven-
tional SOS. I-MSOS can be viewed as syntactic sugar for MSOS. We assume the
reader is familiar with SOS (e.g. [3, 27]) and the basics of MSOS [23, 24, 25].

The key notational convenience of I-MSOS is that any auxiliary entities
(e.g. stores or environments) that are not mentioned in a rule are implicitly
propagated between the premise(s) and conclusion, allowing entities that do not
interact with the programming construct being specified to be omitted from
the rule. Two types of entities are relevant to this paper: inherited entities
(e.g. environments), which, if unmentioned, are implicitly propagated from the
conclusion to the premises, and observable entities (emitted signals, e.g. excep-
tions), which, if unmentioned, are implicitly propagated from a sole premise to

2

E → E′

throw(E)→ throw(E′)
(1)

val(V)

throw(V)
exc some(V)−−−−−−−−→ stuck

(2)

E
exc none−−−−−→ E′

catch(E,H)
exc none−−−−−→ catch(E′, H)

(3)

E
exc some(V)−−−−−−−−→ E′

catch(E,H)
exc none−−−−−→ apply(H,V)

(4)

val(V)

catch(V,H)→ V
(5)

Figure 1: I-MSOS rules for exception handling.

the conclusion. Observable entities are required to have a default value, which
is implicitly used in the conclusion of rules that lack a transition-rule premise
and do not mention the entity.

To demonstrate the specification of control operators using I-MSOS rules,
this paper will use the funcon framework [8]. This framework contains an open
collection of modular fundamental constructs (funcons), each of which has its se-
mantics specified independently by I-MSOS rules. The framework is designed to
serve as a target language for semantic specifications of programming languages,
intended to be specified by an inductive translation in the style of denotational
semantics. However, this paper is not concerned with the translation of control
operators from any specific language: our aim is to give MSOS specifications
of control operators, and the funcon framework is a convenient environment for
specifying prototypical control operators. Examples of translations into funcons
can be found in [8, 26].

We will now present some examples of funcons, and their specifications as
small-step I-MSOS rules. We typeset funcon names in bold, meta-variables in
capitalised italic, and the names of auxiliary entities in sans-serif. No familiarity
with the funcon framework is required: for the purposes of understanding this
paper the funcons may simply be regarded as abstract syntax.

Figure 1 presents I-MSOS rules for the exception-handling funcons throw
and catch [8]. The idea is that throw emits an exception signal, and catch
detects and handles that signal. The first argument of catch is the expression
to be evaluated, and the second argument (a function) is the exception handler.
Exception signals use an observable entity named exc, which is written as a label
on the transition arrow. The exc entity has either the value none, denoting the

3

val(closure(ρ, I, E)) (6)

ρ(I) = V

env ρ ` bv(I)→ V
(7)

env ρ ` lambda(I, E)→ closure(ρ, I, E) (8)

E1 → E′
1

apply(E1, E2)→ apply(E′
1, E2)

(9)

val(V) E → E′

apply(V,E)→ apply(V,E′)
(10)

val(V) env ({I 7→ V }/ρ) ` E → E′

env ` apply(closure(ρ, I, E), V)→ apply(closure(ρ, I, E′), V)
(11)

val(V1) val(V2)

apply(closure(ρ, I, V1), V2)→ V1
(12)

Figure 2: I-MSOS rules for lambda calculus.

absence of an exception, or some(V), denoting the occurrence of an exception
with value V . The premise val(V) requires the term V to be a value, thereby
controlling the order in which the rules can be applied. In the case of throw, first
the argument is evaluated to a value (Rule 1), and then an exception carrying
that value is emitted (Rule 2). In the case of catch, the first argument E
is evaluated while no exception occurs (Rule 3). If an exception does occur,
then the handler H is applied to the exception value and the computation E is
abandoned (Rule 4). If E evaluates to a value V , then H is discarded and V is
returned (Rule 5).

Observe that rules 1 and 5 do not mention the exc entity. In Rule 1 it is
implicitly propagated from premise to conclusion, and in Rule 5 it implicitly
has the default value none. Also observe that none of the rules in Figure 1
mention any other entities such as environments or stores; any such entities are
also implicitly propagated.

Figure 2 presents I-MSOS rules for identifier lookup (bv, “bound-value”),
abstraction (lambda), and application (apply). Note that the closure funcon is
a value constructor [7] (specified by Rule 6), and thus has no transition rules of
its own. We present these rules here for completeness, as these funcons will be
used when defining the semantics of control operators in Section 4.

4

4 I-MSOS Specifications of Control Operators

We now present a dynamic semantics for control operators in the MSOS frame-
work. We will specify control and prompt directly, and then specify shift, reset
and call/cc in terms of control and prompt. Our approach is signal-based in a
similar manner to the I-MSOS specifications of exceptions (Figure 1): a control
operator emits a signal when executed, and a delimiter catches that signal and
handles it. Note that there is no implicit top-level delimiter around a funcon
program—a translation to funcons from a language that does have an implicit
top-level delimiter should insert an explicit top-level delimiter.

4.1 Overview of our Approach

We represent reified continuations as first-class abstractions, using the lambda
funcon from Section 3. However, we do not maintain an explicit representation
of the current continuation in our semantics; instead, our approach is to con-
struct the continuation from the program term whenever a control operator is
executed. We achieve this by exploiting the way that a small-step semantics,
for each step of computation, traverses the program term from the root to the
current operation. Thus, for any step at which a control operator is executed,
not only will a rule for the control operator be applied, but so too will a rule for
the enclosing delimiter. At each such step, the current continuation of the con-
trol operator corresponds to an abstraction of that operator from the sub-term
of the enclosing delimiter, and thus can be constructed from that sub-term.
This is achieved in two stages: the rule for the control operator replaces the
occurrence of the control operator with a fresh identifier, and the rule for the
delimiter constructs the abstraction from the updated sub-term.

At a first approximation, this suggests the following rules:

fresh-id(I)

control(F)
control some(F,I)−−−−−−−−−−−→ bv(I)

(13)

E
control some(F,I)−−−−−−−−−−−→ E′ K = lambda(I, E′)

prompt(E)
control none−−−−−−−→ prompt(apply(F,K))

(14)

The premise fresh-id(I) requires that I be a fresh identifier. Rule 13 replaces the
term control(F) with bv(I), and emits a signal containing the function F and
the identifier I. The signal is then caught and handled by prompt in Rule 14.
The abstraction K representing the continuation of the executed control oper-
ator is constructed by combining I with the updated sub-term E′ (which will
now contain bv(I) in place of control(F)). Note that although the signal entity
is named control, this name brings no inherent connection to the funcon control,
as entities live in a separate namespace to funcons.

5

ρ(I) = V

meta-env ρ ` meta-bv(I)→ V
(15)

E1 → E′
1

meta-let-in(I, E1, E2)→ meta-let-in(I, E′
1, E2)

(16)

val(V) meta-env ({I 7→ V }/ρ) ` E → E′

meta-env ρ ` meta-let-in(I, V,E)→ meta-let-in(I, V,E′)
(17)

val(V1) val(V2)

meta-let-in(I, V1, V2)→ V2
(18)

Figure 3: I-MSOS rules for meta-environment bindings.

4.2 The Meta-environment

There is one problem with the approach we have just outlined, which is that the
fresh identifier I is introduced dynamically when the control operator executes,
by which time closures may have already been formed. In particular, if control
occurs inside the body of an applied closure, and the enclosing prompt is outside
that closure, then the bv(I) funcon that is introduced by Rule 13 would be
evaluated in a closed environment that does not contain a binding for I.

To address this, we will make use of an auxiliary environment called meta-env
(meta-environment). This environment is used for bindings that should not in-
teract with bindings in the standard environment, such as via shadowing or
being captured in closures. In this paper, we will use the meta-environment
to essentially achieve the same effect as substitution (MSOS does not provide
a substitution operation, relying instead on environments). Figure 3 speci-
fies meta-bv(I), which looks up the identifier I in the meta-environment, and
meta-let-in(I, V,E), which binds the identifier I to the value V in the meta-
environment, and scopes that binding over the expression E. We will make use
of these funcons in the next subsection, where we give our complete specification
of control and prompt.

4.3 Dynamic Semantics of control and prompt

We specify control as follows:

E → E′

control(E)→ control(E′)
(19)

val(F) fresh-id(I)

control(F)
control some(F,I)−−−−−−−−−−−→ meta-bv(I)

(20)

6

Rule 19, in combination with the val(F) premise on Rule 20, ensures that the
argument function is evaluated to a closure before Rule 20 can be applied.
Notice that Rule 20, in contrast to the preliminary Rule 13, uses meta-bv to
lookup I in the meta-environment.

We then specify prompt as follows:

val(V)

prompt(V)→ V
(21)

E
control none−−−−−−−→ E′

prompt(E)
control none−−−−−−−→ prompt(E′)

(22)

E
control some(F,I)−−−−−−−−−−−→ E′ K = lambda(I,meta-let-in(I,bv(I), E′))

prompt(E)
control none−−−−−−−→ prompt(apply(F,K))

(23)

Rule 21 is the case when the argument is a value; the prompt is then dis-
carded. Rule 22 evaluates the argument expression while no control signal is
being emitted by that evaluation. Rule 23 handles the case when a control sig-
nal is detected, reifying the current continuation and passing it as an argument
to the function F . Notice that, in contrast to the preliminary Rule 14, I is
rebound in the meta-environment.

Rules 19–23 are our complete I-MSOS specification of the dynamic semantics
of control and prompt, relying only on the existence of the lambda-calculus
and meta-environment funcons from figures 2 and 3. These rules are modular:
they are valid independently of whether the control operators coexist with a
mutable store, exceptions, or other effectful programming constructs. Our rules
correspond closely to those in specifications of control and prompt based on
evaluation contexts [16, 22]. However, our specifications communicate between
control and prompt by emitting signals, and thus do not require evaluation
contexts.

4.4 Dynamic Semantics of shift and reset

The shift operator differs from control in that every application of a reified
continuation is implicitly wrapped in a delimiter, which has the effect of sepa-
rating the context of that application from its inner context [5]. This difference
between control and shift is comparable to that between dynamic and static
scoping, insofar as with shift, the application of a reified continuation cannot
access its context, in the same way that a statically scoped function cannot
access the environment in which it is applied.

7

A shift funcon can be specified in terms of control as follows:

E → E′

shift(E)→ shift(E′)
(24)

val(F) fresh-id(K) fresh-id(X)

shift(F)→
control(lambda(K, apply(F, lambda(X, reset(apply(bv(K),bv(X)))))))

(25)

The key point is the insertion of the reset delimiter; the rest of the lambda-term
is merely an η-expansion that exposes the application of the continuation K so
that the delimiter can be inserted (following [5]). Given this definition of shift,
the reset delimiter coincides exactly with prompt:

reset(E)→ prompt(E) (26)

Alternatively, the insertion of the extra delimiter could be handled by the
semantics of reset rather than that of shift:

val(V)

reset(V)→ V
(27)

E
control none−−−−−−−→ E′

reset(E)
control none−−−−−−−→ reset(E′)

(28)

E
control some(F,I)−−−−−−−−−−−→ E′ K = lambda(I, reset(meta-let-in(I,bv(I), E′)))

reset(E)
control none−−−−−−−→ reset(apply(F,K))

(29)

The only difference between rules 21–23 and rules 27–29 (other than the funcon
names) is the definition of K in Rule 29, which here has a delimiter wrapped
around the body of the continuation. Given this definition of reset, the shift
operator now coincides exactly with control:

shift(E)→ control(E) (30)

This I-MSOS specification in Rules 27–30 is similar to the evaluation-context
based specification of shift and reset in [22, Section 2].

8

4.5 Dynamic Semantics of abort and call/cc

The call/cc operator is traditionally undelimited : it considers the current contin-
uation to be the entirety of the rest of the program. In a setting with delimited
continuations, this can be simulated by requiring there to be a single delim-
iter, and for it to appear at the top-level of the program. Otherwise, the two
distinguishing features of call/cc relative to control and shift are first that an
applied continuation never returns, and second that if the body of call/cc does
not invoke a continuation, then the current continuation is applied to the result
of the call/cc application when it returns.

To specify call/cc, we follow Sitaram and Felleisen [32, Section 3] and first
introduce an auxiliary operator abort, and then specify call/cc in terms of con-
trol, prompt and abort. The purpose of abort is to terminate a computation (up
to the innermost enclosing prompt) with a given value:

E → E′

abort(E)→ abort(E′)
(31)

val(V) fresh-id(I)

abort(V)→ control(lambda(I, V))
(32)

The first distinguishing feature of call/cc is effected by placing an abort
around any application of a continuation (preventing it from returning a value),
and the second is effected by applying the continuation to the result of the F
application (resuming the current continuation if F returns a value):

E → E′

callcc(E)→ callcc(E′)
(33)

val(F) fresh-id(K) fresh-id(X)

callcc(F)→ control(lambda(K,
apply(bv(K), apply(F, lambda(X, abort(apply(bv(K),bv(X))))))))

(34)

4.6 Other Control Effects

In Section 3 we presented a direct specification of exception handling using
a dedicated auxiliary entity. If throw and catch (Figure 1) were used in a
program together with the control operators from this section, this would give
rise to two sets of independent control effects, each with independent delimiters.
An alternative would be to specify exception handling indirectly in terms of
the control operators (e.g. following Sitaram and Felleisen [32]), in which case
the delimiters and auxiliary entity would be shared. MSOS can specify either
approach, as required by the language being specified.

Beyond the control operators discussed in this section, further and more
general operators for manipulating delimited continuations exist, such as those
of the CPS hierarchy [12]. These are beyond the scope of this paper, and remain
an avenue for future work.

9

5 Related Work

A direct way to specify control operators is by giving an operational semantics
based on transition rules and first-class continuations. We have taken this direct
approach, though in contrast to most direct specifications of control operators
(e.g. [16, 20, 21, 22, 28, 31]) our approach is based on emitting signals via labelled
transitions rather than on evaluation contexts. Control operators can also be
given a denotational semantics by transformation to continuation-passing style
(CPS) [11, 15, 29, 31], or a lower-level operational specification by translation
to abstract-machine code [6, 17]. At a higher level, algebraic characterisations
of control operators have been given in terms of equational theories [16, 21].

Denotationally, any function can be rewritten to CPS by taking the continu-
ation (itself represented as a function) as an additional argument, and applying
that continuation to the value the function would have returned. A straightfor-
ward extension of this transformation [12] suffices to express call/cc, shift and
reset ; however, more sophisticated CPS transformations are needed to express
control and prompt [31].

Felleisen’s [17] initial specification of control and prompt used a small-step
operational semantics without evaluation contexts. However, this specification
otherwise differs quite significantly from ours, being based on exchange rules
that push control outwards through the term until it encounters a prompt. As
an exchange rule has to be defined for every other construct in the language,
this approach is inherently not modular. Later specifications of control and
prompt used evaluation contexts and algebraic characterisations based on the
notion of abstract continuations [16], where continuations are represented as
evaluation contexts and exchange rules are not needed. Felleisen [17] also gave a
lower-level operational specification based on the CEK abstract machine, where
continuations are treated as frame stacks.

The shift and reset operators were originally specified denotationally, in
terms of CPS semantics [11, 12]. Continuations were treated as functions, rely-
ing on the meta-continuation approach [11] which distinguishes between outer
and inner continuations. Correspondingly, the meta-continuation transforma-
tion produces abstractions that take two continuation parameters, which can
be further translated to standard CPS. A big-step style operational semantics
for shift has been given in [14]. A specification based on evaluation contexts is
given in [21], together with an algebraic characterisation.

Giving a CPS semantics to control is significantly more complex than for
shift [31]. This is because the continuations reified by shift are always delimited
when applied, and so can be treated as functions, which is not the case for
control. Different approaches to this problem have been developed, including
abstract continuations [16], the monadic framework in [15], and the operational
framework in [6]. Relying on the introduction of recursive continuations, [31]
provides an alternative approach based on a refined CPS transform. Conversely,
the difference between control and shift can manifest itself quite intuitively in
the direct specification of these operators—whether in our I-MSOS specifications
(Section 4.4), or in specifications using evaluation contexts [16, 21, 22, 31].

10

As shown in [18], shift can be implemented in terms of call/cc and mutable
state, and from the point of view of expressiveness, any monad that is func-
tionally expressible can be represented in lambda calculus with shift and reset.
Moreover, control and shift are equally expressive in the untyped lambda cal-
culus [31]. A direct implementation of control and shift has been given in [19].
A CPS-based implementation of control operators in a monadic framework is
given in [15]. A semantics of call/cc based on an efficient implementation of
evaluation contexts is provided in the K Framework [28].

6 Conclusion

We have presented a dynamic semantics for control operators in the MSOS
framework, settling the question of whether MSOS is expressive enough for
control operators. Our definitions are concise and modular, and do not require
the use of evaluation contexts.

We have validated these semantics through a suite of 70 test programs,
which we accumulated from examples in the literature on control operators
([1, 2, 4, 6, 9, 10, 11, 16, 17, 20, 31]). The language we used for testing was
Caml Light, a pedagogical sublanguage of a precursor to OCaml, for which
we have an existing translation to funcons from a previous case study [8]. We
extended Caml Light with control operators, and specified the semantics of
those operators as direct translations into the corresponding funcons presented
in this paper. The generated funcon programs were then tested by our prototype
funcon interpreter, which directly interprets their I-MSOS specifications. The
suite of test programs, and our accompanying translator and interpreter, are
available online [30].

Acknowledgments: We thank Casper Bach Poulsen, Ferdinand Vesely and
the anonymous reviewers for feedback on earlier versions of this paper. We also
thank Martin Churchill for his exploratory notes on adding evaluation contexts
to MSOS, and Olivier Danvy for suggesting additional test programs. The
reported work was supported by EPSRC grant (EP/I032495/1) to Swansea
University for the PLanCompS project.

References

[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams IV,
D. P. Friedman, E. Kohlbecker, G. L. Steele Jr., D. H. Bartley, R. Hal-
stead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman, and
M. Wand. Revised5 report on the algorithmic language Scheme. Higher-
Order and Symbolic Computation, 11(1):7–105, 1998. 1, 11

[2] Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continu-
ations. In Fifth Asian Symposium on Programming Languages and Sys-

11

tems, volume 4807 of Lecture Notes in Computer Science, pages 239–254.
Springer, 2007. 11

[3] Egidio Astesiano. Inductive and operational semantics. In Formal De-
scription of Programming Concepts, IFIP State-of-the-Art Reports, pages
51–136. Springer, 1991. ISBN 978-3-540-53961-2. 2

[4] Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An opera-
tional foundation for delimited continuations in the CPS hierarchy. Logical
Methods in Computer Science, 1(2):1–39, 2005. 11

[5] Dariusz Biernacki and Olivier Danvy. A simple proof of a folklore theorem
about delimited control. Journal of Functional Programming, 16(3):269–
280, 2006. 7, 8

[6] Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On the static
and dynamic extents of delimited continuations. Science of Computer Pro-
gramming, 60(3):274–297, 2006. 10, 11

[7] Martin Churchill and Peter D. Mosses. Modular bisimulation theory for
computations and values. In 16th International Conference on Foundations
of Software Science and Computation Structures, volume 7794 of Lecture
Notes in Computer Science, pages 97–112. Springer, 2013. 1, 4

[8] Martin Churchill, Peter D. Mosses, Neil Sculthorpe, and Paolo Torrini.
Reusable components of semantic specifications. In Transactions on Aspect-
Oriented Software Development, volume 8989 of Lecture Notes in Computer
Science. Springer, 2015. To appear. 1, 3, 11

[9] William Clinger. The Scheme environment: Continuations. SIGPLAN Lisp
Pointers, 1(2):22–28, 1987. 1, 11

[10] Olivier Danvy. An Analytical Approach to Programs as Data Objects. DSc
thesis, Department of Computer Science, Aarhus University, 2006. 11

[11] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed
contexts. Technical Report 89/12, DIKU, University of Copenhagen, 1989.
1, 10, 11

[12] Olivier Danvy and Andrzej Filinski. Abstracting control. In Conference on
LISP and Functional Programming, pages 151–160. ACM, 1990. 1, 9, 10

[13] Olivier Danvy and Andrzej Filinski. Representing control: A study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, 1992. 1

[14] Olivier Danvy and Zhe Yang. An operational investigation of the CPS
hierarchy. In Eighth European Symposium on Programming Languages and
Systems, number 1576 in Lecture Notes in Computer Science, pages 224–
242. Springer, 1999. 10

12

[15] R. Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. A monadic frame-
work for delimited continuations. Journal of Functional Programming,
17(6):687–730, 2007. 10, 11

[16] Matthias Felleisen, Mitch Wand, Daniel Friedman, and Bruce Duba. Ab-
stract continuations: A mathematical semantics for handling full jumps.
In 1988 Conference on LISP and Functional Programming, pages 52–62.
ACM, 1988. 1, 2, 7, 10, 11

[17] Mattias Felleisen. The theory and practice of first-class prompts. In
15th Symposium on Principles of Programming Languages, pages 180–190.
ACM, 1988. 1, 2, 10, 11

[18] Andrzej Filinski. Representing monads. In 21st Symposium on Principles
of Programming Languages, pages 446–457. ACM, 1994. 11

[19] Martin Gasbichler and Michael Sperber. Final shift for call/cc: Direct
implementation of shift and reset. In Seventh International Conference on
Functional Programming, pages 271–282. ACM, 2002. 11

[20] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of excep-
tions and control in ML-like languages. In Seventh International Conference
on Functional Programming Languages and Computer Architecture, pages
12–23. ACM, 1995. 1, 10, 11

[21] Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete ax-
iomatization of delimited continuations. In Eighth International Conference
on Functional Programming, pages 177–188. ACM, 2003. 10

[22] Yukiyoshi Kameyama and Takuo Yonezawa. Typed dynamic control op-
erators for delimited continuations. In 9th International Symposium on
Functional and Logic Programming, volume 4989 of Lecture Notes in Com-
puter Science, pages 239–254. Springer, 2008. 1, 7, 8, 10

[23] Peter D. Mosses. Pragmatics of modular SOS. In Ninth International Con-
ference on Algebraic Methodology and Software Technology, volume 2422 of
Lecture Notes in Computer Science, pages 21–40. Springer, 2002. 1, 2

[24] Peter D. Mosses. Modular structural operational semantics. Journal of
Logic and Algebraic Programming, 60–61:195–228, 2004. 1, 2

[25] Peter D. Mosses and Mark J. New. Implicit propagation in structural oper-
ational semantics. In Fifth Workshop on Structural Operational Semantics,
volume 229(4) of Electronic Notes in Theoretical Computer Science, pages
49–66. Elsevier, 2009. 1, 2

[26] Peter D. Mosses and Ferdinand Vesely. FunKons: Component-based se-
mantics in K. In 10th International Workshop on Rewriting Logic and Its
Applications, volume 8663 of Lecture Notes in Computer Science, pages
213–229. Springer, 2014. 3

13

[27] Gordon D. Plotkin. A structural approach to operational semantics. Jour-
nal of Logic and Algebraic Programming, 60–61:17–139, 2004. Reprint of
Technical Report FN-19, DAIMI, Aarhus University, 1981. 1, 2

[28] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic
framework. The Journal of Logic and Algebraic Programming, 79(6):397–
434, 2010. 1, 10, 11

[29] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. LISP and Symbolic Computation, 6(3–4):289–
360, 1993. 10

[30] Neil Sculthorpe, Paolo Torrini, and Peter D. Mosses. A modular struc-
tural operational semantics for delimited continuations: Additional mate-
rial, 2015. 2, 11

[31] Chung-chieh Shan. A static simulation of dynamic delimited control.
Higher-Order and Symbolic Computation, 20(4):371–401, 2007. 1, 10, 11

[32] Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierar-
chies. LISP and Symbolic Computation, 3(1):67–99, 1990. 1, 9

14

	Introduction
	Delimited Continuations
	Modular SOS
	I-MSOS Specifications of Control Operators
	Overview of our Approach
	The Meta-environment
	Dynamic Semantics of control and prompt
	Dynamic Semantics of shift and reset
	Dynamic Semantics of abort and call/cc
	Other Control Effects

	Related Work
	Conclusion

