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Abstract 
 

Environmental vibration generated by sources such as rail lines, road traffic and 
construction work is a serious concern, especially in the urban environment. It leads to 
annoyance of the exposed population, creating uncomfortable living and working spaces. Thus, 
prediction and mitigation of these effects is an important research area, investigated by an 
increasing number of engineers and researchers. In this regard, computational models are 
especially useful. They enable the prediction of environmental vibration levels in the planning 
stages of a new project, reducing or, ideally, completely removing the need for in-situ 
investigations. Currently available numerical approaches are highly capable and can be used to 
model the complex cases encountered in the urban environment. However, the largest 
drawback of these approaches is the long computational times needed to obtain the solution, 
thus limiting their usage for real applications. The thesis aims to create environmental vibration 
prediction tools, with particular interest in their computational efficiency. This way, the created 
methodologies could be easier applicable to a wider audience. 

Modelling of the vibration propagation through soil, in most cases, is the most time 
consuming task. Thus, the thesis mostly focuses on this part of the system. A semi-analytical 
soil modelling approach was chosen to model the soil, using a Thomson-Haskell transfer matrix 
method. The method is advantageous, due to the analytical formulation of the soil, which does 
not require the discretization of the full soil domain and incorporates the infinite nature of the 
soil. The semi-analytical method is coupled to the finite element method, where the soil is 
accounted for using the semi-analytical approach, while the external structures can be modelled 
with finite elements. This way, the computational efficiency of the semi-analytical approach is 
combined with the modelling freedom of the finite elements method, allowing the application 
of the created model for a wide range of application cases. 

The thesis investigates a number of modelling cases that are commonly encountered when 
analysing dynamic soil–structure interaction and vibration propagation through soil. A railway 
bridge structure is analysed using lumped-parameter models to obtain a solution in the time 
domain. The work presents a novel lumped-parameter model fitting technique that is needed 
to obtain a numerically stable solution. Further, the semi-analytical soil model is used to 
analyse cases commonly encountered in the urban environment. For that purpose, various 
configurations of soil interacting with structure are tested, such as: rigid blocks, pile 
foundations, railway tracks, embedded structures, and cavities inside the soil. The proposed 
modelling methods are validated by comparison with other numerical methods. Very good 
agreement is found, demonstrating the high accuracy and the reduced computational effort of 
the proposed modelling approaches. A novel numerical method for predicting railway-induced 
vibrations is also proposed. The method utilizes the semi-analytical soil model formulated in 
both moving and fixed frames of reference. This way, it is possible to model the railway track 
and the vehicle in a moving frame of reference, while the nearby structures are formulated in a 
fixed frame of reference. The approach offers a flexible and numerically stable approach of 
modelling the full vibration propagation path, using a single-step solution procedure. 
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Resumé 
 

Miljøvibrationer genereret af kilder såsom jernbanelinjer, vejtrafik og byggeri er et alvorligt 
problem, især i bymiljøet. Vibrationer generer befolkningen og skaber ubehagelige boliger og 
arbejdspladser. Forudsigelse og afbødning af disse effekter er således et vigtigt 
forskningsområde, der undersøges af et stigende antal ingeniører og forskere. I denne 
forbindelse er beregningsmodeller især nyttige. De muliggør forudsigelse af miljøvibrations-
niveauer i planlægningsfasen i et nyt projekt, hvilket reducerer eller, ideelt set, fjerner behovet 
for in-situ-undersøgelser fuldstændigt. De i øjeblikket tilgængelige numeriske tilgange er 
generelt anvendelige og kan bruges til at modellere de komplekse problemer, man støder på i 
bymiljøet. Den største ulempe ved disse metoder er de lange beregningstider, der er nødvendige 
for at bestemme løsningen, hvilket begrænser metodernes anvendelighed i forhold til virkelige 
applikationer. Afhandlingen sigter mod at skabe miljømæssige vibrationsforudsigelsesværk-
tøjer med særlig interesse i deres beregningseffektivitet. På denne måde kan de oprettede 
metoder være lettere at anvende for et bredere publikum. 

Modellering af vibrationsudbredelse gennem jord er i de fleste tilfælde den mest tids-
krævende opgave. Afhandlingen fokuserer således mest på denne del af systemet. En semi-
analytisk jordmodelleringsmetode blev valgt til at modellere jorden ved hjælp af en Thomson-
Haskell transfermatrixmetode. Fremgangsmåden er fordelagtig på grund af den analytiske 
formulering af jorden, som ikke kræver diskretisering af det fulde jorddomæne og 
indkorporerer den uendelige natur af jorden. Den semianalytiske metode er koblet til finite-
elementmetoden, idet jorden modelleres ved hjælp af den semi-analytiske tilgang, mens 
strukturer kan modelleres med finite elementer. På denne måde kombineres beregnings-
effektiviteten af den semi-analytiske tilgang med modelleringsfriheden ved elementmetoden, 
hvilket gør det muligt at anvende den oprettede model til en lang række applikationer. 

Afhandlingen undersøger en række modelleringstilfælde, der ofte opstår, når man 
analyserer dynamisk jord–strukturinteraktion og vibrationsudbredelse gennem jord. En 
jernbanebro analyseres ved hjælp af en såkaldt lumped-parameter model for at få en løsning i 
tidsdomænet. Afhandlingen præsenterer en ny metode til kalibrering af lumped-parameter 
modeller, som er nødvendig for at opnå en numerisk stabil løsning. Den halvanalytiske 
jordmodel bruges desuden til at analysere problemer, der ofte optræder i bymiljøet. Til dette 
formål testes forskellige konfigurationer af jord, der interagerer med strukturer, såsom: stive 
blokke, pælefundamenter, jernbanespor, indlejrede strukturer og hulrum inde i jorden. De 
foreslåede modelleringsmetoder valideres ved sammenligning med andre numeriske metoder. 
God overensstemmelse findes mellem resultaterne, hvilket demonstrerer en høj nøjagtighed til 
trods for den reducerede beregningsindsats i de foreslåede modelleringsmetoder. En ny 
numerisk metode til forudsigelse af jernbaneinducerede vibrationer foreslås også. Metoden 
anvender den semi-analytiske jordmodel, der er formuleret i både bevægelige og faste 
koordinater. På denne måde er det muligt at modellere jernbanesporet og køretøjet i en 
bevægelig referenceramme, mens de nærliggende strukturer er formuleret i en fast 
referenceramme. Der opnås herved en fleksibel og numerisk stabil fremgangsmåde til 
modellering af hele vibrationsudbredelsen, løst ved anvendelse af en enkelttrinsmetode. 
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1 Introduction 

Motivation for the research, with a brief introduction into environmental 
vibrations. The international and national standards, considered frequency 
ranges and commonly used assumptions are covered. The overview of the 
thesis structure is also provided. 

Around 75% of the population living in the EU live in urban environments and this number 
is expected to further increase in the future [1], with the same trends observed all over the 
world. Living in such an environment has many advantages, such as short commute time to 
work or school, greater opportunities, convenience of having a wide range of facilities 
available, etc. At the same time, densely populated areas are better for the environment, as less 
land area is used, shorter commutes mean less energy is used on transportation, and a 
convenient public transport system reduces the use of personal vehicles. 

Rail transportation is especially attractive for these conditions, allowing to move a large 
amount of passengers from one urban centre to another urban centre, or inside an urban area. 
This way, the emission levels per passenger are much lower compared to personal 
transportation. Due to these reasons, railway transportation is being upgraded and expanded 
through the world. A white paper by the European Union [2], discussing the future of 
sustainable transportation, places high-speed railways as the main mode of transportation for 
medium-distance travel. Therefore, large-scale expansion and creation of a unified European 
high-speed network can be expected in the future. 

However, densification of urban environments and development of rail transportation poses 
some challenges. High concentration of traffic and industry causes not only air pollution, but 
also high levels of noise and vibration. The predominant factor leading to environmental 
vibration is the rail transportation, where a large portion of new projects already need to 
consider vibration mitigation measures [3]. Both sound and vibration are unpleasant and 
disturbing to the populace, and can even cause negative health effects [4,5]. Unfortunately 
current rules and regulations governing the sound and vibration pollution are not well defined 
and can lead to under or over prediction, which in turn causes “noisy” buildings or unnecessary 
expenses. Therefore, costly and time-consuming on-site measurements have to be carried out 
for every new construction project. New numerical prediction tools together with better 
understanding of noise and vibrations propagation could reduce noise and vibration in the cities 
as well as the associated costs. 

The thesis aims to investigate the ground vibration in the built environment and focuses on 
creating numerical models for prediction of its effects. The exact mechanism of vibration 
propagation through soil is rather complicated and especially hard to predict in a densely 
populated environment, and thus there is a need for complex computational models. At the 
same time, computational efficiency is also an important factor. Precise but slow to compute 
models are often not utilized for practical applications, due to the difficulty of using them, and 
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they are instead substituted by imprecise and quick models. Therefore, computationally 
efficiency of numerical models is highlighted throughout the work. 

1.1 Environmental vibration  

Main contributors to the vibrations observed in the urban environment are rail and road 
transportation, construction work and various types of vibrating machinery. Especially 
prevalent and thus the most investigated vibration sources are the rail transportation and pile 
driving during construction. The generated vibrations propagate through the soil and enter 
nearby structures as shown in Figure 1.1, directly effecting the inhabitants or generating 
structure-borne noise. 

 Generally the vibration frequency range affecting humans, where whole body vibration is 
observed, is considered to be 1–80 Hz [6], sometimes expanded up to 100 Hz [7]. The audible 
sounds generated by structure-borne vibration are considered in the 20–250 Hz range [7]. It is 
evident that the two frequency ranges have a significant overlap, and it is often difficult to 
differentiate between the effects of the vibration itself and the resulting sound. This work is 
mostly concerned with whole body vibration range of 1–80 Hz [8]. The vibrations propagating 
through soil are generally modelled using linear elastic models, due to the low amplitude 
displacements observed. This is a fair assumption for most cases, except very close to the 
excitation source, like the ballast of the railway track or the nearfield of a driven pile, where 
plastic deformations might occur. Therefore, the thesis is limited to linear elastic behaviour of 
the soil. Further, only structures relatively close to vibration sources are considered, as the 
waves propagating through soil quickly dissipate due to geometrical and material damping. 

Environmental vibration is recognized as a serious concern to the exposed population that 
needs to be addressed. However, a clear definition of environmental vibration and its effects is 
difficult, due to several reasons. Firstly, the problem is hard to predict and mostly in-situ 
measurements need to be used, which also have a large degree of uncertainty. Secondly, the 
human response to vibrations is rather hard to define, as it greatly depends on the personal 
perception of each individual human. The most commonly used measurement for human 

 

Figure 1.1. Environmental vibrations propagating through soil and entering structures. 
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exposure to vibration is annoyance. A study conducted by Waddington et al. [5] for the EU 
project CargoVibes provides equations for estimating the portions of the exposed population 
that are slightly annoyed, annoyed or highly annoyed. Further, experimental studies were 
conducted to determine the vibration effects on sleep by Smith et al. [9]. The work concluded 
that higher vibration levels do lead to worse sleep, even when the noise levels remain constant 
through the tested scenarios. Interestingly, a study conducted by Sharp et al. [4], concluded that 
people are more annoyed by vibrations of freight trains, when compared to passenger trains, 
even though the vibration exposure levels are the same from the two sources. This shows that 
exposure to vibration is not a simple problem and the type of the source also has to be 
considered, not only the vibration levels. Further, it is often difficult to distinguish the effects 
of vibrations and the corresponding noise. However, noise exposure does show similar 
annoyance effects to exposed population and can even lead to potential cardiovascular issues, 
as shown by Fyhri and Aasvang [10].  

The internationally used standard for human exposure are provided by ISO [8,11–13]. 
Additional guidelines for maximum vibration levels can be found in various countries national 
standards. Commonly used national standards are: German [14,15], that is also used in other 
European countries, United States noise and vibration assessment for transit [16] and for high-
speed railways [17], United Kingdom [18,19], Switzerland [20]. Further, the European project 
RIVAS proposed expose–response curves for vibration levels from railways transportation and 
corresponding human response in [21]. An overview of the most commonly used standards 
was created by Kouroussis et al. [22], finding that the problem assessment is difficult and 
different standards might even provide contradictory results. Some of the standards also 
provide structure-damage-assessment methodologies [15,20]. It has been observed that the 
property owners near railway tracks might be concerned regarding possible damage to 
structures due to vibrations [23]. However, the structural damage risk is assumed to be low 
from the most frequently observed environmental vibration sources [6].  

1.2 Overview of the thesis 

Part I of the thesis introduces and gives a broad overview of the work done during the 
project. Firstly, a literature review describing the current state of the art is given. The most 
popular numerical modelling approaches, structure interaction with the soil, and vibration 
sources are discussed. Further, the hypothesis and aims of the thesis are formulated, indicating 
their contribution to the field. Short descriptions of papers, composing the main part of the 
work, are then provided, listing the main findings and the evolution of the created models. 
Finally, the conclusions and ideas for future work are discussed. 

Part II provides the papers written during the course of the project. The collection of papers 
is the main part of the work. For ease of reading, the papers are split into three groups: 

 Bridge modelling—deals with dynamic modelling of a bridge structure excited by a 
traversing vehicle. The most important phenomena affecting such structures are included 
into the developed computational model. The papers investigate the structure coupling via 
the soil, lumped-parameter models for such coupling, railway excitation, and modelling of 
nonlinear interactions. The papers in this group are denoted B1–B3. 
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 Structure–soil interaction using a semi-analytical approach—the usage of a well-known 
semi-analytical modelling approach is investigated. The semi-analytical model is coupled 
to finite-element structures, creating a versatile and efficient dynamic soil–structure 
modelling tool. Modelling of various types of foundations, soil cavities and railway tracks 
is described. The model is also used for training a surrogate model for assessment of 
vibration in a building. The papers in this group are denoted S1–S5. 

 Railway vibration modelling—deals with vibrations from surface railway lines. The 
modelling of a railway track and the excitation from a passing vehicle is investigated. A 
novel approach of modelling such systems is proposed, using a mixed frame of reference 
formulation. The papers in this group are denoted R1–R2. 

Each of the groups deals with specific topics, related to vibration propagation and dynamic 
structure–soil interaction. At the same time, the covered topics have significant overlap and 
similar concepts are applied throughout all of the works. The papers in each group are 
organized chronologically. However, all three groups were developed simultaneously during 
the course of the project, with new developments being incorporated in all groups at the same 
time. 
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2 State of the art 

Overview of the current state of the art. The section covers the basics of 
ground wave propagation, analytical and semi-analytical models, and 
numerical methods. Further, dynamic soil–structure interaction modelling 
and railway induced vibration are covered. 

An overview of the works dealing with structure–soil interaction (SSI) and environmental 
vibration problems is given. Starting with Section 2.1.1, simple concepts inherent to dynamic 
modelling of elastic media are given, such as the waves propagating through the soil. Further, 
in Sections 2.1.2 and 2.1.3, more advanced semi-analytical and discretized soil modelling 
methods are introduced. Section 2.2 describes the approaches used for modelling SSI, 
including rigid structures, piled foundations and vibration mitigation measures. Section 2.3 
deals with railway induced vibrations, providing a more detailed look into one of the most 
prominent vibration sources. Section 2.4 discusses empirical models and experimental 
measurements, with particular interest of their influence on numerical modelling. 

The overview focuses on semi-analytical and numerical modelling, and only a brief look 
into experimental measurements is provided. The list of publications mentioned in the section 
is in no way exhaustive and is only intended to illustrate the discussed methodologies and 
approaches. Where possible, references to works providing a more detailed literature review 
are given. 

2.1 Dynamic soil modelling 

2.1.1 Basics of soil modelling 

For purposes of modelling environmental vibration, the soil is considered as a linear elastic 
material with homogeneous layers. It is often considered as being a full-space, infinite in all 
directions, or as a half-space, where the only boundary is the soil surface. Solution of the 
governing equation for an isotropic linear elastic solid, used as an idealization of the soil, shows 
that there are two types of waves propagating through the soil strata. The waves are: the primary 
wave (P-wave) propagating as compression deformation, and the secondary wave (S-wave) 
propagating as shear deformation. The P-wave is the fastest propagating wave. Using the Lame 
constants, the P-wave speed can be found as 

𝑐
𝜆 2𝜇

𝜌
 , (1)

where 𝜆 is the first Lame constant, 𝜇 is the second Lame constant (Shear modulus) and 𝜌 is the 
density of the soil. The S-wave speed depends on the shear modulus and the density, and it can 
be found as 
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𝑐
𝜇
𝜌

 . (2)

From Equations 1 and 2, it is evident that the P-wave will always be faster than the S-wave. 
However, the secondary wave generally carries more energy and is therefore more important 
when analysing environmental vibrations.  

When a free surface is introduced into the system (for example, analysing a half-space of 
soil) the Rayleigh wave (R-wave) appears [24], travelling in the surface of the soil. The 
Rayleigh wave is slower than the S-wave, typically with a speed of around 0.9𝑐 . However, it 
is carrying even more energy than the S-wave. Therefore, the R-wave is often the most 
important factor for modelling environmental vibrations, especially when surface vibration 
sources are considered. To determine the exact R-wave speed the following equation is solved: 

2
𝑐
𝑐

4 1
𝑐
𝑐

.

1
𝑐
𝑐

.

. (3)

It can be seen that the R-wave speed depends on both the S and P waves speeds, as it is a 
mixture if the two waves. All three types of waves are non-dispersive, as their speed is 
independent of wavenumber or frequency. Additionally, other waves can appear in the soil, 
such as the Love wave, which can appears when a soft soil layer is placed on or in-between 
stiffer soil layers. A more detailed description of wave propagation through soil, including 
analytical derivations for S, P and R-waves is available in [25–27]. 

Further, a wave is reflected when it impinges on a free surface or another boundary. The 
phenomenon is similar to any other waves, such as light, sound and water. However, P and S-
waves reflected at a surface interact with each other. Thus, an incoming P-wave will create 
reflected P-waves as well as reflected S-waves. Only horizontally polarized S-waves reflect 
fully as S-waves, as they only contain movement parallel to the soil surface. Similar 
phenomena are observed when a wave reaches an interface between two layers with different 
material properties. In that case, reflection and refraction of the waves is observed, as some of 
the energy is reflected back and some is transmitted into the next layer.  

The energy contained in the propagating waves is affected by geometric and material 
damping. The geometric damping is due to the increasing size of the wave front with increasing 
distance from the source. P and S-waves propagate through the whole soil medium, while the 
R-wave is constrained to the soil surface, leading to less increase in the size of the wave front 
with increasing distance from the source. Thus, the P and S-waves decay faster, compared to 
the R-wave. Material damping is due to movement energy being transformed into heat. 
Generally, frequency independent hysteric damping is used. However, viscous damping or 
combination of the two are also encountered. Using frequency-domain solution procedures, 
material damping in the soil can easily be introduced via a complex-valued Young’s modulus. 

Overall, the dynamic soil behaviour is a complex problem, where multiple interacting 
phenomena need to be considered. Implied infinite boundaries make it difficult to model using 
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many standard approaches. The problem becomes even more complex when external structures 
interacting with the soil are introduced. The waves interacting with the structures, soil surface 
and layer interfaces create a system where analytical analysis quickly becomes impossible. 
Thus, numerical models are used, as described in the following sections. 

2.1.2 Semi-analytical methods 

The basic theory for waves propagating through a homogeneous elastic half-space were 
developed already in 1904 by Lamb [28], describing wave propagation for two and three-
dimensional cases. Modelling a layered half-space is a more difficult task, for which a semi-
analytical method is commonly used. The method is based on an analytical solution to the 
Green’s function, which is obtained using a methodology originally derived by Thomson [29]. 
Soon hereafter, the work was reformulated into matrix notation by Haskell [30], and now it is 
commonly known as the Thomson-Haskell transfer matrix method. The Green’s function is 
obtained analytically in the frequency–wavenumber domain, assuming linear behaviour and 
perfectly horizontal soil stratification. Only the horizontal coordinates are considered as 
wavenumbers, which are inverse Fourier transformed back into spatial coordinates after the 
Green’s function has been obtained. The transformation is discrete, making the method semi-
analytical. The originally proposed formulation is based on the flexibility of the system, where 
displacements and traction at an interface can be transmitted through a layer by multiplication 
with the layer transfer matrix. The method is computationally efficient, as assembly of multiple 
layers only requires multiplication of relatively small matrices, without the need of global 
system assembly. Infinite boundaries are also already part of the analytical formulation, making 
the approach very useful for SSI problems. The formulation can be expanded to model 
poroelastic system behaviour using the Biot [31–34] theory. Examples of semi-analytical 
models with poroelasticity can be found in [35,36]. 

However, numerical issues quickly arise using the flexibility-based approach, when high 
frequencies and deep layers are considered. This is due to the limited precision in the 
representation of numbers used in computers, which are not able to handle the mathematical 
operations needed. As the layer assembly involves large exponentially growing terms, the 
accumulated error from the performed mathematical operations leads to computational 
instabilities. The Thomson-Haskell transfer matrix method is widely used for geophysics and 
seismology, where several approaches have been developed for solving the instability issue 
[37–40]. One of the approaches, proposed by Wang [41], identifies that the problem arises due 
to the coupling of two waves (the P-wave and the so-called SV-wave) propagating through the 
layers and mixing in the interfaces. The problem can, however, be solved by a local coordinate 
transformation within each layer to remove the coupling terms. This way, the whole system is 
rotated every time a new interface is encountered in the solution procedure. Computational 
times are effected by incorporation of additional stabilization techniques, but the increase is 
relatively low. It is noted that the method proposed by Wang [41] has been incorporated in the 
numerical models developed during this thesis. An example of soil modelled using the 
Thomson-Haskell transfer matrix method is shown in Figure 2.1. 

 Alternatively, the original transfer matrix can be reorganized into a stiffness expression, as 
proposed by Kausel and Roesset [42]. The method assembles the stiffness of soil layers into a 
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stiffness matrix defined within the wavenumber–frequency domain, similarly to the finite 
element method. In that case, the assembled stiffness matrix size depends on the total number 
of layers considered in the system. Nevertheless, the approach is still computationally efficient 
and is widely used. Through the years, the direct stiffness matrix method has been further 
developed and expanded, with detailed descriptions available in the works by Kausel [43,44]. 
The method can also be applied for anisotropic layers and wave propagation through fluids as 
described by Park and Kaynia [45]. 

Another approach of finding the Green’s function is the thin layer method (TLM). Here, 
the Thomson-Haskell transfer matrix, reformulated into the stiffness formulation, is still used, 
with the simplification that the displacements vary linearly through a layer. For the assumption 
to be correct, the modelled layers have to be sufficiently small when compared to the S-wave 
length. In theory, the method cannot be used to model a half-space to infinite depth. This is 
overcome by utilizing the direct stiffness matrix method to model the half-space underneath 
the layers, or applying non-reflecting boundary conditions, which will be discusses in the next 
subsection. Early works describing the TLM were conducted by Waas [46] and by Lysmer and 
Wass [47]. The method was further expanded by Kausel and Roesset [42]. Both the stiffness 
matrix and thin layer methods have been used for the development of the ElastoDynamics 
Toolbox at K.U. Leuven [48]. 

After the Green’s function in the frequency–wavenumber domain has been established 
using any of the methods, it is converted into frequency–space domain, using discrete double 
inverse Fourier transformation. If the system is considered in a fixed frame of reference, the 
polar symmetry of the Green’s function can be utilized, essentially simplifying the inverse 
transformation problem from a two-dimensional field to a one-dimensional line. The method 
greatly reduces the computational effort and allows a more precise evaluation of the Green’s 

 

Figure 2.1. Environmental vibration propagation modelled using the semi-analytical soil 
model with finite element building model. 
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function, as described in detail by Andersen and Clausen [49,50]. Methods for finding the 
Green’s function directly in the time domain are also available. For example, Kausel [51] uses 
the TLM for a direct time domain solution, where the governing equations formulated in the 
frequency domain are transformed analytically into the time domain. More recent works 
[52,53] propose a direct time–wavenumber domain formulation for layered half-space. After 
the Green’s function has been obtained, it can be used directly or as part of other approaches. 
The methodologies described in this section are also used as parts of other methods, for 
example, the boundary element (BE) method, or for modelling non-reflecting boundary 
conditions. 

The main advantage of the semi-analytical models is their computational efficiency. The 
analytical formulation with implied infinite boundaries is quick to compute. Further, the 
frequency–wavenumber domain formulations can be easily parallelized, allowing multiple 
frequencies/wavenumbers to be solved simultaneously. This is especially well suited for 
modern multi-core computer CPUs. The main drawback is the simplifications needed to obtain 
an analytical Green’s function expression. Thus, it is not possible to directly model cavities 
inside the soil, trenches, non-horizontal soil stratification and other conditions, commonly 
found in urban environments. Further, for practical application, the analytical formulations are 
rather complex and not well known in industry. 

2.1.3 Numerical methods 

Various numerical methods can be used when semi-analytical approaches are not sufficient. 
They offer much greater flexibility for modelling complex geometry, material properties or 
nonlinear interactions. All of the methods discretize the analysed system to numerically 
approximate the differential equations, describing the system behaviour.   

The finite difference method (FDM) is one of the approaches used for modelling the soil 
strata. The continuous system is discretized into a number of nodes at which the strong form 
of the governing partial differential equation is solved, approximating the spatial and temporal 
derivatives by finite differences. Differently from the semi-analytical approaches, the nodes 
are only directly interacting with other nearby nodes, leading to sparse system matrices. 
Virieux [54,55] describes finite-difference (FD) modelling of wave propagation through two-
dimensional elastic media, using a staggered grid for velocities and stresses. Similarly a three-
dimensional staggered grid is used by Graves [56], who also described an optimized 
computation technique for large modelled domains. The methodology has been applied for 
predicting railway induced ground vibration in [57]. However, compared to other numerical 
approaches, it is rarely used. The advantages of the method are that it can be more 
computationally efficient, and application of non-reflecting boundary conditions is easier, 
when compared to finite element method (FEM). However, modelling more complex 
geometries, such as buildings or detailed railway tracks, is difficult [57,58]. 

The FEM method [59] is another commonly used approach for modelling the soil. Here the 
weak form of the differential equations is used. It is an attractive solution procedure, as it is 
well suited for modelling complex geometries. Structures and soil can be modelled using the 
same method, and a direct time-domain formulation is available. The FEM is widely utilized 
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for ground vibration propagation problems, and examples of works using the methods can be 
found in [60–63]. A large advantage of the FEM is the widespread, commercially available 
software, such as COMSOL Multiphysics [64] and ABAQUS [65]. The main consideration 
when using finite elements (FE) is to ensure proper discretization of the waves travelling 
through the soil, with the general rule being six to ten elements per wavelength. It can become 
a limiting factor for high-frequency excitation, where the waves have very short wavelengths. 
Further, when modelling the soil as an infinite domain, the FEM has significant issues. Namely, 
the waves propagating through the soil are reflected from the boundaries of the domain, leading 
to unphysical system behaviour. This can be solved by modelling the soil domain to be large 
enough for the waves to dissipate before the waves reflected at the artificial boundaries re-enter 
the domain of interest. However, such models are generally very large, in turn requiring long 
computation times.  

 A more efficient way of dealing with reflections from the boundaries is to introduce non-
reflective boundary conditions. There is a number of different approaches to account for the 
non-reflecting boundary conditions. One of the most simple approaches was proposed by 
Lysmer and Kuhlemeyer [66]. It is based on impedance boundary conditions that are applied 
to the artificial boundary of the system. Physically, this is equivalent to lining the boundaries 
of the domain with dashpots, with their damping dependent on the soil properties. The 
impedance is determined according to P and S-wave speeds, thus the R-waves are not well 
accounted for. A method proposed by Bamberger et al. [67] introduces R-wave ‘ears’ in the 
model, essentially enlarging the modelled domain close to the soil surface allowing R-waves 
to dissipate. Further, the waves are best absorbed when they reach the boundary orthogonally, 
leading to overall low-reflecting boundary condition. This can be improved using formulations 
accounting for the direction of the wave propagation, as shown by Higdon [68] and Krenk and 
Kirkegaard [69]. However, then it is required that the direction of wave propagation is known, 
which is difficult when the soil is interacting with structures and creating additional reradiated 
waves. Infinite elements can also be used to introduce low-reflecting boundaries, as described 
by Bettess [70]. Examples of works using this approach can be found in [60,61,63]. A more 
recent, and a very promising development, is the perfectly matched layer (PML) method. The 
PML method utilizes complex valued coordinate stretching, leading to much more efficient 
non-reflecting boundary conditions. Originally, PMLs were developed for electromagnetic 
wave propagation by Berenger [71]. Application for electrodynamics was then introduced by 
Chew and Liu [72]. Further, an FE–PML coupling methodology was developed in, 
e.g., [73,74]. The application range for PML is wide, the boundary can be formulated in time-
domain [75] and in a moving frame of reference [76]. An example of an FE–PML model 
applied for environmental vibration prediction can be found in [77]. 

The boundary element method (BEM) [78] is another commonly used numerical approach. 
Here only the surface of the modelled domain needs to be discretized, essentially reducing the 
discretization of three-dimensional problems into two-dimensions. The method uses the 
Green’s functions as weight functions for the BE formulation, which can be obtained 
analytically or from the previously described semi-analytical approaches. Differently than for 
FDM and FEM methods, the non-reflecting boundary conditions are already part of the 
formulation, since the Green’s function ensure radiation of waves into an infinite domain, 
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making the BE method well suited for modelling the soil. Pure BE formulations have been 
applied for SSI problems in, e.g., [79,80]. However, it is not well suited for modelling 
complicated geometries, such as a building structure. Thus, in most cases the approach is 
combined with FE method, creating coupled FE–BE models. Then the structures are modelled 
using the FE method, and the soil domain is modelled using BEs. A good overview of FE and 
BE approaches is provided by Clouteau [81]. Combined FE–BE models can be found in a large 
number of works, for example, [82–87]. 

The numerical methods in this section can be formulated in either two or three-dimensions. 
Generally, two-dimensional methods are quicker to compute, but the three-dimensional 
solution is needed to model the system fully, especially considering moving loads and complex 
geometries. An alternative 2.5D (two-and-a-half-dimensional) approach was proposed by 
Yang and Hung [88] for modelling systems with invariant geometry along the movement line. 
The method simplifies the three-dimensional system into a series of two-dimensional problems, 
which are solved for discrete wavenumbers. Thus the method lies in-between the two and three-
dimensional approaches, see Figure 2.2. The method is computationally efficient, as the system 
is only discretized in two dimensions. Further, it is easy to parallelise the solution procedure 
for efficient computations and the requirements for computer random access memory (RAM) 
are reduced. The largest drawback of the method is that it is limited to structures invariant in 
one direction. Thus, it is well suited for modelling railway tracks and tunnels but cannot be 
used to represent discrete supports of the track, bridge pylons or other finite building structures. 
A comparison between 2D and 2.5D tunnel models was performed by Yang et al. [89]. It was 
determined that, while a 2D model is less computationally demanding, it overestimates the 
obtained vibration levels for all tested cases and is generally less accurate. A periodic 
formulation using Floquet transform was introduced by Degrande et al. [90], that can be used 
for periodically varying infinite geometry in the third direction. 

Thus, numerical methods are a commonly used for a wide array of applications, with their 
popularity increasing historically together with the improving computer hardware technology. 
At the same time, the limiting factor for more complex problems remains the computational 
effort needed. This often makes numerical models unsuitable for the early stages of a project, 
where large numbers of possible design cases need to be tested. Further, continued 
improvement of computer hardware is not guaranteed, with current technologies approaching 
the physical limits of silicon chips, and there is a market for computational methods that can 

Figure 2.2. Two-dimensional, two and half-dimensional and three-dimensional modelling 
approaches. 
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be used on standard laptop and desktop computers, as opposed to large super computers that 
are not commonly available for early design of civil structures. Therefore, in the author’s 
opinion, numerical methods cannot fully replace analytical and semi-analytical methods. 

2.2 Structures interacting with soil 

SSI is an integral part of environmental vibration prediction. The underlying soil can often 
completely change the response of a structure; thus, it is also important for analysis of dynamic 
structure behaviour. A significant amount of research has been carried out into the development 
of various approaches to account for SSI. An overview of early, mainly analytical, methods 
was written by Kausel [91]. An overview of more recent developments of the FE and the BE 
methods can be found in [81,92]. 

Rigid blocks are often used to represent the building foundations. The assumption is that 
the footings are significantly stiffer compared to the surrounding soil and the local 
deformations of the footing can be neglected. It is a fair assumption when modelling smaller 
sized foundations, such as surface or strip type footings, unless the soil is very stiff. In any 
case, the assumption is not suitable for modelling piles or slab type foundations, which can 
deform significantly during loading. An additional advantage of modelling the foundations as 
rigid is the reduced number of degrees of freedom needed, as a single node with six degrees of 
freedom can fully represent the displacements of a three-dimensional rigid object. Likely the 
most simple approach for obtaining the response of a rigid footing is by using the dynamic 
stiffness tables described by Wong and Luco [93]. Another approach is to use lumped 
parameter models (LPMs). LPMs represent the underlying soil behaviour through relatively 
simple systems consisting of springs, dashpots and masses. In some cases, some types of LPMs 
introduce additional degrees of freedom into the system, but the number is low. Standard and 
fundamental LPMs can be obtained directly from the material properties of the soil and the 
dimensions of the rigid footing, as described in [27,94]. The simple models are generally 
limited to circular and square footings placed on the surface of a half-space. 

Simplified models used to model rigid footings are very limited in their application cases. 
Thus, more flexible BE [79,95,96] and FE–BE [83] approaches are commonly used to account 
for soil stratification, unusual foundation shapes or separate footings coupling through the soil. 
Semi-analytical soil modelling methods are also a viable approach, especially considering the 
reduced computational effort needed. A semi-analytical model for rigid surface footings was 
used by Andersen and Clausen [49]. The work discretized the soil–footing interface into a 
number of discretization nodes. Using the semi-analytical soil model, a global flexibility matrix 
was established, describing the receptance between all the discretization nodes. The matrix was 
then inverted and condensed to account for the rigid footing movements, resulting in a dynamic 
stiffness matrix. The obtained frequency-domain stiffness matrix describes SSI interaction of 
separate rigid footings and the coupling between the footings through the soil. It can be directly 
added to FE matrices, used to model external structures connected to the rigid footings. Rigid 
surface footings were also investigated by Lin et al. [97] using a different semi-analytical soil 
model. The work was recently further expanded including three-dimensional rigid foundations 
and a time-domain solution by Han et al. [98]. 
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Another type of LPMs, named consistent LPMs, has been developed by Wolf [99,100]. 
This type of LPMs can recreate complex soil behaviour, including the effects of layered soil or 
unconventional foundation shapes. The approach is based on fitting a polynomial fraction 
function to the desired system response in the frequency domain. Increasing the order of the 
fitted polynomials enables more complex system behaviour to be recreated. The function can 
then be reorganised into partial fraction form and physically represented as series of simple 
LPM systems. Consistent LPMs can be used for the direct and the coupling terms of a stiffness 
matrix, allowing an accurate representation of the SSI, including coupling of separate footings 
through the soil. The largest drawback of the approach is that the frequency domain dynamic 
stiffness matrix of the soil is required. It can be obtained by any of the previously described 
approaches, or it can be measured directly through physical experiments in the field or in the 
laboratory. The main application case for consistent LPMs is when a system formulated in the 
frequency domain needs to be transformed into a time-domain solution. The usage of consistent 
LPMs is further investigated in papers B2 and B3 of the thesis. 

Piles are another popular type of foundations for buildings. Dynamic pile foundation 
modelling is similar to modelling any other type of foundation, but the piles are not modelled 
as rigid, which requires additional consideration. Semi-analytical [101–103] and numerical 
[104,105] methods are commonly used. In regard to environmental vibration, the pile 
foundations are also interesting during the installation phase. Piles installed using impact 
driving or vibration driving produce environmental vibration in the surrounding areas. 
Modelling the installation process is difficult using the linear elastic approaches described in 
this work, as the near-field soil behaviour is nonlinear. However, for the far-field response, 
linear models are still used, for example, in [106,107]. The effects of pile driving are beyond 
the scope of this work, but more detailed descriptions are available in [108,109]. 

Evaluation of vibration reduction measures is often the main objective for using 
computational ground vibration models. This way, the optimum solution can be found even 
before the construction process begins. A large amount of works investigates various vibration 
mitigation measures; thus, only examples of the measures are given here. A more detailed 
overview can be found in a literature review by Connolly et al. [58]. The vibration mitigation 
approaches are generally split into three groups relating to: the source, the transmission path, 
and the receiver of vibrations.  The measures that can be taken at the source of vibration include 
floating-slab track design [110], ballast mats [111], dynamic vibration absorbers [112] or 
changing the vehicle suspension properties [113]. Transmission path measures include 
trenches and other barriers embedded inside the soil [87,114] and heavy blocks placed on the 
soil surface [115–118]. An overview of transmission path measures can be found in [119]. The 
receiver of the vibrations is usually a building structure, where measures such as base isolation 
[120] or adjusting the structural design [121] can be taken. Some of the vibration mitigation 
methods are investigated in the supplementary papers of the thesis (A1–A8), but they are not 
the focus of the thesis. Overall, the range of possible measures is large, with various 
computational approaches used for their evaluation, the choice of methodology being 
dependent on the model complexity and the available computational resources.  
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As can be seen, dynamic SSI modelling takes various forms depending on the considered 
system. However, if modelling of a full vibration propagation path is desired, the computational 
model should be able to account for most of the discussed cases. This is possible to achieve 
using three-dimensional FE models, but—as discussed previously—the computational effort 
needed for such models is very large. Another possible candidate for modelling the full system 
is a coupled semi-analytical–FE approach. SSI modelling using the semi-analytical soil model 
coupled to FE models of structures is explored in papers S1–S5 of the thesis. 

2.3 Railway excitation 

Railways are one of the main sources of environmental vibration, due to the large moving 
mass of the train and wheel–rail interaction between two steel surfaces. This leads to both low 
frequency vibrations due to the moving mass and high frequency vibration from the wheel–rail 
interaction. Well-developed railway infrastructure is an environmentally friendly alternative to 
personal vehicles. Therefore, the industry is seeing an increased surge in development of new 
railway lines, especially in European and Asian countries. Due to these reasons, the vast 
majority of research regarding environmental vibrations is carried out for railway excitation. 
Computational modelling of railway vibrations poses some unique challenges. The vibration 
source is moving through the system, requiring large modelling domains or moving-frame-of-
reference formulations. Further, the dynamic excitation is due to multiple phenomena.   

Here only a small part of the overall research is provided. Much wider overviews of the 
research regarding railways can be found in, for example, [6,58,122,123], with a broader 
overview of vehicle and track modelling, including their interaction, provided by Popp et al. 
[124]. This section is focused on railways, but vibration modelling from road traffic is largely 
the same, just with different properties of the track and vehicle suspension systems. 

2.3.1 Dynamic excitation mechanisms  

The effects of a passing train are generally separated into the quasi-static loads and the 
dynamic loads [125]. The quasi-static loads are caused by the moving vehicle mass and are 
therefore independent on the characteristics of the vehicle suspension. The resulting system 
response is mostly affected in the low-frequency range, though with increasing frequencies 
with increasing speeds of the vehicle. The quasi-static loads lead to a well-predictable system 
response. The positions of the peaks and valleys, observed in a frequency spectrum, depend on 
the spacing between the wheel sets and bogies as well as the number of carriages in the train. 
The predicted frequency response from quasi-static forces is described in [6,123,126]. 

The dynamic loads induced by trains are due to the wheel–rail interactions and generally 
lead to higher-frequency vibrations in the range relevant to reradiated structure-borne noise. 
Naturally, the produced vibration is highly dependent on the quality of the track. For numerical 
simulations, the uneven track profiles are obtained from power spectral density (PSD) spectra. 
These spectra are defined in a number of standards; the most commonly used are the Federal 
Railroad Association (FRA, United States), Chinese and German spectra. Overall, comparison 
between different PSD spectra is difficult, as they are defined for different wavelength ranges 
and use different input parameters. An overview of the PSD spectra and their application can 
be found in [123,127,128]. In most cases, only the vertical irregularities of the track are 
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considered, and the system is simplified into a single rail, assuming the irregularities between 
two rails are identical. However, as shown by Ntotsios et al. [129], this is not always sufficient, 
and two rails with uncorrelated unevenness profiles are needed for certain unevenness 
wavelengths. Like railways, road roughness can also be described using PSD spectra [82]. 

The wheel–rail interaction can be accounted for in several different ways. The circular 
shape of the wheel combined with the small interaction area with the rail lead to nonlinear 
wheel–rail interaction. This can be modelled using the nonlinear Hertzian springs, accounting 
for the varying stiffness of the wheel dependent on the relative deformations. Further, with 
high vehicle speed and large unevenness amplitude, the wheels can lose contact with the rails 
leading to no interaction force. Wheel–rail interaction mechanisms including Hertzian springs 
and loss of contact was used by, e.g., Lei and Noda [130]. However, to account for nonlinear 
wheel–rail interaction, an iterative time-domain solution of the system is needed. This is a 
significant complication for solving the system, as the underlying soil is commonly modelled 
in the frequency domain. Alternatively, the Hertzian spring stiffness can be linearized around 
the force levels corresponding to wheel deformation when loaded only by the vehicle weight. 
This is a commonly used approach which can be found in, for example, [131,132]. Generally, 
it is accepted that the linearized wheel–rail interaction is adequate. However, when analysing 
singular defects of a rail, such as a rail joint, nonlinear interaction might be necessary, as found 
by Kouroussis et al. [133]. 

Another excitation mechanism from a passing vehicle is due to the local rail defects. This 
poses a significant problem for computational modelling, as some of the commonly used 
approaches—such as two-and-a-half-dimensional models (2.5D models) and frequency 
domain solutions—are not suitable for this case. Therefore, time-domain solutions are used, 
often included into multi-step solution procedures. For example, in [133,134] two-step solution 
procedures are used, where wheel–rail interaction is accounted for in time domain, while the 
resulting soil displacements are found in the frequency domain. Connolly et al. [135] uses a 
three-step solution, where the additional third step calculates the resulting building response in 
time domain.  

Other types of excitation also exist. Parametric excitation arises due to discrete supports of 
the rail by the sleepers, which lead to varying stiffness of the track. Similarly, assessment of 
local rail defects requires a time-domain-solution procedure as shown by Nielsen et 
al. [136,137]. Time-domain solutions are also used when modelling the effects of wheel 
flats [138,139]. Seemingly, the effects of a wheel flat should be harmonic and solvable in the 
frequency domain. However, due to the possibility of losing contact and potentially having 
large deformations of the wheels, nonlinear wheel–rail interaction is needed. As found by 
Pieringer et al. [139], even using the nonlinear Hertzian springs might not be sufficient when 
modelling large wheel flats. Here, more advanced models of the wheel may be required. 
Alternatively, the smaller irregularities of the wheels have an insignificant effect on the ground 
vibration, compared to the track irregularities [140], and are often not considered.  
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2.3.2 Modelling approaches 

One of the early analytical models for modelling railway-generated ground vibration has 
been developed by Krylov [141–144]. Here the train is represented as moving constant loads 
with the underlying soil modelled as a homogeneous half-space, utilizing a formulation for the 
Green’s function developed by Lamb [28]. Only the Rayleigh wave is considered for the 
Green’s function. The work can be expanded by introducing more complex formulations of the 
Green’s function as described by Degrande and Lombaert [145]. A similar modelling approach 
was proposed by Sheng et al. for stationary harmonic loads [146] and moving harmonic 
loads [147]. Here, the underlying soil is modelled using the transfer-matrix method developed 
by Thomson and Haskell [29,30], allowing the modelling of layered soil. Further, the track is 
modelled analytically in the frequency–wavenumber domain as a layered structure with 
springs, masses and dashpots representing the track elements. This way, an infinite track can 
be represented. The effects of the track were investigated using the semi-analytical model 
in [148]. Further, the model was expanded to include a two-dimensional multi-degree-of-
freedom vehicle model and an uneven vertical track profile in [131]. This way, the developed 
model can account for both the quasi-static load and the dynamic wheel–rail interaction. The 
modelling approach was further expanded by modelling both rails and their interaction with 
separate vehicle wheels by Ntotsios et al. [129]. The usage of the semi-analytical soil modelling 
approach for rail vibration prediction are investigated in papers R1 and R2 of the thesis. 

A semi-analytical approach has also been used for modelling railway tunnels embedded 
inside the soil, and for determining the resulting environmental vibrations. A popular approach 
is the Pipe-in-Pipe (PiP) method, developed in [110,149], as part of MOTIV project [150]. The 
method uses a full-space formulation for the soil, not accounting for the effects of the soil 
surface. Generally, it is assumed as a fair assumption, especially considering tunnels embedded 
deep inside the soil. For shallow tunnels, a methodology to model the surface response of a 
half-space was introduced by Hussein et al. [151]. The methodology assumes that the tunnel 
response is not affected by the surface of the soil, and after the tunnel response is obtained the 
Green’s functions are used to determine the response of soil half-space. As discussed by 
Andersen and Jones [152], this approach may, however, not be useful for tunnels placed near 
the surface, i.e. cut-and-cover tunnels. In any case, the PiP method has recently been used for 
modelling double-deck tunnel structures [153] and for investigation of vibration reduction 
methods using dynamic dampers [112]. 

Three-dimensional FE and BE methods are commonly used for modelling geometrically 
more complex problems or when time domain analysis is needed. An FE–BE tunnel model has 
been described by Andersen and Jones [152]. The same work compared the agreement between 
two and three-dimensional models, concluding that, while two-dimensional model might 
suffice in some cases and for some frequencies, three-dimensional models are needed for 
accurate results. O’Brien and Rizos [154] used a coupled FE–BE model in time domain. A 
staggered time-integration scheme was used, ensuring the compatibility of forces and 
displacements between the FE and BE solutions [83]. The created model only accounts for the 
quasi-static loads of the train. A similar three-dimensional FE–BE model was used by Galvín 
et al. [85]. However, the described method also includes a multi-degree-of-freedom vehicle 
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model and direct coupling between the FE and BE parts of the system. Both works model the 
track structure using the FEM and the underlying soil using the BEM. Works utilizing the FEM 
to model both the track and the soil are also popular. In that case, commercially available FE 
software packages are generally used [60,63,155,156].  As already mentioned, the large 
advantage of FE models is the widely available commercial software tools. For example, both 
the works by Connolly et al. [60] and Kouroussis and Verlinden [156] used ABAQUS [65] to 
model the underlying soil. However, in both cases it was not possible to introduce a vehicle 
model directly into the ABAQUS model; hence, additional steps were taken. In [156], the 
solution procedure is split into two parts: firstly, the vehicle–track system with a simplified soil 
layer is modelled; secondly, the detailed soil model is loaded by the forces obtained from the 
first step. On the other hand [60] employed a staggered solution procedure for every time step, 
where the nonlinear wheel–rail interaction forces are applied to the ABAQUS soil model 
through user-defined FORTRAN subroutines. Similar approaches are often needed when 
utilizing three-dimensional FE models. Further, the 2.5D modelling approach is particularly 
well suited for modelling railway vibration and is widely used. The 2.5 formulation been 
applied to most of the previously described soil modelling methods: finite/infinite element 
formulations are used in [157–159], BE model in [160], FE–BE models in [161–164], FE–
PML models in [77,165,166].  

Lopes et al. [77] modelled a full vibration propagation path from a multi-degree-of-freedom 
vehicle model to a building structure. Due to the limitations of the 2.5D approach, the solution 
procedure was split into three parts: the vehicle–track model, the 2.5D FE–PML tunnel model, 
and a three-dimensional FE building structure. This way, some of the direct coupling terms are 
excluded from the system, such as the vehicle model does not directly couple to the building. 
However, these effects are considered very small, and they are further reduced by increasing 

Figure 2.3. Typical two-step solution approach separating the vehicle–track and the soil–
structure systems. 

Step 1. 

Step 2. 

Full system 

+ ≈ 
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distance between the source and the receiver. Similar solution procedures are common, 
especially, when considering the full vibration propagation path. Hussein et al. [167] used a so-
called sub-modelling technique for predicting building response from railway tunnels. Once 
again, a multi-step solution procedure was used, assuming that the presence of a building has 
no effect on the tunnel response. The PiP tunnel model was used and the building response was 
found from the free-field displacements of the soil surface. Similar multi-step approaches can 
be found in [132,168]. A typical two-step approach is illustrated in Figure 2.3. An alternative 
to multi-step solution procedures would be a fully coupled time-domain solution. For example, 
Ju [140] used a time-domain solution procedure and a three-dimensional FE model, modelling 
the full propagation path from the vehicle up to the building structure. Unfortunately, such 
models are limited due to time-domain modelling limitations, mainly the long computation 
times and overall difficult implementation. 

2.4 Empirical models and experimental measurements 

Experimental measurements are an integral part of environmental vibration prediction 
tools. A large part of currently used models is fully or partially data driven, providing quick 
estimates without the need for detailed information about the site conditions. The more 
complex computational models also need to be calibrated according to measurement data in 
order to provide accurate results. This section provides an overview of how the computational 
modelling methods are affected by field measurements. 

The most simple environmental vibration prediction methods are based on in-situ 
measurements, as proposed in [17,169]. These empirical methods are still widely utilized for 
practical applications, as they are simple and straightforward to use. However, the usage cases 
are rather limited and not suitable for more complex building structures or soil conditions. A 
number of so-called semi-empirical models for predicting vibrations caused by railways have 
been developed. They generally model an extremely simplified railway track and soil system 
with the results calibrated according to measurement data [170–173]. An alternative approach 
of creating data-driven models was presented by Connolly et al. [174]. Here an efficient 
estimate of environmental vibrations is obtained using machine learning with neural networks, 
where the data points needed are obtained from a detailed three-dimensional FE model. Further, 
Kouroussis et al. [175] proposed an approach for estimating the effects of localized rail defects, 
such as rail joints.  

More advanced computational models have been also successfully used for railway induced 
vibration prediction. A study investigating high-speed trains was performed by Galvín and 
Domínguez [84]. A theoretical FE–BE model was created modelling the track including the 
surrounding structures such as pylons supporting the electricity lines above the track. The 
model was validated by comparison with field measurements. The obtained results showed 
good agreement between the measured and simulated results. Costa et al. [164] also obtained 
similar results comparing a coupled FE–BE model with field measurements. However, the 
accuracy of the models greatly depends on the quality of input parameters, such as the Young’s 
modulus and Poisson’s ratio of the soil. 
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Generally, conventional site investigations do not provide sufficient data for analysing 
environmental vibrations [58]. Thus, more specific site investigations need to be performed, 
often by measuring the wave propagation speeds in the soil. A measurement technique based 
on an impact method for soil transmission was proposed by Bovey [176]. Other methods of 
determining dynamic soil properties from field measurements can be found in [177–179], and 
a full waveform inversion was used by Kallivokas et al. [180] to characterize a site. Milne et 
al. [126] showed a way of finding the vehicle speed and track system support modulus using 
data obtained from measured train passages. Similarly, [181] also presents an approach of 
calculating train speed from vibration measurements.  

The critical train speed is often analysed, as the train speed can exceed the wave propagation 
speeds in the soil, creating an equivalent to a Mach cone in the soil. An extreme case where the 
train speed was approaching the critical Rayleigh wave speed has been observed at Ledsgard 
in Sweden and described by Madshus and Kaynia [182]. However, when critical speeds are not 
approached, the vibration levels are often not highly dependent on the train speed. Degrande 
and Schillemans [183] performed a free-field soil vibration measurements from passing high-
speed trains, measuring speeds from 160 km/h to 330 km/h. There, only a weak dependence of 
the observed vibration levels on the train speeds was found. Similarly, based on a numerical 
study, Connolly et al. [135] concluded that there is no correlation between the train speed and 
observed vibrations in a building structure. Auersch and Said [184] investigated the attenuation 
of vibrations with increasing distance, for various sources of vibration. They found that the 
attenuation of vibration greatly depends on the type of the source, with source types such as 
trains producing slower attenuating vibrations than, for example, explosion-type sources.  

Generally, the precision of computational models is limited due to reasons such as 
oversimplification of the system and imprecise input parameters. However, achieving 
extremely high precision might be impossible due to the stochastic nature of the problem.  A 
study performed by Connolly et al. [185], encompassing a large number of measurement data 
collected from various studies, observed that differences of ±2 VdB (vibration metric defined 
by FRA [17]) are observed even between separate train passages. Indicating that there is a 
rather large degree of uncertainty in the system, at the same time defining the upper precision 
limit that numerical methods can most likely achieve. 
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3 Scope of the thesis 

Conclusions and findings obtained from the state of the art. The scope of 
the thesis is defined, with the formulation of hypothesis and accompanying 
overall aims. 

3.1 Findings of state of the art 

Environmental vibration prediction is a difficult task that becomes even more demanding 
when a densely built up urban area is considered. In that case, simple analytical approaches 
will not suffice for predicting the vibration levels with an adequate accuracy. Further, advanced 
fully three-dimensional FE and BE models can model complex systems. However, they are 
limited by the large computational effort required and by the limited information about the site 
conditions that is typically available. Additionally, experimental measurement campaigns 
indicate that perfect predictions of environmental vibrations might not be possible, due to the 
stochastic nature of the system. Thus, a middle ground between the complexity of the 
computational model and the effort needed to obtain the solution needs to be found. 

The literature overview provides insight into the approaches that various authors use to 
obtain an accurate but at the same time usable computational model. Simplifications such as 
linear elastic soil behaviour, hysteric damping and no slippage between the foundations of a 
structure and the soil are almost universally accepted. Further, it is common to disregard 
secondary coupling effects, for example, by assuming that the vehicle response is not affected 
by a nearby building structure. The most computationally efficient formulations of the soil are 
usually obtained in the frequency domain, leading to multi-step solution procedures, when 
accounting for nonlinear excitation mechanisms. Similarly, hybrid-modelling approaches are 
often used, combining two or more modelling methods. Works modelling the full vibration 
propagation path including the source of vibration and the receiving structure are quite rare, 
especially for railway excitation cases. 

A single best overall approach for predicting environmental vibrations does not exist. 
Three-dimensional FE models could most likely be used to model all the described cases, 
including the soil and the structures interacting with it. However, FE models are limited by 
quickly increasing computational times with increasing domain size. Thus, more specialized, 
but more efficient, models are used, depending on the analysed case. The disadvantage of that 
is the difficulty of combining these approaches into a single large model. 

The work done during the thesis focuses on the semi-analytical modelling approach, used 
by Sheng et al. [146,147] for railway vibration prediction and by Andersen and Clausen [49] 
for modelling rigid footings. The modelling approach capabilities and applications for 
modelling various cases, described in the literature review, are investigated. The model is 
applied for modelling rigid and piled foundations, coupled to FE structures, transformed into 
the time domain using LPMs and finally utilized for modelling the full vibration propagation 
path from a passing train to a building structure. The approach could be a promising solution 
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procedure, allowing modelling various structures interacting with the soil using one unified 
approach. 

3.2 Objectives of the thesis 

With onset in the literature review, the hypothesis of the thesis is as follows:  

“Applying a semi-analytic ground model coupled with a structural 
finite-element model, the ground-borne vibration in a building placed 

within an urban environment can be estimated with an adequate accuracy 
but also with a reasonable computational effort”. 

The main objective is therefore to create numerical models for environmental vibration 
prediction, with emphasis on computational efficiency. The created computational models 
should be able to account for the full vibration propagation path starting at the source of the 
vibrations, propagating through the soil, and entering the building structure through its 
foundations. It should, if necessary, account for the back coupling, for example, from the 
building to the soil. Additionally, the work should be applicable to a wide range of application 
cases and not be limited to narrow, specific applications. In particular, the vibration 
propagating through soil is of interest, with most of the effort focused on modelling the soil 
medium and the dynamic structure–soil interaction. Analysis is limited to measurable 
excitation of structures, without considering the human response to vibrations.  

The work done during the thesis is split into three groups, analysing railway bridges, 
dynamic soil–structure interaction and railway vibrations. The semi-analytical ground model 
is used throughout the whole work. However, each group deals with unique issues that arise 
due to the specifics of the considered problem. The publications written for each group are 
given is Section 5. Additionally, the developed computational model is included as part of the 
thesis, and a brief description of it given in Section 4.  
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4 Computational model 

Short description of developed computational model covering its 
capabilities, requirements and file structure. An example case is provided, 
demonstrating the structure of the input files and the resulting system. 

4.1 Description of the computational model 

As part of the PhD thesis, an in-house computational model for environmental vibration 
prediction was developed. The model can be used to model dynamic soil behaviour and 
structures interacting with the soil, including coupling through the soil. The results are obtained 
in the frequency–space domain, in a fixed frame of reference. The computational model is 
intended as an open-access software, freely available for download and use. It was developed 
during the course of the project and encompasses cases investigated in Papers S1–S5. 

The model utilizes the Thomson-Haskell [29,30] transfer matrix with the stabilization 
technique proposed by Wang [41]. For thick layers and high frequencies, the model also 
automatically detects exponential terms exceeding the limits of double precision floating-point 
numbers and divides the effected layers. The flexibility approach is used, assembling the 
system by multiplying matrices of the dimension six by six. A fixed frame of reference is 
considered, where the polar symmetry of the Green’s function in frequency–wavenumber 
domain is utilized, requiring discretization only along a single wavenumber dimension. 
Optionally, the polar symmetry of the solution in the frequency–space domain can be utilized. 
In that case, the results are pre-calculated at a number of spatial positions, from which the 
results at exact positions are determined by interpolation. This way, the computational cost is 
reduced significantly, without significant loss of precision. 

The calculations relating to the semi-analytical model are performed in an executable file, 
which is programmed using FORTRAN and compiled with the Intel® Fortran Compiler. The 
code is specifically optimized for parallel calculations using multi-core CPUs. The user can 
choose to either run separate frequencies or separate wavenumbers, inside a single frequency, 
as parallel calculations. This way, the computational load can be adjusted according to the 
analysed case. The input for the executable file can be written directly into an ascii text file 
with the extension ‘.txt.’, which is read by the executable. The user can choose to either directly 
export the dynamic flexibility matrix of the soil, or to take its inverse and output the stiffness 
matrix. The output files are saved as binary files with the extension ‘.dat’, allowing them to be 
imported efficiently into other software. The FORTRAN part of the code does not perform the 
calculations to determine the system displacements. It is only used to discretize the system and 
obtain the matrices governing the system behaviour, which are then used to solve the system 
directly or couple it to external structures. 
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An accompanying MATLAB script is also included. It loads the output files from the 
executable, applies the user prescribed loads and obtains the system displacements. 
Additionally, the script offers an alternative way to input parameters into the FORTRAN part 
of the code, run the code, and display the obtained results, all included into a single script file. 
The MATLAB script generally follows the same input structure as the text file read by the 
FORTRAN executable. The flowchart showing the interaction between the two parts of the 
code and the task they perform can be seen in Figure 4.1. The MATLAB part of the code is not 
necessary, as the user can directly write the input file and load the obtained results into other 
software. An example of the structure for the input text file is discussed in Section 4.2. 

The desired geometry of the investigated problem is defined using instances. Each instance 
has an associated node, defining the position, and a profile, defining the shape and 
discretization. Profiles for square and circular shapes are predefined in the code and can easily 
be modified by the user. Properties of the profiles, such as their dimensions, discretization, 
placement of the master node, etc., can easily be defined. A profile is assigned one of the types:  

 flexible—the discretization nodes of the created instance are independent and can be 
coupled separately to structures for analysis of soil–structure interaction;  

 rigid—all nodes of the instance move according to the six degrees of freedom of the 
master node which is the only node coupled to a structure; or  

 observation—creates an instance with nodes that can only be used to visualise the soil 
behaviour, i.e. no SSI can be introduced via such instances.  

The observation type only reacts to the movement of instances of the other two types, and 
it cannot used independently. However, it provides a significant reduction in calculation time 
compared to flexible instances that account for SSI. If the predefined shapes are insufficient, it 
is possible to define a shape manually, by directly defining the coordinates of nodes used for 
discretization of the body. The flexible, rigid and observation types of the shape can still be 
used. A more detailed explanation of the input structure can be found in the user manual 
included in the downloadable files.  

 

 

 

 

 

 

Figure 4.1. Workflow chart of the computational model. 
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The computational model was named ‘Green3D’. The download includes a short user manual, 
explaining the input parameters in the MATLAB part of the code. It can be downloaded using 
the following link or using the QR code (requires a computer with Microsoft Windows 10 
operating system): 

Additionally, the source files for coupling FE structures to the semi-analytical model are 
provided. The code acts as an additional layer on top of the provided Green3D code, 
automatically coupling external FE structures to the soil. The input structure to define the 
geometry and properties of the system is similar to the previous code. However, no user manual 
is available. Solid, shell and beam finite elements are included, which can be used 
independently or as parts of predefined structures. The predefined FE structures afre 
parametric, allowing the user to define the properties manually, and they include a simple 
building model, piled foundations, and a railway track. The MATLAB suite of files can be 
downloaded from the following link or using the QR code: 

4.2 Example case 

A system of two rigid blocks is investigated. Each block is a three-dimensional square with 
dimensions 3 m × 3 m × 1 m and is positioned, so that the top of the block is equal to the soil 
surface. The centre-to-centre distance between the two blocks is 8 m. The blocks are embedded 
inside a layered half-space of soil. The top layer is 5 m thick, with a Young’s modulus of 
80 MPa and a Poisson’s ratio of 0.48. The underlying half-space has a Young’s modulus of 
600 MPa and a Poisson’s ratio of 0.30. Both layers have a density of 2000 kg/m3 and a loss 
factor of 0.05, used to define hysteretic damping. Additionally, the response of the surrounding 
soil is investigated, visualising the behaviour of a 14 m × 14 m × 2 m block, centred around 
the rigid blocks. The steady state response of the system at 30 Hz is investigated. 

https://drive.google.com/open?id=1UndTmhjeAuRBgKCKqMQkuiKx-MRawB04 

 

https://drive.google.com/open?id=1a_akCbuZU1H1hX_KghWxy1drwMIb9Yuk 
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The text file given bellow has been produced with the MATLAB suite of files, and it 
provides the input for the computational model, analysed using the FORTRAN executable 
program. Comments written in italic and placed after exclamation marks provide explanations 
of the input structure. Alternatively, the provided code could be written directly as the input 
file in the same way that, for example, input files for commercial finite element programs can 
typically be developed via a user interface or directly as a text file. 

Green3D_input.txt 

* Identifier  
  vibSurf        ! The name of the project, used to name the output files; 

* Frequencies  
  30        ! Analysed frequency; 

* Settings         ! General code settings (set to default values, if excluded); 
  + LoadShape bell     ! Bell shaped load in wavenumber domain; 
  + Damping hysteric    ! Hysteric damping; 
  + Wavenumbers  8000     ! Total number of discrete wavenumbers; 
  + aMax  10       ! Maximum investigated wavenumber; 
  + Interpolated      ! Interpolated solution in spatial domain; 
  + Radial 500       ! Number of discrete points used for spatial interpolation; 
  + ParType  local     ! Parallelization over wavenumbers inside single frequency; 
  + RigidDiscretization 0.6  ! Discretization spacing parameter, see Paper S5; 
  + OutStiffness  yes    ! Produces the stiffness matrix of the system; 

* Nodes         ! Defines the coordinates of the nodes used in the system; 
  0.0  0.0  0.0  1   ! Numbers 1–3 (x,y,z)‐coordinates; 4—assigned node number; 
  4.0  0.0  0.0  2  
  8.0  0.0  0.0  3  

* Profile Box  rig block     ! Creates a box profile, with user given name ’rig block’; 
  + Rigid        ! Defines the type of profile, in this case rigid; 
  + Radius 1.5       ! Half‐length of one side for the horizontal cross‐section; 
  + Depth  1.0       ! Vertical height; 
  + Points  4       ! Discretization, number of points for one radius; 
  + Solid        ! The shape is fully discretised, including the internal nodes; 

* Profile Box  obs plane     ! Creates another box profile, with given name ‘obs plane’; 
  + Observation      ! Defines the type of profile, in this case observation; 
  + Radius 7.0      
  + Depth  2.0    
  + Points 20  
  + Hollow       ! Outer shell of the shape discretized, excluding internal nodes; 

* Soil soft clay       ! Creates soil material profile, with user given name ‘soft clay’; 
  + Youngs 80E+06     ! Young’s modulus; 
  + Poissons  0.48     ! Poisson’s ratio; 
  + Density  2000    ! Mass density; 
  + LossFactor 0.05     ! Loss factor; 

* Soil sand         ! Creates another soil material profile, with name ‘sand’; 
  + Youngs 600E+06  
  + Poissons  0.3  
  + Density  2000  
  + LossFactor 0.05  

* Instances         ! Assembly of geometry, assigns nodes to created profiles  
  +  1  rig block  ! Profile ’rig block’ is placed at node number 1; 
  +   3  rig block  ! Profile ’rig block’ is also placed at node number 3; 
  +  2  obs plane   ! Profile ’obs plane’ is placed at node number 2; 

* Stratification       ! Assembly of soil layers, starting at the surface;  
  +  soft clay  5.0    ! Soil material profile ‘soft clay’, with 5 m thickness; 
  +  sand    0  ! Soil material profile ‘sand’, 0 indicates half‐space. 
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The obtained system is shown in Figure 4.2. The rigid blocks, named ‘rig block’ in the input 
file, are coloured in red, while the shaded surfaces is the instance ‘obs plane’, used for 
visualising the soil response. The shown system is loaded with a vertical unit load applied on 
the first rigid block. In this case, the system response is plotted using the included MATLAB 
script.  

 

Figure 4.2. Example system created using Green3D software. 
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5 Summary of publications 

This section provides summaries of the publications written during the 
course of the thesis, covering the main points from the used methodologies, 
the proposed novelties and the obtained conclusions. An overview of the 
works and their relation to each other is discussed.   

The main part of the work done during the project was disseminated in ten scientific papers, 
including seven papers in the peer reviewed proceedings of international conferences and three 
papers under review for publication in high-ranking international journals. Short descriptions 
providing the main ideas and findings of the papers are provided in this section, with the full 
papers given in Part II of the thesis. As already mentioned, the papers are split into three groups, 
each group dealing with similar topics. The papers inside the groups are given in chronological 
order, with later publications incorporating the findings and new developments from the 
previous ones. All groups include, first, a number of conference publications and then a final 
journal publication. The journal publications encompass the developments of the previous 
works and introduce new findings; however, the conference papers include several case studies 
and some findings that cannot be found in the journal papers. Each paper therefore has some 
contributions to the thesis in its own right. At the same time, the papers in all groups have some 
overlap in terms of methodology and problems considered, overall dealing with similar topics.  

5.1 Dynamic railway bridge excitation (Papers B1–3) 

The dynamic behaviour of railway bridges due to passing trains is a complex problem, 
requiring consideration of multiple phenomena and the interaction between different parts of a 
large, intricate system. All the papers in Group B deal with a similar structural system: a multi-
span elevated railway line, with rigid surface footings, placed on a layered or homogeneous 
half-space of soil. A sketch of the system is shown in Figure 5.1. The model includes the bridge 
deck and the pylons modelled using beam finite elements, a layered deck structure modelled 
using springs, dashpots and masses, and a multi-degree-of-freedom vehicle model. The system 
is excited by the traversing vehicle, including both the quasi-static and dynamic excitation 
forces. The dynamic excitation is due to the rail unevenness, which is accounted for by the 
nonlinear wheel–rail interaction forces.  

Figure 5.1. Analysed bridge structure. 
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The numerical model is based on a previous work by Bucinskas et al. [186], developed as 
part of the master thesis. The work proposed a hybrid modelling technique, where an iterative 
solution technique is used to combine the time and the frequency domain solutions. The same 
technique is also used in paper B1 and partly in paper B3. 

Due to the discrete representation of the bridge structure, i.e. pylons are present with some 
spacing, it is not possible to utilize direction invariant computation methods based on, for 
example a 2.5D FE or BE approach as mentioned in Section 2.1.3. Alternatively, a periodic 
structure could have been analysed by using the Floquet theory. However, the methodology 
proposed in paper Group B is suggested to be more general as it allows the analysis of structures 
of any shape interacting with the soil. It is indeed not limited to the analysis of linear, 
periodically repeated structures, even though the papers only consider such structures in the 
computational examples. Additionally, including a moving multi-degree-of-freedom vehicle 
model into the system requires time-domain solution procedure. At the same time, the semi-
analytical soil model is used, which is formulated in the frequency domain. Thus, different 
hybrid solution procedures are utilized, combining different modelling techniques. 

5.1.1 Paper B1: Numerical modelling of ground vibration caused by elevated high-speed 
railway lines considering structure–soil–structure interaction 

P. Bucinskas, L. V. Andersen, K. Persson.  
INTER-NOISE and NOISE-CON Congress and Conference Proceedings (2016). 

The paper concerns the dynamic response of a low-rise multi-span bridge structure, with 
particular interest in the behaviour of the foundations and the surrounding soil during the 
passage of a train. Several ways of accounting for the soil are introduced and compared, while 
analysing the effects of the vehicle speed and the soil stratification. 

Key points and novelties of the paper:  

 The rigid footings are modelled in two ways. The first approach accounts for structure–
soil–structure interaction (SSSI), including the cross coupling of footings through the soil, 
while the second accounts only for the structure–soil interaction (SSI), i.e. only including 
the coupling of each individual footing to the soil. The more complex first model requires 
analysis of the full soil system interacting with the full array of rigid footings, while the 
simpler SSI model only requires the solution for a single footing, which is then applied to 
all bridge footings. Using a simpler model is beneficial due to the reduced computational 
cost, while the more complex model is more accurate. To the knowledge of the author, the 
direct comparison of the two approaches (dynamic SSSI vs. SSI) for a multi-span railway 
bridge is novel. 

 A parametric analysis investigating the effects of the vehicle speed is performed, with some 
results given in Figure 5.2. It is determined that, if the vehicle approaches the R-wave speed 
in the soil, the vibration levels are amplified. The amplification is more prevalent if the soil 
is modelled as a homogeneous half-space. The effects are reduced when a layered soil cases 
are analysed. Similar findings are available in the literature for tracks placed directly on the 
ground, but the analysis of a low-rise multi-span bridge was new at the time of the study. 
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 A modelling approach only accounting for a single footing at a time is not able to predict 
the response amplification due to the critical speed, thus providing inaccurate results. 
However, for layered soil, the differences between the two approaches are not large. This 
observation may be of interest for practical design, since real soil is always stratified. 

 The stress experienced by the bridge pylon was analysed for the worst loading case (half-
space of soft soil with critical vehicle speed), including the vehicle model and uneven track. 
It was determined, that the differences between the modelling approaches are very small, 
i.e. for the analysis of the structure the SSI approach may suffice. 

 Analysing the soil surface response further away from the bridge structure, the model 
including the cross coupling through the soil (the SSSI model) predicts lower vibration 
amplitudes for the whole analysed frequency range. 

Main conclusion of the paper: 

Comparing the two proposed modelling approaches, it is evident that the full model is 
preferable, especially when the response of the bridge footings or the surrounding soil is of 
interest. However, for the bridge deck response, the simpler SSI model could be successfully 
used without a significant loss of precision. This could be useful if simple rigid-footing-
modelling approaches, which can model only a single rigid footing at a time, are utilized. 

5.1.2 Paper B2: Lumped-parameter models for structure–soil interaction of multi-span 
railway bridges 

P. Bucinskas, L. V. Andersen 
Proceedings of the 30th Nordic Seminar on Computational Mechanics, NSCM-30 (2017). 

The paper concerns the dynamic response of a short railway bridge structure, supported by 
three pylons. A time-domain solution procedure is utilized to analyse the effects of track 
unevenness on the structural response. 

(a) (b)  
Figure 5.2. Maximum absolute bridge footing displacement dependency on vehicle speed: 

(a) a half-space of soft soil; (b) a layer of soft soil over a half-space of stiff soil. The figure is 
part of Figure 5 from Paper B1. 
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Key points and novelties of the paper: 

 Consistent lumped-parameter models (LPMs) are used to approximate the soil response 
obtained from the semi-analytical soil model, formulated in frequency domain. Standard 
stiffness, mass and damping matrices are obtained, that can be used for a pure time domain 
solution, with non-linear wheel rail interaction. The use of LPMs for SSI and SSSI of multi-
span bridges is, to the authors knowledge, novel. 

 The created model is used to analyse the effects of track unevenness on the response of the 
structure. Randomly generated track unevenness profiles are tested with three vehicle 
speeds. In total, 100 unevenness profiles are tested, generating envelopes for maximum and 
minimum response of the system. 

 The stochastic nature of rail unevenness leads to significant differences between separate 
realizations. The largest differences between the maximum and minimum response are 
observed in the frequency range up to 100 Hz. At the same time, the effects due to vehicle 
wheels passing over sleepers and the quasi-static loads produce distinct peaks with little 
scatter of data. 

Main conclusion of the paper: 

For the analysed case, consistent LPMs work well to recreate the system response in time 
domain, including the foundation coupling through soil. The obtained system is 
computationally efficient and can be used to run crude Monte-Carlo simulations. Further, the 
pure time-domain solution is more efficient and with better convergence compared to the 
hybrid approach used in Paper B1. 

5.1.3 Paper B3: Dynamic response of vehicle–bridge–soil system using lumped-
parameter models for structure–soil interaction 

P. Bucinskas, L. V. Andersen 
Under review in Computers and Structures, initial submission 2019 April 30, revised and 
resubmitted after first review 2019 September 18. 

The paper concerns the modelling of a multi-span railway bridge structure in time domain 
using consistent LPMs. The paper provides a detailed description of the modelling approaches, 
solution procedures, polynomial fraction function fitting for LPMs, and problems that can be 
encountered when modelling such systems.  

Key points and novelties of the paper: 

 The hybrid solution procedure, from Paper B1, is compared to a pure time-domain solution 
using consistent LPMs. For the analysed case, the hybrid solution procedure requires 
additional filtering to obtain a converging solution. For the considered structure, track and 
vehicle, filtering for frequencies above 70 Hz is needed, making the results beyond that 
limit inaccurate. Thus, a pure time-domain solution using LPMs is preferable, when high-
frequency vibration is of interest. 

 Cross-coupling terms up to three footings away have a significant effect on the system 
response and should thus be represented by LPMs. This is especially important for higher-
frequency response. Meanwhile, the low-frequency response, up to 15 Hz, can be recreated 
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by modelling only the direct terms (diagonal terms of the dynamic stiffness matrix). The 
systematic study of the importance of cross coupling between pylons via the soil is, the 
knowledge of the author, novel. 

 The analysed frequency range up to 100 Hz requires a high-order polynomial-fraction 
function to properly match the variation observed in the frequency-dependent dynamic 
stiffness of the footing–soil system. The cross-coupling terms between two footings, 
separated by multiple footings in-between, are especially difficult to recreate using LPMs. 
In some cases, polynomial orders exceeding 50 are required. Nonetheless, such high-order 
LPMs were successfully calibrated, which may be novelty of the paper. Usually, in the 
literature, LPMs of much lower orders are used, and the experience of the author is that the 
same type of instability issues will not occur in such cases. 

 The high-order, multi-degree-of-freedom LPMs can have numerical stability issues, even 
if the standard constraints of negative real parts for the poles are enforced. An LPM fitting 
procedure is intruded to obtain stable models. The procedure uses three test conditions to 
eliminate the numerically unstable LPMs. This procedure can be considered novel. 

 The effects of the stochastic track unevenness are investigated by analysing 100 track 
profiles. Compared to Paper B2, the track properties and the power-spectral density (PSD) 
functions for the unevenness are changed, leading to different system response. The 
analysis is carried out for the wheel–rail interaction forces and for the accelerations of the 
deck and one footing. The obtained wheel–rail interaction forces are shown in Figure 5.2. 
The figure shows overall increasing interaction forces with increasing vehicle speed, also 
the distinct peaks caused by the vehicle weight at very low frequencies, and a peak at 50 Hz 
due to the wheel passing over sleepers. 

Main conclusion of the paper: 

Using consistent LPMs to recreate complex system behaviour with multiple cross couplings 
through a wide frequency range is possible. However, some numerical stability issues are 
encountered, requiring additional consideration. In those cases, the proposed fitting procedure 
should be followed. 

 
Figure 5.3. Fourier coefficients of wheel-rail interaction force. The figure is an 

unmodified version of Figure 13 from Paper B3. 
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5.2 Dynamic soil–structure interaction using the semi-analytical approach for 
modelling a layered ground (Papers S1–5) 

Papers in this group deal with dynamic SSI modelling and vibration propagation through 
soil. The semi-analytical soil model based on the Thomson-Haskell transfer matrix [29,30] is 
employed, with Papers S3–S5 utilizing an additional stabilization technique [41] to avoid 
precision errors in the computer implementation. The computational model described in 
Section 4 was developed together with the papers in this group. 

The capabilities of the model are explored for modelling various structures, such as rigid 
blocks, piles and tunnels. All papers deal with the system in the frequency domain, excited by 
fixed harmonic forces. Beam, shell and solid finite elements are used to model external 
structures coupled to the soil, with the coupling between the two approaches achieved through 
so-called SSI nodes. This modelling approach is beneficial, as the soil can be modelled 
efficiently using the semi-analytical approach, while complex structural geometries can be 
modelled using the finite-element method (FEM). 

Computational efficiency is key; thus, the efforts are concentrated on finding the optimum 
numerical approaches. One of the papers investigates the use of surrogate models as an 
alternative approach. However, the surrogate model is still calibrated according to data 
obtained from the semi-analytical model. 

5.2.1 Paper S1: Semi-analytical approach to modelling the dynamic behaviour of soil 
excited by embedded foundations 

P. Bucinskas, L. V. Andersen  
X International Conference on Structural Dynamics, EURODYN 2017. 

The paper analyses the behaviour of two types of foundations: rigid footings and piles. The 
semi-analytical soil model is used with a derived formulation for embedded source and receiver 
positions. A procedure for the coupling of finite elements to the semi-analytical soil model is 
introduced. 

Key points and novelties of the paper: 

 The proposed approach to modelling rigid footings is validated by comparison with an FE 
model. The same surface footing is modelled as a completely rigid plate and as an FE shell 
model that is then coupled to the soil. It is determined that the differences between the two 
approaches are small for all analysed soil stratifications and loading cases, indicating that 
the assumption of rigid footings, usually made for engineering design, is acceptable.  

 Pile modelling using the semi-analytical approach is investigated. The piles are modelled 
as beams by the FEM and coupled to the soil in three different ways. Firstly, the embedded 
FE nodes are directly coupled to the corresponding SSI nodes. In this case, only the 
translational degrees of freedom are coupled to the soil. Two other approaches use rigid 
discs or rigid rings (the two approaches are illustrated in Figure 5.4), with the diameter of 
the pile, which are then coupled to the nodes of the FE pile. This way, the rotational degrees 
of freedom of the pile are also coupled to the soil. 
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 Comparison between the three pile modelling approaches is performed by modelling a 
single pile, loaded by unit moment. As expected, the modelling approach without rigid 
objects underestimates the stiffness of the system, due to the lack of rotational stiffness in 
the pile. The other two approaches show very similar results, with the best approach 
dependent on the considered pile type.. For example, large diameter monopiles are better 
represented with rigid rings, while small diameter drilled piles are better represented with 
rigid disks. 

Main conclusion of the paper: 

The paper introduces an early version of the coupled semi-analytical and FE model, which 
is further developed in the subsequent publications of paper Group S. Overall, the used 
computational model is efficient and can be used for a wide range of application cases. The 
proposed novel pile modelling method is promising, as it is easy to implement into existing 
semi-analytical models and it is not limited by the number or configuration of piles. The 
modelling approach for rigid footings and the proposed pile modelling with rigid discs is 
further investigated and developed in Paper S5. 

5.2.2 Paper S2: Excitation of structures near railway tracks—analysis of the wave 
propagation path 

P. Bucinskas, L. V. Andersen, 
Proceedings of the 6th International Conference on Computational Methods in Structural 
Dynamics and Earthquake Engineering, COMPDYN 2017. 

The work concerns the ground vibration propagation path and the effects of additional 
structures placed within the propagation path. Embedded structures and structures placed on 
the ground surface, commonly encountered within an urban environment, are investigated. The 
source of vibration is a railway track, and the receiver is a rigid surface footing placed at some 
distance from the source, with additional structures placed in between the two. 

Key points and novelties of the paper: 

 A three-dimensional railway track model is constructed. FE beams are used to model the 
rails, while FE shells model the embankment. The embankment is a structure with 
considerable thickness. The effects of the thickness are accounted for by introducing an 

(a) (b)  
Figure 5.4. Pile modelled with: (a) rigid disks and (b) rings. The system is excited at 45 Hz. 

The figure is an unmodified version of Figure 4 from Paper S1. 
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offset between the reference plane for the embankment structure and the ground surface. 
Rigid links between the two parts of the model are established using Lagrange multipliers. 

 Several different cases are analysed: a rigid block embedded within the soil, a single-lane 
road on the surface parallel to the track, and a concrete pipe embedded inside the soil, with 
various orientations relative to the railway track. The cases are compared to a free-field 
case, i.e. a case with no structures present within the wave propagation path. 

 In most cases, the additional structures mitigate the vibrations, with the largest effects 
observed in the 7–30 Hz frequency range. However, in some cases the vibration levels are 
increased in the 30–40 Hz range for the considered soil and source conditions. 

 The orientation relative to the wave propagation front is extremely important for elongated 
structures (the surface road and the buried pipe). Structures placed parallel to the railway 
track have little effect, whereas structures orthogonal to the track provide strong mitigation 
of the ground vibration compared to the reference case. 

Main conclusion of the paper: 

Structures placed within the ground vibration propagation path can have significant effect 
on the system behaviour. They mostly act as vibration dissipaters, in some extreme cases 
leading to 70 % vibration reduction. However, some amplification effects have been also 
observed, shifting the system response to higher, otherwise unpredicted, frequencies. Thus, 
when analysing environmental vibration in urban environments, it might be necessary to 
account for these effects, requiring computational models accounting for the full vibration 
propagation path and any major obstacles placed within it, whether these obstacles are placed 
on the ground or buried within the soil. In practise, this is rarely performed, in part due to the 
limitations of the used environmental vibration prediction tools. 

5.2.3 Paper S3: Dynamic soil excitation from railway tunnels 

P. Bucinskas, L. V. Andersen  
Proceedings of the 9th European Conference on Numerical Methods in Geotechnical 
Engineering, NUMGE 2018. 

The paper investigates the possibility of using the semi-analytical modelling approach 
combined with the FEM to model tunnels embedded within the soil. Tunnel structures are 
difficult to model, as it involves a cavity inside the soil, which cannot be represented using the 
semi-analytical model directly. Thus, a sub-structuring solution procedure is introduced. 

Key points and novelties of the paper: 

 A sub-structuring approach is proposed, in which the cavity is modelled using solid finite 
elements with negative material properties. This way, a continuous soil is modelled using 
the semi-analytical approach and only the cavity is discretized with the FEM. In the 
modelled case, additional stiffness is added to model the tunnel lining. 

 A cut-and-cover tunnel is modelled using the proposed methodology. The results are 
compared with simplified versions of the model: only the tunnel lining is modelled using 
shell elements; the tunnel lining is modelled as a single FE beam; or no tunnel model is 
included the system at all. 
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 The vibrations produced by a unit-magnitude time-harmonic load applied on the tunnel 
floor are observed on the soil surface. The created system and its response are shown in 
Figure 5.5. When the tunnel lining is present, the comparison between the different models 
indicates that the cavity does not significantly influence the soil surface response, especially 
further away from the tunnel. However, the cavity is important if the dynamic response of 
the tunnel structure itself is in focus. 

 A simple beam model is not suitable for modelling the tunnel structure. The obtained 
response is completely different compared to the full model. Modelling only the soil with 
no tunnel present at all produces better matching results. It should be noted, that the used 
beam model only couples the translational degrees of freedom to the soil, and could 
potentially be improved by modelling the SSI differently, for example using rigid surfaces 
as in paper S1. 

Main conclusion of the paper: 

The proposed sub-structuring approach, subtracting the stiffness of the removed material, 
can successfully be used to model cavities inside the soil. However, care should be taken to 
properly discretize the system. Thus, differences between the dynamic stiffness obtained from 
the semi-analytical and that obtained with the FE models can lead to unphysical waves 
propagating in the system. The method is further developed and validated in Paper S5. 

5.2.4 Paper S4: Dynamic structure response using surrogate models 

P. Bucinskas, L. V. Andersen 
Proceedings of the 7th International Conference on Structural Engineering, Mechanics and 
Computation, SEMC 2019.  

The usage of surrogate models for environmental vibration prediction inside buildings is 
investigated. Calibration and application of surrogate models for this purpose could be a useful 
solution method, due to the ability of the methodology to provide almost instantaneous results. 
However, high-quality data, based on a “truth model”, are needed to train the surrogate model, 
which can be obtained both experimentally and numerically. In this paper, the surrogate model 
is trained using data from a coupled semi-analytical and FE model. 

(a) (b)  
Figure 5.5. Created tunnel model including a cavity. Response at (a) 10 Hz; (b) 50 Hz. Parts 

of the figure are taken from Figures 5 and 6 in Paper S3. 
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Key points and novelties of the paper: 

 A parametric building structure is created, with five parameters describing the geometry. 
These parameters are used for development of the surrogate model. The structure and the 
parameters are shown in Figure 5.6. The system is excited by a unit-magnitude vertical 
time-harmonic load placed on the ground surface, placed at some distance away from the 
structure. The response of the top floor in the building is investigated. 

 The Kriging method is used to create the surrogate model. Surrogate models can only 
represent a single output value from given input parameters, i.e. a single quantity of interest 
(QoI). Thus, the root-mean-square value of the top floor node displacement amplitudes is 
chosen as the representative system response. Analysis is performed in the one-third octave 
bands, creating a separate surrogate model, i.e. a separate QoI, for each band. 

 A sampling plan was created using Latin hypercube sampling, by which the computational 
model generated the truth model data set. It was determined that 300 data points are needed 
to obtain a reasonably accurate surrogate model, using a direct fitting method.  

 The relative importance of the considered parameters can be evaluated using the Kriging 
method. It has been determined that the importance of parameters vary through the analysed 
one-third octave bands. For example, the orientation of the building, given by the parameter 
𝜑 , is important for high frequencies, but not for low frequencies. 

Main conclusion of the paper: 

Overall, using surrogate models is a viable approach for environmental vibration prediction. 
However, the method is limited by only one output value and some difficulties with properly 
calibrating the model. Further, the computational efficiency quickly decreases with increasing 
number of varying parameters, making the method unsuitable for problems with many design 

(a) (b)  

Figure 5.6. Truth model used for calibration of the surrogate models: (a) Varying geometry 
parameters of the building; (b) examples of randomly generated structures. Parts of the figure 

are taken from Figures 1 and 2 in Paper S4. 
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variables, at least in the present version of the methodology. Future studies could investigate 
using more advanced machine learning approaches, such as neural networks, which can handle 
large amounts of input parameters and can predict multiple output values. 

5.2.5 Paper S5: Semi-analytical model of soil interacting dynamically with rigid blocks, 
cavities and piles 

P. Bucinskas, L. V. Andersen 
Under review in Computers and Geotechnics, initial submission 2019 October 11. 

The paper investigates the semi-analytical modelling approach in more detail. Descriptions 
of modelling three-dimensional rigid blocks, piles and cavities inside the soil are given. The 
semi-analytical model is validated by a direct comparison with FE and BE methods. Radiation 
at the artificial boundaries of the FE models is provided, partially, by simple impedance 
boundary conditions (FE–IBC model), or the FE model is extended by a PML (FE–PML 
model). The FE–PML model is considered as the most accurate approach, providing the basis 
to which other methods are compared. 

Key points and novelties of the paper: 

 Discretization of three-dimensional rigid blocks is discussed in detail. A heuristically 
obtained discretization parameter is introduced. By using the optimal value of this 
parameter, extremely accurate results can be obtained with a low computational cost. The 
optimal value of the parameter has been found to be independent of the discretized shape, 
and the methodology works well in the entire considered frequency range. 

 The proposed rigid block modelling approach is compared to BE–FE, FE–IBC and FE–
PML models. The comparison shows very good agreement between the semi-analytical and 
FE–PML models, while the other methods show some deviation at low frequencies, which 
can be attributed to partial reflection of waves at the artificial boundaries.  

 A pile-modelling approach using rigid discs, as presented in paper S1, is investigated. The 
semi-analytical model is compared with FE–IBC and FE–PML models. The proposed pile 
model agrees well with the FE–PML model, especially for vertical loading. Small 
differences are observed for lateral loading cases, most likely caused by the way in which 
the interaction forces are represented in the semi-analytical model, i.e. as loads distributed 
over horizontal areas rather than the vertically oriented surface of the pile–soil interface. 

 The cavity modelling approach is investigated, as introduced in Paper S3. In this case, only 
the cavity is modelled, with no additional stiffness from a tunnel lining, sheet piles or 
similar structural elements. The model is compared to the FE–IBC and FE–PML models. 
Again, good agreement is obtained between the semi-analytical approach and the FE–PML 
model. Selected results obtained with the two approaches can be seen in Figure 5.7. In 
terms of precision, some issues were observed using the semi-analytical model, caused by 
the discretization of the cavity. However, the issues are very limited and even then, the 
semi-analytical model performs better then FE–IBC model which suffers from partial 
reflection of waves at the artificial boundaries. 
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Main conclusion of the paper: 

The analysis demonstrates that the semi-analytical model is as accurate as the FE–PML 
model, while requiring much smaller computational effort. Thus, it is a viable alternative to 
more complex modelling approaches when dynamic SSI is considered. Further, the semi-
analytical method combined with the FEM provides a flexible modelling approach, with a wide 
range of application cases. Additionally, the coupling procedure between approaches is 
straightforward and does not require any changes to the FE part, making it possible to use 
commercial FE software. 

5.3 Railway vibration modelling 

Papers in this group are primarily concerned with surface railway vibration modelling, 
considering the effects of the moving load associate with a train. Differently from Papers B1–
B3, only frequency-domain solution procedures are used to analyse the system. This way the 
semi-analytical soil modelling approach can be used directly without iterative solution 
procedures or LPMs. 

Further, the intent is to model the full vibration propagation path starting at the moving 
vehicle and ending inside a building structure. The developed model is also be able to model 
all the cases described in Papers S1–S5. 

5.3.1 Paper R1: Effects of railway track modelling to surrounding soil and structure 
excitation 

P. Bucinskas, L. V. Andersen,  
25th International Congress on Sound and Vibration, ICSV 2018.  

The paper investigates several railway track modelling approaches and their effects on the 
observed vibrations. A surface railway line is investigated, with a ballast-less track structure. 
The whole system is formulated in a stationary frame of reference. The paper still uses the 
computational model from papers S1–S5, just this time a moving load is introduced. 

(a) (b)  
Figure 5.7. Field response at 30 Hz for two rigid, embedded blocks and with a cavity (an 

open pit) placed in the middle: (a) FEM-PML model; (b) semi-analytical model. The figure is 
part of Figure 8 in Paper S5. 
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Key points and novelties of the paper: 

 The railway track is modelled using three levels of simplification. The simplest model 
represents the whole track structure as a single beam coupled to the semi-analytical soil 
model. Only the translational degrees of freedom are coupled to the soil and the load from 
each node of the beam is distributed in a circular shape. The second model represents the 
track slab using a shell, with each rail modelled as a beam. The third and most complex 
model utilizes three-dimensional solid finite elements to model the track slab, with beam 
elements for the two rails. It should be noted that the three models have been made to 
provide, as closely as possible, similar descriptions in terms of the geometry and materials 
of the track system. Hence, the differences lie mainly in the kinematic constraints implied 
by the respective approaches. 

 The track models are investigated using a stationary time-harmonic unit load, with the 
response observed in the free-field and in a building structure. It is determined that the 
beam model is not able to predict the system response accurately, while the other models 
show very good agreement. 

 The computational times required for the solution are compared. The plate model takes 
around 30 % less time to compute, compared to the solid model. The beam model is almost 
80 % faster, but it cannot be used due to the inaccurate results. As in Paper S2, the beam 
model could likely be improved by using a more advanced SSI coupling approach. 

 The three track models are investigated using a constant load moving across the railway 
track. The system is still modelled in a stationary frame of reference, with forward and 
inverse Fourier transformation applied to allow a solution in the frequency domain. A 
comparison between the three models provided similar results as with the stationary load. 
The beam model results are inaccurate, while the other models agree well. 

Main conclusion of the paper: 

The shell model can be used, successfully, for environmental vibration prediction, reducing 
the computational times significantly. However, it is rather difficult to model the moving load 
in a stationary frame of reference, as the artificial ends of the FE track model can reflect the 
waves back into the system, especially in cases where the track and embankment are stiff 
compared to the underlying soil. Further, it is not possible to implement multi-body vehicles 
into the solution procedure, to account for the dynamic vehicle loads. Therefore, more 
advanced models are needed. 

5.3.2 Paper R2: Modelling train-induced vibration of structures using a mixed-frame-of-
reference approach 

P. Bucinskas, E. Ntotsios, D. J. Thompson and L. V. Andersen,  
Under review in Journal of Sound and Vibration, initial submission 2019 September 17. 

The paper proposes a novel computational method for modelling the full vibration 
propagation path from a vehicle traversing a railway track to a building structure. The semi-
analytical approach is utilized in both fixed and moving frames of reference, with additional 
coupling terms derived between the two frames of reference.  
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 Key points and novelties of the paper: 

 An analytical track model is utilized as previously described by Sheng et al. [147]. The 
railway track is modelled in a moving frame of reference, where it is assumed to be infinite. 
A multi-body vehicle model is coupled to the railway track, with linearized wheel–rail 
interaction forces that account for the track unevenness. 

 Other structures interacting with the soil are modelled in a stationary frame of reference. 
The structures are introduced a FE structures interacting with the soil via SSI nodes. Any 
of the previously described methods (Papers S1–S5) can be used to model the structures. 

 The full system is assembled in frequency–space domain, combining both moving and 
fixed frames of reference. Two system interaction techniques are introduced: partial 
coupling and full coupling. Both techniques allow for a one-step solution procedure for 
solving the full vibration propagation path.  

 The partial coupling technique disregards some of the secondary coupling effects but offers 
a more efficient calculation. It does not include the frequency-spreading, caused by the 
Doppler effect, that occurs when waves emanating from a source in one frame of reference 
are re-scattered by objects in the other frame of reference and then observed again within 
the first frame of reference. 

 The full coupling technique does not disregard any coupling in the system. It is useful for 
solving systems where back-coupling between the vehicle and the structures in or on the 
soil is important. However, in this method the system matrices become extremely large, 
making the method less attractive for problems with many degrees of freedom. 

 The capabilities of the proposed model were illustrated with two example cases—one for 
each coupling technique. A building model with rigid surface footings was modelled using 
the partial coupling technique, examining the response of the building floors and the ground 
surface. The created system is shown in Figure 5.8. 

 A rigid plate embedded in the soil underneath the rail track was investigated using the full 
coupling technique. The response of the rigid plate as well as the vehicle was analysed. The 
track unevenness was not included in the system. Hence, only the effect of parametric 

Figure 5.8. Investigated example case using partial coupling solution technique. The figure is 
an unmodified version of Figure 8 from Paper R2. 
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excitation associated with the variation in equivalent subgrade stiffness, caused by the 
presence of the rigid footing, introduced dynamic loads on the track and the vehicle. 

Main conclusion of the paper: 

The created computational models offer an interesting solution technique allowing a one-
step solution procedure for the whole environmental vibration propagation path. It is easily 
applicable to a wide range of cases, as adding finite elements is possible in both the moving 
and the fixed frames of reference with the limitation that objects in the moving frame of 
reference can, at the present time, only be placed on top of the ground. Embedment is only 
available in the fixed frame of reference.  
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6 Conclusion and future work 

In this chapter, the main findings and novelties of the thesis are 
summarised, and the final conclusions are listed. Also, a few proposals for 
future work are given. 

6.1 Main findings of the thesis 

The thesis investigated environmental vibrations in an urban environment. As it has been 
shown, there are a number of international and national standards defining the acceptable 
vibration limits. However, predicting these effects without in-situ measurements is difficult, 
and on-site measurements can often be difficult and expensive to perform. Thus, a considerable 
research effort is concentrated on creating computational tools that can estimate the vibration 
levels. The literature review showed that there is a multitude of empirical, analytical and 
numerical methods available for this purpose. Different approaches have different advantages 
and disadvantages, with, perhaps an unsurprising, overall trend of more precision leading to 
larger computational difficulty. Unfortunately, the more advanced models, capable of 
modelling the cases commonly found in the urban environment, are extremely computationally 
demanding, making their usage rather limited—especially within the early design stages. Thus, 
the project aimed to investigate using approaches that are in-between the very simple analytical 
and the extremely complex numerical models. 

The work dealt with computational modelling of environmental vibrations, with particular 
interest in wave propagation through the soil. For that purpose, a variety of computational 
models were created. These models were used to produce the results presented in ten papers 
that form the main body of the thesis. As part of the scope of the thesis, the overall aims were 
defined for the final computational models: computational efficiency (to a reasonable degree), 
wide application range, and the ability to model the full vibration propagation path. A semi-
analytical soil modelling approach based on the Thomson-Haskell transfer matrix was chosen 
to achieve these aims. The method is advantageous as it automatically ensures radiation into 
the semi-infinite soil domain, solving one of the biggest difficulties in dynamic soil modelling. 
Further, the semi-analytical formulation is well suited for modern day computers, as it is easy 
to parallelize the calculations, and discretization of the full domain is not needed, reducing the 
required computer memory. However, as determined in the literature review, the original 
method was rather limited in terms of utilization range and usually constrained to narrow 
application ranges. Thus, this work aimed to expand the application range of the semi-
analytical soil modelling approach and investigate its application to various modelling cases.  

Three groups of papers were defined, each dealing with a specific topic: railway bridge 
excitation (Papers B1–B3), dynamic soil–structure interaction (Papers S1–S5), and railway 
vibration (Papers R1-R2). However, the overall topic through all of the papers is dynamic SSI 
and the application of the semi-analytical soil model to the investigated cases. 
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Papers B1–B3 investigated dynamic railway bridge behaviour, including SSI and non-
linear wheel–rail interaction forces. Modelling a finite bridge system is a difficult problem, as 
a lot of existing numerical methods for surface railways require a frequency-domain solution 
or assume invariant system geometry along one direction, and, thus, are not applicable to this 
case. The application of the semi-analytical soil model is difficult too, as it is also formulated 
in the frequency domain. The frequency-domain solution cannot be used, since the moving 
vehicle model requires a time-domain solution, due to the changing vehicle position in relation 
to the bridge and the nonlinear wheel–rail interaction forces. Two solution procedures were 
investigated, with particular interest in using consistent lumped-parameter models (LPMs) to 
convert the frequency-domain soil behaviour into the time domain. I was found that, to cover 
the desired frequency range, extremely high-order polynomial fraction functions were needed, 
leading to some unexpected numerical stability issues. A novel LPM fitting procedure was 
introduced, using which the numerical issues can be avoided. The created model was used to 
run a large number of cases analysing the effects of stochastic rail unevenness, while, at the 
same time, demonstrating that the obtained model is computationally efficient and can be used 
for analysing a large number of cases. 

Papers S1–S5 investigated using the semi-analytical soil model to analyse dynamic SSI and 
for modelling the full vibration propagation path from the source to the receiver. The 
investigated cases were limited to a fixed frame of reference and the frequency domain. 
Modelling of rigid footings, piled foundations and various FE structures interacting with the 
soil was investigated, with the coupling between structures and soil achieved through SSI 
nodes. Modelling of rigid foundations on the soil surface and embedded within the soil was 
investigated, and a novel discretization technique was proposed. Similarly, a modelling 
technique was introduced for modelling piled foundations, modelling the pile using beam finite 
elements coupled to the soil through rigid cross sections. The coupled semi-analytical and FE 
model was also used to analyse cavities inside the soil. This was achieved by subtracting the 
dynamic stiffness of the removed material from the dynamic stiffness determined for the soil 
by utilization of the semi-analytical solution. The flexibility of the created computational model 
was utilized to compare different modelling approaches, with increasing degree of 
simplification, of the same structure as shown in Papers S1, S3 and R1. This way, the most 
computationally efficient and, at the same time, sufficiently accurate modelling approaches 
were identified for modelling piles, tunnels and surface railway tracks. 

The proposed modelling approaches were validated by comparison with other numerical 
methods in Paper S5. A very good agreement was obtained between the semi-analytical 
approach and an FE model with transmitting boundaries achieved by using a perfectly matched 
layer (PML), indicating the high accuracy of the created computational model. At the same 
time, the semi-analytical model was able to analyse the system significantly faster than the 
other investigated approaches. For the investigated cases, the largest difficulty of modelling 
structures interacting with the soil was the appropriate modelling of the SSI nodes. The 
difficulties are mainly caused by the differences between the FEM and the semi-analytical 
method. For a computationally efficient solution, the semi-analytical model uses distributed 
load with polar symmetry, which does not replicate the weight functions used in a typical FE 
solution. Thus, some discrepancies for the obtained stiffness appear between the two solutions. 
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This is especially evident when modelling cavities inside the soil, as shown in Papers S3 and 
S5, where a finely discretized mesh was needed to obtain a reliable solution. Proper modelling 
of the SSI nodes was investigated in Paper S5, introducing discretization and load distribution 
methods required for an accurate solution. 

An alternative approach, using a surrogate model, was investigated in Paper S4. Here, a 
simple model is created to directly model the results, instead of recreating the physics of a real 
system, allowing for almost instantaneous results. To calibrate the surrogate model an initial 
set of real data is needed, which was created with the semi-analytical soil model coupled to FE 
structures. The computational model is well suited for this application, due to its efficiency, 
allowing the creation of large data sets quickly, that are then used to test different surrogate 
modelling approaches. The surrogate model itself proved to be a viable approach for making 
quick predictions. However, the investigated approach is somewhat limited. 

One of the main environmental vibration sources is railways. Thus, Papers R1–R2 dealt 
with surface railway lines. Paper R1 investigated a surface railway line using the same semi-
analytical model as in Papers S1–S5, modelling the system in a fixed frame of reference with 
a moving load. However, it was quickly apparent that such a model is not well suited for the 
analysed case, as only railway tracks of finite lengths can be modelled, and a multi-degree of 
freedom vehicle model cannot be included. A moving-frame-of-reference solution would solve 
these issues. However, in that case a finite building structure could not be modelled. Thus, 
Paper R2 introduced a novel numerical approach coupling the fixed and moving frames of 
reference. This way, the vehicle and the track can be modelled in a moving frame of reference, 
while the nearby structures are modelled in a fixed frame of reference. The approach models 
the full vibration propagation path from a moving source to the receiving structures using a 
single-step solution procedure. Moreover, the model is not limited to one-way coupling and 
could be used to model the effects on the moving vehicle from a load applied on a stationary 
building structure. Two solution procedures accounting for the either the full or partial coupling 
were introduced, and their capabilities were demonstrated in example cases.  

Overall, the thesis expanded the application range of the semi-analytical method by 
proposing novel foundation modelling approaches, investigating the proper discretization 
approaches, and proposing new numerical methods utilizing the semi-analytical model. 
Additionally, an open-access computational model was created during the course of the project, 
and is included as part of the thesis. The included computational model offers an efficient way 
of modelling dynamic SSI problems and it could be utilized by other engineers and researchers 
analysing environmental vibration. The semi-analytical model proved to be a versatile 
approach, easily applicable to a wide range of modelling cases, commonly encountered in the 
urban environment. The method offers a computationally efficient and, at the same time, 
precise way of modelling the environmental vibration. Thus, validating the hypothesis 
formulated at the beginning of the project. 
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6.2 Proposals for future research 

Future work can be continued in multiple research areas: 

 The proposed computational modelling techniques could be validated by comparison with 
on-site measurement data, or through small-scale experiments. These investigations could 
determine the needed calibration parameters, and evaluate the naturally occurring 
uncertainty of the observed vibrations.  

 The interaction between the foundations and the soil should be investigated further. In this 
work, the interaction was assumed perfect. However, this is most likely not true in real 
structures, as some slippage or imperfect interaction can be expected, which would lead to 
a different response.  

 Further investigation of surrogate models and other data driven approaches would also be 
interesting. They could combine measurement data with additional computational 
simulations, where real data is not available. Potentially leading to accurate and 
computationally efficient models.  

 The proposed mixed domain modelling approach could be investigated in more detail. The 
fully coupled solution procedure is especially interesting. It could enable the usage of the 
semi-analytical model for a completely new range of cases, dealing with structures very 
near to the rail track. Currently the approach is limited by the size of obtained matrices, 
leading to an inefficient solution procedure. This could be improved, using matrix 
condensation techniques and more advanced linear solvers used for the matrix inverse. 

 The created computational model application range could be expanded, by introducing the 
Green’s functions for orthotropic soil or accounting for the poroelasticity. Additionally, 
fluid, modelling only compressive waves, layers could be introduced to model offshore 
structures. 

 The created modelling approaches can be utilized to investigate various vibration 
mitigation systems.   
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ABSTRACT 

Construction of high-speed railway lines has been an increasing trend in recent years. Countries like 

Denmark and Sweden plan to expand and upgrade their railways to accommodate high-speed traffic. To 

benefit from the full potential of the reduced commuting times, these lines must pass through densely 

populated urban areas with the collateral effect of increased noise and vibrations levels. This paper aims to 

quantify the vibrations levels in the area surrounding an elevated railway line built as a multi-span bridge 

structure. The proposed model employs finite-element analysis to model the bridge structure, including a 

multi-degree-of-freedom vehicle model and accounting for the track unevenness via a nonlinear contact 

model. The foundations are implemented as rigid footings resting on the ground surface, while the soil is 

modelled utilizing Green’s function for a horizontally layered half-space. The paper analyses the effects of 

structure-soil-structure interaction on the dynamic behaviour of the surrounding soil surface. The effects of 

different soil stratification and material properties as well as different train speeds are assessed. Finally, the 

drawbacks of simplifying the numerical model, in order to reduce the complexity of the calculations, are 

determined. 

 

Keywords: Ground Vibration, High-Speed Railways, Finite–Element Analysis, Structure–Soil–Structure 

Interaction 

I–INCE Classification of Subjects Number(s): 43.2.2, 46.3, 75.3 

1. INTRODUCTION 

High-speed railways are becoming more and more popular, as different countries upgrade the existing 

lines to handle high speeds or build entirely new infrastructure. Unfortunately, the higher speeds lead to some 

unwanted effects, namely increased sound and vibration levels in areas near the track. This is an especially 

big problem in the urban environment, where the surrounding buildings are very close to the tracks. Dynamic 

excitation of structures and soil is a complex phenomenon, which is hard to predict before actually carrying 

out measurement on the site. But that is an expensive and time consuming task which is not possible if the 

structure is only in the planning stage. Therefore numerical models are needed to help estimate these effects. 

But creating complicated models that take into account a lot of variables is also time consuming and requires 

a lot of computational power, while very simple models might not provide reliable results. Estimating which 

modelling factors have a significant effect and which do not is important, when creating computational 

models and this paper aims to investigate the effects from soil–structure–soil (SSSI) interaction compared to 

the results of simpler models that do only account for soil–structure interaction (SSI) without dynamic back 

coupling. 

Analytical studies that investigate bridge behaviour from dynamic loading are mostly based on 

Euler-Bernoulli beam theory, where the bridge is modelled as a simply supported beam. A closed-

form solution for a simple moving constant load was formulated by Fryba [1]. Later, simple beam 

models based on a finite-element-method formulation were used by Thomson [2] and Gry [3] to 

investigate vertical and lateral vibrations at high frequencies.  Wu and Thomson [4, 5] used double 

Timoshenko beams and continuously supported multi-beam models for dynamic analysis of the track. 
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Currently, more advanced models are used. For example, Lei and Noda [6], Uzzal et al. [7], as well 

as Zhai and Cai [8] used multi-degree-of-freedom vehicle models running on a layered track. A similar 

approach to model the track is taken in this paper. More advanced models that account for three -

dimensional vehicle–track interaction are also used but are beyond the scope of this study.  

To model the dynamic response of soil, often the finite-element method (FEM), the boundary-

element method (BEM), or a combination of them, are used. Alternatively, Green’s function can be 

used. A simple case of soil–structure interaction was investigated by Metrikine and Popp [9]. They 

studied soil vibrations using FEM with a simplified vehicle model coupled with an infinite beam 

resting on a half-space. Similar work was done by Lombaert et al. [10] using the BEM. The Green’s 

function approach was utilized by Andersen and Clausen [11] to investigate dynamic soil–structure 

interaction with rigid foundations. This approach has also been used in the current work. 

The investigated case considers a multi-support bridge structure excited by a passing single locomotive. 

A computational model including a three-dimensional (3D) bridge structure, soil coupled with bridge 

foundations, and non-linear wheel–rail interaction emerges. The effects to the bridge structure itself and the 

surround soil surface are analysed. 

2. COMPUTATIONAL MODEL 

The computational model is composed of several parts: the vehicle model, the bridge model and the soil 

model. Each of these parts are described in the following subchapters, as well as interaction between them. 

The description of the model in this paper is not full. A more detailed look at all components and the solution 

procedure can be found in the work by Bucinskas et al. [12]. 

The FEM is used to model the bridge structure and the vehicle traversing it. For the FEM, the governing 

equations are discretized using the standard Galerkin approach with cubic interpolation functions for 

transverse displacements and linear interpolation for longitudinal displacements and torsion. Damping is 

introduced as Rayleigh damping. 

The soil is modelled utilizing a semi-analytical approach that utilizes Green’s function in frequency–wave 

number domain. The solution is based on the work by Andersen and Clausen [11], and only a short 

introduction is given in the present paper. 

2.1 Computational Model of the Bridge 

The bridge is modelled using FEM and has several different parts for which different elements are 

used. The bridge deck is modelled as a layered structure, which accounts for rails, rail pads, sleepers, 

ballast and deck. The simplified deck system used for calculations is illustrated in Figure 1. It is 

assumed that only one railway line is present, and therefore the deck is only loaded along the centre 

 

Figure 1 – Bridge deck computational model.  



 

 

line, i.e. along the x-axis. 

The rail is loaded by a number of forces 𝑃𝑗𝑖 at distances 𝑥w,𝑗𝑖, where 𝑖 = 1,2 , 𝑗 = 1,2, and each 

force corresponds to a wheel set of the vehicle. The two rails are simplified to one two-dimensional 

Euler-Bernoulli beam in the x,z-plane. It is discretely supported by a number, 𝑁sl, of spring–dashpot 

systems at distances 𝑥sl,𝑘 that account for rail pads and are connected to the sleepers. The rail has the 

following parameters: mass density 𝜌r, cross-sectional area 𝐴r, Young’s modulus 𝐸r, moment of inertia 

around the y-axis 𝐼r,𝑦 and displacement in z-direction 𝑤r. The spring–dashpot system used to model 

the rail pads is described by stiffness 𝐾pd,𝑘 and damping 𝐶pd,𝑘, where 𝑘 = 1,2, … , 𝑁sl. The effects from 

concentrated forces and sleepers are introduced by using the Dirac delta function  𝛿(𝑥), thus the 

equation of motion for the rail is: 

 𝜌r𝐴r

𝜕2𝑤r(𝑥, 𝑡)

𝜕𝑡2
+ 𝐸r𝐼r,𝑦

𝜕4𝑤r(𝑥, 𝑡)

𝜕𝑥4
+ ∑ 𝛿(𝑥 − 𝑥sl,𝑘)

𝑁sl

𝑘=1
𝐾pd,𝑘 (𝑤r(𝑥, 𝑡) − 𝑤sl,𝑘(𝑡))  

 + ∑ 𝛿(𝑥 − 𝑥sl,𝑘)
𝑁sl

𝑘=1
𝐶pd,𝑘 (

𝑤r(𝑥, 𝑡)

𝜕𝑡
−

𝑤sl,𝑘(𝑡)

d𝑡
) = ∑ ∑ 𝛿 (𝑥 − 𝑥w,𝑗𝑖(𝑡)) 𝑃𝑗𝑖(𝑡)

2

𝑖=1

2

𝑗=1
. (1) 

Further each rail pad is connected to a sleeper that has one degree of freedom 𝑤sl,𝑘 in z-direction, 

and there are 𝑁sl sleepers in the system. Each sleeper has a mass 𝑀sl,𝑘 and is connected to the deck 

through another spring dashpot system, which accounts for the ballast stiffness 𝐾b,𝑘 and damping 𝐶b,𝑘. 

It assumed that half of the ballast mass 𝑀b,𝑘 moves together with the sleeper, while the other half 

moves together with the bridge deck. Therefore, the total mass moving with the sleeper 

becomes 𝑀st,𝑘 = 𝑀sl,𝑘+0.5𝑀b,𝑘. The equation of motion for one sleeper becomes: 

 
(𝐾pd,𝑘 + 𝐾b,𝑘)𝑤sl,𝑘(𝑡) − 𝐾pd,𝑘𝑤r(𝑥sl,𝑘, 𝑡) − 𝐾b,𝑘𝑤d(𝑥sl,𝑘 , 𝑡) + (𝐶pd,𝑘 + 𝐶b,𝑘)

d𝑤sl,𝑘(𝑡)

d𝑡
  

 
−𝐶pd,𝑘

𝜕𝑤r(𝑥sl,𝑘 , 𝑡)

𝜕𝑡
− 𝐶b,𝑘

𝜕𝑤d(𝑥sl,𝑘 , 𝑡)

𝜕𝑡
+ 𝑀st,𝑘

d2𝑤sl,𝑘(𝑡)

d𝑡2
= 0. (2) 

The deck of the structure is modelled in the x,z-plane and for the bending Euler–Bernoulli beam 

theory is employed. To account for the deck displacements in z-direction 𝑤r, the following parameters 

are used: mass density 𝜌d, cross-sectional area 𝐴d, Young’s modulus 𝐸d, moment of inertia around y-

axis 𝐼d,𝑦. Half of the ballast mass 𝑀b,𝑘 and the effects from the sleepers are accounted for by using the 

Dirac delta function 𝛿(𝑥): 

𝜌d𝐴d

𝜕2𝑤d(𝑥, 𝑡)

𝜕𝑡2
+ 𝐸d𝐼d,𝑦

𝜕4𝑤d(𝑥, 𝑡)

𝜕𝑥4
+ ∑ 𝛿(𝑥 − 𝑥sl,𝑘)

𝑁sl

𝑘=1
𝐾b,𝑘 (𝑤d(𝑥, 𝑡) − 𝑤sl,𝑗(𝑡))  

+ ∑ 𝛿(𝑥 − 𝑥sl,𝑘)
𝑁sl

𝑘=1
𝐶b,𝑘 (

𝜕𝑤d(𝑥, 𝑡)

𝜕𝑡
−

d𝑤sl,𝑘(𝑡)

d𝑡
) + ∑ 𝛿(𝑥 − 𝑥sl,𝑘)

𝑁sl

𝑘=1

1

2
 𝑀b,𝑘

𝜕2𝑤d(𝑥, 𝑡)

𝜕𝑡2
= 0. (3)   

Further, for the axial deformation of the deck 𝑢d, the equation of motion becomes: 

  𝐸d𝐴d

𝜕2𝑢d(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌d𝐴d

𝜕4𝑢d(𝑥, 𝑡)

𝜕𝑡2
+ ∑ 𝛿(𝑥 − 𝑥sl,𝑘)

𝑁sl

𝑘=1
0.5 𝑀b,𝑘

𝜕2𝑢d(𝑥, 𝑡)

𝜕𝑡2
= 0. (4) 

The bridge pylons are again modelled in two dimensions in the x,z-plane and connected to rigid 

footings that rest on the soil surface, see Figure 2.  Each pylon has the following properties: mass 

density 𝜌p, cross-sectional area 𝐴p, Young’s modulus 𝐸p, moment of inertia around the y-axis 𝐼p,𝑦, and 

displacements 𝑢p and 𝑤p in the x and z-directions, respectively. The equations of motion for bending 

and axial deformation then become: 

 𝜌p𝐴p

𝜕2𝑢p(𝑧, 𝑡)

𝜕𝑡2
+ 𝐸p𝐼p,𝑦

𝜕4𝑢p(𝑧, 𝑡)

𝜕𝑧4
= 0,           𝐸p𝐴p

𝜕2𝑤p(𝑧, 𝑡)

𝜕𝑧2
+ 𝜌p𝐴p

𝜕4𝑤p(𝑧, 𝑡)

𝜕𝑡2
= 0. (5) 

The foundations are assumed to be rigid and they are placed on the soil surface. Each foundation 

has mass 𝑀f and moment of inertia for pitch  𝐽f,𝑦. Pylons are connected to the foundations through 

connecting nodes placed at each foundation centre. 



 

 

2.2 Computational Model of the Vehicle 

The bridge is loaded by a single passing locomotive. The locomotive is simplified into a two-

dimensional ten-degrees-of-freedom system, which involves two layers of spring–dashpot suspension 

systems in which vertical translation and pitch rotation of the bogie and vehicle body are included. 

The system is illustrated in Figure 3. 
The vehicle body has a mass, 𝑀c, and pitch moment of inertia, 𝐽c, and it has two degrees of freedom: 

vertical displacement  𝑤c  and pitch angle  𝜑c . It is connected to the bogies through secondary 
suspension with stiffness 𝐾su,2 and damping 𝐶su,2, at distances 𝐿2 from the vehicle centre line. The 
equation of motion for the vehicle body vertical displacement reads: 

  2𝐾su,2𝑤c(𝑡) − 𝐾su,2𝑤t,1(𝑡) − 𝐾su,2𝑤t,2(𝑡) + 2𝐶su,2

d𝑤c(𝑡)

d𝑡
− 𝐶su,2

d𝑤t,1(𝑡)

d𝑡
  

 −𝐶su,2

d𝑤t,2(𝑡)

d𝑡
− 𝑀c

d2𝑤c(𝑡)

d𝑡2
= 0, (6) 

 

Figure 3 – Multi-degree of freedom vehicle model  

 

Figure 2 – Pylons and foundations on the soil surface  



 

 

and for the rotation, the equation has the form: 

  2𝐿2
2 𝐾su,2𝜑c(𝑡) − 𝐿2𝐾su,2𝑤t,1(𝑡) − 𝐿2𝐾su,2𝑤t,2(𝑡) + 2𝐶su,2

d𝑤c(𝑡)

d𝑡
− 𝐶su,2

d𝑤t,1(𝑡)

d𝑡
  

 −𝐶su,2

d𝑤t,2(𝑡)

d𝑡
− 𝑀c

d2𝑤c(𝑡)

d𝑡2
= 0. (7) 

Further, the first and the second bogies are effected by the primary and secondary suspensions, 

with primary suspension having stiffness 𝐾su,1 and damping 𝐶su,1. Each bogie has a mass 𝑀t, pitch 

moment of inertia  𝐽t , vertical displacement  𝑤t,𝑗 and pitch angle  𝜑t,j , where  𝑗 = 1,2 . The vertical 

displacements are governed by: 

  (2𝐾su,1 +  𝐾su,2)𝑤t,𝑗(𝑡) − 𝐾su,1𝑤w,𝑗1(𝑡) − 𝐾su,1𝑤w,𝑗2(𝑡) +  (2𝐶su,1 +  𝐶su,2)
d𝑤t,𝑗(𝑡)

d𝑡
  

 −𝐶su,1

d𝑤w,𝑗1(𝑡)

d𝑡
− 𝐶su,1

d𝑤w,𝑗2(𝑡)

d𝑡
− 𝑀t

d2𝑤c(𝑡)

d𝑡2
= 0, 𝑗 = 1,2. (8) 

The rotations 𝜑t,j of both bogies are also effected by primary and secondary suspensions. The 

primary suspensions are attached at distances  𝐿1 from the boogies centre lines, and the secondary 

suspension at the centre line. The equations of motion are: 

  2𝐿1
2𝐾su,1𝜑t,𝑗(𝑡) − 𝐿1𝐾su,j1𝑤w,𝑗(𝑡) + 𝐿1𝐾su,1𝑤w,𝑗2(𝑡) + 2𝐿1

2𝐶su,1

d𝜑t,𝑗(𝑡)

d𝑡
  

 −𝐿1𝐶su,1

d𝑤w,𝑗1(𝑡)

d𝑡
+ 𝐿1𝐶su,1

d𝑤w,𝑗2(𝑡)

d𝑡
− 𝐽t

d2𝜑t,𝑗(𝑡)

d𝑡2
= 0, 𝑗 = 1,2. (9) 

Each wheel is attached to the primary suspension and has a vertical degree of freedom  𝑤w,𝑗𝑖 and 

mass  𝑀w , where  𝑖 = 1, 2  and 𝑗 = 1, 2. Each wheel is also effected by the wheel–rail interaction 

force 𝑃𝑗𝑖 and one quarter of the force 𝐹total = 𝑀total𝑔, where 𝑀total is the total mass of the vehicle 

and 𝑔 is the gravitational constant. Thus, the equations of motions for the wheels become: 

 
𝐾su,1𝑤w,𝑗𝑖(𝑡) − 𝐾su,1𝑤t,𝑗(𝑡) + (−1)𝑖𝐿1𝐾su,1𝜑t,𝑗(𝑡) + 𝐶su,1

d𝑤w,𝑗𝑖(𝑡)

d𝑡
− 𝐶su,1

𝑤t,𝑗(𝑡)

d𝑡
   

 
+(−1)𝑖𝐿1𝐶su,1

𝜑t,𝑗(𝑡)

d𝑡
− 𝑀w,𝑗𝑖

d2𝑤w,𝑗𝑖(𝑡)

d𝑡2
= 𝑃𝑗𝑖(𝑡) +

1

4
𝐹total, 𝑗 = 1,2 , 𝑖 = 1,2. (10) 

The interaction between the wheels and rail track are accounted for by forces 𝑃𝑗𝑖. While the wheel 

is in contact with the track they are modelled using non-linear Hertzian springs, and when the wheel 

lifts off from the track the forces are equal to zero: 

 
𝑃𝑗𝑖 = {𝐾𝐻(|𝑤rel,𝑗𝑖|)

3
2     for   𝑤rel,𝑗𝑖 ≤ 0

           0                 for   𝑤rel,𝑗𝑖 > 0
 (11) 

where 𝑤rel,𝑗𝑖(𝑡) = 𝑤w,𝑗𝑖(𝑡) − 𝑤r(𝑥w,𝑗𝑖(𝑡), 𝑡) − 𝑟(𝑥w,𝑗𝑖(𝑡)) and 𝐾𝐻 is the Hertzian spring constant. 

The wheels are affected by the irregularities of the track 𝑟(𝑥w,𝑗𝑖), which excite high-frequency 

vibrations. Only vertical track irregularities along the x-axis are considered. They are modelled as a 

stationary stochastic process and are described from the one–sided power spectral density function: 

 𝑆(𝑘𝑥) = 𝐴low

𝑘c
2

(𝑘r
2 + 𝑘x

2)(𝑘c
2 + 𝑘x

2)
, (12) 

where S is the one sided power spectral density, 𝑘𝑥 is the horizontal wavenumber, and 𝐴low,  𝑘r and 

 𝑘c are constants describing the track unevenness. The function is only defined for 𝑘𝑥 > 0. 

2.3 Computational Model of Soil 

Soil is modelled utilizing a semi-analytical approach for a layered half-space, based on the work 
by Andersen and Clausen [11]. The method utilizes Green’s function describing the relation between 
displacements on the soil surface 𝑢s,𝑖  (𝑥, 𝑦, 𝑡) and traction applied at another point, 𝑝s,𝑗 (𝑥′, 𝑦′, 𝑡′): 



 

 

 𝑢s,𝑖  (𝑥, 𝑦, 𝑡) = ∫ ∫ ∫ 𝑔s,𝑖𝑗 (𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑡 − 𝑡′) 𝑝s,𝑗 (𝑥′, 𝑦′, 𝑡′)
∞

−∞

𝑑𝑥′𝑑𝑦′𝑑𝑡′
∞

−∞

𝑡

−∞

, (1) 

where 𝑔s,𝑖𝑗 (𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑡 − 𝑡′) is the Green’s function tensor. A closed form solution for Equation 

13 is not possible, but it can be established in frequency–wavenumber domain, assuming the response 

of the soil is linear: 

 𝑈s,𝑖(𝑘𝑥, 𝑘𝑦, 𝜔) = 𝐺s,𝑖𝑗(𝑘𝑥 , 𝑘𝑦, 𝜔)𝑃s,𝑗(𝑘𝑥, 𝑘𝑦, 𝜔)  (2) 

where 𝑈s,𝑖 , 𝐺s,𝑖𝑗 , 𝑃s,𝑗 are triple Fourier transforms of 𝑢s,𝑖 , 𝑔s,𝑖𝑗 ,  𝑝s,𝑗. The angular frequency is denoted 
as 𝜔, and 𝑘𝑥 , 𝑘𝑦 are horizontal wavenumbers. The solution is valid for a horizontally layered stratum 
with linear viscoelastic behaviour. The equations of motion for the soil are described by the Navier 
equations in frequency–wavenumber domain with hysteric material damping introduced through 
complex Lamé constants. 

The Green’s function provides the displacement field from a known stress distribution. To obtain 

the impedance matrix for a set of rigid footings, the following approach is taken: 

Step 1. The displacement matrix [𝐔s] corresponding to each rigid body motion is prescribed at a 

number of points Nf, uniformly distributed across the boundary between a number NF of surface 

footings and the soil. 

Step 2. The Green’s function is evaluated in the wavenumber domain.  

Step 3. The wave–number spectrum for a simple distributed load with unit magnitude and rotational 

symmetry around a point on the soil surface is computed. 

Step 4. The response at a point n to a load centred at a point m is calculated for all combinations 
of 𝑛, 𝑚 = 1,2,3 … , 𝑁f and stored in matrix [𝐆s]. 

Step 5. The unknown magnitudes of the loads applied around each of the points are computed: 

 [𝐏s] =  [𝐆s]−1[𝐔s]. (3) 

 Integration of [𝐏s] over the contact area provides the impedance matrix [𝐙s], in frequency domain. 

In this paper, a number of points on the soil surface are also investigated. It is assumed that points 
that are not part of the foundations are not loaded, and are only effected by the displacements of the 
foundations. The response [𝐆sp] between soil surface points that are analysed and the foundation 
points is found by again utilizing Green’s function. A unit load is applied to the foundation points, 
and the response found at a number of points on the ground surface. As mentioned before, Green’s 
function provides the displacement field for a known stress distribution. Therefore, the loads [𝐏s] 
found in Step 5 are employed, as they represent the loads caused by unit displacement or rotation 
related to a rigid body mode. By multiplying the two matrices, surface displacements are found, based 
on unit displacement of a footing: 

 [𝐔sp,0]  = [𝐆sp][𝐏s]. (4) 

Finally, the real soil displacements are obtained after the computations for the bridge structure itself 
are complete, by multiplying real foundations displacements with the matrix [𝐔sp,0]. 

2.4 Structure–Soil Interaction and Structure–Soil–Structure Interaction 

To couple the bridge structure with soil, the FEM matrices for the bridge stiffness  [𝐊B] , 

damping [𝐂B], and mass [𝐌B] are converted into the complex impedance matrix [𝐙B]: 

 [𝐙B] = [𝐊B] + i𝜔[𝐂B] − ω2[𝐌B]. (5) 

Further, the soil impedance matrix is added to the structure impedance matrix at the nodes connecting 
the foundations and pylons, see Figure 2. Defining [𝐙B,𝟏𝟏] as the impedance submatrix for nodes not 
connected to the soil, [𝐙B,𝟐𝟐] as the impedance submatrix for nodes connected to the soil, and the 
coupling terms as submatrices [𝐙B,𝟏𝟐] = [𝐙B,𝟏𝟐]

𝑇
, the resulting impedance matrix for the system 

consisting of the bridge structure (including the track), the footings and the subsoil then becomes: 

 [𝐙] = [
[𝐙B,𝟏𝟏] [𝐙B,𝟏𝟐]

[𝐙B,𝟐𝟏] [𝐙B,𝟐𝟐] + [𝒁B,sf]
]. (6) 



 

 

The matrix [𝐙sf] is the impedance matrix for all foundations. In this paper it is calculated utilizing 
two different approaches. One of the approaches considers structure–soil–structure interaction (SSSI), 
thus the behaviour of one footing can affect the behaviour of other footings through  the soil stratum. 
In this case, the procedure to obtain the impedance matrix [𝐙s], described in Subsection 2.3, is carried 
out for all foundations at once and [𝐙sf] becomes: 

 [𝐙sf] = [𝐙s]. (7) 

The resulting matrix is symmetric, fully populated and the size is 6𝑁F × 6𝑁F, because each foundation 

has six rigid-body modes.  

Another approach only considers structure–soil interaction (SSI) so in this case there is no coupling 

between foundations through the soil. The impedance matrix is calculated for one foundation on a free 

field and then applied to all foundations, assuming that all foundations have the same shape and 

dimensions. The advantage of this approach is significantly lower computation times, but the results 

are not as precise. To compute the impedance matrix the procedure described in Subsection 2.3 is only 

carried out for one foundation at a time. Thus the dimensions of [𝒁s] are 6 × 6, as it is only for one 

foundation with six rigid-body modes. The impedance matrix for all foundations becomes: 

   [𝐙sf] = [

[𝐙s] 𝟎 ⋯ 𝟎

𝟎 [𝐙s] ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ [𝐙s]

]. (20) 

The resulting matrix [𝐙sf] has the size 6𝑁F × 6𝑁F, i.e. the same size as in the case of SSSI, but it is 

only populated in 6 × 6 blocks along the diagonal. To calculate the soil displacements when only 

accounting for SSI, the ground-surface displacements caused by each foundation are calculated 

separately and then all the contributions are added together, assuming superposition. 

2.5 Solution Procedure 

To solve the previously described system, an iterative procedure is required. The wheel–rail 

interaction force is modelled using a nonlinear force, and therefore a time-domain solution is needed.  

However, the impedance matrix for the layered half-space is obtained in the frequency domain. A 

solution involving two iterative procedures is used. In this paper, only a brief overview for it is given. 

For a more detailed explanation, see Bucinskas et al. [12]. 

Step 1. Firstly, for iteration step number k, the vehicle system is solved in time domain. This step 

calculates the nonlinear forces  𝑃𝑗𝑖  acting at the wheels, cf. Equation 11. For this purpose, a 

Newmark second-order time-integration scheme is modified to include an iterative procedure to 

find the forces acting at each time step. When this step is carried out for the first time, it is assumed 

that rail displacements are equal to zero. Otherwise the bridge displacements {𝐝B
𝑘−1(𝑡)} from the 

previous step are used. The determined forces acting on the vehicle wheels are stored as a 

vector {𝐟V
𝑘(𝑡)}, where k denotes iteration number. Such a vector, containing the displacements of 

the vehicle, is found for each time step. 

Step 2. The obtained forces  {𝐟V
𝑘(𝑡)}  are applied to the bridge, thus obtaining the bridge load 

vector {𝐟B
𝑘(𝑡)} for each time step. Further, the loads are Fourier transformed to frequency domain. 

This results in load vector {𝐅B
𝑘(𝜔)} for each analysed frequency. 

Step 3. The coupled bridge–soil system is solved in frequency domain: 

 {𝐃B
𝑘 (𝜔)} = [𝐙B]−1{𝐅B

𝑘(𝜔)}. (21) 

Step 4. The obtained displacements  {𝐃B
𝑘 (𝜔)} are inverse Fourier transformed to time domain, to 

obtain bridge displacements {𝐝B
𝑘 (𝑡)} for iteration step k. 

Step 5. Convergence of the solution is checked by comparing the displacement matrix {𝐝B
𝑘 (𝑡)} with 

the displacements for previous iteration  {𝐝B
𝑘−1(𝑡)}. If convergence is reached, iteration is stopped, 

and if no convergence has been obtained, iteration continues, repeating the procedure from Step 1. 



 

 

3. BRIDGE GEOMETRY AND PROPERTIES 

The geometry of the considered multi-span bridge structure is given in Figure 4. The total bridge 

length is 200m, it is supported by seven pylons, and the deck has a span of 25 metres between pylons. 

The sleepers are spaced 0.6m apart. From each side of the bridge, an additional 25m of track are added, 

where the sleepers are connected to a rigid surface, instead of the deck. Each pylon is 6m tall and 

connected to a surface footing.  

Points from which data were obtained for further analysis are also shown in Figure 4. There are 

two points in the bridge structure named Deck point and Pylon point from which the acting normal 

stresses are obtained. Another point used for analysis is named Connecting point . Here the connecting 

node between foundation number 6 and the soil surface is located. Further, two points on the soil 

surface farther away from the bridge structure are also analysed. 

Table 1 – Properties of the vehicle. 

Vehicle properties 

Total force 𝐹total −6.8 ∙ 105 N 

Primary stiffness 𝐾s,1 3.28 ∙ 106 N/m 

Secondary stiffness 𝐾s,2 1.31 ∙ 106 N/m 

Primary damping 𝐶s,1 9.00 ∙ 104 N ∙ s/m 

Secondary damping 𝐶s,2 3.00 ∙ 104 N ∙ s/m 

Hertzian constant 𝐾H 
8.70 ∙
1010 

N/m3/2 

Mass car body 𝑀c 5.35 ∙ 104 kg 

Mass boogie 𝑀t 3260 kg 

Mass wheel set 𝑀w 2000 kg 

Pitch moment body 𝐽c 2.24 ∙ 106 kg ∙ m2 

Pitch moment 

bogie 
𝐽t 2.45 ∙ 103 kg ∙ m2 

Half-length 𝐿1 1.5 m 

Half-length 𝐿2 7 m 

 

Table 2 – Properties of the track structure.  

Rail properties 

Young’s 

modulus  
𝐸r 210 ∙ 109 Pa 

Density 𝜌r 8050 kg/m3 

Inertia  𝐼r,𝑦 2.0 ∙ 10-5 m4 

Area 𝐴r 0.0064 m2 

Rail pad properties 

Stiffness 𝐾pd,𝑖 1.2 ∙ 108 N/m 

Damping 𝐶pd,𝑖 1.24 ∙ 105 N ∙ s/m 

Sleeper properties 

Mass 𝑀sl,𝑗 237 kg 

Spacing  𝐿sl 0.6 m 

Ballast properties  

Stiffness 𝐾b,𝑗 2.4 ∙ 108 N/m 

Damping 𝐶b,𝑗 5.88 ∙ 104 N ∙ s/m 

Mass 𝑀b,𝑗 683 kg 

 

 

Figure 4 – Investigated bridge model geometry 



 

 

The track parameters are given in Table 2 and the properties of the bridge deck and pylons are listed in 
Table 3. The properties of the multi-degree-of-freedom vehicle are given in Table 1. The unevenness 
parameters used are:  𝐴low = 0.8246 ∙ 10−6 rad ∙ m,  𝑘r = 0.8246 rad/m,  𝑘c = 0.0206 rad/m. 

Two different soil types are used: a relatively soft soil (clay), and a stiffer soil (sand). The para-
meters for these types of soil are given in Table 4. Four different soil stratification cases are tested:  

Case 1: A homogenous half-space of clay; 

Case 2: A homogenous half-space of sand; 

Case 3: A 7m deep layer of clay over a half-space of sand; 

Case 4: A 3.5m deep layer of clay over a half-space of sand. 

4. EFFECTS ON THE BRIDGE STRUCTURE 

Firstly, the effects from different vehicle speeds to the bridge–soil system are investigated. For this 

case, the bridge model was simplified to model only the vehicle as four constant forces moving across 

the deck. This was done in order to isolate the effects of the soil stratification to the structure. It should 

be noted that further analysis, which included the vehicle and track unevenness, showed similar 

behaviour, only the effects ware harder to analyse due to the stochastic nature of rail unevenness.  

 Four different soil stratification cases were tested, as described in Section 3. The same 

calculations were performed for both models: one considering SSSI and another considering only SSI. 

The results are presented in Figure 5, where the dependency of the vehicle speed on the maximum 

absolute displacement of the Connecting point (i.e. the node connecting pylon and foundation number 

6, counting from the left), are displayed. The blue line shows the behaviour of the SSSI model, while 

the red and yellow lines show the behaviour of the SSI model. For the SSI model, there are two lines, 

as the node on the pylon (blue line) and the soil surface displacement (yellow line) at exactly the same 
position are different. This is due to how the soil displacements are calculated, where the effect from 

each foundation is calculated separately and then added together. 

Table 3 – Properties of bridge deck and pylons. 

Deck properties 

Young’s 

modulus 
𝐸d 34 ∙ 109 Pa 

Shear 

modulus 
𝐺d 13 ∙ 109 Pa 

Density 𝜌d 2400 kg/m3 

Inertia 𝐼d,𝑦 4.07 m4 

Area 𝐴d 7.52 m2 

Pylon properties 

Young’s 𝐸p 34 ∙ 109 Pa 

Shear 𝐺p 13 ∙ 109 Pa 

Density 𝜌p 2400 kg/m3 

Inertia 𝐼p,𝑦 4.57 m4 

Area 𝐴p 5.00 m2 

Surface footing properties 

Mass 𝑀f 3.84 ∙ 104 kg 

Inertia 𝐽f,𝑦 1.032 ∙ 105 
kg

∙ m2 

Length 𝐿f 5.60 m 

Width 𝑊f 5.60 m 

 

Table 4 – Properties of different soil types. 

  Clay Sand  

Poisson’s 

ratio 
𝜐 0.30 0.40 − 

Mass density 𝜌 2000 2000 kg/m3 

Hysteric 

damping  
𝜂 0.045 0.040 − 

Young’s 

modulus 
𝐸 20 160 MPa 

P-wave speed 𝑐P 116.0 414.0 m/𝑠 

S-wave speed 𝑐S 62.0 169.0 m/𝑠 

R-wave speed 𝑐R 57.5 159.0 m/𝑠 

 



 

 

In Figure 5, it can be seen that with the stratification Case 1 there is a critical speed, where the 

displacements reach critical values. The critical speed is around  56.0m/s, which is very close to the 

Rayleigh wave speed in clay. However, the bridge model that only considers SSI does not predict a 

critical speed and the difference between the models reaches up to 25%, which is rather significant. 

For Cases 2, 3, 4, the maximum displacements are increasing with increasing speed , and no other 

analysed case showed a critical speed—at least within the used speed limits. All cases show that the 

 

 

 
Figure 5 – Maximum absolute bridge displacement dependency on vehicle speed for different soil cases. 

Results are obtained at the connecting node between pylon and foundation number 6, as well as the soil 

surface at the same location. 

 

Figure 6 – Stress 𝜎𝑥 acting on a point on the deck and on a point in a pylon. For both cases it is assumed 

that the distance from the neutral axis is 𝑦 = −0.5m. The vehicle speed is 56 m/s, soil Case 1. 



 

 

SSI model tends to under-predict the bridge displacement, while the soil displacements are over–

predicted. The cases with layered soil generally show a better agreement between the two different 

approaches, with the difference not exceeding 3%. 

Further the stresses acting in the bridge structure were analysed. This time the full model with the 

multi-degree-of-freedom vehicle and track unevenness was considered. For both SSSI and SSI models 

the vertical track profiles were the same. Two points were chosen: one in the middle of deck between 

pylons number 5 and 6, and another one in the middle of pylon number 6. For both points it is assumed 

that the local normal stress 𝜎𝑥 is analysed at a distance 𝑦 = −0.5m from the neutral axis of the cross 

section. Analysis of different speeds and soil cases showed no significant difference between the 

stresses obtained from the two different approaches. There is a general trend of increasing stress with 

increasing vehicle speed due to track unevenness. Figure 6 shows the stresses for soil case 1 with a 

vehicle speed of 56m/s. This combination provided the biggest differences between the two 

approaches, but it is still only around 8%. With the other soil cases, there is no significant difference, 

which leads to the conclusion that SSI models should be adequate for most cases. 

5. VIBRATION LEVELS IN THE SURROUNDING SOIL  

The displacement caused to the soil that is near the bridge structure are also important, especially 

in densely populated urban environments, where structures can be very close to railway lines. Two 

points on the soil surface are investigated, as shown in Figure 4. The vertical displacements were 

analysed in the frequency domain, by using the SSSI and SSI computational models. Once aga in, a 

number of simulations was performed by testing different vehicle speeds and soil stratification cases.  

Generally, the SSI model tends to over-predict the soil displacements when compared to the more 

precise SSSI model. The difference between the models increases with increasing speed, but still the 

biggest difference arises with soil case 1 (half-space of clay) at the speed of 56m/s. Figure 7 shows 

the vertical displacements of soil points 1 and 2 in frequency domain, as well as the phase angle. It 

can be seen that the displacements from the SSI model are higher at both points, while the phase 

angles are the same. 

 

 

Figure 7 – Displacements in z-direction for two points on the soil surface. 



 

 

6. CONCLUSIONS 

A dynamic analysis of an elevated railway track with surface foundations has been carried out. The 

model includes a simplified vehicle model, vertical railway track unevenness, a FEM-based bridge 

structure and a soil body. The soil was modelled using two different approaches: one considering only 

structure–soil interaction (SSI) and another with structure–soil–structure interaction (SSSI). Analyses 

show that the coupling between the foundations of the bridge through the soil might become an 

important factor when considering soft soils. In that case, the simpler SSI model is not able to predict 

the effects caused on the system by the Rayleigh wave. Further, it was observed that the simpler model 

tends to under-predict the bridge displacements while over-predicting the soil surface displacements. 

When considering the stresses acting in the bridge structure, which could be important for fatigue 

calculations, the difference between the models is not very high, even for the worst cases.  

The work may be expanded by creating models that are more sophisticated. Introducing a three-

dimensional vehicle model, together with vertical and horizontal track unevenness, would allow a 

more realistic modelling of high frequency vibrations. Further, the bridge structure could also be 

modelled in three–dimensions, using FEM shell of solid elements. Modelling of the soil response 

could be expanded by analysing other types of foundations and introducing a simplified model of the 

structures near the railway track. 

To conclude, the SSSI phenomenon is important for this type of structure behaviour, especially 

when the structure lies on a soft soil. The proposed computational model offers a simplified approach, 

which could be used for preliminary calculations, while still accounting for the most important factors. 
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1 INTRODUCTION 

High-speed rails are an efficient and fast way of passenger transportation. For medium-
distance transportation, a well-developed high-speed railway system can rival transportation by 
airplane, both by travel time and cost. Due to these reasons, high-speed rails are seeing an 
increased surge of development across the globe. Unfortunately, increased speeds lead to higher 
excitations of the exposed infrastructure, which in turn requires better numerical models for 
proper understanding of its dynamic behaviour.  

The dynamic behaviour of systems excited by passing trains is a problem that has been 
investigated by a large number of researchers. Various analytical solutions and computational 
models have been created with varying complexity, starting from the most basic analytical 
solutions for a simply supported beam traversed by a mass to full three-dimensional finite 
element solutions. However, currently existing methods are often too simplified, disregarding 
such phenomena as structure–soil–structure interaction, or on the other end—are extremely 
computationally demanding. This work aims to produce a computational model that considers 
the most important phenomena such as structure–soil interaction (SSI), stochastic railway track 
unevenness, vehicle suspension system, etc.  

A multi-span bridge structure with surface footings resting on soil is considered. Similar 
models, modelling the railway track placed directly on the soil surface, have been used by 
Nielsen et al. [1] and Koroma et al. [2]. However, in this case a bridge structure is introduced. 
It is modelled using a finite-element (FE) approach using beam elements, with a layered deck 
structure. Further, the soil is modelled with a semi-analytical approach, as originally proposed 
by Thomson [3] and Haskell [4]. To transform the solution into time domain, consistent 
lumped-parameter models (LPMs) are used as described by Wolf [5] and Andersen [6].  The 
vehicle is modelled as a simplified two-dimensional spring and dashpot system. Further, non-
linear Hertzian springs are used to account for wheel–rail interaction including random railway 
track unevenness. 
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2 COMPUTATIONAL MODEL 

The computational model used is very similar as already presented in previous work [7]. 
Therefore, only a general description of the model is given. 

The vehicle is modelled as a two dimensional system with 10 degrees-of-freedom. This way 
the model accounts for both primary and secondary suspension of a railway locomotive. Only 
a single passing vehicle is considered. The railway track and the vehicle interact only through 
vertical forces and the vehicle travels along the centre line of the bridge. 

The bridge structure is modelled using the FE method. Three-dimensional Euler-Bernoulli 
beam elements with three translational and three rotational degrees of freedom per node are 
used to model both the bridge deck and the pylons. The railway track is modelled as a layered 
structure with rails modelled as a single beam discretely connected to single-degree-of-freedom 
sleepers and further connected to the bridge deck. The rail pads and ballast are modelled as 
spring/dashpot systems with appropriate stiffness and damping values. 

The footings are modelled as rigid slabs resting on the ground surface, and the soil is 
modelled by a semi-analytical approach employing Green’s function in frequency-wavenumber 
domain to obtain a flexibility matrix for the soil–foundation interface. The flexibility matrix is 
then inverted and integrated over the interface area to obtain a dynamic stiffness matrix for the 
foundation system. The bridge structure and the soil interact through structure–soil interaction 
(SSI) nodes, as shown in Figure 1. However, this approach provides only a frequency domain 
solution. Thus, LPMs are used as described in Subsection 2.3. 

The rail track unevenness is generated from a power density spectrum by assigning random 
phase angles to each wavenumber. Only vertical track unevenness is considered. Describing 
the interaction force through a non-linear Hertzian spring requires a time-domain solution as 
the force needs to be determined by iteration at every time step. Therefore, the whole system 
needs to be solved in time domain.

To transform the obtained dynamic stiffness matrix of soil to time domain consistent LPM 
are used. This way, the standard stiffness, damping and mass matrices for soil are obtained, 
which then can be coupled to the FE bridge structure. Consistent LPMs use a polynomial-
fraction approximation to recreate the system behaviour. Curve fitting is performed by changing 
the polynomial coefficients and polynomial order. This can be done by a least-squares 
minimization of the error, or in Matlab using the function invfreqs. 

The obtained solution can then be represented by a combination of linear, first order and 
second order systems, for which the stiffness, mass and damping matrices are readily available. 
The approach does introduce some additional degrees-of-freedom in the system, especially 
when using high order polynomials. However, the number of additional degrees of freedom is 
low when compared with FE or boundary element solutions.  

3 TEST CASE 

To test the performance and the solution procedure of the proposed computational model, a 
test case was created. A bridge structure with three pylons is analysed, as shown in Figure 1. 
The material and cross-sectional parameters of the bridge are the same as in [7]. The distance 
between footings is 30 m. The footings are resting on a 5 m layer of soft soil (the primary wave 



Paulius Bucinskas and Lars V. Andersen 

 
Figure 1: Analysed case: bridge structure supported by three pylons, with rigid footings resting on the soil 

surface. Red dots indicate positions from which results were extracted. 

speed is 116 m/s and the secondary wave speed 62 m/s) with an underlying half-
space of stiffer soil ( 414 m/s and 169 m/s). Three different speeds of the vehicle are 
tested: 30 m/s, 60 m/s and 90 m/s. For each speed, 100 simulations are performed, each time 
generating new random rail profile. The wavelengths used for the rail-profile generation are 
between 0.2 m and 100 m. Three points of interest are checked: the first wheel of the vehicle, 
the rail in the middle between second and third pylon and the SSI node of the second footing. 

4 RESULTS AND DISCUSSION 

The Fourier transform of the wheel–rail interaction forces, as experienced by the first wheel 
of the vehicle, is shown in Figure 2. The coloured area represents the maximum and minimum 
values, while the darker lines show the mean values from all simulations. It can be seen that 
with increasing vehicle speeds, the interaction forces become higher and, furthermore, a wider 
frequency range is excited. Some peaks are at the same frequencies no matter the vehicle speed. 
This is due to excitation of eigenmodes of various parts of the vehicle and the structure. Other 
peaks are only observed at certain speeds and are caused by wheels passing certain parts of the 
structure, such as the wheel passing the discrete sleepers—at 60 Hz for vehicle speed of 30m/s, 
100 Hz for 60 m/s, and 150 Hz for 90 m/s.  

Further, Figure 3 shows the acceleration of the rail in the middle of a span and at the SSI 
node of the second footing. The same trend can be seen as for the wheel–rail interaction forces, 
with higher vehicle speeds leading to higher excitation. However, especially for the rail, the 
excited frequency range is spread out through a wider frequency range. Comparing the response 
at the rail and SSI node, it is evident that the response is reduced significantly closer to the soil, 

 
Figure 2: Fourier coefficients for wheel–rail interaction force for the first wheel of the vehicle. 
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with high-frequency response (above 150 Hz) disappearing almost completely. Finally, the 
response at the SSI node shows that at some frequencies the excitations at 60 m/s and 90 m/s 
are almost equal. This can be caused by the Rayleigh wave travelling in the soft top layer of 
soil, when the wave speed is close to the vehicle speed. 

4 CONCLUSION 

- The proposed model of a railway bridge interacting with soil offers an approach that can 
be used in early design phases, when considering elevated railway tracks. 

- Stochastic railway track unevenness, vehicle speed and structure–soil interaction all have 
an effect of the system behavior and must be considered when modelling such systems.  
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Figure 3: System excitation. On the left—rail, on the right—SSI node. 
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Abstract

Prediction of vibrations generated by railway traffic experiences an increasing inter-
est, as new lines are being constructed and planned in many countries. The paper
proposes a numerical model to analyse a coupled vehicle–bridge–soil system, taking
into account the most important phenomena affecting the structure, while at the same
time being comparatively computationally efficient. Such model is useful in the early
design phases of a project, when analysing a range of possible configurations or con-
ducting parametric analysis is required.

A simplified vehicle model, nonlinear wheel–rail interaction, a bridge structure
modelled using the finite-element method and a semi-analytical model for layered
soil are all introduced in the model. A pure time-domain solution procedure is used,
utilizing lumped-parameter models (LPMs) for the soil–foundation system. Repre-
sentation of the dynamic stiffness matrix using LPMs is investigated by analysing the
cross-coupling between footings and a novel procedure necessary for computationally
stable LPMs is introduced and utilized. Further, pure time-domain solution is com-
pared with an iterative mixed-domain solution. Finally, to illustrate the capabilities
of the model, analyses are carried out to determine the resulting maximum and mini-
mum excitation limits resulting from wheel–rail interaction on a number of randomly
generated uneven track profiles.

Keywords: high-speed railways, railway bridge, multi-degree-of-freedom vehicle,
wheel–rail interaction, soil–structure interaction, lumped-parameter models.

1 Introduction

Environmental vibrations and resulting reradiated noise lead to annoyance and even
possible health concerns to the exposed population [1, 2]. One of the main sources of
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these vibrations is railway lines. Therefore, train-induced ground vibrations must be
considered when designing or upgrading new railway lines—especially the develop-
ment of new high-speed lines, railway stations and metro lines close to already existing
urban centres. Close proximity to existing structures does not allow the vibrations to
properly dissipate, thus resulting in high vibration levels at the structures. An analysis
of multiple technical reports, performed by Connolly et al. [3], showed that in around
half of the projects additional mitigation measures had to be implemented. Computa-
tional models can be used in such cases to identify the problematic areas and alter the
project design pro-actively, which saves both funds and time.

Environmental vibrations have been studied extensively and a large number of nu-
merical models already exist. Sheng et al. [4] proposed a model combining a lay-
ered railway track with the underlying soil. The solution was obtained in a moving
frame of reference, where the rails are represented as a single Euler-Bernoulli beam
supported by a continuous layered track structure. The soil was modelled using a
semi-analytical approach proposed by Thomson [5] and Haskell [6]. The model was
further expanded to include wheel–rail interaction [7]. Thus, various multi-degree-
of-freedom vehicle models together with an uneven track profile can be included in
the analysis. The created approach was then used for development of a TGV (train-
induced ground vibration) model [8]. More complex models, with less simplifications,
are also used. Kouroussis et al. [9, 10] modeled a similar vehicle, track and soil sys-
tem, where the soil is modelled using the finite-element method (FEM) combined with
infinite elements. Infinite elements are used to avoid wave reflection from the artificial
boundaries of the finite-element (FE) model. Further, Koroma et al. [11] modelled the
railway track with nonlinear track parameters. The semi-analytical soil model is used
to obtain the dynamic soil behaviour, to which lumped-parameter models (LPMs) are
fitted. The use of LPMs allows a time-domain solution, which is needed to analyse the
nonlinear track behaviour. A more detailed overview of models for predicting ground
vibration from railways can be found in the work by Kouroussis et al. [12].

Including a bridge structure into the system changes the system behaviour. The dy-
namic response of railway bridges traversed by vehicles, has been studied extensively.
For example a simple two-dimensional system with a layered track structure has been
developed by Cheng et al. [13]. A more complex model involving a three-dimensional
bridge structure modelled with shell elements, traversed by a three-dimensional vehi-
cle, has been used by Song et al. [14]. A detailed literature review of the problem has
been conducted by Cantero et al. [15]. However, most of the studies do not include the
underlying soil, often assuming the soil to be completely rigid. Computational mod-
els that include the structure–soil interaction are much less frequent. Ülker-Kaustell
et al. [16] analysed the structure–soil interaction for a single-span railway bridge. The
soil was modelled with a three-dimensional FE model from which the dynamic stiff-
ness for the foundations was obtained. The bridge structure was modelled as a simple
Euler-Bernoulli beam with added dynamic stiffness of the foundations. Only point
loads were used to represent the vehicle; thus a frequency domain solution was suffi-
cient. Romero et al. [17] have studied a similar single span bridge structure. However,
their model includes a full three-dimensional FE shell-element model of the bridge
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coupled with boundary elements (BEs) to model the soil. Further, the structure is ex-
cited by a traversing multi-degree-of-freedom vehicle model. Takemiya and Bian [18]
analyse a multi-span railway bridge structure. Their model accounts for the vehicle
with point loads at the wheel possitions, and the bridge structure is simplified to Euler-
Bernoulli beam elements. To model the soil, a similar approach to Ülker-Kaustell et
al. [16] was taken, where a single foundation is modelled in a three-dimensional FE
model from which, assuming rigid footing movement, a dynamic stiffness matrix for
a single footing is obtained.

Overall, reaserchers often choose the FEM combined with special boundary con-
ditions to model the soil. The FEM is advantageous, since time-domain solution of
the system is possible, allowing analysis of nonlinear behaviour, such as the nonlin-
ear wheel rail interactions. Further, the method is very flexible making it ideal when
modelling systems with complex geometry. However, using the FEM to model the
soil unavoidably requires large computational effort. This is due to the unbounded
nature of the soil, which requires special non-reflecting boundary conditions or large
computational domains to be properly accounted for, as described by Andersen et
al. [19]. An alternative to this is the semi-analytical approach derived by Thomson [5]
and Haskell [6]. The approach can be implemented using the originally proposed
flexibility-based layer-transfer-matrix method (as implemented by Sheng et al. [4])
or a stiffness approach proposed by Kausel and Roesset [20]. The computational
effort needed for the semi-analytical is much smaller when compared to FE or BE ap-
proaches. However, the solution is only available in frequency domain. This problem
is often overcome by implementing a two-step solution in which the computational
domain is split into two parts. Usually, the structure interacting directly with the
wheels is analysed in time domain, assuming the soil to be rigid. Then, the obtained
interaction loads are applied to the soil [9, 10, 21, 22]. The approach disregards some
interactions present in the real system. However, it is assumed to be acceptable for
stiff soil conditions.

Another way of solving the system in time domain is to use LPMs as proposed
by Wolf [23, 24]. This way the soil behaviour is represented by a system of springs,
dashpots and masses. This approach is advantageous because the obtained model can
easily be added to already established FE matrices for the structure. As already dis-
cussed, this approach has been utilized by Koroma et al. [11] to analyse a railway
track placed on the soil surface. The work uses LPMs to represent the behaviour of
the sleepers resting on the soil, including the coupling between the sleepers through
soil. Similarly the LPMs have been utilized for a multi-span bridge structure by Car-
bonari et al. [25]. However, the work analyses the seismic structure behaviour and
does not consider vehicle excitation. An alternative approach to using two-step so-
lutions and LPM could be the hybrid approaches. A hybrid-frequency-time-domain
(HFTD) formulation for structure–soil interaction problems has been demonstrated by
Darbre and Wolf [26] and Nimtaj and Bagheripour [27]. Alternatively, a hybrid-time-
frequency-domain (HTFD) approach was introduced by Bernal and Youssef [28]. In
practise both approaches are similar with the nonlinear behaviour being approximated
through linear mass, damping and stiffness matrices. The differences between the ap-
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proximate linear and real nonlinear behaviours are accounted for by corrective forces,
and iteration is performed until convergence is reached.

From the overview of previous works, it can be seen that modelling a bridge–soil
system traversed by a vehicle is a rather difficult task. The bridge structure is naturally
finite, not allowing the usage of periodic or movement-direction-invariant solutions.
And, if the vehicle is represented by any sort of multi-degree-of-freedom system, the
system becomes time dependent, making the use of frequency domain solutions dif-
ficult. Thus, using approaches formulated in the time domain is preferable. How-
ever, both FE and BE formulations require long computation times making their use
rather limited, especially in cases where nonlinear system response requires multiple
iterations for every time step. The aim of this work is to create an efficient compu-
tational model for modelling such systems. The model could be used for predicting
vibration levels in both the bridge and other nearby structures, excited by the passing
vehicle. Prediction of small amplitude ’annoying’ vibrations is the main objective,
and therefore linear system behaviour for both the soil and bridge are assumed. The
model uses a number of previously available methods that are combined together to
model a rather complex system response over a wide frequency range. An efficient
semi-analytical soil model is utilized, that is commonly used for environmental vi-
bration prediction from surface rail lines. However, the semi-analytical solution is
only available in the frequency domain, thus requiring special handling. LPMs are
used to convert the frequency-domain solution to time-domain, allowing the system
to be solved. However, it has been found, that the system can become unstable due to
LPMs being fitted over a wide frequency range, even when ensuring that no poles with
positive real part exist and an unconditionally stable time integration scheme is used.
Thus, an additional procedure is created and described that is needed to establish sta-
ble LPMs. Further, the solution procedure is compared with a mixed-domain solution,
previously developed by the authors in [29]. The final model is a coupled vehicle–
bridge–soil system, that includes a multi-degree-of-freedom vehicle model, nonlinear
wheel–rail interaction, FE bridge structure with layered deck and semi-analytical soil
model. The system is excited by a passing vehicle, including both quasi-static and
dynamic effects, due to the rail unevenness. Nonlinear wheel–rail interaction was in-
cluded in the model to better represent the real system behaviour and to expand the
capabilities of the model, for modelling cases such as: large faults on the rails or
hanging sleepers. The created model is used to analyse a multi-span railway bridge
structure traversed by a single vehicle. However, the methodology presented can be
easily applied to other similar structures where time domain solution is needed.

Section 2 introduces the separate parts of the model: the vehicle, the bridge struc-
ture and the soil. Further, Section 3 describes the different computational approaches
used to solve the system including the vehicle–track interaction model. Finally, Sec-
tion 4 uses the described computational model to analyse illustrative examples.
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Figure 1: Multi-degree of freedom vehicle model.

2 Modelling approach

To model an elevated railway line the problem can be split into three separate parts: the
vehicle, the bridge structure (including the track system) and the soil body (including
the foundations). Each of these parts need to be considered and properly accounted
for in order to obtain realistic dynamic behaviour of the total system. The three parts
of the system are described in more detail in this section.

2.1 Vehicle, bridge and railway track models

The vehicle travelling across the bridge deck introduces dynamic excitation to the sys-
tem. The acting loads depend on a number of factors, such as the vehicle weight, travel
speed, track construction and unevenness characteristics, vehicle suspension system,
etc. To model the vehicle, a 10-degree-of-freedom system is introduced, as shown in
Figure 1 and and decribed in [7, 30, 31]. The system is modelled in two dimensions
and only considers vertical interaction between the rails and the wheel. However, it
is still able to model the most important contributions from a vehicle, moving on a
straight track. This configuration represents a two-layered suspension system, with
primary suspension connecting the four wheels to two bogies and secondary suspen-
sion systems connecting the bogies to the main car body. Each wheel represents a
wheel set of a real train. The mass, damping and stiffness properties needed to model
the vehicle are illustrated in Figure 1. The equation of motion for the vehicle can be
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written as:

[MV]{üV}+ [CV]{u̇V}+ [KV]{uV} = {fV}, (1)

where [MV], [CV], [KV] are the mass, damping and stiffness matrices, respectively.
Further, {uV} is the displacement vector, while {u̇V} and {üV} denote the first and
second time derivatives.

The bridge structure is modelled using the FEM. Beam elements are used to model
the bridge deck and the pylons. The pylons are fixed to the deck through shared nodes,
where both the translational and rotational degrees of freedom are coupled. Each
element has two nodes, with three degrees-of-freedom in each node. The structure is
placed in the (x,z) plane and beam bending around the y-axis is accounted for by using
Euler-Bernoulli beam theory. Further, axial deformation is assumed to be uncoupled
from the other degrees of freedom.

The properties of the bridge deck are: Young’s modulus Ed, moment of inertia
Id, mass density ρd and cross-sectional area Ad. Similarly, the same properties are
needed for the bridge pylons, they are denoted with subscript ’p’. The mass, damping
and stiffness matrices, [MB], [CB] and [KB], for the FE model are obtained by the
standard Galerkin approach. Cubic interpolation functions are used for bending and
linear interpolation functions are employed for axial deformation. The equation of
motion for the bridge structure can then be written as:

[MB]{üB}+ [CB]{u̇B}+ [KB]{uB} = {fB}, (2)

where {uB} is the displacement vector of the bridge, with {u̇B} and {üB} indicat-
ing first and second time derivatives (velocity and acceleration), respectively. Both
dynamic wheel–rail interaction forces and the

In this work, a ballasted railway track on the bridge deck is modelled. Therefore,
a layered bridge structure is introduced, as illustrated in Figure 2. The track structure
is then composed of: rail, rail pads, sleepers, ballast, and the bridge deck. The two
rails of a track are modelled as a single Euler-Bernoulli beam in two-dimensions (i.e.
(x,z) plane in the global coordinate system, see Figure 2. No axial deformation of the
rail is considered, thus the used rail properties are: Young’s modulus Er, moment of
inertia Ir, mass density per unit length µr. The forces Pw,i, resulting from the vehicle
wheels including both the dynamic and quasi-static effects, are stored in the force
vector {fB}. Further, the rail is discretely supported by rail pads which are modelled
as springs and a dashpots connected in parallel, with stiffness krp and damping crp.
Further, the dashpots are connected to the sleepers. Each sleeper has just one degree
of freedom, i.e. translation in the z-direction, and the associated massmsl. Further, the
sleepers are placed on the ballast of the track. The ballast is once again modelled as a
spring and dashpot system, with stiffness kbl and damping cbl, that is then connected
to the bridge deck. It is assumed that one quarter of the ballast mass mbl is moving
with the sleepers and the rest is moving with the deck.
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Figure 2: Simplified bridge structure for a single span. The deck and pylons of the
bridge are modelled as three-dimensional beam elements. The track is modelled as a
layered structure connected through spring and dashpot systems.

2.2 Soil–structure interaction in frequency domain

The soil is modelled using a semi-analytical approach. The approach uses the Green’s
function to evaluate the soil response in the frequency–wavenumber domain. The
frequency–wavenumber domain is used, since the analytical solution employed to
evaluate the Green’s function is only available in this domain. The Green’s function
relates the displacements and traction applied in the soil stratum:

[ḠS]{P̄S} = {ŪS}, (3)

where [ḠS] is the Green’s function, {P̄S} is the traction vector and {ŪS} is the dis-
placement vector. All these terms are in the frequency–wavenumber domain.

To obtain the Green’s function, the transfer-matrix method is used, originally de-
veloped by Thomson [5] and Haskell [6]. According to this method, the state at the top
of a soil layer, including the displacements and tractions applied, is related to the state
at the bottom of the same layer through the transfer matrix. Using these transfer ma-
trices, a soil stratum containing multiple layers can be assembled and, after applying
the boundary conditions, an analytical expression for the Green’s function is obtained.
The applied boundary conditions can account for either an underlying half-space of
soil or fixed displacements at a certain depth. The originally proposed flexibility based
approach is sufficient when considering relatively low frequencies or cases where only
a half-space of soil is present. However, when high frequencies or very deep layers
are considered the approach does encounter numerical stability problems, caused by
limited precision of computers. In those cases, different layer assembly methods can
be used that include additional numerical stabilization procedures. The present imple-
mentation is based on the approach described by Wang [32].

After the Green’s function has been found, the solution needs to be converted into
stiffness expression in spatial domain in order to couple it to the structures. This is
established through a number of steps. Firstly, the frequency–wavenumber domain
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solution is transformed into frequency-spatial domain solution, using double discrete
inverse Fourier transformation. Here, a bell shaped load (two-dimensional Gaussian
distribution) with a unit magnitude is applied to obtain the flexibility (receptacle) of
the soil. The bell shape is beneficial for the computations, as in the wavenumber do-
main it approaches zero monotonically with increasing wavenumber. The analysed
rigid footings are discretized into a number of discretization nodes, as illustrated in
Figure 3 for single a footing. Through these nodes the structure (in this case a pylon)
interacts with the soil stratum. A global flexibility matrix is constructed, by placing a
load on a discretization node and then checking the displacements in all nodes in the
soil–foundation interface of all footings. This is repeated for all of the nodes to es-
tablish the relation between all of the considered points. Further, the flexibility matrix
in inverted to obtain the corresponding dynamic stiffness matrix. When considering
rigid bodies, such as the rigid surface footings for the analysed case, an integration
over the area of each footing is also needed, which results in a reduction of the matrix
size corresponding to six degrees of freedom per rigid footing. Finally, the dynamic
stiffness matrix for the soil [DS] is obtained. A detailed explanation of the method-
ology used, including modelling of rigid objects can be found in works by Andersen
and Clausen [33, 34].

The described semi-analytical model is an attractive approach to modelling the soil
due to the low computational effort needed. It can be easily expanded to include
additional rigid objects or FE structures interacting with the bridge through the soil.
However, in cases when a more detailed soil model is necessary, different approaches,
such as FE and BE methods or even experimental measurements, can be used, as long
as the dynamic flexibility or stiffness matrix of the soil [DS] can be obtained.

In order, to couple to the soil the bridge FE matrices are converted to the dynamic
stiffness matrix needed for the frequency-domain solution:

[DB] = [KB] + iω[CB]− ω2[MB]. (4)

Further, the matrix is rearranged and split into sub-matrices:

[DBS] =

[
[Dbb

B ] [Dfb
B ]

[Dbf
B ] [Dff

B]

]
. (5)

For foundation nodes that are directly interacting with the soil, the sub-matrix is de-
noted with superscript “ff”, while nodes above the soil (no direct interaction with soil)
are denoted with “bb”. Coupling terms are denoted as “bf” and “fb”, and it is noted
that [Dfb

B ] = [Dbf
B ]T.

Now the soil can be coupled to the bridge structure above. The bridge and soil
share the same structure–soil interaction (SSI) nodes, where the pylons meet the rigid
footings. Both translational and rotational degrees of freedom are coupled between
lower ends of the pylons and the corresponding footings, resulting in a fixed connec-
tion between them. An SSI node is illustrated in Figure 3. The equation of motion of
the bridge–soil system becomes:

[DBS]{UBS} = {FBS} (6)
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Figure 3: Single rigid footing discretization

where [DBS] is the dynamic stiffness matrix for the bridge–soil system, {UBS} is the
nodal displacement vector, and {FBS} is the nodal force vector in frequency domain:

[DBS] =

[
[Dbb

B ] [Dfb
B ]

[Dbf
B ] [Dff

B] + [DS]

]
, (7a)

{UBS} =
{
{Ubb}T {Uff}T

}T
, (7b)

{FBS} =
{
{Fbb}T {Fff}T

}T
. (7c)

2.3 Soil–structure interaction in time domain

To obtain a time-domain solution, the same steps as in the previous section are taken
to obtain the dynamic stiffness matrix of the soil [DS]. Then, instead of converting the
bridge FE solution into frequency domain, the soil solution is converted into time do-
main. However, transforming the dynamic stiffness matrix DS into separate stiffness,
damping and mass matrices is not a straightforward task. For that LPMs are utilized.
LPMs were proposed by Wolf in [23, 24].

An LPM works by reproducing the real system behaviour with an artificial system
of springs, dashpots and masses. This way a large domain with a high number of
degrees of freedom can be reduced into a much simpler system with fewer degrees
of freedom. Another advantage of an LPM is that a frequency-domain behaviour can
be recreated by a relatively simple system, for which separate stiffness, damping and
mass matrices are readily available. This work uses consistent LPMs which allow
better representation of the real system behaviour. Using this approach, higher-order
systems with multiple degrees of freedom are fitted, which can include linear, first-
order and second-order terms, or a combination of such terms. A detailed description
of consistent LPMs can be found in [33].
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Soil behaviour in frequency domain can be reproduced as:

[DS(ω)]{US(ω)} = {FS(ω)}, (8)

where the dynamic stiffness matrix [DS(ω)] relates the displacements {US(ω)} and
forces {FS(ω)}. A non-dimensional frequency is introduced:

a0 =
ωR0

c0
, (9)

where R0 is the characteristic size of the footing and c0 is a characteristic wave speed.
For example, when considering a square footing, R0 could be the length of one side
and c0 the shear wave velocity in soil. Using the non-dimensional frequency, a dy-
namic stiffness component of the soil–foundation system is put in the form:

Z(a0) = Z(ωc0/R0) = DS(ω). (10)

where DS(ω) is a single element of matrix [DS(ω)], e.g. [DS,11(ω)]. A normalized
frequency-dependent dynamic stiffness coefficient S(a0) is introduced as:

Z(a0) = KsS(a0), (11)

where Ks is the corresponding static stiffness component. The stiffness coefficient is
approximated as:

S(a0) ≈ k∞ + ia0c∞ +
1− k∞ + p1(ia0) + p1(ia0)2 + ...+ pM−1(ia0)M−1

q0 + q1(ia0) + q1(ia0)2 + ...+ qM(ia0)M
. (12)

The term q0 could be conveniently chosen to be equal to 1, thus ensuring double a
asymptotic solution. However, it is not possible when using some inbuilt functions
in programming languages, such as invfreqs in MATLAB [35]. In that case, precise
solution at a0 = 0 can be ensured by using an additional weight function, with high
weights for low frequencies. Further, parameters pi and qi should always be real and
no poles should appear along the positive real axis. This way the filter is physically
meaningful and in theory should not cause instability issues in time domain. However,
this is not the case when high order filters fitted over a wide frequency range are used.
In those cases, a procedure introduced in Section 6.2 is needed.

Equations 10–12 describe the force–displacement relation for a single degree of
freedom. Thus, the described procedure needs to be repeated for every degree of free-
dom interacting with soil. Further, coupling terms might also need to be represented
to obtain realistic behaviour of the structure.

After approximating the chosen terms of the dynamic stiffness matrix, the stiff-
ness matrix [KLPM], mass matrix [MLPM] and damping matrix [CLPM] of the LPM are
obtained. The bridge–soil system matrices can then be assembled:

[KBS] =

[Kbb
B ] [Kbf

B ] 0
[Kfb

B ] [Kff
B] + [Kff

LPM] [Kfi
LPM]

0 [Kif
LPM] [Kii

LPM]

 , (13)
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where the degrees of freedom of the foundation are indicated with the superscript “ff”,
internal degrees of freedom in the LPM—“ii” and of the bridge—“bb”. Combinations
of superscripts are used for coupling terms. Further, in a similar way, the system mass
matrix[MBS] and damping matrix [CBS] are assembled. The equation of motion for the
bridge–soil system becomes:

[MBS]{üBS}+ [CBS]{u̇BS}+ [KBS]{uBS} = {fBS}. (14)

3 Method of analysis

3.1 Track irregularities and wheel–rail interaction

A vehicle wheel travelling along the rail is exposed to track irregularities, which in-
troduce additional excitation to the system. Railway track unevenness is a stochastic
property and depends on a number on factors. It is described using power spectral
density functions which describe the unevenness distribution through wavenumbers.
The functions are generally determined empirically. A number of formulations ex-
ist, however the most widely used are the FRA (Federal Railway Administration), the
German, the SNCF (Socit Nationale des Chemins de Fer Franais) and the Chinese
power spectral density function standards, as described in [12, 15, 36]. Comparison
between different standards is difficult due to different definitions used for each spec-
trum. For example, some are only valid for specific wavenumber ranges or vehicle
speeds. In this work the German track spectrum is used, as found in [15]:

S(k) =
Apkc

(k2 + k2r )(k2 + k2c )
, (15)

with coefficients kc = 0.8246 rad/m and kr = 0.0206 rad/m. For a medium quality
track, Ap = 5.9233 × 10−7 rad·m. From the power spectral density function, the
track profile can be generated by assigning random phase angles to the wavenumbers
and performing inverse Fourier transformation into spatial domain. In this work only
vertical track irregularities are considered, as usually done in the literature [7, 9, 10].

u(x)
Uneven track

Rail

uw,i

kHr(x)
x

xi

Wheel i

Figure 4: Wheel-rail interaction through nonlinear Hertzian spring
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With reference to Figures 1 and 2, the wheels interact with the rail through forces
Pi = −Pw,i = Pr,i. Additional force Pstat,i from the weight of the vehicle is applied
to each wheel. The interaction forces for each wheel depend on the relative displace-
ment between the wheel uw,i = uw(xi(t)) and the rail ur,i = ur(xi(t)). It is further
influenced by the track unevenness ri = r(xi(t)). The system is sketched in Figure 4.
Due to the circular wheel shape, the stiffness of the wheel is not linear. Therefore, a
nonlinear Hertzian spring is introduced to model the wheel behaviour. Further, if the
wheel loses contact with the track, the interaction force disappears. The wheel–rail
interaction force, for wheel i, can be found:

Pi = −Pw,i = Pr,i =

{
kH(|uw,i − ur,i − ri|)3/2 for (uw,i − ur,i − ri) ≤ 0

0 for (uw,i − ur,i − ri) > 0
. (16)

The Hertzian spring is often linearised when frequency domain solutions are used,
for example in [7]. However, using nonlinear wheel–rail interaction increases the
application range of the model, for modelling larger local defects in the railway track
structure.

3.2 Time-domain solution

To determine the wheel–rail interaction force time-domain solution is needed, as an
iteration needs to be performed in every time step. The iteration scheme used is very
similar to the one proposed by Lei [30]. It is based on the Newmark-beta time in-
tegration algorithm, with integration constants γ = 0.5 and β = 0.25 to obtain an
unconditionally stable solution. Assuming the displacements and velocities of time
step j − 1 to be known and employing the time step ∆t, the iterative scheme has the
following steps:

Step 1. Predict values of velocities {u̇jV,∗} and displacements {ujV,∗} at time step j for
the vehicle:

{u̇jV,∗} = {u̇j−1V }+ {üj−1V }∆t, (17a)

{ujV,∗} = {uj−1V }+ {u̇j−1V }∆t+
1

2
{üj−1V }∆t2. (17b)

An equivalent procedure is carried out to find the predicted values {u̇jBS,∗},
{uj+1

BS,∗} for the bridge–soil system. To begin the iteration inside time step j,
an initial guess for the displacements in iteration k = 0 is made:

{uj,0V } = {ujV,∗}, {uj,0BS} = {ujBS,∗}. (18)

Using these values, a first guess for the wheel interaction forces P j,0
i can be

found using Equation 16. The obtained forces are then placed in the force vector
for the vehicle {fj,0V }.
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Step 2. Determine acceleration, velocity and displacement vectors of the vehicle for
time step j and iteration k:

{üj,kV } ={üj−1V }+ [M̂V]−1
(
{fj,kV }

− [MV]{üj−1V } − [CV]{u̇jV,∗} − [KV]{ujV,*}
)
, (19a)

{u̇j,kV } = {u̇jV,∗}+ γ
(
{üj,kV } − {ü

j−1
V }

)
∆t, (19b)

{uj,kV } = {ujV,∗}+ β
(
{üj,kV } − {ü

j−1
V }

)
∆t2, (19c)

where [M̂V] = [MV] + γ[CV]∆t+ β[KV]∆t2.
Step 3. Update interaction forces P j,k

i using Equation 16. The obtained forces are
then placed to the coupled bridge–soil system force vector {fj,kBS}.

Step 4. Calculate bridge–soil displacements {uj,kBS}, velocities{u̇j,kBS} and accelerations
{üj,kBS}. The procedure is equivalent to Step 2, just in this case coupled bridge-
soil matrices and vectors with subscript BS are used.

Step 5. Recalculate the interaction forces P j,k
i for iteration k and place them in the

force vector for the vehicle {fj,kV }.
Step 6. Check for convergence:

‖uj,k−1V − uj,kV ‖
‖uj,k−1V ‖

< εt, (20)

where εt is the iteration tolerance. Similarly the convergence of the solution
can be determined by comparing the interaction forces P j,k

i or bridge–soil dis-
placements {uj,kBS}. If convergence is reached—continue to the next time step
j := j + 1, from Step 1. If convergence is not reached—continue to the next
iteration step k = k + 1, from Step 2. Further, if the last time step is reached,
computation is stopped and the vehicle displacements [uV(t)] and bridge–soil
displacements [uBS(t)] for the whole considered time period are obtained.

3.3 Mixed-domain solution

An alternative approach to solving the whole system in time domain is to used the
so-called mixed-domain solution. Using this approach, an approximation of the soil
behaviour is avoided as the soil solution obtained directly from the semi-analytical
soil model is used. However, the iterative process is somewhat more complicated.
The procedure has already been described in a previous work by the authors [29], thus
only a general overview is given here.

The procedure involves double iteration with some steps being the same as in the
time-domain solution. However, in this case only the vehicle is solved in time domain,
while the bridge–soil system is solved in the frequency domain, assuming periodicity
with the period T . To start the iteration, rail displacements ul−1r,i (t) are estimated
through all times t ∈ [0, T ]. Practice shows that assuming no rail displacements as a
first estimate is a fair assumption. The procedure for iteration step number l is:
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Step 1. Vehicle displacements {ulV(t)}, velocities {u̇lV(t)} and accelerations {ülV(t)}
are found using rail displacements rl−1i (t). This is carried out the same way as
in Subsection 3.2, just Steps 4 and 5 are skipped. This way only the vehicle
response is calculated without updating the bridge–soil system response, or the
rail displacements rli(t).

Step 2. Wheel–rail interaction forces P l
i (t) obtained in the previous step are Fourier

transformed into frequency domain and placed in the bridge–soil interaction
force vector {FlBS(ω)}.

Step 3 The bridge–soil system can now be solved using the obtained {FlBS(ω)} as
input. The system displacements {Ul

BS(ω)} in frequency domain are obtained.
Step 4 The obtained displacements are inverse Fourier transformed into time domain,

thus providing {ulBS(t)}, and the rail displacements ulr,i(t) are extracted.
Step 5 To check the convergence of the solution, the bridge–soil displacements {ulBS(t)}

are compared to those obtained in the previous iteration step:

‖{ul−1BS (t)} − {ulBS(t)}‖
‖{ul−1BS (t)}‖

< εm. (21)

If convergence is reached, the iteration is terminated and results extracted. If
convergence is not reached, the computation continues to the next mixed-domain
solution iteration step l := l + 1, from Step 1.

4 Definition of the computational model

4.1 Parameters of the soil, structure and vehicle

A model of a multi-span railway bridge is considered. The total length of the bridge
deck is 210 m, and it is supported by six pylons. The pylons are evenly spaced with a
distance of 30 m, centre to centre. Each pylon is 8 m tall. The structure interacts with
the soil through rigid square surface footings with one side length equal to 5.66 m.
The footing is roughly estimated to be sufficient for static bridge load. To account for
additional mass of the surface footings, their thickness is set to 1.0 m thick with the
mass density ρf = 2400, representative for reinforced concrete. An additional 30 m of
track is added to each side of the structure to allow the wheel–rail interaction forces to
reach an equilibrium, before the vehicle reaches the bridge. The stretches of additional
track are assumed to be connected to a rigid surface instead of the bridge deck. Their
stiffness is decreasing linearly from a factor 10 of the given track properties at the
ends, to a factor of 1 where the additional track stretches connect to the bridge. The
gradually changing stiffness reduces the wheel excitation at the very beginning and
end of simulations when the wheels transfer from an interaction with a completely
rigid surface to interaction with a layered track structure and vice versa. The model is
illustrated in Figure 5.

Material and cross-sectional properties of the bridge structure are given in Table 1
and properties of the vehicle are given in Table 2. Rayleigh damping is employed
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for the bridge structure. It is calibrated with damping ratios of 0.03 and 0.04, for
eigenmodes 1 and 2, respectively, of the bridge structure fixed at the base. Track
irregularities are generated for 2048 discrete wavelengths in the range from 0.3 m to
70 m, using the track spectrum described in Subsection 3.1.

The structure was discretized using FE elemets. The convergence analysis was
performed up to 100 Hz, ensuring that the eigenfrequencies around this limit are within
2% accuracy. The resulting model has around 4000 degrees of freedom. The mesh
size in the rails and deck is set to be equal to the distance between the sleepers, leading
to a model where sleepers are connected directly to the nodes of the FE model of the
rail and deck. Thus, the stiffness and damping of the rail pads and ballast are not
distributed between multiple nodes, leading to a more accurate model.

The structure is placed on an 4 m thick layer of clay over a half-space of hard
till. The clay properties are: Shear modulus Gs = 80 GPa, Poisson’s ratio νs = 0.498,
mass density ρs = 2000 kg/m3 and hysteric damping ratio ηs = 0.02. That corresponds
to a compression wave speed of 3200 m/s, shear wave speed of 200 m/s and Rayleigh
wave speed of 191 m/s. The hard till properties are: Shear modulus Gs = 2000 GPa,
Poisson’s ratio νs = 0.333, mass density ρs = 2000 kg/m3, hysteric damping ratio
ηs = 0.02, compression wave speed of 2000 m/s, shear wave speed of 1000 m/s, and
Rayleigh wave speed of 933 m/s. The analysed case corresponds to medium–stiff soil
conditions with the vehicle travelling much slower than the Rayleigh wave in the top
soil layer. Hence, the vehicle does not reach the critical speed for the analysed system.
However, the secondary effects, such as footing coupling through soil, could still lead
to significant effects on the overall results.

Three investigation points are chosen on the structure, as seen in Figure 5. Point A
is placed on the connecting node between the surface footing and the soil, Point B is
placed in the middle of the span between columns 5 and 6, and Point 3 is placed in the
middle of the span between columns 2 and 3. Points B and C refer to the rail as well
as the deck. The specified points are later used to extract data and apply loads.

C

A

B

Figure 5: Full bridge model with the positions of investigation points. The ends of the
rail track and the bridge structure are fixed, and shown as black hollow dots.
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Table 1: Material and cross-sectional properties of bridge structure
Rail properties
Young’s modulus Er 2.1 · 1011 Pa
Moment of inertia Ir 3.055 · 10−5 m4

Mass per unit length µr 60.3 kg/m
Rail pad properties
Stiffness krp 5.0 · 108 N/m
Damping crp 2.0 · 105 N· s/m
Sleeper properties
Mass msl 290.0 kg
Spacing lsl 0.6 m
Ballast properties
Stiffness kbl 5.38 · 108 N/m
Damping cbl 1.20 · 105 N·s/m
Mass per sleeper mbl 1000.0 kg
Deck properties
Moment of inertia Id 4.07 m4

Cross-sectional area Ad 7.52 m2

Young’s modulus Ed 3.4 · 1010 Pa
Mass density ρd 2400 kg/m3

Pylon properties
Moment of inertia Ip 0.42 m4

Cross-sectional area Ap 5.00 m2

Young’s modulus Ep 3.4 · 1010 Pa
Mass density ρp 2400 kg/m3

Table 2: Properties of the vehicle
Primary suspension stiffness ksp 3.28 · 106 N/m
Secondary suspension stiffness kss 1.31 · 106 N/m
Primary suspension damping csp 9.00 · 104 N·s/m
Secondary suspension damping css 3.00 · 104 N·s/m
Hertzian spring constant hH 8.70 · 1010 N/m3/2

Mass of car body mc 5.35 · 104 kg
Mass of bogie mb 3260.0 kg
Mass of wheel set mw 2000.0 kg
Pitch moment of inertia for car body jc 2.24 · 106 kg·m2

Pitch moment of inertia for bogie jb 2.45 · 103 kg·m2

Static force per wheel set Pstat,i 1.70 · 105 N
Half length between two axles of one bogie Lv,1 1.5 m
Half length between two bogies centre lines Lv,2 7.0 m
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5 Comparison between solution procedures

Two different approaches of solving the system have been presented: the pure time-
domain solution in Subsection 3.2 and the mixed-domain solution in Subsection 3.3.
To compare the performance of the proposed solution procedures, a smaller section of
the full bridge model is analysed. The section contains 60 m of bridge deck supported
by a single pylon in the centre. The pylon is 8 m in height and it rests on a circular
rigid footing with a radius of 4 m. Similarly to the full bridge model, 15 m additional
track stretches are added to either end of the deck. The soil is modelled as a half-space
of clay. All other properties of the system are exactly the same as for the full bridge
model. The reduced bridge model is shown in Figure 6. The system is excited by a
passing vehicle at 30 m/s, 60 m/s and 90 m/s, and the resulting wheel–rail interaction
forces and structure accelerations are analysed.

The differences stemming from the mismatch between the real frequency depen-
dent soil behaviour and the fitted LPM are not investigated in this subsection. There-
fore, a standard LPM is used, as described by Wolf [37]. The standard LPM offers
relatively simple expressions for rigid surface footings on an elastic half-space. The
mass, damping and stiffness matrices provided by the standard LPM are then used
to represent the soil–footing system identically in the time-domain and frequency-
domain analysis.

While analysing the two approaches, it has been found that for simple analysis
cases, such as a simply supported beam traversed by a vehicle exposed to an un-
even track, both approaches provide identical results. However, when the layered
track structure and structure–soil interaction is introduced into the system, the mixed-
domain approach converges extremely slowly or stops converging all together. There-
fore, for the mixed-domain computation procedure to achieve a sufficient degree of
convergence, an additional high-frequency filtering is needed. A low-pass filter is
therefore introduced in Step 1 of the procedure described in Subsection 3.2, such that

Figure 6: Reduced bridge model used to for comparison of solution procedures. The
ends of the rail track and the bridge structure are fixed, and shown as black hollow
dots.
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Figure 7: Wheel–rail interaction force for the front vehicle wheel.

0 10 20 30 40 50 60 70 80 90 100

 f [Hz]

0

0.5

1

| a
| [

m
/s

2
]

10-3

 v = 30 m/s Mixed-domain solution
Time-domain solution

Figure 8: Vertical accelerations of the footing.

the high-frequency contents of the rail displacements experienced by the vehicle wheel
ur,i are filtered out. In this case, it has been found that low-pass filter with a cut-off
frequency of 70 Hz was needed.

Figure 7 shows the wheel–rail interaction forces for the first vehicle wheel. It can
be seen that the agreement between the two solution procedures is acceptable. The
agreement is good up to 70 Hz and then the two solutions begin to diverge. This is
due to the additional filtering applied in the mixed–domain solution. However, the
differences are not very large and are mostly limited to the 72–88 Hz range. For
frequencies above 88 Hz, the absolute values obtained are similar; however, the po-
sitions of the peaks are different. The same behaviour was also observed for 60 m/s
and 90 m/s vehicle speeds, indicating that the problem is not dependent on the vehicle
speed. Figure 8 shows the accelerations of the SSI node connecting the bridge pylon
to the soil. The results here are very similar to Figure 7. The accelerations observed
show very good agreement up to 70 Hz and then start to differ. However, they are
mostly limited to the 68–92 Hz range. Interestingly, even with the higher frequencies
filtered out, the mixed-domain approach predicts almost the same positions and ab-
solute values of the peaks at the higher frequencies. Once again, the same behaviour
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have been observed for other vehicle speeds. Overall, the agreement between the two
approaches is better when analysing the accelerations of the structure, when compared
to the wheel–rail interaction forces.

To conclude, both approaches are able to predict the system behaviour to at least
70 Hz, with some differences at higher frequencies. The higher frequency range is
important when analysing the behaviour of the vehicle or the track underneath, and
in those cases using the pure time domain solution is preferable. However, when
analysing the ground vibrations generated by a passing train, frequency ranges up
to 70 Hz might be fully sufficient. In those cases using the mixed-domain approach
could be beneficial as it uses the directly calculated soil behaviour and does not require
fitting of an LPM. For further analysis the pure time-domain solution is used, as higher
frequencies are of interest for the investigated case.

6 Modelling structure–soil interaction with lumped pa-
rameter models

6.1 Quantification of cross-coupling via the soil

Consistent LPMs are used to obtain stiffness, mass and damping matrices needed to
recreate the behaviour of the soil in the time domain. The quality of the recreated sys-
tem depends on a number of factors. Firstly, each member of the stiffness matrix needs
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Figure 9: Dynamic stiffness matrix for soil. Axes show the positions of degrees of
freedom in the matrix. The colors indicate different levels of coupling between the
foundations included in simulations.
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to be recreated using separate LPMs. This includes the direct terms located along the
diagonal of the stiffness matrix, the auto-coupling terms defining the coupling between
the internal degrees of freedom of a single footing and the cross-coupling terms con-
necting the degrees of freedom from separate footings. Practice shows that recreating
all terms of the dynamic stiffness matrix is not always the best approach, as it often
leads to an unnecessarily large systems without adding additional precision. Further,
cross-coupling terms for degrees of freedom that are separated by multiple footings
often display extremely complex behaviour in the frequency domain. Therefore, high
order polynomial-fraction functions are needed, thus adding a large amount of internal
degrees of freedom to the system. Otherwise, using badly-fitting lower order functions
leads to a decrease of the overall quality of the solution. Thus, the influence of direct,
auto-coupling and cross-coupling terms should be quantified, see Andersen [38]. The
structure of the dynamic stiffness matrix obtained from the semi-analytical soil model
is shown in Figure 9, where different colors indicate different levels of cross-coupling
between the footings.

To determine the level of cross-coupling needed to recreate the system behaviour,
an analysis was carried out. For that purpose, a harmonic load was placed on the rail
at Point C (see Figure 5) and the whole system solved in the frequency domain. The
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Figure 10: Bridge response at Point A with different levels of coupling. From top
down: x-axis displacement, z-axis displacement and rotation around y-axis.
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system is excited in a (x,z) plane. Thus, only three degrees of freedom are excited:
displacements in the x and z directions, and rotation around the y-axis. The load is
applied as blue noise , that is the load magnitude is proportional to the excitation fre-
quency. This way, the high frequency response is amplified, as it is important for
the high frequency wheel-rail excitation loads. The vehicle is not included into the
system, thus the system does not require an iterative solution procedure. Due to the
standard frequency domain solution, it is also possible to directly couple the bridge
structure and the soil to obtain the target solution, without utilizing LPMs. The ob-
tained results for the fifth footing displacements (Point A in Figure 5) are presented
in Figure 10. The fifth footing was chosen, as it is sufficiently far away from the ex-
citation point of the system for the coupling terms via the ground to have a significant
contribution. Further, the effects from the underlying soil are evident for the footings,
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Figure 11: Examples of LPMs fitted to members of the dynamic stiffness matrix for
the soil. The stiffness values are normalized by the maximum absolute stiffness of
the LPM fit. Top to bottom: direct, cross-coupling 1 footing away, cross-coupling 2
footings away and cross-coupling 3 footings away terms.
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while the behaviour of the bridge deck, sleepers or the rails is effected to a lesser de-
gree. Analysing Figure 10, it can be seen that the low frequency behaviour up to 15
Hz is dominated by the direct terms of the dynamic stiffness matrix. Here, including
additional coupling terms does not improve the solution. However, for higher frequen-
cies the direct terms are not able to reproduce the system behaviour. It is not shown in
the figure, but additionally including auto-coupling terms does not improve the solu-
tion, indicating that the higher frequency behaviour is dominated by the interactions
between separate footings. Further, including cross-coupling terms one footing away
drastically improves the higher-frequency match to the target solution. However, the
match is still not very good, especially for frequencies higher that 50 Hz. Adding
additional coupling terms to the system further improves the solution, up to cross-
coupling terms three footings away. However, coupling terms four and five footings
away do not further improve the fit. Therefore, for further analysis, LPMs are created
for terms up to three footings away. Looking at the overall fit, it can be seen that the
rotational degree of freedom is associated with the higher inaccuracy, and that the fit
is poor around 22 Hz for all three considered degrees of freedom.

Further, the overall quality of the created system depends on the quality of the
individual LPMs. As already mentioned, coupling terms separated by multiple foot-
ings tend to have a behaviour that is more complex compared to the coupling terms
for nearby footings or auto-coupling terms. Thus, while the overall effects of the
far-away coupling terms might be limited, they still require high-order polynomial-
fraction functions. Figure 11 shows the fitted LPMs created for terms related to the
vertical displacement of the first footing of the system (degree of freedom number 2).
It can be seen that a relatively low order polynomial is needed for the direct terms to
represent the system well in the whole frequency range. However, the complexity in-
creases with increasing distance from the first footing. The cross-coupling terms two
and three footings away require rational approximations of orders around 50 and even
then the fit at higher frequencies is not recreated well. However, as seen in Figure 10,
inclusion of these terms still improves the overall quality of the system.

6.2 Improving the stability of the lumped-parameter models

Another important factor when creating an LPM is the overall time-domain stability of
the system. In this work, an inbuilt MATLAB function invfreqs is used. The function
utilizes a damped Gauss-Newton iterative scheme [35], which ensures the obtained
poles will only have negative real parts. In theory that should be enough to ensure a
stable time-domain solution. However, the dynamic stiffness matrix of the soil proves
to be difficult to fit and the obtained LPMs are often numerically unstable. Even us-
ing unconditionally stable time integration schemes like the Newmark-beta approach,
with integration constants γ = 0.5 and β = 0.25, generalized alpha method [39]
or a fourth-order accurate algorithm developed by Krenk [40] still produces unstable
time domain behaviour. It is difficult to pinpoint the exact reasons for the instabil-
ities. A possible explanation is the finite computational precision errors associated
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with fitting high order polynomials. As the order increases, the results obtained will
contain numbers that are extremely small as well as numbers that are extremely large,
leading to computational instabilities. The problem is especially pronounced when
fitting a wide frequency range. One way to limit the instabilities is to use a low-order
rational approximation function, limiting the solution up to orders 3 or 4. Another ap-
proach is to use larger time steps in the time integration scheme or to limit the overall
computed time period. Increasing the time step size limits the excitation of unstable
high frequencies, while calculating a shorter time period does not allow the compu-
tational errors to build up. However, neither of these approaches are useful for the
case considered in this study. The considered frequency range is large and the wheel–
rail interaction forces require small time steps. Further, low-order approximations are
not able to recreate the system behaviour, and the bridge structure is long, therefore
requiring a long time period for the vehicle to pass.

A fitting scheme was developed to determine the best fitting and at the same time
stable LPMs. The fitting procedure is shown in Figure 12. The fitting is performed for
a range of orders of the rational approximations using the MATLAB function invfreqs .
For the direct terms, orders 12–40 were tested, for the auto-coupling terms 17–48, and
for the cross-coupling terms 33–64. The used orders are high as the analysed soil con-
tains an interface between two soil layers which produces some wave reflections and
a complex frequency-domain behaviour. When fitting, a weight function is applied to
prioritize the lower frequencies.

wLPM =
1

(1 + (ζ1a0)ζ2)ζ3
, (22)

where parameters ζ1, ζ2 and ζ3 define the shape of the weight function. Initially,
values ζ1 = 2, ζ2 = 3 and ζ3 = 4 were used. The best-fitting function order is then
determined by taking the root mean square of the differences between the obtained
frequency response and the target solution. Two tolerance values εtol,1 and εtol,2 are
used to determine best fitting LPM, as shown in Figure 12. For the case considered,
the tolerance values are set to εtol,1 = 0.04 and εtol,1 = 0.2. After the best fitting LPM
is determined, three tests are performed to ensure stability:

Test 1. If a direct term of the dynamic stiffness matrix is analysed, the obtained LPM
frequency response function should only contain positive phase angles. Nega-
tive phase angles imply negative damping, which should not exist for the direct
stiffness terms. Naturally, the target solution obtained from the semi-analytical
soil model does not have negative phase angles. However, when the LPMs
are fitted, the resulting function might have negative phase angle in a narrow
frequency range. This is especially problematic at very low frequencies, as at
frequency 0 the phase angle is also equal to 0. Thus, there is a high risk of the
LPM’s having negative phase angle at low frequencies. Hence, if a negative
phase angle has been detected, the LPM is discarded.

Test 2. If the real part of a pole vanishes, the imaginary part of the same pole will
combine with the imaginary part of it’s complex conjugate to form a real positive
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pole, which results in instability in the time domain. Limited precision of a
computer dictates that the real part of a complex pole should not be too small
when compared to the imaginary part. To account for this, the ratio of the real
to the imaginary part of the complex poles is checked. If the smallest ratio is
smaller than 10−4, the whole LPM is discarded.

Test 3. Fitting of the polynomial-fraction filter is performed in the frequency range
of 0–100 Hz. However, additional peaks can appear at frequencies beyond the
fitting range. These peaks often have values exceeding the target solution by
several orders of magnitude, causing instabilities and non-physical behaviour in
the system. There are various approaches to check for this behaviour. In this
study, the obtained stiffness and mass matrices of the LPM are used to solve
the eigenvalue problem. The stiffness matrices of the LPM model might have
zeros in the diagonal of the matrix; thus some of the obtained eigenfrequencies
are infinite and should be discarded. The remaining eigenfrequecies can then
be used to identify peaks at high frequencies. Further, the LPM response is
analysed in an extended frequency range looking for uncharacteristically large
values. If the tested LPM contains peaks above 1.5 times the maximum fitted
frequency and, at the same time, has absolute values higher than 100 times the
highest absolute target value, the LPM is discarded.

If an LPM fails one or more of the tests, the next best fitting order of the polynomial-
fraction function is used to create a new LPM model and the procedure is repeated. If
none of the initially crated LPMs pass the tests, a new set of LPMs is fitted using a
different weight function. The new weight function is obtained by randomizing the pa-
rameters ζ1, ζ2 and ζ3. Each initial parameter is multiplied by a random factor, which
is evenly distributed in the 0.67 − 1.33 range. Small changes in the fitting procedure
often lead to significantly different results, thus the randomization procedure can be
repeated until an LPM with satisfactory accuracy and stability has been established.

The proposed procedure produces stable LPMs that can be coupled to the bridge
structure. The approach is also stable for different soil stratification cases or bridge
layouts. However, the parameters used might need to be adjusted for some config-
urations. Naturally, the additional steps needed increase the difficulty in finding the
correct fit and randomization of the weight function means that there is some uncer-
tainty in the procedure. Overall, the stability of the system is highly dependent on the
time step size and the total simulated time period, with longer time steps and shorter
total time periods resulting in more stable systems. Therefore, the case analysed in
this work is a ’worst case scenario’, where the nonlinear wheel–rail interaction forces
require very short time steps, while the bridge itself is rather long, in turn requiring
long total time period for the vehicle to pass.
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7 Time-domain analysis of vehicles passing the bridge
at different speeds

The model is used to analyse the system behaviour when the track is excited by a
passing vehicle. The time-domain solution approach is used, with an LPM includ-
ing cross-coupling up to four footings away. In total, 100 randomly generated un-
even track profiles are created and each profile is then tested for three vehicle speeds:
30 m/s, 60 m/s and 90 m/s. The spectrum defined in Section 3.1 has been used,
and uniformly distributed phase angles have been generated for each case. Figure 13
shows the wheel–rail interaction forces as experienced by the leading vehicle wheel
converted into frequency domain. The solid lines show the overall average values from
all simulations, the dashed lines are 10% and 90% quantiles and the shaded area indi-
cates the limits of observed results. It can be seen that the amplitude of the interaction
forces corresponds to the vehicle speed. With increasing speeds higher amplitudes
of the force are excited. Further, it is evident that most of the excitation is due to
the unevenness of the track profiles. The amplitude of the interaction force increases
with frequency for all vehicle speeds, until an overall peak is reached in the 60–80 Hz
range, after which the accelerations start to decrease. A distinct peak is present at
50 Hz for the vehicle speed of 30 m/s, which contains no variation of the results.
The peak corresponds to the vehicle wheels passing over discrete sleepers supporting
the rail, which are placed 0.6 m apart. A similar peak can be observed for the vehicle
speed of 60 m/s at 100 Hz and is also present for the vehicle speed of 90 m/s at 150 Hz
(beyond the limits of the figure). Other distinct peaks are present for all speeds at the
very low 1–2 Hz frequency range. It is most likely caused by low frequency vibrations
caused by bouncing of the vehicle body combined with the vehicle passing over the
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26



pylons supporting the bridge deck.
Further, the accelerations of the bridge structure are analysed. Figure 14 shows

the accelerations obtained for Points A and B (see Figure 5). Overall, the excited
frequency ranges are very similar to those in Figure 13. The rail response at Point
B shows that the generated accelerations in the frequency range up to 30 Hz have
very low variation and are almost independent of the track profile. There are three
distinct peaks cantered around 10 Hz for the 30 m/s case, that correspond to time pe-
riod needed for two wheels of a single bogie to pass over the analysed point. The
peaks are spread through frequencies due to the Doppler effect. Similar peaks can
be also observed at 20 Hz for the 60 m/s and 30 Hz for the 90 m/s cases. Further,
with increasing frequency, the variation of the accelerations increases, especially for
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Figure 14: Accelerations for rail, deck and pylon for different vehicle speeds. Simu-
lations performed for 100 random rail unevenness profiles.
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vehicle speeds of 60 m/ and 90 m/s. The vehicle speed 30 m/s produces vibrations
that show much smaller variation in the whole analysed frequency range. Further, the
deck accelerations at Point A are analysed. Here, the overall obtained accelerations
are much smaller, when compared to the rail. However, the variation of accelerations
is higher and is present over a wider frequency range. Almost no variation of accel-
erations is observed in the very low 0–2 Hz frequency range. This is especially evi-
dent when analysing the deck displacements, as shown in Figure 15. Here the bridge
displacements are dominated by the semi-static bridge displacements caused by the
passing deadweight of the vehicle. It can be seen that with increasing speed higher
frequencies are excited, with decreasing contribution from the static displacements.
The effects of the track unevenness are more evident when analysing rail displace-
ments in the wavenumber domain at one instant of time, as shown in Figure 16. Here
the highest displacements are observed at very low wavenumbers that are outside the

Point B (deck)

0 5 10 15 20 25 30

 f [Hz]

0

0.5

1

1.5

| 
u

| [
m

]

10-4

Envelope 90 m/s

Envelope 60 m/s

Envelope 30 m/s

Mean 90 m/s

Mean 60 m/s

Mean 30 m/s

Figure 15: Displacements of the bridge deck for different vehicle speeds. Each simu-
lation was performed for 100 randomly generated rail unevenness profiles.

10-1 100 101

 k
x
 [rad/m]

100

| u
| [

m
]

Figure 16: Displacements of the rail in the wavenumber domain, at one instant of time
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generated rail unevenness range, and are caused by the semi-static bridge displace-
ments. The displacements observed for wavenumbers inside the unevenness range are
lower and are constantly decreasing with increasing wavenumber. Coming back to
Figure 14, the bottom sub-figure shows the accelerations of the bridge footing at Point
A. Here, the accelerations are once again lower. However, the overall results are very
similar to the deck behaviour, with large variations in the whole frequency range and
semi-static behaviour at very low frequencies.

8 Conclusions

A computational model for a coupled vehicle–bridge–soil system has been presented.
The model utilizes a multi-degree-of-freedom vehicle model, a bridge structure mod-
elled using beam finite elements combined with a layered track structure and a soil
modelled using the semi-analytical approach. Two solution procedures have been pre-
sented. They are needed in order to combine the semi-analytical soil approach and
vehicle–rail interaction. One of the solution procedures is the time-domain approach.
It is based on the use of a lumped-parameter-model (LPM) to recreate the soil be-
haviour in frequency domain, using a system of springs, dashpots and masses. The
approach is advantageous as the obtained solution can be directly added to already
existing finite-element matrices and the system solved in time domain. An alterna-
tive mixed-domain approach has also been introduced. Here the bridge–soil system is
solved in frequency domain, thus eliminating the need of an LPM. However, the ap-
proach requires an additional convergence procedure. Further, it has been found that
for the solution to converge, additional high-frequency filtering is needed, making the
system behaviour for high-frequencies imprecise. Overall, it can be concluded that us-
ing pure time-domain solution approach is advantageous when high frequency range
analysis is needed, provided a proper fit of LPM can be obtained. However, when only
the lower frequency range is of interest, the mixed-domain solution is sufficient.

Recreating the frequency domain behaviour of the soil using consistent LPMs re-
quires proper fit of the polynomial-fraction function. Further, to recreate the inter-
actions between separate footings and even between degrees-of-freedom of a single
footing, the structure of the dynamic stiffness matrix also needs to be recreated. Thus,
LPMs are used to model the direct and cross-coupling terms of the matrix. An analy-
sis investigating the effects of including additional coupling terms was performed. It
has been determined that modelling the cross-coupling terms is necessary for an ac-
curate solution. Including the cross-coupling up to three footings away significantly
improves the solution, with inclusion of terms further away becoming less important.
However, the overall improvements are limited and often modelling only the direct
terms of the system might be sufficient. Further, special care should be taken when
fitting LPMs over a wide frequency range requiring high order polynomial functions.
It has been found, that just ensuring the commonly used condition of no poles exist-
ing with positive real parts is not sufficient, even when using unconditionally stable
time integrations schemes or schemes with additional numerical damping. Therefore,
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additional LPM fitting procedure has been introduced, that, when calibrated correctly,
ensures a stable solution.

The effects of railway track unevenness to a multi-support railway structure was
analysed. For this purpose, 100 random track unevenness profiles were generated and
each of them tested for three vehicle speeds: 30 m/s, 60 m/s and 90 m/s. From the
obtained results, upper and lower limits of expected interaction forces and resulting
accelerations were determined in the frequency domain. It was found that most of the
observed vibrations in the 2–100 Hz range are generated by the wheel–rail interac-
tions. Another distinct peak in the interaction forces is generated by the vehicle wheel
passing over sleepers. Further, the effects of the moving vehicle mass can be observed
in the very low 0–2 Hz frequency range.

The created model offers a relatively fast computation times, especially when com-
pared to FE or BE solutions. The model could be useful in the early design stages of
a project, to quickly estimate the levels of predicted environmental vibrations, allow-
ing the testing of a wide array of configurations. It can be easily further expanded to
evaluate the vibration levels of the surrounding soil and, in turn, structures close to
the modelled bridge structure. Further, the methodology introduced is not limited to
the investigated cases and can be easily applied to similar systems involving structures
excited by traversing vehicles that are solved in time domain. The usage of time do-
main solution is beneficial, as nonlinearities can be easily introduced into the system,
e.g. to account for nonlinear ballast behaviour.
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The underlying soil has a significant effect on the dynamic behaviour of structures. The paper proposes a semi-analytical approach 
based on a Green’s function solution in frequency–wavenumber domain. The procedure allows calculating the dynamic stiffness 
for points on the soil surface as well as for points inside the soil body. Different cases of soil stratification can be considered, with 
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1. Introduction 

Proper evaluation of vibrations is a complex problem, which is especially hard to reproduce numerically. Vibration 
propagation through soil can be modelled using the Finite Element Method (FEM), but this approach requires 
modelling of large soil domains and special boundary conditions, and this leads to high computation times and 
cumbersome calculation procedures. For computational tools to be useful in practice—especially in the early design 
phase—when a large number of different cases need to be analysed, they have to be relatively fast. Therefore, more 
computationally efficient approaches are needed. 

One way of modelling the response of the soil is by using a semi-analytical approach, based on the Green’s function. 
The semi-analytical solution provides an analytical solution for the Green’s function if frequency–wavenumber 
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domain and afterwards a numerical inverse Fourier transform is performed. For the formulation used in this paper, a 
layer transfer matrix is used. The transfer matrix describes the displacements and traction relation between the top and 
the bottom of a single layer. The layer transfer matrix was developed by Thomson [1] and further expanded by Haskell 
[2]. The Green’s function approach has been commonly used for various problems concerning the vibrations of soil. 
Sheng and Jones [3] used it to model the vibrations propagating from a railway track placed on the soil surface. Further 
solutions for rigid surface footings were provided by Andersen and Clausen [4] and Lin et al. [5]. An alternative 
formulation to the Green’s function approach is the stiffness matrix approach by Kausel and Roesset [6]. This method 
still uses the same layer transfer matrix, however the solution is formulated in terms of stiffness not flexibility. 

While the Green’s function based model is well known, it is most commonly used to model structure–interaction 
through the soil surface. This work aims to provide an approach to finding the Green’s function between points not 
only on the soil surface, but also embedded inside the soil body. The obtained system can be modified in order to 
couple the soil with structures modelled using the FEM. The formulation of the solution is given in Section 2. Further, 
in Section 3, to illustrate the described approach, some analyses are carried out to evaluate how different foundation-
modelling approaches affect the surrounding soil behaviour. Finally, Section 4 list the main conclusions. 

Semi-analytical soil model 

1.1. Transfer matrix for layered soil based on Green’s function 

Consider two points: in or on a horizontally stratified half-space Point 1 placed at the coordinates ���� ��� ��� and 
Point 2 placed at	���� ��� ���. The traction �1 is applied at Point 1 and at time	��, while the displacement resulting from 
the load are investigated at Point 2 at time	��. The relation between the traction and displacement can be expressed 
using Green’s function, provided in time–space domain: 

 ������ ��� ��� ��� � � � � ������� � ��� �� � ��� ��� ��� �� � ��������� ��� ��� ������	���	���	���
�

��

�

��

�

��

��

��
.	 (1)

Unfortunately, an analytical expression for ��� cannot be found. To overcome this problem, a triple Fourier 
transformation is performed over two spatial coordinates (�� �) and time. The resulting equation is: 
 ������ ��� ��� �� � ������� ��� ��� ��� �������� ��� ��� ��, (2)

where ��� ��, ��� are the triple Fourier transforms of displacement, traction and Green’s function, respectively. 
Further, �� and �� are the wavenumbers in the respective horizontal coordinate directions and � is the circular 
frequency. The displacement and traction acting on the interface of a layer are combined in the state vector	����: 
 ���� � �������� ���������. (3)

The layer number is denoted by the first superscript,	�, while the second superscript, �, denotes the top interface of the 
layer, when equal to 0, or the bottom interface, when equal to 1. 

The expression for the Green’s function is obtained by solving the Navier equations in frequency–wavenumber 
domain. After some manipulation, the following expression is obtained, as described by Thomson [1] and Haskell [2]: 
 ���� � ������ � ������. (4)

Matrix �� is the transfer matrix and describes the relationship between displacements and tractions at the top and 
bottom of layer	�. A detailed description of the procedure to obtain the transfer matrix can also be found in the work 
by Sheng et al. [3] as well as Andersen and Clausen [4]. The second reformulation in Eq. (4) prescribes continuity of 
displacements and equilibrium of traction, between adjacent layers at interfaces. 
Following the same procedure, a relation between the soil surface ���� and the bottommost interface	���� can be found. 
Starting from Layer	� and going upwards through the layers, the following is obtained: 
 ���� � ���������� �	������. (5)

Now assume that a forced discontinuity in the displacement and/or traction occurs at an interface via the incremental 
state vector ����� as illustrated in Fig. 1. This results in the following state at the bottom of Layer	�: 
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 ���� � ���������� �	������� � ������. (6)
Including all the layers up to the soil surface, Eq. (7) can be reformulated into 
 ���� � ������ � ��������							�� � ���������� �	������. (7)

The stratum is assumed to overly a homogeneous half-space of soil. The relationship between the soil displacement 
and traction acting at the top of the half-space can be defined as: 
 ������ � ���������. (8)

The half-space is denoted as Layer	� � �, and ���  is the Green’s function for the half-space defining a relation 
between displacement and traction acting on the surface. The derivation of this expression can be found in Ref. [4]. 

The traction and displacements at the bottom of Layer � have to be equal to the traction and displacement at the top 
of Layer	� � �, as shown by Eq. (5). Combining Eq. (8) and Eq. (9), and further assuming that the traction applied to 
the soil surface and displacement discontinuity applied at Layer n are both equal to zero, the following is obtained: 

 �������
������� � �����

����� � ������������ � � ����
� ����

���� ���� � �
����
� � � ����

� ����
���� ���� � �

�
�����	�. (9)

This results in a relationship between the traction applied at the top of Layer n and the displacement on the soil surface: 
 ���� � ��������	� 									��� � �������� � ���� �������� � ������� �. (10)

The matrix ��� is the Green’s function for displacements on the soil surface caused by a traction applied at the top of 
the Layer	�. To calculate the displacements at lower layers, the original Eq. (4) is used. Further, similar relations can 
be established for a layered stratum over rigid bedrock. 

1.2. Coupling of the layered soil model to a finite element model 

The obtained Green’s function describes a relation between two points for traction and displacements in three 
directions (��� ��� �). Calculating a dynamic stiffness matrix for the soil that can be coupled with an FEM model to 
analyse soil–structure interaction (SSI) involves a number of steps: 
1. The Green’s function needs to be established for a sufficient number of wavenumbers �� and �� to ensure good 

coverage of the analysed soil body. This can be achieved by evaluating the Green’s function along a single axis in 
the wavenumber domain and rotating the result according to the needed combinations of �� and ��. 

2. The displacement at a point caused by a distributed load of unit magnitude centred on another point is found in 
frequency–wavenumber domain and converted to frequency–space domain by inverse Fourier transformation. This 
is carried out for every combination of two nodal points in which the FEM model interacts with the soil. 

3. The obtained � � � matrices, describing the relations between two points in three directions, are placed in a single 
matrix	� with dimensions	�� � ��, when � is the total number of SSI nodes in the system. 

4. Unit displacements are prescribed for each degree of freedom in the system and stored in matrix	��. If	� SSI nodes 
move together as a rigid body, the number of degrees of freedom associated with these points is reduced from	�� 
to	6. The unit displacement matrix size is	�� � � , where � is the number of degrees of freedom in the system, 
and	� � ��. 

5. The Green’s function describes the displacements due to the applied loads. Thus: 

 
Fig. 1. Assembly of multiple soil layers over a half-space. 
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 . (11)
The matrix  containing the acting forces from unit displacement can then be found. It is further integrated over 
the contact area between rigid bodies and soil (if any rigid bodies are present) to obtain the dynamic stiffness 
matrix . This can be achieved by pre-multiplying matrix  with the transposed unit displacement matrix: 

 . (12)
The final obtained dynamic stiffness matrix has the dimensions . To couple the soil with finite elements using 
the standard stiffness matrix , damping matrix  and mass matrix , the dynamic stiffness matrix for 
SSI is defined as: 

 . (13)
Further coupling with a structure above ground level can be obtained by classical FEM assembly. The final model 

is a computationally efficient solution that still considers fully coupled structure–soil system. 

2. Foundation modelling using the semi-analytical soil model 

2.1. Rigid and flexible surface footings 

A soil body excited by a surface footing is analysed. The surface footing is square, with a length of 2 m. The height 
of the footing is 0.6 m. It is constructed from concrete, for which the material properties are given in Table 1. The 
surface footing is modelled using two approaches.  

The first approach is to model the footing as a rigid body. In this case, the local deformations of the footing are not 
considered. Therefore, only the mass density is utilized, whereas the remaining material properties (Young’s modulus, 
Poisson’s ratio and damping ratio) are not used. In this case, the footing contact area is discretized into a number of 
points on the soil surface and, by using the procedure described in Section 2.2, an impedance matrix for 6 degrees of 
freedom is obtained. The six degrees of freedom include three translational and three rotational degrees of freedom. 
The footing mass and rotational mass moment of inertia are added to the corresponding degrees of freedom.  

The second approach is to model the footing using Mindlin shell finite elements with quadratic interpolation and 
selective integration. A description of the elements can be found in Ref. [7]. The interface between the soil and the 
footing is once again discretized into the same number of points. In this case each point has only three translational 
(or displacement) degrees of freedom, which are coupled with the nodes of the shell elements.  

Two different soil cases are tested. The first case considers a half-space of clay material (all the material properties 
are given in Table 1), while in the second case a half-space of sand is overlaid by a 3 m thick layer of clay. The 
Table 1. Materials used in the calculations. 

Material Young’s modulus (MPa) Poisson’s ratio (-) Mass density (kg/m3) Damping ratio (-) 

Clay 100 0.48 2000 0.045 

Sand 250 0.30 2000 0.050 

Concrete 34000 0.15 2400 0.010 

 

(a)                       (b)  
Fig. 2. Surface footing modelled as rigid (Case a) and flexible body (Case b), excited at 35 Hz. Soil stratification: 3 m layer of clay overlaying 
half-space of sand. Blue/yellow shades indicate positive/negative displacements in the z-direction. The red dot is the observation point for soil 
displacement analysis. 
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footings are excited by applying a unit moment around the y-axis, at every frequency. The behaviour of the footings 
and soil for one frequency is illustrated in Fig. 2. Further, the soil displacements are analysed at a point placed 4 m 
from the edge of the footing, on the x-axis (position shown in Fig. 2). The results are illustrated in Fig. 3. 

From Fig. 2 and Fig. 3 it can be seen that the two approaches provide very similar results. The flexible foundation 
produces somewhat higher excitation for lower frequencies, but the difference is not significant. Representing the 
surface footing as a completely stiff plate can be concluded to be a fair assumption in the considered frequency range. 
However, care should be taken as thinner footings might provide different results. 

2.2. Pile foundations 

A single pile foundation is analysed. A 5 m long pile is embedded 3 m into the soil body. The pile is modelled 
using three-dimensional beam elements with six degrees of freedom in each node. A detailed description of the 
elements is available in Ref. [8]. To couple with soil, the embedded part of the pile is discretized into SSI nodes for 
which the soil dynamic stiffness matrix is found. The connecting SSI nodes are modelled in three different ways: 
1. Each connecting node is a single point in the soil. It has three degrees of freedom which are later coupled to the 

pile. Therefore, rotational degrees of freedom of the pile are not coupled to the soil. 
2. For each connecting node, a horizontal rigid disc with the same diameter as the pile is created, illustrated in 

Fig. 4a. The disc is discretized into a number of points and the dynamic stiffness is obtained. In this case, the rigid 
disc has 6 degrees of freedom that are coupled to the translational and rotational degrees of freedom of the pile.  

3. Instead of the disk, a ring with same the diameter as the pile is created, see Fig. 4b. The ring is assumed rigid and 
later coupled to the six degrees of freedom of the pile. 

The same two soil-stratification cases as in previous subsection are used. The system is excited by placing a unit 
moment around the y-axis at the very top of the pile. The behaviour of the system with rigid discs and rings, excited 
at 45 Hz, can be seen in Fig. 4. Further, the displacements of the soil surface 3 metres from the pile are investigated 
(see Fig. 5). It is observed that different approaches produce significant differences in the behaviour of the system. 
The peaks, corresponding to the first eigenmode of the pile, are at 5.4 Hz, 10.8 Hz and 11.4 Hz, respectively. This 
could lead to dramatically different behaviour if used for a bigger system. The first approach, while computationally 

  
Fig. 3. Velocity dependency on frequency for a point placed 4m from the footing. The footing is modelled as a rigid or flexible plate. 

(a)                       (b)  
Fig. 4. Pile modelled with rigid disks (Case a) and rings (Case b), excited at 45 Hz. Soil stratification: half-space of clay. Blue/yellow shades 
indicate positive/negative displacements in the z-direction. The red dot is the observation point for soil displacement analysis. 
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faster compared the other two, underestimates the stiffness added to the pile by the soil. This is caused by the lack of 
rotational stiffness added from the soil. The second and third approaches produce results much closer to each other. 
However, to determine the most suitable approach, further validation should be carried out. Most likely, the exact 
choice of pile modelling approach should be determined depending on the particular modelling case. 

3. Conclusions 

A semi-analytical soil model is described in this work. A formulation for obtaining Green’s function between two 
points embedded at different depths in the stratum is provided. The semi-analytical model has some advantages when 
compared to modelling the same problem using an FEM based approach. This approach does not require complicated 
boundary conditions as infinite boundaries are already assumed in the formulation. Therefore, when optimized 
correctly, the semi-analytical approach is faster for a wide range of analyses. This formulation could be useful when 
considering various embedded foundation types or underground structures. 

Further, some cases of modelling foundations using the described numerical approach are presented. Surface 
footings are modelled assuming the footing to be rigid or flexible, modelling the footing using shell finite elements. 
It was found that the difference between the two approaches is not significant. However, caution should be taken when 
considering thinner and more flexible surface footings, as investigated by Iguchi and Luco [9]. 

Finally, pile foundations were analysed. Three different approaches of coupling the pile to the soil were considered. 
It was found that the coupling between the pile and the soil has a significant effect and that a proper model of the pile 
cross section interacting with the soil must be used. 
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Abstract. High-speed rails are an attractive alternative to other forms of intercity transporta-
tion. It is a fast, cost-efficient and environmentally friendly solution, which is being developed 
in various countries across the world. However, in order to be successful, high-speed rails need 
to transport the passengers as close as possible to the city centres. Therefore, railway tracks 
have to go through densely populated urban areas, which causes a number of issues. One of 
the biggest complaints from the inhabitants living near such infrastructures is the high vibration 
and noise levels caused by the passing trains. 

Unfortunately, the prediction of vibrations in nearby structures is difficult, as wave propagation 
from the vibration source to the structure is a complex phenomenon. The behaviour of the struc-
ture is highly dependent on the path along which the vibrations travel between their source and 
the building itself. Especially in the densely built urban environment, the wave propagation 
path can have different features, such as underground infrastructure, roads, pavements or even 
other nearby buildings. Such features might have a significant effect on the final excitation of 
the structure in question. 

This work aims to analyse how different features in the wave propagation path affect the exci-
tation of a structure. A numerical model is constructed to account for the track structure and 
the underlying soil. The model utilizes a finite-element model for the structures together with a 
semi-analytical model of the underlying soil. Different features in the wave-propagation path 
are introduced, and their effects are compared regarding the behaviour of the structure and the 
free-field. 
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1 INTRODUCTION 
Continued development of railway infrastructure causes some issues related to vibrations in 

nearby structures. To make the railways an effective form of passenger transportation the rail-
way stations need to be as close as possible to urban centres. This means that railway tracks 
need to go through densely built urban environments, causing unwanted vibrations in nearby 
structures. However, in situ testing of these cases is an expensive and time-consuming task 
which is sometimes even impossible to carry out. Therefore, computational prediction tools are 
needed to evaluate the effect on nearby structures. It is not an easy job as wave propagation 
through soil is a complex phenomenon that depends on a large number of unknowns. The 
ground between the source of vibrations and receiver point might often contain various obstruc-
tions. These obstructions might be on the ground surface or embedded inside the soil body, for 
example roads, footpaths, demolished building foundations, or sewer lines. This is especially 
true in a tightly built urban environment. 

One of the most commonly used approaches to model the soil body is the finite-element (FE) 
method. Using this method it is possible to model both the structures interacting with the ground 
and the ground itself. However, to avoid reflections from the boundaries, absorbing boundary 
conditions must be used, as in the work by Connolly et al. [1], or the FE model must be coupled 
to a boundary-element formulation, as in the work by Andersen and Nielsen [2], Nielsen et al. 
[3] or Andersen [4]. Hence, a semi-analytical soil model can be beneficial to use, especially if 
the modelled geometry is not very complicated. The semi-analytical approach requires less 
computational resources and is faster to compute, and infinite boundaries are already included 
in the formulation. The method is based on analytical evaluation of the Green’s function in 
frequency–wavenumber domain. The original layer-transfer matrix, used in the model, was de-
veloped by Thomson [5] and Haskell [6]. Further, the semi-analytical model is commonly used 
for problems involving wave propagation through soil. For example, Sheng et al. [7] used this 
method to analyse the vibrations from a simplified railway track placed on the soil surface. 

This work also uses the semi-analytical model to model the ground, which is later coupled 
to structures modelled using an FE approach. The aim is to analyse the effects of various ob-
structions in the wave propagation path. The effects of these obstructions in the wave path might 
be an important factor to consider when analysing the ground-borne vibrations, and often they 
are completely dismissed in this type of analysis. For this, a computational model was con-
structed that considers a railway track coupled to the underlying ground as described in Section 
2. Further, the analysed cases and parameters used are introduced in Section 3. Finally, the 
obtained results are presented in Section 4, and Section 5 contains the main conclusions. 

2 COMPUTATIONAL MODEL 
Problems regarding wave propagation through soil can be split into three main components: 

the vibration source, the propagation path and the receiver. Each of these elements has an effect 
on the overall system behaviour. In this paper, the vibration source is a railway track, which is 
introduced in Subsection 2.2. Further, the vibrations propagate through a layered soil for which 
a semi-analytical model is used as explained in Subsection 2.1. To reduce the number of varia-
bles, the receiver is only modelled as a rigid footing on the soil surface.  

2.1 Soil model and coupling to finite elements 
A semi-analytical approach is used to model the ground. In this case it is more advantageous 

compared to FE-based approaches due to lower computation times, which allows testing a wider 
variety of cases. The method is based on an analytical expression for the Green’s function in 
horizontal wavenumber–frequency domain: 
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 , , , , , , , , , , .	 (1) 

Equation (1) provides a relation between a load  applied at point 1 and the corresponding 
displacements  at point 2. The Green’s function	  is dependent on the horizontal wave-
numbers ,  the vertical coordinates ,  of both points, and the circular frequency	 . 

After establishing the solution, a numerical inverse Fourier transform is performed to obtain 
a solution in space–frequency domain. The method assumes that the soil is linear viscoelastic, 
composed of layers with perfectly horizontal interfaces and with a horizontal ground surface. 

To couple the semi-analytical model to the FE formulation of other parts, soil–structure-
interaction (SSI) nodes are used. By establishing Green’s function relations between these 
nodes, a flexibility matrix for the soil is obtained. Inverting the flexibility matrix provides the 
dynamic stiffness matrix for the soil,	 , which can then be added to the dynamic stiffness 
matrix of the FE-based parts,	 , to obtain an expression for the whole system: 

 						 		 ,							 iω ω , (2)

where  is the stiffness matrix,  is the damping matrix,  is the mass matrix, and i is 
the imaginary unit:	i √ 1. The calculations are then performed for the fully coupled system 
in frequency domain. A more detailed description of the soil model is available in the work by 
Andersen and Clausen [8], and coupling of multiple structures via the soil was discussed by 
Andersen [9] and Bucinskas et al. [10]. 

2.2 Railway track and embankment model 
The structure of the railway track has a great impact on how the vibrations are transferred to 

the soil body. Further, the presence of the track introduces secondary effects to the system such 
as waves travelling through the embankment and back coupling to the surrounding structures. 
Therefore, proper modelling of the track structure is important. 

To reduce the computational requirements of the model and decrease the computation time, 
shell elements were used to model the railway track and embankment. A cross-section of an 
embankment can be seen in Figure 1. A single plate was constructed to model the whole em-
bankment. Mindlin-Reissner shell finite elements were used with four nodes and linear Lagran-
gian interpolation of the displacements and bending rotations. Two types of elements were used: 
an element type with three layers to model the three-layered embankment, and an element type 
with four layers to model the sleepers together with the embankment. Using these element types, 
the embankment plate is assembled to model the sleepers and all layers of the embankment. 

Two rails are connected separately to the embankment. The rails are modelled as Euler-
Bernoulli beam elements with two nodes and cubic displacement interpolation. The rails and 
sleepers are connected through rail pads, which are modelled as a spring and damper system. 
Thus, the rails are discretely supported only at the positions where the sleepers are located. 

 
Figure 1: Railway track and embankment cross-section. 
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The railway embankment is a three-dimensional structure with a considerable thickness. 
Therefore, modelling the whole embankment as a single flat plate might not be sufficient. To 
obtain a more realistic model, the plate was placed at the mid-plane of the embankment and 
then connected to the soil through rigid links. The rigid link length is equal half of the thickness 
of the embankment. This way the lateral displacements and rotations of the embankment nodes 
were coupled to lateral displacements of the SSI nodes. The same approach was then used to 
connect the embankment and the rail pads. The rigid links were introduced into the FE matrices 
using Lagrange multipliers. This approach was not difficult to implement, as the FE matrix 
structure stayed unchanged. An example of the FE model of the track can be seen in Figure 2. 

Introducing rigid links to the system better represents the real structure, but this kind of 
formulation also has some disadvantages. The plate representing the embankment does not 
share nodes with the soil, and thus the number of degrees of freedom in the system increases 
significantly. Further, Lagrange multipliers also introduce additional constraints to the system, 
which leads to further increase of FE matrix sizes.  

3 ANALYSED CASE 
A rail track of 30.0 m length was modelled as described in the previous section. The em-

bankment has a width of 4.0 m and is composed of three layers: a 0.5 m thick subgrade layer, 
a 0.2 m thick sub-ballast layer, and a 0.3 m thick ballast layer. The material properties for these 
and other materials used are given in Table 1. The sleepers are embedded in the ballast layer, 
and they are placed at 0.6 m intervals along the track. The sleepers are constructed from con-
crete with dimensions 0.2 0.2 2.5 m3. The rails are made from steel and modelled with a 
rectangular 0.15 0.08 m cross-section, and the gauge is 1.4 m. The rails are connected to the 
sleepers via rail pads with stiffness 1.2∙108 N/m and damping 1.24∙105 Ns/m. 

Vibrations are measured on a rigid surface footing placed 20.0 m from the track structure. 
The rigid footing has a square shape with a side length of 3.0 m. The footing is assumed to be 
0.8 m thick and made from concrete. Therefore, the mass density of concrete is used to calculate 
the mass and mass moments of inertia, which are then added to the corresponding degrees of 
freedom of the rigid footing. 

 
Figure 2: Parts of the track structure. In blue: three layered embankment shell elements; in red: four layered  

(including sleepers) embankment shell elements; in green: rail beam elements; in grey: soil surface;  
in yellow: SSI nodes; in magenta: rigid links between soil–embankment and embankment–rail. 
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The whole rail track structure and the receiver footing are placed on a 4.0 m thick layer of 
clay which lies on top of a half-space of sand. This stratification was chosen because the rela-
tively soft layer of clay over the stiffer material (sand) “traps” the propagating vibrations in the 
upper soil layer, leading to higher excitation at the receiver position. 

The system is excited by placing a vertical unit load on one of the rails. It is placed in three 
different positions along the rail: Position 1—at the centre of the track in the longitudinal di-
rection; Position 2—6.0 m along the track from the centre; Position 3—12.0 m from the centre. 
In all of the positions, the load is acting on a node that is also connected to a sleeper through 
the rail pad. Using different positions allows analysis of the system response for cases in which 
the obstructions in the soil are not in the direct path of the propagating waves. 

Four different cases were investigated: 

 Free-field conditions. Nothing is placed between the rail track and the receiver footing. 
This case is used for comparison with other cases. 

 A rigid box is embedded between the track and the footing, 10.0 m from the track. The box 
dimensions are 3.0 3.0 3.0 m3. The top of the box is embedded 1.0 m from the ground 
surface. It is assumed that the box is filled with soil and that the density of the walls is 
close to the density of the surrounding soil. Therefore, the additional mass is not considered.  

 A single-lane road is placed on the ground surface between the source and the receiver, 
10.0 m from the track. The road is placed alongside the track and has the same length (30.0 
m) as the rail track. It is constructed from concrete. The dimensions are: width 4.0 m and 
thickness 0.3 m. The road structure is modelled using Mindlin-Reissner shell finite ele-
ments coupled to soil through SSI nodes. 

 A concrete pipe is placed alongside the rail track, 10.0 m from the track and embedded 
1.5 m into the soil. As in the previous case, the pipe runs alongside the track and has the 
same length. The pipe is modelled as a cylindrical tube with an outer diameter of 1.0 m 
and an inner diameter of 0.75 m. It is modelled as a finite Euler-Bernoulli beam coupled 
to the soil through SSI nodes. 

 Same as previous case, just this time the pipe is oriented at 45° angle to the rail track. The 
pipe centre is 10 m from the track. 

 Once again the same embedded pipe is used. In this case, the pipe is at 90° angle to the 
track, that is the pipe goes under the rail track and extends towards the receiver footing. 

4 THE EFFECT OF OBSTRUCTIONS IN THE WAVE PROPAGATION PATH 
The wave propagation path was analysed for the previously described six cases. The analysis 

was performed from 1 Hz up to 50 Hz, with 1 Hz intervals. The results are presented in Figures 
3 and 4. 

Material  Young’s modulus (MPa) Poisson’s ration (-)  Mass density (kg/m3) Damping ratio (-) 
Concrete 30000 0.15 2400 0.040 
Steel 210000 0.25 7900 0.040 
Ballast  100 0.35 1800 0.040 
Sub-ballast 300 0.35 2200 0.040 
Subgrade 120 0.35 2100 0.040 
Clay 80 0.48 2000 0.045 
Sand 250 0.30 2000 0.050 

Table 1: Materials and their properties used in the analysis 



Paulius Bucinskas and Lars V. Andersen 

Figure 3 shows the response of the soil surface excited at 15 Hz. All cases are shown for the 
load placed on the rail at Position 1. It is evident that the displacements of the soil are effected 
significantly by obstructions in the wave propagation path. The road surface forms a wave-
impeding barrier for the propagating surface waves, thus decreasing the displacement field over 
a large area. However, the effect at the receiver footing is rather small. Further, the embedded 
rigid box has a larger effect for the receiver footing, however it is localized to a small shadow 
area behind the box. The overall effect to the displacement is much smaller when compared to 
the road case. Further, all three cases of embedded pipes cause very different behaviour of the 
system. For the pipe laid along the track, the effects are very similar to the road case—the 
displacement field is reduced in a large area, but the effects at the receiver footing are small. It 
can be seen that obstructions have less impact when the obstructions are laid orthogonally to 
the propagating waves. This is illustrated in the next case—embedded pipe at 45° angle. In this 

 
Figure 3: Steady state soil surface response for a load applied on the rail at the centre of the track, excited at 

25 Hz. Blue/yellow shades indicate positive/negative displacement in vertical direction. The red dots on the rail 
show the three positions in which the load is applied within the analysis. In this case, the load is only applied in 
the first point. Top left: free-field; top right: road placed between the track and receiver; middle left: embedded 
rigid box; middle right: embedded pipe along the track; bottom left: embedded pipe at 45° angle to the track; 

bottom right: embedded pipe at orthogonal to the track. 
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case there is a significant reduction of displacements at the receiver footing, while the displace-
ments are increased directly in front of the embedded pipe. Finally, the last case, the embedded 
pipe orthogonal to the track, provides the most significant reduction of displacements for the 
receiver footing. However, similar to the embedded box, the effects are localized to a smaller 
area and the surrounding displacement field is largely unaffected. 

Further, Figure 4 shows the absolute velocities at the receiver position for all cases. Overall 
it can be seen that introducing obstructions in the wave propagation field have the highest effect 
in frequency ranges between 7–40 Hz, while frequencies up to 7 Hz are almost unaffected. In 
the 7–30 Hz range, the obstructions tend to reduce the velocities at the receiver position when 
compared to the free-field case. However, in the 30–40 Hz range the effects are not as evident. 
In this range, some cases—especially the road—tend to increase the velocities significantly.  

(a)                       

(b)                     

(c)        
Figure 4: Response at the receiver for obstructions in the wave propagation path: a) load Position 1, applied on a 

rail at the centre of track; b) load Position 2, applied on a rail 6.0 m from the centre of the track;  
c) load Position 3, applied on a rail 12.0 m from the centre of the track. 
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Further, Figure 4 shows that pipe running along the rail track has a very small effect when 
the load is placed at Position 1. However, this effect increases when the load is placed further 
from the track centre. A completely opposite behaviour is observed with the pipe placed or-
thogonally to the track—the effects become smaller when the centre the load is placed further 
away from the track. This shows that the angle at which the waves reach the obstruction is a 
very important factor in the analysed system. The road case has a similar effect as the pipe 
placed along the track, but the overall effects across all loading positions are higher. This is due 
to larger stiffness and mass introduced to the system by the road, when compared to an embed-
ded pipe. However, in the 30–40 Hz frequency range, the changes in absolute velocity relative 
to the reference case become positive, that is the velocities at the receiver increase when com-
pared to the free-field case. Finally, the rigid box has a more localized effect. For loading in 
Positions 1 and 2, the effects are positive and rather large, but as soon as the box is not in the 
direct wave path between source and receiver (loading at Position 3) these effects disappear 
almost completely. 

5 CONCLUSIONS 
A presentation has been given of ground vibration due to harmonic excitation. Analysis was 

performed to investigate the effects of obstacles placed inside the soil body or on the ground 
surface between the source and the receiver. The load was applied on a railway track and the 
response was checked on a surface footing. Five different cases were tested: an embedded rigid 
box (simulating an infilled tank or former cellar), a segment of a single-lane road (or a large 
footpath) running parallel to the rail track on the soil surface, and three different orientations of 
an embedded pipe in the wave propagation path. The cases were compared to the free-field 
response with no obstacles in or on the ground. A computational model was created using an 
FE formulation to model the rail track structure and the obstructions, while the soil was mod-
elled using a semi-analytical approach. 

The results show that obstruction in the wave propagation field does cause significant 
changes in the overall system behaviour. In most cases, the obstacles have a mitigation effect, 
thus reducing the absolute velocities, especially within the 7–30 Hz frequency range. However, 
in some cases, the response increases within the 30–40 Hz frequency range. The effects of the 
structures considered in this paper are mostly seen at higher frequencies. This can be explained 
by the relatively small size of the considered structures, where at lower frequencies the wave-
length in the soil body is much longer than the dimensions of the structures. Therefore, the 
effects at low frequencies are very small. 

Future work could investigate these effects for a wider frequency range together with differ-
ent soil-stratification cases. Further, analysis could be performed for different obstructions to 
the propagating waves that are commonly present, such as: tree roots, large boulders, under-
ground cables, etc. Also more in-depth analysis of different orientations of the structures con-
sidered might reveal different effects caused to the system. 
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1 INTRODUCTION 

Underground metro lines are an essential part large 
urban centres, as they allow fast and efficient trans-
portation for a large number of passengers. There-
fore, new lines are constantly being constructed and 
old ones upgraded across the world. However, rail 
lines underneath a densely built city environment 
can lead to serious problems caused by ground borne 
vibrations. Hence, numerical models capable of pre-
dicting these effects are needed. This becomes espe-
cially important in the early project design phases, 
where the uncertainty regarding the soil conditions 
and specifications of the structure are high. Thus, 
computationally efficient models are required that 
can be used to evaluate larger number of cases.  

Over the years, several models have been pro-
posed to analyse railway tunnels. The most com-
monly used approaches are the finite element (FE) 
and the boundary element (BE) methods. These 
methods offer great flexibility to model different 
conditions and structure geometries, they can also be 
combined to create coupled FE-BE solutions. An 
example of coupled FE-BE model can be found in 
the work by Andersen & Jones (2006). However, 
these approaches can be extremely time consuming.  

To reduce the computation times, so-called 2.5-
dimensional models are often used, in which Fourier 
transformation is carried out in the spatial direction 

along the tunnel. François et al. (2010) as well as 
Rieckh et al. (2012) introduced 2.5-dimensional BE 
tunnel models in horizontally layered soil. The work 
assumed a straight tunnel with infinite extent in one 
direction. Thus, the soil response can be split be-
tween separate wavenumbers, allowing efficient 
parallel computations.  

Alternatively, modelling the soil using a semi-
analytical approach can also greatly reduce the com-
putational times. The pipe-in-pipe model by Forrest 
& Hunt (2006) uses a full-space Green’s function to 
model the soil behaviour. The obtained solution is 
computationally efficient and reproduces the most 
important phenomena in the system. However, for 
shallow cut-and-cover type tunnels, the full-space 
assumption might not be sufficient. 

This work uses a Green’s function calculated for 
a half-space as described by Andersen & Clausen 
(2008), this way taking into account the effect of soil 
surface. The semi-analytical solution is then coupled 
with FE, which models the tunnel structure, similar 
to the models of railways and surface structures pre-
viously proposed by the authors (Persson et al. 2017; 
Bucinskas et al. 2016; Bucinskas & Andersen 2017).  

The modelling approach is described in detail in 
Section 2. Using the described approach, a number 
of tunnel models are created and presented in Sec-
tion 3. These models have varying degree of com-
plexity to investigate the most important modelling 
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ABSTRACT: Underground railway lines generate a large amount of ground-borne vibrations, which has neg-
ative effects to the inhabitants and structures nearby. However, due to the large number of variables affecting 
the generation and propagation of vibrations, numerically predicting these effects is a complex task. When ac-
counting for all factors, the numerical models become complicated to produce and take long time to compute. 
Alternatively, severely simplified models do not provide satisfactory precision. The aim of the paper is identi-
fication of the most important factors when modelling the propagation of vibrations from railway tunnels. 
Identifying the most important parameters allows creation of computational models that account for the most 
significant phenomena, while reducing the computational complexity as much as possible. For this task a 
number of different embedded railway tunnel models are created. To account for soil–tunnel interactions a 
semi-analytical soil model is used, which is based on the transfer matrix method. The tunnel structure is mod-
elled using finite elements which are coupled to the semi-analytical soil solution, thus achieving a fully cou-
pled structure–soil model.  



parameters of the system. Results obtained are then 
presented in Section 4. Finally, the conclusions are 
given in Section 5. 

2 MODELLING APPROACH 

2.1 Semi-analytical soil model 

A semi-analytical model based on the Green’s func-
tion is used to model the soil. The soil stratum is as-
sumed to be homogeneous and visco-elastic with 
hysteric damping. Further, the surface and the inter-
faces between layers are perfectly horizontal. To as-
semble multiple soil layers and obtain the Green’s 
function, the transfer matrix method is used, as orig-
inally proposed by Thompson (1950) and Haskell 
(1953).  

An analytical expression for the Green’s function 
is only obtained after transforming the solution into 
frequency and wavenumber domain over the two 
horizontal directions, while keeping the vertical co-
ordinates in spatial domain. Due to the approach 
used, it is only possible to apply external forces on 
the interfaces between two layers or on the soil sur-
face. Therefore, additional interfaces need to be cre-
ated for every depth where the structure and soil in-
teract. The Green’s function is then calculated for all 
combinations of created interfaces. After obtaining 
the Green’s function, a unit load is applied at the 
origin of the coordinate system and the correspond-
ing displacements calculated for a range of wave-
numbers. A so-called bell-shaped unit load is created 
using a two-dimensional Gaussian distribution. This 
shape of unit load is advantageous as it approaches 
zero for high wavenumbers, compared to a point 
force which provides a constant Fourier coefficient 
in the whole wavenumber domain. This results in a 
solution where the response of the system at high 
wavenumbers is also approaching zero, thus acting 
as a filter. Two bell-shaped loads applied on nearby 
nodes and the overlap of the loaded areas are shown 
in Figure 1. It should be noted that the loads can on-
ly be distributed over the horizontal coordinates, 
even when a horizontal load is applied. 

Further, double inverse Fourier transformation is 
applied to transform the solution into frequency-
spatial domain. The domain itself is discretized into 
a number of structure-soil interaction (SSI) nodes, 
where the response is of interest. To obtain the flex-
ibility matrix, a unit load is placed on a single node 

and the resulting response is investigated at all 
nodes. After repeating the process for all SSI nodes 
a flexibility matrix of the system is obtained. Final-
ly, inverting the flexibility matrix the dynamic stiff-
ness matrix Ds of the soil is obtained. 

2.2 Sub-structuring approach to model cavities 

The semi-analytical soil model offers an efficient 
approach when modelling the soil behaviour. How-
ever, a tunnel is a rather complex structure that 
among other things involves excavation of a sub-
stantial amount of material from the continuous stra-
tum. That could significantly influence the overall 
system behaviour. Unfortunately, directly modelling 
cavities inside the soil is not possible with the used 
semi-analytical soil model.  

Therefore, the soil–tunnel system is divided into 
sub-structures. The continuous soil stratum is mod-
elled using the semi-analytical approach, while the 
volume of the cavity inside the soil is discretized us-
ing solid FEs with the material properties of the soil. 
The cavity inside the soil can then be recreated by 
subtracting the FE substructure from the continuous 
stratum. Further, additional shell FEs are added to 
the exterior of the cavity to model the tunnel lining. 
The approach is illustrated in Figure 2.  

The dynamic stiffness matrix of the system be-
comes: 

Dfull= �Ds
11

Ds
12

Ds
21

Ds
22

� - �Dc
11

Dc
12

Dc
21

Dc
22

� + �Dl 0

0 0
� , (1) 

where Ds and Dl is the dynamic stiffness matrices of 
the cavity and tunnel lining respectively. The super-
script 11 denotes nodes on the outer boundary of the 
tunnel, 22 are nodes inside the tunnel, and 21/12 are 
the coupling terms. The dynamic stiffness matrices 
of the FE parts are calculated from standard stiff-
ness, K, damping, C, and mass, M, matrices. The 
dynamic stiffness matrix for the tunnel lining in-
cludes linear viscous damping: 

Dl = Kl – ω2
Ml + iωCl, (2) 

where ω is the circular frequency and i is the unit 
imaginary number. A hysteric damping model is 
used for the soil, where damping is independent of 
the frequency. Therefore, the dynamic stiffness ma-
trix for the cavity becomes: 

Dc=Kc–ω2
Mc+iCc. (3) 

 

Figure 1. Two bell-shaped loads applied on nearby SSI nodes 
 

Figure 2. Sub-structuring approach to model a tunnel. 



To properly couple both approaches, additional 
considerations are needed. Firstly, the SSI nodes in-
side the stratum are placed in the exact same posi-
tions as the nodes in the FE sub-model. Further, the 
bell-shaped load radiuses are directly related to the 
element size of the FE, such that the area loaded by 
the SSI nodes in an interface would be equal to the 
interaction area between the two sub-models. Eight-
node solid FEs are used to model the soil inside the 
cavity and four-node Mindlin shell elements are uti-
lized to model the tunnel lining. Practice showed 
that elements with linear interpolation work better 
with the semi-analytical soil model, compared to el-
ements with quadratic interpolation, as all nodes in-
side an equal-sided element distribute the stiffness 
evenly, without additional weighting depending on 
the position of the node inside the element. This way 
the obtained dynamic stiffness matrices better repre-
sent the results from the semi-analytical soil model. 

The sub-structuring approach encounters some 
problems when modelling cavities inside the soil, 
without the additional stiffness from the tunnel lin-
ing. Most likely the problems arise due to the differ-
ences in the two modelling approaches. The two ap-
proaches are especially different when dealing with 
horizontal forces. As already mentioned, the semi-
analytical model distributes the loads over horizontal 
interfaces, thus leading to somewhat different behav-
iour in vertical and horizontal directions, while in 
the FE method all directions are handled in the same 
manner. Further, the convergence between the two 
approaches also differs—poor discretization tends to 
underestimate the stiffness in the semi-analytical ap-
proach, while it is generally overestimated in the FE 
method. To an extent these problems can be avoided 
by properly discretizing the modelled structure.  

Further, the damping values obtained in the stra-
tum are often very close to the damping of the FE 
cavity part. Thus, when subtracting the two sub-
structures, the damping can become extremely small 
or even negative for direct terms. That leads to un-
physical behaviour of the system. To avoid these 
problems, the damping term Cc in Equation 3 was 
not used in the computations. The accuracy of the 
obtained results is somewhat reduced. However, it is 
assumed to be insignificant, especially when investi-
gating the excitation on the soil surface. 

3 ANALYSED CASE 

A cut-and-cover type tunnel is investigated in this 
paper. Construction of this type of tunnel involves 
digging a trench in which the structure is constructed 
and then covered back with soil. Cut-and-cover tun-
nels are easy to construct and are commonly encoun-
tered in the urban environment. Further, due to the 
relatively shallow depth, the excitation of the tunnel 
can lead to high vibrations on the soil surface.  

The modelled tunnel structure has a square pro-
file, with the width and the height both equal to 
4.9 m. The tunnel lining is 0.5 m thick and con-
structed from concrete (material properties used are 
given in Table 1). The total length of the modelled 
structure is 49.7 m to minimize the effects of the 
ends of the structure. It is embedded by 3.1 m from 
the soil surface to the tunnel crown or 8.0 m from 
the soil surface to the tunnel floor. The structure is 
excited by a unit vertical force applied on the tunnel 
floor in the centre of the structure.  

Analysis is performed within the frequency range 
1–50 Hz. To ensure a sufficient number of elements 
to model wave propagation accurately, all FEs are 
created with a mesh size of 0.7 m, which ensures at 
least nine elements per S-wavelength at 50 Hz. Four 
different cases are tested: 
● Full model—the tunnel is modelled as described 

in Section 2. The system is divided into three sub-
structures: the continuous soil stratum modelled 
with the semi-analytical soil model, cavity discre-
tized into solid FEs and tunnel lining modelled 
with shell FEs. The unit force is equally divided 
over 4 nodes, loading a 0.7×0.7 m2 square in the 
middle of the tunnel. 

● Tunnel lining—the full model is simplified by 
removing the solid FEs that model the cavity. In 
this case only the tunnel lining is modelled with 
shell FEs and coupled to the semi-analytical stra-
tum solution. 

● Beam—the tunnel-lining model is further simpli-
fied by replacing the shell elements with three-
dimensional beam elements. In this case a single 
beam is placed along the centre line of the tunnel, 
with the corresponding cross-sectional properties. 
The excitation force is placed on a single node at 
the centre of the beam. 

●  Only soil—reference case. No structure is cou-
pled to the semi-analytical soil model. The load is 
distributed the same way as in the full case. 
The soil is modelled as a half-space of drained 

stiff sand, with a P-wave speed of 580 m/s and an S-
wave speed of 310 m/s.  

Two dispersion diagrams for these soil conditions 
are shown in Figure 3. The dispersion diagram on 
the left shows the vertical soil response from a verti-
cal load applied on the soil surface, while the 
dispersion diagram on the right is the soil surface re-
sponse from a vertical load applied at 8.0 m depth, 
i.e. where the tunnel floor will be placed.  

Comparing the two diagrams it can be seen that in 
both cases the response is dominated by Rayleigh 
waves (R-waves). Thus, a strong response of the 

Table 1. Material properties  

Material Young’s 
modulus 
(MPa) 

Poisson’s 
ratio (-) 

Mass density 
(kg/m3) 

Damping ra-
tio (-) 

Sand 250 0.30 2000 0.045 
Concrete 30000 0.15 2400 0.040  



ground surface can be seen at combinations of the 
wavenumber and frequency corresponding to the 
dispersion line of the R-wave. However, when the 
force is embedded, the response is spread out 
through a wider wavenumber range. 

4 RESULTS 

4.1 Soil surface response over frequencies 

The response of the soil is investigated at four points 
on the soil surface. The most complex model, i.e. the 
full tunnel model, is used as the reference for the 
correct system behaviour, investigating how differ-
ent simplifications affect the soil response. Figure 4 
shows the soil surface response at four observation 
points. The positions of the points can be seen in 
Figures 5 and 6. 

Figure 4a shows the absolute vertical displace-
ments on the soil surface directly above the excita-
tion point inside the tunnel (the positions of observa-
tion nodes can be also seen in Figures 5 and 6). It 
can be seen that introducing a tunnel structure inside 
the soil significantly influences the response, when 
comparing with the only soil case.  

Further, modelling the tunnel with or without the 
cavity does not influence the results significantly. 
Especially, the responses observed in the different 
models are similar at higher frequencies. However, 
the differences between the simple beam model and 
more complex models that model the tunnel lining 
with shell elements are quite significant. The beam 
model predicts a distinct peek at around 28 Hz, 
which is not predicted in the other cases. This could 
lead to an overestimation of the response in the mid-
dle frequency range, when the simplified tunnel 
model is utilized.  

   
Figure 3. Dispersion diagrams for vertical soil surface displacement. On the left—from a vertical load applied at the soil surface, 
on the right— from a vertical load applied at 8.0 m depth. Lines indicate P-waves (─ ─), S-waves (─ ∙ ─) and R-waves (──). 
Darker colors indicate higher response. Colors in both plots are not on the same scale. 

 

 
Figure 4. Absolute vertical soil surface displacements at selected observation points: a—directly above the excitation point in the 
tunnel, b—12.5 m away orthogonally to the tunnel, c—25.0 m away orthogonally to the tunnel, d—20.0 m along the centre line of 
the tunnel. The point positions are illustrated in Figures 5 and 6. 
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Further, Figure 4b shows the soil surface re-
sponse 12.5 m away from the tunnel perpendicular-
ly. The overall behaviour is very similar to that in 
Figure 4a, with both the full model and the tunnel-
lining model showing very similar overall behav-
iour. In this case, the beam model shows better 
agreement in very low (up to 5 Hz) and high (above 
40 Hz) frequency ranges. However, at middle fre-
quencies the differences are still large. This trend 
continues with distance increased up to 25.0 m away 
from the tunnel, as shown in Figure 4c. The simple 
beam model shows even better agreement with the 
more complex models. However, the middle fre-
quency range is still represented poorly. 

Figure 4d shows the vertical soil surface dis-
placements 20.0 m away from the excitation point 
along the direction of the tunnel. It is evident that in 
this direction the tunnel model is very important in 
the frequency range above 5 Hz, when compared 
with the only-soil case. Once again, the beam model 
has a significant peak at around 28 Hz, with poor re-
sults in the middle frequency range. 

When comparing all four observation points, it 
can be seen that both the full and lining-only models 
provide very similar results for all cases. The beam 
model is not able to reproduce the same behaviour, 

especially at medium frequency ranges, indicating 
that modelling the tunnel as a single beam is an 
oversimplification of the system. However, exclud-
ing the cavity inside the tunnel does not have a sig-
nificant influence. This could be used to simplify the 
computational model.  

4.2 Displacement field of surrounding soil 

To investigate the effects of the cavity inside the 
soil, full and just tunnel lining cases are investigated 
in more detail. The soil displacements are observed 
on a 30×30×18 m3 box is placed around the tunnel 
structure and the response calculated at two frequen-
cies: 10 Hz and 50 Hz. 

Figure 5 shows the absolute vertical soil dis-
placements at 10 Hz. The displacement fields for the 
investigated cases are almost identical, except the 
zone around the tunnel excitation point. Here the full 
model predicts somewhat higher overall displace-
ments, while the zone with large displacements is 
more localized within the tunnel-lining-only model. 
Further, the waves are quickly attenuated by the tun-
nel structure and mostly propagate away from the 
structure. Similar behaviour is seen in Figure 6, 
where the displacement field is illustrated at 50 Hz. 

                 
Figure 6. Field response at 50 Hz. On the left—full model; on the right—model with only tunnel lining present. Dark and light 
shades indicate negative and positive displacement in the vertical direction. Nodes show the positions of observation points used in 
Figure 4. 

                 
Figure 5. Field response at 10 Hz. On the left—full model; on the right—model with only tunnel lining present. Dark and light 
shades indicate negative and positive displacement in the vertical direction. Nodes show the positions of observation points used in 
Figure 4. 



Once again, the two approaches provide very similar 
displacement fields further away from the zone 
around the excitation point. In this case the soil dis-
placements above the tunnel have completely oppo-
site phase angles. This illustrates that the effects 
from the cavity are present in the nearfield and 
quickly disappear further away from the structure. 

5 DISCUSSION AND CONCLUSION 

A computational model to simulate the behaviour of 
a tunnel structure and the surrounding soil was pre-
sented. The proposed method combines a semi-
analytical soil model with the FE method which is 
used to model the cavity inside the tunnel as well as 
the tunnel lining. A computationally efficient system 
that can be used to analyse large numbers of cases is 
obtained. Due to the differences in the two model-
ling approaches, i.e. the semi-analytical method and 
the FE method, some difficulties can arise when 
modelling cavities without the supporting structure. 
Therefore, further investigation of the proposed 
methodology is needed. However, adding the sup-
porting structure (in this case the tunnel lining) sta-
bilizes the system and provides satisfactory results. 

Using the described methodology, a cut-and-
cover type tunnel was modelled. Several different 
models of the tunnel structure were investigated, 
with varying degree of simplifications, focus of the 
analysis being the vertical response of the soil sur-
face. It was determined that modelling the cavity in-
side the soil is not essential, as the model with only 
the tunnel lining provides similar results with signif-
icantly lower computational effort. However, when 
considering the displacements close to the excitation 
point, or when a bigger cavity is present in the soil, 
the effects from the cavity might become more im-
portant. Further, a very simple model that models 
the whole tunnel as a single beam did not provide 
satisfactory results. Especially, it overestimates the 
response in the middle frequency range around 
25 Hz. Thus, the beam model provides poorer results 
than a model with no tunnel at all, i.e. with soil only. 
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1 INTRODUCTION 

Computational modelling of ground-borne vibra-
tion is a complex and time-consuming task. Various 
computational approaches are available, from very 
simple analytical approaches to complex three-di-
mensional model based on the finite element (FE) 
method. The analytical approaches simplify the mod-
elled systems to a large degree, making their use ra-
ther limited, while the more complex models are lim-
ited by the large computational effort needed. 
Therefore, if an estimation of the environmental vi-
brations is required, the computational models are 
most often only used in the later design stages. Surro-
gate models allow representing the complex compu-
tational model through a relatively simple and quick-
to-compute emulator of the results, making them suit-
able for use in the early project design stages. 

To create the surrogate model, a data set of high 
quality is needed, provided by the so-called ‘truth 
model’. In this paper, the truth model combines a 
semi-analytical soil model with an FE model of the 
structure. The soil is modelled using the transfer-ma-
trix method as described by Thompson (1950) and 
Haskell (1953). To combine the FE structure with the 
soil, the approach previously described by Bucinskas 
& Andersen (2017) is used. Further, the rigid surface 
footings of the building are modelled as described by 
Andersen & Clausen (2008). The obtained computa-
tional model is relatively quick to compute, allowing 
easy testing of different surrogate modelling ap-
proaches.  

The Kriging method is used to create the surrogate 
model, as originally described by Krige (1951). The 
method allows individually adjusting the behaviour 
of each variable of the modelled parameter space, 
leading to a more precise surrogate model. Further, 
the used data set has a large effect in the overall pre-
cision of the surrogate model. Data can be obtained 
from experimental measurements or from previously 
performed numerical simulations. In any case, the 
most accurate surrogate models are achieved by cre-
ating a data-sampling plan, for which the computa-
tional model is used. This way, the obtained surrogate 
model can fill the parameter space well. That is, the 
behaviour of the system is represented accurately 
through the modelled parameter space. Creation of a 
space-filling sampling plan and fitting of the surro-
gate model is described by Forrester et al. (2008). The 
described methodology is also used in this paper. 

2 METHODOLOGY 

2.1 Coupled soil–structure model 

A surrogate model requires a data set, which can 
be used to fit the model. In this case, a coupled soil-
structure computational model is used to obtain the 
truth model that generates this data set.  

The soil is modelled using a semi-analytical ap-
proach, utilizing the Green’s function. The soil body 
is assumed to behave elastically, with perfectly hori-
zontal interfaces between the soil layers and perfectly 
horizontal soil surface. The analytical solution to the 
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Green’s function is obtained in the frequency–wave-
number domain. Here, only the horizontal coordi-
nates (x and y-coordinates) are transformed into 
wavenumbers, while the vertical coordinate (the z-co-
ordinate) is left in the spatial domain. The expressions 
for the Green’s function tensor G in the frequency 
wavenumber domain is: 

𝐔 𝑘 , 𝑘 , 𝑧 𝐆 𝑘 , 𝑘 , 𝑧 , 𝑧 𝐏 𝑘 , 𝑘 , 𝑧 , (1)

where U is the displacement vector for the receiver 
point, P is the load applied at a source point, kx and ky 
are the horizontal wavenumbers, and zs and zr are the 
source and receiver depths, respectively. To obtain 
the Green’s function, the layer-transfer matrix 
method is utilized, assembling the layers using a flex-
ibility-based approach. Hysteric damping is used, 
making the Young’s modulus 𝐸 of the soil complex: 

𝐸 𝐸 1 i sign 𝜔  𝜂 , (2)

where 𝜂 is the loss factor and sign 𝜔  is the sign of 
the angular frequency. After the Green’s function has 
been obtained, it is transformed back into frequency–
space domain by discrete inverse Fourier transfor-
mation. 

To couple the structure to the soil, the dynamic 
stiffness matrix for the soil is needed. Therefore, the 
interface between the structure and the soil is discre-
tized into a number of structure–soil interaction (SSI) 
nodes. Then, a load is applied at each node and the 
resulting displacements observed at all nodes, using 
the previously obtained Green’s function. Placing 
these results into a matrix form, the global flexibility 
matrix 𝐆  of the system is obtained. Then, the global 
stiffness matrix of the soil can then be obtained by 
simply inverting the flexibility matrix: 

𝐊 𝐆 . (3)

Further, if rigid objects interacting with the soil are 
modelled, the stiffness matrix is concentrated by add-
ing the contributions of discrete nodes together for 
each degree of freedom of the rigid body. 

The structure interacting with the soil is modelled 
using finite elements. In this case, two types of ele-
ments are used: Euler-Bernoulli beam elements and 
Mindlin-Reissner shell elements. The beam elements 
have six degrees of freedom per node (three transla-
tional and three rotational), while the shell elements 
have five degrees of freedom per node (three transla-
tional and two rotational around local x and y-axes). 
Since the soil is modelled in the frequency domain, 
stiffness K, mass M, and damping C matrices are 
transformed into the dynamic stiffness matrix 𝐊 : 

 𝐊 𝐊 iω𝐂  ω 𝐌. (4)

The dynamic stiffness matrix 𝐊  of the coupled soil-
structure system can now be assembled as: 

𝐊
𝐊 , 𝐊 ,

𝐊 , 𝐊 , 𝐊
, (5)

where subscript ‘a’ indicates the degrees of freedom 
of the structure ‘attached’ to the soil and subscript ‘n’ 
the degrees of freedom “not attached” the soil stra-
tum. After the dynamic stiffness matrix has been as-
sembled, the system can be solved using standard FE 
method approach in the frequency domain. 

Due to the semi-analytical approach used to ac-
count for the soil, the proposed computational model 
offers relatively short computation times. This is use-
ful when testing surrogate models. A faster computa-
tional model can be used to determine the best ap-
proach of fitting the surrogate model, before carrying 
out expensive and time-consuming detailed FE anal-
ysis or carrying out on-site measurements. 

2.2 Surrogate model  

A surrogate model recreates the behaviour of a 
modelled system utilising a number of data points 
where the real system behaviour is known. Intui-
tively, more data points should lead to a more precise 
surrogate model. However, the distribution of the data 
points throughout the design space is also extremely 
important. Ideally, the design space could be filled 
creating an n-dimensional grid of points, but this ap-
proach quickly becomes impractical with increasing 
number of variables (dimensions of design space). In 
this paper, the sampling plan is created using Latin 
Hypercube sampling. Firstly, a number of random 
samples are created which are then tested to deter-
mine the most space filling sampling plan, as de-
scribed by Forrester et al. (2008). 

To create the surrogate model, the Kriging method 
is used. Firstly, the Quantity of Interest (QoI) Y at a 
number k of sampling points (according to the sam-
pling plan) is found using the computational model: 

𝐘 𝑌 𝐱 , 𝑌 𝐱 , … , 𝑌 𝐱 , (6)

where each input variable x is an n-dimensional vec-
tor. The Kriging method utilizes the correlation of 
points according to the basis function: 

cor 𝐱 , 𝐱 exp 𝜃 𝑥 , 𝑥 , . (7)

By changing the fit factors 𝜃  and 𝑝 , the surrogate 
model can be adjusted to fit the data. In this work, the 
factor 𝑝  is constant and equal to 2, leading to a 
smooth correlation between data points. However, the 
factor 𝜃  is adjusted to fit the surrogate model to the 
truth model. This factor can be interpreted as a meas-
ure of how ‘active’ a variable is in the model. Thus, 
properties that have a high effect on the system be-
haviour will have a higher 𝜃  factor. The correlation 
matrix is then assembled as: 

𝛙
cor 𝐱 , 𝐱 … cor 𝐱 , 𝐱

⋮ ⋱ ⋮
cor 𝐱 , 𝐱 … cor 𝐱 , 𝐱

. (8)



To find the best fit, the concentrated ln-likelihood 
function is used: 

ln 𝐿
𝑘
2

ln 𝜎
1
2

ln |𝛙| , (9)

where 𝜎  is found as: 

𝜎
𝐘 𝟏𝜇 𝛙 𝐘 𝟏𝜇

𝑘
,   𝜇

𝟏 𝛙 𝐘
𝟏 𝛙 𝟏

. (10)

Equation 9 is maximized by changing the 𝜃  factor to 
fit the surrogate model. It is not possible to differen-
tiate this equation analytically, thus a numerical pro-
cedure is needed. In Matlab, it is achieved by using 
an inbuilt function ‘ba’, which utilizes a genetic algo-
rithm to find the minimum of a function. Since the 
algorithm searches for the minimum of a function, 
Equation 9 is modified by multiplication with –1. 

After the surrogate model has been made, it can be 
used for prediction of new function values 𝑌 𝐱 . A 
correlation vector between the new input value 𝐱 and 
the input values used to create the surrogate model x 
is constructed, as described in Equation 7: 

𝛙  cor 𝐱 , 𝐱 … cor 𝐱 , 𝐱 . (12)

Using the created vector, a new prediction can be 
made as: 

𝑌 𝐱 𝜇 𝛙 𝛙 𝐘 𝟏𝜇 . (13)

The correlation matrix size increases with increas-
ing number of points used for fitting, and the compu-
tational times needed to calculate new data points in-
crease correspondingly. This is usually not a problem 
if the initial data set is not too large. However, when 
high precession is needed or the number of variables 
is large, the correlation matrix size can become prob-
lematic. This leads to long computation times and in 
some cases difficulties searching for the maximum of 
Equation 9. Therefore, the size of the data set should 
be considered when creating the surrogate model. 

3 ANALYSED CASE 

3.1 System geometry and varying parameters 

The response of a simplified building structure is 
analysed. The building is composed of two square 
floors supported by four columns. The floors are 
modelled using shell elements with constant thick-
ness across the whole floor. The columns are mod-
elled using beam elements with a square cross-sec-
tion. The building structure is made of concrete with 
the material properties given in Table 1. 

Building foundations are modelled as rigid foot-
ings, resting on the soil surface. The footings are 2 m 
wide squares. Each rigid footing has six degrees of 
freedom that are directly attached to the columns. The 
structure is resting on a two-layered soil stratum. The 
first layer is a 4 m thick sand layer, and the second 

layer is a half-space of hard till. Material properties 
for the soil layers are also given in Table 1. The sys-
tem is excited by a vertical unit load placed 25 m from 
the centre of the structure. The load is distributed as a 
two-dimensional Gaussian distribution, creating a 
‘bell-shaped’ load, with a standard deviation of 0.5 m. 

Five geometry parameters of the building structure 
are assumed to be varying: floor height hf, floor width 
wf, floor thickness df, column cross-section width dc 
and the rotation of the whole structure φf. The varying 
building geometry properties are illustrated in Fig-
ure 1. Further, the minimum and maximum values for 
these properties are given in Table 2. All other param-
eters, including the properties of the soil, are constant.  
Examples of some realizations of the created building 
structure, by assigning random values to the varying 
parameters, are shown in Figure 2. 

One of the biggest limitations of the surrogate 
model is that it is only able to produce one output 
value for a given set of input parameters. This is a 
significant limitation when the dynamic behaviour of 
the structure is of interest, as the structural response 
is dependent on the frequency. Therefore, choosing a 
single QoI to represent the structural response is a 
non-trivial task. In this case, it has been decided to 
analyse the response of the top floor of the building. 

Table 1. Material properties. 

 Young’s 
modulus 

Poisson’s 
ratio 

Mass 
density 

Loss 
Factor 

[MPa] [-] [kg/m3] [-] 

Concrete 30,000 0.150 2400 0.030 
Sand 161.2 0.465 1650 0.030 
Hard till 1800 0.350 2140 0.013 

Table 2. Varying building geometry parameters. 

   min max mean 

Floor height  hf [m] 2.5 7.0 4.75 
Floor width wf [m] 4.0 8.0 6.0 
Floor thickness  df [m] 0.15 1.0 0.575 
Column width dc [m] 0.15 1.0 0.575 
Structure rotation φf [rad] 0 0.5π 0.25π 

 
Figure 1. Varying parameters of the building model 
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However, choosing just a single point on the floor as 
an observation point might disregard some eigen-
modes of the structure. Thus, the vertical displace-
ments of all nodes of the top floor are considered, tak-
ing the root-mean-square (RMS) level to obtain a sin-
gle number. Further, the narrow band response is 
concentrated into one-third octave bands. For each 
band, the response at 10 equally spaced discrete fre-
quencies are calculated and the RMS value taken to 
obtain the QoI. This is done for all one-third octave 
bands with central frequencies in the range from 
6.3 Hz to 80 Hz, i.e. 12 one-third octave bands are an-
alysed. This way, the system response in frequency 
domain can be recreated based on 12 QoIs based on 
12 separate surrogate models. Another approach 
could be to assume the frequency as one of the vary-
ing parameters in the surrogate model. However, in 
that case, fitting the surrogate model might prove to 
be challenging and would require a large amount of 
points, further complicating the fitting procedure.  

3.2 Fitting of the surrogate model 

The fitting procedure is very important when creating 
a surrogate model. Larger sets of data used to fit the 
surrogate model will generally lead to more precise 
representations. However, as discussed previously, 
more data points will also lead to a model that is 
slower and harder to use. Therefore, a compromise 
between the data set size and the precision of the 
model needs to be found. This is only possible when 
a computational model is used and it is possible get 
the response anywhere in the parameter space. This 
might not be the case when experimental results are 
needed to create the surrogate model. 

Two strategies of fitting the surrogate model were 
considered. The first approach is to calculate a large 
data set and fit the surrogate model directly. The sec-
ond approach is to create a smaller data set and then 
selectively add additional points, while continuously 
updating the surrogate model. To find the best fitting 

approach, three cases were tested. Using the first ap-
proach two cases were created by fitting the surrogate 
model to data sets of 150 and 300 points. The loca-
tions of the data points were determined by searching 
for the most space filling set of locations from a set of 
randomly generated Latin Hyper cubes. For the sec-
ond approach, a smaller data set of 50 points was used 
initially, and then an additional 100 points selectively 
added. The selective point positions in the parameter 
space where determined by searching for maximum 
expected improvement, cf. Forrester et al. (2008). 
Due to constant updating of the surrogate model, the 
second approach is rather computationally demand-
ing. For the analysed case, a surrogate model created 
with 150 points by infilling 100 points requires more 
computational effort than calculating 300 data points 
and fitting the model directly. Of course, this will not 
be true for more demanding computational models. 
To test how well the created models perform, the root 
mean square error (RMSE) was calculated: 

𝜀  
1
𝑛

 𝑌 𝐱𝒋 𝑌 𝐱𝒋 , (14)

where 𝑌 𝐱𝒋  are values obtained from the computa-
tional model and 𝑌 𝐱𝒋  are the values from the tested 
surrogate model. To obtain the error, n = 100 realiza-
tions of the computational were used, computed inde-
pendently of the tested surrogate models. 

The obtained RMSEs for one-third octave bands 
are given in Figure 3. It can be observed that the first 
approach of creating the surrogate model provides 
more accurate results within most of the tested fre-
quency range. Even when comparing surrogate mod-
els that use 150 data points, the first approach pro-
vides a more precise result. This can be expected, as 
the function used to find the positions of the infill 
points tends to x close to the extremes of the parame-
ter space. Hence, the resulting surrogate model may 
predict the results better at the extreme values, but the 
overall fit may be worse. Since the overall behaviour 

 

  
Figure 2. Examples of the created building structures by assigning random geometry parameters. The shown system is excited at 
31.6 Hz. Note that the column cross-section size and floor thickness are not illustrated. 



of the system is more important in the considered 
problem, the first approach is preferred. 

Another important aspect to consider when creat-
ing a surrogate model is the number of data points 
produced by the truth model. Thus, additional analy-
sis was carried out to determine the optimum number 
of such points needed to obtain a precise model. The 
three one-third octave bands that produced the largest 
RMSE in Figure 3 were chosen for this analysis. The 
analysis was performed starting with 25 and ending 
with 400 data points from the truth model, with a step 
of 25. For each case, the positions of the points were 
determined by choosing the most space-filling Latin 
Hypercube and calculating the computational model 
results at those positions. The results are shown in 
Figure 4. As expected, the precision of the surrogate 
model increases with larger data set. However, the 
improvement rate decreases quickly with increasing 
data set size. For further analysis, the surrogate model 
data set size is chosen as 300 points. 

3.3 Using the surrogate model 

Using the Kriging approach to create the model is 
advantageous as the obtained fitting factor 𝜃 (see 
Equation 7) can be used to estimate the importance of 
the varying parameters. As a separate surrogate 
model was created for each investigated one-third oc-
tave band, it is possible to compare the values of this 
factor through frequencies. Larger 𝜃 values corre-
spond to higher importance of the parameter. While 
the exact values can change, depending on the distri-
bution of the fitting data and the optimization algo-
rithm used, the overall trends remain the same. 

The obtained results are shown in Figure 5. It can 
be observed that the height of the floor is effecting the 
system the least. It can be expected, as the system is 
excited by a vertical load and only the vertical dis-
placements are investigated, leading to a low im-
portance of the building height. Similarly, the effects 
of the floor thickness are also limited and mostly con-
stant though frequencies. Further, the rotation of the 
whole structure has almost no effect at low frequen-
cies, but with increasing frequency, it increases, be-
coming one of the most important parameters at the 
highest investigated frequencies. This is most likely 
due to the wavelength of the waves propagating 
through the soil. At low frequencies, the wavelengths 
are large and the structural response is governed by 
large-scale displacements. At higher frequencies, the 
waves are shorter, and the response is governed by 
higher modes with more localized displacements, 
leading to higher importance of the building rotation. 
Column width demonstrates an opposite behaviour 
with high importance at low frequencies and low im-
portance at higher frequencies. This behaviour may 
likely have a similar reason as the varying influence 
of the building rotation. Column stiffness has a larger 
effect on the overall building behaviour and smaller 
effect on more localized floor displacements. Finally, 
the floor width, which governs the overall footprint of 
the building, is very importance within the whole fre-
quency range, with some gradual increase for higher 
frequencies. Interestingly, a distinct peak is present at 
the centre frequency of 25 Hz. The peak is within a 
frequency range where most of the first eigenfrequen-
cies for the floors of the building are present. 

  
Figure 5. Kriging surrogate model fitting parameter 𝜃. 

  
Figure 6. Building response envelope indicating the maximum
and minimum values given the input limits of Cases 1 to 3. 
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Figure 3. RMSE for different surrogate-model-fitting methods. 

 
Figure 4. RMSE dependency on the number of points used to fit
the surrogate model. 
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With the surrogate model, it is possible to obtain 
the envelope defining the maximum and minimum 
values of the function, within a limited parameter 
space. To illustrate this, some cases of limited param-
eter spaces were tested: 

 Case 1. All five parameters are allowed to vary 
through the whole parameter space. This case 
shows the absolute maximum and minimum 
values possible in the analysed system. 

 Case 2. The floor height, floor width and struc-
ture rotation are fixed and equal to the mean 
values given in Table 2. While, the column 
width and floor thickness are allowed to vary. 
The case illustrates a perhaps more real world 
scenario, where the building geometry is fixed, 
but the cross-section size of the structural ele-
ments can still be optimized. 

 Case 3. Only the structure rotation is varying. 
All other parameters have the mean values as 
defined in Table 2. 

The results can be seen in Figure 6. Case 1 shows the 
overall minimum and maximum values of the created 
surrogate model, all results, from more limited pa-
rameter spaces, should fit within this envelope. The 
highest response is observed at 16 Hz octave band. It 
is most likely the frequency band where the first ei-
genfrequencies of the structure fall for most realiza-
tions of input parameters. Looking further, at the 
lower and higher frequencies, the response of the 
structure is lower, for both minimum and maximum 
limits. Case 2 shows the effects of limiting the design 
space to only two parameters. It can be seen that the 
maximum values of the response are reduced starting 
at the centre frequency of 20 Hz and going onwards. 
However, the maximum values observed at the 16 Hz 
one-third octave band are barely effected, indicating 
that the extreme values of the floor height, floor width 
and structure rotation are not needed to obtain an ex-
treme value in the response of the structure. Further, 
Case 3 shows the effects of varying only the structure 
rotation. Here, the spread is almost exclusively lim-
ited to the 20 Hz and 25 Hz one-third octave bands. 
For all other bands, the effects of the structure rota-
tion are negligible. This illustrates that while the im-
portance of rotation is high at high frequencies, as 
seen in Figure 5, the overall effect of the parameter 
might be limited. Of course, changing the constant 
parameter values will affect the location and the re-
sponse range of the observed response envelope. 

4 CONCLUSIONS AND DISCUSSION 

The paper deals with creating and utilizing a surro-
gate model of a building structure. The structural re-
sponse to vibrations propagating through the soil is 
investigated. A short introduction into the computa-
tional truth model, used to gather the needed data set, 
and the surrogate model, that uses the created data set 

to represent the system, is given. Several approaches 
of fitting the surrogate model were investigated, to-
gether with a convergence analysis to investigate the 
size of the data set needed. Further, the created surro-
gate model was used to find the most important ge-
ometry parameters to the behaviour of the system and 
to show the envelope within which the structure re-
sponse falls for a given parameter space. 

The created surrogate model can be used to obtain 
the system response from any combination of input 
parameters as long as they are within the limits of the 
parameter space. The results can be obtained without 
much computational effort. Thus, it is easy to explore 
the surrogate model to find the maximum or the min-
imum values, given available limits of the modelled 
structure. Further, the obtained model is fast enough 
to provide real-time results during the design process. 
This could prove to be a useful tool, for example, giv-
ing the designer of the structure an indication that a 
certain threshold is exceeded, during the design pro-
cess itself. This way, the problematic areas of the de-
sign space could be easily identified and further in-
vestigated—or avoided in a design. 

Using surrogate models to predict dynamic struc-
tural behaviour does have drawbacks. The surrogate 
model is limited to one output variable (Quantity of 
Interest), making it difficult to approximate complex 
system behaviour. Further, the surrogate model preci-
sion is somewhat limited, especially at the extreme 
boundaries of the modelled parameter space. Thus, 
the surrogate model is better suited to observe the 
general trends of the system, while the exact values 
should be validated using the truth model. Some of 
these problems might be mitigated using different 
data selection and surrogate model optimization tech-
niques. Further, it might be beneficial to utilize other 
machine-learning techniques, such as creating artifi-
cial neural network that would allow multiple output 
values to be modelled with a single model.  
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Abstract 
The paper proses a computationally efficient approach for modelling soil–structure interaction, including the 
coupling through the soil. The method utilizes a semi-analytical model for the soil, based on an analytical 
solution for the Green’s function in the frequency–wavenumber domain. Structures are modelled as rigid 
blocks or by coupling with a finite-element model. Modelling of rigid footings and flexible piles is described. 
Further, an approach to including cavities inside the soil domain is introduced by utilizing finite elements with 
negative dynamic stiffness. The proposed methodology is validated by comparison with other well-known 
methodologies. The comparison is carried out by modelling the same systems with the semi-analytical 
approach, the boundary-element method and the finite-element method. In the finite-element models, non-
reflecting boundaries are introduced in the form of either impedance boundary conditions or perfectly matched 
layers. The proposed semi-analytical modelling technique offers very good agreement to much more complex 
and computationally demanding finite-element models. Further, the obtained dynamic stiffness matrix of the 
foundations is compatible with the finite-element-method matrices. Therefore, the proposed methodology is 
useful for structural analysis, as a quick and precise way to account for the dynamic soil–structure interaction. 

Keywords: semi-analytical soil model; soil–structure interaction; rigid footing; pile foundation; cavity; ground 
vibration. 

1. Introduction 
Modelling dynamic soil response, especially including soil–structure interaction, is a complex task. However, 
it is often necessary when analysing the dynamic excitation from railway lines, pile driving, vibrating 
equipment, and in other similar cases. The problem is difficult to model, as the waves propagating through the 
soil stratum are usually only bounded by the soil surface, while the propagation in both horizontal directions, 
as well as downwards, is unbounded. Further, reflection from interfaces between the layers and the surface 
quickly creates a very complex system behaviour. Additionally, introducing structures interacting with the soil 
complicates the problem. In turn, this leads to computational models that are hard to implement and take long 
time to compute. Therefore, when considering dynamic structural response, the underlying soil is often 
neglected, modelling the foundations as completely fixed. 

Various methods for accounting for the underlying soil exist, usually dependent on the type of foundation used. 
They can be as simple as the standard lumped-parameter models proposed by Wolf [1], where rigid footings 
are represented by spring, dashpot and mass systems with properties that can be obtained from the available 
soil properties. Alternatively, tables expressing the dynamic stiffness of rigid square footings on layered half-
space have been described by Wong and Luco [2]. However, their usage is limited to simple cases, and some 
effects—such as foundations coupling through soil or embedded in the ground—are not accounted for. More 
advanced models for rigid footing modelling also exist. For example, the work by Wong and Luco [3] includes 
the dynamic interaction between multiple footings, which was achieved through boundary integral equations 
and an iterative solution procedure. Another work by Wong and Luco [4] models embedded foundations using 
a hybrid approach, combining finite elements and the Green’s function to account for the infinite boundaries. 



An overview of the early methods developed for modelling embedded foundation’s coupled horizontal–
rocking response can be found in [5]. Another overview of simplified approaches to modelling the structure–
soil interaction was provided by Dutta and Roy [6]. Similarly, simplified approaches to modelling pile 
foundations are described in, for example, [7–9]. 

For more advanced cases, numerical methods such as the finite-element method (FEM) and the boundary-
element method  (BEM) are often used. Finite-element (FE) analysis requires special boundaries to model the 
infinite domain of the soil. The problem may be handled by creating a large domain, allowing the waves to 
dissipate by material damping before re-entering into the domain of interest. However, this is infeasible. 
Instead, non-reflecting boundaries can be accounted for by, for example, local impedance boundary conditions 
(IBC) [10,11] or, as a more recent development, the perfectly matched layers (PML) that were originally 
developed by Berenger [12] for electromagnetic waves. As discussed by Kausel and Tassoulas [13], the 
accuracy of the solution is strongly dependent on the quality of the transmitting boundary conditions. Hence, 
for accurate results, long computational times are required for solution. However, the FEM is versatile and 
widely available in commercial software, and thus widely used. Alternatively, boundary-element (BE) 
formulations are used, in which the wave radiation into a (semi) infinite domain is an inherent part of the 
formulation. The methods are often combined into FE–BE models, where the FEM is used to model the 
structures and the BEM accounts for the soil. However, similarly to the FEM, long computation times and 
difficult formulations are the limiting factors of the BEM. A literature review by Clouteau et al. [14] gives a 
good overview of the various methodologies used to model structures coupled to elastic media, especially 
regarding the FEM and the BEM. As an example, the BEM is used to analyse the impedance of rigid footings 
in [15,16], while coupled FE–BE models are used to model pile foundations in [17,18]. 

This paper utilizes a semi-analytical method for modelling the soil, while the interacting structures are 
modelled as completely rigid, or they are discretized using the FEM. The used semi-analytical model was 
originally proposed by Thomson [19] and Haskell [20]. It is a well-known approach that has been applied to 
various problems, e.g., railway track modelling by Sheng et al. [21,22]. Andersen and Clausen [23] proposed 
an efficient computation procedure for the semi-analytical model, exploiting the polar symmetry of the Green’s 
function, to analyse arbitrarily shaped rigid surface footings. Using the proposed computation technique, the 
methodology offers very short computation times, making the approach useful when analysing structure–soil 
interaction. In this work, the modelling technique is expanded to a much wider range of applications.  

Firstly, Section 2 gives an introduction to the computation of the Green’s function with numerical stabilization. 
Further, modelling of arbitrarily shaped three-dimensional rigid blocks, including a discretization technique, 
is introduced in Section 3.1. Additionally, the semi-analytical model is coupled to the FEM to analyse flexible 
piles and cavities within the soil, as described in Sections 3.2 and 3.3, respectively. One of the main aims of 
the work is to benchmark the performance of the proposed methodology by a comparison with other well-
established techniques. Thus, in Section 4, the introduced modelling approaches for rigid blocks, piles and 
cavities are validated by comparison with BE and FE models,. Finally, conclusions are given in Section 5. 

2. Semi-analytical soil model 
The work utilizes a semi-analytical soil model based on the Green’s function for a horizontally layered linear 
elastic half-space. The method is well known and widely used, thus only a general overview is given here. A 
more detailed explanation of the methodology used can be found, for example, in [23,24].  

The Green’s function matrix, 𝐆, is defined analytically as the relation between the applied harmonic load 𝐏 
and the resulting harmonic displacement 𝐔, both given as vectors in the horizontal wavenumber–frequency 
domain: 

𝐔 𝑘 , 𝑘 , 𝑧 , 𝜔 𝐆 𝑘 , 𝑘 , 𝑧 , 𝑧 , 𝜔 𝐏 𝑘 , 𝑘 , 𝑧 , 𝜔 . (1)



Thus, the Cartesian coordinates in the horizontal directions are Fourier transformed into wavenumbers. Here 
𝑘  and 𝑘  refer to the wavenumbers in the x and y-directions, and 𝑧  is the vertical position of the load (i.e. 

the source), while 𝑧  is the vertical coordinate at which the displacement is observed (the receiver). Finally, 𝜔 
is the circular frequency. As already mentioned, the analytical solution for the used Green’s function was 
developed by Thomson [19] and Haskell [20]. They introduced a transfer matrix which propagates 
displacements and traction through a single soil layer. This layer transfer matrix is then used to assemble 
multiple layers and, after applying boundary conditions, the resulting global transfer matrix is utilized to obtain 
the Green’s function matrix 𝐆. The method is based on the flexibility of the system, and the considered matrices 
are never bigger than six by six, making the solution procedure very quick. Unfortunately, the method suffers 
from computational instability issues when considering high frequencies or thick soil layers. 

To overcome the numerical instability problems, the stiffness matrix approach could be used [25]. Here the 
layer transfer matrices are reorganised into stiffness matrices that are assembled similarly to the FEM. Using 
approximate solutions over a single layer, the method is known as the thin-layer method [25,26]. Another 
approach is to introduce additional stabilization techniques into the flexibility approach. In the present work, 
the orthonormalization method, proposed by Wang [27] for geophysical applications, is used. Here, before the 
traction and displacement values are propagated through a layer, they are rotated to remove the coupling terms 
between the primary (P) and the vertically polarized secondary (SV) waves. In essence, the approach is similar 
to obtaining the principal stresses from a stress tensor. The method was originally described for two-
dimensional cases that only contain P and SV waves, but it can easily be generalized to three-dimensional 
cases by introducing the horizontally polarized secondary wave (SH). The SH wave is naturally uncoupled 
from the other two waves; however, this should be enforced in computational codes, since rotating the other 
waves might introduce weak coupling due to numerical precision errors. Further, the transfer matrices contain 
exponential terms that grow with increasing layer depth and frequency. Thus, very thick layers should be split 
into multiple smaller layers with the same material properties in order to avoid exceeding the limits of floating-
point numbers. Using these techniques, very efficient computer calculations can be achieved, as all the 
computations are still based on interaction between layer transfer matrices not bigger than six by six.  

After the Green’s function has been obtained in the frequency–wavenumber domain, it is transformed into the 
frequency–space domain, where it can be coupled to external structures. The Green’s function is axi-
symmetric; thus, it is enough to evaluate it along a single wavenumber axis. Care should be taken to choose a 
correct sampling rate, as too few discrete wavenumbers will not represent the Green’s function well, while too 
many points will lead to long computation times. In this work, a varying sampling rate has been chosen, where 
70% of the discrete wavenumbers are concentrated in the zone around the peak corresponding to the slowest 
S-wave. This way, most of the points are located where the largest variation of the Green’s function is present, 
while parts of the spectrum with less variation are represented with fewer points. A double semi-discrete 
inverse Fourier transformation in polar coordinates is used to transform the Green’s function into spatial 
domain. Applying an axisymmetric load, the inverse Fourier transformation in the azimuthal direction can be 
done analytically [23]. Using the obtained solution, a global flexibility matrix is constructed. It stores the 
reacceptances between all points of interest in the soil domain. Inverting the global flexibility matrix produces 
the dynamic stiffness matrix of the soil 𝐃 .  

The points of interest can be treated as nodes through which the interaction with the soil domain is possible, 
for applying the load and observing the displacements. In the following, they are referred to as structure–soil–
interaction (SSI) nodes. It is noted that the Green’s function requires an interface in the soil at every depth 
where SSI nodes are present. This is ensure by splitting the soil layers at the required vertical coordinates. 
Then, the Green’s function defining the relation between each soil interface and all other interfaces is found.  

To obtain the receptances between the SSI nodes, a unit load is applied in each node, and the corresponding 
displacements are obtained. This procedure is performed in the frequency–wavenumber domain before the 



double inverse Fourier transformation. Therefore, it is beneficial to model the unit-magnitude load as a ‘bell-
shaped’ two-dimensional Gaussian distribution with a standard deviation equal to one half of the parameter 
𝑟  that represents the radius of the circular area over which the main part of the load is applied. In the Cartesian 
wavenumber domain, this load distribution transforms into  

𝑃 𝑘 , 𝑘 exp
𝑘 𝑘 𝑟

4
. (2)

As opposed to a rectangular or square distribution, the ‘bell shape’ maintains the polar symmetry of the Green’s 
function, and the monotonous decrease with increasing wavenumbers entails the computational advantage that 
an overall smaller wavenumber domain needs to be evaluated. 

However, it must be emphasized that the behaviour of rigid objects coupled to the soil via SSI nodes is effected 
significantly by the value of 𝑟 , and it must therefore be chosen carefully. Further, the loads are only 
distributed over the horizontal coordinates and not over the vertical coordinate. This leads to different 
discretization approaches for vertical and horizontal directions, as further discussed in Subsection 3.1. 

3. Modelling structures interacting with the soil 
Structures can be coupled with the soil via the SSI nodes. The following subsections present the main steps in 
coupling the soil with rigid blocks (Subsection 3.1), flexible piles (Subsection 3.2) and pits or cavities 
(Subsection 3.3), where the two latter cases involve the coupling with a finite-element model.  

3.1 Rigid blocks 
Often structures interacting with the soil are much stiffer compared to the surrounding soil and can be modelled 
as being completely rigid. This way, a very efficient system can be created, in which the rigid object motion 
is represented using only a few degrees of freedom. To model a rigid object interacting with the soil, it must 
be discretized into SSI nodes serving as slave nodes to a reference master node used for condensation of the 
stiffness of the rigid object. Due to the semi-analytical modelling approach, the discretization of rigid objects 
is handled differently in vertical and horizontal directions.  

Firstly, the cross-sectional discretization over the horizontal coordinates is performed. Here, the unit load, used 
to obtain the global flexibility matrix, is distributed over an area defined by the load distribution parameter 𝑟 , 
as shown in Eq. (2). The most straightforward approach, named Approach A, is to split the total area of the 
rigid block’s cross-section equally between all the SSI discretization nodes. This discretization approach is 
shown in Figure 1a. The distance,  𝑑 , between two nodes can then be found as 

 𝑑
𝑑
𝑛

, (3)

where 𝑑  is the characteristic length of the cross-section (e.g., the diameter or side length) and 𝑛 is the number 
of nodes used in the discretization in each horizontal direction. The corresponding load distribution parameter 
for a square cross-section can then be found as 

 𝑟
 𝑑

2
4
𝜋

. (4)

The multiplication factor provides an area scaling from a circle into a square. Due to the nature of the semi-
analytical model, the assigned rigid body displacements are only guaranteed at the exact positions of the loaded 
nodes, and not over the full loaded area. This leads to ‘soft’ edges of a rigid object, and therefore the 
displacements obtained by discretization Approach A are generally too large. 



Alternatively, discretization Approach B can be used, as shown in Fig. 1b. Here the outer SSI slave nodes are 
placed on the perimeter of the rigid object. This implies an increase in the distance between the slave nodes 
compared to discretization Approach A, such that  𝑑  is now defined as 

 𝑑
𝑑

𝑛 1
. (5)

However, this approach tends to overestimate the stiffness of the rigid objects and produce displacements that 
are too small due to the overall increased loading area.  

It is evident that the correct behaviour of the system can be obtained by placing the discretization nodes 
somewhere between the limits provided by Approaches A and B. Then, the distance between two adjacent 
discretization nodes is defined as 

 𝑑
𝑑

𝑛 𝑛 ,
 (6)

where 𝑛  is a parameter influencing the spacing between the discretization nodes. From Eqs. (3) and (5) it can 
be seen that Approaches A and B are special cases of Eq. (6) evaluated for 𝑛 0 and 𝑛 1, respectively.  

The optimal position of the SSI nodes has been obtained heuristically by comparing with the results obtained 
by modelling the same system with high-fidelity finite-element models. It has been found that 𝑛 0.6 (coined 
Approach C), produces highly accurate results. The discretization of a cross-section using the approach is 
shown in Fig. 1c. Validation shows that this factor works well, independently on how many discretization 
nodes are used and does not need to be adjusted for different frequencies. Further, discretizing different rigid 
shapes, such as circles, or using a different load distribution shapes, such a cylindrical distribution, works 
equally well with the same factor. Thus, the discretization Approach C is used for all further calculations. 

Discretization in the vertical direction is less complicated, as the used unit loads are not distributed vertically. 
Therefore, horizontally discretized cross-sections are created for the top and the bottom of the rigid blocks, 
adding additional cross-sections in between, with vertical spacing as close as possible to 𝑑 . 

As mentioned previously, the SSI discretization nodes created for a rigid object move together in reference to 
a master node assigned to the rigid object. In this work, the master node is placed at the top centre of the created 
rigid blocks. However, it is not a requirement, and the master node could be placed anywhere. In order to 
perform condensation of the stiffness related to the original degrees of freedom of the SSI slave nodes to the 

(a) (b) (c)  

Figure 1. Discretization in the horizontal plane of a rigid object using the semi-analytical soil model: 
(a) Approach A; (b) Approach B; (c) Approach C. The black outlines show the perimeter of the object, while 
the green dots are the SSI slave nodes with the blue circles indicating the loaded areas, and the black dots at 

the centres of the objects are the reference master nodes.  



degrees of freedom of the reference master nodes of the rigid blocks, the transformation matrix 𝐓  is 
introduced. Considering a three-dimensional case, where a single rigid object composed of 𝑀 SSI nodes is 
modelled, the transformation matrix 𝐓 ,  is created in the format 

𝐓 ,

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0  0     𝑧 𝑧 𝑦 𝑦
0 1 0 𝑧 𝑧  0     𝑥 𝑥
0 0 1     𝑦 𝑦 𝑥 𝑥  0
1 0 0  0     𝑧 𝑧 𝑦 𝑦
0 1 0 𝑧 𝑧  0     𝑥 𝑥
⋮ ⋮ ⋮  ⋮  ⋮  ⋮
0 0 1     𝑦 𝑦 𝑥 𝑥  0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. (7)

Here it is assumed that the degrees of freedom of the SSI nodes are ordered as lateral displacements in the x, y 
and z-directions, whereas the rigid block degrees of freedom are ordered as the displacements in the x, y and 
z-directions followed by the rotations around the local x, y and z-axes, with the master node placed at 
coordinates 𝑥 , 𝑦 , 𝑧 . Each SSI slave node has the coordinates 𝑥 , 𝑦 , 𝑧 , 𝑚 1,2, … , 𝑀, which is used 
to obtain the distance to the reference master node for the rotational degrees of freedom. The transformation 
matrix is formulated in a righthanded coordinate system with the z-axis facing upwards. If multiple rigid blocks 
are present in the system, the global transformation matrix 𝐓  is assembled as a block diagonal matrix: 

𝐓 diag 𝐓 , 𝐓 , … 𝐓 , , (8)

where the total number of rigid blocks is 𝐼. The system could also include independent SSI nodes that are not 
part of rigid blocks. In that case, the corresponding local transformation matrix 𝐓 ,  is replaced by the identity 
matrix of dimensions 3 3  for a three-dimensional case. The stiffness matrix including the rigid objects and 
independent nodes can then be obtained as 

𝐃 𝜔 𝐓𝟎 𝐃 𝜔 𝐓 . (9)

The obtained stiffness matrix is used to obtain the system response in frequency domain: 

𝐃 𝜔 𝐮 𝜔 𝐟 𝜔 , (10)

where 𝐮  is the nodal displacement vector and 𝐟  is the corresponding nodal load vector. 

After the system response has been calculated, the response of the soil stratum, which is not interacting directly 
with structures, can be found by utilizing the Green’s function to evaluate the influence of the the obtained 
displacements. This calculation is computationally inexpensive, since it is enough to establish the flexibility 
matrix and use it directly, without the need for a matrix inversion to obtain the stiffness matrix. 

3.2 Piles 
Pile foundations are a commonly used foundation type, often utilized for poor soil conditions. However, 
modelling piles as rigid objects is not a suitable approach, as the piles can deform locally together with the 
soil. A pile-modelling approach using a coupled semi-analytical and finite-element formulation has been 
presented in a previous work by the authors in [28]. Therefore, only a general overview of the modelling 
approach is given here. 

To model the pile behaviour, the semi-analytical soil model is combined with the FEM. The piles are modelled 
using Euler-Bernoulli beam elements enriched by degrees of freedom to account for axial and torsional 
behaviour. It is assumed that the axial deformation and torsional rotation are uncoupled from the bending of 
the beam. The resulting elements have six degrees of freedom per node: three translational and three rotational. 
The elements are assigned the cross-sectional properties of the piles, while the material properties are modified 
by subtracting the soil stiffness and density from the stiffness and density of the piles. This way the stiffness 
of the soil is only accounted for once. The dynamic stiffness matrix for the FE piles is found as 



𝐃 𝜔 𝐊 𝜔 𝐌 i𝐂 , (11)

where 𝐊 , 𝐌  and 𝐂  are the static stiffness, the mass and the damping matrices. Hysteric damping is used; 
thus, damping is frequency independent. 

The nodes of FE pile model are coupled to SSI master nodes in the soil model, created at the positions of the 
FE nodes. It has been found that creating single SSI nodes to couple to FE beam nodes does not properly 
account for the rotational stiffness of the pile. Therefore, rigid two-dimensional discs are created with the same 
diameter as the modelled pile. The discs are discretized using the discretization Approach C, as described in 
Section 3.1, where the diameter of the pile is used in Eq. (6) for parameter 𝑑 . The rigid discs have six degrees 
of freedom in the three-dimensional case, and they are coupled to the translational as well as the rotational 
degrees of freedom of the FE nodes. The stiffness matrix for the full system is then obtained by adding the 
stiffness matrix of rigid disks 𝐃  to the stiffness matrix of the piles 𝐃 :  

𝐃 𝜔
𝐃 𝜔 𝐃 𝜔
𝐃 𝜔 𝐃 𝜔 𝐃 𝜔

, (12)

where the superscript ‘s’ refers to the degrees of freedom coupled to the soil, and ‘u’ refers to all other degrees 
of freedom. If only the embedded part of the piles is analysed, the stiffness matrix reduces to 𝐃 𝜔 𝐃 𝜔 . 

3.3. Cavities 
The semi-analytical model assumes homogeneous soil layers with perfectly horizontal interfaces between 
them. Thus, analytically it is not possible to model pits or cavities. However, utilizing three-dimensional solid 
finite elements it is possible to ‘remove’ the material from the system. The approach was previously applied 
by the authors for modelling a tunnel structure [29]. However, in the previous study, additional stiffness was 
added to account for the tunnel lining, significantly reducing the effect of the cavity. In this work, a system is 
analysed, in which the cavity is unsupported by additional structures. This amplifies the effects of the cavity 
and can lead to modelling difficulties as further discussed below.  

The cavity is discretized using solid finite elements and assigned the properties of the soil. At the same time, 
at set of single SSI nodes are created in the locations corresponding to the discretized cavity using the semi-
analytical soil model. Subtracting the stiffness of FE system from the dynamic stiffness matrix of the soil 
recreates the effects of the cavity in the system. The whole three-dimensional cavity is discretized, and thus 
some internal nodes in the newly created system will have extremely low stiffness. However, these nodes are 
still left in the system and no condensation is performed. Further, the quality of the solution relies on good 
agreement between the two approaches, including the overall structure of the created stiffness matrices. Linear 
FE elements are used, since they provide a stiffness matrix structure that is closer to the structure of the 
dynamic stiffness matrix provided by the semi-analytical soil model. Quadratic interpolation elements are not 
suited for this application, because the stiffness is distributed unevenly between the nodes, depending on the 
local position of a node in an element, i.e. mid-side nodes contribute more than edge and corner nodes. 
Therefore, quadratic elements can lead to local stiffness variation across nearby nodes in the final system, 
leading to unphysical system behaviour.  

Some of the systems modelled in this paper contain both rigid objects interacting through the soil and a cavity 
placed in the wave propagation path between them. Therefore, the dynamic stiffness matrix of the soil 𝐃  is 
split into different parts: The degrees of freedom for rigid blocks are denoted with superscript ‘r’, and  the 
degrees of freedom for the cavity are assigned the superscript ‘c’. Finally, the discretized cavity dynamic 
stiffness matrix, denoted 𝐃 , is found similarly to Eq. (11). The dynamic stiffness matrix for the full system is 
then assembled as 

𝐃 𝜔
𝐃 𝜔 𝐃 𝜔
𝐃 𝜔 𝐃 𝜔 𝐃 𝜔

. (13)



As the SSI node positions are controlled by the discretization of the FE model, the discretization procedure 
described in Section 3.1 is not applicable for this case. It has been found heuristically that setting the load 
distribution parameter 𝑟  to a value around 60 % of the shortest distance between two nodes in the FE cavity 
model provides accurate results. More details about the system discretization are given in Section 4.3. 

4. Validation of modelling approach 
4.1 Rigid structure interaction with soil 
To validate the proposed methodology of modelling rigid blocks, it was compared to other commonly used 
modelling approaches. Two rigid 3D blocks were modelled, both being cubes with a side length of 2 m. The 
blocks were placed with a distance of 6 m (centre-to-centre) along the x-axis. The soil was modelled as a 
homogeneous half-space with a Young’s modulus of 250 MPa, a Poisson’s ratio of 0.25, a mass density of 
2000 kg/m3 and a loss factor of 0.05. Two cases were considered: Case A with both blocks embedded in the 
soil, so that the top of the cubes were at the same level as the ground surface (see Figs. 2a and 2b), and Case B 
with the top of the blocks buried 2 m below the ground surface (Figs. 2c and 2d). For both cases, one block 
was loaded by placing a unit force, either in the vertical (𝑧) direction or in the horizontal (𝑥) direction, 
observing the resulting displacements of both blocks in both directions. 

For the semi-analytical modelling approach, an in-house computer code was developed in FORTRAN and 
used for the main analysis, with MATLAB used for user input and result visualisation. The Green’s function 
in the frequency–wavenumber domain was evaluated along a single axis up to 15 rad/m, with 12 000 discrete 
wavenumbers. The wavenumber domain discretization was varied according to the analysed frequency and the 
phase velocity of the shear waves, 𝑐 . In each case, 70 % of the discrete wavenumbers were placed in the range 
from 0.75𝜔/𝑐  to 1.25𝜔/𝑐 , 20 % were placed below 0.75𝜔/𝑐 , and 10 % were placed above 1.25𝜔/𝑐 , 
distributed uniformly in each subrange. The discretization was truncated at a wavenumber of 25𝜔/𝑐  or when 
the largest set wavenumber is reached (in this case 15 rad/m), by choosing the largest value of the two. With 
the ‘bell-shaped’ load, this provided an accurate discrete inverse Fourier transformation. In this context, it is 
noted that the inverse Fourier transformation was carried out by numerical integration over the radial 
wavenumber direction in terms of the Simpson rule. Combined with the refinement of the wavenumber 
discretization around 𝜔/𝑐 , this has been found (by a preliminary study, not fully reported in the paper) to 
provide a superior convergence compared to Fast Fourier Transformation with linear or logarithmic stepping. 
The inverse Fourier transform of the Green’s function was evaluated for 500 discrete distances, spaced 
uniformly from zero up to the largest horizontal distance between two SSI nodes in the analysed system. The 
results for intermediate distances were then found by interpolation. Each cross-section of the rigid blocks was 
discretised into a 10 10 grid, with a spacing between the nodes of 𝑑  0.212 8 m, resulting in around 12 
SSI nodes per Rayleigh wavelength at 80 Hz. The load distribution parameter was then determined to be  𝑟
0.12 m. Further, 12 layers of the created cross-sections were used for the vertical discretization of the system. 
A visualisation of the model can be seen in Figs. 2b and 2d. It should be noted that only half of the created 
model is shown, due to system symmetry around the x-axis. The surrounding soil displacements, illustrated 
with shaded colours, are calculated after the displacements of the rigid blocks have been found, utilizing the 
Green’s function directly. 

For comparison, a BE–FE model was created using the in-house modelling software BEASTS [30,31]. Further, 
an FE model was created in COMSOL Multiphysics [32]. The analyses were carried out in the frequency 
domain for the discrete frequencies 5, 10, …, 80 Hz. As discussed in the introduction, the FE method requires 
special boundary conditions in order to account for the radiation of waves into a half-space. These boundary 
conditions have a significant effect on the system behaviour, especially when analysing the secondary coupling 
effects caused by through-soil coupling between the two rigid blocks. Two types of low-reflecting or non-
reflecting boundaries were considered: impedance boundary conditions (FE–IBC) as first suggested by Lysmer 



and Kuhlemeyer [10], and perfectly matched layers (FE–PML) as first proposed by Bérenger [12] for 
electromagnetic waves and later developed for elastodynamics. 

The BE–FE model created in BEASTS employs a BE model for the soil and an FE model for the rigid blocks, 
modelling these as a material with a stiffness 10  times higher than the stiffness of the soil and otherwise with 
the same properties. The BE model for the soil was based on quadrilateral nine-nodes elements with quadratic 
interpolation of the displacement and traction fields, following the theory outlined by Dominguez [33]. The 
FE model of the blocks used quadratic Lagrange interpolation of the displacements. Full integration was used 
for the FE part, and 6 6 Gauss points were used per boundary element for the non-singular terms. The 
procedure outlined by Andersen and Jones [34], and explained in detail by the same authors in [35], was 
applied for treatment of the strong singularities of the traction Green’s function. The mesh size was 0.5 m, and 
the ground surface was discretized over a rectangular area that was 16 m long (in the x-direction) and 5 m wide 
(in the y-direction), exploiting the symmetry of the geometry and load around the 𝑥, 𝑧 -plane. Hence, the 
model was truncated 4 m from the blocks in the x and y-directions, and only the elements at 𝑦 0 were 
considered explicitly. The influence of the ‘mirror image’ of the modelled part was considered implicitly via 
the Green’s functions, following the approach suggested by Andersen and Jones [35]. 

(a) (b)  

(c) (d)  

Figure 2. Field response at 30 Hz for two rigid blocks with vertical load: (a) Case A, FE-PML model; 
(b) Case A, semi-analytical model; (c) Case B, FE-PML model; (d) Case B, semi-analytical model. Bright 
yellow and dark blue shades indicate positive and negative vertical displacements in phase with the load. 

Note that subfigures (a) and (c) are produced with COMSOL Multiphysics, whereas subfigures (b) and (d) 
are produced with MATLAB, based on the in-house code for the proposed semi-analytical model. 



In order to be consistent with the dimensions and discretization of the BE–FE model analysed by the BEASTS 
software, the FE models constructed in COMSOL Multiphysics considered a block of soil that was 16 m long 
(in the x-direction), 5 m wide (in the y-direction) and 8 m deep (in the 𝑧-direction). Quadratic Lagrange 
interpolation was applied, and a structured mesh with an element size of 0.5 m was used everywhere. The mesh 
used for the two analysed cases can be seen in Figs. 2a and 2c. In total, the model had around 120 000 degrees 
of freedom for the considered soil domain and the rigid blocks which were again modelled with a stiffness 10  
times higher than the stiffness of the soil and otherwise with the same properties. A further study, not reported 
in detail in this paper, indicated that no significant improvement of the accuracy in the considered frequency 
range would be achieved by mesh refinement or by using cubic interpolation instead of quadratic interpolation. 
Further, it was found that almost identical results were obtained with reduced and full integration. 

On the boundary residing in the plane defined by 𝑦 0, the FE model was pinned in the y-direction to enforce 
the symmetry around this plane. The boundary in the top, i.e. the ground surface, was assumed to be free of 
traction. However, the four remaining sides of the modelled domain can be considered artificial boundaries. 
As originally proposed by Lysmer and Kuhlemeyer [10], reflection of waves at the artificial boundaries of the 
FE model can be partially avoided by introduction of impedance conditions at the artificial boundaries: 

𝜎 𝑥, 𝑦, 𝑧, 𝜔  𝑛 𝑥, 𝑦, 𝑧  i𝜔 𝑧 𝑥, 𝑦, 𝑧  𝑈 𝑥, 𝑦, 𝑧, 𝜔 , (68)

where 𝜎 𝑥, 𝑦, 𝑧, 𝜔  is the Cauchy stress tensor in frequency–spatial domain, and 𝑛 𝑥, 𝑦, 𝑧  is the unit outward 

normal to the boundary at the point 𝑥, 𝑦, 𝑧 . In the present model, the mechanical impedance was assumed to 
be isotropic: 𝑧 𝑥, 𝑦, 𝑧 𝛿  𝜌 𝑐 𝑐 /2, where 𝜌 is the mass density of the soil and 𝑐  and 𝑐  are the 
corresponding P- and S-wave speeds, respectively. This provides a ‘low-reflecting’ boundary compared to a 
fixed or free boundary. As discussed by Krenk and Kirkegaard [11], the impedance condition may be improved 
by considering the direction of wave propagation at the boundary. However, in the present case, due to wave 
scattering by the rigid blocks, the direction of P- and S-wave propagation towards the boundary is not easily 
defined, and the simple isotropic impedance condition based on average wave speeds was therefore chosen. 
With this definition, the impedance conditions are expected to provide partial reflection of P- and S-waves, 
and the Rayleigh wave forming in the ground surface has not been treated properly. 

As an alternative to the simple, local impedance conditions, an improved radiation of the waves from the 
modelled domain can be achieved by implementation of PMLs. In the present analyses, the standard 
formulation of PMLs available in COMSOL Multiphysics was applied, using the default stretching functions 
and adding PMLs with a thickness of 4 m to the model described above. The same mesh size was used for the 
PMLs as within the modelled domain, i.e. brick elements with a side length of 0.5 m, thus adding substantially 
to the number of degrees of freedom of the model. The external boundaries of the PMLs were considered free. 

The results of the considered models are shown in Figs. 3 and 4 for Cases A and B, respectively. It can be 
observed that, when a load is applied in the vertical direction, the obtained vertical displacements match well 
between all the models, as seen in Figs. 3a and 4a. Similarly, a horizontal (x) load results in well-matching 
horizontal displacements (see Figs. 3d and 4d). This can be expected, as the observed displacements are 
governed mainly by the direct coupling between the degrees of freedom of the two blocks. However, the FE–
IBC model shows some deviation at low frequencies due to partial reflection of waves at the artificial 
boundaries. 

Analysing the couplings between two directions (horizontal load to vertical displacement and vice versa), the 
discrepancies between the different methodologies increase. Still, the semi-analytical model matches well with 
the FE–PML model, while the other models show some deviation. For the FE–IBC model, this was again 
expected due to partial reflection at the boundaries. For the BE–FE model, the truncation of the ground surface 
in the discretization is now seen to have an impact that could be reduced by modelling a larger part of the 
surface, farther away from the blocks, at the expense of longer computation times. Furthermore, it can be seen 



that Figs. 3c and 3d (and Figs. 4c and 4d) are almost identical. This could be expected, as a well-represented 
linear system should exhibit symmetric behaviour. With increasing frequency, the differences between the 

(a) (b)

(c) (d)  

Figure 3. Case A—the top of the rigid blocks is placed at the ground surface: (a) Load applied in x-direction, 
displacements in x-direction; (b) load applied in x-direction, displacements in z-direction; (c) load applied in 

z-direction, displacements in x-direction; (d) load applied in z-direction, displacements in z-direction. 
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Figure 4. Case B—the top of the rigid blocks is buried 2 m below the ground surface: (a). load applied in 
x-direction, displacements in x-direction; (b) load in x-direction, displacements in z-direction; (c) load in 

z-direction, displacements in x-direction; (d) load in z-direction, displacements in z-direction. 
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approaches are reduced, since the artificial boundaries lie farther away measured in terms of wavelengths. 

 For assessment of the model accuracy, the horizontal displacements of block number one due to a vertical 
load applied to the same block are of special interest (see Figs. 3c and 4c), since the horizontal displacements 
of this block are caused purely by the waves reflected from the other rigid block. Thus, these displacements 
are caused only by the weak coupling between the two footings. However, even in this case the match between 
the semi-analytical model and the FE–PML model is almost perfect, indicating a very high precision of the 
semi-analytical approach and the FE–PML. Even when comparing the resulting soil displacements, as shown 
in Fig. 2 for 30 Hz, the agreement between the semi-analytical model and FE–PML model is very good, 
throughout the whole domain. Especially, it can be concluded that the PML formulation indeed offers perfect 
transmission of the waves, and that the proposed semi-analytical approach provides highly accurate results 
with low computational cost. 

4.2 Piles interacting with soil 
For validation, two piles are modelled with 6 m distance centre-to-centre. Each pile has a circular cross-section 
with diameter of 1 m and is embedded 6 m into the soil. The material properties of the piles are: Young’s 
modulus, 34 GPa, shear modulus, 13.1 GPa, mass density, 2 400 kg/m3, and loss factor, 0.03. Two soil 
stratifications are studied. In the first case, the soil is modelled as a homogeneous half-space with the same 
material properties as given in Section 4.1. In the second case, a 6 m layer of the same material is placed over 
a half-space of stiffer soil with a Young’s modulus of 600 MPa, a Poisson’s ratio of 0.25, a mass density of 
2 000 kg/m3, and a loss factor of 0.05. The system is excited by placing a uniformly distributed load of 
magnitude 1 N/m2 on the pile cap, in either the vertical direction or the horizontal direction. 

The semi-analytical model uses the same wavenumber domain discretization settings as described in 
Section 4.1. The rigid discs representing the cross-sections of the piles are discretized into 19 SSI nodes, with 
five nodes along the diameter of the cross-section. This leads to the load distribution parameters 𝑑  0.227 3 
and 𝑟  0.256 4. The vertical spacing for both the FE-model nodes and between the rigid discs is 0.5 m. The 
FE beam model of the piles is assigned the corresponding cross-sectional properties, while the Young’s 
modulus, shear modulus and density are modified by subtracting the properties of the soil. The model can be 
seen in Fig. 5b, with the black line indicating the FE beams and the rigid disks shown in red. The figure shows 
only one half of the analysed model. 

(a) (b)  

Figure 5. Field response at 30 Hz, for two piles with vertical load: (a) Case A, FE-PML model; (b) Case A, 
semi-analytical model; (c) Case B, results from FE-PML model; (d) Case B, semi-analytical model. Bright 
yellow and dark blue shades indicate positive and negative vertical displacements in phase with the load. 



The semi-analytical model was compared to FE models created in COMSOL Multiphysics. The overall 
modelled domain size was kept the same as in Section 4.1. Using a free, automatic meshing scheme, the 

(a) (b)

(c) (d)  

Figure 6. Two piles embedded into a half-space, with load applied on the first pile: (a) load applied in 
x-direction, displacements in x-direction; (b) load in x-direction, displacements in z-direction; (c) load in 

z-direction, displacements in x-direction; (d) load in z-direction, displacements in z-direction. 
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Figure 7. Two piles embedded into a layered soil, with load applied on the first pile: (a) load applied in 
x-direction, displacements in x-direction; (b) load in x-direction, displacements in z-direction; (c) load in 

z-direction, displacements in x-direction; (d) load in z-direction, displacements in z-direction. 
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element size was allowed to vary between 0.05 m for the discretization of the piles and the adjacent soil, to 
0.5 m at the boundaries of the modelled domain. Only one-half of the domain was analysed due to the 
symmetry across the plane defined by 𝑦 0. The generated mesh can be seen in Fig. 5a. Both IBC and PML 
boundary conditions were tested. The FE model can be seen in Fig. 5a. For the FE–PML model, additional 
4 m thick layers were added to the boundaries of the modelled domain. 

The results are shown in Fig. 6 for the half-space case and in Fig. 7 for the layered-soil case. It can be seen 
that, for low frequencies, some differences between the modelling approaches exist. The FE–IBC model 
performs the worst, with the cross-directional terms (Figs. 6b, 6c, 7b, and 7c) showing a completely different 
behaviour compared to the other models. This is caused by the waves partially reflecting from the artificial 
boundaries of the modelled system. However, with increasing frequency the agreement improves, and above 
around 40 Hz all models agree quite well. Once again, the semi-analytical model shows good agreement with 
FE–PML model through the considered frequency range. However, the semi-analytical model tends to 
overestimate the vertical displacements of the loaded pile when loaded in the vertical direction, as seen in 
Figs. 6c and 7c. The largest difference between the two approaches is around 7 % at low frequencies. This is 
caused by the discretization of the piles that is used in the semi-analytical model, as the vertical discretization 
of the piles is only done through horizontal cross-sections. Further, the pure FE models allow the pile cross-
section to deform locally, due to the use of solid elements, while the semi-analytical approach assumes rigid 
cross-sections and the FE beams are based on the Euler-Bernoulli beam theory. 

Figure 5 shows the field response for the FE–PML and semi-analytical models excited at 30 Hz with a vertical 
load. Both subfigures are plotted with identical colourmaps and within the same colour range. Once again, the 
agreement between the two approaches is very good, even in the near field around the modelled piles. 

4.3 Effects of cavities within the soil 
As mentioned previously, the effects of cavities, trenches and other types of material removal from the soil 
cannot be directly accounted for using the semi analytical soil model. However, in the discretized system, the 
cavities can be simulated by subtracting the dynamic stiffness provided by solid FE blocks with the same 
material and geometry as the cavities. To validate the approach, the soil and two rigid blocks were modelled 
with the same discretization and material properties as in Section 4.2. The blocks were placed with the top 
lying in the ground surface (Case A in Section 4.2). The distance between the blocks was increased to 10 m, 
centre-to-centre. In between the blocks, a cavity inside the soil was created. The cavity was 3 m long (in the 
x-direction), 6 m wide (in the y-direction) and 2 m deep (in the z-direction). Horizontally, the cavity was placed 
exactly halfway between the two blocks, that is at 5 m distance from the cavity centre to either of the blocks’ 
centre. Only one load case was analysed: a unit magnitude vertical load placed on the first rigid block. Once 
again, two cases were tested: Case A with the top of the cavity top at the ground surface, making it an open 
pit; Case B with a cavity embedded inside the soil, so that the distance between the crown of the cavity and 
the ground surface was 2 m. Case A is shown in Figs. 8a and 8b, while Case B can be seen in Figs. 8c and 8d.  

Using the semi analytical model combined with FEM, special consideration needs to be taken when modelling 
cavities. The quality of the solution strongly depends on the discretization and convergence of the system. This 
is somewhat difficult to achieve as both approaches converge differently. On the one hand, the semi-analytical 
model tends to underestimate the stiffness of the system if the discretization is poor or if the loaded area of SSI 
nodes is too small. On the other hand, the FEM used to model the cavities tends to overestimate the stiffness 
when the discretization is poor. This can lead to numerical issues, when subtracting the dynamic stiffness 
matrix of the FE model from the dynamic stiffness of the semi-analytic soil model.  

A system with numerical issues will show unphysical waves propagating in the boundaries between the created 
cavity and the soil. This behaviour is due to the dynamic stiffness of the two approaches ‘overshooting’ at 
certain nodes. The terms coupling different directions of loading and response, for example vertical load and 
horizontal displacement, are much more prone to these issues, while the direct coupling terms, for example 



vertical loading and vertical response, are less susceptible. Likewise, the results observed further away from 
the cavity are not affected significantly.  

Using the coupled model, the cavity was discretised into solid linear brick finite elements with a mesh size of 
0.25 m in all directions. Various values of the load distribution parameter 𝑟  were tested, with the value of 
𝑟  0.151 3 providing the most accurate results, without experiencing significant numerical issues. This is 
equivalent to around 60 % of the distance between two FE nodes. Therefore, there is some overlap between 
two nearby SSI nodes, spreading the load effects between them, which is similar to the linear interpolation 
functions used for the finite elements. It has been found that lower values of 𝑟  can lead to better matching 
results, while experiencing more stability issues at certain frequencies. By contrast, larger values of 𝑟  lead to 
more stable systems, but the agreement, when compared to pure FE solution, is not as good. The coupled 
model, including the FE mesh on the boundary of the cavity, can be seen in Figs. 8b and 8d. 

COMSOL Multiphysics was again used for validation of the obtained results. The pure FE model is largely 
the same as described in Section 4.3. However, the modelled domain size was increased to be 20 m long (in 
the x-direction), 5 m wide (in the y-direction) and 8 m deep (in the z-direction). IBC as well as PML boundary 
conditions were tested. The models and their meshes can be seen in Figs. 8a and 8c. 

(a) (b)  

(c) (d)  

Figure 8. Field response at 30 Hz, for two rigid blocks with soil cavity: (a) Case A, FEM-PML model; 
(b) Case A, semi-analytical model; (c) Case B, FEM-PML model; (d) Case B, semi-analytical model. 



The results are shown in Figs. 9 and 10 for Cases A and B, respectively. Like the previously analysed cases, 
the FE–IBC model provides the worst matching results. Especially, at lower frequencies and for horizontal 
displacements, the observed differences are significant. The semi-analytical model and the FE–PML models 
show a good agreement through the whole analysed frequency range. Of particular interest for the validation 
of the proposed methodology, the horizontal displacements of the first rigid block, see Figs. 9a and 10a, match 
well between the semi-analytical approach with FE cavities and the FE–PML model, even though the 
displacements are caused solely by the waves reflecting from the cavity and the other rigid blocks. Additional 
peaks are present in the observed response, which would not be the case without the cavity, as it can be seen 
in Figs. 3c and 4c. A good agreement shows that both models are able to represent the complex dynamic 
coupling of the structures through the soil, including the effect of the cavity. However, the results of the semi-
analytical model indicate some problems with the proposed approach. Additional peaks can be observed in 
Fig. 9a in the 70–75 Hz range. These are caused by the previously described convergence issues between the 
FE cavity model and the semi-analytical model, though the inaccuracy of the proposed methodology is small. 
Further, with increasing cavity size the number of SSI nodes needed also increases, reducing the computational 
efficiency of the proposed approach. Therefore, the semi-analytical soil model is better suited for cases where 
a limited amount of soil material is removed. 

5. Conclusions 
A computational approach for modelling various structures interacting with the soil was introduced. The 
approach uses a well-known semi-analytical model for layered soil that is coupled to structures that can be 
embedded in the soil. Modelling of three-dimensional rigid blocks was described in detail, considering proper 
discretization of the blocks without sacrificing the computational efficiency of the methodology. Further, a 

(a) (b)  

Figure 9. Case A—two rigid blocks with a cavity (pit) placed at the ground surface: (a) load applied in the 
x-direction, displacements in the x-direction; (b) load in the x-direction, displacements in the z-direction. 
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(a) (b)  

Figure 10. Case B—two rigid blocks with a cavity placed 2 m beneath the ground surface: (a) load applied in 
the x-direction, displacements in the x-direction; (b) load in the x-direction, displacements in the z-direction. 
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short overview of modelling piles and cavities inside the soil was given. The proposed models were validated 
by comparison with well-established methods. The proposed model of rigid blocks was compared with coupled 
boundary-element–finite-element models as well as finite-element models employing local impedance 
boundary conditions (FE–IBC models) or perfectly matched layers (FE–PML models) to minimize the 
reflection of waves at artificial boundaries of the model. The pile and cavity modelling approaches were 
validated by comparison with the FE–IBC and FE–PML models. 

The results show very good agreement between the proposed semi-analytical models and the FE–PML models 
for almost all the analysed cases. As an interesting finding, a ‘universal’ load distribution parameter to be used 
in the proposed semi-analytical methodology was identified heuristically.  

The other tested approaches, i.e. the BE–FE model (only for rigid blocks) and FE–IBC model, generally tend 
to diverge at the low frequencies; but their accuracy improves with increasing frequency. All the tested 
modelling techniques show generally good agreement above 30 Hz.  

Especially interesting are the results from the FE–IBC model that had the worst performance in all analysed 
cases. This demonstrates that the, commonly available in commercial software and thus widely used, boundary 
conditions do not provide accurate results within the low-frequency range, which is extremely important for 
structure–soil interaction problems.  

The largest discrepancies between the semi-analytical models and the FE–PML models were observed when 
analysing horizontally loaded pile response. There, the semi-analytical model tends to overestimate the 
displacements of the loaded pile. This can be expected, since the differences between the two solution 
procedures are quite large when considering the local pile cross-section displacements and deformations. 
However, the differences never exceeded 7 % in the considered examples. 

From the analysed cases, it can be concluded that the proposed semi-analytical modelling approaches provide 
very accurate results. Further, following previously described modelling techniques [23], the solution becomes 
extremely computationally efficient. It works well with modern multi-core computers, as the formulation can 
easily be adapted for parallel computations.  

Another advantage of using the proposed techniques is a fair compatibility with FE formulations. In a 
frequency-domain formulation, the dynamic stiffness matrices obtained with any of the proposed approaches 
can simply be assembled into an FE model as a ‘super-element’, encompassing all of the soil-structure 
interaction nodes. This way, SSI effects can be included in the dynamic analysis of various structures without 
significant additional computational effort.  

Future works could include a more in-depth analysis of modelling the cavities and resulting numerical issues, 
as well as a more in-depth analysis of the effects of the wavenumber domain discretization. 

Acknowledgement 
Part of the research was carried out in the framework of the project “Urban Tranquility” under the Interreg V 
programme. The authors of this work gratefully acknowledge the European Regional Development Fund for 
the financial support. Further, the first author would also like to acknowledge the generous support of the 
Graduate School of Science and Technology in Aarhus University. 

References 
[1] J.P. Wolf, Spring-dashpot-mass models for foundation vibrations, Earthquake Engineering and 

Structural Dynamics. 26 (1997) 931–949. 

[2] H.L. Wong, J.E. Luco, Tables of impedance functions for square foundations on layered media, 
International Journal of Soil Dynamics and Earthquake Engineering. 4 (1985) 64–81. 



[3] H.L. Wong, J.E. Luco, Dynamic interaction between rigid foundations in a layered half-space, Soil 
Dynamics and Earthquake Engineering. 5 (1986) 149–158. 

[4] A. Mita, J.E. Luco, Dynamic response of a square foundation embedded in an elastic half-space, Soil 
Dynamics and Earthquake Engineering. 8 (1989) 54–67. 

[5] S. Bu, C. Lin, Coupled horizontal-rocking impedance functions for embedded square foundations at 
high frequency factors, Journal of Earthquake Engineering. 3 (1999) 561–587. 

[6] S.C. Dutta, R. Roy, A critical review on idealization and modeling for interaction among soil-
foundation-structure system, Computers and Structures. 80 (2002) 1579–1594. 

[7] A.M. Kaynia, E. Kausel, Dynamics of piles and pile groups in layered soil media, Soil Dynamics and 
Earthquake Engineering. 10 (1991) 386–401. 

[8] G. Gazetas, N. Makris, Dynamic pile‐soil‐pile interaction. Part I: Analysis of axial vibration, 
Earthquake Engineering & Structural Dynamics. 20 (1991) 115–132. 

[9] N. Makris, G. Gazetas, Dynamic pile‐soil‐pile interaction. Part II: Lateral and seismic response, 
Earthquake Engineering & Structural Dynamics. 21 (1992) 145–162. 

[10] J. Lysmer, R.L. Kuhlemeyer, Finite dynamic model for infinite media, Journal of the Engineering 
Mechanics Division, ASCE. 95 (1969) 859–878. 

[11] S. Krenk, P.H. Kirkegaard, Local tensor radiation conditions for elastic waves, Journal of Sound and 
Vibration. 247 (2001) 875–896. 

[12] J.P. Berénger, J.P. Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, 
Journal of Computational Physics. 114 (1994) 185–200. 

[13] E.A. Kausel, J.L. Tassoulas, Transmitting boundaries: A closed-form comparison, Bulletin of the 
Seismological Society of America. 71 (1981) 143–159. 

[14] D. Clouteau, R. Cottereau, G. Lombaert, Dynamics of structures coupled with elastic media—a review 
of numerical models and methods, Journal of Sound and Vibration. 332 (2013) 2415–2436. 

[15] R. Shahi, A. Noorzad, Dynamic Response of Rigid Foundations of Arbitrary Shape Using Half-Space 
Green’s Function, International Journal of Geomechanics. 11 (2011) 391–398. 

[16] J. Fu, J. Liang, B. Han, Impedance functions of three-dimensional rectangular foundations embedded 
in multi-layered half-space, Soil Dynamics and Earthquake Engineering. 103 (2017) 118–122. 

[17] L.A. Padrón, J.J. Aznárez, O. Maeso, Dynamic structure-soil-structure interaction between nearby piled 
buildings under seismic excitation by BEM-FEM model, Soil Dynamics and Earthquake Engineering. 
29 (2009) 1084–1096. 

[18] R. Sanaz, D.K. Armen, A stochastic ground motion model with separable temporal and spectral 
nonstationarities, Earthquake Engineering & Structural Dynamics. 41 (2012) 1549–1568. 

[19] W.T. Thomson, Transmission of elastic waves through a stratified solid medium, Journal of Applied 
Physics. 21 (1950) 89–93. 

[20] N.A. Haskell, The dispersion of surface waves on multilayered media, Bulletin of the Seismological 
Society of America. 43 (1953) 17–43. 

[21] X. Sheng, C.J.C. Jones, M. Petyt, Ground vibration generated by a harmonic load acting on a railway 
track, Journal of Sound and Vibration. 225 (1999) 3–28. 

[22] X. Sheng, C.J.C. Jones, M. Petyt, Ground vibration generated by a load moving along a railway track, 
Journal of Sound and Vibration. 228 (1999) 129–156. 



[23] L.V. Andersen, J. Clausen, Impedance of surface footings on layered ground, Computers and 
Structures. 86 (2008) 72–87. 

[24] L.V. Andersen, J. Clausen, Efficient Modelling of Wind Turbine Foundations, Fundamental and 
Advanced Topics in Wind Power. (2011). 

[25] E. Kausel, J.M. Roesset, Stiffness matrices for layered soils, Bulletin of the Seismological Society of 
America. 71 (1981) 1743–1761. 

[26] J. Lysmer, G. Waas, Shear waves in plane infinite structures, Journal of Engineering Mechanics 
Division. ASCE 18 (1972) 85–105. 

[27] R. Wang, A simple orthonormalization method for stable and efficient computation of Green’s 
functions, Bulletin of the Seismological Society of America. 89 (1999) 733–741. 

[28] P. Bucinskas, L.V. Andersen, Semi-analytical approach to modelling the dynamic behaviour of soil 
excited by embedded foundations, Procedia Engineering. 199 (2017) 2621–2626. 

[29] P. Bucinskas, L.V. Andersen, Dynamic soil excitation from railway tunnels, Numerical Methods in 
Geotechnical Engineering IX. Volume 2 (2018) 1551–1556. 

[30] L.V. Andersen, C.J.C. Jones, BEASTS - A Computer Program for Boundary Element, ISVR Technical 
Memorandum 868, Institute of Sound & Vibration Research, University of Southampton, 2001. 

[31] L.V. Andersen, C.J.C. Jones, Finite Element Addendum for BEASTS, ISVR Technical Memorandum 
881, Institute of Sound & Vibration Research, University of Southampton, 2003. 

[32] COMSOL Multiphysics® v. 5.4. www.comsol.com. COMSOL AB, Stockholm, Sweden., (n.d.). 

[33] J. Domínguez, Boundary Elements in Dynamics, Computational Mechanics Publications, 1993. 

[34] L.V. Andersen, C.J.C. Jones, Coupled boundary and finite element analysis of vibration from railway 
tunnels-a comparison of two- and three-dimensional models, Journal of Sound and Vibration. 293 
(2006) 611–625. 

[35] L.V. Andersen, C.J.C. Jones, Three-Dimensional Elastodynamic Analysis Using Multiple Boundary 
Element Domains, ISVR Technical Memorandum 867, Institute of Sound & Vibration Research, 
University of Southampton, 2001. 

 



 

  



175 
 

 

 

Paper R1 

 

 

Effects of railway track modelling to surrounding soil and 
structure excitation 

 

 

Status: 
The paper in this chapter has been presented at the international conference ICSV 25, 2018 

July 8–12 in Hiroshima, Japan. It has been published in the proceedings of the conference. The 
contents and typesetting of this chapter are as submitted. 
  

Full reference: 

P. Bucinskas, L.V. Andersen, Effects of railway track modelling to surrounding soil and 
structure excitation, 25th International Congress on Sound and Vibration, ICSV 25. (2018), 
4148–4155. 



 

  



 
 

 

 

  1 

EFFECTS OF RAILWAY TRACK MODELLING TO  
SURROUNDING SOIL AND STRUCTURE EXCITATION 
Paulius Bucinskas and Lars Vabbersgaard Andersen  
Aarhus University, Department of Engineering, Aarhus, Denmark 
email: pb@eng.au.dk, lva@eng.au.dk 

Railway traffic can lead to significant ground borne vibrations in the surrounding areas. These 
effects are especially evident in urban environment, where even slow-moving trains generate sig-
nificant vibrations, which can lead to annoyance and even health concerns of nearby inhabitants. 
A number of computational models have been created to model such systems, with varying degree 
of complexity. The most complex models are able to model the system in great detail, but are 
extremely computationally demanding, while the simple approaches often only consider very 
simple systems and provide limited insights, such as only the free-field response of the soil. In 
this work, the full vibration propagation path from a railway line through soil to a simple building 
structure is modelled. An approach based on a semi-analytical model of the soil is used, while the 
structures are modelled using finite elements. The method is computationally efficient and could 
be used in early project-design phases, where a large number of design choices and site conditions 
might need to be evaluated. However, the efficiency of the approach is greatly reduced with in-
creasing number of nodes where structure and soil interact. Therefore, simplifying the model of 
a railway track as much as possible can be very advantageous. The aim of the paper is to investi-
gate several different rail track models, with varying degree of simplifications, and to quantify 
the modelling effects to the system behaviour. Several different soil stratification cases are inves-
tigated. The results are obtained by comparing the system response at the soil surface as well as 
within the building structure. 

 Keywords: Railway track modelling, ground vibration, structure-soil interaction. 

 

1. Introduction 

Vibrations from railway lines is a serious concern in urban environment. Exposure to prolonged 
periods of environmental vibrations can lead to annoyance and health concerns to building inhabitants 
as well structural damage to the surrounding structures Further, close proximity to railway lines might 
reduce the value and desirability of nearby buildings or lead to unused plots of land inside a city. 
Therefore, estimation of vibrations is very important when building new rail lines or structures 
nearby. The increasing importance of estimation of railway ground vibration problems is illustrated 
in a review done by Connolly et al. [1], where it was found that for around half of investigated cases 
additional vibration mitigation measures had to be taken. Most often, the estimation of vibrations is 
performed using in-situ measurements, which is a time consuming and expensive endeavour. Ideally, 
the initial estimations could be performed with numerical simulations, reducing the need of in-situ 
measurements. Computational simulations are cheaper to perform and large number of configurations 
can be easily tested. Further, estimation of vibrations can be done for project that are only in the 
planning stages. 

There is a wide range of computational approaches created to analyse the ground vibration prob-
lems. The models vary from the simplest analytical solutions to 3-dimensional numerical approaches 
as shown in a review done by Kouroussis et al. [2]. However, due computational limitations it is 
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preferable to use the more efficient—simplified models. The most simple approaches often model the 
track and underlying soil with Winkler foundations, e.g. by Fryba [3]. Further, a layered system con-
nected through springs and dashpots can be introduced for better representation of a real track struc-
ture. Lei [4] uses two-layered track with the most important track elements such as rails, sleepers and 
the ballast, to analyse the vibrations caused by random track irregularities. However, these approaches 
do not represent the underlying soil well. This is especially true when the moving vehicle approaches 
the Rayleigh wave speed inside the soil, which can lead to very large deformations of the system. To 
account for more complex structure-soil interaction, more advanced models of the soil are introduced. 
Vostroukhov and Metrikine [5] model the soil as a single viscoelastic layer to which a track system, 
modelled as beams supported by springs and dashpots, is connected. The used approach does still 
allow for a closed form solution. However, in most cases finite element (FE) method is used. For 
example, the FE method has been used by Shih et al. [6] to investigate the effects of the modelling 
approach and by Vogiatzis and Kouroussis [7] to quantify the effects of floating slab track structure.  
The FE approach is often combined with boundary element (BE) method to represent the soil [8]. 
These approaches are very versatile and can be used for a wide array of cases. The main disadvantage 
when using FE or combined FE/BE approaches are the long computation times needed. 

More computationally efficient way to represent the soil is to use semi-analytical approaches that 
can then be coupled to the track structure. A model where the railway track and other structures are 
modelled using FE while the soil is accounted for with a semi-analytical approach has been presented 
by Bucinskas [9]. This work uses the same approach to analyse the effects the track model has on the 
surrounding soil and structure excitation. Several track models are created with varying degree of 
simplifications in order to find the most efficient way to compute reliable results. The work is focused 
on the system response further away from the track and the track response itself is not analysed.  

2. Computational approach 

The applied semi-analytical soil model used was originally proposed by Thomson [10] and Haskell 
[11]. The soil is assumed viscoelastic, with horizontal interfaces between the soil layers. An analytical 
expression of the Green’s function is found, based on a transfer matrix established between the top 
and the bottom of a single layer. Introducing the boundary conditions to the system of equations 
allows for an analytical solution. However, the solution is only possible in frequency domain and by 
Fourier transformation into the horizontal wavenumber domain. The original approach of assembling 
multiple layers might break down for large depths and high wavenumbers. Thus additional computa-
tional stabilisation techniques should be applied [12]. Further, an inverse Fourier transformation to 
spatial domain is needed, which can only be performed numerically. Using the obtained solution, a 
global flexibility matrix of the system can be established.  

To couple the soil to FE, the area where the structure interacts with the soil is discretized into soil-
structure interaction (SSI) nodes. Due to limitations of the semi-analytical model, the structure and 
soil can only interact to structures through layer interfaces. Therefore, special care needs to be taken 
when considering embedded structures—in that case additional interfaces need to be created inside 
the soil at depths where SSI nodes are present. However, in the considered cases, the rail track inter-
acts only interacts with the soil at the ground surface, thus decreasing the needed computational effort. 
It has been found that FEs with linear interpolation provide better agreement with the soil model, 
compared to quadratic interpolation. This is due to the more even stiffness distribution through the 
nodes of each element as the weigh functions are similar for all nodes. Thus, eight-node solid and 
four-node shell elements are used. A more detailed description of the approach can be found in [9]. 

Modelling the soil with a semi-analytical model greatly reduces the computational times needed. 
While the FE method still allows a wide range of geometries and configurations of structures to be 
analysed. Of course, some drawbacks also exist. Analysis can only be performed in frequency do-
main, which does not allow non-linear system behaviour. Further, loads applied on a soil interface 
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can only be distributed horizontally. Therefore, the method performs better when analysing vertical 
system response. 

3. Modelling data 

In this paper, a ballastless railway track was considered. The more traditional system of sleepers 
and ballast is replaced by a continuous track slab to which the rails are attached. This type of track 
requires less maintenance and has a longer life span, when compared to traditional track structures. 
However, the installation costs are significantly higher, thus it is most often used for the most im-
portant track stretches, such as tunnels, viaducts, and areas with dense railway traffic. The modelled 
track structure is illustrated in Fig. 1. The main part of the structure is the track slab, which is con-
structed from concrete (properties for materials used in the paper are given in Table 1). The rails are 
discretely connected to the rail track with rail fastenings. Further, the track slab is placed on a layer 
of subgrade to ensure good connection to the underlying soil surface. 

The described track structure was modelled with three different models, each of them with an 
increasing degree of simplifications. Three types of FE elements have been utilized: solid, shell and 
beam elements, each of the element types representing an increased level of simplifications. The 
overall system is modelled in three dimensions, while the track structure is simplified by essentially 
removing a dimension from the model. In all cases, the rails are modelled as Euler-Bernoulli beams 
discretely pinned to the underlying structure. Therefore, the loads acting on the rails can be applied 
in the same manner for all models. The rails are made of steel, with a cross-sectional area of 0.0076 m2 
and a moment of inertia of 3.038×10-5 m4. The created numerical models are: 
- Solid model. In this case, the track slab and the subgrade are modelled using eight-node FE 

solid elements. It provides the most accurate representation of the considered system, with both 
the track slab and the subgrade layers modelled with separate elements. The subgrade layer is 
then coupled to the soil surface through SSI nodes. The used solid elements contain three trans-
lational degrees of freedom per node, which corresponds to three degrees of freedom of the SSI 
node. 

- Plate model. Here the track slab and subgrade layers are combined into a single plate con-
structed with four-node Mindlin shell elements. The constructed plate is coupled to the under-
lying soil. In this case, the thickness of the rail track structure is largely disregarded. This is 
especially evident when coupling the rails and the soil to the structure, where the offset from 
the embankment centre line is not modelled. Compared to the Solid model, the total number of 

 

Figure 1. Simplified ballastless track structure. 

 

Figure 2. Considered track models. Left to right: Solid model, Plate model, Beam model. 
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degrees of freedom is reduced. However, the number of SSI nodes stays the same. Further, 
coupling to the soil is only possible for the first three translational degrees of freedom of the 
shell element, while the rotational degrees of freedom are not coupled. This could lead to a 
reduced stiffness of the structure compared to the previous case. 

- Beam model. The track slab is modelled with two-node beam elements in three-dimensions, 
where bending is modelled using the Euler-Bernoulli beam theory. The subgrade layer is com-
pletely disregarded. Further, both rails are combined into a single beam pinned to the track slab 
at connecting nodes. Here, both the overall number of degrees of freedom and SSI nodes is 
greatly reduced. However, similarly to the Plate model, only the translational degrees of free-
dom of the beam are coupled to the structure. 

All models are discretized in a similar fashion—nodes that are shared between models are kept in 
the same positions. The spacing between the nodes is around 0.6 m in both horizontal directions and 
0.3 m in the vertical direction. The discretization of the models is illustrated Fig. 2. The ends of the 
track are not fixed, therefore it is ensured that the modelled track is long enough to minimise the 
effects of the free ends. Thus, the total length of the modelled track is equal to 60.0 m. Further, the 
rail gauge is 1.4 m and track slab width is 3.0 m. The track slab is made from concrete (material 
properties for concrete and other material used can be found in Table 1). For simplicity, the subgrade 
layer is modelled with the same width as the track slab. Both the track slab and the subgrade are 0.3 m 
thick.  

Two soil stratification cases were considered: a homogeneous half-space of drained sand and a 
5.0 m thick layer of soft clay over a half-space of drained sand. The first case represents a real world 
case with good soil conditions, while in the second case, the soil conditions are rather unfavourable. 
Travelling waves can reflect from the boundary between the two materials, trapping the wave in the 
upper soft layer. This can lead to slower attenuating waves and increased displacements. 

The response of the system is analysed in several cases: 
- A single massless rigid footing is placed at 15.0 m distance from the track. The footing is a 

square with a side length of 2.0 m. This case is used to determine the soil response without the 
added effects of the building structure. 

- Further, a simplified one-storey building is analysed, as shown in Fig. 3. The structure is con-
structed from six columns that support a single floor slab. It is supported by the same type of 
rigid footings as in the previous case and one of the footings (Point A) is placed in the same 
position. The cross-section of the columns is square with a side length of 0.3 m, while the slab 

 

Figure 3. Modelled building structure. 

Table 1: Material properties. 
Material Young’s modulus 

(MPa) 
Poisson’s ratio (-) Mass density (kg/m3) Damping ratio (-) 

Concrete 30000 0.15 2400 0.040 
Steel 210000 0.30 7900 0.020 

Subgrade 120 0.35 2100 0.040 
Sand 250 0.30 2200 0.045 
Clay 80 0.48 2000 0.045 
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is 0.25 m thick. The columns are 3.0 m high and the spans between the columns are 3.0 m. The 
building centre is 16.5 m away from the railway track, with the longer side positioned along the 
track. Two points on the building structure are analysed: Point A is placed at the SSI node 
connecting the footing and the building column, while Point B is placed on the slab of the 
building. Mindlin shell and beam elements are used to model the structure. It is discretized with 
0.6 m spacing between the nodes. 

4. Results 

4.1 Response from a harmonic stationary load 
The previously described models were analysed in the frequency domain. A vertical unit load was 

split between the two rails and placed at the middle of the rails, except for the Beam model where the 
whole load was applied to the single combined rail. Analysis was performed in the 1–50 Hz range. 
Only the vertical response of the system was analysed, as it is assumed the most important character-
istic of the system. 

Table 2 shows the computational times needed for the considered models. The time to compute 
the results is given for 1 and 100 frequencies, as some overhead time can be saved when computing 
multiple frequencies at the same time. The computations were performed on a workstation with two 
Intel Xeon E5-2620v3 processors, with 2.40 GHz clock speed. It can be observed, that replacing the 
Solid model with the Shell model reduces the computation times by around 30%. Simplifying the 
system into the Beam model reduces the computation times even further by around 77%, when com-
pared to the Solid model. Reducing the computation times can be especially important when consid-
ering wide frequency ranges or a wide array of cases. Thus, even a computation-time reduction of as 
little as 30% can be significant. 

Fig. 4 shows the resulting vertical displacements of the single rigid footing for both soil stratifica-
tion cases. The results are shown in the frequency domain. The observed behaviour is significantly 
different between the two soil stratification cases. The overall displacements are higher for the layered 
soil case, except for the very low 1–4 Hz frequency range where the homogeneous half-space pro-
vides higher displacements. Further, the layered soil case has a distinct peak at around 10 Hz, which 
is not present for the half-space soil stratification case.  

It is clear that the Solid and Plate models provide almost identical behaviour through the analysed 
frequency range. The Beam model shows good agreement to about 10 Hz and is able to predict the 
peak of the layered soil case. However, for higher frequencies, the results diverge and the Beam 
model tends to overestimate the system response. This could be due to the lack of stiffness at higher 
frequencies in the system, caused by rotational degrees of freedom of the beam not coupling to the 
underlying soil. This could be solved by assigning a certain rigid area to each SSI node to obtain the 
rotational stiffness. However, that would lead to significantly longer computational times, making 
the model even less efficient than the Plate or Solid models. 

Further, the building structure was added to the system. Firstly, Point A in the structure was ana-
lysed (position shown in Fig. 3). The rigid footing associated with this point is the same as in the 
previous case, thus the effects of added mass of the building and additional footings can be investi-
gated. However, it has been found that adding the building does not change the system response at 
this point significantly. The obtained results are very similar to those shown in Fig. 4 and they are, 
therefore, not shown here. Further, Fig. 5 shows the behaviour of the floor slab of the building in 
Point B. Once again, the observed response in Solid and Plate models are almost identical. The Beam 

Table 2: Computation times for considered railway track models. 
Computed model Number of computed frequencies 

1 100 
Solid model 10.88 s 692.12 s 
Plate model 7.35 s 496.61 s 
Beam model 2.30 s 166.38 s 
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model still provides different results, especially at higher frequencies. However, the agreement be-
tween all models is better overall—the Beam model shows good agreement up to 35 Hz and 20 Hz 
for half-space and layered soil stratification cases, respectively. Further, it predicts the first peak of 
the layered case as well as the first large valley for both stratification cases. It can be concluded, that 
the effects of railway track modelling are reduced further away from the soil surface. It is possible 
that these effects can further increase when considering larger structures. 

4.2 Response from a constant moving load 
The system response from a stationary force might not reproduce the real-life system behaviour 

well. Thus, as an alternative, a moving unit load is introduced into the system. The modelled load is 
moving at 40 m/s along the track and is split between the two rails in the same way as in the previous 
subsection. The load is applied in the vertical direction downwards, for better representation of a 
passing train. The system is calculated at 1024 discrete frequencies up to 100 Hz, and inverse Fourier 
transformation is performed to obtain the time-domain solution. The previous subsection showed only 
minimal differences between the responses of a single footing in the free field and a building structure. 
Hence, only the building structure is considered in this section.  

Fig. 6 shows the building footing response (Point A) from a moving force. Firstly, the resulting 
vertical response is given in time domain. Once again, different soil-stratification cases have a sig-
nificant effect on the system behaviour. Interestingly, higher absolute displacements are observed for 
the homogeneous half-space, even though the soil stiffness is lower in the layered case. All considered 
numerical models provide very similar results. The Beam model does show some differences—higher 
positive peaks are observed, especially for layered soil stratification. Further, the results are converted 
into frequency domain (see bottom subfigures in Fig. 6). Here it is clear the Beam model significantly 
overestimates the response at higher frequencies—good agreement between all models is only ob-
served up to 3.5 Hz. The Solid and Beam models still show very good agreement with only minor 

 

Figure 4: Vertical response of a single footing at 15 m distance from the rail track. Soil conditions: on the 
left—homogenous half-space of sand, on the right—5 m layer of soft clay over half-space of sand. 

 

Figure 5: Steady state response on the first floor (Point B) of the building structure. Soil conditions: on the 
left—homogenous half-space of sand, on the right—5 m layer of soft clay over half-space of sand. 
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deviations in both frequency domain and time domain. Similar system behaviour is also observed for 
different vehicle speeds. 

The vertical response of the floor slab in Point B is shown in Fig. 7. Here, the agreement between 
all considered models is even better. For the homogeneous half-space, the Beam model fits the other 
models very well. In some instances, it fits the solid model better than the shell model. Overall, the 
Beam model still provides more excitation at higher frequencies. However, the differences are rather 
small and could be considered acceptable, especially when significantly reduced computation times 
are taken into account. As seen from the analysis with a stationary force, the building structure intro-
duces additional damping to the system, thus reducing the importance of the railway track model.  

 
Figure 7: Vertical building floor (Point B) response from unit load travelling at 40 m/s. Soil conditions: on 

the left—homogenous half-space of sand, on the right—5 m layer of soft clay over half-space of sand. 

 
Figure 6: Vertical building footing (Point A) from unit load travelling at 40 m/s. Soil conditions: on the 

left—homogenous half-space of sand, on the right—5 m layer of soft clay over half-space of sand. 
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5. Discussion and conclusion 

The work shortly introduces a modelling approach where a semi-analytical soil model can be cou-
pled via SSI nodes to a finite-element model of one or more structures. The approach was utilized to 
model a railway track and a neighbouring footing or building. Three different railway track models 
were created, with varying degrees of complexity. Created models were used to analyse the excitation 
of the soil and building structure near the railway track. Analysis was performed by calculating the 
steady state response from a stationary force and the response from a load traversing the railway track. 

It has been found that in all considered cases, the Plate model provides almost identical results to 
the Solid model. This could be an attractive approach when modelling a railway track, as the Plate 
model offers 30% reduced computation times together with an easier modelling procedure. Further, 
the Beam model offers an additional 77% reduction of the computation time, and thus it would be 
very useful for studies requiring many computations. However, the model does not perform well in 
all cases. It has been found that the Beam model performs well in the low-frequency range at around 
1-4 Hz. Further, introducing a building structure into the system reduces the differences between the 
approaches. The building structure damps some of the high frequency response, reducing the draw-
backs of the Beam model. Therefore, when considering the building floor response from a moving 
load, the Beam model shows rather good agreement with the other models, especially for a homoge-
neous half-space of soil. It is possible that when larger and more complex structures are analysed, 
these effects would further amplify. The Beam model could also be considered when modelling slow-
moving vehicles such as trams, where the excited frequency ranges are lower. 
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Abstract 
A novel computational modelling approach for prediction of environmental vibration is introduced. The model 
is formulated in both moving and fixed frames of reference, with a mixed frame of reference formulation 
introduced to couple the two frames of reference. The resulting system is able to model a vehicle travelling on 
an infinite railway track, formulated in a moving frame of reference, interacting via the soil with a building 
structure, formulated in a fixed frame of reference. The method utilizes a semi-analytical soil model with the 
structures modelled using three-dimensional finite elements. Two solution procedures of the full system are 
proposed: partial coupling, where some secondary effects from reflected waves propagating through soil are 
disregarded, and full coupling, where the vehicle–track–soil–structure is modelled as a fully coupled system. 
Both proposed solution procedures offer a one-step approach for solving the whole system in the frequency–
spatial domain. The usage of the model is demonstrated in two example cases: one analysing a simple building 
structure near a railway track, using the partial coupling solution procedure, and another one analysing the 
behaviour of a vehicle model traversing over a rigid block embedded inside the soil, using the full coupling 
solution procedure. The introduced modelling approach offers a computationally efficient solution procedure, 
at the same time being applicable to a wide array of application cases. 

Keywords: soil–structure interaction, train induced vibration, mixed frame of reference 

1. Introduction 
Railway transportation has been seeing a resurgence in popularity in the recent years, as an efficient, fast and 
environmentally friendly form of transportation. This is especially evident in urban centres, where new metro 
and tramway lines are being continuously developed. However, constructing railway lines close to existing 
buildings or new buildings near existing lines leads to a set of challenges which need to be addressed. One of 
these challenges is the environmental vibration resulting from the passing trains. It propagates through the soil 
and enters the structures, causing annoyance to the inhabitants and, in worst case, leading to structural damage.  

As shown in Connolly et al. [1], environmental vibration is a growing concern when planning new railway 
projects. The exact propagation mechanism of environmental vibration is an extremely complex phenomenon, 
and thus proper evaluation of its effects is difficult. A rough estimate of the vibration levels can be obtained 
by using the guidelines provided by, for example, the Federal Railroad Administration [2] that is commonly 
used in many countries. These estimates are generally based on empirical methods using on-site measurements 
before and during construction. However, for more precise estimations, costly and time-consuming in-situ 
investigations need to be performed. Alternatively, computational models can also be used to evaluate these 
effects. Their use is advantageous as analysis can be performed even before the construction begins, and 
different configurations and site conditions can be tested. However, detailed computational models often 
require sufficient engineering experience and long computation times, while simplified models assume 
significant reduction of site conditions, making their applications somewhat limited. 
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When modelling environmental vibration, the modelling of the soil strata is, in most cases, the highest time 
consuming and difficult task. A sizable soil domain must be modelled to account for the source–soil–structure 
interaction, and in numerical models based on, for example, the finite-element method (FEM), transmitting 
boundary conditions are required to ensure radiation of waves, thus mimicking the behaviour of an unbounded 
medium. This can be avoided to a degree by using analytical and semi-analytical approaches to model the 
underlying soil. Such models, utilizing purely analytical formulations of the Green’s function, can be found in 
[3–5]. A widely used semi-analytical method, based on the soil layer transfer matrices formulated in 
frequency–wavenumber domain, was originally proposed by Thomson [6] and Haskell [7]. The semi-analytical 
method offers relatively short computation times and ensures radiation without the need of special boundary 
conditions. The approach has been expanded by introducing rigid objects as described by Andersen and 
Clausen [8]—or by coupling with a finite-element (FE) model of external structures as described by Bucinskas 
and Andersen [9]. An analytical railway track model coupled to a semi-analytical soil model was introduced 
by Sheng et al. for a stationary load [10] and a moving load [11]. The railway track was modelled analytically 
as an infinite structure consisting of beam and continuous springs and masses, this way accounting for the 
railway track behaviour at higher frequencies. The model was further expanded by introducing a multi-degree-
of-freedom vehicle model and excitation from an uneven track [12]. The vehicle was modelled in two 
dimensions, accounting only for the vertical interactions between the wheels and the rails, with the whole 
system modelled in a moving frame of reference, and with the possibility to observe the resulting displacements 
at a non-moving receiver. The developed methodology offers relatively quick computations. However, the 
application range is limited by the assumptions made for the semi-analytical soil model (e.g. perfectly 
horizontal layers, homogeneity, isotropy etc.). 

When more complex systems are investigated, the modelling effort increases accordingly. Three-dimensional 
(3D) problems can be analysed using the FEM. Examples of 3D FE models including surface railways can be 
found in [13–15]. The models can be formulated to account for a fully coupled vehicle–track–soil system, as 
shown by Connolly et al. [14]—or a two-step approach can be used, as shown by Kouroussis and Verlinden 
[15]. The biggest challenges of fully 3D models are the long computation times and the finite boundaries of 
the modelled domain. Another popular numerical approach is the boundary-element (BE) method. Like the 
semi-analytical approach, this method has an inherent ability to radiate waves. Hence, only the boundaries of 
the investigated domain need to be discretized. The boundary-element method (BEM) is commonly coupled 
to the FEM, to create FE–BE models where the structures are modelled using the FEM and the soil is modelled 
using the BEM. Examples of 3D BE analysis and its coupling with the FEM can be found in [16–18]. Similar 
to fully 3D FE models, the 3D BE models still suffer from long computation times. This can be remedied to 
some degree by using so-called ‘two-and-a-half-dimensional’ (2.5D) models, originally proposed by Yang and 
Hung [19]. The methodology assumes invariant geometry along the movement direction of the vehicle, 
enabling Fourier transformation into wavenumber domain in this direction, in essence discretizing only the 
two-dimensional (2D) cross section of the investigated domain. Then the 2D sections of the model are solved 
for different wavenumbers and, after inverse Fourier transformation, the 3D response can be obtained. The 
methodology is widely adopted and various approaches have been utilized to handle the non-reflecting 
boundary conditions: FE element models [19], FE–BE models [20,21], finite-element–perfectly matched 
layers models (FE–PML) [22] or finite-element–scaled-boundary-finite-element models [23]. Only a small 
part of computational approaches and models developed over the years is presented here. A much wider 
overview of the methods used can be found in review papers, i.e. [24,25] and in the comparative study of 
models by Connolly et al. [26]. 

When modelling the environmental vibration in a building induced by railway traffic, three main parts of the 
problem need to be considered: the vehicle–track system which is the vibration source, the underlying soil 
through which the vibration propagates, and the building structure which is the vibration receiver. Ideally, all 
the parts would be combined into a single model, including all coupling terms. However, due to complex 
analytical formulation needed and the limitations of computational models, this is rarely performed. Most 
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often, parts of the model are coupled together; for example, a coupled vehicle–track–soil model is calculated, 
and the obtained results propagate to the building structure [22,27–32]. This way, the secondary coupling terms 
are excluded from the system, such as the effect of the building structure to the response of the track and the 
vehicle. This is acceptable, as these coupling terms do not influence the system significantly. For example, 
Fiala et al. [27] used a two-step approach to obtain the response of a building structure by splitting the problem 
into a vehicle–track–soil source model and a structure–soil receiver model. With a similar approach, François 
et al. [28] studied road-traffic-induced vibration. The work also proposed a methodology to exclude the soil–
structure interaction problem for cases of soft structures resting on stiff soils. A so-called sub-modelling 
technique was proposed by Hussein et al. [30], where the response of the soil surface from a tunnel structure 
was modelled using the pipe-in-pipe method [33] to find the response of a 2D frame. An almost identical 
system assembly method was also used by Lopes et al. [22]; however, the soil surface response from a tunnel 
structure was modelled using a 2.5D FEM–PML model and a 3D building structure was analysed. 

Overall the prediction of environmental vibration using computational methods is a wide field, with a large 
variety of solutions developed over the years. However, an overall best method for the problem does not exist, 
and the decision on which approach to use depends largely on the available computational resources and 
acceptable level of simplification. The aim of this work is modelling the full vibration propagation path from 
the vehicle up to the building structure. The proposed novel method includes a moving vehicle model that is 
directly coupled to a stationary building structure, with interaction between them through the infinite 
underlying soil, without needing a multiple step solution. At the same time, the method offers a relatively quick 
and flexible solution procedure. A fully 3D system is modelled, with structures modelled using FE, allowing 
a wide variety of configurations. To limit the computational times needed, the semi-analytical soil formulation 
is utilized, with a surface railway track, also modelled analytically as proposed by Sheng et al. [10–12]. The 
system is excited by a multi-body vehicle model passing over an irregular track. The work introduces an 
approach of solving the coupled vehicle–track–soil–building system using a single step solution procedure. 
Two system assembly and solution methods are presented: partial coupling and full coupling. With the partial 
coupling procedure disregarding some effects caused by the reflected waves for a more computationally 
efficient solution, and the full coupling procedure including all the coupling terms. Additionally, the 
methodology for modelling rigid objects and FE structures interacting with the soil is described with its 
implementation into the proposed solution approaches.  

The theoretical background of semi-analytical soil modelling is given in Section 2.1, together with the 
derivations of displacements observed in a fixed frame of reference (FOR) form a load in a moving FOR, in 
Section 2.2, and vice versa, in Section 2.3. The assembly of discretized soil and coupling it to FE is discussed 
in Section 3.1. Further, creating rigid objects interacting with the soil is introduced in Section 3.2. The vehicle–
track system with the system excitation mechanism is introduced in Section 3.3. Section 4 presents the two 
assembly and solution procedures of a full system in a mixed FOR. The methodology is validated, by validating 
the analytically derived coupling terms, in Section 5.1, and comparing with another solution procedure, in 
Section 5.2. To show the capabilities of the proposed modelling approach two example cases are analysed in 
Section 6. Finally, the conclusions can be found in Section 7. 

2. Semi-analytical soil model 
2.1 Formulation in frequency–wavenumber domain 
A semi-analytical soil model is used in the present work. The model utilizes a well-known approach based on 
an analytical solution to the Green’s function in the frequency–wavenumber domain. For the linear hysteric 
half-space 𝑧 0, the displacement field in time–space domain can be obtained using a convolution integral 
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𝑢 𝑥, 𝑦, 𝑧, 𝑡 𝑔 𝑥 𝑥 , 𝑦 𝑦 , 𝑧, 𝑧 , 𝑡 𝑡  𝑝 𝑥 , 𝑦 , 𝑧 , 𝑡  d𝑥 d𝑦 d𝑧 d𝑡 , (1)

where the Green’s function 𝑔  relates the displacement component 𝑢  at the point 𝑥, 𝑦, 𝑧  and time 𝑡 to the 

loads 𝑝  applied in direction 𝑗 at all positions and times up to and including the time 𝑡. It should be noted that 

the Green’s function is dependent explicitly on the vertical coordinates 𝑧 and 𝑧′ of the observation and loading 
points and not only on the distance between the points in the depth direction. Thus, while the soil is assumed 
invariant and infinite in both horizontal directions, the material properties vary over depth due to stratification. 

The Green’s function is challenging to find analytically in time–space domain for a layered half-space. Thus, 
a triple Fourier transformation is performed, transforming the two horizontal coordinates into the wavenumbers 
𝑘  and 𝑘 , and time into the circular frequency 𝜔. Further, introducing a discretization into a number of depths 

𝑧 , 𝑛 1, 2, 3, … , 𝑁  , Equation (1) simplifies into 

𝑈 𝑘 , 𝑘 , 𝑧, 𝜔 �̅� 𝑘 , 𝑘 , 𝑧, 𝑧 , 𝜔  𝑃 , 𝑘 , 𝑘 , 𝜔 . (2)

Here 𝑈  and �̅�  are components of the displacement vector and the Green’s function tensor, respectively, in 

the frequency–wavenumber domain. After the discretization over depth, 𝑃 ,  signifies the traction applied on 

a horizontal interface placed at the depth 𝑧 . In the following, upper case symbols indicate Fourier transforms 
with respect to time, whereas overbar indicates Fourier transforms with respect to the horizontal spatial 
coordinates. 

An analytical expression for the Green’s function in frequency–wavenumber domain is available. Thomson 
[6] and Haskell [7] originally developed a transfer-matrix method, which relates the displacements and traction 
applied at the top of a single layer of material to the displacements and traction at the bottom of the same layer. 
For that purpose, it is assumed that every layer is composed of homogeneous and linear hysteric material and 
that the layers are infinite in both horizontal directions. Further, interaction with the soil is only possible 
through the interfaces between layers or the soil surface. Using the transfer matrices, multiple layers of material 
are assembled and, after applying the boundary conditions, the expression for the Green’s function can be 
obtained analytically. However, the assembly of multiple layers is not a straightforward task and requires 
further consideration in order to avoid numerical instabilities. There are two major groups of approaches used 
to assemble multiple soil layers: the flexibility approaches and the stiffness approaches. One flexibility 
approach was proposed in the original works by Thomson [6] and Haskell [7]. There, the transfer matrices are 
multiplied together to propagate the displacements and traction through the layers. Since the considered 
transfer matrices are never bigger than six by six (three displacement components and three traction 
components for three-dimensional wave propagation), the approach is very quick to compute. However, the 
transfer matrices are relating both traction and displacements components to each other in the same matrix, 
and thus the matrices become badly scaled and eventually ill-conditioned when the frequency becomes higher 
or the layer thickness becomes greater [34,35]. Interaction between the waves propagating through the layers 
and reflecting from the interfaces can also cause instabilities due to the limits of the numerical precision in 
computers. The problems are caused by exponentially increasing and decreasing terms in the same system, 
which leads to the real behaviour of the system being lost as the rounding error. Therefore, the method is not 
well suited for problems where high frequencies or thick soil layers are considered.  

Solving the numerical stability issues is possible by introducing additional stabilization techniques into the 
system. One approach, called the orthonormalization method, was proposed by Wang [35] for geophysical 
applications. In essence, the method ‘rotates’ the obtained traction and displacements components before 
propagating them to the next soil layer, this way removing the coupling terms between the primary (P) and the 
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vertically polarized secondary (SV) waves. The method was originally described for two dimensional cases 
that only contain P and SV waves, but it can easily be generalized to three-dimensional cases by introducing 
the horizontally polarized secondary wave (SH). The SH wave is naturally uncoupled from the other two 
waves; however, this should be enforced in computational codes as rotating the other waves might introduce 
weak coupling due to numerical precision errors. Further, the transfer matrices contain exponential terms that 
grow with increasing layer depth and frequency, thus very thick layers should be split into multiple smaller 
layers with the same material properties to not exceed the limits of floating-point numbers. Using these 
techniques, very efficient computer calculations can be achieved, as all the computations are still based on 
interaction between layer transfer matrices not bigger than six by six.  

Another, and perhaps a more commonly used approach to solve the numerical instability issues, is the stiffness 
approach introduced by Kausel and Roesset [36]. Here, the original transfer matrix, as derived by Thomson 
[6] and Haskell [7], is reordered into a stiffness expression equivalent to those used in the FEM, assuming that 
the interface between two layers is interpreted as a connecting node. Then multiple layers can be assembled 
by overlapping the stiffness matrices at the connecting interfaces. Naturally, this approach leads to bigger 
matrices, especially when considering strata composed of many layers. However, the obtained system stiffness 
matrices are symmetric, and the approach does not suffer from the instability issues. The created system can 
then be used to obtain the Green’s function of the system. 

In terms of computation time, the two methods described above perform very similarly when implemented as 
a computer code. Further, they can both be used to obtain the Green’s function in the frequency–wavenumber 
domain, and they provide identical results. In this work, both methods have been utilized: the flexibility 
approach with numerical stabilization for the fixed-frame-of-reference soil model and the stiffness approach 
for the moving-frame-of-reference model. 

In the frequency–wavenumber domain, the displacements are calculated by multiplying the Green’s function 
�̅�  with the triple-Fourier-transformed load  𝑃 , . Practise shows that using spatially distributed loads is 
advantageous, since such loads vanish at infinity in wavenumber domain. Contrarily, a concentrated force 
applied in a single spatial point produces a constant value of the Fourier transform for all wavenumbers—i.e. 
“white noise” in wavenumber domain—thus requiring, in principle, evaluation of the Green’ function and 
inverse Fourier transformation up to infinite wavenumbers. A further discussion about the load distribution 
used in this work can be found in Section 5.2. After the displacements in the frequency–wavenumber domain 
are obtained, a double inverse Fourier transformation is performed into frequency–space domain: 

𝑈  𝑥 , 𝑦, 𝑧, 𝜔    
1

4𝜋
𝑈 𝑘 , 𝑘 , 𝑧, 𝜔  e  d𝑘 d𝑘 . (3)

The above equation is used when both the load and the response in a fixed frame of reference (fixed FOR) is 
considered. The load is applied at a circular frequency 𝜔  and coordinate 𝑥 , with subscript ‘f’ indicating a 
fixed FOR. As described by Andersen and Clausen [8], a load applied axisymmetrically around the point 
𝑥 , 𝑦 , 𝑧  can be treated effectively in the fixed FOR. Here, the inverse Fourier transformation can be carried 

out in semi-discrete form by adopting polar coordinates, since the integration with respect to the azimuthal 
angle can be done in closed form, leading to Bessel functions in the components 𝐺   of the Green’s function. 

When the whole system is considered in a moving FOR, the Green’s function and, at the same time, the 
response in the frequency–wavenumber domain lose the polar symmetry around the origin of the wavenumber 
domain, compared to a purely fixed FOR. Hence, a fully discrete inverse Fourier transformation from 
wavenumber domain into spatial domain is necessary. Assuming that a load is moving in the positive 𝑥-
direction, the frequency used to compute the Green’s function becomes wavenumber dependent. In that case, 
the inverse double Fourier transformation into frequency–space domain is defined as 
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𝑈  𝑥 , 𝑦, 𝑧, 𝜔    
1

4𝜋
𝑈 𝑘 , 𝑘 , 𝑧, 𝜔 𝑘 𝑣  e  d𝑘 d𝑘 . (4)

where 𝑣 is the velocity at which the moving FOR travels through the fixed FOR. Subscript ‘m’ indicates values 
in the moving FOR.  

2.2 Moving load observed in a fixed frame of reference 
The methodology presented in this work uses both moving and fixed frames of reference. Thus, a mixed FOR 
is used, where the displacement response observed in a fixed FOR from a load applied at a stationary point in 
the moving FOR and vice versa are needed in order to obtain the coupling terms between the two frames of 
reference. An expression for fixed-frame-of-reference displacements from a moving load can be found in [11]. 
The same formulation is used in this work, and a short summary of the formulation is given below. 

Consider a load moving along the 𝑥-axis at a constant velocity 𝑣. It is assumed that the 𝑥 , 𝑦, 𝑧 -coordinate 
system moves together with the load, with the origin placed at the centre of the loaded area. The system is 
excited at the circular frequency 𝜔 . If only a single excitation frequency is considered, the steady-state time-
domain response in the same moving FOR can be expressed as 

𝑢  𝑥 , 𝑦, 𝑧, 𝑡 𝑈  𝑥 , 𝑦, 𝑧, 𝜔  e ,   (5)

where 𝑢   and 𝑥  are the displacement and the coordinate along the 𝑥-axis in the moving FOR, respectively. 
The displacements at a stationary point in the fixed FOR can be observed by defining a relation between 𝑥-
coordinates in the moving and fixed frames of references: 

𝑥 𝑥 𝑣𝑡. (6)

Note that here the moving coordinate 𝑥  becomes a field quantity dependent on time and is offset from the 
origin of the fixed FOR. Thus, the response 𝑢   observed in the fixed FOR, caused by a load applied within 
the moving FOR, can be expressed as 

𝑢  𝑥 , 𝑦, 𝑧, 𝜔 , 𝑡 𝑢  𝑥 𝑣𝑡, 𝑦, 𝑧, 𝑡 𝑈  𝑥 𝑣𝑡, 𝑦, 𝑧, 𝜔  e , (7)

where the tilde above the symbol indicates that the quantity depends on the frequency related to the other FOR 
than the frame in which is observed. In the present case, the displacement is observed in the fixed FOR but 
depends on the frequency in the moving FOR. Further, the response in the fixed FOR can be Fourier 
transformed using the fixed-frame-of-reference circular frequencies 𝜔 : 

𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔 𝑈  𝑥 𝑣𝑡, 𝑦, 𝑧, 𝜔  e  d𝑡. (8)

The expression for 𝑥  is introduced back into the equation and is used to replace the time variable 𝑡. Using 
integration by substitution, the time integral can be replaced with 

d𝑥 𝑣d𝑡. (9)

Inserting this into Equation (8) and further reordering the expression, the following is obtained: 

𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔
1
𝑣

e /  𝑈  𝑥 , 𝑦, 𝑧, 𝜔  e /  d𝑥 . (10)

It is evident that a wavenumber in the direction of convection can be introduced as 

𝛽
𝜔 𝜔

𝑣
. (11)

Thus, the expression in Equation (10) simplifies to 
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𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔
1
𝑣

e  𝑈  𝑥 , 𝑦, 𝑧, 𝜔  e  d𝑥 , 𝛽
𝜔 𝜔

𝑣
. (12)

An expression for the displacements in a moving FOR 𝑈   can be found in Equation (4). Replacing the 
wavenumber 𝑘  with 𝛽 and inserting this into Equation (12) produces: 

𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔
1
𝑣

e  
1

4𝜋
𝑈 𝛽, 𝑘 , 𝑧, 𝜔 𝛽𝑣  e  d𝛽 d𝑘 e  d𝑥 . (13)

The obtained expression can be further simplified by removing the terms for forwards and backwards Fourier 
transformation related to 𝑥 and 𝑘 , obtaining the final expression: 

𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔
1
𝑣

e
1

2𝜋
 𝑈 𝛽, 𝑘 , 𝑧, 𝜔 𝛽𝑣  e d𝑘 , 𝛽

𝜔 𝜔
𝑣

. (14)

From the above equation, it is evident that the displacements observed in a fixed FOR and caused by a load 
applied in a moving FOR are only dependent on a single wavenumber, 𝛽, when expressed in the frequency 
domain for both frames of reference. This allows for efficient calculations, as establishment of a full 
wavenumber-domain field is not necessary, and the integration is only performed for the wavenumbers in the 
𝑦-direction. 

2.3 Stationary load observed in a moving frame of reference 
Similar to the case defined in the previous subsection, the steady-state time-domain response in a fixed FOR 
from a stationary load acting at a frequency 𝜔  can be expressed as 

𝑢  𝑥 , 𝑦, 𝑧, 𝑡 𝑈  𝑥 , 𝑦, 𝑧, 𝜔  e . (15)

The relation between the coordinates along the 𝑥-direction in fixed and moving frames of reference can be 
expressed from Equation (6) as 

𝑥 𝑥 𝑣𝑡. (16)

In this case, the fixed coordinate 𝑥  becomes a time dependent field quantity. Repeating the same procedure as 
in the previous subsection, the fixed-frame-of-reference coordinate 𝑥  is replaced by the expression for the 
moving-frame-of-reference coordinate 𝑥 : 

𝑢  𝑥 , 𝑦, 𝑧, 𝜔 , 𝑡 𝑢  𝑥 𝑣𝑡, 𝑦, 𝑧, 𝑡 𝑈  𝑥 𝑣𝑡, 𝑦, 𝑧, 𝜔  e . (17)

Further, Fourier transforming the obtained displacements using the moving-frame-of-reference circular 
frequencies 𝜔 , the following mixed-frequency-domain expression is obtained: 

𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔 𝑈  𝑥 𝑣𝑡, 𝑦, 𝑧, 𝜔  e  d𝑡. (18)

Back insertion of Equation (16) integration by parts provide the expression: 

𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔
1
𝑣

e /  𝑈  𝑥 , 𝑦, 𝑧, 𝜔  e /  d𝑥 .   (19)

Further, Equations (11) and (3) are inserted into the expression and after some simplification the following is 
obtained: 

𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔
1
𝑣

e
1

2𝜋
 𝑈 𝛽, 𝑘 , 𝑧, 𝜔  e d𝑘 , 𝛽

𝜔 𝜔
𝑣

. (20)

Comparing Equations (20) and (14) it is evident that the expressions are equivalent. That is, the displacements 
originating from a moving source and observed in a fixed FOR are equivalent to the displacements caused by 
a stationary source and observed in a moving frame: 
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𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔 𝑈  𝑥 , 𝑦, 𝑧, 𝜔 , 𝜔 , (21)

given that the horizontal coordinates 𝑥  and 𝑥  have the same numerical value. In practise, this means that 
only Equation (14) or Equation (20) needs to be evaluated. Then the integral part of the equation is reused for 
the other FOR combination, with changed x-coordinate. It should be noted that this is only true in the mixed 
frequency domain. When inverse Fourier transformation is performed to obtain the time-domain response, this 
is no longer true—even if the circular frequencies 𝜔  and 𝜔  are equal: 

𝑢  𝑥 , 𝑦, 𝑧, 𝜔 , 𝑡 𝑢  𝑥 , 𝑦, 𝑧, 𝜔 , 𝑡 . (22)

3. Structures interacting with soil 
3.1 Assembly in a single frame of reference 
To couple the semi-analytical soil model to a finite-element (FE) model of one or more structures, a dynamic 
stiffness matrix of the soil is established. Firstly, the desired geometry of the soil–structure interface is 
discretized into a number of ‘soil–structure interaction’ (SSI) nodes. Further, pure output is requested at a 
range of ‘observation’ nodes. An example of the discretization is shown in Figure 1. The figure shows the two 
types of nodes used to model the system: the SSI nodes that are interacting with external structures, and the 
observation nodes which are only used to analyse soil displacements without direct interaction. The dynamic 
stiffness matrix is established using the SSI nodes, which is then coupled to structures and used to obtain the 
system displacements. The displacements of the observation nodes are obtained by post-processing the 
previously obtained results. 

To establish the dynamic stiffness matrix of the soil, a global flexibility matrix relating all the degrees of 
freedom is needed. For a three-dimensional case, each SSI node has three degrees of freedom. Therefore, the 
receptance matrix 𝐑 𝜔 , also called the flexibility matrix, will be a square matrix with three times more rows 
and columns than the number of nodes in the system. To create the receptance matrix, a unit harmonic load 
𝑃 ,  is applied to a single degree of freedom, 𝑠 , and the resulting displacements are observed at all SSI degrees 

of freedom, including the loaded one. The procedure is repeated for every degree of freedom in the system. 
This way, the receptance relating all degrees of freedom to the loaded degree of freedom is established. The 
receptance between degrees of freedom 𝑠  and 𝑠  is found as 

𝑅 , 𝜔 �̅� 𝑘 , 𝑘 , 𝑧 , 𝑧 , 𝜔  𝑃 , 𝑘 , 𝑘 , 𝜔  e
i 𝑘𝑥 𝑘𝑦  d𝑘𝑥

∞

∞
d𝑘𝑦

∞

∞
. (23) 

Figure 1. Discretization of a system using the semi-analytical soil model. The SSI nodes shown in green can 
be loaded directly or interact with external structures. The observation nodes shown in grey only show the 

displacement resulting from the displacements of the calculation nodes. 

SSI nodes 
Observation 

nodes 
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Here 𝑃 , 𝑘 , 𝑘 , 𝜔  is the double spatial Fourier transform of a distributed harmonic load 𝑃 , 𝑥, 𝑦, 𝜔  of 

unit magnitude acting within the frequency domain at the depth 𝑧  in degree of freedom 𝑠 . Further, 

corresponding to the SSI degrees of freedom 𝑠  and 𝑠 , 𝑑  and 𝑑  signify the local degrees of freedom, 𝑑 , 𝑑
1, 2, 3 for the three-dimensional solid, while 𝑛  and 𝑛  are the node numbers of the nodes to which SSI degrees 

of freedom 𝑠  and 𝑠  belong. Thus, it is assumed that the displacement is observed in direction 𝑑  at a node 

with coordinates  𝑥 , 𝑦 , 𝑧 , while the load is applied in direction 𝑑  at a node with 

coordinates  𝑥 , 𝑦 , 𝑧 . The same procedure can be performed in both fixed and moving frames of 

reference. The obtained results are placed in a single column of the receptance matrix and the process is 
repeated for every degree of freedom. Assuming there is a total of 𝑆 SSI degrees of freedom in the system, the 
assembled receptance matrix becomes: 

𝐑 𝜔

⎣
⎢
⎢
⎡
𝑅 , 𝜔 𝑅 , 𝜔 ⋯ 𝑅 , 𝜔
𝑅 , 𝜔 𝑅 , 𝜔 ⋯ 𝑅 , 𝜔

⋮ ⋮ ⋱ ⋮
𝑅 , 𝜔 𝑅 , 𝜔 ⋯ 𝑅 , 𝜔 ⎦

⎥
⎥
⎤
. (24)

Notice that the set 𝑠 𝑠 , 𝑠 , … , 𝑠  containing the numbering of all SSI degrees of freedom is not necessarily 
equal to the set 1, 2, … , 𝑆 , i.e. another ordering of the degrees of freedom may be used. When the soil model 
is coupled with FE models of structures and/or vehicles coming with their own sets of degrees of freedom, 𝑠 
will be a subset of the set containing all degrees of freedom. However, in any case, 𝐑 𝜔  is a 𝑆 𝑆 matrix 
providing the flexibility of the 𝑆 SSI degrees of freedom from loads applied to the same 𝑆 degrees of freedom. 

The receptance matrix can be established for the moving and fixed frames of reference. However, only in the 
fixed FOR, the matrix is symmetric, assuming that the applied load 𝑃 , 𝑥, 𝑦, 𝜔  is the same for all degrees 

of freedom. If no external structures are connected to the semi-analytical soil model, it is possible to apply the 
loads and obtain the system displacements 𝐔  directly as: 

𝐔 𝜔 𝐑 𝜔  𝐏 𝜔 , (25)

where 𝐏  is the vector of load magnitudes. It is implied here that the load acting in degree of freedom 𝑠  has a 

spatial distribution defined by 𝑃 ,  and a magnitude defined by element 𝑗 of 𝐏 .  

Next, to couple the soil model with an FE model of one or more structures, the dynamic stiffness matrix of the 
soil is needed. It can be obtained by inverting the receptance matrix: 

𝐊 𝜔 𝐑 𝜔 . (26)

Inversion of a matrix can be computationally expensive, especially for larger systems. Thus, using as few as 
possible SSI nodes is important for an efficient solution. After the dynamic stiffness matrix is obtained, it can 
be assembled in the single frame of reference (SFOR) with the dynamic stiffness matrix 𝐊  of the FE model: 

𝐊 𝜔
𝐊 𝜔 𝐊 𝜔 𝐊 𝜔

𝐊 𝜔 𝐊 𝜔
, (27)

where superscript ‘s’ denotes the degrees of freedom through which the FE model interacts with the soil, while 
superscript ‘n’ denotes the degrees of freedom that are internal to the FE model. Combinations of superscripts 
‘sn’ and ‘ns’ denote the coupling terms. Due to symmetry of the FE system matrices, 𝐊 𝜔 𝐊 𝜔 . 
Further, the matrix 𝐊 𝜔  is usually sparsely populated. 

The displacements of the system can then be obtained by solving the system of equations: 

𝐊 𝜔  𝐔 𝜔 𝐏 𝜔 . (28)
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To obtain the displacements of the observation degrees of freedom, a flexibility matrix relating the SSI and 
observation degrees of freedom is needed. Assuming that the numbering of observation degrees of freedom is 
stored in a set 𝑜 𝑜 , 𝑜 , … , 𝑜  with the number of degrees of freedom being 𝑂, the flexibility matrix will 
have 𝑂 rows and 𝑆 columns. The flexibility matrix for observation degrees of freedom is assembled as: 

𝐑 𝜔

⎣
⎢
⎢
⎡
𝑅 , 𝜔 𝑅 , 𝜔 ⋯ 𝑅 , 𝜔
𝑅 , 𝜔 𝑅 , 𝜔 ⋯ 𝑅 , 𝜔

⋮ ⋮ ⋱ ⋮
𝑅 , 𝜔 𝑅 , 𝜔 ⋯ 𝑅 , 𝜔 ⎦

⎥
⎥
⎤
. (29)

To find the displacements of the observation nodes the observation flexibility matrix 𝐑  is multiplied by the 
soil displacements at the SSI degrees of freedom 𝐔 , which are extracted from the whole system displacement 
vector 𝐔 : 

𝐔 𝜔 𝐑 𝜔  𝐑 𝜔  𝐔 𝜔 𝐑 𝜔  𝐊 𝜔  𝐔 𝜔 . (30)

The matrix inverse involved here was already performed in Equation (26). Thus, the result can be reused. Then, 
to obtain the displacements of the observation nodes, no further large matrix inversion is needed, making the 
calculations more computationally efficient. Observation nodes are especially useful when the displacements 
of large fields are of interest, for example, to observe the displacement of the ground surface in a large region. 

3.2 Rigid structures interacting with the soil 
The semi-analytical soil model allows modelling of completely rigid objects interacting with the soil. This is 
useful when modelling structures that are much stiffer than the surrounding material, for example building 
foundations. To create a three-dimensional rigid object, the object shape is discretized into a number of SSI 
nodes. The global flexibility matrix is created in the same way as in the previous subsection and inverted to 
obtain the dynamic stiffness matrix. However, condensation of the stiffness matrix must be performed in order 
to reduce the system such that the response can be determined in terms of the rigid body modes rather than the 
original degrees of freedom of the SSI nodes. This is achieved by assuming that SSI nodes belonging to the 
same rigid object are fixed relatively to each other and move together with the degrees of freedom of a 
reference master node that defines the motion of the rigid object. In principle, the master node can be placed 
at any position. However, it is most conveniently placed in the point at which coupling to an FE model should 
be done. That is, for example, in the centre of the topside of a footing. In the most common three-dimensional 
case, separate SSI nodes have three degrees of freedom each, i.e. three lateral displacements, while each rigid 

Figure 2. Discretization of a system with rigid objects. The SSI nodes shown in green belong to the rigid 
object number 1, with master node 1, while nodes in red belong to rigid object number 2, with master node 
2. Further ‘free’ independent SSI nodes are also present in the system and shown in blue. The observation 

nodes are shown in grey. 

Observation 
nodes 

Free SSI 
nodes 

SSI nodes 
rigid object 2 

SSI nodes 
rigid object 1 

Master node 2 Master node 1 
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object has six degrees of freedom: three for lateral displacements and three additional rotational degrees of 
freedom of the reference node. For a single rigid object composed of a number of SSI nodes, the transformation 
matrix 𝐓 ,  is created. Multiple rigid objects can also be a part of the same system. The global transformation 
matrix for a system with 𝑁 rigid objects can be assembled as: 

𝐓

⎣
⎢
⎢
⎡
𝐓 , 𝟎 ⋯ 𝟎

𝟎 𝐓 , ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝐓 , ⎦

⎥
⎥
⎤
. (31)

The system can also contain non-associated ‘free’ SSI nodes, which are not part of any rigid object. In that 
case, the local transformation matrix for such nodes will be the identity matrix with the same number of rows 
and columns as the number of degrees of freedom associated with the free node. An example of a two-
dimensional system containing rigid objects, free nodes and observation nodes is shown in Figure 2.  

To obtain the condensed stiffness matrix of the soil, Equation (26) is modified: 

𝐊 𝜔 𝐓  𝐊 𝜔  𝐓 . (32)

The matrix can then be coupled to FE structures in the same way as described previously. Due to condensation 
of some SSI nodes, Equation (30) is also modified by introducing the transformation matrix:  

𝐔 𝜔 𝐑 𝜔 𝐑 𝜔  𝐓  𝐔 𝜔 𝐑 𝜔  𝐊 𝜔  𝐓  𝐔 𝜔 . (33)

The matrix inversion involved here was already performed in Equation (26). Thus, to improve the efficiency 
of the calculation, intermediate results should be saved and reused here. The formulation outlined here can be 
also used, if no rigid objects are present in the system. In that case each SSI node is treated as a ‘free’ node, 
creating a transformation matrix which is just a square identity matrix, with a number of rows and columns 
equal to the number of degrees of freedom in the system. 

3.3 Vehicle, railway track and wheel–rail interaction 
The system is excited by one or more vehicles travelling across a railway track. The vehicles can be modelled 
using various multibody systems, with varying complexity, depending in the application case. However, in the 
described model vehicles are only modelled in two dimensions and only the vertical wheel–rail interaction 
forces are considered. The dynamic stiffness matrix of the vehicle 𝐊 , 𝜔  is created in a moving FOR by 
combining the vehicle stiffness, damping and mass matrices. If multiple vehicles are needed, the dynamic 
stiffness matrix becomes: 

𝐊 𝜔

⎣
⎢
⎢
⎡
𝐊 , 𝜔 𝟎 ⋯ 𝟎

𝟎 𝐊 , 𝜔 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝐊 , 𝜔 ⎦

⎥
⎥
⎤
, (34)

Here it is assumed that there is a total number 𝐼 of vehicles in the system. Further, there is no coupling between 
separate vehicles through the vehicle stiffness matrix, i.e. each car of a train acts like a separate vehicle. 

The railway track model, as described by Sheng et al. [11], is utilized in this work. A layered track structure 
containing rail, rail-pads, sleepers and ballast is used. It is coupled to the underlying soil in the frequency–
wavenumber domain. The railway track is placed along the x-axis on the soil surface and, similarly to the 
wheel–rail interaction forces, only the vertical interaction between the soil and the track is considered. An 
analytical formulation is used, in which the rail track is assumed to be infinite along the x-axis. A flexibility 
matrix 𝐑 𝜔  relating the rail displacements between all vehicle wheel sets positions is constructed. This is 
achieved in a similar manner as described in the previous section, assuming a single degree of freedom of a 
rail in a moving FOR for every wheel. The matrix is later used to establish the stiffness matrix of a coupled-
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domain stiffness matrix. However, considering a system only in the moving FOR with no additional structures 
coupled to the soil, the stiffness matrix for the rails can be found by inverting the flexibility matrix: 

𝐊 𝜔 𝐑 𝜔 . (35)
To obtain the correct interaction between the rail and the wheels of the vehicle, Hertzian springs are used. 
However, the system is solved in the frequency domain assuming linear behaviour. Hence, the stiffness of the 
Hertzian springs is linearized according to the static load of the vehicle: 

𝐾 ,
3 𝐹 /

𝐺
, (36)

where 𝐺  is a constant dependent on the wheel shape and size, and 𝐹  is the load acting on a single wheel 
from the weight of the vehicle. It should be noted that 𝐹  is the load acting on a single vehicle wheel, and is 
defined as half of the load acting on a single wheel set. The obtained values are placed into a diagonal matrix, 
whose size depends on the number of wheel sets 𝐿 in the system: 

𝐊 diag 𝐾 , 𝐾 , ⋯ 𝐾 , . (37)

The obtained matrix can then be used for coupling the vehicle model to the track model. 

The whole system is excited by the deadweight of the vehicle and the uneven track, with the track unevenness 
being the largest contributor of higher frequency vibration. It is assumed, that the unevenness of the track can 
be Fourier transformed and split into separate independent components acting at certain wavenumbers. This 
way, it is possible to compute the response of the system at selected excitation frequencies 𝜔  from a unit 
track unevenness. Afterwards, the real response of the system can be found by multiplying the obtained unit 
response by the actual unevenness at the corresponding wavenumber. Since the vehicle–railway track system 
is considered in the frequency domain and in a moving FOR, the unit unevenness of the rails will become a 
complex number with a phase angle according to the wheel position. Vector containing the unit displacements 
for all wheel sets in the system is found as:  

𝐝 𝜔 exp
𝜔
𝑣

 𝐱 , (38)

where  𝐱  is a vector storing the positions of the wheels in the moving FOR system. The coupled vehicle–
track system response from a unit unevenness can then be found as: 

 

Figure 3. Wheel–rail excitation mechanism due to uneven track. Note that the track unevenness 𝑑  is a 
complex number, as the system is solved in the frequency domain. 

Wheel 

𝑈 𝜔  

𝑈 𝜔  

𝐾 ,  

𝑑 𝜔  

Rail 

𝑈 𝜔  

𝑈 𝜔  

𝐾 ,  

𝐹 , 𝑑 𝐾 , 𝜔  

𝐹 , 𝑑 𝐾 , 𝜔  

Rail 
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𝐊 𝜔 𝐊 𝜔 𝟎
𝐊 𝜔 𝐊 𝜔 𝐊 𝐊

𝟎 𝐊 𝐊 𝜔 𝐊

𝐔 𝜔
𝐔 𝜔
𝐔 𝜔

𝟎
   𝐾  𝐝 𝜔

𝐾  𝐝 𝜔
. (39)

Here the vehicle degrees of freedom are split into two parts: those relating to the wheels, denoted with the 
superscript ‘w’, and those that are not coupled to the track, denoted with superscript ‘u’. It is assumed that 
each vehicle wheel has the same Hertzian spring stiffness 𝐾  when calculating the acting forces. A system 
with a single vehicle wheel, showing the forces acting on the rail and the wheel due to the unevenness of the 
track, is shown in Figure 3. Solving the equation for the unknown displacement vector 𝐔 produces the system 
behaviour. Note that in this case, the effects of external structures coupled to the railway track through the soil 
are not accounted for. 

4. Assembly and solution of global system 
4.1 Partly coupled global system 
Parts of the model described in the previous sections are combined into a single global system. The resulting 
system combines parts formulated in a moving FOR, such as the vehicle and the track, and parts formulated in 
the fixed FOR, such as the structures interacting with the soil. To couple the two frames of reference together, 
the theory described in Sections 2.2 and 2.3 is used. For that purpose, the receptance matrix 𝐑 , providing the 
interaction between the degrees of freedom of the rails and the degrees of freedom of the soil, is established. 
The matrix 𝐑  couples the moving and fixed frames of reference, and it is therefore dependent on two 
frequencies: 𝜔  and 𝜔 . Accordingly, the tilde indicates that the quantity is defined in the mixed FOR. 

The receptance defining the response of degree of freedom 𝑖 in the fixed FOR to a load applied to degree of 
freedom 𝑗 in the moving FOR can be found as: 

𝑅f , 𝜔 , 𝜔
1
𝑣

e    1
2𝜋

 �̅� 𝛽, 𝑘 , 𝑧 , 𝑧 , 𝜔 𝛽𝑣  𝑃 , e  d𝑘 , (40)

where 𝑑  and 𝑑  are the directions associated with degrees of freedom 𝑖 and 𝑗, while 𝑛  and 𝑛  are the node 

numbers of the nodes to which degrees of freedom 𝑖 and 𝑗 belong. In this case, all loaded degrees of freedom 

belong to the rails and are applied as unit loads on an Euler-Bernoulli beam. Therefore, the load 𝑃 ,  is equal 

to one. The receptance matrix can now be assembled: 

𝐑 𝜔 , 𝜔

⎣
⎢
⎢
⎢
⎡𝑅f , 𝜔 , 𝜔  𝑅f , 𝜔 , 𝜔  ⋯ 𝑅f , 𝜔 , 𝜔

𝑅f , 𝜔 , 𝜔  𝑅f , 𝜔 , 𝜔  ⋯ 𝑅f , 𝜔 , 𝜔
⋮ ⋮ ⋱ ⋮

𝑅f , 𝜔 , 𝜔  𝑅f , 𝜔 , 𝜔  ⋯ 𝑅f , 𝜔 , 𝜔 ⎦
⎥
⎥
⎥
⎤

, (41)

where 𝑠 𝑠 , 𝑠 , … , 𝑆  is the previously defined set of SSI degrees of freedom, whereas 𝑟 𝑟 , 𝑟 , … , 𝑅  is 
the set of rail degrees of freedom. 

Further, the receptance used for the backwards coupling from a load at degree of freedom 𝑖 in fixed FOR to a 
displacement in degree of freedom 𝑗 in a moving FOR is obtained. To avoid excessive additional computations, 
the similarity between the solutions for the two FOR combinations and the symmetry of the solution in the y-
direction is used. Further, it is assumed that there is reciprocity of receptance between the rails and the soil. 
Thus, the coupling terms between loads applied in a stationary FOR and observed in a moving FOR can be 
found as: 

𝑅m , 𝜔 , 𝜔
1
𝑣

e    1
2𝜋

 �̅� 𝛽, 𝑘 , 𝑧 , 𝑧 , 𝜔 𝛽𝑣  𝑃 , e  d𝑘 . (42)
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By keeping the same integrand as in Equation (40) and only modifying the x-coordinates, additional 
computations are avoided. The modification due to the x-coordinate is unavoidable as the solution is not 
symmetrical in the x-direction. The receptance matrix for backwards coupling can be assembled as 

𝐑 𝜔 , 𝜔

⎣
⎢
⎢
⎢
⎡𝑅m , 𝜔 , 𝜔  𝑅m , 𝜔 , 𝜔  ⋯ 𝑅m , 𝜔 , 𝜔

𝑅m , 𝜔 , 𝜔  𝑅m , 𝜔 , 𝜔  ⋯ 𝑅m , 𝜔 , 𝜔
⋮ ⋮ ⋱ ⋮

𝑅m , 𝜔 , 𝜔  𝑅m , 𝜔 , 𝜔  ⋯ 𝑅m , 𝜔 , 𝜔 ⎦
⎥
⎥
⎥
⎤

. (43)

The matrix is assembled like Equation (41) and then transposed, accounting for the switched source and 
receiver positions. However, as the effects of the backwards coupling in most cases are negligible, the 
transpose of the forwards coupling matrix, 𝐑 𝜔 , 𝜔  can be also reused here with little loss of accuracy. 

Further, the flexibility matrix, assembled in the fixed FOR and connecting all the degrees of freedom 
interacting with the soil, is added to the system. Using the created matrices, the full flexibility matrix for the 
so-called ‘global’ (indicated by subscript ‘g’) system can be constructed: 

𝐑 𝜔 , 𝜔
𝐑 𝜔 𝐑 𝜔 , 𝜔

𝐑 𝜔 , 𝜔 𝐑 𝜔
. (44)

Further, if no rigid bodies are present in the soil model, the global flexibility matrix may be inverted to obtain 
the stiffness matrix of the global system: 

𝐊 𝜔 , 𝜔 𝐑 𝜔 , 𝜔 . (45)

If the system contains rigid objects, which are formulated as described in Section 3.2, the global stiffness 
matrix can be constructed using the global transformation matrix: 

𝐓
𝐈 𝟎
𝟎 𝐓 , (46)

where 𝐈 is the identity matrix with dimensions equal to the number of rail degrees of freedom. It is assumed 
that there are no rigid bodies modelled in the moving FOR. In theory, it is possible to model rigid bodies in 
both the moving and the fixed frames of reference, given that the reference nodes for these bodies are not 
shared between the two frames of reference. In that case, the identity matrix would be replaced with local 
transformation matrices 𝐓 , . However, for any practical applications, rigid bodies will only exist in the fixed 
FOR, where they may be used to model foundations or structures embedded in the ground. The global 
transformation matrix is introduced into Equation 45 as: 

𝐊 𝜔 , 𝜔 𝐓 𝐑 𝜔 , 𝜔 𝐓 . (47)

After the stiffness matrix of the system has been obtained, the vehicle and the FE structures can be also added 
to the global system. The governing equation for partial coupling in the mixed FOR becomes: 

𝐊 𝜔 , 𝜔 𝐔 𝜔 , 𝜔  𝐅 𝜔 , 𝜔 , (48a)

where 

𝐊 𝜔 , 𝜔

⎣
⎢
⎢
⎢
⎢
⎡

𝐊 𝜔 𝐊 𝜔 𝟎 𝟎 𝟎
𝐊 𝜔 𝐊 𝜔 𝐊 𝐊 𝟎 𝟎

𝟎 𝐊 𝐊 𝜔 , 𝜔 𝐊 𝐊 𝜔 , 𝜔 𝟎

𝟎 𝟎 𝐊 𝜔 , 𝜔 𝐊 𝜔 , 𝜔 𝐊 𝜔 𝐊 𝜔
𝟎 𝟎 𝟎 𝐊 𝜔 𝐊 𝜔 ⎦

⎥
⎥
⎥
⎥
⎤

, (48b)
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𝐔 𝜔 , 𝜔

⎩
⎪
⎨

⎪
⎧ 𝐔 𝜔 , 𝜔

𝐔 𝜔 , 𝜔
𝐔 𝜔 , 𝜔

𝐔 𝜔 , 𝜔

𝐔 𝜔 , 𝜔 ⎭
⎪
⎬

⎪
⎫

, 𝐅 𝜔 , 𝜔

⎩
⎪
⎨

⎪
⎧

𝟎
   𝐾 𝐝 𝜔

𝐾 𝐝 𝜔
𝟎
𝟎 ⎭

⎪
⎬

⎪
⎫

. (48c)

The superscripts relate to the degrees of freedom of: ‘w’—wheels, ‘r’—rails, ‘s’—soil in the fixed FOR, ‘n’—
parts of FE structures not coupled to the soil and ‘u’—vehicles uncoupled from the track (e.g. the vehicle 
body). Vectors 𝐔 , 𝐔  and 𝐔  store the displacements for the vehicle, global railway track–soil system and 

the FE structure, respectively. When the excitation frequency 𝜔  is equal to zero, the unevenness of the track 
does not excite the system. In that case, the loads corresponding to the deadweight of the vehicle are placed 
directly on the rails. 

It can be seen that the whole system can be solved as a single-step solution without the need of computing the 
wheel–rail interaction forces before applying them to the system. This way, the weak coupling between the 
vehicle and the structures interacting with the soil are also included in the system. For most practical 
applications, these effects are very small. However, the increase in computational effort needed to compute 
the full system is also relatively low, as the added vehicle degrees of freedom do not increase the total size of 
the matrix by much.  

It should be noted that the coupling between the two frames of reference introduced via Equations (40)–(48) 
only couples the two investigated frequencies and does not include further spreading through the frequencies. 
For the investigated case, this means that the effects from the waves propagating through the soil and being 
reradiated by rigid bodies or FE structures will only affect the vehicle at the frequency of excitation and will 
not spread to a wider range of frequencies. In order to account for the coupling due to the Doppler effect 
observed in the moving FOR, related to reradiated waves from footings, etc., in the fixed FOR, and vice versa, 
the problem must be solved simultaneously for a number of combinations of the frequencies 𝜔  and 𝜔 . This 
results in a system of equations that can be solved directly (see the next section) or by iteration. 

After the system has been solved, the displacement for the observation degrees of freedom in the fixed FOR 
can be obtained. For that purpose, a receptance matrix 𝐑 𝜔 , 𝜔  between the rails and the observation 
nodes is established. The procedure is the same as shown in Equations (40) and (41). The receptance matrix 
between the observation nodes and global nodes is then constructed: 

𝐑 𝜔 , 𝜔 𝐑 𝜔 , 𝜔 𝐑 𝜔 . (49)

The displacements can then be obtained as 

𝐔 𝜔 , 𝜔 𝐑 𝜔 , 𝜔  𝐑 𝜔 , 𝜔  𝐓  𝐔 𝜔 , 𝜔 . (5,)

When the displacements for both the global and the observation degrees of freedom have been obtained, the 
effects from 𝐽  discrete excitation frequencies 𝜔  can be added together to obtain the total response in the 
fixed FOR: 

𝐔 𝜔
1

2𝜋
𝐔 𝜔 , , 𝜔 𝐷 𝑘 ,  ∆𝑘 , (51)

where 𝐷 𝑘 ,  is the rail unevenness obtained from a power spectral density (PSD) according to the 

wavenumber 𝑘 , , and ∆𝑘  is the wavenumber step size. The wavenumber can be found as 

𝑘 ,
𝜔 ,

𝑣
. (52)
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The displacement vectors 𝐔  for the global-system soil displacements and 𝐔  for the observation node 

displacements, both relating to the fixed FOR, can be constructed using the same approach. Meanwhile, the 
displacement vectors 𝐔  for the global-system rail displacements and 𝐔  for the vehicle displacements both 

relate to the moving FOR. Hence, they should be constructed by combining the effects of the entire considered 
range of frequencies 𝜔  in the fixed FOR. 

Further, the time-domain response for the degrees of freedom associated with the fixed FOR can be obtained 
by performing an inverse discrete Fourier transformation of the displacements 𝐔 𝜔 : 

𝐮 𝑡
1

2𝜋
𝐔 𝜔 , e  ,   ∆𝜔 , (53)

where 𝐽  is the number of discrete frequencies in the fixed FOR. Note that 𝐽  and 𝐽  need not be equal. 
However, the step sizes ∆𝜔  and ∆𝑘  must be small enough, and the number of frequencies 𝐽  and 𝐽  large 
enough, to ensure proper discretization of peaks in the loads and resonances of the system while, at the same 
time, avoiding violation of the periodicity inherent in the frequency-domain solution. Thus, analysis of trains 
passing very slowly over a track with both short and long irregularities is computationally demanding.  

The methodology presented here can be easily expanded for a wider variety of cases. Using the established 
coupling between two frames of reference, it is also possible to add FE structures in the moving FOR in order 
to model a more complex geometry of the track or vehicle. Further, the receptance matrices can be created 
with other methods, for example FE or BE methods, with the global system being assembled and solved in the 
same manner. Finally, it is noted that the methodology is well-suited for calculation on any computer system, 
ranging from laptops to large clusters, given that parallelization is possible at many levels. 

4.2 Fully coupled global system 
Using the matrices already created for the previously described solution procedure, it is also possible to 
assemble a fully coupled global system. Such a system accounts for the frequency spreading of the reflected 
waves due to the Doppler effect and might be useful for certain cases where the full coupling between the 
vehicle (the source) and the structures (the receivers) cannot be discarded. 

Considering a discretized system with 𝐽  frequencies in the fixed FOR and 𝐽  frequencies in the moving FOR, 
the global receptance matrix for the fully coupled system is assembled as: 

�⃗⃖�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐑 𝜔 , 𝟎 ⋯ 𝟎 𝐑 𝜔 , , 𝜔 , 𝐑 𝜔 , , 𝜔 , ⋯ 𝐑 𝜔 , , 𝜔 ,

𝟎 𝐑 𝜔 , ⋯ 𝟎 𝐑 𝜔 , , 𝜔 , 𝐑 𝜔 , , 𝜔 , ⋯ 𝐑 𝜔 , , 𝜔 ,

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝐑 𝜔 , 𝐑 𝜔 , , 𝜔 , 𝐑 𝜔 , , 𝜔 , ⋯ 𝐑 𝜔 , , 𝜔 ,

𝐑 𝜔 , , 𝜔 , 𝐑 𝜔 , , 𝜔 , ⋯ 𝐑 𝜔 , , 𝜔 , 𝐑 𝜔 , 𝟎 ⋯ 𝟎

𝐑 𝜔 , , 𝜔 , 𝐑 𝜔 , , 𝜔 , ⋯ 𝐑 𝜔 , , 𝜔 , 𝟎 𝐑 𝜔 , ⋯ 𝟎
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝐑 𝜔 , , 𝜔 , 𝐑 𝜔 , , 𝜔 , ⋯𝐑 𝜔 , , 𝜔 , 𝟎 𝟎 𝟎 𝐑 𝜔 , ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (54)

The left–right arrow on �⃗⃖�  indicates the two-way coupling, and again subscript ‘g’ stands for ‘global’. The 
matrices that depend on single frequencies are assembled into a block diagonal matrices, while the coupling 
terms that depend on pairs of frequencies are fully populated submatrices. It can be seen that the previously 
uncoupled frequencies in a single FOR are now coupled through the other FOR. To consider rigid objects, the 
transformation matrix for the considered system is also needed. However, the transformation matrices are 
frequency independent and can be assembled simply by combining the previously obtained matrices into a 
block diagonal matrix, expanding Equation (46) into 
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�⃖⃗� diag 𝐈 𝐈 ⋯ 𝐈 𝐓 , 𝐓 , ⋯ 𝐓 , , , (55)

where in total there are 𝐽  identity matrices, 𝐈, and 𝐽  local transformation matrices, 𝐓 . To obtain the stiffness 
matrix, the system is solved in the same manner as in the partly coupled system: 

�⃗⃖� �⃖⃗� �⃗⃖� �⃖⃗� . (56)

In most cases, the matrix �⃗⃖�  will be fully populated. To add the vehicle and external FE structures to the 

system, the fully coupled stiffness matrix �⃗⃖�  is split into submatrices: �⃗⃖� , 𝜔 ,  corresponding to the 

rail degrees of freedom in a moving FOR at the discrete frequency 𝜔 , , �⃗⃖� , 𝜔 ,  corresponding to the 

soil degrees of freedom at a discrete frequency 𝜔 ,  in the fixed FOR. Further, coupling terms between the 

moving FOR rails and fixed FOR soil are �⃗⃖� , 𝜔 , , 𝜔 ,  and �⃗⃖� , 𝜔 , , 𝜔 , . Differently from 

the partly coupled system, the fully coupled system has terms coupling the soil degrees of freedom at one 
fixed-FOR frequency 𝜔 ,  to the soil degrees of freedom at another fixed-FOR frequency  𝜔 , , such as 

�⃗⃖� , 𝜔 , , 𝜔 ,  and �⃗⃖� , 𝜔 , , 𝜔 , . Similarly, the rail degrees of freedom are coupled between  𝜔 ,  

and  𝜔 ,  in the moving FOR through �⃗⃖� , 𝜔 , , 𝜔 ,  and �⃗⃖� , 𝜔 , , 𝜔 , . 

Using the submatrices defined above, the vehicle is coupled to the rails at each moving-FOR frequency 𝜔 , : 

�⃗⃖� 𝜔 ,

𝐊 𝜔 , 𝐊 𝜔 , 𝟎
𝐊 𝜔 ,  𝐊 𝜔 , 𝐊  𝐊

𝟎 𝐊 �⃗⃖� , 𝜔 , 𝐊
, (57)

with subscript ‘m’ referring to all degrees of freedom in the moving FOR, i.e. the combination of the uncoupled 
vehicle ‘u’, wheel ‘w’ and rail ‘r’ degrees of freedom. The force matrix from the track unevenness is also 
created: 

𝐅 𝜔 , 𝟎 𝐷 𝑘 , ∆𝑘 𝐾 𝐝 𝜔 , 𝐷 𝑘 , ∆𝑘 𝐾 𝐝 𝜔 , . (58)

Note that the track unevenness 𝐷 has to be inserted in the force matrix here, as the obtained displacements will 
only depend on a single frequency. If the moving-FOR frequency 𝜔 ,  is equal to zero, the deadweight of 
the vehicle is applied directly to the rails. However, the vehicle is still added to the system, since it reacts to 
the reradiated waves propagating back into the moving-FOR system from structures defined in the fixed FOR. 

External FE structures can be coupled to the soil at fixed FOR frequency 𝜔 , : 

�⃗⃖� 𝜔 ,
 �⃗⃖� , 𝜔 , �̃� 𝜔 ,  𝐊 𝜔 ,

𝐊 𝜔 , 𝐊 𝜔 ,
, (59)

here the subscript ‘f’ refers to all degrees of freedom in a fixed FOR in the full system, it is a combination of 
soil ‘s’ and uncoupled FE ‘u’ degrees of freedom. In this case they are all related to the building structure. 
Further, the coupling terms coupling the system through frequencies also need to be included. Nothing is 
directly coupled to them, thus only zero terms are added to the matrix to ensure the obtained matrices are sized 

correctly. For example, to include the coupling term �⃗⃖� ,  in the full system: 

�⃗⃖� 𝜔 , , 𝜔 ,
𝟎  𝟎

�⃗⃖� , 𝜔 , , 𝜔 , 𝟎
, (60)

where the superscripts of the zero matrices indicate the sizes of the submatrices, e.g. uw n indicates that the 
submatrix has a number of rows equal to the number of degrees of freedom in the vehicle (combined uncoupled 



18 
 

and wheel degrees of freedom) and a number of columns equal to the number of degrees of freedom of not 
coupled FE structure. Similarly, the matrix coupling the soil degrees of freedom between two frequencies is 
defined as 

�⃗⃖� 𝜔 , , 𝜔 ,
�⃗⃖� , 𝜔 , , 𝜔 , 𝟎

𝟎 𝟎
. (61)

This is repeated to create the other coupling matrices in the full system, i.e. �⃗⃖� 𝜔 , , 𝜔 , , 

�⃗⃖� 𝜔 , , 𝜔 , , �⃗⃖� 𝜔 , , 𝜔 ,  and �⃗⃖� 𝜔 , , 𝜔 , . These are created from the global system 

matrices �⃗⃖� , 𝜔 , , 𝜔 , , �⃗⃖� , 𝜔 , , 𝜔 , , �⃗⃖� , 𝜔 , , 𝜔 ,  and �⃗⃖� , 𝜔 , , 𝜔 , , 

respectively. 

The full system is assembled into submatrices related to the moving and fixed FORs and the coupling terms 
between them: 

�⃗⃖�

⎣
⎢
⎢
⎢
⎡ �⃗⃖� 𝜔 , �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 ,

�⃗⃖� 𝜔 , , 𝜔 , �⃗⃖� 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 ,

⋮ ⋮ ⋱ ⋮
�⃗⃖� 𝜔 , , 𝜔 , �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , ⎦

⎥
⎥
⎥
⎤

, (62a)

�⃗⃖�

⎣
⎢
⎢
⎢
⎡ �⃗⃖� 𝜔 , �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 ,

�⃗⃖� 𝜔 , , 𝜔 , �⃗⃖� 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 ,

⋮ ⋮ ⋱ ⋮
�⃗⃖� 𝜔 , , 𝜔 , �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , ⎦

⎥
⎥
⎥
⎤

, (62b)

�⃗⃖�

⎣
⎢
⎢
⎢
⎡ �⃗⃖� 𝜔 , , 𝜔 , �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 ,

�⃗⃖� 𝜔 , , 𝜔 , �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 ,

⋮ ⋮ ⋱ ⋮
�⃗⃖� 𝜔 , , 𝜔 , �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 , ⎦

⎥
⎥
⎥
⎤

, (62c)

�⃗⃖�

⎣
⎢
⎢
⎢
⎡�⃗⃖� 𝜔 , , 𝜔 ,  �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 ,

�⃗⃖� 𝜔 , , 𝜔 , �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 ,

⋮ ⋮ ⋱ ⋮
�⃗⃖� 𝜔 , , 𝜔 , �⃗⃖� 𝜔 , , 𝜔 , ⋯ �⃗⃖� 𝜔 , , 𝜔 , ⎦

⎥
⎥
⎥
⎤

. (62d)

Further the full system displacement and load vectors are created: 

�⃖⃗� �⃖⃗� 𝜔 , �⃖⃗� 𝜔 , ⋯ �⃖⃗� 𝜔 , , (63a)

�⃖⃗� �⃖⃗� 𝜔 , �⃖⃗� 𝜔 , ⋯ �⃖⃗� 𝜔 , , (63b)

𝐅 𝐅 𝜔 , 𝐅 𝜔 , ⋯ 𝐅 𝜔 , , (63c)

where it is assumed that only load in a moving FOR is considered. The full system can be solved to obtain the 
displacements as: 
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�⃗⃖� �⃖⃗� 𝐅, �⃗⃖�
�⃗⃖� �⃗⃖�

�⃗⃖� �⃗⃖�
, �⃖⃗�

�⃖⃗�

�⃖⃗�
, 𝐅

𝐅

𝐅
. (64)

In this case, the vector 𝐅  is all zeros as there are no loads acting in the fixed FOR. However, the system can 
be solved by applying loads in either FOR or both FORs at the same time. After the displacements have been 
obtained, the time-domain solution for both FORs can be obtained using Equation (53). To obtain the 
displacements of observation nodes, a receptance matrix equivalent to the two lower quarters of the matrix in 
Equation (54) should be constructed, relating the observation nodes to the rails and to the soil. However, for 
any considerable number of observation degrees of freedom, the matrix size becomes very large, which can be 
considered a computational drawback of the methodology. 

It is evident that the computation of the fully coupled system is an extremely computationally demanding 
process, which involves double inversion of very large matrices. Thus, it should only be used when the 
secondary coupling effects arean important factor. The fully coupled system computation greatly depends on 
the random-access memory (RAM) available in the computer system used, as the matrices are generally fully 
populated. However, if the considered system is not too large and the matrices can be stored in computer RAM, 
the computation times for the system are almost equal to those the partly coupled system. 

5. Validation 
The methodology described in this paper is validated by comparison with other computational approaches. 
Firstly, considering a system with no structures or rigid objects interacting with the soil, the described system 
assembly and solution procedures provide identical results to the approach provided by Sheng et al. [10–12]. 
This is expected, as this work utilizes the same vehicle–track–soil interaction model, and, with no other 
structures interacting with the soil, the coupling terms cancel out. Further, modelling of rigid objects interacting 
with the soil was validated by comparison with BE and FEM–PML models. It was determined that the semi-
analytical model provides a very good match, especially with the FEM–PML model, where even the secondary 
coupling terms show very good agreement. Sections 5.1 and 5.2 provide a more in-depth descriptions of 
validating the coupling terms used in the system assembly and the solution procedure including a structure 
interacting with the soil. 

5.1 Coupling between moving and fixed frames of reference 
In order to validate the coupling terms between the two frames of reference, especially the symmetry between 
a load applied in the moving FOR and the displacements observed in a fixed FOR and vice versa, some test 
cases were set up. The previously described mixed-FOR model was simplified by removing the railway track 
together with the vehicle and the FE/rigid structures interacting with the soil. This way, the effects of a single 
load with a single excitation frequency acting directly on the soil surface can be observed. The ground was 
modelled as a homogenous elastic half-space of dense sandy-type soil, with a Young’s modulus of 250 MPa, 
a Poisson’s ratio of 0.25, a mass density of 2000 kg/m3 and a loss factor of 0.05. A stationary point in the fixed 
FOR was placed 3 m from the line along which the load was moving.  

Firstly, a moving vertical load with constant speed 𝑣  and frequency 𝑓  was modelled. The vertical 
displacements were observed within a fixed FOR for a range of frequencies 𝑓 . The system was modelled using 
the simplified mixed-FOR model. For the analysed case, only the coupling terms between the moving and the 
fixed frames of reference, as described in Section 2.2, have an effect for the obtained results. For comparison, 
a full model was established, modelled only in the moving FOR, using the semi-analytical approach.  
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Using the created model, the displacement field of the soil surface in the moving FOR and within the time 
domain was obtained for a single excitation frequency. Then, a time signal for displacements of an observation 
point moving through the displacement field with speed 𝑣 was found, considering that for every time step 
the position of the observation point changed. Fourier transforming the obtained time signal into frequencies 𝑓 , 
the displacement spectra for a stationary observation point was obtained. Two combinations of speed and 
frequency in the moving FOR were investigated: Combination 1 with 𝑣 20  m/s and 𝑓 20  Hz, and 
Combination 2 with 𝑣 40 m/s and 𝑓 10 Hz. The comparison of both approaches are shown in Figure 4 
where it can be seen that the two approaches agree, confirming the analytical derivation presented in 
Section 2.2. 

Secondly, a similar test case was created to analyse the coupling between a load in a fixed FOR and the 
resulting displacements in a moving FOR. Here, the mixed FOR model was compared to a full solution 
formulated only in a fixed FOR. In the same way as for the previous case, using the full model, the 
displacement field of the soil surface was found in time domain. Then the vertical displacements for a moving 
observation point were obtained by changing the position of the point for every time step. Fourier transforming 
the time-domain response for frequencies 𝑓 , the displacement spectra for a moving observation point were 
obtained. Two combinations of speed and stationary frequency were again investigated: Combination 1 with 
𝑣 20 m/s and 𝑓 20 Hz; Combination 2 with 𝑣 40 m/s and 𝑓 10 Hz. Results of both approaches are 
given in Figure 5. Once again, the results agree well, this time confirming the derivation given in Section 2.3. 

Comparing the two investigated cases, it is evident that the response spreads out through the observer 
frequencies due to the Doppler effect, independently of which FOR the load was applied in. The range of 
affected frequencies dependent on the speed of the moving FOR. However, a load applied in the fixed FOR 
produces two symmetric peaks around the excitation frequency, when observed in a moving FOR, while a load 
applied in a moving FOR produces two peaks in the fixed FOR. Further, comparing the results of 

(a) (b)
Figure 4. Displacements in a fixed FOR from a unit load applied in a moving FOR: (a) 𝑣 20 m/s and 𝑓

20 Hz; (b) 𝑣 40 m/s and 𝑓 10 Hz. 
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(a) (b)
Figure 5. Displacements in a moving FOR from a unit load applied in a fixed FOR.: (a) 𝑣 20 m/s and 𝑓

20 Hz; (b) 𝑣 40 m/s and 𝑓 10 Hz. 
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Combination 1 for both cases, it can be observed that the result in Figure 4 at 𝑓 20 Hz and the result in 
Figure 5 at 𝑓 20 Hz show exactly the same response. This confirms the symmetry between the two frames 
of reference implied by Equation (21). The same result is obtained by comparing the responses of 
Combination 2 for both cases. 

5.2 Validation of the modelling approach 
To validate the modelling approach presented in this paper, it was compared to a sub-modelling technique, as 
described by [30]. A similar modelling approach was also used in [22]. In both cases the sub-modelling 
approach was used to model an underground railway tunnel with a vehicle travelling through it, in turn exciting 
a building structure above the soil. However, the solution procedure can also be applied to surface railways 
and the system analysed in this work. The method uses the free-field displacements of the soil caused by a 
passing vehicle, which are later modified by introducing the building structure. Ensuring equilibrium and 
compatibility between the degrees of freedom connecting the building and the soil, a solution for the building 
displacements can be found. Comparing the methodology proposed in this work with the sub-modelling 
technique, it becomes evident that the basic parts used for both solution procedures are identical. For example, 
the free-field displacements from a moving load used in the two-step approach are identical to the flexibility 
matrix 𝐆  used here. However, the assembly and solution of the full system is somewhat different, with the 
proposed methodology allowing a wider range of applications, such as modelling rigid inclusions or allowing 
a two-way coupling between the two frames of reference. Further, the sub-modelling technique, as applied in 
this work, is a two-step solution approach, as the wheel–rail interaction forces are obtained in the moving FOR 
before being used to obtain the displacements in the fixed FOR. 

As, both approaches use the same basic parts, it is relatively easy to compare them. For comparison, a building 
structure, as described below in Section 6.1, was used. However, the sub-modelling technique cannot directly 
model rigid objects, thus the rigid surface footings underneath each column were replaced by a single flexible 
slab footing underneath the whole building. The foundation slab was modelled using shell finite elements with 
the same properties as the building floors. The soil is modelled as a half-space of sand, with the same properties 
as in Section 5.1. Both systems were excited by a single passing vehicle, travelling at 40 m/s, exposed to a unit 
rail unevenness, with a 4 m wavelength corresponding to an excitation frequency of 10 Hz. For analysis, only 

Figure 6. Investigated case for validating the modelling approach. The vehicle is travelling from left to right, 
with magenta nodes indicating the wheel positions. The red nodes indicate the observation points, while the 

shades of colour indicate the vertical displacements (bright yellow is up, dark blue is down). Track 
unevenness is not scaled. 
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a single excitation frequency is used, as the effects from multiple excitations frequencies are just added together 
due to the principal of superposition. Thus, a single excitation frequency is enough to evaluate how well both 
models perform. The test case is illustrated in Figure 6. 

Figure 7 shows the displacements of the building structure obtained at the centre of the ground floor and the 
second floor. It can be observed that both approaches provide almost identical results, showing that the 
proposed method is performing well. At the same time, almost identical results indicate that the back-coupling 
of the building structure to the railway track is insignificant. It can be concluded, that at least for the considered 
case, there is no significant difference whether on or the other approach is considered. 

6. Example cases 
6.1 Partly coupled system 
To demonstrate the capabilities of the proposed partly-coupled-modelling approach, an example case was set 
up. A simple building structure that is excited by a vehicle travelling on a nearby railway track is modelled. 
The vehicle, railway track, soil and the building were all modelled in one coupled system. The soil was 
modelled as a 5 m layer of soft clay sitting over a stiffer half-space of sand. The clay had a Young’s modulus 
of 80 MPa, a Poisson’s ratio of 0.48, a mass density of 2100 kg/m3, and a loss factor of 0.05. The underlying 
sand had the same properties as in Section 5. A soil stratification with two layers was chosen, as the waves 
reflecting from the interface between the two different materials can, in some cases, amplify the excitation of 
the building structure. 

Only a single vehicle was modelled in the system. It was modelled as a 10-degree-of-freedom multibody 
system. The system consists of a rigid vehicle body, two rigid bogies and four wheels, with parts of the vehicle 
connected through a two-tier spring dashpot system. The vehicle was travelling at 40 m/s over the track 

Table 1. Vehicle properties. 

Mass of car body 40000 kg 
Mass of bogie 5000 kg 
Mass of wheel set  1800 kg 
Car body pitch moment of inertia 2.0 ∙ 10  kg m2 
Primary suspension stiffness 2.4 ∙ 10  N/m 
Secondary suspension stiffness 6.0 ∙ 10  N/m 
Primary suspension damping 30000 N s/m 
Secondary suspension damping 20000 N s/m 
Distance between bogies’ centers  19.0 m 
Distance between bogie’s wheels sets  2.7 m 
Herztian constant 𝐺  5.14 ∙ 10  - 

(a) (b)
Figure 7. Comparison between two system solution procedures. Displacements are shown: (a) at the centre 

of the ground floor; (b) at the centre of the second floor of the building structure. 
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structure, with the building 10 m away from the track centreline. The properties of the vehicle and the track 
are given in Tables 1 and 2, respectively. The system was excited by the deadweight of the vehicle and by the 
dynamic wheel–rail interaction forces caused by the uneven vertical track profile. To model the unevenness of 
the rails, a German track spectrum was used to obtain the PSD function, as described by Cantero et al. [37], 
with the track quality coefficient equal to 0.59233 ∙ 10 , corresponding to a medium quality track. From it, 
the corresponding unevenness values for every wavenumber were obtained. The track unevenness was 
considered in the range 0.5–80 m, including both positive and negative wavenumbers to allow a double-sided 
Fourier transformation. The total amount of discrete wavenumbers considered was 800. 

The modelled building structure can be seen in Figure 8. It is a simple structure with six columns supporting 
two floors. Underneath each column, a square rigid surface footing was modelled, with one side equal to 2 m. 
Each rigid footing was discretized into 100 SSI nodes. The building is facing the railway track with its narrow 
side, which is 8 m wide, and the building is supported by two columns at either side. The length of the building 
is 10 m in the direction orthogonal to the track. In addition to the four columns placed at the corners, a column 
is placed in the middle of each of the longer sides. Each storey is 4 m high. The whole building structure is 
constructed from concreate with a Young’s modulus of 30 GPa, a Poisson’s ratio of 0.15, a mass density of 
2400 kg/m3, and loss factor of 0.03. The columns have square cross-sections, with one side equal to 0.3 m, 
while the floors are 0.25 m thick slabs. 3D beam elements were used to model the columns, using Euler-
Bernoulli beam theory to account for bending. The floors of the building were modelled using Mindlin-
Reissner shell elements, accounting for bending as well as shear. All FE parts of the model were discretized 

Figure 8. Investigated example case. The shades of colour indicate the vertical displacements (bright yellow 
is up, dark blue is down). The red nodes are the observation points, while the magenta nodes indicate the 

positions of the vehicle wheel sets placed on the exaggerated vertical rail profile. 

Table 2. Railway track properties. 

Rail mass per unit length 60.0 kg/m 
Rail bending stiffness 6.4 ∙ 10  N/m2 
Rail loss factor  0.01 - 
Railpad stiffness 5.0 ∙ 10  N/m 
Railpad loss factor 0.1 - 
Sleeper mass per unit length 542.0 kg 
Ballast vertical stiffness 4.64 ∙ 10  N s/m 
Ballast mass per unit length 1740 m 
Ballast loss factor 0.04 - 
Track width 3.2 m 



24 
 

with mesh size of 0.5 m. Three points on the building structure were created, where the displacements and 
velocities are observed, as shown in Figure 8. The excitation of the building structure is observed within the 
frequency range 1–60 Hz, with 400 discrete fixed-FOR frequencies. 

Figure 8 shows the system response in time domain at the instance where the centre of the vehicle is at the 
position right in front of the centre of the building. The positions of the vehicle wheels are indicated by magenta 
coloured nodes placed on the uneven track surface. The black line shows the exaggerated track surface profile, 
and it also indicates location of the railway track centre. It can be observed that the displacements from the 
deadweight of the vehicle have the largest effect on the system, especially near the track structure. However, 
the building is further away from the track and is affected more by the lower-amplitude, higher-frequency 
excitation. This is especially evident when the velocities in the frequency domain of the first and second floors 
are investigated, as shown in Figure 9. Here, it can be observed that, while the low-frequency response is still 
excited by the deadweight of the vehicle, higher-frequency excitation plays an important role—especially for 
the vertical velocities.  

Comparing the response on the first and the second floors of the building, it can be observed that in the vertical 
direction both floors are excited almost identically to each other, while the differences for the horizontal x-
direction (the vehicle travelling direction) are much larger. This is due to the relatively large axial stiffness of 
the columns, which propagates the excitation in the vertical direction well, exciting both floors almost equally. 
While, the bending stiffness of the columns is smaller and therefore the upper floor is isolated, especially at 
higher frequencies. This is seen on the left subfigure in Figure 9, where the high-frequency response is smaller 
for the second floor when compared to the first floor.  

The time domain response of the system is obtained by assigning random phase angles to the unevenness of 
the rail corresponding to each considered wavenumber. This way, a random vertical rail profile is created and 
the response to it can be observed in the system. Figure 10 shows the time-domain response of the soil surface 
and the two floors from two different profiles of the uneven track. It can be observed that the track profiles 
have a significant effect on the observed system displacements in time domain, especially for the observed 
high-frequency components. However, the low frequencies are dominated by the deadweight of the vehicle 
and not affected much by different rail profiles. Further, the building structure acts as a filter of higher 
frequency vibration, significantly reducing the observed displacements when compared to the soil surface. 
This is especially evident for the horizontal displacements, where different rail profiles have a much smaller 
effect on the time domain displacements. 

(a) (b)  

Figure 9. Velocities of the building structure in the frequency domain at the centre of the first and the second 
floors, (a) in x-direction; (b) in z-direction.  
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The displacements of the soil surface are also affected by the building structure. Figure 11 shows the velocities 
of the soil from a model with a building structure compared to a free-field solution. The building structure 
reduces the observed velocities of the soil. However, the effects are not very large, with the largest change 
observed in the 10–35 Hz range. The frequency range corresponds well with the frequency range where the 
highest excitation of the building was obtained, as seen in Figure 9. Once again, these effects are more 
pronounced when analysing the horizontal displacements of the system. 

6.2 Fully coupled system 
A fully-coupled system solution approach might be necessary in cases where the modelled structures are close 
to the railway track, introducing a signifficant change of dynamic stiffness along the track. In that case, the 
rescattered waves can have an effect on the vehicle behaviour and the obtained wheel–rail interaction forces.   

(a) (b)  

Figure 11. Velocities of the soil surface underneath the building compared to the free-field response, (a) 
response in x-direction; (b) response in z-direction. 

(a) (b)

(c) (d)  

Figure 10. Displacements of the structure in the time domain generated from different rail unevenness 
profiles, (a) unevenness profile A and response in x-direction; (b) unevenness profile A, response in z-

direction; (c) unevenness profile B, response in x-direction; (d) unevenness profile B, response in z-direction. 
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To examine such a case, a test case was set up modelling a single vehicle traveling across a railway track, as 
shown in Figure 12. The speed of the vehicle was 40 m/s. The vehicle and the track properties were the same 
as introduced in Tables 1 and 2. The soil was modelled as a half-space of clay, with material properties given 
in Section 6.1. Underneath the track, at a depth of 1 m, a rigid block was embedded within the soil. The block 
was centred at the position, where the travelling vehicle centre line was located at time 0. The block was 
modelled as a 2D plate, placed in the horizontal plane with one side equal to 2 m. It was discretized into 36 
discretization nodes, with three degrees of freedom per node. The system was excited by the deadweight of 
the vehicle only applied at 𝑓 0 Hz, with no excitation from the rail unevenness. The system was assessed 
by the fully-coupled-modelling approach, described in Section 4.2. As only the quasi-static effects of the 
vehicle were modelled, the considered frequency ranges are reduced. The one-sided frequency range of the 
moving FOR was 0–30 Hz, and the one-sided frequency range of the fixed FOR is 0–25 Hz. In the 
computation, negative as well as positive frequencies were considered for either FOR, and each range was split 
into 200 discrete frequencies. 

Figure 13 shows the velocities obtained for the vehicle in the moving FOR as well as the rigid block in the 
fixed FOR. It can be observed that the vehicle passing over a rigid block introduces a significant excitation 
into the system, with the rigid block as well as the vehicle reacting to the passage. In this system, the observed 
excitation of the vehicle is purely due to the weak coupling effects that are disregarded in the two-step 
procedure. The waves generated by the passing vehicle are scattered by the rigid block in the fixed FOR and 
in turn excite a range of frequencies in the moving FOR. These effects would not be accounted for when the 
weak coupling between the vehicle and structures is not modelled. Analysing the wheel velocities, as shown 
in Figure 12 top left, it can be seen that both leading wheels of separate bogies produce very similar results. 
However, the excitation due to the first wheel passage over the rigid block generates a wave that excites the 
third vehicle wheel, even before it reaches the rigid block. A similar effect is also observed after the third 
wheel passes over the rigid block, where the generated wave travels forward and excites the first vehicle wheel. 
A very similar behaviour is also observed on the bogies. Comparing these secondary excitations, it can be seen, 
that the reaction of the third wheel due to the first wheel passage is higher than the excitation of the first wheel 
due to third wheel passage. This is due to the Doppler effect of the wave travelling through the rail, as the third 
wheel is travelling towards the wave propagating form the first wheel, while the wave generated by the third 
wheel must ‘catch up’ to the first wheel. Analysing the rigid block displacements, it can be observed that the 
largest velocities are reached just before the leading wheel of a bogie reaches the centre of block. Interestingly, 
to obtain the same displacements of the rigid block, a fully-coupled-system-solution approach is unnecessary, 
as the partly coupled solution provides results that are almost identical. For the analysed case, it can be 

Figure 12. Vehicle passing over a buried rigid block, at an instance where the leading wheel of the vehicle is 
directly above the centre of the rigid block. The vehicle is travelling at 40 m/s from left to right. The black 
line indicates the vehicle traverse line, with the magenta nodes indicating the positions of the vehicle wheel 

sets. Only the two wheel sets of the front bogie are shown. 
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concluded that the fully coupled solution approach is only necessary if the vehicle behaviour is of interest, for 
example for assessment of driver and passenger comfort, or if the track and wheel wear is to be assessed. 

7. Conclusions  
The paper introduced a new modelling approach for estimation of environmental vibration resulting from 
railway traffic. A model of a coupled vehicle–track–soil–building system was introduced with two approaches 
proposed for assembly and solution of the whole system: the partly-coupled approach and the fully-coupled 
approach. Both solution approaches use a single step procedure with one approach considering a fully-coupled 
system, while the other approach discards some secondary coupling effects for a more computationally 
efficient solution procedure. 

A semi-analytical model was utilized to model the soil to which rigid objects and structures modelled by the 
FE were coupled. The proposed modelling approach uses the frequency-domain solution with some parts, such 
as the railway track, formulated in the moving FOR and other parts, such as building structures, formulated in 
a fixed FOR. The coupling terms between the two frames of reference are found by utilizing an analytical 
formulation of receptance between the two frames of reference. It has been established that due to the coupling 
between the fixed and moving frames of reference, the previously uncoupled discrete frequencies become 
coupled through the other FOR as a result of the Doppler effect and wave scattering. Thus, additional 
consideration is needed when modelling such systems. 

The proposed methodology is a robust approach that does not suffer from numerical instabilities, due to the 
usage of frequency domain solutions. A wide range of cases can be assessed, including the modelling of rigid 
objects in or on the ground and flexible structures modelled by the FEM, interacting with the soil. Using the 
proposed partly-coupled-solution approach, the computations can be easily parallelized, thus providing a 

(a) (b)

(c)  

Figure 13. Vertical velocities for parts of the vehicle (in moving FOR) and the rigid block underneath the 
track (in fixed FOR). The vertical dashed black lines indicate time instance when the first and third vehicle 
wheels are directly above the centre of the rigid block. The response is shown for: (a) the first and the third 

vehicle wheels; (b) both vehicle bogies; (c) rigid block underneath the track.  
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relatively fast and efficient computational method. Further, the suggested fully-coupled-solution procedure is 
useful in cases where the weak coupling between the vehicle and structures cannot be discarded. 

In this work, a railway track with a train was considered as an example case. However, the methodology can 
be easily expanded to other cases, e.g. modelling a road with road traffic exciting the system. Further, adding 
FE models to the formulation is possible in the moving FOR as well as the fixed FOR. Thus, a more detailed 
railway track model or vehicle could also be added to the system.  

The analytically derived coupling terms between the two frames of reference were validated by comparing 
with models formulated in a single FOR. Further, the partly coupled solution procedure of the full system was 
compared to a solution procedure in which the weak coupling is completely discarded. The two solution 
procedures have been found to provide almost identical results, validating the proposed partly coupled solution 
procedure while, at the same time, indicating insignificant back-coupling in the considered case.  

Finally, to demonstrate the capabilities of the numerical model, a building structure with rigid surface footings 
was analysed. The vibration levels at different floors were determined, as well as the effect of the structure on 
the surrounding soil, compared to a free-field solution. To demonstrate the potential of the fully-coupled-
solution procedure, the response of a vehicle passing over a buried rigid block were investigated. It was been 
found that the fully coupled solution procedure can predict the weak coupling effects between the vehicle and 
the structure, producing a vehicle response distributed through frequencies, when the load is applied only at a 
single frequency. Thus, in the present example, the modes of the vehicle were excited parametrically by the 
waves scattered from the rigid inclusion as a result of the passing deadweight of the vehicle. 
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