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Joint Dynamics and Adaptive Feedforward Control of Lightweight
Industrial Robots

by Emil Madsen

The use of lightweight strain-wave transmissions in collaborative in-
dustrial robots leads to structural compliance and a complex nonlinear
behavior of the robot joints. Furthermore, wear and temperature changes
lead to variations in the joint dynamics behavior over time. The immediate
negative consequences are related to the performance of motion and force
control, safety, and lead-through programming.

This thesis introduces and investigates new methods to further increase
the performance of collaborative industrial robots subject to complex non-
linear and time-varying joint dynamics behavior. Within this context, the
techniques of mathematical modeling, system identification, and adaptive
estimation and control are applied. The methods are experimentally vali-
dated using the collaborative industrial robots by Universal Robots.

Mathematically, the robot and joint dynamics are considered as two cou-
pled subsystems. The robot dynamics are derived and linearly parametrized
to facilitate identification of the inertial parameters. Calibrating these param-
eters leads to improvements in torque prediction accuracy of 16.5 %–28.5 %
depending on the motion.

The joint dynamics are thoroughly analyzed and characterized. Based
on a series of experiments, a comprehensive model of the robot joint is
established taking into account the complex nonlinear dynamics of the
strain-wave transmission, that is the nonlinear compliance, hysteresis, kine-
matic error, and friction. The steady-state friction is considered to depend on
angular velocity, load torque, and temperature. The dynamic friction char-
acteristics are described by an Extended Generalized Maxwell-Slip (E-GMS)
model which describes in a combined framework; hysteresis characteristics
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that depend on angular position and Coulomb friction that depend on load
torque. E-GMS model-based feedforward control improves the torque pre-
diction accuracy by a factor 2.1 and improve the tracking error by a factor
1.5.

An E-GMS model-based adaptive feedforward controller is developed
to address the issue of friction changing with wear and temperature. The
adaptive control strategy leads to improvements in torque prediction of 84
% and tracking error of 20 %.
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Brugen af strain-wave transmissioner i kollaborative industrirobotter fører
til strukturel fleksibilitet samt en kompleks, ulineær respons af robotled-
dene. Endvidere fører slid- og temperaturændringer til variationer i leddy-
namikens karakteristik over tid. De øjeblikkelige negative konsekvenser
er relateret til ydelsen af reguleringskredsløbet, sikkerhed og kinæstetisk
læring.

Denne afhandling introducerer og undersøger nye metoder til yderligere
at øge ydeevnen af kollaborative industrirobotter med kompleks, ulineær og
tidsvarierende leddynamik. I denne sammenhæng anvendes teknikkerne
matematisk modellering, systemidentifikation og adaptiv estimering og
regulering. Metoderne valideres eksperimentelt ved anvendelse af kollabo-
rative industrirobotter fra virksomheden Universal Robots.

Matematisk set betragtes robot- og leddynamikken som to koblede
delsystemer. Robotdynamikken er udledt og lineært parametriseret for at
lette identifikationen af robottens inertielle parametre. Kalibrering af disse
parametre giver forbedringer af momentforudsigelsen på 16,5 %–28,5 %
afhængigt af bevægelsen.

Leddynamikken analyseres og karakteriseres grundigt. Baseret på en
række eksperimenter etableres en omfattende model af robotled under hen-
syntagen til den komplekse, ulineære dynamik i strain-wave transmissio-
nen, dvs. ulineær fleksibilitet, hysterese, kinematisk fejl og friktion. Steady-
state friktionen anses som afhængig af vinkelhastighed, belastningsmoment
og temperatur. De dynamiske friktionsegenskaber er beskrevet ved en ud-
videt Generalized Maxwell-Slip (E-GMS) model, der kombineret beskriver;
hystereseegenskaber, der afhænger af vinkelposition samt Coulomb-friktion,
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der afhænger af belastningsmoment. E-GMS modelbaseret fremkobling
forbedrer momentforudsigelsen med en faktor 2.1 og banefejlen med en
faktor 1.5.

En E-GMS modelbaseret adaptiv fremkoblingsregulator er udviklet til at
adressere udfordringen, at friktion ændrer sig med slid og temperatur. Den
adaptive reguleringsstrategi fører til forbedringer i momentforudsigelsen
på 84 % og banefejlen forbedres 20 %.
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Chapter 1

Introduction

“Do the right thing because it is right.”

— Immanuel Kant (1724–1804)

Collaborative robot arms need to accurately predict the actuator torques re-
quired to complete any desired task. This will ensure a safe operation, lead
to increased precision and accuracy, and result in a smooth lead-through
programming experience. Predicting accurately the actuator torques re-
quires accurate mathematical models of the robot. However, the wear and
tear of the robot and changes in ambient conditions lead to changes in the
real robotic system. This dissertation presents new mathematical models
and methods to ensure that the models always closely resembles the real
robot arm despite changes and variations of the robotic system.

1.1 Background and Motivation

The International Organization for Standardization (ISO) suggests the fol-
lowing definition.

Definition 1 (industrial robot)
Automatically controlled, reprogrammable multipurpose manipulator, pro-
grammable in three or more axes, which can be either fixed in place or
mobile for use in industrial applications.

Note: The industrial robot includes the manipulator, consisting of actuators,
controller, teach pendant and any communication interface (hardware and
software).

(ISO 8373:2012)

Thus, an industrial robot is meant for being use ”in industrial automation appli-
cations”. The first industrial robot manipulator was deployed for operation
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in 1961 in a General Motors automobile factory to perform spot welding
and extract die castings [1]. Since then, the area and application of industrial
robots has experienced huge growth. The market for safer, smaller, and
more affordable robots is rapidly expanding with sales to the electrical and
electronics industry increasing by 24 % on average each year since 2013 [2].
These robots are referred to as collaborative robots, or simply cobots, because
they can work collaboratively with human co-workers unlike traditional
industrial robots that need to be fenced off.

1.1.1 Collaborative Robots

The ISO suggests the following definitions.

Definition 2 (collaborative robot)
Robot designed for direct interaction with a human within a defined col-
laborative workspace (Definition 3).

(ISO 10218–2:2011)

Definition 3 (collaborative workspace)
Workspace within the safeguarded space where the robot and a human can
perform tasks simultaneously during production operation.

(ISO 10218–2:2011)

These definitions make a clear distinction in the purpose of a collaborative
robot, i.e. ”for direct interaction with a human within the safeguarded space”.
Collaborative industrial robots are directed towards industrial manufac-
turing that includes physical Human–Robot Interaction (pHRI), small-size
production, and high production flexibility. Performance criteria relevant
to collaborative industrial robots are the precision and accuracy of motion
and force control tasks, the safety, and the ability to perform quick and easy
robot programming. The next three sections will highlight the importance
of having an accurate mathematical description that relates the actuator
torques to the manipulator motion – a so-called dynamic model.

Safety

Collaborative robots keep humans safe by relying less on physical safe-
guards and more on inherently safe measures, i.e. properties of the collabo-
rative robot that make it less likely to cause harm. The ISO 10218 [3, 4] and
ISO 13849 [5, 6] standards define a set of safety features for collaborative
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FIGURE 1.1: Schematic representation of a simplified control
strategy.

robots and general machinery, respectively. For instance the power and
force exerted by the robot to the environment must be limited in magnitude.
Rather than measuring the exerted power and force directly, measurements
from internal sensing hardware such as absolute rotary encoders and cur-
rent sensors are mathematically related to the exerted force. Thus, accurate
mathematical models of the robot will facilitate identification of external
disturbances such as human interference and thereby improves the robot
safety [7–9].

Control Precision & Accuracy

The control system for an industrial robot most often consists of a combined
feedforward and feedback control strategy. An example of a simplified con-
trol structure is presented in Fig. 1.1. The feedforward controller comprises
a mathematical model of the robot. If the model perfectly resembles the real
robot, the actual trajectory will equal the desired trajectory, i.e. the tracking
error will be zero. The mathematical model will never exactly represent
the robot and disturbances will affect the system, thus the error correcting
feedback controller is necessary. However, a high-fidelity mathematical
model combined with feedforward control will improve the control perfor-
mance because known disturbances can be accounted for before they cause
deviations from the desired trajectory or force reference [10, 11].
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Lead-Through Programming

FIGURE 1.2: Lead-through
programming of a Universal

Robots UR3e manipulator.

In some parts of industry, it is common with
short-series production. For the manufactur-
ing to rapidly adapt to changing task specifi-
cations and to minimize the down-time, the
robot programming must be quick and easy to
perform. Programming by demonstration, some-
times referred to as kinesthetic teaching, is a
field where lead-through programming (LTP)
can be used to reduce the complexity of the
robot programming. LTP works by having
the user physically moving the robot around to demonstrate the desired
robot motion – Fig. 1.2 shows lead-through programming1 of a UR3e robot.
The LTP feature is obtained by using the mathematical model of the robot to
compensate gravity, friction, etc. and to detect and estimate the interaction
forces applied by the human operator to the manipulator. A more accurate
mathematical model of the robot thus allows to identify smaller interaction
forces, which minimizes the force required to be exerted by the human
operator. Accurate mathematical modeling thus facilitates a smooth LTP
experience [12, 13].

1.1.2 Dynamics Model Accuracy

For a good robot performance it is necessary to have a dynamic model that
accurately relates the actuator torques to the manipulator motion. For col-
laborative industrial robots, the concerns of safety and production flexibility
motivates the use of lightweight components to lower the kinetic energy
and ease the relocation of the robot. Thus, strain-wave transmissions are
widely used for collaborative robots due to their desirable characteristics
of lightweight design yet high torque capacity. For instance they are used
in the Universal Robots manipulators [14], Kuka LWR [15], FANUC LR
Mate 200i [16], Yaskawa Motoman HP3J [17], DLR 7 DOF robot [18], and
Mitsubishi PA–10 [19]. The lightweight design of strain-wave transmissions,
however, comes at the expense of inherent complex nonlinear characteristics
such as [20, 21]; flexibility, friction, hysteresis, and kinematic error. These joint
dynamics characteristics must be considered in the mathematical model of
the robot to achieve a good robot performance.

1The lead-through programming feature by Universal Robots is named Freedrive.
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When a mathematical model has been established, a set of parameter
values need to be determined. Parameters that yield the least model error is
naturally desired. Some parameters such as the inertial parameters of the
robot are constant throughout the lifetime of the robot and as such they need
to be determined just once. Other parameters, for instance those related to
the joint dynamics (friction, stiffness, etc.) may change gradually in ways
that cannot be accurately predicted from prior knowledge. The causes and
effects of gradual changes to the robot dynamics are:

• Wear. From a mechanical perspective wear can be defined as ”the
progressive removal of material from a body occurring as a result of relative
motion between contacting surfaces” [22]. The wear of a strain-wave
transmission leads to; 1) changes in flexibility, most prominent at
small deformations [23–25] and 2) changes in friction, most prominent
near the end of its lifetime [26, 27].

• Temperature. The viscosity of lubricants depends approximately ex-
ponentially on temperature [28] and the shear forces for newtonian
fluids increase proportionally with viscosity. These facts elucidate
the observed dependency of friction on temperature [29, 30]. The
effect can be compensated provided the relation between temperature
and friction is known and temperature sensing is available. However,
due to practical reasons the temperature of a solid body is most of-
ten measured rather than the lubricant. The thermal resistance, and
consequent time delay, complicates the exact cancellation of the effect
[31].

1.2 Literature Review

The complex nonlinear and time-varying joint dynamics characteristics
deteriorates the accuracy of the dynamic model and thus the robot perfor-
mance if not properly compensated. Dynamics modeling, identification,
and adaptive estimation and control are techniques to improve the perfor-
mance of a robot subject to such phenomena. This section presents a review
of the literature relevant to dynamic modeling, identification, and adaptive
estimation and control of industrial robots with the consideration of joint
dynamics.
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1.2.1 Dynamics Modeling & Identification

A robot manipulator can be considered as a set of links interconnected by
joints that allow for relative motion between the links. With the use of
lightweight transmissions elements such as strain-wave transmissions, the
usual assumptions of joint rigidity no longer holds. A Flexible-Joint Robot
(FJR) manipulator can be described by assigning generalized coordinate to
both sides of each of the flexible transmissions.

Robot Dynamics Modeling & Identification

Dynamic models of robot manipulators relate the motion of the robot and
the forces and torques that cause the motion. The modeling of Flexible–Joint
Robot (FJR) manipulators was advanced by Spong [32], who introduced
a set of clever assumptions to simplify the dynamics without much loss
of accuracy for robots with reduction gears. The resulting dynamic model
allows for a larger set of control strategies to be applied. Today, the most
comprehensive literature on robot dynamics modeling is [33] and [34].

Since the mid 80’s, much research have been devoted to developing
minimal descriptions of the rigid-body dynamics of robot manipulators
[35–37]. Gautier and Khalil [38] developed an analytical method to reduce
the full set of parameters to a minimal set of base parameters (BP). Another
approach is to use numerical methods to find a set of essential parameters
(EP) by imposing a numerical threshold on the influence of the parame-
ters on the dynamics and searching for parameters above the threshold
[39, 40]. The number of EP is often less than the number of BP because
the numerical methods tend to eliminate parameters that show the least
contribution to the manipulator dynamics. This can be unsatisfactory for
some applications where high accuracy is required. The methods for robot
dynamics identification are generally affected by measurement noise and mod-
eling errors. The measurement noise is commonly addressed by the use of
exciting trajectories and filtering of the noisy measurements [41]. The most
common method for robot dynamics identification is a combined Inverse
Dynamics Identification Model and Least Squares (IDIM-LS) method. Other
methods have been suggested such as the Extended Kalman Filter (EKF)
[42, 43], Linear Matrix Inequalities (LMI) [44], Maximum Likelihood (ML)
[45], the set membership uncertainty [46], and the Huber’s estimator [47].
However, these methods do not improve the accuracy and uncertainty of
the IDIM-LS method. The need for tuning the bandpass filter was addressed
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in [48–50] by introducing the Direct and Inverse Dynamic Identification
Models (DIDIM) and in [51, 52] by introducing the concept of Instrumental
Variables (IV). These methods are based on a Closed Loop Output Error
(CLOE) method using both the direct and inverse dynamic models. The di-
rect dynamic model is used to obtain model-based estimates of the angular
position, velocity, and acceleration in contrast to the bandpass filtering of
the IDIM-LS method. However, with well-tuned bandpass filtering, the
accuracy and uncertainty of the DIDIM, IDIM-IV, and CLOE methods do
not improve upon the IDIM-LS method [50].

Dynamics identification have been conducted for several industrial
robots including the 7 DOF DLR light-weight robot [18], COMAU Smart-
3 S2 [53], KUKA KR 15 [54], Mitsubishi PA-10 [55], Staubli RX-60 [56],
Staübli TX40 [57], ER-16 [58], SCHUNK Powerball LWA 4P [59], KUKA KR
6-2 [60], KUKA LBR iiwa [61], and Denso VP-6242G [62]. However, the
works on robot dynamics identification assume simple models for the joint
dynamics which introduce bias to the inertial parameter estimates. Joints are
assumed rigid and friction, if included, is described by simple two or three
coefficient models with Coulomb friction, linear viscous friction, and friction
offset. Even so for the identification of the dynamics for collaborative
industrial robots that are known to experience non-negligible joint dynamics
effects. Gaz et al. [63] identified the dynamics of the Franka Emika Panda
collaborative robot, and Taghbalout et al. [64] identified the dynamics of
the 2×7 DOF dual-arm ABB IRB14000 (YuMi) collaborative robot. For the
KUKA LWR 4+ collaborative robot, Kolyubin et al. [65] identified the EP
while assuming a three-parameter friction model and Shareef et al. [66]
and Gaz and Luca [67] did dynamics identification with friction neglected.
The works on the KUKA LWR 4+ robot exploited the torque sensor in
each joint located on the output side of the transmission and as such the
joint dynamics did not affect the measurements. Such sensor hardware is
however expensive and rarely found in industrial robots.

Joint Dynamics Modeling & Identification

The modeling and identification of the joint dynamics for industrial robots
is for the most works limited to frictional nonlinearities describing the
steady-state relationship between friction torque and the angular velocity,
temperature, and load torque. Thus, the complex frictional dynamics is most
often neglected. The dynamic modeling of nonlinear robot joint dynamics
has been considerably advanced by research studies explicitly considering
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strain-wave transmissions. This section presents firstly the literature on
identification of static nonlinearities of the joints of industrial robots, and
lastly the identification of the dynamics of strain–wave transmissions.

Depending on the application for the joint dynamics model, for example
control and other on–line calculations or simulations, different properties
are needed. Thus, this work focuses on the control oriented model for real-
time calculations in contrast to the Extended Flexible Joint model developed
by Moberg and Hanssen [68] which is meant for simulation.

In [69] the friction of the ABB IRB 6620 robot was analyzed and the
angular velocity, load torque, and temperature were found to be important
factors to accurately describe the observed friction characteristics. In [70],
the Comau SMART NS 16 1.65 ARC was analyzed in terms of the dependency
of friction on temperature. In [71] the frictional characteristics for the ABB
IRB 140 and ABB YuMi industrial robots were studied in terms of angular
position and temperature. In [29] the load torque and temperature effects
of friction on the SIASUN lightweight industrial robot which comprises
Harmonic Drive transmissions was examined. The above-mentioned works
made important contributions to characterize the steady-state friction char-
acteristics of industrial robots. Angular velocity, temperature, and load
torque are found to be important factors in this regard. However, the more
complex frictional dynamics and joint flexibility effects which are known
to exist for strain-wave transmissions were not considered which leads to
model errors – especially at low velocity. In [72], the Harmonic Drive-based
DLR Floating Spring Joint [73] was investigated experimentally to charac-
terize the nonlinear static dependencies of friction on angular velocity and
temperature. In [30], their work was extended by utilizing the Generalized
Maxwell-Slip (GMS) model to describe the frictional dynamics. Further-
more, an application to external torque estimation was demonstrated. The
GMS dynamic friction model [74, 75] has been successfully used to model
strain-wave transmissions [76, 77]. In the more general robotics literature –
not necessarily considering strain-wave transmissions – the LuGre dynamic
friction model [78] has been widely used. However, the LuGre model does
not describe hysteresis with non-local memory [79] commonly observed in
strain-wave transmissions [77].

Hysteresis

The dynamic modeling of robot joints have been advanced significantly by
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works that exclusively consider strain-wave transmissions. In [80] a hys-
teresis model of the Harmonic Drive was developed. In [81] a mathematical
model of a Harmonic Drive was derived based on the gear-tooth geometry.
In [21] a complete model of a Harmonic Drive was suggested including
simple sub-models of flexibility, hysteresis, and friction. In [82] the mechan-
ical structure of the Harmonic Drive was studied and a control-oriented
model was proposed including flexibility with soft wind-up, hysteresis, and
friction. In [83] the Harmonic Drive was described by an integro-differential
equation through the combination of nonlinear stiffness and damping. In
[84] a hysteresis model of the Harmonic Drive was developed using the
Preisach model for hysteresis and the GMS model for describing dynamic
friction effects. In [85] the hysteresis was described using an extended
Bouc-Wen model, and in [86–89] the application of hysteresis modeling
was demonstrated in sensor-less torsion control. The above-mentioned
studies present results on high-fidelity modeling of Harmonic Drive strain-
wave transmissions, but the works are on single-joint systems and they do
not consider the known dependencies of friction on temperature and load
torque.

Kinematic Error

The kinematic error of strain-wave transmissions is related to the production
tolerances and therefore varies between robot joints with the same type of
transmission. In [90], compensating the kinematic error in an integral mani-
fold control framework led to increased control performance, and in [91]
modeling and compensation of the kinematic error led to reduced vibration
of an industrial robot. Characterizing and compensating the kinematic error
is thus highly relevant. In [92], a modeling framework was made for the
rolling friction with hysteresis attributes and compensation of the kinematic
error. In [93] the wave generator shape was analyzed theoretically in terms
of the kinematic error.

1.2.2 Adaptive Control

Today, the most comprehensive literature on general nonlinear control is
Khalil [94], while Slotine and Li [95] provide many examples on mechan-
ical systems and robots. This section presents a review of literature on
adaptive control of industrial robot manipulators subject to time-varying
joint dynamics. Friction compensation is a fundamental problem in motion
control and thus a huge amount of literature exists. This literature review
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focuses on adaptation of dynamic friction models that are able to describe
rate-independent hysteresis found in strain-wave transmissions.

In [96], adaptive control strategies was developed based on the LuGre
dynamic friction model. In [97], a friction observer was developed for
robots with joint torque sensing. Its application was demonstrated on
the DLR medical robot. In [98], adaptive estimation of a static friction
model was conducted for a robot with linearly elastic joints. In [99], an
adaptive model-based friction estimation and compensation method was
developed based on an Extended Kalman Filter (EKF) for use in combination
with an impedance controller for the DLR-HIT II robot hand. In [100],
an adaptive control strategy based on the LuGre dynamic friction model
was developed. A few works considered adaptation of friction models
based on the GMS model structure. In [101, 102] a switching adaptive
controller was developed based on the GMS friction model with a linear
parametrization of the Stribeck function. A parameter projection strategy
was used to prove stability, and numerical results demonstrated the method.
The choice of switching function is however not suited for real systems
as noted in [103], where the GMS model identified using the adaptive
observer proposed in [104]. The method was validated by simulation.
In [105] the method was improve by introducing a filter to the regressor
for the requirement of Lipschitz continuity to be respected. In [106, 107]
the Dynamic NonLinear Regression with direct application of eXcitation
(DNLRX) model was identified adaptively using a recursive least squares
estimator with exponential forgetting and used in feedforward control.2

Results were promising in comparison to a standard PID controller. In [108],
an adaptive controller was presented for a Harmonic Drive transmission
the Coulomb and viscous friction coefficients and the friction offset. The
algorithm relied on sensing of the angular positions at each side of the
Harmonic Drive as well as joint torque sensing.

1.3 Universal Robots

Universal Robots (UR) is a Danish company which develops, manufactures,
and sells collaborative robots. The three founders of Universal Robots,
namely Esben Østergaard, Kasper Støy, and Kristian Kassow, met at the

2The DNLRX model is simply a GMS model with its state and input driven through FIR
filters
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FIGURE 1.3: Universal Robots’ revenue and no. of employ-
ees since 2008.

UR3e UR5e UR10e UR16e
Reach 500 mm 850 mm 1300 mm 900 mm
Payload 3 kg 5 kg 10 kg 16 kg
Footprint Ø128 mm Ø149 mm Ø190 mm Ø190 mm
Weight 11.2 kg 20.6 kg 33.5 kg 33.1 kg

TABLE 1.1: Specifications for the Universal Robots e-Series
robots.

University of Southern Denmark (SDU) in 2003.3 They got the idea of creating
a lightweight robot that was easy to install and program. Universal Robots
was officially founded in 2005 with the goal of making collaborative robots
accessible to small and medium-sized enterprises (SME’s). Three years after,
in 2008, the first collaborative robot was sold by distributors in Denmark
and Germany. Today, Universal Robots is the world leader in collaborative
robots, and remarkable rates of growth has propelled Universal Robots’
revenue to DKK 1.658 million in 2019 and more than 600 employees. The
progress of the revenue and number of employees is shown in Fig. 1.3. The
latest series of robot arms by Universal Robots is the e-Series shown in
Fig. 1.4 with data listed in Table 1.1.

3universal-robots.com/about-universal-robots/our-history/
4universal-robots.com

universal-robots.com/about-universal-robots/our-history/
universal-robots.com
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FIGURE 1.4: Universal Robots’ e-Series robots, from left to
right; UR3e, UR5e, UR16e, and UR10e, named after their

rated payload in kilograms.4

1.3.1 Experimental System Overview

The experimental system includes a PC and a UR robot consists of three
main parts: The robot arm, control box, and teach pendant, illustrated
in Fig. 1.5. The desired behavior of the robot arm is specified through
the teach pendant, which provides a graphical touch interface, or through
the PC via a TCP/IP connection from a MATLAB® client. Data logging
is performed using a Python client. The controller executes the high-level
programs provided by the user and sends commands for the robot arm to
execute. The robot arm also sends back information to the controller. The
controller uses this information for instance to evaluate whether the robot
should continue its task or stop in case something unexpected happens.

The Robot Arm

The robot arm is a 6 degree-of-freedom (DOF) serial-link articulated robot
manipulator which means that the robot links are connected in series and
the joints admit rotary motion of the links. Each joint comprise an electric
actuator, specifically a three-phase Permanent Magnet Synchronous Ma-
chine (PMSM) as well as a strain-wave transmission. The PMSM transmits
its high-velocity/low-torque power to the input axle and through the trans-
mission the power is converted to low-velocity/high-torque at the output
axle. The sensor hardware of UR e-Series robots provide measurements for
each joint of;

5https://universal-robots.com/download/?option=69270#
section69029

https://universal-robots.com/download/?option=69270#section69029
https://universal-robots.com/download/?option=69270#section69029


1.4. Objectives 13

Teach Pendant

Control Box

Robot Arm

TCP/IP

PC w. MATLAB®

FIGURE 1.5: Experimental setup with a Universal Robots
UR5e robot arm, control box, teach pendant, and PC. The
PC has a TCP/IP connection to the control box and sends
UR script commands5 – e.g. movej(·) – to the controller via
a MATLAB® TCP/IP client. MATLAB also has an SSH/S-

FTP/SCP client [109].

• the angular position of the input axle,

• the angular position of the output axle,

• the phase currents of the PMSM, and

• the temperature.

Additionally, the wrench and acceleration at the TCP is measured.

1.4 Objectives

The aim of this Industrial PhD project is to further increase the performance
of collaborative industrial robots through dynamic modeling, identification,
and controller design. This strategic goal is achieved through a research
framework that synergistically integrates three interrelated sub-objectives,
that is:

1) To develop a dynamic model of the 6 DOF collaborative industrial
robot by Universal Robots considering the joint dynamics effects in-
herent to the strain-wave transmissions such as flexibility, friction,
hysteresis, and kinematic error.
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Output axle position

Input axle position

Temperature

Phase currents

Encoder

PMSM

Wave generator

Current sensors

Temperature sensor
Flexspline

Circular spline

Encoder

FIGURE 1.6: Schematic illustration of the main components
of a Universal Robots e-Series robot joint.

2) To investigate and develop adaptive estimation and feedforward
control based on the developed dynamic model to effectively estimate
and compensate the time-varying joint dynamics due to wear and
temperature changes.

3) To establish a testing system, conduct the testing using a Universal
Robots collaborative robot, thus experimentally validate the dynamic
model and adaptive estimation and control algorithms.

1.5 Contributions

Starting from a description of the state-of-the-art on dynamics modeling,
identification, and adaptive estimation and control of industrial robots,
this dissertation presents new methods and procedures for increasing the
performance of collaborative industrial robots. The steps beyond state-of-
the-art are:

1) Adaptive stiffness estimation. A method for online estimation of the
nonlinear robot joint stiffness is developed and validated experimen-
tally. The method expands the state-of-the art by being able to operate
online without additional sensing hardware or mechanical fixture and
works for arbitrary manipulator configurations and motion trajecto-
ries. In 10 seconds, the stiffness is estimated with an accuracy of 95.2
% – comparable to that of offline identification.

2) Joint dynamics modeling and identification. A comprehensive math-
ematical model and identification procedures for robot joints was
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developed. The model includes flexibility, kinematic error, hysteresis,
and dynamic friction. The state-of-the-art is expanded by:

(a) The choice of temperature model admit a linear parametrization
(hence facilitates identification) and is more accurate than models
used in prior works.

(b) A new linear regression procedure is developed for identifica-
tion of Generalized Maxwell-Slip friction model. The procedure
improves torque prediction accuracy compared to existing proce-
dures.

(c) Identification of hysteresis characteristics that depend on the joint
angular position. This phenomenon is not described previously,
but its existence was rendered probable from theoretical analyses.

(d) The Generalized Maxwell-Slip dynamic friction model is ex-
tended (E-GMS) to describe in a combined framework; 1) the
dependency of the hysteresis characteristics on the angular posi-
tion and 2) the dependency of friction on the joint torque. The
torque prediction accuracy is improved by a factor of 2.1 and
the tracking error is reduced by a factor of 1.5. Additionally,
discontinuities in the angular velocity is overcome.

3) Robot dynamics calibration. A robot dynamics calibration method-
ology is developed and experimentally validated to calibrate the iden-
tifiable (base) parameters and increase the torque prediction accuracy.
The state-of-the-art is expanded by compensating the nonlinear joint
flexibility and nonlinear rotor dynamics to reduce uncertainty and
bias in the parameter estimates from unmodeled dynamics.

4) Adaptive feedforward control. A self-tuning feedforward controller
is developed based on the proposed E-GMS dynamic friction model
to address the challenge of friction that change with; 1) wear and
2) temperature. The adaptive controller is realized by combining
a gradient descent parameter estimation scheme and feedforward
control. The state-of-the-art is expanded by realizing adaptive control
based on the proposed E-GMS dynamic friction model. The torque
prediction accuracy is improved 84 % while the tracking error is
reduced by 20 %.
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1.6 Thesis Overview

The rest of this dissertation is structured in the following chapters.

Chapter 2 presents the theoretical background of this research. First, mathe-
matical modeling of robot manipulators with the consideration of flexible
joints is presented. The dynamics inherent to strain-wave transmissions
such as nonlinear flexibility, friction, hysteresis, and kinematic error is dis-
cussed. Then, system identification procedures are presented with regards
to determining the robot and joint dynamics parameters. Lastly, strate-
gies for adaptive estimation and control of industrial robots is discussed.
This includes methods for general feedforward and feedback control of
flexible-joint robot manipulators.

Chapter 3 presents an adaptive estimation procedure for online identifi-
cation of the nonlinear robot joint stiffness and includes Conference Paper
1. The method relies on the sensing hardware readily available in the Uni-
versal Robots manipulators, and in contrast to other robot joint stiffness
calibration procedures, the method requires no specially designed trajectory
or fixation of the robot end-effector. The perspectives of adaptive joint
stiffness estimation are in predictive maintenance and in linearizing and
decoupling control strategies.

Chapter 4 presents a comprehensive mathematical model of the robot joint
and includes Journal Paper 1. The model describes the nonlinear flexibility,
hysteresis, and kinematic error. Additionally, the steady-state friction is
described in terms of angular velocity, load torque, and temperature. The
dynamic friction characteristics are described by the Generalized Maxwell-
Slip (GMS) model. The hysteresis characteristics are observed to depend on
the angular position.

Chapter 5 presents the robot dynamics calibration procedure and includes
Journal Paper 2. The robot dynamics calibration procedure is based on the
analytic expressions for regrouping the inertial parameters. Our procedure
is based on the IDIM-WLS procedure extended with a method to compen-
sate the nonlinear rotor-side dynamics. Improvements in torque prediction
accuracy are in the range 16.5 %–28.5 % compared to a model containing
CAD model parameters.
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Chapter 6 presents an extension to the GMS friction model (E-GMS) and
an adaptive feedforward controller. The chapter includes Journal Paper
3. The E-GMS model describes in a combined framework the hysteresis
characteristics that depend on the joint angular position as well as Coulomb
friction torque which depend on the load torque. The adaptive feedforward
controller is designed based on the E-GMS model and addresses friction
that depend on wear and temperature changes. Improvements in torque
prediction accuracy average at 84 % among the joints, while the position
error is improved by 20 %.

Chapter 7 concludes the work by summarizing the main contributions of
the research project. Finally, the perspectives for further development of the
presented methods are presented.
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Chapter 2

Theoretical Background

“Experience without theory is blind, but theory
without experience is mere intellectual play.”

— Immanuel Kant (1724–1804)

To achieve a good robot performance, it is necessary to have a dynamic model that
accurately relates the actuator torques to the manipulator motion. However, the use
of lightweight strain-wave transmissions introduces complex nonlinear and time-
varying dynamics to the robot joints, which deteriorates the robot performance if not
properly addressed. The combined techniques of dynamics modeling, identification,
and adaptive estimation and control are essential tools to address such issues.

2.1 Dynamic Modeling

The dynamic model of the robot manipulator relates the actuator torques to
the motion of the robot manipulator. It contains a set of kinematic parameters
such as the position and the orientation of the joints and a set of dynamic
parameters such as masses, center-of-mass positions, and inertia components.

2.1.1 Kinematics

To obtain an inverse dynamics model of a robot manipulator, a forward
kinematic model is needed. Thus, the kinematics of robot manipulators will
be briefly outlined. The kinematic model describes the relation between
joint angles q and the position and orientation x of the end-effector. The
forward kinematics describes the transformation Γ(·) from joint angles to the
end-effector position and orientation, and the inverse kinematics describes
the transformation from the end-effector position and orientation to the
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j αj
1 π/2
2 0
3 0
4 π/2
5 -π/2
6 0

UR3e
aj dj
0 0.15185

-0.24355 0
-0.2132 0

0 0.13105
0 0.08535
0 0.0921

UR5e
aj dj
0 0.1625

-0.425 0
-0.3922 0

0 0.1333
0 0.0997
0 0.0996

UR10e
aj dj
0 0.1807

-0.6127 0
-0.57155 0

0 0.17415
0 0.11985
0 0.11655

UR16e
aj dj
0 0.1807

-0.4784 0
-0.36 0

0 0.17415
0 0.11985
0 0.11655

TABLE 2.1: Denavit–Hartenberg parameters of the Univer-
sal Robots e-Series robots.1

joint angles. The forward kinematics can be represented as

x = Γ(q) (2.1)

and the inverse kinematic is given

q = Γ−1(x) (2.2)

The kinematic model is derived using Denavit–Hartenberg (DH) convention
or its modified variant [110]. The kinematic parameters of the UR robots
are listed in Table 2.1 and illustrated on a UR5e robot in Fig. 2.1 configured
in the home position.

2.1.2 Flexible-Joint Robot Manipulator Dynamics

The safety issue is addressed, partly, by the use of lightweight transmission
components. Thus, the kinetic energy of the robot is minimized, which
reduces the risk of injury in the event of a collision. However, due to the
use of flexible transmission elements this assumption no longer holds. In
this section, the dynamics of Flexible–Joint Robot (FJR) manipulators is
presented.

The dynamic model of the robot manipulator provides a relationship
between the joint torques and the motion of the robot manipulator.2 The
dynamics of a robot manipulator can be derived using several methods.

1https://www.universal-robots.com/articles/ur-articles/
parameters-for-calculations-of-kinematics-and-dynamics/

2The definition of dynamics is different in general multi–body dynamics literature [111],
where kinetics covers motion and the forces that cause it and kinematics covers the geometric

https://www.universal-robots.com/articles/ur-articles/parameters-for-calculations-of-kinematics-and-dynamics/
https://www.universal-robots.com/articles/ur-articles/parameters-for-calculations-of-kinematics-and-dynamics/
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FIGURE 2.1: UR robot arm in its home position with the
kinematic parameters provided.
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The most common methods are Lagrange’s formulation [33], the Newton–Euler
formulation [110], and Kane’s method [112]. These methods produce the same
result but uses different approaches.

The deflection of the transmission elements can be modeled as concen-
trated at the joints, thus limiting the model complexity. Compared to the
rigid manipulator case, the model of an FJR manipulator requires twice the
number of generalized coordinates to completely characterize the manipu-
lator configuration, i.e. all rigid bodies (rotors and links). This also means,
that the control design for FJR manipulators will be more difficult.

An FJR manipulator is considered as an open kinematic chain of N + 1
rigid bodies, the base and N links, interconnected by N revolute joints un-
dergoing angular deformation around the joint axis of rotation and actuated
by N electric actuators. To derive the manipulator dynamics a frame is
attached to each of the 2N rigid bodies. Let the generalized coordinates

Θ =

(
q
θ

)
∈ R2N (2.3)

be the angular positions of the links and rotors, q ∈ RN and θ ∈ RN ,
respectively. Note that the rotor angular positions θ are reflected through
the gear ratios. Let R = diag(r1, . . . , rN ) be the diagonal matrix of gear
ratios with ri > 1 ∀ i. That is, if the physical rotor angular positions are
denoted θm, then θ = R−1 θm. The following standard assumptions are
made.

A1 The motors are axis-balanced, i.e. the rotors are uniform bodies having
their center of mass on the joint axis of rotation.

A2 Each motor j = 1, . . . , N is mounted on link j − 1 and moves link j,
see Fig. 2.2.

Assumption A1 is a basic requirement for long life of an electric actuator
and is thus quite reasonable. This also means that the inertia and gravity
terms in the robot dynamic model will be independent of the rotor angular
position. The Lagrangian L(Θ, Θ̇) = T (Θ, Θ̇)− U(Θ) is used to derive the
manipulator dynamics through Lagrange’s equation

d

d t

(
∂ L(Θ, Θ̇)

∂ Θ̇

)
− ∂ L(Θ, Θ̇)

∂Θ
= Γ (2.4)

relations of motion regardless of the forces. Dynamics then includes both kinematics and
kinetics.
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Joint j

Link j − 1

Link jMotor j
θj qj

FIGURE 2.2: The FJR manipulator configuration.

where Γ ∈ R2N is the non–conservative generalized torque performing
work on Θ. The kinetic energy is given by

T (Θ, Θ̇) =
1

2
Θ̇

TM(q) Θ̇ (2.5)

and the potential energy is given by the sum of a gravitational term, which
is a function of q alone due to assumption A1, and a term arising from joint
elasticity

U(Θ) = Ug(q) + Ue(Θ) (2.6)

with gravity torques G(q) = (∂ Ug(q)/∂Θ)T. If linear elasticity is assumed,
the elastic energy is

Ue(Θ) =
1

2
ΘTKΘ (2.7)

The assumption of linear elasticity can easily be relaxed as shall be evident
later. Using (2.5), (2.6), and (2.7) in (2.4) yields the complete dynamic model

M(q) Θ̈ + C(Θ, Θ̇) Θ̇ + KΘ + G(q) = Γ (2.8)

with G(q) = (gT(q) 0T)T. Since only the motor coordinates are directly
actuated Γ =

(
0T τT

m

)
T, τm ∈ RN . Non–conservative torques, for instance

energy dissipating effects like general nonlinear friction F and damping
D Θ̇ can easily be added. It should be noted that friction acting on the
motor coordinate can be completely compensated by a proper choice of
control torque, while this is not true for friction acting on the link coordinate
due to the non–collocation.

Model Properties

The following useful properties can be derived [34]
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P1 Equation (2.8) admit a linear parametrization in terms of a set of
dynamic coefficients (including joint stiffnesses and rotor inertias),
which is useful for identification and adaptive control.

P2 The system inertia matrix is symmetric and positive-definite and has
the following structure

M(q) =

[
M(q) S(q)
ST(q) B

]
(2.9)

with M(q) � 0 ∈ RN×N the symmetric inertia matrix given by

M(q) = ML(q) + MR(q) + S(q) B−1 S(q)T (2.10)

which consist of contributions from the links and rotors, denoted by
subscript L and R, respectively, and B � 0 ∈ RN×N is the diagonal
matrix of rotor inertias.

P3 The matrix S(q) comprises the inertial coupling between the link
and rotor and is always strictly upper-triangular with a cascaded
dependence of its nonzero elements, i.e.

S(q) =


0 S12(q1) S13(q1, q2) · · · S1N (q1, . . . , qN−1)
0 0 S23(q2) · · · S2N (q2, . . . , qN−1)
...

...
...

. . .
...

0 0 0 · · · SN−1,N (qN−1)
0 0 0 · · · 0

 (2.11)

and its elements can be obtained as

Sij(q) =
∂2 T (Θ, Θ̇)

∂ q̇j ∂ θ̇i
(2.12)

P4 The elements of C(Θ, Θ̇) can always be defined such that Ṁ(q) −
2C(Θ, Θ̇) is skew-symmetric. One feasible choice is provided by the
Christoffel symbols of the first kind

Ci(Θ, Θ̇) =
1

2
Θ̇

T

[
∂Mi

∂Θ
+

(
∂Mi

∂Θ

)T

− ∂M
∂Θi

]
Θ̇ (2.13)
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where dependencies of M have been omitted for readability. The
decomposition C(Θ, Θ̇) = CA(q, θ̇) + CB(q, q̇) lets one define

C(Θ, Θ̇) =

[
CA1(q, θ̇) + CB1(q, q̇) CB2(q, q̇)

CB3(q, q̇) 0

]
(2.14)

with elements [113]

CA1,ij(q, θ̇) =
1

2

(
∂ Si(q)

∂ qj
− ∂ Sj(q)

∂ qi

)
θ̇ (2.15)

CB1,ij(q, q̇) =
1

2

(
∂Mij(q)

∂ q
q̇ +

(
∂Mi(q)

∂ qj
− ∂Mj(q)

∂ qi

)
q̇

)
(2.16)

CB2,ij(q, q̇) =
1

2

(
∂ Sij(q)

∂ q
q̇−

∂
(
ST(q)

)
j

∂ qi
q̇

)
(2.17)

CB3,ij(q, q̇) =
1

2

(
∂ Sji(q)

∂ q
q̇ +

∂
(
ST(q)

)
i

∂ qj
q̇

)
(2.18)

P5 For articulated manipulators (having revolute joints only), the gra-
dient of the gravity vector g(q) is globally bounded in norm by a
constant, i.e. ∣∣∣∣∣∣∣∣∂ g(q)

∂ q

∣∣∣∣∣∣∣∣ ≤ α ∀ q (2.19)

P6 The system stiffness matrix can be defined from the joint stiffness
matrix K = diag(k1, . . . , kj , . . . , kN ), kj ∈ R+ being the stiffness of
joint j, as

K =

[
K −K
−K K

]
(2.20)

Similarly the system damping can be defined in terms of the joint
damping D = diag(d1, . . . , dj , . . . , dN ), dj ∈ R+ as

D =

[
D −D
−D D

]
(2.21)
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The dynamics of an FJR manipulator given assumptions A1–A2 and the
before–mentioned properties can be expressed as[

M(q) S(q)
ST(q) B

](
q̈

θ̈

)
+

[
CA1(q, θ̇)+CB1(q, q̇) CB2(q, q̇)

CB3(q, q̇) 0

](
q̇

θ̇

)
+

(
g(q)

0

)
+

(
K (q− θ)
K (θ − q)

)
=

(
0
τm

) (2.22)

For robots with large reduction ratios, the fast spinning of the rotors dom-
inates the angular velocity of the previous links. Thus, it is reasonable to
make the following assumption proposed by Spong [32].

A3 The motion of the rotors are pure rotations with respect to an inertial
frame, i.e. the angular velocities of the rotors are due only to their
own spinning.

Assumption A3 is equivalent to neglecting the inertial couplings between
the rotors and links. In [114] the dynamics of the ABB IRB6700 was analyzed
and found that in the most extreme situation, the inertial coupling accounts
for < 1 % of the torque originating from angular accelerations, while the
model error for the Coriolis coupling effect is < 0.1 % in the most extreme
situation. In [114] they conclude: ”Even in a high–fidelity dynamic model these
effects do not add much value compared to the computational operations it also
introduces.” Modeling these rotor/link coupling effects is of fundamental
interest, however provided the limited gain in model accuracy it is of little
practical relevance, in the light of other model uncertainties related to
mechanical flexibilities and joint dynamics. Given assumptions A1–A3,
with the linear joint elasticity assumption of (2.7) relaxed, the link and rotor
dynamics becomes

M(q) q̈ + C(q, q̇) q̇ + g(q) + τ ext = τ J (2.23)

B θ̈ + f + τ J = τm (2.24)

where in the link equation, for simplicity C(q, q̇) , CB1(q, q̇) which is
the matrix of Coriolis and centripetal terms with q̇2j the centripetal terms
and q̇j q̇k, j 6= k the Coriolis terms, τ ext is the vector of torques applied
externally, and τ J ∈ RN is the vector of joint torques which couples the
link and rotor equations, and f ∈ RN is the vector of friction torques. If
an external wrench fext ∈ RN is applied at the end–effector, the resulting
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torques at the joints are
τ ext = JT(q) fext (2.25)

with J(q) the kinematic Jacobian of the manipulator. For free motion τ ext =
fext = 0.

Obtaining the Link Dynamics

The robot manipulator link dynamics is most easily obtained using the
Recursive Newton–Euler Algorithm (RNEA) [110]. The RNEA is initialized
by specifying constraints for the base joint and the TCP. For the base joint,
the angular velocity and angular acceleration (both zero if the robot is fixed
statically) and the linear acceleration (g m/s2 upward if mounted on a table
with the direction of the gravitational acceleration parallel to the base joint
axis of rotation) are specified. For the TCP, a zero force and zero torque is
specified. To admit a linear parametrization of the dynamics, the inertia
tensor is defined relative to the joint center axis of rotation (CoR). However,
for the RNEA the inertia tensor is described relative to the center of mass
(CoM). Thus, the parallel axis theorem (Steiner’s law) is used to translate
the inertia tensor between reference frames.

τ J(q, q̇, q̈,g) = RNEA(a,d,α,q,m,CoM, ICoM,g, ) (2.26)

From the torque expressions of (2.26) the components of the Euler–Lagrange
system can be extracted as follows. The gravity vector is obtained by evalu-
ating the dynamics in zero angular velocity and zero angular acceleration,
i.e.

g(q) = τ J(q,0,0,g) (2.27)

Let ei denote the ith standard basis vector of RN , i.e. a vector with a 1 in the
ith coordinate and 0’s elsewhere, then the ith row of the inertia matrix can
be obtained as

Mi(q) = τ J(q,0, ei,0) (2.28)

Knowing the inertia matrix, the ith row of the Coriolis/centripetal matrix
can be defined based on the Christoffel symbols of the first kind as

Ci(q, q̇) =
1

2
q̇T

(
∂Mi

∂ q
+

(
∂Mi

∂ q

)T

−
(
∂M

∂ qi

))
q̇ (2.29)

Thus, from (2.27), (2.28), and (2.29) the link dynamics of (2.23) is obtained.
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2.1.3 Joint Dynamics

This section presents the dynamics of the robot joint. Since the joint torques
are uncoupled among the joints, the notation in this section is simplified to
the single joint case reducing the vector equations to scalar ones.

Invented in the 1950’s by C. W. Musser [115] for aerospace applications,
strain-wave transmissions are now used in many robot manipulators due to
their desirable characteristics of lightweight design and high torque capacity.
Strain-wave transmissions are used for instance in the Universal Robots
manipulators [14], Kuka LWR [15], FANUC LR Mate 200i [16], Yaskawa
Motoman HP3J [17], DLR 7 DOF robot [18], and Mitsubishi PA-10 [19]. The
working principle of strain-wave transmissions are based upon the elastic
mechanics of metals. One example of a strain-wave transmission is the
Harmonic Drive™ shown in Fig. 2.3. It consists of three parts: The circular
spline (CS), a rigid cylinder with internal toothing; the flexspline (FS), a thin-
walled cup with outer toothing; and the wave generator (WG), an elliptic
shaped hub in a ball bearing.

Fig. 2.4 illustrates how the three transmission elements engage and ro-
tate. The flexspline is smaller in diameter and has two fewer teeth compared
to the circular spline. The elliptic shape of the wave generator causes the
teeth of the flexspline to engage with the teeth of the circular spline at the
regions around the major axis of the ellipse. Each 180◦ rotation of the wave
generator results in one tooth relative motion between the flexspline and
circular spline. The strain-wave transmission can be operated in different
ways depending on the component of input and output rotation. Either the
flexspline is fixed and the circular spline is the output or vice versa. The
reduction ratio varies slightly depending on the configuration [116].

Strain–wave transmissions are known to possess the following complex
nonlinear dynamic characteristics [76]; flexibility, friction, hysteresis, and
kinematic error. This section presents our approach to dynamic modeling of
these characteristics.

Flexibility

The joint torque couples the links and rotor equations, (2.23) and (2.24)
respectively. Let φ , θ − q denote the angular deformation of the transmis-
sion and assume that the transmission has the same behavior in the CW and
CCW direction and that no torque is transmitted for zero deformation, i.e.

τJ(φ) = −τJ(−φ) ∀φ (2.30)
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Wave generator
Flexspline

Circular spline

FIGURE 2.3: The Harmonic Drive™ strain-wave transmis-
sion consisting of a circular spline, flexspline, and wave gen-
erator. The wave generator comprises a thin raced ball bear-
ing which is fitted onto an elliptical hub. harmonicdrive.

net

(a) (b) (c)

FIGURE 2.4: Working principle of a strain-wave transmis-
sion; an input revolution of 180◦ results in a one tooth rel-
ative motion between the circular spline and flexspline as

indicated by the triangles.

harmonicdrive.net
harmonicdrive.net
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Joint Torque Stiffness

φ

τJ

k(φ)
φ

k

(a) (b)

FIGURE 2.5: The stiffening spring characteristics of a strain-
wave transmission; (a) the map from angular deforma-
tion φ to joint torque τJ , and (b) the angular deformation-

dependent stiffness k(φ).

τJ(0) = 0 (2.31)

The joint stiffness is the change of torque wrt. angular deformation, thus

k(φ) =
∂ τJ(φ)

∂ φ
(2.32)

Strain–wave transmissions behaves as stiffening springs, i.e. the stiffness
increases with the angular deformation. Harmonic Drive™ suggests a
model consisting of three linear segments [116]. Such model was used by
[117]. In literature, it is most common with a cubic polynomial description
[81, 82, 118].

Hysteresis

Hysteresis represents the dependence of the state of a system on its history.
For instance, if a solid body is subject to a force and deforms – when the
force is released, does the deformation state return to its original shape
completely? If not, then the material exhibits hysteresis. Mathematically,
hysteresis refers to the input–output behavior of a system, that is the lag
of a system’s output wrt. its input. If the hysteresis vanishes for slowly
varying inputs it is known as rate-dependent, and if durable memory is
possible the hysteresis is said to be rate-independent. Backlash is the clearance
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φ

F

FIGURE 2.6: The hysteresis characteristics of a strain-wave
transmission illustrated by the map from deformation to

torque.

between mating parts, which is one of many properties of a mechanical
system, that can give rise to rate-independent hysteresis characteristics. A
comprehensive explanation of general terminology related to hysteresis is
given in [119].

Strain-wave transmissions are known to experience hysteresis. Math-
ematically, the hysteresis phenomenon has been described by different
hysteresis models. In [83], a nonlinear differential equations was devel-
oped based on the heredity concept of dynamic systems, while a Preisach
model was used in [84]. In [85, 88], a Buc-Wen model was used, and the
Generalized Maxwell-Slip model was used in [76, 120, 121, 77].

Kinematic Error

Strain-wave transmissions are subject to a periodic positioning error known
as kinematic error. The kinematic error is defined as the error between the
expected and actual angular output positions for a given input position, that
is how much the actual transmission deviates from an ideal one. Kinematic
error is caused by several factors including tooth-placement errors on the cir-
cular spline and flexspline, misalignment during assembly, and roundness
errors in all three transmission components [20]. The error characteristics
can have components that are integer multiples of two cycles per wave
generator revolution [19] as well as integer multiples of the output-side
revolution [122]. Usually, the kinematic error is approximated by a Fourier
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θ

θ̃ π π

FIGURE 2.7: The kinematic error of a strain-wave transmis-
sion with π-periodic behavior in θ.

series [123–125], that is

θ̃(θ) =
a0
2

+
k∑

n=1

[ an cos(ωnθi) + bn sin(ωnθi) ] (2.33)

with a0 a constant which represents whether the impact of the positive part
of the kinematic error is larger than that of the negative part, and

an =
1

π

∫ 2π

0
θ̃(θ) cos(n θ) d θ bn =

1

π

∫ 2π

0
θ̃(θ) sin(n θ) d θ (2.34)

In [123] the mean squared error of the approximation did not improve for
k > 12 number of Fourier terms.

Friction

Friction affects the robot performance negatively if not properly compen-
sated. The friction phenomenon generally involves elastic and plastic defor-
mations as well as the dynamics of fluids. Consequently most friction mod-
els are empirical, i.e. derived from experimental observations rather than
the laws of physics. Friction models can be separated into two categories;
static and dynamic friction models. While static models are sufficiently accu-
rate in steady-state conditions, dynamic models are required for capturing
the dynamic effects which are especially prominent for velocity reversals.

Friction can be characterized in terms of the relative motion between
two surfaces in contact. It can be divided into two regimes; pre-sliding and
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Movement

Original shape Deformed shape Lubricant

FIGURE 2.8: Friction at micro scale illustrating the pre-
sliding regime. The surfaces in contact deforms elastoplasti-

cally.

gross sliding (or simply sliding). In the pre-sliding regime, the surfaces are
in contact and the friction is mainly a function of the relative displacement
of the surfaces. In the pre-sliding regime, the surfaces are in contact and
deform elasto-plastically, see Fig. 2.8. For increasing displacement, the
asperity junctions break and the relative velocity increases, i.e. the friction
changes into the sliding regime. Here, the surfaces do not touch each other
physically, but slides on a thin layer of lubricant.

2.1.4 Static Friction Models

Static friction models describe the friction as a unique mapping from a
dependent variable, such as the velocity, to the friction force. Fig. 2.9
illustrate the most common static friction models. The simplest model of
friction is the Coulomb model, which assumes a constant friction force
acting in the reverse direction of motion. The viscous model assumes a
friction force acting in the reverse direction of motion with a magnitude
proportional to the velocity. The stiction model is based on the Coulomb and
viscous friction model with an additional friction torque at zero velocity. The
Stribeck model is based on the stiction model, however, with the transition
from stiction to the sliding regime given by a continuous function. All the
presented static models are however discontinuous at zero velocity, which
is not an accurate description of the friction of a mechanical system. The
discontinuity can be solved by describing the Coulomb friction instead as
some function with a well defined derivative at zero velocity such as a
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FIGURE 2.9: Illustrations of various static friction models.

hyperbolic tangent function, however such model will still not describe real
friction characteristics well at low velocity.

2.1.5 Dynamic Friction Models

Dynamic friction models allow for accurate modeling of friction processes
occurring at standstill and at very small velocities. In essence, the Coulomb
friction law is replaced by a rate–state law.

The LuGre Model

The LuGre friction model [78] has been widely used in the robotics literature
and it is given by a state equation representing the average bristle deflection
z, a generalized velocity function g(·), and a friction force F equation, that
is

F = σ0 z + σ1 ż + f(v) (2.35)

ż = v − σ

g(v)
|v| z , g(v) = α0 + α1 e(−v/v0)

2
(2.36)

The LuGre model has been widely used in general robotics research. How-
ever, it is unable to represent hysteresis with non-local memory, which is
observed in strain-wave transmissions, and as such the LuGre model is not
well suited for the modeling of strain-wave transmissions.

The Leuven model [126] was proposed as an extension to the LuGre
friction model in order to be able to describe non-local hysteresis character-
istics. However, practical implementation of the Leuven model resulted in
the problem of stack overflow [127]. Thus, the Leuven model finally led to
the development of the Generalized Maxwell-Slip model.
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The Generalized Maxwell–Slip Model

The Generalized Maxwell–Slip (GMS) friction model [74, 75] differs from
the LuGre friction model in multiple ways. Firstly, the GMS model is a
multi-state model, i.e. z ∈ RM . Conceptually it can be visualized as a
parallel connection of M massless block-spring models/operators each
characterized by a stiffness ki and a maximum spring deformation ∆i (or a
slip-force limit Wi = ki ∆i). Fig. 2.10 illustrates the model structure mechan-
ically and schematically. The number of states can be chosen arbitrarily, but
typically it is in the order of 3 to 5 to yield a proper trade-off between model
complexity and performance. The dynamics of each operator i = 1, . . . ,M
is described as follows. If the element is sticking

Ḟi = ki ω (2.37)

where ki is the spring stiffness of the ith operator. The operator remains
sticking until Fi > νi s(ω) where the fractional parameter νi subject to
Σi νi = 1 determines the maximum force Fi for each element during sticking.
If the element is slipping

Ḟi = sign(ω)Ci

(
νi +

Fi
s(ω)

)
(2.38)

and the element remains slipping until velocity reversal. The attraction
parameter Ci determines how fast |Fi − νi s(ω)| → 0, i.e. how fast the total
friction force approaches s(ω) in sliding.

The GMS friction model captures essentially all observed friction char-
acteristics such as arbitrary shapes of hysteresis loops, non-local memory,
rate-independent hysteresis, and frictional lag [128].

2.1.6 Motor Dynamics

The electrical dynamics provides the relation between the electrical quanti-
ties such as voltages and currents and the mechanical torque output. For
the analyses contained in this work, the electrical dynamics are much faster
than the mechanical dynamics and as such they are not taken into account.
In the following, they are briefly presented for completeness. The electric
actuator is current controlled three–phase permanent magnet synchronous
machine (PMSM). The electrical dynamics of a PMSM expressed in the
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FIGURE 2.10: Schematic (a) and mechanical (b) representa-
tion of the Generalized Maxwell–Slip friction model.

Direct–Quadrature (dq) reference frame can be described as [129]

d

d t
id =

1

Ld
vd −

R

Ld
id +

Lq
Ld

pω iq

d

d t
iq =

1

Lq
vq −

R

Lq
iq +

Ld
Lq

pω id −
λ pω

Lq

(2.39)

where subscripts d and q denote, respectively, quantities in the d and q
reference frames, v is the stator voltage, i is the current, L is the inductance,
p ∈ N ≥ 0 is the number of stator pole pairs, and λ is the flux linkage of
the permanent magnet. The mechanical torque for a single PMSM can be
expressed in the d–q rotor reference frame as

τm =
3 p

2
(Ψ iq + (Ld − Lq) id iq) (2.40)

in which Ψ is the flux linkage of the permanent magnet. Since inductances
Ld and Lq are roughly equal, and the PMSM controller operates to yield
zero direct current id, the mechanical torque may be well approximated by

τm =
3p

2
Ψ iq (2.41)

in which the toque constant of the PMSM can be identified as Kτ = 3p
2 Ψ

and the torque-generating quadrature current iq , i from this point.
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2.1.7 Modeling Summary

The parameters considered in the mathematical model of the robot and joint
dynamics are listed in Table 2.2.

Robot Model

Kinematics DH Parameters

Dynamics
Mass
Center of Mass
Link Inertia

Joint Model

Kinematics
Kinematic Error
Backlash

Dynamics

Motor Drive Gain
Rotor Inertia
Stiffness
Friction
Hysteresis

TABLE 2.2: Kinematic and dynamic parameters for the
Flexible-Joint Robot manipulator.

2.2 Identification

System identification is the art of identifying model structures and/or
parameter values based on experimental input–output data. For robot
manipulators, the experimental data are for instance angular positions and
currents. System identification also includes the design of experiments for
efficient model identification, i.e. designing the experiment(s) to describe
the variation of information under conditions that are expected to reflect
the variation. For instance, a robot can be configured to perform a specific
motion such that the dynamic model simplifies. For linear models of the
form

y = ΨTα+ v (2.42)

with y ∈ Rn×1 the vector of measurements, Ψ ∈ Rm×n the regressor matrix,
α ∈ Rm×1 the vector of unknown parameters. The least squares solution
can be obtained from the Moore–Penrose generalized inverse of Ψ, i.e.

α =
(
ΨTΨ

)−1
ΨTy (2.43)
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Numerical methods such as QR decomposition or Cholesky factorization
can enhance the numerical stability. For nonlinear models of the form

f(α) = 0 (2.44)

the least squares solution is obtained iteratively using for instance a Newton–
Gauss method initiated at α0 and iterating towards the solution as

αk+1 = αk + ∆αk (2.45)

and using the Jacobian matrix J(α) = ∂ f(α)/∂α of f(α) to attain the least
squares solution by choosing

∆αk = −(JT J)−1JTf(αk) (2.46)

A large number of nonlinear programming methods exist for obtaining the
solution, see for instance [130] for a overview.

2.2.1 Robot Dynamics Calibration

The minimum number of parameter required to compute the dynamic
model is referred to as base parameters. These parameters are derived from
the (standard) set of inertial parameters through a procedure described
in Khalil [94]. Parameters that have no influence on the dynamics are
eliminated and parameters that are identifiable only in linear combinations
with other parameters are grouped.

If a priori knowledge of the kinematic parameters is assumed, the robot
dynamics can be parametrized to a system of equations linear in a set of
inertial parameters (as noted in property P1), thus

τ J = Y(q, q̇, q̈)γ (2.47)

with Y(q, q̇, q̈) ∈ RN×Np the regressor of known functions and γ ∈ RNp the
(unknown) inertial parameters ordered link-wise, i.e.

γ = [γT
1 · · · γT

i · · · γT
N ]T (2.48)

A rigid body i has 10 inertial parameters; the mass, three center-of-mass
(CoM) positions, and 6 inertia components (the inertia tensor is symmetric).
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The inertial parameters are thus

γi = [XXi XYi XZi Y Yi Y Zi ZZi mXi mYi mZi mi ]T (2.49)

Thus, an N link robot manipulator is described by a total of Np = 10N iner-
tial parameters. More parameters can easily be added – for instance those
related to (linearly parametrized) friction. The next two sections explain
how the set of Np parameters γ can be reduced to bm base parameters γB
to uniquely describe the link dynamics as

τ J = YB(q, q̇, q̈)γB (2.50)

with γB ∈ Rbm the set of base parameters and YB(q, q̇, q̈) ∈ RN×bm the
corresponding matrix of regressors.

Parameters with no Influence on the Dynamics

Considering the expressions for the kinetic and potential energies, the
parameters having no influence on the dynamics satisfy

Np∑
i=1

∂ T (Θ, Θ̇)

∂ γi
γi = 0 and

Np∑
i=1

∂ U(Θ)

∂ γi
γi = 0 (2.51)

and are thus excluded from the set of inertial parameters. Parameters that
satisfy these conditions are generally related to the links close to the base
joint. Parameters that have no influence on the dynamics can be eliminated
by considering the zero–columns of the regressor.

Linearly Dependent Parameters

Denote

DT i =
∂ T (Θ, Θ̇)

∂ γi
γi and DU i =

∂ U(Θ)

∂ γi
γi (2.52)

A parameter γi is identifiable only in linear combinations with other param-
eters γ1i, . . . , γ1k, . . . , γ1r if

DT i =

r∑
k=1

αik DT ik and DU i =

r∑
k=1

αik DU ik (2.53)



40 Chapter 2. Theoretical Background

with αik a constant. Evaluating the conditions in (2.53) may be time consum-
ing. Instead, parameters that fulfill these conditions for a robot manipulator
with a given kinematic arrangement may be found through the closed-form
re-grouping relations derived by Gautier and Khalil [36] or by numerical
analysis of the regressor in (2.47) [39].

Performing Dynamics Calibration

To perform the dynamics calibration, the robot manipulator is set to perform
the motion specified by a trajectory while actuator currents and angular
positions are sampled. The data can be ordered joint-wise, that is y =
[ τT

1 , . . . , τ
T
N ]T and the regressor W = [ YT

1 , . . . ,Y
T
N ]T to obtain the system

of equations
y = W γB + ρ , ρ ∼ N (0, σ2) (2.54)

Several techniques exist for the solution of (2.54) with the Ordinary Least
Squares (OLS) and Weighted Least Squared (WLS) being the most common.
The WLS solution is

γ̂B =
(
WT G W

)−1
WT G y (2.55)

with the weighting matrix G usually chosen as a matrix containing the
reciprocal of the standard deviations estimated from the OLS solution.

2.2.2 Joint Dynamics Calibration

The dynamic characteristics of a single robot joint can be identified by pro-
viding the robot with an input signal such that the phenomenon of interest
contributes the most to the output signal is excited and other contributions
to the measured output signal are minimal. For instance, the steady–state
friction characteristics can be identified by orienting the robot joint with the
axis of rotation parallel to the direction of the gravitational acceleration.

2.3 Adaptive Estimation & Control

In this section, strategies for adaptive estimation and control are presented.
Adaptive control is a strategy for the control of systems with unknown
but constant or slowly varying parameters [95, 131], for instance systems
subject to behavioral changes due to aging, drift, wear, etc. In non-adaptive
controllers, the controller parameters are often computed based on a model
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FIGURE 2.11: Schematic illustration of the self-tuning feed-
forward controller.

of the physical system. Thus, it is intuitive to replace the model parameters
by an estimate provided by a parameter estimator. This is the concept of
controllers based on the certainty equivalence principle such as Self-Tuning
Controllers (STC), which consist of a controller combined with a parameter
estimator. Fig. 2.11 illustrates schematically a self–tuning feedforward
controller in which the parameter estimate is fed back to the feedforward
part of the controller.

Other adaptive control strategies include for instance those based on the
Model-Reference Adaptive Control (MRAC) concept. MRAC and STC are
similar in the way that they comprise an inner loop for control and an outer
loop for parameter estimation. MRAC is different from STC in the way
that the parameters of MRAC are updated to minimize the tracking error in
contrast to the prediction error minimization for STC. In comparison to STC,
the MRAC parameter adaptation law depends on the control law while the
control and estimation is separated on STC. This separation of control and
estimation provides STC with a lot of flexibility [95]. A common model for
parameter estimation is the linear parametrization of the output signal

y(t) = ψT(t)α (2.56)

with ψ(t) the regressor of known signals and α the parameter vector. If a
parameter estimate α̂(t) is available at time t, the output can be predicted
as

ŷ(t) = ψT(t) α̂(t) (2.57)
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The difference between the measured and predicted outputs is the predic-
tion error

ε(t) = y(t)− ŷ(t)

= y(t)−ψT(t) α̂(t)
(2.58)

Common methods of prediction error based estimation methods include
Recursive Least Squares (RLS) and gradient descent. These methods provide
adaptation laws for real time updating the parameter estimates. The RLS
and gradient descent methods are outlined in the following.

2.3.1 Gradient Descent Estimation

In the gradient descent estimation method, parameters are updated to
reduce the prediction error. Specifically, the parameters are updated in the
opposite direction of the gradient of the squared prediction error wrt. the
parameters. The stability properties of this estimator can be analyzed by
considering the Lyapunov function candidate

V =
1

2
α̃T(t) Γ−1 α̃(t) (2.59)

If the parameter update law is chosen as

˙̂α(t) = Γψ(t) ε(t) (2.60)

and if the real parameters are assumed to change slowly (α̇ = 0), the
time-derivative of V is

V̇ = −α̃T Γ−1 ˙̂α(t)

= −α̃T(t)ψT(t)ψ(t) α̃(t) ≤ 0
(2.61)

which implies that the estimator is always stable for the single parameter
case and for the multi parameter case the stability depends on the choice
of adaptation gain [95]. Parameter convergence always depends on the
excitation signal.

2.3.2 Recursive Least Squares Estimation

Time–varying parameters can be estimated by the Recursive Least Squares
(RLS) algorithm [132] by the introduction of a forgetting scheme. For a
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signal sampled at times tk = k T , k = 1, 2, . . . , the RLS algorithm with
exponential forgetting reads

α̂k+1 = α̂k + Pk+1ψk+1 εk+1

εk+1 = yk+1 −ψT
k+1 α̂k

Pk+1 =
1

λ

(
Pk −

Pk ψk+1ψ
T
k+1Pk

λ+ψT
k+1Pkψk+1

) (2.62)

where α̂ is the vector of parameter estimates, ε is the estimation error, Φ
is the regressor of known functions, P is the parameter covariance matrix,
and 0 < λ ≤ 1 is the forgetting factor. A value λ = 1 results in no forgetting,
that is the problem simplifies to the usual RLS solution.

During poor excitation conditions, old information is continuously for-
gotten while little new information is obtained. This may cause the covari-
ance matrix to grow exponentially and the estimator to become unstable.
Solutions include to introduce an upper bound to the covariance matrix
[133], to use an on/off method with a time-varying forgetting factor [134],
resetting the covariance matrix during poor excitation conditions [135]. Kul-
havý and Zarrop [136] provides a general discussion on forgetting schemes.

A popular forgetting scheme is directional forgetting. This forgetting
scheme reduces the possibility of estimator wind-up if the incoming in-
formation is non-uniformly distributed in parameter space by performing
a selective amplification of the covariance matrix. Hägglund [137] and
Kulhavý [138] developed some early versions of the directional forgetting
scheme, Bittanti et al. [139] discussed the convergence properties, and Bit-
tanti et al. [140] proposed a modification in terms of a Levenberg-Marquardt
regularization of the covariance matrix to ensure exponential convergence.

2.3.3 Control of Flexible-Joint Robots

In this section, the feedforward control problem for an FJR manipulator in
comparison to a rigid robot is presented. An FJR manipulator is an example
of a differentially flat system [141], i.e. a system where all state variables
and control inputs can be expressed as an algebraic function of the flat
output (the desired trajectory) and a finite number of its derivatives. How-
ever, the order (number of time-derivatives) is higher for FJR manipulators
than for rigid manipulators. Differential flatness is equivalent to feedback
linearization by static or dynamic state feedback [142].
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The feedforward control problem is sometimes referred to as inverse
dynamics control or computed–torque control. The feedforward control
problem can be formulated as: ”Given a desired trajectory of the robot manipula-
tor, compute the actuator torque required to exactly realize the desired motion”. In
practice, inverse dynamics is obtained by evaluating the dynamic model in
the desired motion of the generalized coordinates. For rigid manipulators
θ = q and the dynamic model of (2.23) and (2.24) becomes

τm = (M(q) + B) q̈ + C(q, q̇) q̇ + g(q) + f (2.63)

Thus, all generalized coordinates are assigned by evaluating the dynamic
model in a trajectory containing angular positions, velocities, and acceler-
ations. In other words, the angular position must be C1 continuous (the
angular acceleration must exist).

In the following, feedforward control for FJR manipulators with linear
elastic joint is presented. For FJR manipulators, feedforward control is
more complex because not all generalized coordinates are assigned directly
by specifying the desired trajectory. Let higher order time-derivatives be
denoted x[i] = di x/d ti for i > 2. The dynamics of an FJR manipulator with
linear elastic joints are obtained from (2.23) and (2.24) with τ J = K(θ − q),
i.e.

M(q) q̈ + C(q, q̇) q̇ + g(q) = K (θ − q) (2.64)

B θ̈ + f + K (θ − q) = τm (2.65)

Differentiating the link dynamics of (2.64) twice wrt. time yields

M(q) q[4] +
(

2 Ṁ(q, q̇) + C(q, q̇)
)
q[3]

+
(
M̈(q, q̇, q̈) + 2 Ċ(q, q̇, q̈)

)
q̈

+ C̈(q, q̇, q̈,q[3]) q̇ + g̈(q, q̇, q̈) = K (θ̈ − q̈)

(2.66)

Let

c(q, q̇, q̈,q[3]) =
(

2 Ṁ(q, q̇) + C(q, q̇)
)

q[3]

+
(
M̈(q, q̇, q̈) + 2 Ċ(q, q̇, q̈)

)
q̈

+ C̈(q, q̇, q̈,q[3]) q̇ + g̈(q, q̇, q̈)

(2.67)
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Solving for θ̈ in (2.65) and inserting that into (2.66) yields

M(q) q[4] + c(q, q̇, q̈,q[3])

= K
(
B−1 (τm − f −K (θ − q))− q̈

) (2.68)

Replacing the term K (θ−q) by the link dynamics of (2.64) yield the actuator
torque expressed completely in terms of q and its time-derivatives, thus the
feedforward control law

τm = B
(
K−1

[
M(q)v + c(q, q̇, q̈,q[3])

]
+ q̈

)
+ (M(q) + B) q̈ + C(q, q̇) q̇ + g(q) + f

(2.69)

leads to the closed–loop system q[4] = v, that is a linear and input–output
decoupled system is obtained which leads to N separate chains of four
integrators. The implementation of (2.69) requires the trajectory to contain
the fourth-order time-derivative of the angular position, that is the angular
position must be C3 continuous (the angular snap must exist). Comparing
(2.69) to (2.63), the flexibility contribution is clearly recognized.

Linearization of the FJR manipulator system of (2.22) (without assump-
tion A3) required additional smoothness of the desired trajectory, i.e. 2 (N +
1)-times differentiable trajectories (q[2N+1] must exist) [143]. The inverse
dynamics of FJR manipulators can be realized through a recursive Newton-
Euler procedure [144] that has a complexity that grows as O(N3). Inverse
dynamics for rigid manipulators has linear complexity, that is O(N).

Feedback Control of FJR Manipulators

The feedforward control law of (2.69) is a function of the linearizing coordi-
nates (q, q̇, q̈,q[3]). However, a feedback control law may be formulated also
in terms of other state variables. The choice of a suitable feedback control
strategy depends on the available sensing hardware. Indeed (q, q̇, q̇,q[3]) is
a globally defined state representation and thus, the control law

τm = τm(q, q̇, q̈,q[3],v) (2.70)

may be realized as nonlinear static state feedback from the original state.
For most robot manipulators, it is not practically feasible to obtain reliable
estimates of q̈ and q[3]. Numerical differentiation of q may cause critical
noise problems. Instead, the controller may be expressed in terms of the
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states (q,θ, q̇, θ̇) which is a more suitable representation for the Universal
Robots manipulators given the two absolute rotary encoder sensor setup.
The link dynamics of (2.64) may be exploited to express q̈ in terms of q, q̇,
and θ, i.e.

q̈ = M−1(q) (K (θ − q)−C(q, q̇) q̇− g(q)) (2.71)

The jerk q[3] may be expressed in terms of q, q̇, θ, and θ̇ by time-differentiation
of (2.64) and using the definition of q̈ in (2.71), thus

q[3] = M−1(q)
(
K (θ − q)− (Ṁ−1(q, q̇) + C(q, q̇))

·
[
M−1(q) (K (θ − q)−C(q, q̇) q̇− g(q))

]
− Ċ(q, q̇, q̈)

) (2.72)

Using (2.71) and (2.72) in (2.69) a feedback linearization is obtained from
the state representation (q, q̇,θ, θ̇), i.e.

τm = τm(q, q̇,θ, θ̇,v) (2.73)

If torque sensing is available, another possible set of linearizing coordinates
are (q,θ, θ̇, τ J) as used by the DLR LWR–III lightweight manipulator [145].
Here, magneto-resistive incremental encoders are used for the motor angu-
lar positions, a full bridge of strain gauges provides joint torque sensing,
and the link angular positions are obtained from a capacitive potentiometer.

A Note on Joint Torque Feedback Control

Joint torque feedback (JTF) is the general term for robot control strategies
that utilizes joint torque measurements in a feedback control loop. Joint
torque sensors have been widely used in the feedback motion and force
control of robot manipulators with promising results [145–147, 97]. Different
strategies exist for estimating the joint torque. Conventionally, the robot
joints are equipped with commercially available torque sensors, however
these are costly and usually takes up much space. Several alternative
approaches exist.

One method is to measure the deformation of an elastic member inside
the joint transmission, for instance by the use of optical distance sensors
[148, 149], strain gauges [108, 150–153] or high-resolution linear encoders
[154]. However, the inclusion of additional torque sensing hardware in the
robot joints add significant costs to the robot.

Recently, high-resolution absolute position rotary encoders have become
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commercially available. This makes it possible to directly measure the de-
formation of the transmission system by integrating two of these encoders
in the robot joints. Combining the measurement of the transmission de-
formation with an accurate compliance model of the transmission system
makes it possible to estimate the joint torque. This was done by Zhang et al.
[155, 156]. This however requires to accurately know the robot manipula-
tor’s dynamics at all times. Predicting accurately the robot manipulator
dynamics solely from math and physical arguments is not feasible since
these dynamics depends on many and often unknown and time-varying
factors such as temperature and wear. For instance, the robot joint stiffness
change with wear [23–25] and the robot joint friction change with wear and
temperature [157, 158, 71].

Patent Application 2 in Appendix B describes a method for joint torque
feedback control using two absolute rotary encoders and a compliance
model of the robot joint in combination with an adaptive friction observer.
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Chapter 3

Online Stiffness Estimation
[Conf. Paper 1]

Model-Based On-line Estimation of Time-Varying
Nonlinear Joint Stiffness on an e-Series Universal
Robots Manipulator [14]
© 2019 IEEE, reprinted with permission from IEEE

“ei π + 1 = 0”

— Leonard Euler (1707–1783)

3.1 Introduction

Strain-wave transmissions such as the Harmonic Drive™ are widely used
in collaborative robots due to their desirable characteristics of high torque
capacity and low weight. Flexibility commonly exist in these types of
transmissions leading to a dynamic time-varying angular displacement
between the rotor of the drive actuator and the driven link. Additionally, the
wear of the circular spline and flexspline gear meshing leads to a decrease
in stiffness, especially for small deformations [23–25]. It is of great value
to know the stiffness of a robot joint, for instance in the computation of
the feedforward or feedback control action and for estimating the wear
of the robot joint. The latter is possible provided a relationship between
the stiffness and wear is known. Existing methods for estimating the joint
stiffness for industrial robots are of the calibration kind, either;
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1) the end-effector of the robot is clamped to the environment and known
torques are applied by the actuators while measuring the deformation
of the joints or end-effector [159, 160], or

2) a single joint at the time is moved in pre-specified motion [18, 161–
163].

With these methods it is possible to estimate the stiffness. However, due
to the methodological constraints the robot is not productive during the
estimation.

3.2 Method

A new method is proposed for on-line estimating the nonlinear and time-
varying joint stiffness. The method works for arbitrary serial-link robot
manipulators in any static or dynamic configuration which leads to a mea-
surable deformation of the transmission. The method relies on the sensing
hardware readily available in the Universal Robots manipulators, i.e. two
absolute rotary encoders per joint, one at each side of the transmission,
and actuator current sensing hardware. The method is patent pending, see
Patent App. 1 in Appendix A.

The method works by using said measurements to generate a virtual
measure of the flexibility torque, i.e. the torque that will lead to a deforma-
tion of the transmission. The virtual measure of the flexibility torque can be
obtained mathematically in two ways; 1) from the motor side and 2) from
the link side. In this paper, we use use the motor-side dynamics because
of the higher sensor resolution of the motor-side encoder relative to the
transmission deformation. It is assumed that the flexibility torque can be
approximated well by a polynomial with odd powers in the transmission
deformation. The virtual measure and assumed model of the flexibility
torque is used in a Recursive Least Squares (RLS) based on-line estimation
strategy. To estimate time-varying parameters while ensuring robustness
wrt. poor excitation a directional forgetting scheme is used, and exponen-
tial convergence is ensured by a Levenberg–Marquardt regularization of the
covariance matrix.

The on-line estimation method is validated by a comparison to an offline
identification procedure, see Fig. 3.1. The offline identification procedure
consist of using a force gauge to impose a set of known torques on the robot
joint while measuring the transmission deformation – thus obtaining the
joint stiffness.
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Force gage

FIGURE 3.1: Experimental setup for offline identification of
the joint stiffness of the Universal Robots UR5e robot.

3.3 Findings

The assumed model of the flexibility torque is found to describe the force
gauge measurements with a Normalized Root Mean Squared Error of at
most 96.9 %, hence this is the maximum accuracy that can be expected from
the on-line procedure. The on-line identification procedure was found to
yield a slightly lower accuracy of 96.6 % after 35 seconds experiment. The
capability of the method to estimate a time-varying stiffness is examined by
deliberately changing the signal to half of its original value after a period
of 10 seconds. Results show that after 10 seconds, the stiffness is estimated
with an NRMSE of 95.2 %, while for the next 15 seconds the stiffness is
estimated with an NRMSE of 94.0 %.

3.4 Reflection

With the demonstrated level of accuracy, the proposed on-line stiffness
estimation method is well suited for several applications:

1) Dynamic Calibration: If a feedforward or feedback controller which
makes use of the joint stiffness is developed, the proposed method
will help ensure a consistently good controller performance during
the lifetime of the robot.
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2) Predictive Maintenance: Online monitoring the stiffness will provide
an indication of the health of the robot joint.

Some additions to the presented method are suspected to further improve
its performance and robustness. In particular, this work did not consider
the time-variation of the friction characteristics due to the increased level
of wear and changing temperature. The disturbance due to inaccurate
specification of the payload was also not considered.

3.5 Author’s Contribution

The author proposed the method, implemented the method in a MATLAB®

environment, performed experiments, and prepared the manuscript with
inputs from the co-authors.
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Abstract— Flexibility commonly exists in the joints of many
industrial robots due to the elasticity of the lightweight strain-
wave type transmissions being used. This leads to a dynamic
time-varying displacement between the position of the drive
actuator and that of the driven link. Furthermore, the joint
flexibility changes with time due to the material slowly being
worn off at the gear meshing. Knowing the stiffness of the
robot joints is of great value, e.g. in the design of new model-
based feedforward and feedback controllers, and for predictive
maintenance in the case of gearing unit failure.

In this paper, we address on-line estimation of robot joint
stiffness using a recursive least squares strategy based on
a parametric model taking into account the elastic torques’
nonlinear dependency on transmission deformation. Robustness
is achieved in the presence of measurement noise and in poor
excitation conditions. The method can be easily extended to
general classes of serial-link multi-degree-of-freedom robots.
The estimation technique uses only feedback signals that are
readily available on Universal Robots’ e-Series manipulators.
Experiments on the new UR5e manipulator demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

Harmonic drives and other strain-wave type transmission
elements are widely used in servo systems such as robots
due to their desirable characteristics of lightweight design,
high torque capacity, and near-zero backlash. Flexibility
commonly exists in these types of transmissions leading to a
dynamic time-varying displacement between the position of
the drive actuator and that of the driven link. Neglecting the
flexibility may negatively affect the precision and accuracy
of the end-effector.

Significant research efforts have been devoted to accu-
rately identify the dynamic characteristics of the harmonic
drive transmission. However, one practical issue when taking
into account the joint stiffness in the controller design is
that the joint stiffness changes with wear. This is due to
the gradual wear of the circular spline and flex spline teeth
that will reduce the radial preload and therefore the torsional
stiffness, especially in the low-deflection region [1], [2],
[3]. So, a robot controller taking into account the joint
flexibilities may perform well right after calibration but for
a good performance over the lifetime of the robot, the joint
stiffness must be estimated on-line. Further, estimating the
joint stiffness on-line will allow for predictive maintenance
in the case of gear unit failure.
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Innovation Fund Denmark (Ref.no. 7038-00058B)

§ Patent pending (European Patent Application EP18194683.1)
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In most cases, no sensor is available for directly measuring
the joint stiffness, so the stiffness information is collected by
combining an accurate model of the flexibility torque with
measurements from the available sensor system, such as po-
sition and force/torque sensor measures, either implemented
in the robot or by using external hardware.

Estimating the joint stiffness on industrial robots have
been accomplished through off-line identification procedures
by several researchers. One method is to apply external
excitation on one robot joint at a time as in [4], [5], [6], [7],
which results in a reduced dynamic model that can easier
be identified. Another approach is to evaluate joint stiffness
values using an external laser-tracking sensor system to
visually track the end effector displacements for a given
applied wrench [8]. A third option is to estimate the joint
stiffness using a so-called locked-link joint procedure as in
[9] where the end-effector is clamped to the environment and
using either motor positions measurement and motor torques
data or a force/torque sensor to measure the external wrench
between the clamped end effector and the environment.

However, very few works are available on the on-line
estimation of time-varying nonlinear stiffness. These works
are focused towards Variable Stiffness Actuators (VSAs),
e.g. the AwAS-II joint [10] and the VSA joints used in
the DLR Hand Arm System [11] by the DLR Institute of
Robotics and Mechatronics. In 2011, Flacco and De Luca
[12] estimated the time-invariant nonlinear stiffness of robot
joints using only a motor position sensor by computing
a dynamic residual based on the generalized momentum
followed by a least squares algorithm to estimate the stiffness
parameters. Robustness issues were later addressed in [13]
by introducing a kinematic Kalman filter to handle discretiza-
tion and quantization errors and a modified recursive least
squares algorithm was used to better handle poor excitation
conditions.

To deal with time-varying nonlinear stiffness, Flacco and
De Luca [14] further refined their method by using a Recur-
sive Least Squares method based on a QR decomposition
(QR-RLS). A non-causal Savitzky-Golay (SG) filter was
used to remove noise on the input/output signals. However,
no experiments were conducted to support their findings.
Another approach to estimate the time-varying nonlinear
stiffness was taken by Ménard et al. [15] who developed
an observer capable of on-line estimating the time-varying
stiffness of a VSA. The observer performed very well in sim-
ulations, but the experimental analysis on the VSA system
revealed parameter uncertainties of up to 25 % of the true
stiffness. Friction was assumed purely viscous with a single

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6026-3/19/$31.00 ©2019 IEEE 8408

53



constant coefficient. To the best knowledge of the authors,
such friction model is not capable of accurately describing
real frictional characteristics of most electromechanical sys-
tems.

In this paper, we propose a novel approach to on-line
estimate the flexibility torque of a general multi-degree-of-
freedom robot manipulator assuming time-varying, nonlin-
ear joint stiffness. The on-line estimate is conducted using
position measurements at each side of the joints’ flexible
transmission and motor torque data calculated from the
electric actuator current and the drive gain data. These
feedback signals are readily available on Universal Robots’
e-Series manipulators.

The method consists of linearly parameterizing the expres-
sion of the flexibility torque by a polynomial basis, whose
parameters are updated by a recursive least squares (RLS)
procedure. The specific RLS procedure chosen is able to
handle time-varying parameters and poor excitation condi-
tions. In particular, we use a RLS algorithm with forgetting
related to the excited directions in the parameter space and
with regularization of the covariance matrix (RLS-DF*). The
parametric model is shown to converge to the real stiffness
characteristics of the base joint on the UR5e manipulator
by Universal Robots (UR). The functional estimation of
the stiffness characteristics allows its differential expressions
to be directly obtained as needed in the decoupling and
linearizing control strategies. Special attention is given to
the complex frictional characteristics of the robot joint. The
Generalized Maxwell-Slip (GMS) friction model is utilized
to describe the hysteresis of the joint, and a nonlinear friction
torque/velocity map is constructed based on an initial friction
identification.

The rest of this paper is organized as follows. Section II
outlines the procedures to the modeling, identification and
estimation. Section III and IV describes, respectively, the
dynamic models of the flexible joint robot (FJR) manipu-
lator and the flexible joint. Section V describes the initial
identification of the flexible robot joint. Section VI presents
the on-line least squares estimation method, and Section
VII presents the experimental analysis carried out on the
UR5e manipulator. Section VIII concludes on the work and
discusses possible extensions for further research.

II. PRINCIPLE AND PROCEDURE

We present here the general outline of the procedure to on-
line estimate the robot joint stiffness and flexibility torque
as shown in Fig. 1. From the robot joint the phase currents
iabc through the Permanent Magnet Synchronous Machine
(PMSM) coils and the absolute positions q and θ of the link
and the motor axle, respectively, are measured. From the
phase currents, the torque generating quadrature current i is
obtained via the Park Transformation, and the motor torque τ
is obtained by multiplying with the torque constant Kτ . The
joint deformation φ = θ − q is then obtained and corrected
for the transmission ratio. The angular velocity of the motor
axle θ̇ is obtained by a simple backward difference procedure
from which the friction torque Fθ is estimated. Likewise, the

deflection velocity φ̇ and the angular acceleration of the rotor
is obtained by the backward difference procedure. From these
signals, the damping torque and the torque from accelerating
the rotor inertia are obtained. The flexibility torque is then
calculated. Based on the flexibility torque and the robot joint
deformation, the RLS procedure estimates the coefficients
α defining the robot joint stiffness from which a smoothed
version of the flexibility torque is also estimated.À

Flexible Robot Joint

cu
rr

en
t

se
ns

or

enc. enc.

θ q

iabc

+ −

φ

Park
Transform

Backward
Difference

i θ̇ φ̇ θ̈

Kτ GMS
Friction
Model

D B

τ
Fθ

Flexibility Torque

τE,M = τ −B θ̈ − Fθ −D φ̇

τE

RLS-DF*
α̂

τ̂E(φ) = ΨT(φ) α̂

Stiffness
Estimate

Flexibility Torque
Estimate

Fig. 1. Principle and procedure of the proposed method for on-line
estimating the stiffness and predicting the flexibility torque. The abbreviation
enc. refers to the term encoder.

III. ROBOT MANIPULATOR MODEL
This section presents the dynamic model of the FJR

manipulator. We consider a robot with flexible joints as an
open kinematic chain having N+1 rigid bodies, the base and
the N links, interconnected by N revolute joints undergoing
deflection, and actuated by N electrical drives. The following
standard assumptions are made.

A1 The actuators’ rotors are uniform bodies having their
mass center on the axis of rotation.

A2 Each motor is located on the robot arm in a position
preceding the driven link, i.e. motor i is mounted on
link i− 1 and moves link i.

Assumption A1 is a basic requirement for long life of
an electrical drive and also implies that the robot dynamics
will be independent of the angular position of the rotors. For
the UR5e manipulator, we take advantage of the presence of
large reduction ratios and simply assume the following.
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A3 The angular velocity of the rotors is due only to their
own spinning.

This is equivalent to neglecting energy contributions due
to the inertial couplings between the motors and the links
and also implies that Coriolis and centripetal terms become
independent of the rotors’ angular velocity.

To uniquely characterize the manipulator configuration we
choose the generalized coordinates (q θ) ∈ R2N which are,
respectively, the link position and rotor position reflected
through the gear ratio. The simplifying modeling assump-
tions used also by Spong in [16] yield the dynamic model
of the FJR manipulator

M(q) q̈ + C(q, q̇) q̇ + G(q) + Fq + τext = τJ (1)

B θ̈ + Fθ + τJ = τ (2)

where (1) and (2) are referred to as the link and motor
equation, respectively. In the link equation, M(q) is the
inertia matrix, C(q, q̇) is the Coriolis and centripetal matrix,
G(q) is the gravity vector, Fq is friction acting on the
link coordinate, and τJ is the coupling torque through
the flexible transmissions. If the end effector is subject
to external forces/torques Fext, the resulting joint torques
τext = JT(q) Fext, where J(q) is the manipulator Jacobian.
In the motor equation, B is the positive-definite diagonal
matrix of rotor inertias, Fθ is friction acting on the motor
coordinate, and τ is the torque generated by the motor.

IV. ROBOT JOINT MODEL

This section details the robot joint model as shown in Fig.
2. The joint transmission torques and friction phenomena are
uncoupled among the joints, so for notational simplicity we
consider in this section a single joint which simplifies the
vector equations into scalar equations. The electric actuators

D

Fθ Fq

Link i− 1

Link i

Motor i
θ

τ τJ τJ

τE τE

q

Fig. 2. Kinematic arrangement of motors and links and schematic
representation of the flexible robot joint.

are three-phase PMSM with dynamics much faster than that
of the manipulator. If the actuators are operated under their
current saturation limit, the output torque can simply be
modeled as

τ = Kτ i (3)

where Kτ is the positive-definite diagonal matrix of torque
constants and i is the torque-generating (quadrature) current
obtained from the phase currents through the Park Transform.

The joint transmission torque τJ is modeled as a function
of the deflection variable φ = θ − q and its time-derivative
and consist of a nonlinear elastic term and linear viscosity

τJ(φ, φ̇) = τE(φ) +D φ̇ (4)

where τE(φ) is the nonlinear flexibility torque later to
be on-line estimated, and D is the viscous damping. We
assume that no flexibility torque exist for the undeformed
transmission and that the transmission has the same behavior
in compression and extension, thus

τE(0) = 0 ∀φ (5)

τE(−φ) = −τE(φ) ∀φ (6)

Further, we assume that the flexibility torque can be approx-
imated by the linearly parametrized polynomial basis

τE(φ) = ΨT(φ)α (7)

Based on the symmetry assumptions in (5) and (6) we choose
specifically the regressor Ψ(φ) to contain only odd powers
in φ, i.e.

Ψ(φ) = φ2p−1, p = 1, 2, . . . , P

= [ φ φ3 . . . φ2P−1 ]T
(8)

The stiffness is simply the rate of change of flexibility torque
with respect to transmission deformation

k(φ) =
∂ τE(φ)

∂ φ
(9)

hence the parameterization of the stiffness is simply

k(φ) = ΩT(φ)α, Ω(φ) = φ−1(2p− 1) Ψ(φ) (10)

To capture the behavior of friction and the hysteresis in
the pre-sliding regime as commonly experienced by strain-
wave transmissions [17], [18] we utilize the Generalized
Maxwell-Slip (GMS) model [19]. The GMS model is based
on three frictional properties; 1) a Stribeck curve for constant
velocities, 2) a hysteresis function with nonlocal memory in
the pre-sliding regime, and 3) a frictional lag in the sliding
regime. The GMS model can be visualized as a parallel
connection of M massless block-spring models (see Fig. 3)
subject to the same input velocity ω = d θ/d t. The total
friction force is given as the summation of friction forces
for each element j, i.e.

Fθ =

M∑
j=1

Fj (11)

The dynamics of each elementary model is represented by
the equations (12) and (13). If the element is sticking

dFj
d t

= kj ω (12)

where kj is the spring stiffness of the jth element. The
element remains sticking until Fj > νj s(ω) where the
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fractional parameter νj subject to Σj νj = 1 determines the
maximum force Fj for each element during sticking. If the
element is slipping

dFj
d t

= sign(ω)C

(
νj +

Fj
s(ω)

)
(13)

and the element remains slipping until velocity reversal. The
attraction parameter C determines how fast the total friction
force approaches s(ω) in sliding.

The nonlinear static map

s(ω) = sign(ω)(FC + (FS − FC)

· exp[−(|ω|/vS)µ])

+ FV1 ω + FV2 sign(ω)ω2 + FV3 ω
3

(14)

captures the Stribeck effect and nonlinear viscous friction.
FC , FS , vS and µ are, respectively, the Coulomb friction,
the stiction, the Stribeck velocity, and the Stribeck shape
factor, and FV1,2,3

are viscous coefficients of friction.

F1

k1

z1 δ1

...

Fj

kj

...

zM δM

FM

kM

ω

Fig. 3. Schematic representation of the Generalized Maxwell-Slip friction
model.

V. OFF-LINE IDENTIFICATION

Before we proceed to the on-line estimation of time-
varying nonlinear stiffness, we first conduct off-line iden-
tification of the friction and stiffness characteristics for the
base joint of the UR5e manipulator. The joint is operated
in the vicinity of the gravity torque and in a non-contact
application.

Throughout the paper, the quality of a model is evaluated
by the Normalized Root Mean Squared Error (NRMSE)
expressed as a percentage, i.e.

NRMSE = 100 ·
(

1− ||y − ŷ||||y − ȳ||

)
(15)

where || || denotes the 2-norm, ˆ denotes the estimate, and ¯
denotes the mean value.

Friction: The steady-state friction torque/velocity map in
Fig. 4 is identified by imposing different signals of constant
velocity on the base joint while measuring the actuator
current. For constant velocity (1), (2), and (3) yield Fθ+Fq =
Kτ i. Additionally, (11) and (13) reduce to Fθ = s(ω).
Assuming further that friction act on the motor coordinate

only, i.e. Fq = 0, we have s(ω) = Kτ i. An optimum
set of parameters in (14) are found using a Quasi-Newton
method with a cubic line search procedure and updating
the Hessian matrix approximation by the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method.

In this preliminary study, we do not identify the hys-
teresis and dynamic friction characteristics but choose the
parameters M , νj , and kj in (11), (12), and (13) in a rather
ad hoc way. In a subsequent study, we are to conduct the
hysteresis identification by imposing a cyclic motion with
sufficiently small position and acceleration amplitudes while
measuring the actuator current and transmission deformation
from which νj , kj , and C can be identified. In this study,
it is found, that the accuracy of the GMS model does not
improve much beyond five elements so in (11) we choose
M = 5.

Stiffness: The map from transmission deformation to
flexibility torque in Fig. 5 is obtained in a static setting by
locking the input shaft and imposing a set of known torques
on the output shaft using a Sauter FH–S 500 digital force
gage while measuring the transmission deformation. These
measurements serves as a baseline for the on-line estimation
method. The model fit is obtained as the least squares (LS)
solution for a model with two coefficients. In the following
we choose P = 2 in (8), i.e. Ψ(φ) = [ φ φ3 ]T. We note
also that the actual stiffness varies significantly compared to
the values stated by Harmonic Drive and thus the data sheet
values should be used only as a rough approximation.

The stiffening spring characteristics can be explained as
the increase in applied torque resulting in more width of
the flex spline teeth to engage with the circular spline. The
increased load sharing increases the torsional stiffness.
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Fig. 4. Friction torque/velocity map obtained by imposing different signals
of constant velocity on the base joint while measuring the actuator current.

VI. RECURSIVE LEAST SQUARES ESTIMATION

The flexibility torque cannot be measured directly with
the sensor system available. Instead, signals of the flexibility
torque are generated from (1), (2), and (4)

τE,L = M(q) q̈ + C(q, q̇) q̇ + G(q) + τext −D φ̇ (16)

τE,M = τ −B θ̈ − Fθ −D φ̇ (17)

where subscripts L and M denote, respectively, calculations
based on the link and motor equation.
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Fig. 5. Flexibility torque/transmission deformation map obtained by
imposing a set of known torques using a force gage and measuring
the transmission deformation as the difference between absolute encoder
readings at each side of the flexible transmission.

Estimating time-varying parameters with the Recursive
Least Squares (RLS) approach is obtained by incorporating
a forgetting scheme discounting past data. In the present
example, the incoming information (the transmission de-
formation) is nonuniformly distributed over the parameter
space. Tracking can only happen in some direction if there
is an excitation in that same direction, hence the estimation
algorithm tracks time-varying parameters only within the
excited subspace. Therefore, inspired by the results in [20]
and [21], by a suitable notion of excitation subspace, the
parameter vector α in (7) is estimated by the procedure

ε(k) = τE(k)−ΨT(k) α̂(k − 1)

r(k) = ΨT(k)P (k − 1) Ψ(k)

L(k) =
P (k − 1) Ψ(k)

1 + r(k)

α̂(k) = α̂(k − 1) + L(k) ε(k)

β(k) =

{
µ− 1−µ

r(k) , µ ∈ [0; 1] if r(k) > 0

1 if r(k) = 0

P (k) = P (k − 1)− P (k − 1) Ψ(k) ΨT(k)P (k − 1)

β(k)−1 + r(k)
+ δ I

(18)

where δ > 0 enforces an increment of the covariance
matrix P improving the algorithm alertness. More alertness
is achieved by decreasing µ at the price of an increased
sensitivity to disturbances. By setting µ = 1 and δ = 0,
(18) reduces to the standard RLS algorithm.

VII. EXPERIMENTS
Generating the flexibility torque signal based on the link

equation in (16) results in a noisy signal due to the encoder
quantization and time discretization. We proceed by estimat-
ing the flexibility torque from (17) only. In the future, one
could estimate the flexibility torque using both (16) and (17)
by fusing the data.

In the experiment we use the UR5e manipulator by
Universal Robots shown in Fig. 6 and move the base joint
without the robot making contact with the environment. The
flexibility torque in (17) thus becomes

τE,M1
= Kτ1 i1 −B θ̈1 − Fθ1 −D1 φ̇1 (19)

where the time-derivatives are approximated by a backward
difference procedure. Data is sampled at 1000 Hz.

q1(t)

UR5e

Controller

Ethernet

i, θ, q
PC with
RLS-DF*

Fig. 6. UR5e manipulator in the configuration used in the experimental
analysis.

A. Excitation Signal

The base joint is moved according to the bang-coast-bang
joint space trajectory in Fig. 7 with randomly generated wait-
ing times from 0–1 second and angular positions, velocities,
and accelerations in intervals ranging from 30 % to 100 %
of the maximum allowed values.
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Fig. 7. Joint space trajectory used in the experimental analysis.

B. Results

We initialize the recursive least squares algorithm in (18)
with the parameter estimate α̂(0) = [ 0 0 ]T, covariance
matrix P (0) = diag(1E9, 1E18), δ = 0.1, and µ = 0.99995.

At the end of the experiment, after 35 s, the map from
transmission deformation to flexibility torque is that shown in
Fig. 8. We see that the stiffness estimated on-line by the RLS-
DF* algorithm is very close to the baseline stiffness curve
obtained via the static experiment. Therefore, the proposed
method seems promising for on-line estimating the joint
transmission stiffness.

The flexibility torque estimated using the proposed method
is given in Fig. 9 using (7) to predict the signal in (19). The
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Fig. 8. Off-line identified and on-line estimated map from transmission
deformation to flexibility torque.

predicting capability according to the NRMSE is 73.9 %
evaluated after the first 15 seconds. Predicting the flexibility
torque on-line could for instance be relevant in a compen-
sation scheme, e.g. complemented by a disturbance observer
to account for unmodeled dynamics. Inserting the estimated
flexibility torque in (1) will allow to more accurately predict
the torque from external disturbances, for instance human
interference, which is of great concern in terms of safety. The
method thus seems reasonable, since in less than one second
with excitation the model adapts to predict the flexibility
torque from the measured transmission deformation.
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Fig. 9. Signals of the flexibility torque obtained using (19) and predicted
by model using the RLS-DF* algorithm in (18) and using (7) to generate
the output.

C. Time-Varying Stiffness

It is well known that Harmonic Drives experience a
decrease in joint stiffness over time due to the wear and
tear of the gear meshing. Within the 35-second experiment
the robot manipulator did not experience varying stiffness.
Therefore, the experiment did not demonstrate the RLS-DF*
algorithms’ ability to track time-varying stiffness. It was not
possible to run the experiment until a change in stiffness
could be observed. Therefore, to demonstrate the capabilities
of the proposed method to track time-varying stiffness, we
intentionally reduce the amplitude of the flexibility torque
signal from (19) after 10 seconds according to the simple
linear transformation

τ̃E,M1
=

{
τE,M1 if 0 ≤ t ≤ 10 s
0.5 τE,M1

if 10 s < t < tend
(20)

The map from flexibility torque to transmission deformation
therefore change according to Fig. 10. The RLS-DF* algo-

rithm is initialized with the same parameters as before. In 10
seconds we on-line estimate the baseline stiffness curve to a
NRMSE of 95.2 %. Changing the signal according to (20)
and waiting another 25 seconds yields a NRMSE of 94.0 %.
The proposed method is therefore considered to be a reliable
method for on-line estimating time-varying stiffness of robot
joints.
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Fig. 10. Map from transmission deformation to flexibility torque at 10
s; just before the transformation in (20), and at 35 s; at the end of the
experiment, 25 s after the transformation.

VIII. CONCLUSIONS

In this paper we demonstrated on-line estimation of time-
varying and nonlinear robot joint stiffness. The contribu-
tion is twofold. First, we propose the method for off-line
identification of the nonlinear friction and stiffness charac-
teristics. Second, we propose the on-line estimation method
based on the RLS-DF* algorithm. Then we experimentally
demonstrate the method for on-line estimating the flexibility
torque, which is directly related to the transmission stiffness.
In particular, using the RLS-DF* algorithm we achieve
robustness in periods of poor excitation and at the same time
ensuring reactiveness to parametric changes, i.e. changing
stiffness that is known to occur over time.

Monitoring the joints’ stiffness characteristics will provide
valuable information about the transmissions’ health condi-
tion. However, additional information is needed relating the
robot joint stiffness to the gear unit failure statistics.

On-going research will include the following topics.

1) The robot joint friction is known to change along with
the wear and tear of the robot joint and changes in the
ambient conditions. Possible future work will therefore
include on-line estimating the friction.

2) Thanks to the use of two built-in absolute encoders
we demonstrate that we effectively have a joint torque
sensor, which leads to the possible future work of con-
ducting decoupling and feedback linearizing control.
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[4] A. Albu-Schäffer and G. Hirzinger, ”Parameter identification and
passivity based joint control for a 7DOF torque controlled light weight
robot,” in Proc. of IEEE International Conference on Robotics &
Automation (ICRA), Seoul, Korea, May 21-26, 2001, pp. 2852–2858.

[5] M. T. Pham et al., ”Identification of joint stiffness with bandpass
filtering,” in Proc. of IEEE International Conference on Robotics &
Automation (ICRA), Seoul, Korea, May 21-26, 2001, pp. 2867–2872.
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Chapter 4

Joint Dynamics Modeling
[Journal Paper 1]

Comprehensive Modeling and Identification of Non-
linear Joint Dynamics for Collaborative Industrial
Robot Manipulators [122]
© 2020 Elsevier Ltd, reprinted with permission from Elsevier Ltd.

”Experiment is the sole interpreter
of the artifices of nature.”

— Leonardo da Vinci (1452–1519)

4.1 Introduction

To obtain a high-fidelity mathematical model, the dynamics of the robot
joint must be considered. Existing works on the joint dynamics modeling
of industrial robots describe friction in terms of static nonlinearities in
the angular velocity, load torque, and temperature [69, 29, 31]. However,
strain-wave transmissions are known to experience more complex nonlinear
behavior of nonlinear stiffness, hysteresis, and kinematic error [164, 76, 165].

4.2 Method

In this work, a high-fidelity mathematical model of the robot joint dynamics
is developed based on extensive experimental analyses on the base joint of
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the Universal Robots UR5e manipulator. First, the static nonlinear depen-
dencies of friction on the angular velocity, load torque, and temperature are
identified. Then, the kinematic error and hysteresis characteristics are iden-
tified. For each identified phenomenon, a mathematical model is proposed
to describe the observations.

4.2.1 Experiments

The various experiments are designed to isolate each individual joint dynam-
ics phenomenon. Such isolation simplifies mathematically the otherwise
complex and nonlinear robot dynamics, hence facilitate subsequent system
identification. In the following, the various experiments designed to isolate
each individual joint dynamics phenomenon are described.

1) Stiffness: The robot joint is oriented with the axis of rotation oriented
parallel to the direction of the gravitational acceleration such that
gravity will induce no torque. The joint is subject to a set of torques
in the clockwise (CW) and counter-clockwise (CCW) directions using
a force gauge with a known perpendicular distance to the joint axis
of rotation. The stiffness is identified in two ways; 1) using the force
gauge data and 2) using the actuator current data.

2) Static Friction: The steady-state friction characteristics are known to
depend on angular velocity, load torque, and temperature.

(a) Angular Velocity: The robot joint is oriented with its axis of
rotation parallel to the direction of the gravitational acceleration
such that there will be no torque induced by gravity. The joint is
subject to a set of constant-velocity motions in the CW and CCW
directions.

(b) Load Torque: The robot joint is oriented with its axis of rotation
perpendicular to the direction of the gravitational acceleration
so that gravity will induce a torque on the joint. The joint is
subject to a set of constant-velocity motions in the CW and CCW
directions. The load torque can be estimated based on the robot
dynamics.

(c) Temperature: Prior to the experiment, the robot is cooled down.
The robot joint is oriented with its axis of rotation parallel to the
direction of the gravitational acceleration to eliminate torques
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induced by gravity. The joint is subject to a set of constant-
velocity motions in the CW and CCW directions.

3) Kinematic Error, Backlash & Dynamic Friction: The kinematic error,
backlash, and dynamic friction are identified from the same exper-
iment. The joint is oriented with its axis of rotation parallel to the
direction of the gravitational acceleration such that gravity will not
induce torque around the joint axis of rotation. The joint is subject to
one full revolution over 17 minutes while reversing 240 times with
very low angular velocity and acceleration.

(a) Backlash: The backlash for any given angular position is defined
as the difference in transmission deformation for CW and CCW
motion.

(b) Kinematic Error: The kinematic error for any given angular
position is defined as the midpoint/average of the transmission
deformations in the CW and CCW directions.

(c) Dynamic Friction: The dynamic friction characteristics is de-
fined as the behavior of the torque during velocity reversals –
specifically, the behavior of the friction torque while the direction
of motion changes (angular velocity changes sign).

4.2.2 Identification

For each of the above-mentioned experiments, a mathematical (sub)model
is proposed to describe each joint dynamics phenomenon individually. The
combination of all submodels yields the comprehensive joint dynamics
model. The goal is to find mathematical models that are coherent with
observations and have a minimum number of describing functions and pa-
rameters. Furthermore, the choice of parameterization should be practically
suitable for identification, i.e. linear if possible.

4.3 Findings

It is found that the stiffness can be described accurately by two parameters,
specifically a linearly parameterized polynomial of the first two odd powers
in the transmission deformation. This result is coherent with our experience
in [14] and results presented in [81, 82, 118]. The dependency of friction on
the angular velocity is modeled by a nonlinear function of seven parameters.
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The dependency of friction on load is described by a single parameter times
the squared load torque. This model was found more accurate for the UR5e
robot compared to the model presented in [29]. The dependency of friction
on the temperature is described by a linearly parameterized polynomial
of three parameters. The kinematic error depends nonlinearly on the joint
angular position, and it is described by linear interpolation between 1 000
equispaced points over one revolution. Existing works identify backlash
at a specific angular position and assume the same value for other angular
positions [164, 76, 166]. However, as the paper reveals, the amount of
backlash depend on the angular position. Such behavior was deemed
possible from theoretical and numerical analyses by Dong et al. [167]. The
kinematic error and backlash were modeled by linear interpolation between
1 000 equispaced points over one revolution. The dynamic friction is found
to be described well by the GMS friction model. Known identification
methods for the GMS model are examined including linear and nonlinear
regression methods. A new linear regression based identification method
which outperforms existing linear regression methods is proposed. For ≥ 4
operators, the performance is comparable to that of the nonlinear regression
method, keeping the advantages of fast and robust optimization of the
parameters.

4.4 Reflection

The joints of the Universal Robots collaborative robot manipulators com-
prise strain-wave transmissions. Mathematical models have been proposed
to describe various joint dynamics phenomena. The combination of the
models constitutes a high-fidelity joint dynamics model. This model may
facilitate the improvement of the robot performance in various areas:

• Safety: External disturbances can be identified more quickly, thus in
the possible event of a collision with a human being, the robot motion
may be stopped faster which reduces the risk of injury [7–9].

• Precision & Accuracy: Improved model knowledge may allow the
robot to follow the motion or force reference with greater accuracy.
For instance, the model knowledge can be exploited by introducing
a model-based compensation in the feedforward controller to com-
pensate disturbances before they cause deviations from the reference
[10, 11].
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• Lead-through Programming: It allows to more accurately identify
the human-applied wrench, leading to a more smooth lead-though
programming experience [12].

4.5 Author’s Contribution

The author proposed the identification procedures and mathematical mod-
els, implemented the models and procedures in a MATLAB® environment,
performed experiments, and prepared the manuscript with inputs from the
co-authors.
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A B S T R A C T

For collaborative robots, the ability to accurately predict the actuator torques required to realize the
desired task is highly important. This will improve and guarantee the safety, motion and force control
performance, and smooth lead-through programming experience. Thus, this paper presents the investigation
towards comprehensive modeling and identification of nonlinear joint dynamics for collaborative robots. The
proposed joint dynamics model and identification describes the most dominant dynamic characteristics of robot
joints that comprise strain-wave transmissions, such as nonlinear friction, nonlinear stiffness, hysteresis, and
kinematic error. Position-dependent backlash characteristics is observed and quantified using our proposed
identification method and the Generalized Maxwell-Slip friction model is extended to describe the observed
phenomena. The developed dynamic modeling and identification procedures provides insightful guidance for
the design and model-based control of collaborative robots.

1. Introduction

In the area of collaborative industrial robots it is important to
acquire accurate torque predictions due to several reasons:

1. (Safety). It allows to accurately identify external disturbances
such as human interference, hence any potentially harmful robot
motion can be stopped faster, effectively reducing the risk of
injury (Haddadin, Albu-Schaffer, Luca, & Hirzinger, 2008; Luca,
Albu-Schaffer, Haddadin, & Hirzinger, 2006). In fact, the level of
safety can be generally enhanced in physical Human–Robot In-
teraction (pHRI) and Human–Robot Collaboration (HRC) tasks.

2. (Precision & Accuracy). It allows to accurately follow the tra-
jectory or force reference because disturbances can be accounted
for before they affect the robot system and cause deviations
from the reference. The compensation is introduced for instance
with an additional term in the feed-forward part of the control
structure (Bona & Indri, 2005; Olsson, Åström, de Wit, Gäfvert,
& Lischinsky, 1998).

3. (Lead-Through Programming).1 It allows to improve the per-
formance of programming by demonstration applications by mini-
mizing the force required by the user to move the robot around
(Stolt et al., 2015).

✩ This work was supported by the company Universal Robots A/S, Odense, Denmark and Innovation Fund Denmark [Ref.no. 7038-00058B].
∗ Corresponding author at: Aarhus University, Inge Lehmanns Gade 10, DK-8000 Aarhus C, Denmark.

∗∗ Corresponding author.
E-mail addresses: ema@eng.au.dk (E. Madsen), xuzh@eng.au.dk (X. Zhang).

1 A robot programming method where the user takes the robot by the hand and guides it — so-called programming by demonstration.

Additional benefits include enhanced controller stability, lower energy
consumption, and it generally allows to design the robot system using
lower-cost components, i.e. less material (for structural rigidity), less
accurate sensors, and lower demands on computational resources.

Current advancements in robotics such as industrial robot manipula-
tors tend towards replacing heavy and rigid structures with lightweight
structures. The motivation is that the lightweight systems are capable
of achieving higher velocity, acceleration, mobility, safety, and energy
efficiency. However, the increased structural flexibility of lightweight
components complicates the development of such systems.

Accurate modeling of joint dynamics effects pose a major chal-
lenge in the control system design for lightweight industrial robots,
especially when using lightweight transmission elements such as strain-
wave type transmissions. Developed in the 1950’s (Musser, 1959) for
aerospace applications, strain-wave transmissions such as the Harmonic
Drive™are now widely used in lightweight industrial robots due to their
desirable characteristics of lightweight design, high torque capacity,
and near-zero backlash. However, their inherent dynamic characteris-
tics such as friction, flexibility, hysteresis, and kinematic error com-
plicates the accurate mathematical modeling of robotics systems that
employ such transmissions.

In literature, the above-mentioned challenge of accurate mathe-
matical modeling of industrial robots are addressed mainly through

https://doi.org/10.1016/j.conengprac.2020.104462
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Fig. 1. The Universal Robots UR5e collaborative industrial robot manipulator used in
this work having 6 revolute joints each comprising two rotary absolute encoders, a
temperature sensor, a current sensor for each electrical phase of the PMSM, and a
strain-wave transmission.

modeling and identification of the industrial robots’ joint friction. Bit-
tencourt and Gunnarsson (2012) showed that the friction torque of
the second joint of the ABB IRB 6620 robot experienced clear cor-
relation with velocity, load, and temperature, and Simoni, Beschi,
Legnani, and Visioli (2015) analyzed the Comau SMART NS 16 1.65
ARC industrial robot in terms of the friction’s temperature dependency.
In Carlson, Robertsson, and Johansson (2015) the position and tem-
perature dependent friction phenomena was estimated on the ABB
YuMi and ABB IRB140 industrial robots with a focus on robot joints
without built-in temperature sensing hardware. Gao, Yuan, Han, Wang,
and Wang (2017) analyzed how load and temperature affected fric-
tion on the SIASUN lightweight industrial robot comprising Harmonic
Drives. The above-mentioned approaches on mathematical modeling
and identification of robot joints considered friction to be described
by static nonlinearities with no complex frictional dynamics. Also,
joint flexibility effects were neglected. This is indeed reasonable for
rigid/heavy-duty industrial robots but such assumptions does not hold
for lightweight collaborative robots, in particular those that comprise
strain-wave transmissions. Wolf and Iskandar (2018) modeled the DLR
Floating Spring Joint and identified the nonlinear influences of velocity
and temperature on the friction torque. Iskandar and Wolf (2019)
extended their work by incorporating the Generalized Maxwell-Slip
(GMS) model to estimate frictional dynamics and an application to
external torque estimation was demonstrated.

The modeling of nonlinear joint characteristics has been signifi-
cantly advanced by studies explicitly considering strain-wave transmis-
sions. Seyfferth, Maghzal, and Angeles (1995) developed a hysteresis
model for harmonic drives in which the hysteresis is related to tor-
sional displacement and velocity. Tuttle and Seering (1996) derived
a mathematical model of harmonic drives from the gear-tooth geom-
etry. Taghirad and Bélanger (1996) proposed a harmonic drive model
consisting of simple models of compliance, hysteresis, and friction. Kir-
canski and Goldenberg (1997) described the mechanical structure of
the harmonic drive and proposed a control-oriented model with non-
linear stiffness, soft-windup hysteresis, and friction. Dhaouadi, Ghorbel,
and Gandhi (2003) described the hysteresis of harmonic drives as
an integro-differential equation being the result of nonlinear stiffness
and nonlinear damping. Ruderman, Hoffmann, and Bertram (2009)
described the hysteresis of harmonic drives using the Preisach model
and included dynamic friction effects by the GMS model. Ruderman
and Bertram (2012) opted for an extended Bouc–Wen model to capture
the hysteresis effect and Ruderman (2019), Ruderman, Bertram, and

Iwasaki (2014) demonstrated its application in sensorless torque con-
trol. Common to the studies explicitly considering strain-wave transmis-
sions is that they opt for very simple models of the friction that does
not incorporate the friction’s dependencies on load and temperature.
Additionally, the results of this paper suggest that the utilized hystere-
sis models may be inadequate for describing the position-dependent
hysteresis characteristics that can be encountered for systems with the
strain-wave transmission being integrated to the robot joint.

Motivated by the above discussion, we will: (1) Develop and exper-
imentally validate a mathematical model of the robot joint taking into
account the nonlinear joint stiffness and the nonlinear dependency of
friction on velocity, temperature, and load. (2) Propose new models
for the dependency of friction on load and temperature which are more
accurate when evaluated on the Universal Robots UR5e robotic system.
(3) Extend the GMS friction model to handle effectively the position-
dependent backlash characteristics which was observed in the system.
(4) Develop a new and more accurate Linear Regression method based
on the GMS model.

The methods of this work are especially relevant to collaborative
robots, which have advanced safety systems that requires accurate
knowledge about the robot dynamics. Human interference can thus
be more easily identified and any potentially harmful motion can be
stopped faster. The developed models can be incorporated in a variety
of model-based control strategies, such as the recent advancements
in the control of nonlinear systems by Sun, Jianbin, Karimi and Fu
(2020), Sun, Liu, Qiu and Feng (2020), Sun, Qiu, Karimi and Gao
(2020). Implementing our developed nonlinear models in such non-
linear control schemes could lead to improved tracking performance.
Alternatively, using the measured joint deformation in a high-fidelity
mathematical model of the joint, may allow to control the joint using
torque feedback (Albu-Schäffer et al., 2007; Vischer & Khatib, 1995)
without the need of commercially available torque sensing hardware,
which are costly and takes up much space.

The remainder of the paper is organized as follows: Section 2
presents the mathematical model of the flexible-joint robot manip-
ulator, and Section 3 details the initial assumptions related to the
joint dynamics. Section 4 presents the results of the joint dynam-
ics identification. Firstly, the static nonlinearities are identified such
as the torsional stiffness and the dependency of friction on angular
velocity, load, and temperature. Then, the kinematic error and position-
dependent backlash are identified. Lastly, an extended version of the
GMS friction model is proposed to describe the dynamic friction dur-
ing velocity reversals while subject to position-dependent backlash.
Section 5 concludes the work and presents possible further research
topics.

Notations. The notation used in the paper is mostly standard. Let R be
the set of real numbers, N the set of non-negative integers, and N+ the
set of positive integers. Let 𝐱 ∈ R𝑛 be a vector of 𝑛 real numbers, then
𝑥𝑖 is its 𝑖th entry, 𝐱𝖳 its transpose, �̄� the mean value of the elements of
𝐱, and ‖𝐱‖ the 2-norm. Let �̂� denote an estimate of 𝐱 and �̃� ≜ 𝐱 − �̂� be
the estimation error. Given a function 𝑔 ∶  → R let sgn ∶ R → {−1, 0, 1}
be the signum function defined such that sgn(𝑔) = −1 if 𝑔 < 0, sgn(𝑔) = 0
if 𝑔 = 0, and sgn(𝑔) = 1 if 𝑔 > 0. Given a square real matrix 𝐀 ∈ R𝑛×𝑛

let 𝐀 ≻ 0 indicate that 𝐀 is positive definite, i.e. 𝐱𝖳 𝐀𝐱 > 0 for any
non-zero column vector 𝐱 of 𝑛 real numbers. Let diag ∶ R𝑛 → R𝑛×𝑛 map
a vector of 𝑛 elements to a diagonal matrix with the 𝑖th element of the
vector on its 𝑖th diagonal entry while zero everywhere else. Given 𝑁
matrices 𝐁1,… ,𝐁𝑁 ∈ R𝑙×𝑚 we denote by blkdiag{𝐁1,… ,𝐁𝑁} (or simply
blkdiag{𝐁𝑖}, where the range of index 𝑖 can be identified from context)
a block diagonal matrix with 𝐁1,… ,𝐁𝑁 as diagonal elements.

2. Mathematical modeling of a flexible-joint robot

We consider the Flexible-Joint Robot (FJR) manipulator as an open
kinematic chain having 𝑁 + 1 rigid bodies; the base and the 𝑁 links,

2
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Fig. 2. Kinematic arrangement of motors and links for the FJR manipulator model.
Note that 𝜃𝑗 is already scaled by the reduction ratio as indicated also by Fig. 1.

interconnected by 𝑁 revolute joints undergoing deflection, and actu-
ated by 𝑁 electrical actuators, see Fig. 2. To derive the dynamics of
the robot manipulator, the following standard assumptions are made.

A1 The rotors are uniform bodies having their center of mass on the
axis of rotation.

A2 Each motor 𝑗 = 1,… , 𝑁 is mounted on link 𝑗 −1 and moves link 𝑗,
see Fig. 2.

Assumption A1 is a basic requirement for long life of an electrical drive
and implies that the robot dynamics become independent of the angular
position of the rotors. For the UR5e manipulator we take advantage of
the presence of large reduction ratios and simply assume the following.

A3 The angular velocity of the rotors is due only to their own spinning.

This simplifying assumption was proposed by Spong (1987) and is
equivalent to neglecting energy contributions due to the inertial cou-
plings between the rotors and the links. It also implies that Coriolis and
centripetal terms will be independent of the rotors’ angular velocity
𝝎 ≜ d𝜽∕d 𝑡.

To uniquely characterize the manipulator configuration we choose
the generalized coordinates (𝐪 𝜽) ∈ R2𝑁 being, respectively, the posi-
tions of the links and rotors reflected through the gear ratios, i.e. the
rotor positions are seen in the link space. Given assumptions A1–A3,
the link and rotor dynamics become, respectively

𝐌(𝐪) �̈� + 𝐂(𝐪, �̇�) �̇� + 𝐠(𝐪) + 𝝉ext = 𝝉J (1)

𝐁 �̈� + 𝐟 + 𝝉J = 𝐊𝜏 𝐢 (2)

where in the link equation, 𝐌(𝐪) ≻ 0 ∈ R𝑁×𝑁 is the symmetric inertia
matrix, 𝐂(𝐪, �̇�) ∈ R𝑁×𝑁 is the Coriolis and centripetal matrix, 𝐠(𝐪) ∈ R𝑁

is the gravity vector, and 𝝉J ∈ R𝑁 is the vector of joint torques which
couple the link and rotor subsystems. In the rotor equation, 𝐁 ≻ 0 ∈
R𝑁×𝑁 is the diagonal matrix of rotor inertias, 𝐟 ∈ R𝑁 is friction acting
on the rotor coordinate, 𝐊𝜏 ≻ 0 ∈ R𝑁×𝑁 is the diagonal matrix of
torque constants and 𝐢 ∈ R𝑁 is the torque-generating (quadrature)
current obtained from the phase currents and the Park Transformation.
If the end effector is subject to an external wrench 𝐟ext ∈ R𝑁 , the
resulting joint torques

𝝉ext = 𝐉𝖳(𝐪) 𝐟ext (3)

where 𝐉(𝐪) ∈ R𝑁×𝑁 is the kinematic Jacobian for the manipulator.

3. Mathematical modeling of the flexible joint

This section presents some initial assumptions on the joint dynamics
characteristics in terms of flexibility, friction, and backlash. The mathe-
matical model of the flexible joint robot is illustrated as a translational
system in Fig. 3. The definition of the kinematic error �̃� ≜ 𝜽 − �̂� and
the backlash 2𝐝 (discussed in Section 4.3) is illustrated as well.

The literature on FJR manipulators is not consistent with its termi-
nology related to the terms backlash and hysteresis. Therefore, we state
their definitions in the following.

Fig. 3. Visual representation of the mathematical model of the flexible-joint robot
manipulator with 𝐧(𝐪, �̇�) = 𝐂(𝐪, �̇�) �̇� + 𝐠(𝐪) in (1).

Definitions (Backlash). Backlash, sometimes referred to as lash or play,
is understood as the largest distance or angle through which any part
of a mechanism may be moved or rotated in one direction without
transferring force or torque to the next part in the mechanism.

The backlash can be interpreted as a complete loss of stiffness in
some region of deformation.

Definitions (Hysteresis). Hysteresis is understood as the lag of a sys-
tem’s output wrt. its input. The hysteresis can be a dynamic lag be-
tween input and output that vanishes if the input varies slowly; this
is known as rate-dependent hysteresis. Similarly, the hysteresis can be
rate-independent if durable memory is possible.

Backlash will give rise to a rate-independent hysteresis phenomena.

3.1. Joint torque assumptions

The joint torques which couple the link and rotor subsystems are
assumed to depend on the joint angular deflections 𝝓 ≜ 𝜽 − 𝐪, i.e.

𝝉J = 𝝉J(𝝓) (4)

We further assume that no flexibility torques exist for the undeformed
joints and that the joints have the same behavior in compression and
extension, thus

𝝉J(𝟎) = 𝟎 (5)

𝝉J(−𝝓) = −𝝉J(𝝓) ∀𝝓 (6)

3.2. Joint friction assumptions

Considering a set of states 𝐱 and parameters 𝜻 we assume that the
friction torque 𝐟 ≜ 𝐟 (𝐱, 𝜻) can be described as a sum of 𝑀 functions 𝐟𝑖,
i.e.

𝐟 (𝐱, 𝜻) =
𝑀∑
𝑖=1

𝐟𝑖(𝐱, 𝜻) (7)

Note, that 𝐟𝑖 is a function not necessarily of 𝐱𝑖 alone.
It is further assumed that the friction torques are uncoupled among

the joints, i.e. the states and parameters related to the friction of one
joint will affect the friction torque of that joint only.

4. Identification

Strain-wave transmissions are known to experience nonlinear stiff-
ness, nonlinear friction, kinematic error, and backlash (or very low
stiffness for small applied loads, sometimes referred to as soft-windup
Kennedy & Desai, 2005), that gives rise to hysteresis between the trans-
mission deflection and torque. This section presents the experimental
procedures and results of the identification of these joint dynamics
phenomena and the models used to describe them. The identification
of this paper is restricted to joint 1 of the UR5e manipulator, however

3
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the methodology easily extends to the remaining joints of the UR5e or
other industrial robot joints.

Common to all identification procedures is that: (1) Data is sampled
at times 𝑡(𝑘) = 𝑘 𝑇𝑆 , 𝑘 = 1,… , 𝑁𝑆 , and 𝑇𝑆 = 1 ms. (2) The parametriza-
tion of a model is considered optimum if it minimizes the Mean Squared
Error (MSE) between the vector of measurements 𝐲 ∈ R𝑁𝑆 and the
vector of model estimates �̂� ∈ R𝑁𝑆 , hence the cost function is always

 ≜ 1
𝑁𝑆

‖𝐲 − �̂�‖ (8)

with the error 𝐲 − �̂� assumed to be a stationary zero mean and white
sequence. (3) The quality of a model is evaluated by the Normalized
Root Mean Squared Error (NRMSE) expressed as a percentage, i.e.

NRMSE = 100% ⋅
(
1 −

‖𝐲 − �̂�‖
‖𝐲 − �̄�‖

)
(9)

ranging from −∞ (bad fit) to 1 (perfect fit).
The goal is to find models that are coherent with observations, have

a minimum number of describing functions and a low dimension of
the parameter space. Furthermore, the choice of describing functions
should be practically suitable for identification, i.e. linear if possible.
The reason to have a small number of describing functions and param-
eters is that it will decrease the risk of over-fitting the models, which
could result in reduced model performance on new data-sets, i.e. in
real-world applications.

4.1. Torsional stiffness

The joint torsional stiffness is identified by exerting a force on the
end-effector while the robot is static and the joint of interest is oriented
with its axis of rotation parallel to the direction of the gravitational
acceleration, thus in the vicinity of gravity torque around the axis of
rotation. The described robot configuration simplifies (1) and (3) to

𝝉J = 𝐉𝖳(𝐪) 𝐟ext (10)

while (2), when assuming for simplicity 𝐟 = 𝟎, becomes

𝝉J = 𝐊𝜏 𝐢 (11)

Thereby, the flexibility torque is obtained in two ways; (1) using (10)
and measuring 𝐟𝐞𝐱𝐭 using a calibrated Sauter FH-S 500 digital force
gauge, and (2) using (11).

Strain-wave transmissions are known to experience stiffening with
increasing load due to the increased gear-tooth contact area with
increasing loads (Nye, 1989). The stiffness characteristics of the Har-
monic Drive has in literature been modeled linearly (Taghirad &
Bélanger, 1996), as a cubic polynomial (Gandhi & Ghorbel, 2004;
Kircanski & Goldenberg, 1997; Madsen, Rosenlund, Brandt, & Zhang,
2019; Tuttle & Seering, 1996) or functions consisting of piecewise
linear segments (Harmonic Drive AG, 2018; Shi, Li, & Liu, 2017).

We assume that the joint torques can be approximated by a linearly
parametrized polynomial basis in 𝝓, i.e.

𝝉J(𝝓) = Ψ(𝝓)𝜶 (12)

Based on the symmetry assumptions in (5) and (6) the joint torque
model should contain only odd powers in 𝝓, thus

Ψ(𝝓) = blkdiag
{
Ψ𝖳

𝑗
}
∈ R𝑁×𝑁 𝑃 , 𝑗 = 1..𝑁

Ψ𝑗 =
(
𝜙𝑗 ⋯ 𝜙2𝑝−1

𝑗 ⋯ 𝜙2𝑃−1
𝑗

)𝖳
∈ R𝑃

(13)

with Ψ(𝝓) a rectangular block diagonal matrix with its 𝑁 elements
being 𝑃 -element row vectors Ψ𝖳

𝑗 . In (13) all joints have bases of order
𝑃 , however it is possible to choose different order bases among the
joints. The vector of parameters corresponding to the definition in (13)
is

𝜶 =
(
𝜶𝖳
1 ⋯ 𝜶𝖳

𝑗 ⋯ 𝜶𝖳
𝑁

)𝖳 ∈ R𝑁 𝑃

𝜶𝑗 =
(
𝛼𝑗,1 ⋯ 𝛼𝑗,𝑝 ⋯ 𝛼𝑗,𝑃

)𝖳 ∈ R𝑃
(14)

i.e. for each joint the map from transmission deformation to joint
torque is described by 𝑃 parameters. The stiffness 𝐊(𝝓) is simply
the rate of change of flexibility torque with respect to transmission
deformation

𝐊(𝝓) = 𝜕
𝜕 𝝓

𝝉J(𝝓) (15)

hence from (12) and (13) the parametrization of the stiffness is simply

𝐊(𝝓) = Ω(𝝓)𝜶, Ω(𝝓) = diag
(
𝝓−1)Ψ(𝝓)Λ

Λ = blkdiag
{
𝝀𝖳, … , 𝝀𝖳
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑁 elements

}

𝝀 =
(
1 ⋯ 2 𝑝 − 1 ⋯ 2𝑃 − 1

)𝖳 , 𝑝 = 1,… , 𝑃

(16)

The joint torque can be expressed also in terms of 𝑃 matrices 𝐊1,… ,
𝐊𝑃 each of dimension 𝑁×𝑁 and each multiplied by a 𝑁-element vector

𝝉J(𝝓) =
𝑃∑
𝑝=1

𝐊𝑝 𝝓2𝑝−1, 𝐊𝑝 = diag
(
𝛼1,𝑝 ⋯ 𝛼𝑁,𝑝

)

𝝓2𝑝−1 =
(
𝜙2𝑝−1
1 ⋯ 𝜙2𝑝−1

𝑁

)𝖳

(17)

4.1.1. Least squares estimation
From an experiment on joint 𝑗 let 2𝑁𝑆 data points (𝜙𝑗 (𝑘), 𝜏𝐽 ,𝑗,𝐹 (𝑘))

and (𝜙𝑗 (𝑘), 𝜏𝐽 ,𝑗,𝐶 (𝑘)) be available with 𝑘 = 1,… , 𝑁𝑆 , where subscripts 𝐹
and 𝐶 denote, respectively, Force gage and Current to indicate whether
the torque is obtained through (10) or (11), respectively. The regressor
matrix and vector of measurements are defined, respectively

𝐖𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜙𝑗 (1) … 𝜙𝑗 (1)2𝑝−1 … 𝜙𝑗 (1)2𝑃−1
⋮ ⋱ ⋮ ⋱ ⋮

𝜙𝑗 (𝑁𝑆 ) … 𝜙𝑗 (𝑁𝑆 )2𝑝−1 … 𝜙𝑗 (𝑁𝑆 )2𝑃−1
𝜙𝑗 (1) … 𝜙𝑗 (1)2𝑝−1 … 𝜙𝑗 (1)2𝑃−1
⋮ ⋱ ⋮ ⋱ ⋮

𝜙𝑗 (𝑁𝑆 ) … 𝜙𝑗 (𝑁𝑆 )2𝑝−1 … 𝜙𝑗 (𝑁𝑆 )2𝑃−1

⎞⎟⎟⎟⎟⎟⎟⎠

(18)

𝐲𝑗 =
(
𝑦𝐹 (1) ⋯ 𝑦𝐹 (𝑁𝑆 ) 𝑦𝐶 (1) ⋯ 𝑦𝐶 (𝑁𝑆 )

)𝖳
𝑦𝐹 (𝑘) = 𝜏𝐽 ,𝑗,𝐹 (𝑘), 𝑦𝐶 (𝑘) = 𝜏𝐽 ,𝑗,𝐶 (𝑘)

(19)

For 2𝑁𝑆 > 𝑃 we obtain an over-constrained linear system

𝐲𝑗 = 𝐖𝑗 𝜶𝑗 (20)

whose least squares solution is obtained using the Moore–Penrose
generalized inverse and gives an estimate of the stiffness coefficients
for joint 𝑗

�̂�𝑗 = (𝐖𝖳
𝑗 𝐖𝑗 )−1 𝐖𝖳

𝑗 𝐲𝑗 ∈ R𝑃 (21)

In Madsen et al. (2019) a cubic polynomial was shown to be adequate
for describing the joint torque so we let 𝑃 = 2 in (17), thus from (17)
the joint torque model is simply

𝝉J(𝝓) = 𝐊1 𝝓 +𝐊2 𝝓3 (22)

where 𝐊1 ∈ R𝑁×𝑁 and 𝐊2 ∈ R𝑁×𝑁 are diagonal matrices of, respec-
tively, linear and cubic stiffness coefficients.

Fig. 4 shows the joint torque for joint 1. The chosen cubic polyno-
mial in (22) matches the experimental data with an accuracy of 91.3%.
The data sheet values proposed by Harmonic Drive AG (2018) and used
by Shi et al. (2017) are accurate to a degree of 74.5%. It is therefore
suggested to use cubic polynomial over the linear segments proposed
by Harmonic Drive™.

4.2. Friction

For notational simplicity we simplify the vector equations into
scalar equations. The terms and definitions in this section are valid for
all joints 𝑗 = 1,… , 𝑁 , however we will not denote the joint index 𝑗.

The friction torque is commonly described as a combination of
various aspects representing the nonlinear friction characteristics in the
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Fig. 4. Joint torque’s dependence on transmission deformation for joint 1 obtained
experimentally using (10) (triangle), (11) (cross), the model described in (22), and the
data sheet for the Harmonic Drive HFUS strain-wave transmission (Harmonic Drive AG,
2018).

sliding regime such as Coulomb friction, viscous friction, etc. From
experiments and empirical observations these friction characteristics
are known to depend on the rotor angular velocity, load torque, and
joint temperature. This section presents the methodology and results in
the identification of the friction’s dependency on rotor angular velocity,
load torque, and joint temperature, so from (7) the friction torque is
described by a summation of the following contributions

𝑓 = 𝑓𝑣 + 𝑓𝑙 + 𝑓𝑇 (23)

with 𝑓𝑣, 𝑓𝑙, and 𝑓𝑇 describing, respectively, the dependency of friction
on angular velocity, load, and temperature.

4.2.1. Angular velocity
The dependency of friction on velocity is identified by rotating

a single robot joint with different constant angular velocities, in the
vicinity of external wrench, and the joint axis of rotation being oriented
parallel to the direction of the gravitational acceleration. In this case
(1) simplifies to 0 = 𝜏J while (2) becomes

𝑓 = 𝐾𝜏 𝑖 (24)

The dependency of friction on angular velocity is modeled similarly
to Madsen et al. (2019), i.e.

𝑓𝑣 = sgn(𝜔)
(
𝐹𝐶 + (𝐹𝑆 − 𝐹𝐶 ) exp[−(𝑉 −1

𝑆 |𝜔|)𝜇])

+ 𝐹𝑉 ,1 𝜔 − 𝐹𝑉 ,2 |𝜔|𝜔 + 𝐹𝑉 ,3 𝜔
3 (25)

where 𝐹𝐶 , 𝐹𝑆 , 𝑉𝑆 , 𝜇, 𝐹𝑉 ,1, 𝐹𝑉 ,2, 𝐹𝑉 ,3 ∈ R are, respectively, the Coulomb
friction coefficient, Stribeck friction coefficient, Stribeck velocity,
Stribeck shape factor, and viscous friction coefficients. The results
from the identification of the friction’s velocity dependency is shown
in Fig. 5. The model in (25) is nonlinear in 𝑉𝑆 and 𝜇, thus an
optimum set of parameters in (25) is found using nonlinear optimiza-
tion, specifically a Quasi-Newton method with a cubic line search
procedure and updating the Hessian matrix approximation by the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.

4.2.2. Load torque
As indicated by the Coulomb dry friction model, the friction force

is proportional to normal force between two surfaces in contact. Thus,
it is reasonable to assume that the transmission displays some sort of
load-dependent behavior.

The dependency of friction on load torque is identified by rotating
a single robot joint at the time with different angular velocities, in the
vicinity of external wrench, and the joint axis of rotation being oriented
perpendicular to the direction of the gravitational acceleration. This
way, the gravity will induce a load. All other joints are kept fixed at a

Fig. 5. The dependency of friction on velocity in a no load scenario and with a joint
temperature of 35 ◦C.

Fig. 6. The dependency of friction on load dependence with the friction for negative
velocities being negated and Model Fit corresponding to (27). The joint temperature
was kept at 35 ◦C for the entire experiment.

constant angular position. In this case (1) simplifies to 𝑔(𝑞) = 𝜏J, hence
(2) can be rewritten

𝑓 = 𝐾𝜏 𝑖 − 𝑔(𝑞) (26)

in which 𝑔(𝑞) is predicted based on the masses and center of mass
positions. A payload of 7.5 kg was attached to the robot’s end effector
to increase the maximum possible load torque. The load dependent
friction can be obtained by subtracting the velocity friction in (25) from
the total friction described by (26).

One common choice is to model the dependency of friction on load
linearly in the magnitude of the load torque (Bittencourt, Wernholt,
Sander-Tavallaey, & Brogårdh, 2010; Gao et al., 2017; Hamon, Gautier,
& Garrec, 2010), i.e. 𝑓𝑙 = 𝐹𝑙 sgn(𝜔)|𝜏𝑙|. We propose, however, to model
the friction’s load dependency as

𝑓𝑙 = 𝐹𝑙 sgn(𝜔) 𝜏2𝑙 (27)

where 𝐹𝑙 ∈ R is the load coefficient. The model in (27) can be
thought of simply as a scaling of the Coulomb friction with the squared
load torque. The model in (27) is linear in 𝐹𝑙 and thus the optimum
parameter is found by linear least squares using QR decomposition with
column pivoting. The results from the identification of the friction’s
load dependency are shown in Figs. 6 and 7. Fig. 6 shows the isolated
effect of load-induced friction while Fig. 7 shows the combined friction
effects of velocity and load. The models by Bittencourt et al. (2010),
Gao et al. (2017) and Hamon et al. (2010) performs at 83.0% slightly
worse compared to 87.0% for our proposed model. Fig. 6 reveals a
slight shift between the torques for positive and negative velocities.
This could be due to an inaccurate computation of the load (gravity)
torque based on inaccurate information related to the masses and center
of mass positions of the UR5e manipulator.
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Fig. 7. The dependency of the total friction torque on load and velocity.

4.2.3. Temperature
The viscosity of lubricants approximately has an exponential de-

pendence on temperature, and for newtonian fluids, the shear forces
are directly proportional to the viscosity (Seeton, 2006). Thus, it is
reasonable to assume that the temperature affects the viscous friction
characteristics in some nonlinear fashion.

The dependency of friction on temperature is identified by first
cooling the robot to 9 ◦C, then placing it in an ambient temperature
of approximately 20 ◦C and rotating a single robot joint with different
constant angular velocities. The robot joint will naturally heat up. The
experiment lasted 1h 56 min. The temperature is measured with a
temperature sensor built into the joints. At times where the robot joint
rotates with a constant angular velocity the friction torque is simply
obtained using (24).

One possible choice for modeling the dependency of friction on tem-
perature is an affine transformation in the temperature multiplied by an
exponential function in the temperature and velocity as in Bittencourt
et al. (2010) and Gao et al. (2017). This model has four parameters of
which two appear nonlinearly.

In this work, we propose for the friction’s temperature dependency
the following model of three parameters that all appear linearly

𝑓𝑇 = sgn(𝜔)
√|𝜔| (𝐹𝑇 ,1 + 𝐹𝑇 ,2 𝑇 + 𝐹𝑇 ,3 𝑇

−3) (28)

where 𝐹𝑇 ,1, 𝐹𝑇 ,2, 𝐹𝑇 ,3 ∈ R are temperature coefficients. An optimum
set of parameters in (28) is found by linear least squares using QR
decomposition with column pivoting. The models by Bittencourt et al.
(2010) and Gao et al. (2017) performs at 94.3% slightly worse com-
pared to 95.1% for our proposed model despite its drawbacks of more
parameters and nonlinearity.

It should be noted, however, that polynomial descriptions in general
do not extrapolate well, which could be relevant in the practical
implementation of (28) or temperature compensation of robot joint
friction in general.

Fig. 8 shows the temperature over time and Figs. 9 and 10 shows the
friction torque as a function of joint angular velocity and temperature.
The results show that the temperature only affects the viscous friction,
which is coherent with literature on other industrial robots (Bittencourt
& Gunnarsson, 2012; Gao et al., 2017).

4.3. Kinematic error & position-dependent backlash

Strain-wave transmissions are known to be subject to kinematic
error and backlash (or very low stiffness for small loads, sometimes

Fig. 8. Joint temperature over time during the temperature experiment.

Fig. 9. The dependency of friction on velocity and temperature.

Fig. 10. The dependency of friction on velocity and temperature.

referred to as soft wind-up). The kinematic error and backlash of the
robot joint was identified in the same experiment by rotating a single
robot joint at the time with reciprocating and very low velocities and
accelerations and the joint axis of rotation oriented parallel to the
direction of the gravitational acceleration. One full revolution of 240
reversals in approx. 17 min was performed. The trajectory is shown in
Fig. 11. Fig. 12 show the variation of the transmission deformation over
one full joint revolution.

Neglecting inertial effects and gravity effects, (1) simplifies to 0 =
𝜏J resulting in the kinematic error-corrected transmission deformation
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Fig. 11. Trajectory used for identifying the hysteresis characteristics.

being bounded in magnitude by the backlash, i.e.

||𝜙(𝑡) − 𝜃(𝑡)|| ≤ 𝑑 ∀ 𝑡 (29)

4.3.1. Kinematic error
Kinematic error is defined as the difference between the expected

output position and the actual output position. In strain-wave transmis-
sions kinematic error is a well-known phenomena caused by a number
of factors such as tooth-placement errors on both the circular spline
and flexspline, out-of-roundness in the three transmission components,
and misalignment during assembly (Tuttle & Seering, 1996). If un-
compensated, the kinematic error will act as a periodic exciter and
cause undesirable vibrations and angular velocity fluctuations during
motion. It is therefore desirable to model the kinematic error so it can
be compensated.

The kinematic error 𝜃 is defined as the midpoint between trans-
mission deformations for positive and negative velocity denoted with
subscripts + and −, respectively, i.e.

𝜃 =
𝜙+ + 𝜙−

2
(30)

The results in Fig. 12 show the kinematic error over one full revolution
of the robot joint.

Commonly, the kinematic error is modeled as a Fourier series
expansion (Gandhi & Ghorbel, 2002; Ghorbel, Gandhi, & Alpeter, 1998;
Preissner, Royston, & Shu, 2012; Zou, Tao, Jiang, Mei, & Wu, 2016)
with the angular spatial frequency (measured in kinematic error cycles
per wave generator revolution) being integer multiples of the transmis-
sion’s input-side (wave generator) revolution. As we shall see, the UR5e
manipulator is subject to kinematic error behavior that varies with
the transmission’s output-side revolution, i.e. at a much lower angular
spatial frequency.

Let the map  from angular position to kinematic error, i.e.

 ∶ 𝜃 → 𝜃, 𝜃 ∈ [0, 2𝜋) (31)

be modeled as a lookup table (LUT) with linear interpolation, the table
having 240 points (𝜃(𝑡𝑣𝑟), 𝜃(𝑡𝑣𝑟)), 𝑡𝑣𝑟 = {𝑡 ∶ 𝜔(𝑡) = 0} over one full
revolution defined at the moments of velocity reversal.

4.3.2. Position-dependent backlash
The backlash is defined as the difference in transmission deforma-

tion during velocity reversals when no dynamic torques are present. It is
extracted from the results by considering the difference in transmission
deformation for positive and negative velocities. The results in Fig. 12
show that the amount of backlash depends on the joint’s angular
position.

It is known that the preload of the flexspline and backlash are
inversely related. Dong, Chen, Wang, and Dong (2019) studied theoret-
ically and numerically the effects of wave generator radial offset (input
eccentricity error) and found the effects to be uneven distributions of
the backlash and flexspline preload over the input angular position.

Fig. 12. Experimental results from the reciprocating velocity experiment and the
models for the kinematic error and position-dependent backlash, respectively (31) and
(32).

Fig. 13. Motor torque during the reciprocating velocity experiment.

The position-dependent backlash in the UR5e robotic system varies
with the output angular position, therefore one explanation is that
the flexspline preload varies with the output revolution. This could
be caused by imperfect cylindricity of the circular spline combined
with either; (1) wave generator radial offset (input eccentricity error)
or (2) varying flexspline thickness. Another possible explanation for
the position-dependent hysteresis characteristics is if the system was
subject to position-dependent dry friction, however such effect would
be observable in the motor current which is not the case, see Fig. 13.

Let the smooth and invertible map  from angular position to
backlash, i.e.

 ∶ 𝜃 → 𝑑, 𝜃 ∈ [0, 2𝜋) (32)

be modeled as a LUT with linear interpolation.

4.4. Dynamic friction

At times of very low or zero velocities any static nonlinear map will
fail to accurately describe the friction characteristics and a dynamic
friction model is required. This is obvious from Fig. 14 where the
friction torque for a given (near-zero) velocity takes different values
depending on the direction of motion. In this pre-sliding regime the
friction torque is described more accurately as a continuous function
of displacement history rather than velocity. We therefore extend the
identified static nonlinearities with a generic dynamic function of
internal state 𝐳, i.e.

𝑓𝐶 =  (𝐳, 𝐱), d 𝐳
d 𝑡

= (𝐳, 𝐱) (33)

In other words, the Coulomb friction is no longer described as a discon-
tinuous function in the angular velocity but as a continuous function
in the angular position. A common choice in the robotics community is
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Fig. 14. The friction torque at near-zero velocities depend on the direction of motion,
so a static map will fail to describe the friction characteristics in this region.

the LuGre model, while for the strain-wave transmissions, models based
on the Generalized Maxwell-Slip model structure are favored due to its
ability to describe rate-independent hysteresis.

4.4.1. Generalized maxwell-slip model
The Generalized Maxwell-Slip model (Al-Bender, Lampaert, & Sw-

evers, 2005; Lampaert, Al-Bender, & Swevers, 2003) is capable of
describing the hysteretic relationship between the displacement and
friction force (torque) in the pre-sliding regime and has been used to de-
scribe the dynamic friction characteristics of strain-wave transmissions
with promising results, see e.g. (Preissner et al., 2012; Tjahjowidodo,
Al-Bender, & Van Brussel, 2013). The GMS model can be visualized
(Fig. 15) as a parallel connection of 𝑀 ∈ N+ massless elasto-slide
operators subject to the same input position �̂� ≜ 𝜃 − 𝜃. Each operator
𝑖 = 1,… ,𝑀 is characterized by its own linear stiffness 𝑘𝑖 and either
a maximum spring deformation 𝛥𝑖 or slip force limit 𝑊𝑖 = 𝑘𝑖 𝛥𝑖.
The difference between the input position and the position of the 𝑖th

operator defines each element’s spring deformation

𝛿𝑖 ≜ �̂� − 𝑧𝑖 , ||𝛿𝑖|| ≤ 𝛥𝑖 , ∀ 𝑖 = 1,… ,𝑀 (34)

The 𝑖th operator remains sticking as long as |𝛿𝑖| < 𝛥𝑖 while slipping until
the exerted displacement reaches a local extremum, i.e. the exerted ve-
locity goes through zero. The nonlinear state equation of each operator
is described compactly by

𝛿𝑖(𝑘 + 1) = sgn(�̂�(𝑘 + 1) − �̂�(𝑘) + 𝛿𝑖(𝑘))
⋅min{|�̂�(𝑘 + 1) − �̂�(𝑘) + 𝛿𝑖(𝑘)|, 𝛥𝑖}

(35)

The total friction force is provided as the summation of friction forces
for each operator, i.e.

𝑓𝐶 =
𝑀∑
𝑖=1

𝐹𝑖, 𝐹𝑖 = 𝑘𝑖 𝛿𝑖 (36)

For convenience, let 𝜹 ≜ (𝛿1,… , 𝛿𝑀 )𝖳, 𝜟 ≜ (𝛥1,… , 𝛥𝑀 )𝖳, and 𝐤 ≜
(𝑘1,… , 𝑘𝑀 )𝖳.

4.4.2. Extending the GMS model with position-dependent backlash
The GMS model in its original form is unable to describe position-

dependent backlash. We extend the GMS model with this capability by
enforcing at all times the conditions
𝜕 𝛥𝑖
𝜕 𝜃

≡ 𝜕
𝜕 𝜃

(𝜃),
𝜕 𝑊𝑖
𝜕 𝜃

≡ 0, ∀ 𝑖 = 1,… ,𝑀 (37)

This corresponds to uniformly scaling the vectors 𝜟 and 𝐤 with, re-
spectively, (𝜃) and −1(𝜃). This also implies that the largest of the
𝑀 spring deformation limits approximately equals 1. The constraints

Fig. 15. Schematic representation of the Generalized Maxwell-Slip friction model used
to model the effect of hysteresis.

in (37) leads to changes in the state and output equations of the GMS
model, specifically

𝛿𝑖(𝑘 + 1) = sgn(�̂�(𝑘 + 1) − �̂�(𝑘) + 𝛿𝑖(𝑘))
⋅min{|�̂�(𝑘 + 1) − �̂�(𝑘) + 𝛿𝑖(𝑘)|,(𝜃)𝛥𝑖}

(38)

𝑓𝐶 (𝑘) =
𝑀∑
𝑖=1

𝐹𝑖(𝑘), 𝐹𝑖(𝑘) = −1(𝜃(𝑘)) 𝑘𝑖 𝛿𝑖(𝑘) (39)

4.4.3. The generalized maxwell-slip (GMS) method
This section presents the Generalized Maxwell-Slip (GMS) method.

The GMS method is obtained by preassigning values for the spring
deformation limits 𝜟 and stiffnesses 𝐤. The spring deformation limit of
each operator is selected such that max(𝜟) ≡ 1 and 𝐤𝖳 𝜟 ≡ 𝐹𝐶 . Rizos
and Fassois (2004) chose to uniformly space the deformation limits.
However, motivated by the fact that the curvature of the hysteresis
curve is larger for small transmission deformations, we choose the
polynomial laws

𝛥𝑖 =
( 𝑖
𝑀

)𝑟𝛥
(40)

𝑘𝑖 =
𝐹𝐶
𝛥𝑖

(𝑀 + 1 − 𝑖)𝑟𝑘∑𝑀
𝑖=1 𝑖

𝑟𝑘
(41)

where for 𝑟𝛥 > 1 the operators’ deformation limits are spaced more
closely at small spring deformations. The sum of integer powers in (41)
is obtained easily by numerical methods, however its analytic solution
involves the Riemann Zeta function and the Hurwitz zeta function. For the
special case of 𝑟𝑘 ∈ N+, Faulhaber’s formula gives the sum explicitly in
terms of the Bernoulli numbers. 𝑟𝛥 = 4 and 𝑟𝑘 = 2 are found to yield a
good performance.

Defining the GMS model with 𝑀 operators usually requires the
definition of 2𝑀 parameters; the elements of 𝐤 and 𝜟. However, using
(40) and (41), the GMS model can be completely defined by specifying
only 4 quantities; 𝐹𝐶 , (𝜃), 𝑟𝑘, and 𝑟𝛥, which can be easily identified
visually from the proposed identification method. This is equivalent to
defining the shape of the hysteresis loop from 𝑟𝑘 and 𝑟𝛥 rather than each
individual element of 𝐤 and 𝜟.

4.4.4. Identification of the generalized maxwell-slip model
In this section two methods for the extended GMS friction model

identification are postulated; (1) The Nonlinear Regression (NLR)
method and (2) the Linear Regression (LR) method. They may be
thought of as different extensions (or generalizations) of the GMS
method (Section 4.4.3), which uses arbitrarily assigned stiffness and
threshold vector pre-assignment. The LR method relaxes the stiffness
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vector pre-assignment through a linear regression procedure, and the
NLR method further relaxes the pre-assignment of the vector of slip
force limits through a nonlinear regression procedure.

The experimental data is the data that was also used for identifying
the kinematic error and backlash (Figs. 12 and 13). This dataset is
divided into a 50.000 sample estimation dataset (𝑘 = 10.001,… , 60.000)
used for identification, and a 955.493 sample validation dataset (𝑘 =
60.001,… , 1.015.493) used for independent evaluation of the model
quality (cross validation principle).

In order to avoid problems with the identification due to mis-
specified initial states, their effects are removed. This is achieved by
choosing the starting conditions such that all operators slip, hence in
accordance with Condition C0 in Rizos and Fassois (2004).

The Linear Regression (LR) Linear Spacing Method: Partial iden-
tification of the GMS model structure is conducted by preassigning
values for the deformation limits 𝜟 as proposed by Rizos and Fassois
(2004). This is achieved using (40) with 𝑟𝛥 = 1. The nonlinear part of
the problem is thereby assumed known resulting in a linear regression
type estimator for 𝐤. This method is denoted LRLinear.
The Linear Regression (LR) Polynomial Spacing Method: Partial
identification of the GMS model structure is conducted by preassigning
values for the deformation limits 𝜟 according to (40) with 𝑟𝛥 = 4. This
method is denoted LRPolynomial.

The Nonlinear Regression (NLR) Method: Complete estimation
of the GMS model by the minimization of (8) leads to a nonlinear
regression-type estimator for the threshold and stiffness vectors, 𝜟 and
𝐤 respectively. The model is nonlinear with respect to 𝜟 while linear
in 𝐤 and may thus be realized as a succession of nonlinear and linear
regression operations

(�̂�𝖳, �̂�𝖳)𝖳 = argmin
𝜟,𝐤

 (𝐤,𝜟)

= argmin
𝜟

{min
𝐤

 (𝐤,𝜟)}
(42)

The operator thresholds are strictly positive and distinct, i.e. 0 <
𝛥1 < ⋯ < 𝛥𝑀 , so linear inequality constraints are defined as 𝐀𝜟 ≤ 𝟎,
𝐴𝑖,𝑖 = −1 and 𝐴𝑖+1,𝑖 = 1.

minimize
𝐤,𝜟∈R𝑀

 = 1
𝑁𝑆

𝑁𝑆∑
𝑘=1

(𝑦(𝑘) − �̂�(𝑘))2

𝑦(𝑘) = 𝐾𝜏 𝑖(𝑘)

𝑓𝐶 (𝑘) = −1(𝜃(𝑘))
𝑀∑
𝑖=1

𝑘𝑖 𝛿𝑖(𝑘)

subject to
𝛿𝑖(𝑘 + 1) = sgn(�̂�(𝑘 + 1) − �̂�(𝑘) + 𝛿𝑖(𝑘))

⋅min{|�̂�(𝑘 + 1) − �̂�(𝑘) + 𝛿𝑖(𝑘)|,(𝜃(𝑘))𝛥𝑖}
∀ 𝑖 = 1,… ,𝑀

0 < 𝛥1
𝛥𝑖−1 < 𝛥𝑖 ∀ 𝑖 = 2,… ,𝑀, 𝑀 ≥ 2

(43)

The nonlinear regression is realized as a two-phase hybrid optimiza-
tion using the Genetic Algorithm (GA) (Conn, Gould, & Toint, 1997) to
explore large areas of parameter space and the Nelder–Mead Downhill
Simplex Algorithm (Lagarias, Reeds, Wright, & Wright, 1998) to exactly
locate the minimum. This two-phase scheme has been shown in Rizos
and Fassois (2004) to be able to effectively locate the true global
minimum.

4.4.5. Results
In this section, we compare five different friction models; (1) the

static nonlinear maps identified in Section 4.2, (2) the GMS model
with parameters fixed according to (40) and (41), (3) the LRPolynomial
method, (4) the LRLinear method, and (5) the NLR method (see Fig. 16).

The results of the identification reveal that for 𝑀 = 1,… , 3 the NLR
method is superior in performance. For 𝑀 ≥ 4 the NLR and LRPolynomial
methods are almost similar in performance with 82.3% and 82.0%,
respectively. The proposed polynomial law in (40) for 𝜟 thus seems

Fig. 16. Performance of the friction models with various number of operators as
evaluated on the validation dataset. NLR corresponds to complete identification of
𝐤 and 𝜟, LRLinear corresponds to the method proposed by Rizos and Fassois (2004),
i.e. partial identification of 𝐤, keeping 𝜟 fixed through linear spacing of the elements
in 𝜟, LRPolynomial corresponds to partial identification of 𝐤, keeping 𝜟 fixed according
to (40), and GMS corresponds to no identification, i.e. 𝐤 and 𝜟 are fixed according to
(40) and (41), respectively. Static Friction corresponds to the identified static nonlinear
maps presented in Section 4.2.

reasonable. On the other hand, the LRLinear method by Rizos and Fassois
(2004) performs for 𝑀 = 4 at 73.7%, i.e. considerably worse than our
proposed LRPolynomial method. The performance of the LRLinear method
increases with the number of operators to a maximum of 78.0% for
𝑀 = 10. This is, however, still less than the LRPolynomial and GMS
methods with 𝑀 = 3, performing at 78.5% and 81.4%, respectively.
For 4 operators the GMS method performs at 80.7% slightly worse
compared to the LRPolynomial method at 82.0%, hence (41) is not quite
optimal. The static nonlinear maps identified in Section 4.2 performs at
68.9% worse than all GMS based dynamic friction models with 𝑀 > 1.
This shows, that there is a strong motivation for incorporating GMS
based dynamic friction models in collaborative robots whose joints
comprise strain-wave transmissions.

Fig. 17 shows the error torques for the static friction model, the GMS
model with 4 operators, the LR4 method, and the NLR3 method.

5. Conclusions

Accurate torque estimation is crucial in the development of col-
laborative robots in order to achieve high performance in terms of
safety, accuracy, precision, and lead-through programming. One chal-
lenging issue is the dynamic modeling and identification of joint dy-
namics complicated by and originating mainly from the strain-wave
type transmissions.

In this work we applied time domain and nonlinear identification
methods on the Universal Robots UR5e manipulator. A comprehensive
dynamic model has been established and validated through extensive
experimental analyses. The methods are valid for serial-link manipula-
tors with rigid links and flexible joints, and the joints are assumed to
have the same behavior in both directions. The results of the identifica-
tion indicate that the applied methodology is very useful for obtaining
accurate estimates of the torques, which could be very relevant for
joint torque estimation for strain-wave transmissions utilizing two ab-
solute rotary encoders per joint; one at each side of the strain-wave
transmission.

The main features of the proposed method is: (1) Enhanced accuracy
of torque prediction by extending the Generalized Maxwell-Slip (GMS)
friction model to describe the position-dependent backlash character-
istics observed in the Universal Robots UR5e manipulator. (2) Easy
identification of GMS model; with 𝑀 the number of Maxwell-Slip
operators, one need only specify 4 parameters instead of the usual 2𝑀
parameters.
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Fig. 17. Error torque over time for the friction models; Static Friction, GMS4, LRLinear,4,
LRPolynomial,4, and NLR3. The zoom around 520 s contains two velocity reversals.

The distinguished contributions include: (1) Proposal of more accu-
rate models for the friction’s dependency on load and temperature, (2)
experimental observation of position-dependent backlash phenomena,
and (3) extension of the GMS dynamic friction model to describe
position-dependent backlash characteristics. (4) Development of a new
and more accurate linear regression method based on the GMS model.
The accuracy was improved from an NRMSE of 75.2% to 82.0%.

The established and identified joint dynamics model provides im-
portant guidance to the design and control of collaborative robot
manipulators and other types of lightweight industrial robot manip-
ulators. Our ongoing research efforts include; (1) implementation of
the identified mathematical models in the control and safety systems
of the Universal Robots manipulators, and (2) research on practi-
cal approaches to the design and implementation of adaptive estima-
tion strategies with a special attention to the safety system of the
collaborative robot.
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Chapter 5

Robot Dynamics Calibration
[Journal Paper 2]

Dynamics Parametrization and Calibration of Flexible-
Joint Collaborative Industrial Robot Manipulators
[168]
© 2020 Hindawi, reprinted in accordance with Creative Commons
Attribution 4.0 International1

“In the kingdom of ends everything has
either a price or a dignity.”

— Immanuel Kant (1724–1804)

5.1 Introduction

The desire for increasing the accuracy of the mathematical model of robot
manipulators motivates the calibration of the robot dynamics including
the masses, center of mass location, and mass moments of inertia. One
promising strategy is a combined Inverse Dynamics Identification Model
and Least Squares (IDIM-LS) method [42]. Robot dynamics calibration have
been performed for several collaborative industrial robots including the
KUKA LBR iiwa [61], ABB IRB14000 (YuMi) [64], and Franka Emika Panda
[63]. However, existing methods do not utilize a dual joint encoder sensor

1https://creativecommons.org/licenses/by/4.0/
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78 Chapter 5. Robot Dynamics Calibration [Journal Paper 2]

system, of the Universal Robots manipulators, and simple models for the
joint friction are assumed.

5.2 Method

In this work, we follow a system identification procedure based on the
Inverse Dynamics Identification Model and Weighted Least Squares (IDIM-
WLS) method. The usual assumption of rigid joints is relaxed by making
use of the two absolute rotary encoders per joint to effectively compensate
the flexibility and rotor-side dynamics including nonlinear friction. Thus,
the distinction from existing works lies in the technique for compensating
the nonlinear flexible-joint dynamics.

First, the robot dynamics are derived using the modified Denavit-Hartenberg
kinematics convention and the Recursive Newton-Euler algorithm for the
dynamics. Then, the dynamics are linearly parameterized in terms of a
vector of unknown parameters and a matrix of known functions in the
joint angular positions and their time-derivatives of first and second order.
The set of inertial parameters are then reduced to a minimal set of base
parameters through the analytic regrouping relations derived in [38]. A
trajectory is designed to excite all unknown parameters. The robot is com-
manded to follow the trajectory while currents and joint angular positions
are measured. Based on the measurements, the optimum parameters are
chosen in order to minimize the weighted least squares error between the
model-predicted and measured currents with the weighting equal to the
reciprocal of the standard deviation of the parameter obtained from an
ordinary least squares (OLS) solution.

5.3 Findings

The calibration of the robot inertial parameters seems effective for increasing
the accuracy of the robot dynamic model. The proposed compensation of
rotor dynamics effects including flexibility and nonlinear friction seems like
an effective strategy to reduce uncertainty in the parameter estimates.

The presented method of robot dynamics calibration show improve-
ments in the torque prediction accuracy of 16.5 %–28.5 % compared to the
parameters obtained from a CAD model. The uncertainty of the parame-
ter estimate is very low for all but two parameters, Y Z4 and ZZR4, with
standard deviations estimated at, respectively, 19 % and 20 %. These are
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indications of either; 1) sub-optimality of the chosen trajectory or 2) the
parameters do not matter much to the torque computation. Y Z4 is a product
moment of inertia (off-diagonal element in the inertia tensor), and as such
its influence on the torque is expected to be small. ZZR4 is a regrouped
mass moment of inertia and the uncertainty may be due to insufficient
excitation by the chosen trajectory.

5.4 Reflection

Comparing the results of the presented method to the work in [64] indi-
cate improvements in parametric uncertainty. In [64], the number of base
parameters is 34 with 25 of those having an uncertainty ≥ 5 %. It is noted
that the inaccuracies of the last three joints are influenced by the use of a
simple friction model and that the accuracy can be improved by using a
more complex friction model.

Thus, the proposed method for robot dynamics calibration with compen-
sation of flexibility and nonlinear friction seems to be effective for increasing
the accuracy of the dynamic model. Possible further developments and
improvements of the method is summarized in the following.

• The number of identifiable parameters can be increased from 36 to
38 by orienting the base joint of the robot with its axis of rotation
non-parallel to the direction of the gravitational acceleration.

• The trajectory used for identification could possibly be optimized
through optimization routines.

• The optimization could be constrained to enforce positive definiteness
of the inertia matrix using either Sylvester’s theorem or Cholesky
decomposition. The property of positive-definiteness is relevant in the
decoupling and linearizing control strategies elaborated in Chapter 2.

5.5 Author’s Contribution

The author supervised the Master’s Thesis project, assisted with research
and experiments, and prepared the manuscript with inputs from the co-
authors.
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Many collaborative robots use strain-wave-type transmissions due to their desirable characteristics of high torque capacity and
low weight. However, their inherent complex and nonlinear behavior introduces significant errors and uncertainties in the robot
dynamics calibration, resulting in decreased performance for motion and force control tasks and lead-through programming
applications. ,is paper presents a new method for calibrating the dynamic model of collaborative robots. ,e method combines
the known inverse dynamics identification model with the weighted least squares (IDIM-WLS) method for rigid robot dynamics
with complex nonlinear expressions for the rotor-side dynamics to obtain increased calibration accuracy by reducing the
modeling errors. ,e method relies on two angular position measurements per robot joint, one at each side of the strain-wave
transmission, to effectively compensate the rotor inertial torques and nonlinear dynamic friction that were identified in our
previous works. ,e calibrated dynamic model is cross-validated and its accuracy is compared to a model with parameters
obtained from a CAD model. Relative improvements are in the range of 16.5% to 28.5% depending on the trajectory.

1. Introduction

For collaborative industrial robots, it is of crucial im-
portance to acquire accurate predictions of the torques
required in order to realize the desired motion or force
control task and to ensure a consistently good perfor-
mance of lead-through programming applications. Being
able to accurately predict the torques required to complete
the intended task will (1) improve the control perfor-
mance by being able to react to disturbances before they
cause deviations from the reference and (2) improve the
robot safety system by being able to more accurately
identify external disturbances such as human interference.
Accurate torque estimates can be obtained through
knowledge about the dynamic properties of the robot.
Accurate torque estimates will also improve any possible
online estimation procedures such as online estimation of
the payload mass and inertia properties [1], friction, and/
or wear.

,e dynamic model of the robot relates the robot motion
to the joint torques and it depends on a set of dynamic
parameters being the mass, the first moments, and the mass
moments of inertia of each link of the robot. Multiple
procedures exist for estimating the dynamic parameters of
robot manipulators:

(1) Physical Experiments. ,e robot is disassembled to
isolate each link. ,e mass can be evaluated directly.
,e first moments can be obtained by evaluating the
counterbalanced points of each link. ,e diagonal
elements of the inertia tensor can be evaluated by
pendular motions. Such methods are tedious and are
not preferred because they require a lot of manual
operations to disassemble the robot and carry out the
experiments. Furthermore, experiments need to be
redone if hardware changes are made to the robot.

(2) Computer Aided Design (CAD). ,e dynamic pa-
rameters of each link are found using their nominal
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geometric and material characteristics. In the design
phase, such investigation can be used in the per-
formance analysis to further improve the design.
However, the accuracy of the parameter estimates is
reduced because the CAD parts are never identical to
the real parts due to the production tolerances.

(3) System Identification. ,e input/output behavior is
analyzed on some planned motion. Parameters are
estimated by minimizing the difference between the
measured output (possibly the current supplied to
the electric actuator) and its mathematical model
evaluated in the input (possibly the angular positions
of the robot joints). Such procedures are preferred
because they generally lead to the most accurate
results while offering flexibility in the case of robot
hardware changes.

For system identification methods, the most common
strategy is a combined Inverse Dynamics Identification
Model and Least Squares (IDIM-LS) method. For such
method, the accuracy of the parameter estimates is generally
affected by measurement noise and modeling errors.

,e issue of measurement noise is often addressed by
generating so-called exciting trajectories and/or filtering the
noisy measurements [2]. Other identification techniques
have also been suggested such as the Extended Kalman Filter
(EKF) [3, 4], algorithms based on Linear Matrix Inequality
(LMI) tools [5], maximum likelihood (ML) approaches [6],
the Set Membership Uncertainty [7], and Huber’s estimator
[8]. However, based on the experimental results, these ap-
proaches do not improve the IDIM-LS, and they were not
validated on 6-degrees-of-freedom (DOF) industrial robots.
To eliminate the need for tuning the bandpass filters that are
applied to the trajectory data, [9, 10] used the Instrumental
Variable (IV) technique, and [11] proposed the Direct and
Inverse Dynamic Identification Models (DIDIM) technique.
,ese methods are based on a closed-loop output error
(CLOE) method using both the direct and inverse dynamic
models of the robot. ,e direct dynamic model is used to
obtain model-based estimates of the position, velocity, and
acceleration signals in contrast to the bandpass filtering
often coupled with the IDIM-LSmethod. In [12], the DIDIM
and CLOE methods were compared to the IDIM-LS method
and it was found that if the IDIM-LS method is coupled with
well-tuned bandpass filtering, the DIDIM and CLOE
methods do not offer any improvements to the IDIM-LS
method. Other methods include identifying the dynamics of
a robotics system using neural networks [13].

Modeling errors will generally lead to a bias of the
parameter estimates and it is an issue yet unsolved in the
system identification for industrial robots. Modeling errors
arises mainly from neglecting the complex and nonlinear
joint dynamics effects resulting in significant deterministic
structural errors that cannot be accounted for by random
variables. Such nonlinear joint dynamics come, for instance,
due to the use of strain-wave type transmissions such as the
Harmonic Drive™ which are often used in collaborative
robots due to their desirable characteristics of high torque
capacity and low weight.

,e works on the identification of dynamic parameters
for collaborative robots are limited. In [14], the essential
parameters were identified for the KUKA LWR 4+ collab-
orative robot assuming a three-parameter friction model. In
[1, 15], dynamics parameter identification was performed
using the KUKA LWR 4+ collaborative robot with friction
neglected. ,e works on the KUKA LWR 4+ collaborative
robot exploited the joint torque sensor located on the output
side of the transmission; thus the joint dynamics do not
affect the measurements. Such sensor hardware is, however,
expensive and is rarely found in industrial robots. In [16], the
dynamic parameters for the 7 DOF Franka Emika Panda
robot were identified with a constrained optimization
procedure to ensure the physical consistency of the pa-
rameters. In [17], the parameters for the 2 × 7 DOF ABB IRB
14000 (YuMi) collaborative robot were identified. ,e fact
that very simple models of the friction are employed with
Coulomb and linear viscous friction and that joints are
assumed rigid are common in the mentioned works. Such
assumptions on the joint dynamics characteristics for strain-
wave transmissions are serious simplifications of the real
dynamic characteristics.

To address the mentioned limitations of the prior art, we
propose a new method for estimating the dynamic pa-
rameters of collaborative robot manipulators considering
the flexible joint dynamics effects. Firstly, the dynamics of
the Universal Robots UR5e collaborative robot manipulator
are developed in closed form using the modified Denavit-
Hartenberg convention and the Recursive Newton–Euler
Algorithm. Secondly, the dynamic equations are linearly
parametrized and the dimension of the parameter space is
reduced to a minimum. ,irdly, the proposed rotor dy-
namics compensation is introduced to reduce modeling
errors. ,e novelty lies in the rotor dynamics compensation
in which two built-in rotary encoders are utilized per joint,
one at each side of the transmission element, to effectively
compensate the complex nonlinear joint dynamics effects of
the Universal Robots UR5e robot manipulator identified
prior to this work [18,19]. Any unmodeled friction is
handled by augmenting the set of dynamic parameters with
Coulomb and viscous friction coefficients for each joint. ,e
parameters are then estimated by a WLS procedure with the
weighting equal to the inverse of the estimated covariance
matrix. Lastly, the calibrated dynamic model is validated on
new trajectories that were not used for the estimation (cross-
validation principle). ,e general methodology of the dy-
namics calibration in this work is illustrated in Figure 1. ,e
two-encoder setup is illustrated by the Robot outputting two
angular position variables q and θ for the link and rotor,
respectively.

,e distinguished contributions of this work include the
following: (1) a linear parametrization describing the dy-
namics of the UR5e collaborative robot manipulator has
been developed, (2) the complex nonlinear dynamic friction
characteristics and rotor inertia have been considered, (3)
theminimal set of base parameters that describe the dynamic
behavior of the UR5e robot has been accurately estimated,
and (4) the performance of the calibrated dynamic model
has been validated.
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,e rest of the paper is organized as follows: Section 2
describes the mathematical model of the Flexible-Joint Robot
(FJR) manipulator. In Section 3, the linear parametrization of
the dynamics is described. In Section 4, the identification
procedure is described and the results of the identification are
presented. In Section 5, the calibrated dynamic model is
validated and compared to a model obtained with parameters
from a CAD model. Section 6 concludes the work and
presents the challenges for our ongoing research.

1.1. Notations. ,e notation used in the paper is mostly
standard. Let R be the set of real numbers, N be the set of
nonnegative integers, and N+ be the set of positive integers.
Let x ∈ Rn be a vector of n real numbers; then xi is its ith entry,
xT its transpose, x is the mean value of the elements of x, and
‖x‖ is the 2-norm. Let x denote an estimate of x and let x ≜ x −

x be the estimation error. Given a function g: G⟶ R, let
sgn: R⟶ −1, 0, 1{ } be the signum function defined such
that sgn(g) � −1 if g< 0, sgn(g) � 0 if g � 0, and sgn(g) � 1
if g> 0. If g: G⟶ Rn is a vector function, the signum vector
function sgn(g) � [sgn(g1) · · · sgn(gn)]T. Given a square
real matrix A ∈ Rn×n, let A≻ 0 indicate that A is positive
definite; that is, xTAx > 0 for any nonzero column vector x of
n real numbers. Let diag: Rn⟶ Rn×n map a vector of n

elements to a diagonal matrix with the ith element of the
vector on its ith diagonal entry and zero everywhere else.
Similarly, let diag− 1: Rn×n⟶ Rn map the diagonal elements
of an n × n matrix to vector of n elements with the ith diagonal
element of the matrix on the ith element of the vector.

2. Mathematical Model

,e Flexible-Joint Robot (FJR) manipulator is considered as
an open kinematic chain having N + 1 rigid bodies; the base
and the N links are interconnected by N revolute joints
undergoing deflection and actuated by N electrical actua-
tors. To derive the dynamics of the robot manipulator, the
following standard assumptions are made:

(i) ,e rotors are uniform bodies having their center of
mass on the axis of rotation

(ii) Each motor i � 1, . . . , N is mounted on link i − 1
and moves link i; see Figure 2

Assumption (i) is a basic requirement for long
life of an electrical drive and implies that the
robot dynamics become independent of the
angular position of the rotors. For the UR5e
manipulator, we take advantage of the presence
of large reduction ratios and simply assume the
following.

(iii) ,e angular velocity of the rotors is due only to their
own spinning

,is simplifying assumption was proposed by [20] and is
equivalent to neglecting energy contributions due to the
inertial couplings between the rotors and the links. It also
implies that Coriolis and centripetal terms will be inde-
pendent of the rotors’ angular velocity.

To uniquely characterize the manipulator configuration,
we choose the generalized coordinates (q θ) ∈ R2N being,
respectively, the positions of the links and rotors reflected
through the gear ratios; that is, the rotor positions are seen in
the link space. Given assumptions (i)–(iii), the link and rotor
dynamics become, respectively,

M(q)€q + C(q, _q) _q + g(q) � τJ, (1)

B €θ + f + τJ � Kτ i, (2)

where, in the link equation, M(q)≻ 0 ∈ RN×N is the
symmetric inertia matrix, C(q, _q) ∈ RN×N is the Coriolis
and centripetal matrix, g(q) ∈ RN is the gravity vector, and
τJ ∈ RN is the vector of joint torques which couple the link
and rotor subsystems. In the rotor equation, B≻ 0 ∈ RN×N

is the diagonal matrix of rotor inertias, f ∈ RN is friction
acting on the rotor coordinate, Kτ ≻ 0 ∈ RN×N is the di-
agonal matrix of torque constants, and i ∈ RN is the tor-
que-generating (quadrature) current obtained from the
phase currents via Park’s Transformation. ,e drive-gain
Kτ has been calibrated a priori with special tests; see, for
example, [21].

,e dynamic model of the N link robot manipulator is
obtained in closed form using the Denavit-Hartenberg (DH)
convention [22] with coordinate systems placed as illustrated in
Figure 3 to represent the UR5e manipulator and with the
parameters in Table 1 and the Recursive Newton–Euler Al-
gorithm (RNEA) [22]. In the RNEA, the position vector iPi+1 �

[ai− 1 − di sin(αi−1) di cos(αi−1)]
T and the rotation matrix

Estimation
trajectory Robot Identification

Validation
trajectory

Identified
model

Robot Validation
qd, q̇d, q̈d

qd, q̇d, q̈d
q, θ

q, θ

Kτ i

Kτ i

Kτ i

γ̂B

ˆ

Figure 1: Schematic representation of the methodology of this
work showing the interconnection between the identification and
validation procedures.

Joint i

Link i – 1

Link i
Motor i

θi qi

Figure 2: Kinematic arrangement of motors and links for the FJR
manipulator model. Note that θi is already scaled by the reduction
ratio.
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i+1
i R �

cos qi(  −sin qi(  0

sin qi( cos αi−1(  cos qi( cos αi−1(  −sin αi−1( 

sin qi( sin αi−1(  cos qi( sin αi−1(  cos αi−1( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(3)

To allow a parametrization of the dynamics which is
linear in the inertial parameters, the inertia tensor for each
link is defined relative to the center of rotation (CoR). ,e
RNE algorithm needs the inertia tensor defined relative to
the center of mass (CoM), so the parallel axis theorem
(Steiner’s law) is used for translation; that is,

ICoM,i � ICoR,i − mi PT
C,iPC,i E3 − PC,iP

T
C,i , (4)

with E3 being the 3 × 3 identity matrix, and the vector of
center of mass positions PC,i � PC,i,x PC,i,y PC,i,z 

T
, mi is

the mass of link i, and the symmetric inertia tensor is

ICoR,i �

XXi XYi XZi

XYi YYi YZi

XZi YZi ZZi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

3. Dynamics Parametrization

,e expressions for the torques obtained from the RNE
algorithm can be expressed linearly in the inertial
parameters:

τJ � Y(q, _q, €q )γ, (6)

where the inertial parameters are

γ � γT
1 · · · γT

i · · · γT
N 

T
,

γi � XXi XYi XZi YYi YZi ZZi mXi mYi mZi mi 
T
.

(7)

For a specific robot manipulator, not all 10N inertial
parameters can be identified. Not all the inertial parameters
have an effect on the dynamic model, while others have an
effect only in linear combinations.,e inertial parameters of
a robot can therefore be classified into three groups: fully
identifiable, identifiable in linear combinations only, and
unidentifiable. ,is is due to the kinematic arrangement of
the joints as well as the orientation of the manipulator’s base
with respect to gravity. Table 2 shows the 49 inertial pa-
rameters that appear in the mathematical model.

For the estimation problem to have a unique solution,
the parameters must be linearly independent. ,e set of
linearly independent parameters is called base parameters.
,e number of base parameters bm is [23]

bm ≤ 7nr + 4np − 3 − σ1 − 2ng0, (8)

where nr is the number of revolute joints, np is the number of
prismatic joints, and σ1 � 1 if joint 1 is revolute; otherwise
σ1 � 0; and ng0 � 1 if the rotation axis of joint 1 is parallel to
the direction of the gravitational acceleration; otherwise
ng0 � 0. For a robot manipulator with the kinematic ar-
rangement in Table 1 and the base joint oriented with its
rotation axis parallel to the direction of the gravitational
acceleration, the number of base parameters bm � 36.
,erefore, a number of inertial parameters are grouped into
a fewer number of equivalent parameters using the
regrouping relations [24]:

d1

–a2

–a3 d4

d5
d6

y0

y1

y2

y3 y4

y5

y6
x0

x1,2
x3 x4

x5

x6
z0

z1 z2

z3 z4

z5

z6

Figure 3: Coordinate systems used for describing the kinematics of the UR5e robot using the Denavit–Hartenberg convention.

Table 1: Denavit–Hartenberg parameters of the UR5e robot.

i ai αi di qi

1 0 π/2 d1 q1
2 a2 0 0 q2
3 a3 0 0 q3
4 0 π/2 d4 q4
5 0 −π/2 d5 q5
6 0 0 d6 q6
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XXRi � XXi − YYi,

XXRi−1 � XXi−1 + YYi + 2dimZi + d
2
i mi,

XYRi−1 � XYi−1 + ai−1 sin αi( mZi + ai−1di sin αi( mi,

XZRi−1 � XZi−1 − ai−1 cos αi( mZi − ai−1di cos αi( mi,

YYRi−1 � YYi−1 + cos2 αi( YYi + 2dicos
2 αi( mZi + α2i−1 + d

2
i cos

2 αi(  mi,

YZRi−1 � YZi−1 + cos αi( sin αi( YYi + 2di cos αi( sin αi( mZi + d
2
i cos αi( sin αi( mi,

ZZRi−1 � ZZi−1 + sin2 αi( YYi + 2disin
2 αi( mZi + a

2
i−1 + d

2
i sin

2 αi(  mi,

mXRi−1 � mXi−1 + ai−1mi,

mYRi−1 � mYi−1 − sin αi( mZi − di sin αi( mi,

mZRi−1 � mZi−1 + cos αi( mZi + di cos αi( mi,

mRi−1 � mi−1 + mi.

(9)

,is results in the set of base parameters in Table 3.
,e joint torque is expressed as

τJ � Yb(q, _q, €q )γb, (10)

with the vector of base parameters

γb � ZZR1 XXR2 · · · mY6 
T ∈ Rbm . (11)

3.1. Including the Rotor Dynamics. Combining (2) and (10)
yields

Kτ i − B €θ − f � Yb(q, _q, €q )γb. (12)

Friction torques are considered as a sum of estimates
and error terms. From experience and empirical ob-
servations, the error f ≜ f − f is assumed to contain
Coulomb and viscous friction contributions; that is,
f � FC sgn( _θ) + FV

_θ. ,e nonlinear estimates, as pre-
sented in [19], describe the friction torques in terms of
the angular velocities, load torques, and temperatures.
Rotor inertias B are considered to be known; however,
they could be easily estimated by augmenting the re-
gressor with the angular acceleration of the rotors. ,e
system formulated in terms of base parameters and
augmented with the rotor dynamics and friction dis-
crepancy is

τJ � YB(q, _q, €q )γB + ρ, (13)

τJ � Kτi − B €θ − f , (14)

YB(q, _q, €q ) � Yb(q, _q, €q) diag(sgn( _θ)) diag( _θ) , (15)

γB � γT
b diag− 1 FC( 

T diag− 1 FV( 
T

 
T

, (16)

where the noise ρ due to model errors and measurement noise
is assumed to have zero mean, be serially uncorrelated, and be
heteroskedastic, that is, having a diagonal covariance matrix.

4. Identification

,is section presents the experimental setup, identification
procedure, and results. ,e experiment is carried out using the
setup shown in Figure 4. ,e system consists of the UR5e
collaborative robot manipulator, Teach Pendant, Control Box,
and PC. ,e estimation trajectory is generated using the Teach
Pendant and is sent to the Control Box. ,e Control Box
generates torque commands and sends them to the UR5e, and
the measurements of actual values (q, θ, and i) are sent back
from the UR5e to the Control Box. All the data are then logged
by the PC.

,e identification procedure is illustrated schematically
in Figure 5.

Table 2:,e 49 inertial parameters that appear in the dynamic model of the UR5e manipulator when mounted such that the rotation axis of
the base joint is oriented parallel to the gravitational acceleration.

i XXi XYi XZi YYi YZi ZZi mXi mYi mZi mi

1 – – – – – ZZ1 – – – –
2 XX2 XY2 XZ2 YY2 YZ2 ZZ2 m2PC,2,x m2PC,2,y – –
3 XX3 XY3 XZ3 YY3 YZ3 ZZ3 m3PC,3,x m3PC,3,y m3PC,3,z m3
4 XX4 XY4 XZ4 YY4 YZ4 ZZ4 m4PC,4,x m4PC,4,y m4PC,4,z m4
5 XX5 XY5 XZ5 YY5 YZ5 ZZ5 m5PC,5,x m5PC,5,y m5PC,5,z m5
6 XX6 XY6 XZ6 YY6 YZ6 ZZ6 m6PC,6,x m6PC,6,y m6PC,6,z m6
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Data is sampled at times t(k) � kTS, k � 1, 2, . . . , M,
where TS � 1ms is the sampling period, and the sampling
frequency fS � 1 kHz.

4.1. Joint Position, Velocity, and Acceleration Estimation.
,e measured trajectory data q and θ are filtered by a 4th-
order Butterworth filter in both the forward and reverse
directions to eliminate lag of the filtered trajectories q and θ.
To keep the useful signal of the robot dynamics in the filter
bandwidth, the cutoff frequency of the filter is chosen to be 5
times the frequency of the robot dynamics; that is,
5fdyn � 50Hz. Angular velocities and accelerations _q, €q, _θ,

and €θ, respectively, are obtained through a central difference
procedure. ,e combination of the two-pass Butterworth
filter and central difference is referred to as the band-pass
filtering process.

4.2. Parallel Filtering and Downsampling. ,e sampling
frequency is much higher than the frequencies of interest in
the dynamics, so to reduce the required computational
resources the data is parallel-filtered and then decimated/
downsampled. Firstly, the samples k � 1, . . . , M are ordered
in the measurement vector yi and observation matrixWi for
each joint i � 1, . . . , N individually; that is,

yi � τJ,i,1 · · · τJ,i,k · · · τJ,i,M 
T
,

Wi � WT
i,1 · · ·WT

i,k · · ·WT
i,M 

T
,

Wi,k � YB,i qk, _qk, €qk ,

(17)

with YB,i(qk, _qk, €qk) being the ith row of the regressor
evaluated in the kth sample of the filtered trajectory. ,e
parallel filtering of the measurement vector and observation
matrix for each joint is conducted by passing the signals
through a 4th-order Butterworth filter in both the forward
and reverse directions having a cut-off frequency of
2fdyn � 20Hz. ,e downsampling factor is 0.8fS/(4fdyn) �

20 [10]; that is, every 20th sample is used for parameter
estimation. ,e filtering and downsampling of yi and Wi

produce estimates yi and Wi, respectively.

4.3. Torque Computation. ,e filtered and downsampled
data are ordered joint-wise in the measurement vector and
observation matrix as

y � yT
1 · · · yT

i · · · yT
N 

T
∈ RN·M

,

W � WT
1 · · ·WT

i · · ·WT
N 

T
∈ RN·M×bm .

(18)

,e base parameters are estimated by solving the WLS
problem:

γB � argmin
γB

WTG y − WγB( 
����

����
2

� WTGW 
− 1
WTGy,

(19)

where each weight in G is equal to the reciprocal of the
estimated standard deviation of the error.

G � diag(S),

S � S1 . . . Si . . . SN ,

Si �
1

σi,1
. . .

1
σi,j

. . .
1

σi,bm,i

⎡⎣ ⎤⎦, j � 1, . . . , bm,i,

σ2i,j �
τi − YB,iγB,i

����
����
2

M − bm,i

,

(20)

with bm,i being the number of base parameters related to link
i. Such weighting operation normalizes the error terms in
(13).

4.4. Trajectory. ,e trajectory used for parameter estimation
should allow complete identification of the system; that is,
for positive constants α and β, it should satisfy some per-
sistently exciting condition:

βE≥ 
T

0
WTWdt≥ αE, (21)

Table 3: ,e 36 base parameters for the UR5e manipulator when
mounted such that the rotation axis of the base joint is oriented
parallel to the gravitational acceleration.

i XXi XYi XZi YZi ZZi mXi mYi

1 – – – – ZZR1 – –
2 XXR2 XY2 XZR2 YZ2 ZZR2 mXR2 mY2
3 XXR3 XY3 XZ3 YZ3 ZZR3 mXR3 mY3
4 XXR4 XY4 XZ4 YZ4 ZZR4 mX4 mYR4
5 XXR5 XY5 XZ5 YZ5 ZZR5 mX5 mYR5
6 XXR6 XY6 XZ6 YZ6 ZZ6 mX6 mY6

Teach
pendant

Control box

UR5e

PC

Figure 4: Experimental setup used for the dynamics identification.
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where α is the degree of excitation and β/α is the condition
number of WTW. ,e trajectory in Figure 6 is used for
yielding a condition number for the regressor
cond(W) � 66.,e trajectory is 31 seconds long; hence, with
a sampling frequency of 1000Hz and a downsampling factor
of 20, the total number of samples is 1550. Another approach
to the trajectory design is to optimize the condition number
of the regressor with respect to the trajectory subject to
kinematic and dynamic constraints, for example, position,
velocity, acceleration, and current.

4.5.Model QualityMetric. ,emodel quality is evaluated by
the sum of each joint’s mean squared error normalized by its
average torque magnitude; that is,

NMSE � 
N

j�1


M

k�1

τJ,i,k − τJ,i,k 
2

τJ,i,k




. (22)

4.6. Results. Values of the identified base parameters are
shown in Table 4. ,e effectiveness of the method is dem-
onstrated by considering the accuracy of the dynamic model
with the optimized parameters compared to our baseline, a
model with parameters obtained through CAD software.,e
model accuracy improves 81.4% from a NMSE of 506.8Nm
to that of 94.5Nm.

,e parameters are generally well estimated with small
relative standard deviations, which demonstrates the

Estimation
trajectory Controller Robot

Zero-phase LP filtering
and

central difference

Linearized
dynamic model

Parallel filtering
and

downsampling

OLS
estimation

WLS
estimation

Rotor dynamics
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Kτ i q, θ

˙̂θ, ¨̂θ q̂
˙̂q
¨̂qτJ,i

—Wi(q̂, ˙̂q, ¨̂q)G
W
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γ̂B

qd, q̇d, q̈d

Figure 5: Schematic representation of the Inverse Dynamics Identification Model with Weighted Least Squares (IDIM-WLS) estimation
and rotor dynamics compensation procedure. ,e estimation trajectory sends desired angular positions qd, _qd, €qd to the controller, which
generates torque commands Kτi to the robot. ,e angular positions of the links and rotors, q and θ, respectively, are measured and then
filtered to generate smoothed estimates q and time-derivatives _q, €q, _θ, and €θ. ,e rotor quantities are passed to the Rotor dynamics
compensation, and the link quantities are passed to the Linearized dynamic model.,e Rotor dynamics compensation augments the measured
current with the rotor dynamics based on (15) to estimate joint torques τJ. ,e Linearized dynamic model generates regressorsWi for each
joint i. ,e joint torque estimates and regressors are filtered and downsampled to generate, respectively, the measurement vector y and
observation matrixW. ,e measurement vector and observation matrix are passed to the OLS Estimation andWLS estimation procedures.
,e OLS procedure produces the weighting matrix G used in the WLS procedure. Finally, the WLS estimation provides the dynamic
parameters estimates γB.
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Figure 6: Trajectory used for the parameter estimation yielding a low condition number of the regressor matrix cond(W) � 66.
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effectiveness of the identification procedure. ,e values of
parameters YZ4 and ZZR4 are, however, subject to relative
standard deviations of 19% and 20%, respectively. ,is is an
indication of either (1) suboptimality of the chosen trajectory
or (2) the parameter being of no big value to the torque
computation. YZ4 is a product moment of inertia (off-di-
agonal element in the inertia tensor) and is therefore likely to
be less important in the dynamics. ZZR4 is a mass moment
of inertia (diagonal element in the inertia tensor) and the
reduced accuracy in its estimation is likely due to insufficient
excitation by the chosen trajectory.

5. Validation

,e purpose of the dynamic model calibration is to improve
the torque estimation accuracy for arbitrary trajectories.
,us, we evaluate the accuracy of our calibrated model on
three trajectories different from the one used for parameter
estimation. ,e measured joint torques are compared to the
torques output by the calibrated dynamic model as well as

relative to our CAD model baseline. Improvements in
NMSE and improvements relative to our baseline are shown
in Table 5. ,e results show a relative improvement of the
calibrated dynamic model compared to the dynamic model

Table 4: Estimated values and relative standard deviation of the 36
base parameters obtained by solving the WLS problem with rotor
dynamics compensation.

Base param. Value %σcB

ZZR1 2.1981 0.099
XXR2 −1.6552 0.130
XY2 −0.0405 1.975
XZR2 0.3734 0.210
YZ2 0.1278 1.367
ZZR2 −4.1774 0.198
mXR2 −0.0132 0.001
mY2 −0.7336 0.141
XXR3 −0.1563 0.166
XY3 0.1302 0.225
XZ3 −0.1714 0.249
YZ3 0.0212 0.433
ZZR3 −1.8774 2.908
mXR3 0.0428 0.001
mY3 −0.0428 0.030
XXR4 −0.0454 0.609
XY4 0.0144 0.422
XZ4 0.0166 0.767
YZ4 0.0005 18.894
ZZR4 −0.0005 20.082
mX4 −0.0112 0.043
mYR4 −0.1866 0.001
XXR5 0.0239 0.450
XY5 −0.0391 0.055
XZ5 0.0194 0.080
YZ5 0.0065 0.286
ZZR5 0.0315 0.076
mX5 −0.0013 0.137
mYR5 0.0442 0.005
XXR6 0.0187 0.132
XY6 0.0059 0.107
XZ6 0.0187 0.054
YZ6 −0.0002 3.825
ZZ6 0.0209 0.157
mX6 0.0036 0.040
mY6 −0.0043 0.041

Table 5: Normalized Mean Squared Error (NMSE) of the dynamic
models; CAD model with parameters obtained from a CAD model
of the robot and calibrated with parameters estimated through the
WLS procedure with rotor dynamics compensation. Improvements
in NMSE and relative to CADmodel for three different trajectories.

Traj. NMSE CAD
model

NMSE
calibrated

Relative improvement
(%)

1 325.9 233.0 28.5
2 1245.7 1040.4 16.5
3 334.0 250.9 24.9
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Figure 7: Results of measurement and estimate using the calibrated
parameters on the validation trajectory.
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Figure 8: Results of measurement and estimate for joint no. 2 with
the calibrated parameters.
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Figure 9: Results of measurement and estimate for joint no. 3 with
the calibrated parameters.
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Figure 10: Results of measurement and estimate for joint no. 4
with the calibrated parameters.
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Figure 11: Results of measurement and estimate for joint no. 5
with the calibrated parameters.
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Figure 12: Results of measurement and estimate for joint no. 6
with the calibrated parameters.
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Figure 13: Results of measurement and estimate for joint no. 1 with
the CAD model parameters.
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Figure 14: Results of measurement and estimate for joint no. 2
with the CAD model parameters.
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Figure 16: Results of measurement and estimate for joint no. 4 with the CAD model parameters.
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Figure 15: Results of measurement and estimate for joint no. 3 with the CAD model parameters.
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Figure 17: Results of measurement and estimate for joint no. 5 with the CAD model parameters.
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with CAD parameters of 16.5%–28.5% depending on the
trajectory. Time-series torque data for each of the joints of
the UR5e dynamic model with calibrated parameters are
shown in Figures 7–12 for trajectory no. 1. Time-series
torque data for each of the joints of theUR5e dynamic model
with CAD model parameters are shown in Figures 13–18 for
trajectory no. 1. ,e reduction in torque prediction error
(NMSE) of 16.5%–28.5% of the calibrated dynamic model
compared to the dynamic model with CAD model pa-
rameters together with the time-series torque data in
Figures 7–18 validates the effectiveness of the calibration
procedure.

6. Conclusion

Collaborative industrial robots often utilize strain-wave type
transmissions due to their desirable characteristics of high
torque capacity and low weight. However, their inherent
complex nonlinear behavior introduces significant errors
and uncertainties in the robot dynamics calibration,
resulting in decreased performance for motion and force
control tasks and lead-through programming applications.

,is paper presented a new method for the dynamics
parametrization and calibration of collaborative industrial
robot manipulators. ,e method combines the IDIM-WLS
method for rigid robot dynamics with complex nonlinear
expressions for the rotor-side dynamics to obtain increased
calibration accuracy. Two angular position measurements
per robot joint are utilized, one at each side of the strain-
wave transmission, to effectively compensate the rotor in-
ertial torques and nonlinear dynamic friction that were
identified in our previous works.

,e effectiveness of the method was demonstrated by the
application to the Universal Robots UR5e collaborative
robot manipulator. ,e results were very accurate estimates

of the dynamic parameters. Relative improvement of 16.5%
to 28.5% compared to a CAD model baseline was
experienced.

,e distinguished contributions of this work can be
summarized as follows: (1) a linear parametrization de-
scribing the dynamics of the UR5e collaborative robot
manipulator has been developed, (2) the complex nonlinear
dynamic friction characteristics and rotor inertia have been
considered, (3) the minimal set of base parameters that
describe the dynamic behavior of the UR5e robot has been
accurately estimated, and (4) the performance of the cali-
brated dynamic model has been validated.

Our ongoing work that we are going to challenge
consists of the following:

(1) ,e number of identifiable parameters can be in-
creased by two (from 36 to 38) if the robot is
mounted with the base joint axis of rotation not
being parallel to the direction of the gravitational
acceleration.

(2) ,e trajectory used for parameter optimization could
possibly be optimized through the use of some
optimization procedures. Such trajectory optimiza-
tion procedures were discussed generally in [25] and
applied in [26] on a KUKA 361 IR industrial robot.

(3) ,e optimization problem could be constrained to
enforce the positive-definiteness of the inertia matrix
using either Sylvester’s theorem or Cholesky de-
composition. ,is will ensure invertibility of the
inertia matrix, which is useful for model-based
control design. From Sylvester’s theorem, it is pos-
sible to find conditions for the parameters [27],
whereas, for Cholesky decomposition, a tolerance is
defined and it takes the noise andmeasurement error
into account [28].
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Figure 18: Results of measurement and estimate for joint no. 6 with the CAD model parameters.
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Chapter 6

Adaptive Feedforward Control
[Journal Paper 3]

Adaptive Feedforward Control for a Collaborative
Industrial Robot Manipulator Using a Novel Exten-
sion of the Generalized Maxwell-Slip Friction Model
[169]
© 2020 Elsevier Ltd, reprinted with permission from Elsevier Ltd.

6.1 Introduction

The complex nonlinear behavior of strain-wave transmissions motivates
the use of dynamic friction models. In particular, the GMS friction model
[74, 75] has been successfully applied to describe the characteristics of
strain-wave transmissions [76, 77]. The Coulomb friction torque is known
to depend on the load torque. However, existing strategies which seek to
describe this dependency are discontinuous at zero velocity [170, 69, 29].
As such, they do not accurately describe the real load torque dependent
friction phenomena. Furthermore, the friction changes with the lubricant
temperature and the wear and tear of the robot joint – both of which are
difficult to estimate accurately. The temperature affects the viscous friction
[28] and the wear and tear affects the Coulomb friction [171]. The above-
mentioned challenges motivates the development of a new torque-dependent
dynamic friction model and adaptive friction compensation.



94 Chapter 6. Adaptive Feedforward Control [Journal Paper 3]

(a)

(b)

High joint torque

Zero joint
torque

FIGURE 6.1: Robot manipulator configurations resulting in
high (a) and zero (b) torque of the second joint.

6.2 Method

First, an extension to the GMS (E-GMS) is proposed to handle in a combined
framework; 1) torque dependent friction characteristics and 2) hysteresis
characteristics that depend on the angular position. The E-GMS combines a
unit hysteresis model with a function that describes the Coulomb friction
in terms of the load torque. Thus, the discontinuity at zero-velocity of
existing strategies is overcome. We prove that the E-GMS model, as desired,
provides a steady-state output equal to that of the GMS model. The map
from load torque to Coulomb friction torque is generated by conducting a
robot joint motion with several velocity reversals in different configurations
that explore different values of load torque, see Fig. 6.1.

Then, an E-GMS based adaptive feedforward control strategy is pro-
posed to compensate the effects of wear and tear of the robot joint as well
as inaccurate temperature compensation. The Coulomb friction and excess
viscous friction is estimated using a gradient-type adaptive law with a
quadratic cost function. Robustness is addressed by parameter projection
and a conditional statement to ensure the regressor be persistently excit-
ing. The stability of the method is proven in the sense of Bounded-Input,
Bounded-Output (BIBO).



6.3. Findings 95

6.3 Findings

For the experimental validation the E-GMS model is compared to the exist-
ing strategy of compensating load-torque dependent friction. A trajectory is
designed which includes velocity reversals with the gravity torque varying
from zero to a large torque (>150 Nm). It is found that the torque prediction
performance is improved by a factor 2.1 and the tracking error is improved
by a factor 1.5.

The adaptive feedforward controller is proven stable in the sense of
Bounded-Input, Bounded-Output (BIBO). Experimental validation is con-
ducted by comparing the adaptive controller to a non-adaptive controller
with parameters that are known to be off but are close enough to not cause
the safety system to protectively stop the robot. The validation trajectory
consist of the waypoints illustrated in Fig. 6.2. The results show the torque
prediction to be improved by 84 % and the tracking control is improved by
20 %.

(wp1) (wp2) (wp3)

(wp4) (wp5) (wp6)

FIGURE 6.2: Waypoints used in the validation of the adap-
tive feedforward control. A 7.5 kg payload was attached at

the end-effector.
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6.4 Reflection

The results validate the principle of the E-GMS model and its implementa-
tion in UR robots. With the improvements in torque prediction and tracking
control of 84 % and 20 %, respectively, the method seems effective for
industrial robot manipulators with strain-wave transmissions.

The E-GMS based adaptive feedforward controller provides a method
for compensating the effects of wear and inaccurate temperature estimation.
The improvements in torque prediction and tracking control (84 % and 20
%, respectively) underlines its effectiveness.

In addition to tracking control, the method has perspectives in terms of
safety and lead through programming. In terms of safety, the adaptation
can modify the mathematical model used by the robot to compute the
torque reference of the safety system. Thus, the adaptive controller must
be certified similarly to other safety features of UR robots, i.e. according to
applicable standards ISO 13849 and ISO 10218 [3–6]. Generally, it is not a
problem certifying adaptive controllers [172].

6.5 Author’s Contribution

The author proposed the method, implemented the method in the exist-
ing UR robot controller with assistance from UR employees Martin Træd-
holm and Anders S. Knudsen, performed experiments, and prepared the
manuscript with inputs from the co-authors.
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Collaborative industrial robots often use strain-wave transmissions which display a highly 

nonlinear behavior. In particular, the friction torque depend on the load torque and the 

hysteresis characteristics were recently found to depend on the joint angular position. 

This paper presents a novel extension of the Generalized Maxwell-Slip friction model to 

describe said phenomena in a combined framework. The method overcomes the disconti- 

nuity around zero velocity of existing models. Experiments on the Universal Robots UR5e 

manipulator show superior performance in terms of torque prediction accuracy and track- 

ing performance of the proposed method. 

An adaptive feedforward friction compensator is proposed based on the extended Gener- 

alized Maxwell-Slip friction model to compensate the time-variations of the Coulomb and 

viscous friction due to, respectively, wear and mispredictions of the lubricant temperature. 

The adaptive estimator relies on the sensing hardware readily available in the joints of the 

Universal Robots manipulators, i.e. two absolute rotary encoders; one at each side of the 

transmission, current sensing for the electric actuator, and a temperature sensor. Results 

show a considerable reduction of the torque prediction error and tracking error. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

For industrial robot manipulators, and in particular collaborative robots, the ability to accurately predict the actuator 

torques required to realize the desired task is highly important. An increased accuracy of torque predictions generally lead to 

improved robot performance, specifically enhanced accuracy in motion and force control tasks [1,2] , smoother lead-through 

programming 1 experience [3,4] , and increased performance of robot safety systems [5–7] . Additional benefits include lower 

energy consumption and the possibility to use hardware of reduced cost, e.g. less accurate sensors. 

Collaborative robots most often utilize strain-wave type transmissions such as the Harmonic Drive TM [8] due to their 

desirable characteristics of high torque capacity and low weight. However, their inherent complex nonlinear friction and 

hysteresis characteristics complicates the accurate mathematical modeling and thus leads to decreased robot performance if 

not modeled and properly compensated. 
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teaching . 
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In addition to the challenge of accurate joint dynamics modeling exists another challenge in which the changes in am- 

bient temperature and the wear and tear of the robot joints cause time-variation of the friction characteristics and thus 

introduce errors and uncertainties to the mathematical models, which leads to decreased robot performance if uncompen- 

sated. The temperature affects the viscous friction [9] while the wear and tear affects the Coulomb friction [10] . 

The above-mentioned challenges of accurate joint dynamics modeling and time-varying friction characteristics motivates 

the use of: 1) Dynamic friction compensation to compensate the complex nonlinear dynamics of the strain-wave transmis- 

sions, and 2) adaptive control to continuously learn from the inaccuracies of the mathematical models and adapt the models 

to better represent the real robotic system. Such compensation is typically introduced in the feedforward part of the control 

structure [11] , i.e. eliminating the frictional effects by adaptive feedforward dynamic friction compensation . 

Friction is by nature a complex fluid dynamic phenomenon. To accurately describe the frictional behavior at near-zero 

velocities, dynamic friction models are required. While the LuGre model [12] have attained much interest in the general 

robotics community, the Generalized Maxwell-Slip (GMS) model [13,14] have proven especially useful for modeling the fric- 

tion and hysteresis characteristics of strain-wave transmissions [15,16] due to its ability to describe the rate-independent 

hysteresis phenomenon. Among others, the GMS model has proven successful for describing the dynamic friction character- 

istics of the Universal Robots manipulators, see [17,18] . 

Several studies have been conducted to characterize the dynamics of strain-wave transmissions. The steady-state friction 

characteristics of a strain-wave transmission is known to depend on the angular velocity, temperature, and load torque. 

However, existing dynamic friction models with load torque dependency does not solve the discontinuity around zero- 

velocity. Also, in Dong et al. [19] the effects of wave generator radial offset was investigated theoretically and the consequent 

effects were uneven distributions of the backlash and flexspline preload over the angular position. In [18] the magnitude of 

the backlash was indeed observed to depend on the angular position of the Universal Robots UR5e manipulator. 

Some works presented adaptive friction compensation based on the GMS friction model. Nilkhamhang and Sano 

[20,21] developed a switching adaptive controller based on the GMS model with linearized Stribeck friction function. Sta- 

bility was ensured by parameter projection and numerical simulations demonstrated parameter convergence. However the 

choice of switching function is not suited for implementation in real systems as noted by Grami and Bigras [22] . Grami and 

Bigras identified the GMS friction model using the robust adaptive observer developed by [23] . The observer was verified by 

numerical simulation of a single-operator GMS model. In [24] their method was further improved by filtering the regressor 

to respect the requirement of Lipschitz continuity. However, the issue of the ideal switch was not solved. In [25,26] a recur- 

sive least squares estimator with exponential forgetting was proposed to adapt the DNLRX 

2 model – a GMS friction model 

combined with FIR filters for the state vector and input position. Experimental results on an XY positioning stage showed 

great performance for the adaptive DNLRX model compared to a standard PID controller. To further enhance the tracking 

performance of GMS based feedforward control systems, Jamaludin et al. [27] designed an inverse model-based disturbance 

observer. Such strategy is indeed effective for increasing the tracking control performance. However, since the robot does not 

learn from the time-varying friction characteristics and on-line update the friction model, the disturbance observer strategy 

does not improve the robot performance in terms of safety. Other observers relevant for state estimation includes high-gain 

observers [28] , sliding-mode observers 

The aforementioned studies does not solve all challenges related to accurate actuator torque prediction for collaborative 

industrial robot manipulators. The immediate negative consequences are related to the robot safety, motion and force control 

performance, and lead-through programming experience. 

In this paper, we present an extension to the GMS friction model to handle in a combined framework the load torque 

dependent Coulomb friction and the dependency of backlash on the joint angular position. We prove that the steady-state 

response of the extended GMS model is equivalent to that of the original GMS model. The nonlinear viscous friction is 

considered to depend on angular velocity and temperature. Additionally, a new gradient-based adaptive control strategy 

is proposed based on the extended GMS friction model to address the time variation of the friction characteristics. The 

extended GMS model and adaptive feedforward compensator are validated on the Universal Robots UR5e collaborative robot 

manipulator. 

The organization of this paper is as follows: Section 2 presents the adaptive feedforward dynamic friction compensation 

strategy. Next, the mathematical model of the robot manipulator is presented in Section 3 , and in Section 4 the mathemat- 

ical model of the robot joint dynamics is detailed. Section 5 presents the Extended GMS friction model which is allowed to 

depend on the joint torque and backlash. The friction model is validated on the Universal Robots UR5e robot manipulator. In 

Section 6 the adaptive estimator is presented, and its effectiveness is demonstrated on the UR5e robot. Section 7 concludes 

on the work and presents our ideas for future research. 

1.1. Notations 

Let R be the set of real numbers, Z the set of integers, and N the set of non-negative integers, denote then R + = { x ∈ R : 

x ≥ 0 } and N + = { x ∈ N : x > 0 } ; | · | denotes the absolute value and || · || is the 2-norm; x ∈ R 

n is a vector of n real numbers, 

x i is the i th entry of x , x T its transpose, x the mean value the elements of x , let then 

ˆ x be an estimate of x and define the 

2 Dynamic NonLinear Regression with direct application of eXitation. 

2 

98 Chapter 6. Adaptive Feedforward Control [Journal Paper 3]



E. Madsen, O.S. Rosenlund, D. Brandt et al. Mechanism and Machine Theory 155 (2021) 104109 

Fig. 1. Model-based control structure with adaptive feedforward dynamic friction compensation. 

error vector ̃  x � x − ˆ x ; given a square real matrix A ∈ R 

n ×n let A � 0 indicate that A is positive definite, i.e. x T A x > 0 for any 

non-zero column vector x of n real numbers; let diag : R 

n → R 

n ×n map a vector of n elements to a diagonal matrix with the 

i th element of the vector on its i th diagonal entry and zero everywhere else. 

2. Adaptive feedforward control 

The friction characteristics cannot be predicted accurately by time-invariant models, hence an adaptive controller is de- 

signed and implemented to maintain and improve the accurate torque prediction capabilities during the lifetime of the robot 

while subject to time-varying friction characteristics due to the wear and tear of the robot joint as well as temperature mis- 

predictions. This section outlines our proposed strategy for adaptive feedforward dynamic friction compensation. 

The control strategy is illustrated schematically in Fig. 1 . It includes static and adaptive feedforward and PID feedback 

control with feedback gains scaled by the inertia matrix, i.e. the combined feedforward and feedback control strategy con- 

stitute the well-known Computed-Torque Controller (CTC). The adaptive feedforward friction compensation is realized by the 

implementation of two identical Extended GMS friction models. While Extended GMS Friction Model 1 operates as a feedfor- 

ward inverse model, the Parameter Estimation works in parallel to the Robot Manipulator and comprises an identical friction 

model to calculate the model errors. The model errors are used to drive the adaptation of the linear model parameters by a 

gradient-based adaptive law. 

3. Flexible-joint robot manipulator model 

The articulated Flexible-Joint Robot (FJR) manipulator is considered as an open kinematic chain having N + 1 rigid bodies; 

the base and the N links, interconnected by N revolute joints undergoing angular deformation due to joint flexibility around 

the axes of rotation, each joint being actuated by an electric actuator. The manipulator configuration ( Fig. 2 ) is characterized 

by the generalized coordinates (q θ) ∈ R 

2 N being, respectively, the angular position of the links and rotors (reflected through 

the gear ratio). From the standard assumptions proposed by Spong [29] , the dynamics are 

�
 M ( � q ) ̈� q + 

�
 C ( � q , ˙ � q ) ˙ � q + 

�
 g ( � q ) = τ J (1) 

�
 B ̈θ + 

�
 f + τ J = 

�
 K τ
�
 i (2) 

where in the link equation, M (q ) � 0 ∈ R 

N×N is the symmetric inertia matrix, C (q , ˙ q ) ∈ R 

N×N is the matrix of Coriolis and 

centripetal terms, g (q ) ∈ R 

N is the vector of gravity torques, and τ J ∈ R 

N is the vector of joint torques, which couple the link 

Fig. 2. Kinematic arrangement of motors and links for the Flexible-Joint Robot (FJR) manipulator model. The rotor angular position θ j is already scaled by 

the reduction ratio. 
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and rotor subsystems. Some references refer to this torque as the load torque experienced by the motor. The joint torques τ J 

can be expressed in terms of the joint deformation θ − q if the joint flexibility properties are known. Such flexible properties 

are needed for the inverse dynamics of a flexible-joint robot manipulator, however not if rigid joints are assumed. In the 

rotor equation, B � 0 ∈ R 

N×N is the diagonal matrix of rotor inertias reflected to the output-side of the transmission, f ∈ R 

N 

is the vector of friction torques acting on the rotor coordinate, K τ � 0 ∈ R 

N×N is the diagonal matrix of electric actuator 

torque constants multiplied by the transmission ratios, and i ∈ R 

N is the torque-generating (quadrature) current obtained 

from the phase currents via Park’s Transformation . In the context of control, the control input u = K τ i , i.e. the motor torque. 

4. Robot joint friction & hysteresis model 

This section presents the mathematical modeling of the joint friction and hysteresis. The joint transmission torques and 

friction phenomena are uncoupled among the joints, so for simplicity of notation we consider in this section a single joint 

which simplifies the vector equations into scalar equations. Indices to denote the arbitrary joint are omitted. Let the rotor 

angular velocity ω� d θ /d t , t ∈ R + , the joint temperature T ∈ R , and the joint torque τJ ∈ R . 

The friction torque is considered a summation of a Coulomb friction torque F C : R 

M × R × R → R and a nonlinear viscous 

friction torque F v : R × R → R , i.e. 

f � F C ( � z , ω, τJ ) + F v (ω, T ) (3) 

in which z ∈ R 

M is an internal state. In this work, the term Coulomb friction torque is used to describe the part of the friction 

torque that exist in the transition between the stiction regime and sliding regime – sometimes referred to as dry friction . 

The viscous friction torque is modeled as a continuous function with the same sign as its first argument, i.e. 

ω F v (ω, T ) > 0 ∀ ω � = 0 (4) 

The Coulomb friction torque is considered a multiplication of; 1) a hysteretic function H : R 

M × R → R of the internal state 

z and ω, and 2) a Coulomb friction coefficient function F : R → R of the joint torque τ J , i.e. 

F C ( � z , ω, τJ ) � F(τJ ) H( � z , ω) , 
d 

�
 z 

d t 
� G( � z , ω) (5) 

in which the state equation G(·) describes the dynamics of the internal state vector z as a first-order differential equation of 

a general form similar to that of the original GMS model [14] . The function H is a hysteretic function with nonlocal memory 

characteristics which is at most unitary in magnitude, i.e. 

−1 ≤ H( � z , ω) ≤ 1 ∀ 

�
 z (6) 

and the Coulomb friction coefficient is an even and positive function, i.e. 

F(−τJ ) = F(τJ ) > 0 ∀ τJ (7) 

Some limiting conditions on the functions H(·) and G(·) apply, namely, for constant non-zero velocities, the steady-state 

friction torque is a function of the angular velocity and joint torque alone and 

G( � z , ω) = 0 and | ω| H( � z , ω) = ω (8) 

In other words, H(z , ω) = −1 if ω < 0 and H(z , ω) = 1 if ω > 0, thus 

f = F(τJ ) ω / | ω | + F v (ω, T ) (9) 

4.1. Identification of no-load coulomb friction and viscous friction 

The dependency of the no-load friction torque on angular velocity and temperature is identified by cooling the robot 

to 9 ◦C, then placing it in an ambient temperature of approximately 20 ◦C and rotating a single robot joint with different 

constant angular velocities with no external wrench applied and with the joint axis of rotation oriented parallel to the 

direction of the gravitational acceleration. The robot joint will naturally heat up while the constant angular velocity motions 

are performed. 

In this case, (1) simplifies to 0 = τ J , hence (2) becomes f = K τ i and due to K τ being diagonal we have for each joint 

f = K τ i . Further, using (9) in K τ i = f leads to 

K τ i = F(0) ω / | ω | + F v (ω, T ) (10) 

The model for the viscous friction torque is defined such that for some temperature T = T 0 the contribution from the model 
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Fig. 3. No-load Coulomb friction and viscous friction in terms of the angular velocity and with a fixed temperature for T = T 0 = 20 ◦C for the base joint of 

the Universal Robots UR5e robot manipulator. 

Fig. 4. No-load Coulomb friction and viscous friction in terms of the angular velocity and temperature for the base joint of the Universal Robots UR5e 

robot manipulator. 

for the temperature dependency equals zero, thus 

F v (ω, T ) = sgn (ω) 
(
(F S − F(0)) exp [ −(| ω| /V S ) 

μ] + 

√ 

| ω| (F T, 1 (T − T 0 ) + F T, 2 (T − T 0 ) 
−3 

))
+ F V, 1 ω + F V, 2 | ω| ω + F V, 3 ω 

3 (11) 

where F S , V S , μ, F V, 1 , F V, 2 , F V, 3 , F T, 1 , F T, 2 ∈ R are, respectively, the Stribeck friction coefficient, Stribeck velocity, Stribeck shape 

factor, velocity friction coefficients, and temperature friction coefficients. 

The friction torque of the base joint of the UR5e robot manipulator is shown in Fig. 3 in terms of the angular velocity 

with the temperature T = T 0 = 20 ◦C fixed, and shown in Fig. 4 in terms of both the angular velocity and temperature. 

The set of optimum parameters are found through iterative nonlinear optimization. In particular, we used a Quasi- 

Newton method with a cubic line search procedure and updating the Hessian matrix approximation by the Broyden-Fletcher- 

Goldfarb-Shanno (BFGS) method. The set of optimum parameters is assumed to be a global optimum because the exact same 

parameter values are found for different starting points. 

Figs. 3 and 4 show levels of friction torques comparable to the levels found in the SIASUN 7-axis robot [30] , which is also 

equipped with strain-wave transmissions, as well as in our previous works on the UR5e robot [17,18] . The level of friction 

should be seen in view of the max rated torque of the joint; that is, a 30 N m friction torque corresponds to 20% of the 

max rated torque of 150 N m for the size 3 joint of the Universal Robots UR5e robot. 

5. Joint torque and position dependent generalized Maxwell-Slip friction model 

The Generalized Maxwell-Slip (GMS) friction model [13,14] has been successfully applied to model the friction charac- 

teristics of strain-wave transmissions [15,16] . However, the friction torque of robot joints that comprise strain-wave trans- 

missions have been shown to experience an increase in Coulomb friction with the load torque [18,30–32] , which the GMS 

friction model does not describe. In the existing works, this issue is addressed by adding a term describing the depen- 

dence of Coulomb friction on joint torque, such as the linear dependence F C,L sgn( ω) | τ J | [32,33] or squared dependency 

F C,L sgn (ω) τ 2 
J 

[18,34] , where F C,L > 0, however such extensions makes the friction model discontinuous around ω = 0 due 
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Fig. 5. Schematic representation of the Generalized Maxwell-Slip friction model. 

to the sgn( · ) term. In this work, we propose an extension to the GMS friction model for it to describe the load dependent 

friction characteristics. 

In [19] the response of strain-wave transmissions subject to certain geometric inaccuracies was investigated analytically 

and through numerical simulations. It was found that the backlash could depend on the angular position provided eccen- 

tricity errors were present between the wave-generator and the circular spline. In [18] we showed that the strain-wave 

transmissions of the Universal Robots UR5e manipulator do indeed experience such behavior. Thus, the dependency of back- 

lash on the angular position is modeled by H(·) . 
The GMS model can be visualized (see Fig. 5 ) as a parallel connection of M ∈ N + massless block-spring models subject to 

the same input (displacement θ or velocity ω). Each operator i = 1 , . . . , M is characterized by its own spring stiffness k i and a 

maximum spring deformation �i (or equivalently a slip-force limit W i = k i �i ). Let the smooth, 2 π-periodic, and invertible 

function B : R → R + , B(x + 2 n π) = B(x ) , ∀ n ∈ Z describe the backlash in terms of θ . The function B(·) is incorporated 

into the GMS model simply as a scaling of the spring deformation limits and output equation. The spring deformation of 

operator i is defined 

δi � θ − z i , | δi | ≤ B(θ ) �i , ∀ i = 1 , . . . , M (12) 

When operator i sticks δi changes proportionally to θ and when operator i slips | δi | = B(θ ) �i , thus 

d δi 

d t 
= 

{
ω (stick) 
∂ B 
∂ θ

∂ θ
∂ t 

(slip) 
(13) 

The i th operator remains sticking as long as | δi | < B(θ ) �i while slipping until the exerted displacement θ reaches a local 

extremum, i.e. the exerted velocity ω crosses zero. If data is sampled at times t(k ) = k T S , k ∈ N and T S the sampling period, 

the nonlinear state equation of each operator can be described in terms of the change in the exerted displacement. Applying 

a forward difference scheme on (12) and (13) gives 

δi (k + 1) = sgn (θ (k + 1) − θ (k ) + δi (k )) · min {| θ (k + 1) − θ (k ) + δi (k ) | , B(θ (k + 1)) �i } (14) 

The total hysteretic function output is the summation of friction forces for each element multiplied by the inverse of B(·) , 
i.e. 

H( � z , ω) = B 

−1 (θ ) 
M ∑ 

i =1 

F i , F i = k i δi (15) 

Proposition 1. Modifying the GMS friction model with the smooth, 2 π-periodic, and invertible function B : R → R + , i.e. B(x + 

2 n π) = B(x ) > 0 , ∀ n ∈ Z , x ∈ R according to the nonlinear state (14) and output (15) will, for the slip regime, yield an output 

identical to that of the original GMS model ( ∂ B/∂ θ ≡ 0 ) in Rizos and Fassois [35] , thus H(·) will obey (6) , effectively making the 

steady state output invariant to the backlash. 

Proof. In the slip regime | δi | = B(θ ) �i . The sign of δi is provided by (14) . δi (k + 1) = B(θ (k + 1)) �i if θ (k + 1) − θ (k ) ≥ 0 

and δi (k + 1) = −B(θ (k + 1)) �i if θ (k + 1) − θ (k ) ≤ 0 . Because B(θ ) > 0 ∀ θ, the output provided by (15) yields the steady- 

state output to be H( � z , ω) = 

∑ M 

i =1 k i δi which is equivalent to that of the original GMS model. �
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Fig. 6. Coulomb friction torque as a function of the joint torque for the second joint of the Universal Robots UR5e robot manipulator. 

Based on the constraint in (6) , the slip-force limits are constrained such as to yield a friction output, see (15) , which is 

at most unitary in magnitude, i.e. 

M ∑ 

i =1 

W i = 1 , W i = k i �i (16) 

The spring deformation limit and stiffness of each operator is selected so that the constraint of (16) is satisfied. In [35] the 

deformation limits were spaced uniformly, however in Madsen et al. [18] polynomial laws were found to yield better per- 

formance. Such polynomial laws subject to the constraint of (16) results in 

�i = 

(
i 

M 

)r �

(17) 

k i = 

1 

�i 

(M + 1 − i ) r k ∑ M 

i =1 i 
r k 

(18) 

where for r � > 1 the deformation limits are spaced more closely for small spring deformations. The sum of integer powers 

in (18) is obtained easily by numerical methods, however its analytic solution involves the Riemann Zeta function and the 

Hurwitz zeta function . For the special case of r k ∈ N + , Faulhaber’s formula gives the sum explicitly in terms of the Bernoulli 

numbers . r � = 4 and r k = 2 are found to yield a good performance. Fig. 7 shows the experimentally identified and model 

estimated hysteresis characteristics, the model using (17) and (18) . 

5.1. Identification of joint torque dependent coulomb friction 

The dependency of the Coulomb friction on joint torque is identified by rotating a single joint at the time with an angular 

velocity of 0.05 rad/s with no external wrench applied and the joint axis of rotation oriented perpendicular to the direction 

of the gravitational acceleration, thus making the gravity-induced torque act as load torque. To identify the dependency of 

friction on load torque for all joints, the UR5e robot is mounted differently depending on the joint of interest. For joint 1, 

the robot is “wall mounted ”, i.e. with the joint 1 (base joint) axis of rotation oriented perpendicular to the direction of the 

gravitational acceleration. For joint 2 to 6, the robot is “table mounted ”, i.e. with the joint 1 (base joint) axis of rotation 

oriented parallel to the direction of the gravitational acceleration. 

In this case, (1) reduces to g (q ) = τ J , hence (2) becomes f = K τ i − g (q ) and due to K τ being diagonal we have for each 

joint f = K τ i − g(q ) where g(q ) is the scalar gravity torque exerted to the joint subject to testing. Using (8) in (3) leads to 

| ω | /ω ( K τ i − g( � q ) − F v (ω, T ) ) = F(g( � q )) (19) 

in which the gravity-induced joint torque g(q ) is predicted based on the measurement of q and known values of the masses 

and center of mass positions of the links distal to the joint subject to testing. A payload of 7.5 kg was attached to the robot’s 

end effector to further increase the gravity-induced joint torque. 

The dependency of the Coulomb friction torque on the joint torque is described by the polynomial model 

F(τJ ) = F C, 0 + F C, 1 τ
2 
J (20) 

in which F C ,0 is the Coulomb friction coefficient for no load and F C ,1 is the Coulomb friction coefficient to the squared joint 

torque. 

Fig. 6 shows the Coulomb friction in terms of the joint torque for the second joint of the Universal Robots UR5e robot 

manipulator. 

7 

103



E. Madsen, O.S. Rosenlund, D. Brandt et al. Mechanism and Machine Theory 155 (2021) 104109 

Fig. 7. Hysteretic behavior of the strain-wave transmission of the base joint of the UR5e robot manipulator; experimentally identified and estimated by 

the Generalized Maxwell-Slip friction model using (17) and (18) with M = 4 . 

Fig. 8. Trajectory of the second joint used for validating the load-dependent Generalized Maxwell-Slip friction model. 

5.2. Identification of generalized Maxwell-Slip friction 

The GMS friction model is identified by rotating a single robot joint with reciprocating and very low velocities and 

accelerations such that inertial effects can be neglected. The joint axis of rotation is oriented parallel to the direction of the 

gravitational acceleration, i.e. gravity does not induce torque around the joint axis of rotation. The well-known kinematic 

error nonlinearity [15,36,37] has been identified and compensated a priori as described in Madsen et al. [18] . The joint is 

driven by the signal 

q̈ = 

{ 

a for t 0 < t ≤ t 1 
−a for t 1 < t ≤ t 2 

, t 1 − t 0 > t 2 − t 1 (21) 

with a = 0 . 05 rad/s 2 and the net motion during one cycle q (t 1 ) − q (t 0 ) − (q (t 1 ) − q (t 2 )) = 3 ◦, i.e. 240 velocity reversals for 

one complete revolution of the output side. Neglecting inertial effects and gravity effects, (1) sim plifies to 0 = τJ (for each 

joint) resulting in the transmission deformation being bounded in magnitude by the backlash, i.e. 

| θ (t) − q (t) | ≤ B(θ (t)) ∀ t (22) 

The hysteretic behavior of the strain-wave transmission is shown in Fig. 7 for a single hysteresis loop. The number of oper- 

ators needed for an accurate model is M = 4 [18] , and the optimum value of the backlash B is found to be 0.001 rad. 

5.3. Validation of the extended GMS model 

We compare the Extended GMS model of (14) and (15) to a baseline model in which the joint torque dependent Coulomb 

friction is compensated by the common method [30,32–34,38] of which the load dependent friction is modeled and com- 

pensated by the term sgn (ω) F(τJ ) with F(τJ ) defined in (20) . Thus, this method results in a discontinuity around zero 

velocity due to the sgn( ω) term. The joint torque dependent GMS friction model is validated by implementing the models 

in the feedforward controller and performing the motion shown in Fig. 8 . The motion includes velocity reversals and the 

load torque varies from zero to a large value – thus, a large subspace of the total load torque space is explored and the 

validation of the Extended GMS model is enhanced. This is done by starting out with the shoulder joint of the UR5e robot 

manipulator oriented such that the robot arm is in the vertical orientation (no load) and slowly moving towards the hor- 

izontal orientation (maximum load) while reversing multiple times. A 7.5 kg payload is attached to the end-effector. The 

torque corresponding to the trajectory in Fig. 8 is shown in Fig. 9 . The actuator torque is obtained by measuring the phase 
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Fig. 9. Torque corresponding to the trajectory shown in Fig. 8 ; actual torque and torque predicted by the load-dependent Generalized Maxwell-Slip friction 

model. 

Fig. 10. Torque prediction error for the discontinuous joint torque dependent Coulomb friction model and our proposed joint torque dependent Generalized 

Maxwell-Slip (GMS) friction model. 

Fig. 11. Angular position error for the static friction model and the joint torque dependent Generalized Maxwell-Slip (GMS) friction model. 

currents of the PMSM and using Park’s transformation and the drive gains to obtain the actuator torque. The torque predic- 

tion error of the Extended GMS model and the baseline model is shown in Fig. 10 . The difference between the methods is 

most significant during velocity reversals with large load torque, where the jumps in torque prediction due to the discontin- 

uous sgn( ω) term in the baseline model causes large prediction errors of up to almost 40 N m, while this is not the case for 

our proposed joint torque dependent Extended GMS friction model. The Mean Squared Error (MSE) of the torque prediction 

is improved by a factor of 2.1 – from 0.0625 (N m) 2 to 0.0297 (N m) 2 . The trajectory tracking performance is evaluated 

by implementing the Extended GMS model and the original GMS model in the feedforward part of the robot controller. 

The angular position errors for the Extended GMS model and the original GMS model are shown in Fig. 11 . The trajectory 

tracking performance is improved by a factor of 1.5 – from 0.010433 rad 

2 to 0.0068945 rad 

2 . 

6. Adaptive feedforward friction compensation 

The friction characteristics of robot joints are known to vary statistically between similar robot joints and also change 

with; 1) lubricant temperature and 2) the level of wear and tear of the robot joint. To maintain the accurate torque pre- 

diction capabilities during the lifetime of the robot, we propose the following prediction error-based parameter estimation 

scheme in Fig. 12 , which will, in the combination with the adaptive control strategy in Fig. 1 , ensure a consistently good 
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Fig. 12. Parameter estimation scheme. 

Fig. 13. Trajectory used for the validation of the adaptive feedforward joint torque dependent Generalized Maxwell-Slip friction model compensation. 

tracking performance despite changes in the robot friction characteristics. However, other uses of the parameter estimates 

may be relevant at a later stage such as wear estimation for predictive maintenance. 

The adaptation is parametrized based on the facts that; 1) the wear and tear of the robot joint will lead to an increase 

in Coulomb friction torque [10] , and 2) the thermal resistance between the lubricant of the strain-wave transmission and 

the location of the temperature measurement will lead to an uncompensated time delay in the temperature compensation 

[34] which will lead to inaccurate predictions of the viscous friction torques. 

6.1. State estimation 

The utilized measurements includes; the angular positions, θ and q , of the rotors and links, respectively, the joint tem- 

peratures T , and the torque-generating currents i of the PMSMs. In reality, the phase currents are measured, while the 

torque-generating (quadrature) currents are obtained from the phase currents using Park’s transformation . 

Common methods for state estimation includes mathematical estimators such as high-gain observers [28] , sliding mode 

observers, etc. The estimation quality can be evaluated by considering the error signal and evaluating the some error norm 

such as L 2 , L ∞ 

, etc. [39] . 

In this work, we obtain the state estimates through a simple approach without causing phase shifts between the various 

measured quantities and their time-derivatives. Circular buffers are used to store the measurements for the Savitzky-Golay 

[40] Finite Impulse Response (FIR) Low-Pass (LP) filters to operate on, and the Central Difference (CD) procedure is used 

to estimate the time-derivatives ˙ �
 q and �̈

 q from the measurement of q . The first and second order central difference for a 

signal sampled with a fixed sampling period is unambiguously defined. The CD procedure is a standard result in numerical 

analysis and is not detailed in this paper. The circular buffers of measurements are of n LP ∈ N + entries, hence a delay of 

(n LP − 1) / 2 samples are obtained. The smoothed values are stored in circular buffers of n CD ∈ N > 2 entries for the central 

difference procedure to operate causing a total delay of (n LP − n CD − 2) / 2 samples. For the specific UR5e robotic system at 

hand, n LP = 101 and n CD = 3 were used resulting in a total delay of 51 samples, i.e. 0.051 s for the sampling rate of 1 kHz. 
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6.2. Friction estimation 

Common methods for estimating the friction torque includes observer-based disturbance estimation [41] . 

The general estimation methodology in this paper is to; 1) generate a (virtual) measure of the signal to be estimated 

based on the available measurements, and 2) use this signal to drive the adaptive estimation. The virtual measures of the 

friction torques are obtained by the combination of (1), (2) , and (11) , thus 

�
 f = 

�
 K τ

ˆ �
 i − �

 B 

˙ ˆ ω − ˆ τ J ( ̂ � q , ˙ ˆ � q , ̈̂  �
 q ) − F v ( ̂  ω , ̂  �

 T ) (23) 

where (1) provides the joint torque estimate as ˆ τ J ( ̂ q , ˙ ˆ q , ̈̂  q ) = M ( ̂ q ) ̈̂  q − C ( ̂ q , ˙ ˆ q ) ˙ ˆ q − g ( ̂ q ) . The friction measure of (23) can 

thus be interpreted as the total friction torque minus the identified nonlinear viscous friction torque. Coupling (1) and 

(2) through the joint torque means that the joint flexibility is accounted for without the need of a joint compliance model. 

This is possible due to the Universal Robots manipulators having two absolute rotary encoders per joint – one at each side 

of the strain-wave transmission. The adaptive estimator is formulated at joint level. Thus, for notational simplicity let f be 

the friction measure for any single joint. The adaptation captures the time-variation of the Coulomb and viscous friction 

torques, hence the friction model estimate ˆ f for any joint is given by 

ˆ f = 

�
 Y T ( ̂  τJ , ˆ ω ) ̂  α

= 

[
F(τJ ) 

M ∑ 

i =1 

k i δi ˆ ω 

]
·
[

ˆ α1 

ˆ α2 

]
(24) 

with Y the regressor and 

ˆ α the vector of parameter estimates. The first term in the regressor is output of the Extended GMS 

model. Thus, the Coulomb friction is estimated with the regressor and its time-derivative being locally Lipschitz continuous 

for all t without the need of filtering. The prediction error for any joint is defined 

˜ f = f − ˆ f (25) 

The adaptive law is the gradient method [42] with a quadratic error cost function, i.e. 

˙ ˆ α = � �
 Y ( ̂  τJ , ˆ ω ) ˜ f (26) 

with � = diag ([ γ1 γ2 ] 
T ) � 0 ∈ R 

2 ×2 the diagonal matrix of adaptation gains. The stability and convergence of this estimator 

depend on the estimation gain �. Generally, larger estimation gain means faster convergence. However, after some point, 

further increasing the estimation gain leads to oscillatory behavior, slower convergence, and even instability. Also, param- 

eter convergence is ensured only if the regressor is persistently exciting. For the detailed stability analysis of the gradient 

estimator, the reader is referred to literature such as [42] . In this paper, we do not provide the stability analysis with details 

due to the limited space. 

6.3. Robustness 

To increase robustness with respect to disturbances and ensure the overall safety and stability of the robotic system the 

adaptation law is modified. Several choices of well-known modifications exist such as leakage and shifted-leakage , fixed σ - 

modification, switching σ -modification, ε1 -modification, and projection. In this work, we use a combination of projection in 

the parameter space and monitoring conditional logic to ensure that the regressor is persistently exciting. 

6.3.1. Parameter projection 

The parameter projection method [43] is used to confine the estimated parameters to a bounded convex region, which 

is assumed to contain the true parameters, i.e. 

ˆ α1 ∈ [ α1 , min ; α1 , max ] , ˆ α2 ∈ [ α2 , min ; α2 , max ] (27) 

with α1 , min = 0 . 4 , α1 , max = 1 . 5 , α2 , min = −5 c N m s , and α2 , max = 5 c N m s . 

6.3.2. Persistence of excitation 

To ensure that the regressor is persistently exciting at all time, adaptation is disabled if the rotor angular velocity remains 

below ω min for time t ∗, hence the adaptive law of (26) could be expressed as 

˙ ˆ α = 

{
0 if ω min > max 

t −t ∗≤t 
| ω(t) | 

� �
 Y ( ̂  τJ , ˆ ω ) ˜ f otherwise 

(28) 

with ω min = 0 . 01 rad/s and t ∗ = 0 . 05 s. 
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Table 1 

The six joint space waypoints ( � wp l ) in degrees for each of 

the six joints ( q j ) used by the trajectory generator to gener- 

ate the trajectory shown in Fig. 13 . 

q 1 q 2 q 3 q 4 q 5 q 6 

wp 1 −110 0 0 −90 90 0 

wp 2 −70 −30 −90 −130 50 120 

wp 3 −140 −10 −130 −40 125 10 

wp 4 −45 −55 100 −90 45 150 

wp 5 −45 −90 0 −90 0 0 

wp 6 −220 −90 0 −90 0 0 

6.4. Feedforward friction compensation 

The adaptive feedforward joint torque dependent GMS friction model compensation is obtained at joint level by evaluat- 

ing the friction model in the desired velocity ˙ q d , the nominal joint torque τ J ,d , and the parameter estimate ˆ α, i.e. 

ˆ f = 

�
 Y T (τJ, d , ˙ q d ) ̂  α (29) 

The combined control law is a combined feedback u FB , feedforward u FF , and adaptive feedforward 

ˆ f , i.e. 

�
 u = 

ˆ �
 f + 

�
 u FF + 

�
 u FB 

= 

ˆ �
 f + 

�
 M ( � q d ) ̈� q d + 

�
 C ( � q d , ˙ � q d ) ˙ � q d + 

�
 g ( � q d ) + F v ( ̇ � q d , � T ) 

+ 

�
 M ( � q d ) 

(
−�

 K d 
˙ �
 e − �

 K p � e − �
 K i 

∫ t 

0 

�
 e d t ′ 

)
(30) 

in which the feedforward u FF = M (q d ) ̈q d + C (q d , ˙ q d ) ˙ q d + g (q d ) + F v ( ̇ q d , T ) and u FB = M (q d )(−K d ˙ e − K p e − K i 

∫ t 
0 e d t ’ ) is 

the feedback term. Thus, the combined feedforward and feedback controller constitute the well-known Computed-Torque 

Control (CTC) strategy. The temperature T is the actual measured temperature used to linearize the model through feedback. 

For safety reasons this value is bounded simply by confining the value to the region T ∈ [ T min ; T max ]. 

6.5. Stability 

This section presents some statements of stability of the adaptive feedforward compensation. We show that the friction 

compensation is stable in the sense of BIBO (Bounded Input, Bounded Output). A system is BIBO stable if it has bounded 

gain [44] . The feedforward friction compensation is given by (29) . The critical values for the gain are τ J ,d , ˙ q d , and T . The 

desired angular positions, velocities, and accelerations are bounded by the trajectory generator, hence τ J ,d is bounded. The 

hysteretic function H(·) is also bounded, see (6) , and so is the measured temperature, thus the Coulomb friction torque 

F C (·) is bounded. The estimated parameter vector ˆ α is also bounded (see Section 6.3.1 ), hence the output of the feedforward 

friction compensation is bounded. 

6.6. Validation 

The adaptive controller is validated by specifying initial conditions for the friction that are known to be wrong but still 

verifies the conditions of (27) , and considering the adaptation of the parameters as well as the prediction and tracking 

performance. The parameter values are kept fixed for the first 30 s and then allowed to change. The torque prediction error 

and the position tracking error should both decrease. A 7.5 kg payload is attached to the end effector of the robot. 

6.6.1. Trajectory 

The trajectory used to validate the adaptive feedforward dynamic friction compensation is chosen to contain periods 

of motion and standstill for all joints. The trajectory is generated based on six waypoints wp l , l = 1 , . . . , 6 , with specific 

joint angular positions listed in Table 1 . A linear joint space motion is constructed between the waypoints from 1 to 6 and 

then repeated, i.e. wp 1 → wp 2 → · · · → wp 6 → wp 1 → . . . . The cycle time from starting at wp 1 to reaching wp 1 again is 

13,458 ms. At all times the maximum angular velocity and acceleration for any joint are constrained to be, respectively, 

max (| ̇ q d | ) = π rad / s and max (| ̈q d | ) = 2 π/ 3 rad / s 2 . The angular velocities at the waypoints are zero, i.e. ˙ q d (t l ) = 0 , t l = { t : 
q d (t) = wp l } , l = 1 , . . . , 6 . 

6.6.2. Results & discussion 

Parameter estimates ˆ α1 and ˆ α2 for each joint are shown in Figs. 14 and 15 , respectively. The parameters start out at initial 

values, ˆ α1 = 0 . 47 and ˆ α2 = 0 . 04 respectively, and converges within the next 50 s – most of them considerably faster. Fig. 16 

show the measured and predicted torques, while Fig. 17 show their difference, i.e. the torque prediction error. Evaluating 

12 

108 Chapter 6. Adaptive Feedforward Control [Journal Paper 3]



E. Madsen, O.S. Rosenlund, D. Brandt et al. Mechanism and Machine Theory 155 (2021) 104109 

Fig. 14. Adaptation of ˆ α1 ; the joint torque dependent Generalized Maxwell-Slip friction model coefficient (the nominal model is obtained for ˆ α1 = 1 ). 

Fig. 15. Adaptation of ˆ α2 ; excess viscous friction coefficient (the nominal model is obtained for ˆ α2 = 0 ). 

Table 2 

Results of the adaptive feedforward friction compensation for each joint and the average relative improvement. The perfor- 

mance measured in Mean Squared Error (MSE) of torque prediction ( Fig. 17 ) and trajectory tracking ( Fig. 18 ) evaluated for 

two full cycles (26,916 ms) while; 1) adaptation is disabled (900 ms to 27,816 ms) and 2) adaptation is enabled (55,075 ms 

to 81,991 ms). 

Description Controller Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Average 

Torque MSE [(N m) 2 ] Non-Adaptive 0.8173 0.5303 1.2329 0.1009 0.1803 0.3039 0.5276 

Adaptive 0.0693 0.1286 0.1554 0.0347 0.0168 0.0181 0.0705 

Improvement 91.5% 75.7% 87.4% 65.6% 90.7% 94.0% 84.2% 

Position MSE [rad 2 ] Non-adaptive 0.3525 0.0870 0.2593 0.0831 0.1193 0.2662 0.1946 

Adaptive 0.2033 0.0515 0.2038 0.0791 0.1158 0.2460 0.1499 

Improvement 42.3% 40.8% 21.4% 4.8% 2.9% 7.6% 20.0% 
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Fig. 16. Measured and predicted torques for each joint. 

Fig. 17. Torque error for each joint. 

two cycles of the trajectory ( 2 × 13 , 458 = 26 , 916 ms) while; 1) adaptation is disabled (900 ms to 27,816 ms) and 2) while 

adaptation is enabled (55,075 ms to 81,991 ms) yield the torque prediction errors and trajectory tracking errors listed in 

Table 2 . The MSE of the torque prediction is reduced by 84.2% in average and the MSE of the position tracking error is 

reduced by 20.0% in average. This validates our proposed adaptive feedforward friction compensation. 
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Fig. 18. Trajectory tracking performance; angular position error for each joint. 

7. Conclusions 

Accurate knowledge of the complex nonlinear dynamics of strain-wave transmissions is important in many areas of robot 

control, particularly in physical Human-Robot Interaction (pHRI) and other tasks relevant to collaborative robots. 

This paper presented an extension to the Generalized Maxwell-Slip (GMS) friction model for it to describe the well- 

known load torque dependency and angular-position dependency of strain-wave transmissions in a combined framework. 

The method combines a load torque model and a hysteresis model to overcome the discontinuity around zero velocity of 

existing implementations of torque dependent friction models. The MSE of the torque prediction accuracy is improved by a 

factor 2.1 and tracking performance was improved by a factor 1.5. 

To address the well-known time-variation of the friction characteristics, we developed and demonstrated an adaptive 

control strategy based on the proposed extended GMS friction model. For any sufficiently smooth desired trajectory, a feed- 

forward input that is adapted to the identified dynamics of the system can be calculated. For robot manipulators with 

absolute rotary encoders at each side of the strain-wave transmission, such as the Universal Robots manipulators, the adap- 

tive control strategy allows for automatic recalibration of the control input at any point in time provided the robot joint 

is non-stationary. The estimation strategy is useful in continuous operation scenarios where the friction parameters may 

drift due to temperature changes and/or wear and tear of the robot joint by estimating the friction characteristics orders of 

magnitude faster than any expected real-world changes. The MSE of the torque prediction is improved by 84% and tracking 

performance is improved by 20%. 

Thus, the contributions of this work can be summarized as: 1) extending the GMS friction model to describe in a com- 

bined framework the position dependent hysteresis and the dependency of friction on joint torque, and 2) developing an 

adaptive feedforward controller based on the Extended GMS friction model to effectively compensate for wear and inaccu- 

rate estimation of the lubricant temperature. 

In our ongoing work that we are going to challenge consists of: 

1) Using our high-fidelity model of the joint torque in terms of the transmission deformation to improve the lead- 

through programming experience of collaborative robots. 

2) For the developed feedforward adaptive controller we will investigate strategies to certify its safety according to 

EN/ISO 10218-1:2011 and 13849-1:2015, Category 3. 
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Chapter 7

Conclusions & Outlook

This industrial PhD research project addresses the overall issue of obtaining
accurate estimates of the dynamics for collaborative industrial robots under
conditions of mechanical wear and temperature changes. Furthermore, the
project addresses how the dynamics can be used for improving the robot
performance. This thesis discusses challenges related to robot dynamics
modeling, identification, and adaptive estimation and control. The thesis
seeks to fill the gap between robotics research in academia and industry by
using a real collaborative industrial robot and providing solutions that are
experimentally validated and useful for industrial robots in general.

The first contribution of the research is related to adaptive estimation of
the robot joint stiffness. A recursive least squares-based estimation strategy
is used in combination with the rotor dynamics model to estimate the
nonlinear stiffness characteristics online without the need of additional
sensing hardware or mechanical fixture of the end-effector. The estimation
strategy works for arbitrary manipulator configurations. Within 10 seconds,
the stiffness of the UR5e base joint is estimated with an accuracy of 95.2 %.
The accuracy of the parameter estimate is directly related to the accuracy of
the joint dynamics model, which led to the second contribution.

The second contribution is related to the modeling and identification
of the robot joint dynamics. The steady-state friction torque of strain-wave
transmissions is known to depend on angular velocity, load torque, and
lubricant temperature. Furthermore, strain-wave transmissions are known
to experience nonlinear flexibility, hysteresis, and kinematic error. These
characteristics are analyzed and modeled based on experimental observa-
tions. A model for the dependency of friction on temperature is proposed,
which is linear in parameters – hence facilitates identification – and pro-
vides increased accuracy compared to existing works. A linear regression
procedure is developed for the Generalized Maxwell-Slip (GMS) friction
model, which improves the torque prediction accuracy compared to existing
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procedures. The hysteresis characteristics is observed to depend on the joint
angular position. This phenomenon is not previously described, although
rendered probable from theoretical studies. The GMS friction model is
extended (E-GMS) to describe in a combined framework; 1) the dependency
of the hysteresis characteristics on angular position, and 2) the dependency
of friction on the load torque. The torque prediction accuracy is improved
by a factor of 2.1 and incorporating the model in the feedforward controller
results in the tracking error being reduced by a factor of 1.5. Additionally,
discontinuities in the angular velocity is overcome, which is relevant in
feedback linearizing control strategies.

Since the gravitational and inertial effects contributes significantly to
the actuator torques, the third contribution is related to calibration of the
robot dynamics including masses, center-of-mass positions, and inertial
components. The set of physical parameters is reduced to a minimal set of
base parameters that uniquely defines the robot dynamics. The Universal
Robots collaborative robots comprise two absolute rotary encoders per joint
– one at each side of the strain-wave transmission. This fact is utilized to
effectively compensate joint flexibility and nonlinear rotor dynamics effects
and reduce the uncertainty and bias of the parameter estimates. The model
accuracy is improved by 16.5 % to 28.5 % depending on the evaluation
trajectory.

The last contribution is related to the adaptive control for robots under
the conditions of wear and friction model-based temperature compensation
inaccuracies. These conditions leads to unmodeled Coulomb and viscous
friction. A gradient-based adaptive parameter estimation scheme is imple-
mented based on the E-GMS dynamic friction model. The torque prediction
accuracy is improved 84 % and the tracking error is reduced by 20 % com-
pared to a friction model that is off but complies with the safety system.

7.1 Summary of Contributions

The main contributions of the research project is summarized in the follow-
ing.

1) A new adaptive joint stiffness estimation procedure is proposed and
validated experimentally on a Universal Robots UR5e collaborative
industrial robot. Utilizing the two absolute encoders in each joint, the
method demonstrates that the robot joint stiffness can be adaptively
estimated without the need for fixing the end-effector – common for
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existing joint stiffness estimation strategies. Within 10 seconds, the
stiffness is estimated with an NRMSE accuracy of 95.2 %.

2) A comprehensive joint dynamics model is proposed based on a series
of experiments using the Universal Robots UR5e robot. The model
combines a set of nonlinear sub-models of flexibility, kinematic error,
hysteresis, and dynamic friction with static dependencies on angular
velocity, load torque, and temperature. The hysteresis characteristics
are observed to depend on the angular position, which is not previ-
ously described albeit rendered plausible theoretically. An extension
to the Generalized Maxwell-Slip friction model (E-GMS) is proposed
to describe in a combined framework the dependencies of; 1) hys-
teresis on angular position and 2) friction on load torque. E-GMS
based feedforward control yield improvements of; 1) torque predic-
tion accuracy by a factor of 2.1 and 2) tracking error by a factor of
1.5.

3) A robot dynamics calibration procedure is proposed to increase the
accuracy of the robot dynamics model. The double joint encoder setup
of the Universal Robot manipulators is utilized for compensating
nonlinear rotor dynamics and joint flexibility to reduce bias and un-
certainty in the parameter estimates. The model accuracy is improved
by 16.5 % to 28.5 % depending on the evaluation trajectory.

4) An E-GMS based adaptive feedforward controller is designed to
compensate the effects of wear and friction model-based temperature
compensation inaccuracies. The torque prediction accuracy is im-
proved by 84 % and the tracking error is improved by 20 % compared
to a non-adaptive E-GMS model which is known to be off but still
within the limits of safety.

7.2 Outlook & Perspectives

The performance improvement for collaborative industrial robots by means
of dynamic modeling, identification, and adaptive estimation and control
is an open field for research. Some relevant extensions of the research
presented in this thesis are summarized in the following.

1) Predictive maintenance. The stiffness and the level of friction of a
strain-wave transmission are known to be related to the mechanical
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wear and tear. Thus, if accurate estimates of the stiffness and friction
are available at all times, the level of wear can be continuously pre-
dicted provided the relations between stiffness, friction, and wear are
known. Thus, an extension of the presented research could involve
the development of predictive maintenance strategies. Unnecessary
maintenance actions are thus avoided in contrast to preventive sched-
uled maintenance, which is determined from the estimated lifespan of
robot components with considerable margins.

2) Model-based control. The stiffness of robot joints is used in the de-
coupling and linearizing control strategies of flexible-joint robot ma-
nipulators as elaborated in Chapter 2. Adaptive stiffness estimation
combined with a feedback linearizing control strategy based on a
flexible-joint robot model could potentially ensure a consistently good
controller performance despite gradual change of flexibility from
wear.

3) Adaptive payload estimation. For the Universal Robots manipula-
tors, the payload inertial properties are specified by the operator,
possibly with the help of the payload and center of gravity estimation
wizard. A well-calibrated dynamic model of the robot may admit
accurate adaptive estimation of the payload inertial properties to use
for control or online sanity checking of the user-provided payload
parameters.
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[171] André Carvalho Bittencourt, Patrik Axelsson, Ylva Jung, and Torgny Brogårdh. Model-
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1

OBTAINING THE GEAR STIFFNESS OF A ROBOT JOINT GEAR 
OF A ROBOT ARM

FIELD OF THE INVENTION

The present invention relates to robot joint gears for robot arms 

comprising a plurality of robot joints connecting a robot base and a robot tool 5

flange.

BACKGROUND OF THE INVENTION

Robot arms comprising a plurality of robot joints and links where 

motors can rotate the joints in relation to each other are known in the field of 

robotics. Typically, the robot arm comprises a robot base which serves as a 10

mounting base for the robot arm and a robot tool flange where to various tools 

can be attached.  A robot controller is configured to control the robot joints to 

move the robot tool flange in relation to the base. For instance, in order to 

instruct the robot arm to carry out a number of working instructions.

Typically, the robot controller is configured to control the robot 15

joints based on a dynamic model of the robot arm, where the dynamic model 

defines a relationship between the forces acting on the robot arm and the 

resulting accelerations of the robot arm. Often, the dynamic model comprises a 

kinematic model of the robot arm, knowledge about inertia of the robot arm and 

other parameters influencing the movements of the robot arm. The kinematic 20

model defines a geometric relationship between the different parts of the robot 

arm and may comprise information of the robot arm such as, length, size of the 

joints and links and can for instance be described by Denavit-Hartenberg 

parameters or the like. The dynamic model makes it possible for the controller 

to determine which torques the joint motors shall provide in order to move the 25

robot joints for instance at specified velocity, acceleration or in order to hold the 

robot arm in a static posture.

On many robot arms it is possible to attach various end effectors 

to the robot tool flange, such as grippers, vacuum grippers, magnetic grippers, 

screwing machines, welding equipment, dispensing systems, visual systems etc.30

In some robots the robot joint comprises a joint motor having a 

motor axle configured to rotate an output axle via a robot joint gear. Typically, 

the output axle is connected to and configured to rotate parts of the robot arm 
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in relation to each other. The robot joint gear forms a transmission system 

configured to transmit torque provided by the motor axle to the output axle for 

instance to provide a gear ratio between the motor axle and the output axle. 

The robot joint gear can for instance be provided as a spur gears, planetary 

gears, bevel gears, worm gears, strain wave gears or other kind of transmission 5

systems. Commonly flexibility exist in the transmissions used for industrial 

robots due to the elasticity various type of transmissions. This flexibility may 

lead to an undesired dynamic time-varying displacement between the position 

of parts of the robot arm. 

Taking into account the gear flexibility in the dynamic model makes 10

the dynamic model more accurately resemble the dynamics of the real robot 

arm because the robot joint torque originating from the gear deformation can 

be known. A more accurate dynamic model can for instance allow the robot 

controller to control the robot arm with greater accuracy and precision. A more 

accurate dynamic model can also allow the robot controller to more accurately 15

identify external disturbances, for instance human interference which is of great 

concern in terms of safety.

Research have been devoted to accurately identify the dynamic 

characteristics of the robot gear systems. However, one practical issue when 

taking into account the joint stiffness in the robot controller design is that the 20

joint stiffness changes with wear due to material being worn off at the gear 

meshing [1], [2], [3].

Estimating the joint stiffness on industrial robots have been 

accomplished through off-line identification procedures by several researchers. 

Off-line identification procedures are not well suited for solving the problem of 25

time-varying joint stiffness. Such procedures would have to be re-run from time 

to time to keep the joint stiffness information up to date. While the off-line 

identification procedure is running the robot is unable to conduct any other task 

with clear negative consequences to the user. Despite the shortcomings of the 

off-line calibration procedures for joint stiffness estimation a number of 30

references will be given to such off-line identification procedures applied to solve 

the robot joint stiffness estimation problem. For the off-line identification of joint 

stiffness, one method is to apply external excitation on one robot joint at a time 

resulting in a reduced dynamic model hence easier identification as in [4], [5], 

[6], [7].35
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Another option is to evaluate joint stiffness values using an 

external laser-tracking sensor system to visually track the end effector 

displacements for a given applied wrench as in [8] and [9], where the applied 

wrench is equal to the applied forced and torques at the end effector. A third 

option is to incorporate two absolute position rotary encoders in the robot joint 5

to enable direct measurement of the joint deflection and then manually impose 

a known force at the end-effector and using the kinematic model (the Jacobian) 

of the robot arm to calculate the joint torques as in [9]. Such procedure however 

requires external and known loading of the end-effector and the robot is not 

allowed to move during the procedure. A fourth option is to estimate the joint 10

stiffness using a so-called locked-link joint procedure as in [10] where the end-

effector is clamped to the environment and using either motor positions 

measurement and motor torques data or a force/torque sensor to measure the 

external wrench between the clamped end effector and the environment.

Very few works are available on the on-line estimation of time-15

varying nonlinear stiffness e.g. AwAs-II joint [11]. These works are focused 

towards Variable Stiffness Actuators (VSAs) as found in in the DLR Hand Arm 

System [12] by the DLR Institute of Robotics and Mechatronics, however most 

industrial robots do not comprise a VSA. In 2011, Flacco and De Luca [13] 

estimated the nonlinear stiffness of robot joints using only a motor position 20

sensor by computing a dynamic residual based on the generalized momentum 

followed by a least squares algorithm to estimate the stiffness parameters.

Robustness issues were later addressed in [14] by introducing a 

kinematic Kalman filter to handle discretization and quantization errors and a 

modified recursive least squares algorithm was used to better handle poor 25

excitation conditions. The stiffness parameters were however assumed time-

invariant. Further refinements of their method were carried out in [15] 

modifying the stiffness estimation algorithm to deal with time-varying stiffness 

by using a Recursive Least Squares method based on a QR decomposition (QR-

RLS) able to handle time-varying stiffness characteristics. A non-causal 30

Savitzky-Golay (SG) filter was used to remove noise on the input/output signals. 

No experiments did however support their findings.

In May 2013, Ménard et al. [16] developed an observer capable of 

on-line estimating the time-varying stiffness of a VSA. Experimental analysis on 

the VSA system revealed parameter uncertainties of up to 25 % of the true 35
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stiffness. Friction was assumed purely viscous with a single constant coefficient. 

Such friction model is not capable of accurately describing real frictional 

characteristics of most electromechanical systems, as well-known frictional 

characteristics such as Coulomb friction and the Stribeck effect is then neglected 

completely.5

In July 2013, Cirillo et al. [17] demonstrated online stiffness 

estimation of a VSA by measuring the elastic energy using an optoelectronic 

sensor built into the robot joint.

SUMMARY OF THE INVENTION

The objective of the present invention is to address the above 10

described limitations with the prior art or other problems of the prior art. This 

is achieved by a method of obtaining the gear stiffness of a robot joint gear as 

defined by the independent claim. The dependent claims describe possible 

embodiments of the method according to the present invention. The advantages 

and benefits of the present invention are described in the detailed description 15

of the invention. Further the objective of the present invention is addressed by 

a method of controlling a robot arm based on the obtained gear stiffness and a 

robot arm with a controller configured to control the robot arm based on the 

obtained gear stiffness.

A robot controller taking into account the joint flexibilities may 20

perform well right after calibration but for a good performance over the lifetime 

of the robot, the joint stiffness must be estimated on-line. Further, estimating 

the joint stiffness on-line will allow for predictive maintenance in the case of 

gear unit failure. In most cases, no sensor is available for directly measuring 

the joint stiffness, so the stiffness information is collected by combining an 25

accurate model of the flexibility torque with the measurements available, such 

as position and force/torque sensor measures, either implemented in the robot 

or by using external hardware.

The invention provides a simple method of obtaining the gear 

stiffness of a robot joint gear of a robot arm without the need to integrate 30

expensive force/torque sensors, as the joint gear stiffness of the robot joint gear 

can be determined based on sensors commonly used in industrial robots, which 

also makes it possible to integrate such method into existing industrial robots 

having such sensors. Additionally, the gear stiffness can be obtained online 
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during use of the robot and thus used as an input to the dynamic model

controlling the robot whereby a more accurate controlling of the robot can be 

provided. Consequently, vibrations and inaccuracies of the robot’s movements 

due to gear stiffness can be accounted for when controlling the robot. 

Additionally, the gear stiffness changes over time primarily due to wear of the 5

robot joint gear and obtaining the gear stiffness online makes it possible to 

control the robots based on changes of gear stiffness whereby the accuracy of 

the robot over time is maintained/improved. Further obtaining the gear stiffness 

online over time makes it possible to predict failure of the robot joint gear as 

the gear stiffness can be used to indicate when the robot joint gear is about to 10

fail. Consequently, the robot joint gear can be sent to service in order to 

exchange/repair the robot joint gear whereby unplanned downtime of the robot 

can be reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates a robot arm configured to obtain the gear stiffness of the robot 15

joint gears;

fig. 2 illustrates a schematic cross-sectional view of a robot joint;

fig. 3 illustrates a model of a robot joint gear;

fig. 4 illustrates a simplified structural diagram of a robot arm;

fig. 5 illustrates a flow chart of a method of obtaining the gear stiffness of a 20

robot joint gear of a robot joint of a robot arm;

fig. 6 illustrates a flow chart of another method of obtaining the gear stiffness 

of a robot joint gear of a robot joint of a robot arm;

fig. 7 illustrates a robot arm in a pose used in an experimental analysis of the 

method according to the present invention;25

fig. 8 illustrates a friction torque/velocity map obtained by imposing different 

signals of constant velocity on the base joint of a robot arm, while measuring 

the joint motor current;

fig. 9 illustrates a flexibility torque/transmission deformation map obtained by 

imposing a set of known torques to the tool flange of a robot arm using a force 30
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gage and measuring the deformation as the difference between absolute joint 

encoder readings at each side of the robot joint gear;

fig. 10 illustrates angular position, angular velocity and angular acceleration of 

the base joint of the robot arm used in the experimental analysis;

fig. 11 illustrates a schematic representation of the Generalized Maxwell-Slip 5

friction model;

fig. 12 illustrates a flexibility torque/transmission deformation map obtained by 

the method according to the present invention;

fig. 13 illustrates gear stiffness of the robot joint gear obtained in the 

experimental analysis,10

DETAILED DESCRIPTION OF THE INVENTION

The present invention is described in view of exemplary 

embodiments only intended to illustrate the principles of the present invention. 

The skilled person will be able to provide several embodiments within the scope 

of the claims. Throughout the description, the reference numbers of similar 15

elements providing similar effects have the same last two digits. Further it is to 

be understood that in the case that an embodiment comprises a plurality of the 

same features then only some of the features may be labeled by a reference 

number.

20

The invention can be embodied into a robot arm and is described 

in view of the robot arm illustrated in fig. 1. The robot arm 101 comprises a 

plurality of robot joints 103a, 103b, 103c, 103d, 103e, 103f and robot links 

104b, 104c, 104d connecting a robot base 105 and a robot tool flange 107.  A 

base joint 103a is connected directly with a shoulder joint and is configured to 25

rotate the robot arm around a base axis 111a (illustrated by a dashed dotted 

line) as illustrated by rotation arrow 113a. The shoulder joint 103b is connected 

to an elbow joint 103c via a robot link 104b and is configured to rotate the robot 

arm around a shoulder axis 111b (illustrated as a cross indicating the axis) as

illustrated by rotation arrow 113b. The elbow joint 103c connected to a first 30

wrist joint 103d via a robot link 104c and is configured to rotate the robot arm 

around an elbow axis 111c (illustrated as a cross indicating the axis) as 
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illustrated by rotation arrow 113c. The first wrist joint 103d connected to a 

second wrist joint 103e via a robot link 104d and is configured to rotate the 

robot arm around a first wrist axis 111d (illustrated as a cross indicating the 

axis) as illustrated by rotation arrow 113d. The second wrist joint 103e is 

connected to a robot tool joint 103f and is configured to rotate the robot arm 5

around a second wrist axis 111e (illustrated by a dashed dotted line) as illustrate 

by rotation arrow 113e. The robot tool joint 103f comprising the robot tool flange 

107, which is rotatable around a tool axis 111f (illustrated by a dashed dotted 

line) as illustrated by rotation arrow 113f. The illustrated robot arm is thus a 

six-axis robot arm with six degrees of freedom, however it is noticed that the 10

present invention can be provided in robot arms comprising less or more robot 

joints, and the robot joints can be connected directly to the neighbor robot joint 

or via a robot link.  It is to be understood that the robot joints can be identical 

and/or different and that the robot joint gear may be omitted in some of the 

robot joints. The direction of gravity 123 is also indicated in the figure. 15

The robot arm comprises at least one robot controller 115 

configured to control the robot joints by controlling the motor torque provided 

to the joint motors based on a dynamic model of the robot. The robot controller 

115 can be provided as a computer comprising an interface device 117 enabling 

a user to control and program the robot arm. The controller can be provided as 20

an external device as illustrated in fig. 1 or as a device integrated into the robot 

arm. The interface device can for instance be provided as a teach pendent as 

known from the field of industrial robots which can communicate with the 

controller via wired or wireless communication protocols. The interface device 

can for instance comprise a display 119 and a number of input devices 121 such 25

as buttons, sliders, touchpads, joysticks, track balls, gesture recognition devices, 

keyboards etc. The display may be provided as a touch screen acting both as 

display and input device.

Fig. 2 illustrates a schematic cross-sectional view of a robot joint 30

203. The schematic robot joint 203 can reflect any of the robot joints 103a-103f 

of the robot 101 of fig. 1. The robot joint comprises a joint motor 209 having a 

motor axle 225. The motor axle 225 is configured to rotate an output axle 227 

via a robot joint gear 229. The output axle 227 rotates around an axis of rotation 

211 (illustrated by a dot-dash line) and can be connected to a neighbor part 35
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(not shown) of the robot. Consequently, the neighbor part of the robot can 

rotate in relation to the robot joint 203 around the axis of rotation 211 as 

illustrated by rotation arrow 213. In the illustrated embodiment the robot joint 

comprises an output flange 231 connected to the output axle and the output 

flange can be connected to a neighbor robot joint or an arm section of the robot 5

arm. However, the output axle can be directly connected to the neighbor part 

of the robot or by any other way enabling rotation of the neighbor part of the 

robot by the output axle.  

The joint motor is configured to rotate the motor axle by applying 

a motor torque to the motor axle as known in the art of motor control, for 10

instance based on a motor control signal 233 indicating the torque, τcontrol, motor, 

applied by said motor axle.  

The robot joint gear 229 forms a transmission system configured 

to transmit the torque provided by the motor axle to the output axle for instance 

to provide a gear ratio between the motor axle and the output axle. The robot 15

joint gear can for instance be provided as spur gears, planetary gears, bevel 

gears, worm gears, strain wave gears or other kind of transmission systems. 

The robot joint comprises at least one joint sensor providing a sensor signal 

indicative of at least the angular position, q, of the output axle and an angular 

position, Θ, of the motor axle. For instance, the angular position of the output 20

axle can be indicated by an output encoder 235, which provide an output 

encoder signal 236 indicating the angular position of the output axle in relation 

to the robot joint.  Similarly, the angular position of the motor axle can be 

provided by an input encoder 237 providing an input encoder signal 238 

indicating the angular position of the motor axle in relation to the robot joint. 25

The output encoder 235 and the input encoder 237 can be any encoder capable 

of indicating the angular position, velocity and/or acceleration of respectively 

the output axle and the motor axle. The output/input encoders can for instance 

be configured to obtain the position of the respective axle based on the position 

of an encoder wheel 239 arrange on the respective axle. The encoder wheels 30

can for instance be optical or magnetic encoder wheels as known in the art of 

rotary encoders. The output encoder indicating the angular position of the 

output axle and the input encoder indicating the angular position of the motor 

axle makes it possible to determine a relationship between the input side (motor 

axle) and the output side (output axle) of the robot joint gear. 35
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The robot joints may optionally comprise one or more motor torque

sensors 241 providing a motor torque signal 242 indicating the torque provided 

by the motor axle. For instance, the motor torque sensor can be provided as 

current sensors obtaining the current through the coils of the joint motor 

whereby the motor torque can be determined as known in the art of motor 5

control. For instance, in connection with a multiphase motor, a plurality of 

current sensors can be provided in order to obtain the current through each of 

the phases of the multiphase motor and the motor torque can then be obtained 

based on the quadrature current obtained from the phase currents through a 

Park Transformation. Alternatively, the motor torque can be obtained using 10

other kind of sensors for instance force-torque sensors, strain gauges etc.

Fig. 3 illustrates a model of a robot joint 303 connecting robot link 

304i-1 and robot link 304i, where the joint motor 309i is arranged on robot link 

304i-1 and rotates robot link 304i in relation to robot link 304i-1. The motor 15

axle 325i of the joint motor is connected to an output axle 327i via robot joint 

gear 329i (illustrated in schematic form) and the robot link 304i rotates together 

with the output axle 327i. The robot joint gear provides a gear ratio between 

the motor axle and the output axle and in an ideal gear the rotation of the motor 

axle is immediately transformed into rotation of the output axle according to the 20

gear ratio of the robot joint gear. However as described in the background of 

the invention flexibility exist in the types of robot joint gears used in the field of 

robot arms. The flexibility of a robot joint gear can be indicated by the gear 

stiffness of the robot joint gear which defines a relationship between torque 

through the robot joint gear and the deformation between the input side (motor 25

axle) and the output side (output axle) of the robot joint gear. The flexibility of 

a robot joint gear can be represented as a spring 326 and a damper 328 coupled 

in parallel between the input side (motor axle) and the output side (output axle) 

of the robot joint gear. The spring constant Ki of the spring indicates the gear 

stiffness of the robot joint gear and the damping constant of the damper Di30

indicates the damping of the robot joint gear. As described in the background 

of the invention the gear stiffness and damping of the robot joint gear can vary; 

consequently, Ki and Di need not to be constants.    

The non-infinite gear stiffness of the robot joint results in a 

deflection between the input side and the output side of the robot joint gear35
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when a torque is applied to the robot joint gear. The deflection of the robot joint 

gear can be indicated by a deflection variable indicating the differences between 

the angular position Θ of the motor axle and the angular position q of the of the 

output axle, thus the deflection variable is defined as:

5

eq. 1 ������,� = �� − ��

The joint transmission torque ������,� defines the torque that is 

transferred from the motor axle to the output axle via the robot joint gear and 

can be modeled as a function of the deflection variable Φjoint and its time-10

derivative:

eq. 2 ������,��������,� , �̇�����,�� = ��,��������,�� + ��,�(�̇�����,�) 

where τ�,��Φ�����,�� is a flexibility torque depending on the gear stiffness Ki and 15

the deflection of the robot joint gear and τ�,��Φ̇�����,�� is damping torque 

depending on the damping coefficient Di and the first time derivative of the 

deflection of the robot joint gear and the time derivative of the deflection of the 

robot joint gear. 

20

The ��,�(Φ̇�����,�) damping torque of the robot joint gear can for instance be 

obtained by following the steps:

 Fix the output axle of the robot joint gear;

 Apply a torque to the motor axle of the robot joint gear to yield a gear 

deflection;25

 Keep the motor axle of the robot joint gear still and remove the applied 

torque from the motor axle of the robot joint gear;

 Observe the position of the motor axle of the robot joint gear over time 

as the motor axle of the robot joint gear undergoes a damped harmonic 

motion with an amplitude that decreases over time;30
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 The damping torque is a measure of the energy dissipation during the 

motion. Assuming an underdamped harmonic motion, the damping 

coefficient Di can be obtained as:

eq. 3 �� =
�� � �����

��
��

�

�����

where � is the mass moment of inertia of the motor axle, �� and �� are, 5

respectively, amplitudes of the first and second vibration, and �� and ��

are, respectively, times for the first and second motion.

If the motion is not underdamped, a larger mass moment of inertia is added to 

the input axle.

The gear stiffness Ki of the robot joint gear can be characterized10

by how much the flexible torque τE causing the gear deflection changes as a 

function of the gear deflection. The gear stiffness can thus be expressed as:

eq. 4 ��(������,�) =
� ���������,��

� ������,�
≈

� �
��������,��

� ������,�

Assuming that that no flexibility torque exists for the undeformed 15

transmission and that the transmission has the same behavior in compression 

and extension, thus:

eq. 5 ��,�(0) = 0 ∀ ������ , �

20

eq. 6 ��,��−������,�� = −���������,�� ∀ ������,�

Fig. 4 illustrates a simplified structural diagram of a robot arm 

comprising a plurality of n number of robot joints 403i, 403i+1….403n. The 

robot arm can for instance be embodied like the robot arm illustrated in fig. 1 25

with a plurality of interconnected robot joints, where the robot joints can be 

embodied like the robot joint illustrated in fig. 2. It is to be understood that 

some of the robot joints and robot links between the robot joints have been 

omitted for sake of simplicity. The controller is connected to an interface device 

comprising a display 119 and a number of input devices 121, as described in 30
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connection with fig.1. The controller 415 comprises a processor 443, a memory 

445 and at least one input and/or output port enabling communication with at 

least one peripheral device. 

The controller is configured to control the joint motors of the robot 

joints by providing motor control signals to the joint motors. The motor control 5

signals 433i, 433i+1….433n are indicative of the motor torque τcontrol,motor,i, 

τcontrol,motor,i+1, and τcontrol,motor,n, that each joint motor shall provide by the motor 

axles. The motor control signals can indicate the desired motor torque, the 

desired torque provided by the output axle, the currents provided by the motor 

coils or any other signal from which the motor torque can be obtained.  The 10

motor torque signals can be sent to a motor control driver (not shown) 

configured to drive the motor joint with the motor current resulting in the 

desired motor torque. The robot controller is configured to determine the motor 

torque based on a dynamic model of the robot arm as known in the prior art.  

The dynamic model makes it possible for the controller to calculate which torque 15

the joint motors shall provide to each of the joint motors to make the robot arm 

perform a desired movement and/or be arranged in a static posture. The 

dynamic model of the robot arm can be stored in the memory 445.

As described in connection with fig. 2 the robot joints comprise an

output encoder providing output encoder signals 436i, 436i+1…436n indicating 20

the angular position q,i, q,i+1…q,n of the output axle in relation to the respective 

robot joint; an input encoder providing an input encoder signal 438i, 

438i+1…438n indicating the angular position of the motor axle Θ,i, Θ,i+1…Θ,n in 

relation to the respective robot joint and a motor torque sensor providing a

motor torque signal 442i,442i+1…442n indicating the torque τactually,motor,i, 25

τactually,motor,i+1...τactually,motor,n, provided by the motor axle of the respective robot 

joint. The controller is configured to receive the output encoder signal 436i, 

436i+1…436n, the input encoder signal 438i, 438i+1…438n and the motor

torque signals 442i,442i+1…442n.

The controller is further configured to obtain the gear stiffness of30

at least one of the robot joint gears of the robot joints of the robot arm by:

 applying a motor torque to the motor axle of the at least one robot joint 

using the joint motor; 

 obtaining the angular position of the motor axle of the robot joint;
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 obtaining the angular position of the output axle of the robot joint;

and determining the gear stiffness based on the motor torque applied to the 

motor axle, the angular position of the motor axle, the angular position of the 

output axle and the dynamic model of the robot arm.

The controller can for instance be configured to carry out the 5

method of obtaining the gear stiffness of a robot joint gear obtained by the 

method illustrated in figs. 5-6 and described in following paragraphs [0034]-

[0066].    

Fig. 5 illustrates a flow chart of a method of obtaining the gear 10

stiffness of a robot joint gear of a robot joint of a robot arm, where the robot 

joint is connectable to at least another robot joint and where the robot joint 

comprises a joint motor having a motor axle configured to rotate an output axle 

via the robot joint gear. The method can for instance be used to obtain the gear 

stiffness of the joint gears of the robot arm illustrated in figs. 1-4 and the 15

method is described in view of the robot arm illustrated in figs. 1-4. It is noted 

that the method in the following is described in view of a method where the gear 

stiffness of all the robot joint gears of the robot arm are obtained, however it is 

to be understood that the method can be used to obtain the gear stiffness of a 

single robot joint gear or some of the robot joint gears. 20

The method comprises a step of initializing 550, a step 552 of 

applying a motor torque to the motor axles of the joint motors; a step 554 of 

obtaining the angular position of the motor axles of the joint motors; a step 556

of obtaining the angular position of the output axle of the robot joint gears and 

a step 560 of determining the gear stiffness of the robot joint gears based on 25

the motor torques applied to the motor axles, the obtained angular positions of 

the motor axles, the obtained angular positions of the output axles and the

dynamic model of the robot arm.

Step of initializing 550 comprises a step of obtaining the dynamic 

model Drobot of the robot arm and can be based on prior knowledge of the robot 30

arm and robot joints, KoR [Knowledge of Robot], such as the dimensions and 

weight of robot joints and robot links; joint motor properties; information 

relating to an eventual payload attached to the robot arm, orientation of the 
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robot arm in relation to gravity and frictional properties of the robot arm and 

robot joints. 

The dynamic model of the robot arm can be defined and pre-stored 

in the memory of the controller and the user can in some embodiment be 

allowed to modify the dynamic model op the robot arm, for instance by providing 5

payload information of a payload attached to the robot arm or defining the 

orientation of the robot arm in relation to gravity.    

The dynamic model of the robot arm can be obtained by 

considering the robot arm as an open kinematic chain having a plurality of (n+1) 

rigid robot links and a plurality of n revolute robot joints, comprising a joint 10

motor configured to rotate at least one robot link. In this example the dynamic 

model is provided by making the following assumptions: 

A1: The rotors of the joint motors are uniform bodies having their center of 

mass at the axis of rotation (motor axle);15

A2: The joint motors are located on the robot links preceding the driven robot 

links; and

A3: The angular velocity of the rotors of the joint motors are due to their own 

spinning.

20

Assumption A1 is a basic requirement for long life of a joint motor such as 

electric motors and also implies that the dynamics of the robot joint will be 

independent of the angular position of the motor axle. The kinematic 

arrangement of joint motors and robot links described in assumption A2 is 

illustrated in fig. 3. It is to be understood that the assumption A2 may not be 25

physically true when comparing with an actual robot where joint motor driving 

the robot links can be arrange at other positions of the robot arm, however 

there exist always a theoretical equivalent to this assumption. Assumption A3 

is reasonable in connection with robot joint gears having large reduction ratios 

[18] typical in the order of 50-200, or more specific in the order of 100-150.30

The assumptions are equivalent to neglecting energy contributions due to the 

inertial couplings between the joint motor and the robot links and also implies 

that Coriolis and centripetal terms become independent of the rotor’s angular 

velocity.

35
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The configuration of robot arm can be characterized by the 

generalized coordinates (� �) ∈ ℝ��    where q is a vector comprising the 

angular position of the output axles of the robot joint gears and � is a vector 

comprising the angular position of the motor axles as seen in “space” of the 

output side of the robot joint gear. Consequently: 5

� =
�����

�

where ����� is the real angular position of the motor axle (e.g. as measured 

by an encoder) and r the gear ratio of the robot joint gear. This is the 

notation used throughout this application. 

10

Similar ������ is a vector comprising the torques of the motor axles 

4 as seen in “space” of the output side of the robot joint gear. Consequently: 

������ = � ∙ ������ ���� 

where ������ ���� is the real torque of the motor axles (e.g. as measured by  

sensors) and r the gear ratio of the robot joint gear. This is the notation 15

used throughout this application. 

Following assumptions 1-3, firstly the dynamic model as seen from 

the output side of the robot joint gears of the robot arm becomes [18]:

20

eq. 7 ������ = �(�) �̈ + �(�, �̇)�̇ + �(�) + ��(�̇) + ����

where ������ is a vector comprising the transmission torques τjoint,i… τjoint,n of each 

of the robot joint gears; � is a vector comprising the angular position of the 

output axles of the robot joint gears; �̇ is a vector comprising the first time 25

derivative of the angular position of the output axles of the robot joint gears 

and thus relates to the angular velocity of the output axles; �̈ is a vector 

comprising the second time derivative of the angular position of the output axles

of the robot joint gears and thus relates to the angular acceleration of the output 

axles. �(�) is the inertia matrix of the robot arm and indicates the mass 30

moments of inertia of the robot arm as a function of the angular position of the 

output axles of the robot joint gears. �(�, �̇)�̇ is the Coriolis and centripetal 

torques of the robot arm as a function of the angular position and angular 
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velocity of the output axle of the robot joint gears. �(�) is the gravity torques

acting on the robot arm as a function of the angular position of the output axles 

of the robot joint gears. 

��(�̇) is a vector comprising the friction torques acting on the 

output axles of the robot joint gears. The friction torques acting on the output 5

axle depends on angular velocity of the output axle (�)̇; however it is to be 

understood the friction torques acting on the output axle also can depend on 

other parameters such as  temperatures, type of lubricants,  loads to robot arm, 

position/orientation of the robot arm etc. ��(�̇)  can for instance be provided as 

linear or nonlinear functions or lookup tables (LUTs) with interpolation, and 10

��(�̇) can be defined based on for instance prior knowledge of the robot, 

experiments, and/or be adaptively updated during robot operation. For instance, 

the ��(�̇) can be obtained during calibration of the robot joints for instance by 

measuring the total friction torques of the robot joint gear and assuming that 

the friction torques act on the motor axle only thus ��(�̇)=0.  ���� is a vector 15

indicating the external torques acting on the output axles of the robot joint gears.

The external torques can for instance be provided by external forces and/or 

torques acting on parts of the robot arm. For instance, if the tool flange of the 

robot is subject to external forces and/or torques described by ����, the resulting 

torques at the output axles of the robot joints becomes:20

eq. 8 ���� = ��(�) ����

where ��(�) is the transposed manipulator Jacobian of the robot arm and where 

���� is a vector describing the direction and magnitude of the external forces 25

and torques in relation to the tool flange of the robot arm.

Secondly, the dynamic model as seen from the input side of the 

robot joint gears becomes [18]:

eq. 9 ������ = � �̈ + ��(�̇) + ������

where ������ is a vector comprising transmission torque τjoint,i… τjoint,n of each of 30

the robot joint gears; �̈ is a vector comprising the second time derivative of the 

A.1. Contribution 153



17

angular position of the motor axle of the joint motor and thus relates to the 

angular acceleration of the motor axle. � is the positive-definite diagonal matrix 

indicating the mass moments of inertia of the joint motor’s rotors. ��(�̇) is a 

vector comprising the friction torques acting on the motor axles and ������ is a 

vector indicating the torque generated by the joint motors.5

��(�̇) is a vector comprising the friction torques acting on the input

axles of the robot joint gears. The friction torques acting on the input axle 

depends on angular velocity of the input axle (�̇) ; however, it is to be 

understood the friction torques acting on the input axle also can depend on 

other parameters such as temperatures, type of lubricants, loads to robot arm, 10

position/orientation of the robot arm etc. 

��(�̇)  can for instance be provided as linear or nonlinear functions 

or lookup tables (LUTs) with interpolation, and ��(�̇) can be defined based on 

for instance prior knowledge of the robot, experiments, and/or be adaptively 

updated during robot operation. For instance, ��(�̇) can be obtained for each 15

robot joint by running the robot joint gear at a constant angular velocity for at 

least one whole revolution of the output axle or any positive integer multiple of 

a revolution without the robot arm contacting external objects, while obtaining

the motor torque of the robot joint motor. Under these conditions the inertia 

term of the robot arm �(�)�̈ is zero due to the constant angular velocity, the 20

Coriolis and centripetal term �(�, �̇)�̇ cancels because only one robot joint is 

moved at the time, and the gravity term �(�) cancels out due to the full rotation 

of the output axle, and no external torques are provided to the robot arm. 

Consequently eq. 7 reduces to:

25

eq. 10 ������,������� = ��,�������(�̇)

where ������,������� indicates the average joint transmission torque during one 

revolution of the output axle and ��,�������(�̇) indicates the friction force acting 

on the output axle of the robot joint gear during one revolution of output axle. 30

Further, under these conditions the inertia term of the joint motors B �̈ is zero 

due to the constant velocity. Consequently eq. 9 reduces to:

eq. 11 ������ = ��(�̇) + ������
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combining eq. 10 and eq. 11 makes it possible to obtain the friction torques 

acting on the motor axles as:

eq. 12 ����̇� = ������ − ��,�������(�̇)

The friction torque ����̇� can also be mechanically modeled for 5

instance as a Generalized Maxwell-Slip (GMS) model [19] which is based on 

three frictional properties 

1) a Stribeck curve for constant velocities, 

2) a hysteresis function with nonlocal memory in the pre-sliding regime, 

and 10

3) a frictional lag in the sliding regime. 

The GMS model captures the behavior of hysteresis which often are seen in 

robot joint gears for instance strain wave gears, where the GMS model can be 

obtained based on the measured ����̇�.

For single robot joint gear, the GMS model can be visualized as a 15

parallel connection of M massless block-spring models (illustrated in fig. 11)

subject to the same input velocity � = ��
��� . The total friction force is given as 

the summation of friction forces for each element i, i.e.

eq. 13 �� = ∑ ��
�
���  

The dynamics of each elementary model is represented by the equations (10) 20

and (11). If the element is sticking:

eq. 14
� ��

��
= ���

where ki is the spring stiffness of the ithelement. The element remains sticking 

until �� > ���(�) where the fractional parameter �� determines the maximum 

force Fi for each element during sticking. If the element is slipping25

eq. 15
� ��

��
= ����(�) � ��� +

��

�(�)
�

The attraction parameter C determines how fast the total friction force 

approaches s(ω) in sliding.

The nonlinear static map 
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eq. 16 �(�) = ����(�) ��� + (�� − ��) ∙ �
��

|�|
��

� �
�

�

+���
� + ���

����(�)�� + ���
��

captures the Stribeck effect and nonlinear viscous friction, where FC, FS, vS and µ

are, respectively, the Coulomb friction, the stiction, the Stribeck velocity, and 

the Stribeck shape factor, and ���
, ���

, ���
are viscous coefficients of friction.5

Typically the robot controller is configured to control the 

movements/positions of the robot arm by determining the torques generated 

by the motor axles ������ of the robot joint gears based on eq. 7 and eq. 9 and 

desired angular positions � , angular velocity �̇ and/or desired angular 10

accelerations �̈ of the output axles of the robot joint gears. The desired angular 

positions �, angular velocity �̇ and/or desired accelerations �̈ of the output axles 

of the robot joint gears can for instance be provided via a robot program stored 

in the memory or via user inputs received through the input device. The angular 

positions �, angular velocity �̇ and/or desired accelerations �̈ of the output axles 15

can be provided directly or as other parameter from which the parameters can 

be obtained for instance in form of coordinates of the robot tool flange in relation 

to the robot base or the like. The controller is then configured to control the 

joint motors by regulating the current through the joint motors.

20

Step 552 of applying a motor torque to the motor axles of the joint 

motors can for instance be carried out by the controller instructing the joint 

motor to apply a motor torque to the motor axles of the robot joint gears. For 

instance, the controller can be configured to provide motor torques that 

maintain the robot arm in a static posture, where the motor torques are25

sufficient to overcome the gravity on the robot arm or by providing motor 

torques moving parts of the robot. Consequently, the joint motors are driven in 

order to generate motor torques τmotor by the motor axles.

In one embodiment the step of applying a motor torque to the 30

motor axle using the joint motor results in movement of at least a part of the

robot arm. This can be achieved by driving the joint motors with current that 

results in rotation of the robot joints whereby at least a part of the robot arm 
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moves. For instance, the robot controller may be configured to apply a motor 

torque to the joint motors that result in movement of a part of the robot arm 

upward in relation to gravity and in such situation the applied motor torque is 

larger than the motor torque needed to compensate for gravity. Also, the robot 

controller may be configured to apply a motor torque to the joint motors that 5

result in movement of a part of the robot arm downward in relation to gravity 

and in such situation the applied motor torque is smaller than the motor torque 

needed to compensate for gravity. However, it is to be understood that any 

motor torque resulting in movement in any direction of at least a part of the 

robot arm can be applied. Consequently, both the input axle of the robot joint 10

gears and the output axle of the robot joint gears rotates. The dynamic terms

of the dynamic models according to eq. 7 and eq. 9, which depends on the 

angular velocity � ̇ of the output axle, the angular acceleration �̈ of the output 

axle, the angular velocity �̇ of the motor axle, and/or the angular acceleration

�̈ of the motor axle can be obtained during movement of the robot arm. For 15

instance the angular velocity � ̇ of the output axle, the angular acceleration �̈ of 

the output axle, the angular velocity �̇ of the motor axle, the angular 

acceleration �̈ of the motor axle can be obtained as described in paragraphs 

[0053]-[0054]. This makes it possible to obtain the gear stiffness of the robot 

joint gear during movement and operation of the robot arm.20

The method can comprise an optional step 535 of obtaining the 

actual motor torque τactually provided by the motor axles. The actual motor torques 

can for instance be obtained by obtaining the current through the joint motors

whereby the actual motor torque can be obtained as known in the art of motor 25

control. For instance, if the joint motors are provided as three-phase Permanent 

Magnet Synchronous Machines (PMSM) with dynamics much faster than that of 

the manipulator. If the joint motors are operated under their current saturation 

limit, the motor axle torque can be obtained by:

eq. 17 ���������,����� = ��  ������30

where τactually,motor is a vector comprising the actual torque provided by the motor 

axles of the joint motors (seen in the output space of the robot joint gear), Kτ

is the positive-definite diagonal matrix of torque constants and Imotor is a vector 
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comprising the torque-generating (quadrature) current obtained from the phase 

currents of the joint motors using the Park Transform. 

The actual torque of the motor axle can also be obtained by using 

force/torque sensors such as strain gauges indicating the actual torque of the 

motor axle. Obtaining the actual torque τactually generated by the motor axles 5

provides a more accurate gear stiffness as eventual deviation between the 

desired motor signal and the actual torque can be eliminated. 

Step 554 of obtaining the angular position of the motor axles of 

the joint motors can be obtained by measuring the angular position of the motor 10

axle for instance by using an encoder such as optical/magnetic encoders as 

known in the art of robotics. The angular position of the motor axles Θ can be 

stored in a memory for later usage for instance in order to store a number of 

angular positions of the motor axles obtained at different times. The angular 

position of the motor axles can for instance be used to obtain the angular 15

velocity and/or angular acceleration of the motor axles for instance by 

differentiation and double differentiation of the angular position with respect to 

time. The angular velocity of the motor axles and angular acceleration of the 

motor axles can then be used to obtain the robot joint gear stiffness using the 

dynamic terms of the dynamic model of the robot arm. Consequently, the gear 20

stiffness of the robot joint gear can be obtained during movement and operation 

of the robot arm.  It is to be understood that the angular velocity of the motor 

axles and/or angular acceleration other motor axles alternatively can be 

obtained using sensors/encoders measuring the actual parameters. 

25

Step 556 of obtaining the angular position of the output axle of the 

robot joint gears can be obtained by measuring the angular position of the 

output axle for instance by using encoders such as optical/magnetic encoders 

as known in the art of robotics. The angular position of the output axles q can 

be stored in a memory for later usage, for instance a number of angular 30

positions of the output axles obtained at different times can be stored in a 

memory. Alternatively, the angular position of the output axles of the robot joint 

gears can be obtained as the desired angular position of the output axles upon 

which the controller is generating the motor torques. This makes it possible to 

estimate the angle of the output axles in robot joints that does not comprise 35
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encoders for measuring the angular position of the output axles. The angular 

position of the output axle of the robot joint gears can for instance be used to 

obtain the angular velocity and/or angular acceleration of the output axle of the 

robot joint gears for instance by differentiation and double differentiation of the 

angular position with respect to time. The angular velocity of the output axles 5

and angular acceleration of the output axles can then be used to obtain the 

robot joint gear stiffness using the dynamic terms of the dynamic model of the 

robot arm. Consequently, the gear stiffness of the robot joint gear can be 

obtained during movement and operation of the robot arm.  It is to be 

understood that the angular velocity of the output axles and/or angular 10

acceleration of motor axles alternatively can be obtained using 

sensors/encoders measuring the actual parameters. 

Step 560 of determining the gear stiffness of the robot joint gears 

can be embodied by considering the model of the flexibility of the robot joint 15

illustrated in fig. 3 and described in paragraphs [0024]-[0028]. The dynamic 

model of the robot arm can be further specified by replacing τjoint of eq. 7 and 

eq. 9 with the right hand side of eq. 2 and thereafter isolating the nonlinear 

flexibility ����������:

20

eq. 18 ���������� = �(�) �̈ + �(�, �̇ )� + �(�) + ��(�̇) + ���� − ��(�̇�����)

eq. 19 ���������� = ������ − � �̈ − ����̇� − ��(�̇�����)

where ������ is a vector comprising the deflection of each robot joint gear, �̇�����25

is a vector comprising the first-order time derivative of the deflection of each 

robot joint and ��(�̇�����) is a vector comprising the damping torque for each

robot joint gear as a function of the time derivative of the deflection of the robot 

joints and ���������� is a vector comprising the flexibility torque of each of the 

robot joint gears as a function of the deflection of the robot joint gears.30

Step 560 of determining the gear stiffness of the robot joint gears 

comprise thus a step 562 of obtaining the deflection ������ of the robot joint 
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gears based on the angular position Θ of the motor axles and the angular 

position q of the output axles, where the deflection ������ of the robot joint gears 

can be indicated as the difference between the angular position Θ of the motor 

axle and the angular position q of the output axle as indicated by eq. 1. It is to 

be understood that the deflection alternatively also can be indicated as the 5

difference between the angular position of the output axle and the angular 

position of the motor axle. Step 560 of determining the gear stiffness of the 

robot joint gears comprise a step 564 of obtaining a flexibility torque of the

robot joint gear at the deflection of the robot joint gear based on at least the

angular position of the motor axle, the angular position of the output axle and 10

a dynamic model of said robot arm. The flexibility torque ����������  of the robot 

joint gear at the deflection of the robot joint gear can be obtained based on eq. 

18, with the angular position of the motor axles Θ and the angular position q of 

the output axles as input variables, as the remaining parts of  eq. 18 have been 

obtained during the initialization and for instance stored the memory. It is noted 15

that ���� is zero in situations where no external forces/torques are acting on the 

robot arm, however if for instance an external force is acting on the robot tool 

flange the external forces/torques can then be obtained based on eq. 8. Further 

the contribution from external forces can also be obtained by using 

force/torques sensors.  Additionally, or alternatively ���������� can be obtained 20

based on eq. 19 with the angular position of the motor axles Θ, the angular 

position q of the output axles and motor torques τmotor by the motor axles as 

input variables. It is thus to be understood that the motor torques τmotor by the 

motor axles can be provided as an additional/optional input to step 564. In the 

embodiment comprising step 553 the motor torques τmotor can be replaced by 25

the actual motor torques τactually obtained in step 553 when obtaining the gear 

stiffness of the robot joint gear using eq. 19.    The motor torques τmotor and the 

actual motor torques τactually is indicated in brackets [] and () in fig 5 in order to 

illustrate that they can be provided as additional parameters to step 564. 

In step 566 the gear stiffness of the robot joint gears can be 30

obtained based on the deflection of the robot joint gear obtained in step 562 

and the flexibility torque ����������  of the robot joint gear obtained in step 564.  

Considering the eq. 4, eq. 5 and eq. 6 makes it possible to obtain the gear 

stiffness as:
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eq. 20 ���������� =
� ��

� ������
≈

� ��

� ������

where ���������� can be obtained based on eq. 18 or eq. 19 as described in 

connection with step 564.

The gear stiffness ki(Φjoint) obtained by eq. 20 provides can be used 

to obtain the average gear stiffness between a certain deflection of the robot 5

joint gear and the situation where deflection of the robot joint gear is zero, 

which is typically when no motor torque is provided to the robot joint gears. In 

such situation eq. 20 can be simplified to

eq. 21 ��,��������������� =
�������������(�)

��������
=

����������

������

Additionally or alternatively the gear stiffness of the robot joint 10

gears can be indicated as the flexibility torque ����������, where a high flexibility 

torque at a given deflection of the robot joint gear indicates a high gear stiffness, 

as a higher flexibility torque is needed to achieve the deflection of the robot 

joint gear; reversely a low  flexibility torque at a given deflection of the robot 

joint gear indicates a low gear stiffness as a smaller flexibility torque is needed15

to achieve the deflection of the robot joint gear. The gear stiffness of the robot 

joint gears can thus be indicated based eq. 18 and/or eq. 19.

The method can comprise an optional step 570 of comparing the 

obtained gear stiffness ki(Φjoint) with prior knowledge of the robot joint gear 20

stiffness ki,limit(Φjoint) and provide a status Sjoint of the robot joint gears based on 

the obtained gear stiffness and said prior knowledge of the robot gear stiffness.

For instance, the average gear stiffness can be obtained at different times during 

the life time of the robot and be compared a threshold value of the gear stiffness, 

where the threshold value has been determined based on knowledge about the 25

evolution of the gear stiffness in relation to wear of the robot joint gear. The 

status of the robot joint gear can thus be used to indicate the wear of the robot 

joint gears. Typically, the gear stiffness of a robot joint gears tend to decrease 

before the robot joint gears breaks, as material is worn off at the gear meshing. 

Consequently, the controller can be adapted to provide a warning when the gear 30

stiffness reaches a threshold value, whereby the robot joint gear can be sent 
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for repair or replaced before the gear breaks. This makes it possible to avoided 

failure of the robot joint gear and thereby avoid downtime of the robot arm. 

The method can comprise an optional step 580 of controlling the 

robot arm based on the obtained gear stiffness of the robot joint gears by 5

providing a control signal τcontrol indicative of a desired motor torque τmotor of the 

motor axle. The desired motor torque τmotor can for instance be obtained based 

on the gear stiffness of the robot joint gears by modifying the dynamic model 

of the robot to include the stiffness of the robot joint gears and then update the 

dynamic model of the robot based on the gear stiffness obtained in step 560.10

Fig. 6 illustrates a flow chart of the method of obtaining the gear 

stiffness of a robot joint gear of a robot joint of a robot arm. The method is like 

the method illustrated in fig. 5 and similar steps have been given the same 

reference numbers as in fig. 5 and will not be described further. 15

In this embodiment the methods comprise a step 665 (illustrated 

as an arrow) of repeating the following steps:

 step 552 of applying a motor torque to the motor axle using the joint 

motor; 

 step 554 of obtaining the angular position of the motor axle;20

 step 556 of obtaining the angular position of the output axle;

 step 562 of obtaining the deflection of the robot joint gear based on the

angular position of the motor axle and the angular position of the output 

axle; and

 step 564 of obtaining a flexibility torque of the robot joint gear at the25

deflection of the robot joint gear based on at least the angular position of 

the motor axle, the angular position of the output axle and a dynamic 

model the of robot arm.

The steps are repeated a plurality of times and the deflection Φjoint of the robot 

gears obtained in step 562 and the flexibility torque of the robot joint gears 30

obtained in step 564 are stored for each repetition. Consequently, a data set 

comprising a plurality of data points (Φjoint; τE(Φjoint)) can be obtained and the 

flexibility torque of the robot joint gears can be obtained for different deflections 

of the robot joint gears. During the repetitions motor torque applied to the motor 
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axle of the robot joint gears can be varied in step 552 whereby it is possible to 

obtain the flexibility torque of the robot joint gears over a range of robot joint 

gear deflections. This makes it possible to map the flexibility torque of the robot 

joint gears as a function of the robot joint gear deflection and the gear stiffness 

of the robot joint gear can be obtained as function of the robot joint gear 5

deflection. 

Step 667 is a step of fitting the obtained data points comprising 

the flexibility torques of the robot joint gears and the corresponding robot joint 

gear deflection with a mathematical function. For instance, the obtained data 

points for a single robot joint can be fitted to polynomial function having a 10

linearly parametrized polynomial basis:

eq. 22 ��,��������,�� = ��(������,�)  ��

where ��(������)  is the linear polynomial basis of the deflection variable Φjoint,  ��15

is a vector comprising the constants for polynomial basis functions of the ith 

robot joint. Based on the symmetry assumptions in eq. 5 and eq. 6 the regressor 

��(������)  can be specified to contain only odd powers of Φjoint, thus:

eq. 23 ���������� =  ������
����,  p = 1,2,…….,P20

In summation form the polynomial function can be written as:

eq. 24

τ�,��Φ�����,�� = �  ��,�

�

���

∙ Φ�����,�
���� 

where ��,� is a vector comprising the constants for the polynomial basis 25

functions for the ith robot joint. In a robot arm comprising a plurality of robot 

joints a polynomial function and corresponding vector of constants can be 

provided for each robot joint.
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As described in paragraph [0027] and stated by eq. 4 the stiffness 

of the robot joint gear can then be determined as the change of flexibility torque 

of the robot joint gears with respect to the robot joint gear deflection. The 

method can comprise a step 668 of obtaining the gear stiffness of the robot joint 

robot by obtaining the slope of the flexibility torque with respect to the deflection 5

of said robot joint gear. For instance, the slope can be determined between at 

least two of the data points indicated by eq. 20 and by eq. 21 for the situation 

where no flexibility torque exists at a deflection of zero. The slope can also be 

indicated by differentiation of the mathematical function fitted to the data points. 

In case of a polynomial function this corresponds to differentiation of eq. 2410

eq. 25

K��Φ������ =
δ τ��Φ�����,��

δ Φ�����,�
= �  (2p − 1)��,�

�

���

∙ Φ�����,�
����

The method of obtaining the gear stiffness of the robot joint gears 15

of a robot joint have been demonstrated on a robot arm by obtaining the 

flexibility torque of a single robot joint gear as a function of robot joint gear 

deflection using both a method according to the present invention and an 

alternative method. The experiments have been performed using a UR5e robot 

arm provided by Universal Robots and the results are discussed in the following 20

paragraphs.

Fig. 7 illustrates the robot arm 701 in configuration used in the 

experimental analysis. The robot arm is a six-axis robot comprising robot base 

705 carrying the robot arm. A base joint 703a is directly connected to the 25

shoulder joint 703b and is configured to rotate the robot arm around a base axis 

711a (illustrated by a dashed dotted line) as illustrated by rotation arrow 713a. 

The shoulder joint 703b is connected an elbow joint 703c via a robot link 704b 

and is configured to rotate the robot arm around a shoulder axis 711b as 

illustrated by rotation arrow 713b. The elbow joint 703c connected to a first 30

wrist joint 703d via a robot link 704c and is configured to rotate the robot arm 

around an elbow axis 711c as illustrated by rotation arrow 713c. The first wrist 

joint 703d connected to a second wrist joint 703e and is configured to rotate 
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the robot arm around a first wrist axis 711d as illustrated by rotation arrow 

713d. The second wrist joint 703e is connected to a robot tool joint 703f and is 

configured to rotate the robot arm around a second wrist axis 711e as illustrate 

by rotation arrow 713e. The robot tool joint 703f comprising the robot tool flange 

707, which is rotatable around a tool axis 711f as illustrated by rotation arrow 5

713f.

During the experiments the robot arm 701 is arranged in a pose 

where the base axis 711A is parallel with the direction of gravity 723 and the 

shoulder axis 711b, the elbow axis 711c, the first wrist axis 711d, the second 

wrist axis 711e and the tool axis 711b are perpendicular to the direction of 10

gravity 723. The base joint 703a is the only joint which is rotated during the 

experiment and the shoulder joint 703b, the elbow joint 703c, the first wrist 

joint 703d, the second wrist joint 703e and the tool joint 703b are thus fixed

during the experiments. 

The gear stiffness of the robot joint gear of the base joint 703a is 15

obtained in the experiments. Firstly, the friction and the stiffness characteristics 

for the base joint 703a of the UR5e Robot arm is obtained using an alternative 

method.

The steady-state friction torque is identified by imposing different 

signals of constant velocity on the base joint while measuring the robot joint 20

current. For constant velocity eq. 7, eq. 9 and eq. 17 yield �� + �� = K�  �. The 

steady-state friction torque is illustrated in fig. 8. Fig. 8 illustrates a graph of 

the measured friction torques at varying angular velocity of the motor axle, 

where the horizontal axis indicates the angular velocity 881 of the motor axle 

and the vertical axis indicates the friction torque 882. The experimental data 25

points comprising an angular velocity and corresponding friction torque 883 are 

illustrated as triangles. The parameters in eq. 16 are fitted to the data points 

using a Quasi-Newton method with a cubic line search procedure and updating 

the Hessian matrix approximation by the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) method and the fit have been illustrated by solid line 884. The fit of to 30

the data points is 98,6 % using a normalized Root Mean Squared Error (NRMSE) 

method. 

The flexibility torque of the robot joint gear of the base joint is 

obtained in a static setting by locking the input axle (motor axle) of the robot 

joint gear and imposing a set of known torques on the output axle using a Sauter 35
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FH–S 500 digital force gage while measuring the deformation of the robot joint 

gear using the output and input encoders of the robot. Fig. 9 illustrates a graph 

where the vertical axis indicates flexibility torque of the robot joint gear 987 and 

the horizontal axis indicated the deflection of the robot joint gear 986. The 

experimental data points comprise a robot joint deflection and corresponding 5

flexibility torque and are illustrated as triangles 988. The data points have been 

fitted to a linearly parametrized polynomial basis 989 (Static POLY fit) as 

described in eq. 24 with P=2 and is illustrated as a solid line. The fit of the 

polynomial bases to the data points is 96,9% using a normalized Root Mean 

Squared Error (NRMSE) method.10

The flexibility torque of the robot joint gear of the base joint is 

obtained dynamically based on the method according to the present invention 

by rotating the base joint according to the bang-coast-bang joint space 

trajectory generated with randomly generated waiting times and angular 

positions, velocities, and accelerations in intervals ranging from 30 % to 100 % 15

of the maximum allowed values. Fig. 10 illustrates graphs of the joint space 

trajectory used to drive the base joint of the robot, where the horizontal axis 

1093 indicates time in seconds; graph 1093 illustrates the angular position of 

the base joint output axle; graph 1094 illustrates the angular velocity of the 

base joint output axle; graph 1095 illustrates the angular acceleration of the 20

base joint output axle.   

During the experiment the angular position of the output axle of 

the base joint, the angular position of motor axle of base joint, and the current 

trough the base joint motor are measured while the robot arm moves according 

the joint space trajectory illustrated in fig. 10. The flexible torque is the obtained 25

based on the measured angular position of the output axle of the base joint, the 

angular position of motor axle of base joint and the current trough the base 

joint motor using eq. 19 and eq. 17.

Fig. 12 illustrates a graph where the vertical axis indicates 30

flexibility torque of the robot joint gear 987 and the horizontal axis indicated the 

deflection of the robot joint gear 986. The experimental data points comprise a 

robot joint deflection and corresponding flexibility torque and are illustrated as 

triangles 1288. The experimental data points have been fitted to linearly 

parametrized polynomial basis (dynamic POLY fit 1290 illustrated in dashed line) 35
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with P=2 using a Recursive Lease Squares (RLS) approach [20] as described in 

the next paragraph. The fit of the polynomial bases to the data points is 96,7% 

using a normalized Root Mean Squared Error (NRMSE) method.

Estimating time-varying parameters with the Recursive Least 

Squares (RLS) approach is obtained by incorporating a forgetting factor 5

discounting past data. In the present example, the incoming information (the 

transmission deformation) is nonuniformly distributed over the parameter space. 

Tracking can only happen in some direction if there is an excitation in that same 

direction, hence the estimation algorithm tracks time-varying parameters only 

within the excited subspace. In particular, inspired by the results in [21], by a 10

suitable notion of excitation subspace, the parameter vector in eq. 22 is 

estimated by the procedure:

eq. 26:

eq. 27

eq. 2815

eq. 29

eq. 30

eq. 31

where δ> 0 enforces an increment of the covariance matrix P improving the 

algorithm alertness. More alertness is achieved by decreasing µ at the price of 20

an increased sensitivity to disturbances. By setting µ = 1 and δ = 0, eq. 31 reduces 

to the standard RLS algorithm.

The fit of the polynomial bases (static POLY fit 989) of the flexible 

torque obtained statically as descried in paragraph [0063] have also been 

included in the fig. 12. There is very good alignment between the flexibility 25

torque obtained by the two methods. Thus, it is possible to obtain the flexibility 

torque and/or stiffness of the robot joint gear based on the method according 
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to the present invention under dynamic conditions where the output axle of the 

robot joint gear rotates. For instance, by obtaining the angular position of the 

input axle, the angular position of the output axle and the motor torque applied 

to the input axle. Where the motor torque applied to the input axle for instance

can be obtained based on the phase currents through the coils of the joint 5

motors (provided as PMSM). 

Fig. 13 illustrates the obtained joint stiffness obtained by 

differentiation of the static POLY fit 989 and dynamic POLY fit graphs 1290 in 

fig. 12. The vertical axis indicates gear stiffness of the robot joint gear 1397 and 

the horizontal axis indicated the deflection of the robot joint gear 986. The gear 10

stiffness as obtained via the static measurements illustrated as solid line 1398

(static POLY stiffness) and is obtained by differentiation of the linearly 

parametrized polynomial basis 989 with respect the robot joint deflection. The 

gear stiffness as obtained via the dynamic measurements illustrated as dashed 

line  line 1397 (dynamic POLY stiffness) and is obtained by differentiation of the 15

linearly parametrized polynomial basis 1290 with respect the robot joint 

deflection. The variations of gear stiffness as function of the robot joint 

deflection obtained by the two methods are very good aligned. 

The present invention makes it thus possible to obtain the flexibility 

torque and the gear stiffness of the robot joint gears of a robot arm online during 20

ordinary usage of the robot arm, where the robot arm typically performs a 

number of movements for instance in connection with a production setup.

BRIEF DESCRIPTION OF FIGUR REFERENCES

101 robot arm

103a-103f, 203, 303, 403i; 
403i+1; 401n

robot joint

104b, 104c, 104d, 304i; 304i-1 robot link

105 robot base

107 robot tool flange

209, 309 joint motor

111a-111f, 211 axis of rotation

113a-113f:, 213 rotation arrow

115, 415 robot controller

117 interface device

119 display

121 input device

123 direction of gravity
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225, 325i motor axle

326
spring connecting input side and output 
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227, 327i output axle 

328
damper connecting input side and output 
side

229, 329i robot joint gear 

231 output flange

233, 433i; 433i+1; 433n motor control signal

235 output encoder

236, 436i; 436i+1; 436n output encoder signal
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238, 438i; 438i+1; 438n output encoder signal

239 encoder wheel

241 motor torque sensor

242 motor torque signal

443 Processor
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552 Apply motor torque to motor axle

653 obtain actual motor torque

554 obtain motor axle position

556 obtain output axle position
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562 obtain deflection of robot joint gears

564
Obtain flexibility torque of robot joint 
gears

665 Repeat

566, 666 determine gear stiffness

667
Fit data points with mathematical 
function

668 determine slope of fit

570 compare gear stiffness

580 Control robot based on gear stiffness

881 Angular velocity of motor axle

882 friction torque

883
data points comprising an angular 
velocity and corresponding friction 
torque 

884 BRGS fit 

986 flexibility torque of the robot joint gear 

987 deflection of the robot joint gear 

988, 1288
data points comprise a robot joint 
deflection and corresponding flexibility 
torque

989 static POLY fit 

1290 dynamic POLY fit

1092 time
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1093 angular position of base joint output axle 

1094 angular velocity of base joint output axle 

1095
angular acceleration of base joint output 
axle 

1397 gear stiffness of robot joint gear

1398 static POLY stiffness

1399 dynamic POLY stiffness
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CLAIMS

1. A method of obtaining the gear stiffness of a robot joint gear of a robot joint 

of a robot arm, where said robot joint is connectable to at least another robot 

joint, said robot joint comprises a joint motor having a motor axle, said motor 

axle is configured to rotate an output axle via said robot joint gear, said method 5

comprises the steps of:

 applying a motor torque to said motor axle using said joint motor;

 obtaining the angular position of said motor axle;

 obtaining the angular position of said output axle;

 determining said gear stiffness based on at least said angular position of 10

said motor axle, said angular position of said output axle and a dynamic 

model of said robot arm, where said dynamic model of said robot arm 

defines a relationship between forces acting on said robot arm and 

resulting accelerations of said robot arm.

15

2. The method according to claim 1 wherein said step of determining said gear 

stiffness is further based on said motor torque applied to said motor axle.

3. The method according to any one of claims 1-2, wherein said step of applying 

a motor torque to said motor axle using said joint motor results in movement 20

of at least a part of said robot arm. 

4. The method according to any one of claims 1-3 wherein said step of 

determining said gear stiffness comprises the steps of:

 obtaining the deflection of said robot joint gear based on said angular 25

position of said motor axle and said angular position of said output axle;

and

 obtaining a flexibility torque of said robot joint gear at said deflection of 

said robot joint gear based on at least said angular position of said motor 

axle, said angular position of said output axle and said dynamic model of 30

said robot arm.
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5. The method according to claim 4 wherein said step of obtaining said gear 

stiffness comprises a step of repeating a plurality of times said steps of:

 applying a motor torque to said motor axle using said joint motor; 

 obtaining the angular position of said motor axle;

 obtaining the angular position of said output axle;5

 obtaining the deflection of said robot joint gear based on said angular 

position of said motor axle and said angular position of said output axle; 

and

 obtaining a flexibility torque of said robot joint gear at said deflection of 

said robot joint gear based on at least said angular position of said motor 10

axle, said angular position of said output axle and said dynamic model of 

said robot arm;

and for each repetition store said deflection of said robot joint gear and said 

flexibility torque of said robot joint gear at said deflection of said robot joint 

gear.15

6. The method according to claim 5 wherein said step of determining said gear 

stiffness of said robot joint gear comprises a step of fitting said obtained 

flexibility torques and said deflection of said robot joint gears with a 

mathematical function. 20

7. The method according to claim 6 wherein said mathematical function is a 

polynomial function obtained based on a recursive least squares estimation.

8. The method according to any one of claims 5-7 wherein said gear stiffness of 25

said robot joint gear is obtained as the slope of said flexibility torque with 

respect to said deflection of said robot joint gear.  

9. The method according to any one of claim 1-8 wherein said method comprises 

a step of comparing said obtained gear stiffness with prior knowledge of the 30

robot gear stiffness and provide a status indication of the robot joint gears based 
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on the obtained gear stiffness and said prior knowledge of the robot gear 

stiffness.

10. The method according to anyone of claims 1-9 wherein said dynamic model 

of said robot arm comprises information modeling a parallel spring and damper 5

coupling between said motor axle of said robot joint and said output axle of said 

robot joint. 

11. A method of controlling a robot arm, said robot arm comprising a plurality 

of robot joints connecting a robot base and a robot tool flange, said method 10

comprises the steps of controlling said robot joints based on a dynamic model, 

and the gear stiffness of a robot joint gear of at least one of said robot joints,  

where said at least one robot joint is connectable to at least another robot joint, 

said at least one robot joint comprises a joint motor having a motor axle, said 

motor axle is configured to rotate an output axle via said robot joint gear, where 15

said dynamic model of said robot arm defines a relationship between forces 

acting on said robot arm and resulting accelerations of the robot arm

characterized in that said method comprises a step of obtaining said gear 

stiffness comprising the method according to any one of claims 1-11.

20

12. The method according to claim 11 wherein said method comprises a step of 

modifying said dynamic model based on said obtained gear stiffness.

13. A robot arm comprising a plurality of robot joints connecting a robot base 

and a robot tool flange, said robot arm comprises at least one controller 25

configured to control said robot joints based on a dynamic model of said robot

arm, where at least one of said robot joint comprises a joint motor having a 

motor axle, said motor axle is configured to rotate an output axle via said robot 

joint gear, where said dynamic model of said robot arm defines a relationship 

between forces acting on said robot arm and resulting accelerations of said robot 30

arm characterized in that said controller is configured to obtain the gear 

stiffness of said robot joint gear by:
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 applying a motor torque to said motor axle using said joint motor; 

 obtaining the angular position of said motor axle;

 obtaining the angular position of said output axle;

 determining said gear stiffness based on at least said angular position of 

said motor axle, said angular position of said output axle and said 5

dynamic model of said robot arm, where said dynamic model of said robot 

arm defines a relationship between forces acting on said robot arm and 

resulting accelerations of said robot arm.

14. The robot arm according to claim 13 characterized in that said controller 10

is configured to control said robot joints based on said obtained gear stiffness

of said robot joint gear.

15. The robot arm according to any one of claims 13-14 characterized in that

said motor torque applied to said motor axle causes movement of at least at 15

part of said robot arm.

16. The robot arm according to any one of claims 13-15 characterized in that 

said robot arm comprises at least one of:

 an output encoder configured to indicate said angular position of said 20

output axle;

 an input encoder configured to indicate said angular position of said motor 

axle.

17. The robot arm according to any one of claims 13-16 characterized in that 25

said controller is configured to:

 compare said obtained gear stiffness with a threshold value of said gear 

stiffness; 

 provide a status signal relating to said robot joint gear based on said 

comparison of said obtained gear stiffness with said threshold value of 30

said gear stiffness.
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18. The robot arm according to any one of claims 13-17 characterized in that 

said robot arm comprises a memory comprising instructions instructing said 

controller to obtain said gear stiffness by performing the method according to 

any one of claims 1-10.

5
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ABSTRACT

A method of obtaining the gear stiffness of a robot joint gear of a robot joint of 

a robot arm, where the robot joint is connectable to at least another robot joint. 

The robot joint comprises a joint motor having a motor axle configured to rotate 5

an output axle via the robot joint gear. The method comprises the steps of: -

applying a motor torque to the motor axle using the joint motor; -obtaining the 

angular position of the motor axle; -obtaining the angular position of the output 

axle; -determining the gear stiffness based on at least the angular position of 

the motor axle, the angular position of the output axle and a dynamic model of 10

the robot arm.
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METHOD OF CONTROLLING A ROBOT ARM BASED ON 
ADAPTIVE FRICTION

FIELD OF THE INVENTION

The present invention relates to methods of controlling a robot arm 

comprising a plurality of robot joints connecting a robot base and a robot tool 5

flange, where at least one of the robot joints is a rotational robot joint 

comprising a joint motor having a motor axle, where the motor axle is 

configured to rotate an output axle of the rotational robot joint via a robot joint 

transmission.

BACKGROUND OF THE INVENTION10

Robot arms comprising a plurality of robot joints and links where 

motors can rotate the joints in relation to each other are known in the field of 

robotics. Typically, the robot arm comprises a robot base which serves as a 

mounting base for the robot arm and a robot tool flange where to various tools 

can be attached.  A robot controller is configured to control the robot joints to 15

move the robot tool flange in relation to the base. For instance, in order to 

instruct the robot arm to carry out a number of working instructions.

Typically, the robot controller is configured to control the robot 

joints based on a dynamic model of the robot arm, where the dynamic model 

defines a relationship between the forces acting on the robot arm and the 20

resulting accelerations of the robot arm. Often, the dynamic model comprises a 

kinematic model of the robot arm, knowledge about inertia of the robot arm and 

other parameters influencing the movements of the robot arm. The kinematic 

model defines a geometric relationship between the different parts of the robot 

arm and may comprise information of the robot arm such as, length, size of the 25

joints and links and can for instance be described by Denavit-Hartenberg 

parameters or the like. The dynamic model makes it possible for the controller 

to determine which torques the joint motors shall provide in order to move the 

robot joints for instance at specified positions, velocities, and accelerations.
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On many robot arms it is possible to attach various end effectors 

to the robot tool flange, such as grippers, vacuum grippers, magnetic grippers, 

screwing machines, welding equipment, dispensing systems, visual systems etc.

In some robots the robot joint comprises a joint motor having a 

motor axle configured to rotate an output axle, for instance via a transmission5

system. The robot joint transmission system is configured to transmit torque 

provided by the motor axle to the output axle. Typically, the output axle is 

connected to and configured to rotate parts of the robot arm in relation to each 

other. The robot joint transmission system can for instance comprise a robot 

joint gear or a direct drive mechanism. The robot joint gear can for instance be 10

provided as a spur gears, planetary gears, bevel gears, worm gears, strain wave 

gears or other kind of transmission systems.

Commonly flexibility and friction exist in the various types of 

transmissions. Taking into account the friction of the transmission in the 

dynamic model makes the dynamic model more accurately resemble the 15

dynamics of the real robot arm because the robot joint friction originating from 

the transmission system can be known and thereby compensated in the robot 

controller. The art of compensating the effects of friction in the controller is well 

known in the field of motor control {1}. A more accurate dynamic model can 

for instance allow the robot controller to control the robot arm with greater 20

accuracy and precision. A more accurate dynamic model can also allow the robot 

controller to more accurately identify external disturbances, for instance human 

interference which is of great concern in terms of safety.

One issue when taking into account the robot joint friction in the 

robot controller design is that the friction changes in a manner that is difficult 25

to predict accurately. For instance, friction is known to change with quantities 

such as temperature and wear that are hardly measurable on most industrial 

robots. The friction’s temperature dependency is caused for instance by the 

thermal expansion of mechanical parts in contact and/or temperature-

dependent lubricant properties. The friction’s wear dependency is caused for 30

instance by material being worn off at contacting surfaces such as for instance 

at the gear meshing in a robot joint gear.
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Due to the variation of the robot joint friction it is desired to 

estimate the friction on-line, such that the friction can be compensated more 

accurately in the robot controller. The art of adaptive friction compensation is 

well known within the field of motor control. Adaptive friction compensation has

been accomplished through various strategies by several researchers {2}, {3}, 5

{4}.

There are several robot control strategies that utilizes the 

knowledge on the dynamic model of the industrial robot to compute the control 

action. The control strategy Joint Torque Feed-back (JTF) has been widely used 

to improve the performance of robot motion and force control {5}, {6}, {7}.10

Implementation of JTF control requires to know the joint torque transmitted to 

the output axle from the transmission system. The joint transmission torque is 

most often obtained by measuring the deformation of an elastic member inside 

the transmission. If for instance strain wave transmissions are used as robot 

joint gears the joint transmission torque can be obtained for instance by 15

mounting strain gauges on the flex spline {8}, {9}, {10}. Another option is to 

measure the angular position of both the input axle and the output axle in the 

robot joint. The difference between these position measurements defines the 

deformation of the transmission system. This deformation combined with an 

accurate mathematical model of the transmission system can yield an estimate 20

of the robot joint transmission torque as shown in {11}, {12}, {13}. However, 

while these works demonstrate sufficient accuracy in the experimental test 

systems during a maximum period of 80 seconds, the methods are deemed to 

fail if applied to industrial robots where changes in ambient conditions or 

changes in the temperature or wear level of the robot joint transmission system 25

occurs and influences the industrial robot’s friction characteristics.
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SUMMARY OF THE INVENTION

The objective of the present invention is to address the above described 10

limitations with the prior art or other problems of the prior art. This is achieved 

by a method of a  method of controlling a robot arm with robot joints, where 

the joint motors of the joints are controlled based a signal generated based on 

the friction �� of at least one of the input/outside of the robot joint transmission 

and the robot joint transmission torque �̂� between the input side and the output 15

side of the transmission. The friction is determined based on: at least two of the 

angular position of the motor axle; the angular position of the output axle and/or 

the motor torque provided to the motor axle by the joint motor. The robot joint 

transmission torque is determined based on: at least one of the angular 

positions of the output axle; the angular position of the output axle and/or the 20

angular position of the motor axle; the angular position of the motor axle and 

the motor torque provided to the motor axle by the joint motor. This makes it 

possible to prove a more accurate control of a robot arm as the friction of he 

joint transmissions can adaptive obtained and used to generate the controls 

signals of the robot joint motors. Further the objective of the present invention 25

is addressed a robot arm based comprising a plurality of robot joints and a robot 

controller where the root controller is configured to control the robot arm based 

on ad adaptive obtained friction of the robot joint transmission. The dependent 

claims describe possible embodiments of the method according to the present 

invention. The advantages and benefits of the present invention are described 30

in the detailed description of the invention
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BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates a robot arm configured according to the present invention;

fig. 2 illustrates a schematic cross-sectional view of a rotational robot joint;

fig. 3 illustrates a model of a rotational robot joint gear;

fig. 4 illustrates a simplified structural diagram of a robot arm configured 5

according to the present invention;

fig. 5 illustrates a flow chart of a method of controlling a robot arm according to 

the present invention where the robot arm is controlled based on adaptive 

friction of a rotational robot joint;  

fig. 6 illustrates a structural diagram of a robot controller system controlling10

robot arm where the robot arm is controlled based on adaptive friction of a 

rotational robot joint;

fig. 7 illustrates a flow chart of a method of controlling a robot arm according to 

the present invention, where the robot arm is controlled based on an adaptive 

friction depending transmission torque of a rotational robot joint;  15

fig. 8 illustrates a structural diagram of a robot controller system controlling 

robot arm where the robot arm is controlled based on an adaptive friction 

depending transmission torque of a rotational robot joint;  

fig. 9 illustrates a flow chart of a method of controlling a robot arm according to 

the present invention where the robot arm is controlled based on adaptive 20

friction dependent feed-forward;  

fig. 10 illustrates a structural diagram of a robot controller system controlling 

robot arm where the robot arm is controlled based on adaptive friction 

dependent feed-forward controller;

fig. 11 illustrates a structural diagram of an adaptive friction module of a robot 25

controller system controlling robot arm where the adaptive friction module 

provides the friction of the robot joint transmission.
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DETAILED DESCRIPTION OF THE INVENTION

The present invention is described in view of exemplary 

embodiments only intended to illustrate the principles of the present invention. 

The skilled person will be able to provide several embodiments within the scope 

of the claims. Throughout the description, the reference numbers of similar 5

elements providing similar effects have the same last two digits. Further it is to 

be understood that in the case that an embodiment comprises a plurality of the

same features then only some of the features may be labeled by a reference 

number.

10

The invention can be embodied into a robot arm and is described 

in view of the robot arm illustrated in fig. 1. The robot arm 101 comprises a 

plurality of robot joints 103a, 103b, 103c, 103d, 103e, 103f and robot links 

104b, 104c, 104d connecting a robot base 105 and a robot tool flange 107.  A 

base joint 103a is connected directly with a shoulder joint and is configured to 15

rotate the robot arm around a base axis 111a (illustrated by a dashed dotted 

line) as illustrated by rotation arrow 113a. The shoulder joint 103b is connected 

to an elbow joint 103c via a robot link 104b and is configured to rotate the robot 

arm around a shoulder axis 111b (illustrated as a cross indicating the axis) as 

illustrated by rotation arrow 113b. The elbow joint 103c connected to a first 20

wrist joint 103d via a robot link 104c and is configured to rotate the robot arm 

around an elbow axis 111c (illustrated as a cross indicating the axis) as 

illustrated by rotation arrow 113c. The first wrist joint 103d connected to a 

second wrist joint 103e via a robot link 104d and is configured to rotate the 

robot arm around a first wrist axis 111d (illustrated as a cross indicating the 25

axis) as illustrated by rotation arrow 113d. The second wrist joint 103e is 

connected to a robot tool joint 103f and is configured to rotate the robot arm 

around a second wrist axis 111e (illustrated by a dashed dotted line) as illustrate 

by rotation arrow 113e. The robot tool joint 103f comprising the robot tool flange 

107, which is rotatable around a tool axis 111f (illustrated by a dashed dotted 30

line) as illustrated by rotation arrow 113f. The illustrated robot arm is thus a 

six-axis robot arm with six degrees of freedom, however it is noticed that the 

present invention can be provided in robot arms comprising less or more robot 
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joints, and the robot joints can be connected directly to the neighbor robot joint 

or via a robot link. In the illustrated embodiment the robot joints are illustrated 

as rotational robot joints where a the rotational robot joint rotates one part of 

the robot arm in relation to another part of the robot joint,  however it is to be 

understood that some of the robot joint may be provided as translational robot5

joints where the robot joint is configured to move a part of the robot arm in 

relation to another part of a robot arm via a translational movement. For 

instance, such translational robot joint may be provided as a prismatic robot 

joint. It is to be understood that the robot joints can be identical and/or different.

The direction of gravity 123 is also indicated in the figure. 10

The robot arm comprises at least one robot controller 115 

configured to control the robot joints by controlling the motor torque provided 

to the joint motors based on a dynamic model of the robot. The robot controller 

115 can be provided as a computer comprising an interface device 117 enabling 15

a user to control and program the robot arm. The controller can be provided as 

an external device as illustrated in fig. 1 or as a device integrated into the robot 

arm. The interface device can for instance be provided as a teach pendent as 

known from the field of industrial robots which can communicate with the 

controller via wired or wireless communication protocols. The interface device 20

can for instance comprise a display 119 and a number of input devices 121 such 

as buttons, sliders, touchpads, joysticks, track balls, gesture recognition devices, 

keyboards etc. The display may be provided as a touch screen acting both as 

display and input device.

25

Fig. 2 illustrates a schematic cross-sectional view of a rotational 

robot joint 203. The schematic robot joint 203 can reflect any of the robot joints 

103a-103f of the robot 101 of fig. 1. The robot joint comprises a joint motor 

209 having a motor axle 225. The motor axle 225 is configured to rotate an 

output axle 227 via a robot joint transmission 229. The robot joint transmission 30

can be any device transferring the rotation of the motor axle to the output axle 

and may for instance be provide as a direct drive where the motor axle is directly 

coupled with the output axle and the motor axle and output may thus be the 
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same. The robot joint transmission may also be provided as a robot joint gear 

providing ratio between the motor axle and the output axle, for instance in order 

to increase the rotational torque provided by the output axle. The robot joint 

gear can be provided as any kind of gear mechanism such as strain wave gears, 

planet gears, epicyclic gears, spur gears, bevel gears etc. and may be provided 5

as single stager or multi stage gear systems. The output axle 227 rotates around 

an axis of rotation 211 (illustrated by a dot-dash line) and can be connected to 

a neighbor part (not shown) of the robot arm. Consequently, the neighbor part 

of the robot arm can rotate in relation to the robot joint 203 around the axis of 

rotation 211 as illustrated by rotation arrow 213. In the illustrated embodiment 10

the robot joint comprises an output flange 231 connected to the output axle and 

the output flange can be connected to a neighbor robot joint or an arm section 

of the robot arm. However, the output axle can be directly connected to the 

neighbor part of the robot arm or by any other way enabling rotation of the 

neighbor part of the robot by the output axle.15

The joint motor 209 is configured to rotate the motor axle by 

applying a motor torque to the motor axle as known in the art of motor control, 

for instance based on a motor control signal 233 indicating the torque, τcontrol

applied by the motor axle, for instance by driving the joint motor with a motor 

current imotor proportional with a motor torque. The robot transmission 229 is 20

configured to transmit the torque provided by the motor axle to the output axle 

for instance to provide a gear ratio between the motor axle and the output axle.

The robot joint comprises at least one joint sensor providing a sensor signal 

indicative of at least the angular position, q, of the output axle and an angular 

position, Θ, of the motor axle. For instance, the angular position of the output 25

axle can be indicated by an output encoder 235, which provide an output 

encoder signal 236 indicating the angular position of the output axle in relation 

to the robot joint.  Similar, the angular position of the motor axle can be 

provided by an input encoder 237 providing an input encoder signal 238 

indicating the angular position of the motor axle in relation to the robot joint. 30

The output encoder 235 and the input encoder 237 can be any encoder capable 

of indicating the angular position, velocity and/or acceleration of respectively 

the output axle and the motor axle. The output/input encoders can for instance 
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be configured to obtain the position of the respective axle based on the position 

of an encoder wheel 239 arrange on the respective axle. The encoder wheels 

can for instance be optical or magnetic encoder wheels as known in the art of 

rotary encoders. The output encoder indicating the angular position of the 

output axle and the input encoder indicating the angular position of the motor 5

axle makes it possible to determine a relationship between the input side (motor 

axle) and the output side (output axle) of the robot joint gear.

The robot joints may optionally comprise one or more motor torque

sensors 241 providing a motor torque signal 242 indicating the torque provided 10

by the motor axle. For instance, the motor torque sensor can be provided as 

current sensors obtaining the current imotor through the coils of the joint motor 

whereby the motor torque can be determined as known in the art of motor 

control. For instance, in connection with a multiphase motor, a plurality of 

current sensors can be provided in order to obtain the current through each of 15

the phases of the multiphase motor and the motor torque can then be obtained 

based on the obtained currents. For instance, in a three-phase motor the motor 

torque may be obtained based on quadrature current obtained from the phase 

currents through a Park Transformation. Alternatively, the motor torque can be 

obtained using other kind of sensors for instance force-torque sensors, strain 20

gauges etc.

Fig. 3 illustrates a model of a rotational robot joint 303 connecting 

robot link 304i-1 and robot link 304i, where the joint motor 309i is arranged on 

robot link 304i-1 and rotates robot link 304i in relation to robot link 304i-1. The 25

motor axle 325i of the joint motor is connected to an output axle 327i via robot 

joint transmission 329i (illustrated in schematic form) and the robot link 304i 

rotates together with the output axle 327i. The robot joint transmission provides 

a transmission ratio between the motor axle and the output axle and in an 

infinitely stiff transmission the rotation of the motor axle is immediately 30

transformed into rotation of the output axle according to the transmission ratio

of the robot joint transmission. However as described in the background of the 

invention flexibility exist in the types of robot joint transmissions used in the 
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field of robot arms. The flexibility of a robot joint transmission can be indicated 

by the transmission stiffness of the robot joint transmission which defines a 

relationship between torque through the robot joint transmission and the 

deformation between the input side (motor axle) and the output side (output 

axle) of the robot joint transmission. The flexibility of a robot joint transmission5

can be represented as a spring 326 and a damper 328 coupled in parallel 

between the input side (motor axle) and the output side (output axle) of the 

robot joint transmission. The stiffness Ki of the spring indicates the transmission

stiffness of the robot joint transmission and the damping Di of the damper 

indicates the damping of the robot joint transmission.10

Fig. 4 illustrates a simplified structural diagram of a robot arm 

comprising a plurality of n number of robot joints 403i, 403i+1….403n. The 

robot arm can for instance be embodied like the robot arm illustrated in fig. 1 

with a plurality of interconnected robot joints, where at the robot joints can be 15

embodied like the rotational robot joint illustrated in fig. 2. It is to be understood 

that some of the robot joints and robot links between the robot joints have been 

omitted for sake of simplicity. The controller is connected to an interface device 

comprising a display 119 and a number of input devices 121, as described in 

connection with fig.1. The robot controller 415 comprises a processor 443, a 20

memory 445 and at least one input and/or output port enabling communication 

with at least one peripheral device. 

The robot controller is configured to control the robot arm based 

on a dynamic model of the robot arm Drobot. The dynamic model of the robot 25

arm can be defined and pre-stored in the memory 445 of the controller and the 

user can in some embodiment be allowed to modify the dynamic model op the 

robot arm, for instance by providing payload information of a payload attached 

to the robot arm or defining the orientation of the robot arm in relation to gravity.

30

The configuration of the robot arm can be characterized by the 

generalized coordinates (� �) ∈ ℝ�� where q is a vector comprising the 

angular positions of the output axles of the robot joint transmissions and � is a 
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vector comprising the angular positions of the motor axles as seen in the output 

side of the robot joint transmission. Consequently: 

eq. 1 � =
��

�

where �′ is the actual angular position of the motor axle, which can for 

instance be measured by a rotary encoder, and r the gear ratio of the robot 5

joint transmission. This is the notation used throughout this application.

Alternatively, it is noted that q can be indicated in the input side of the robot 

joint gear:

eq. 2 � = �� �10

where �′ is the actual angular position of the output axle, which can for instance 

be measured by a rotary encoder.

The transmission flexibility of the robot joint results in a deflection 

between the input side and the output side of the robot joint transmission when 15

a torque is applied to the robot joint transmission. The deflection of the robot 

joint transmission can be indicated by a joint transmission deformation variable 

Фjoint indicating the differences between the angular position Θ of the motor 

axle and the angular position q of the output axle, thus the joint transmission 

deformation for robot joint � is defined as:20

eq. 3 ������,� = �� − ��

The joint transmission torque ������,� defines the torque that is 

transferred from the motor axle to the output axle via the robot joint 25

transmission and can be modeled as a function of the joint transmission 

deformation Φjoint and its time-derivative:

eq. 4 ������,��������,� , �̇�����,�� = ��,��������,�� + ��,�(�̇�����,�) 
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where ��,��Φ�����,�� is a flexibility torque depending on the robot joint transmission 

stiffness Ki and the joint transmission deformation of the robot joint 

transmission and ��,��Φ̇�����,�� is a damping torque depending on the damping Di

and the first time derivative of the joint transmission deformation of the robot 5

joint transmission.

The transmission stiffness Ki of the robot joint transmission can be 

characterized by how much the flexibility torque ��,��Φ�����,�� causing the joint 

transmission deformation changes as a function of the joint transmission 10

deformation. The transmission stiffness can thus be expressed as:

eq. 5 ��(������,�) =
� ��,��������,��

� ������,�
≈

� �
�,��������,��

� ������,�

The flexibility torque ��,��Φ�����,�� of the robot joint transmission can be obtained 15

experimentally, for instance by following these steps:

 Impose a set of different known torques around the rotational axis (111a-

111f, 211) of the robot joints and for each torque obtain the resulting joint 

transmission deformation Фjoint based on obtained/measured the angular 

positions of the input axle and output axle using eq. 3. The torques can be 20

exerted to the robot joint for instance by;

o orienting the joint rotation axis parallel to the direction of the 

gravitational acceleration such that there will be no torque resulting from 

gravity, and then;

 using a device capable of measuring force to exert a force on the 25

robot arm, the force being exerted at a position with a known 

distance between the applied force and the joint axis, the distance 

being perpendicular to the direction of the exerted force and 

perpendicular to the joint rotation axis, and then calculating the 

torque as force times distance;30
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 letting part of the robot, for instance the tool flange, exert a 

force/torque on its surroundings and using the kinematic properties 

of the robot arm and the actual configuration of the robot arm to 

calculate the torque around the joint rotation axis.

Based on the experimental results a mathematical model of the relationship 5

between the joint transmission deformation and the flexibility torque for joint �

can be constructed, for instance a polynomial of odd powers in Φ�����,� can be 

used to describe the relationship between the joint transmission deformation 

and the flexibility torque for joint �, thus

eq. 6 ��,��������,�� = �������,� ������,�
� ⋯ ������,�

���� � ⋅

⎣
⎢
⎢
⎡
��,�

��,�

⋮
��,�⎦

⎥
⎥
⎤

10

where ��,� is �th polynomial coefficient and � is the total number of polynomial 

coefficients.

The ��,�(Φ̇�����,�) damping torque of the robot joint transmission can,

if assumed linear in the time-derivative of joint transmission deformation, for 

instance be obtained by following the steps:15

 Fix the output axle of the robot joint transmission;

 Apply a torque to the motor axle of the robot joint transmission to yield 

a transmission deflection of the joint transmission;

 Keep the motor axle of the robot joint transmission still and remove the 

applied torque from the motor axle of the robot joint transmission;20

 Observe the position of the motor axle of the robot joint transmission

over time as the motor axle of the robot joint transmission undergoes a 

damped harmonic motion with an amplitude that decreases over time.

 The damping torque is a measure of the energy dissipation during the 

motion. Assuming an underdamped harmonic motion, the damping 25

coefficient Di can be obtained as:

eq. 7 �� =
�� � �����

��
��

�

�����
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where � is the mass moment of inertia of the motor axle, �� and �� are, 

respectively, amplitudes of the first and second vibration, and �� and ��

are, respectively, times for the first and second motion.

If the motion is not underdamped, a larger mass moment of inertia is added to 5

the input axle.

The output-side friction torque �� of the transmissions of robot 

joints can be obtained experimentally, for instance by following these steps for 

each of the robot joints independently:10

 Orient the rotation axis (111a-111f, 211) of a robot joint parallel to the 

direction of the gravitational acceleration.

 Apply motor torque such as to rotate the output axle of the robot joint 

with different known constant angular velocities in a known period of time 

while measuring the joint transmission deformation.15

 The output-side friction is obtained as the joint transmission deformation

mapped to flexibility torque during the constant angular velocity motion 

of the output axle, thus

eq. 8 ��,� = ��,��������,��20

The input-side friction torque �� of the robot joint transmission can 

be obtained experimentally, for instance by following these steps for each of the 

robot joints independently:

 Orient the robot joint axis rotation axis (111a-111f, 211) parallel to the 25

direction of the gravitational acceleration;

 Apply motor torque such as to rotate the motor axle of the robot joint

with a known constant angular velocity in a known period of time while 

obtaining the joint motor torque, for instance based on motor currents.
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 The input-side friction is obtained as the joint motor torque during the 

constant angular velocity motion of the motor axle as a function of the 

flexibility torque, thus

eq. 9 ��,� = ������,� − ��,��������,��5

Facing fig. 4 the controller is configured to control the joint motors 

of the robot joints by providing motor control signals to the joint motors. The 

motor control signals 433i, 433i+1….433n are indicative of the motor torque 

τcontrol,i, τcontrol,i+1, and τcontrol,n, that each joint motor shall provide to the motor 10

axles; alternatively, the motor control signal may be provided as the current

icontrol,i, icontrol,i+1, and i,control,n that each joint motor shall provide. The motor 

control signals can indicate the desired motor torque, the desired torque 

provided by the output axle, the currents provided by the motor coils or any 

other signal from which the motor torque can be obtained.  The motor torque 15

signals can be sent to a motor control driver (not shown) configured to drive 

the motor joint with the motor current resulting in the desired motor torque. 

The robot controller is configured to determine the motor torque based on a 

dynamic model of the robot arm as known in the prior art.  The dynamic model 

makes it possible for the controller to calculate how much torque the joint 20

motors shall provide to each of the motor axels to make the robot arm perform 

a desired movement and/or be arranged in a static posture. The dynamic model 

of the robot arm can be stored in the memory 445.

As described in connection with fig. 2 the robot joints comprise an

output encoder providing output encoder signals 436i, 436i+1…436n indicating 25

the angular position q,i, q,i+1…q,n of the output axle in relation to the respective 

robot joint; an input encoder providing an input encoder signal 438i, 

438i+1…438n indicating the angular position of the motor axle Θ,i, Θ,i+1…Θ,n in 

relation to the respective robot joint and a motor torque sensors providing an

motor torque signal 442i,442i+1…442n indicating the torque τmotor,i, 30

τmotor,i+1...τmotor,n, provided by the motor axle of the respective robot joint; 

alternatively the motor torque signals may be provided as the current icontrol,i, 

B.1. Contribution 205



17

icontrol,i+1, and icontrol,n that is provided to each joint. The controller is configured 

to receive the output encoder signal 436i, 436i+1…436n, the input encoder 

signal 438i, 438i+1…438n and the motor torque signals 442i,442i+1…442n.

The controller can for instance be configured to carry out the 5

method of controlling the robot arm as illustrated in figs. 5, 7 and 9 and be 

structured as illustrated in figs. 6, 8 and 10 as described forwardly.

Fig. 5 illustrates a flow diagram of a method of controlling a robot 

arm comprising a plurality of robot joints connecting a robot base and a robot 10

tool flange, where at least one of the robot joints is a rotational robot joint 

comprising a joint motor having a motor axle, where the motor axle is 

configured to rotate an output axle of the rotational robot joint via a robot joint 

transmission. The method comprises a step of initializing 550, a step 552 of 

obtaining the angular position of the motor axles of the joint motors; a step 554 15

of obtaining the angular position of the output axle of the robot joint and a step 

556 of obtaining the motor torque provided by the robot motors, a step 558 of 

obtaining the friction of the robot joint transmission, step 560 of obtaining the 

transmission torque between the input side and output side of the robot joint 

transmission and a step 562 of generating control signals for the joint motors. 20

Step of initializing 550 comprises a step of obtaining the dynamic 

model Drobot of the robot arm and can be based on prior knowledge of the robot 

arm and robot joints, KoR [Knowledge of Robot], such as the dimensions and 

weight of robot joints and robot links; joint motor properties; information 25

relating to an eventual payload attached to the robot arm, orientation of the 

robot arm in relation to gravity and frictional properties of the robot arm and 

robot joints. The dynamic model of the robot arm can be defined and pre-stored 

in the memory of the controller and the user can in some embodiment be 

allowed to modify the dynamic model of the robot arm, for instance by providing 30

payload information of a payload attached to the robot arm or defining the 

orientation of the robot arm in relation to gravity. The dynamic model of the 

robot arm can be obtained by considering the robot arm as an open kinematic 
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chain having a plurality of (n+1) rigid robot links and a plurality of n revolute 

robot joints, comprising a joint motor configured to rotate at least one robot 

link.

For instance, the dynamic model as seen from the output side of 5

the robot joint transmissions of the robot arm be characterized by {14}:

eq. 10 ������ = �(�) �̈ + �(�, �̇)�̇ + �(�) + �� + ����

where ������ is a vector comprising the transmission torques τjoint,i… τjoint,n of each 10

of the robot joint transmissions; � is a vector comprising the angular position of 

the output axles of the robot joint transmissions; �̇ is a vector comprising the 

first time derivative of the angular position of the output axles of the robot joint 

transmissions and thus relates to the angular velocity of the output axles; �̈ is 

a vector comprising the second time derivative of the angular position of the 15

output axles of the robot joint transmissions and thus relates to the angular 

acceleration of the output axles. �(�) is the inertia matrix of the robot arm and 

indicates the mass moments of inertia of the robot arm as a function of the 

angular position of the output axles of the robot joint transmissions. �(�, �̇)�̇ is 

the Coriolis and centripetal torques of the robot arm as a function of the angular 20

position and angular velocity of the output axle of the robot joint transmissions. 

�(�) is the gravity torques acting on the robot arm as a function of the angular 

position of the output axles of the robot joint transmissions. 

�� is a vector comprising the friction torques acting on the output 

axles of the robot joint transmissions. The �� can be obtained during calibration 25

of the robot joints for instance by as described in paragraph [0024]. ���� is a 

vector indicating the external torques acting on the output axles of the robot 

joint transmissions. The external torques can for instance be provided by 

external forces and/or torques acting on parts of the robot arm. For instance, if 

the tool flange of the robot is subject to external forces and/or torques described 30

by ����, the resulting torques at the output axles of the robot joints becomes:
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eq. 11 ���� = ��(�) ����

where ��(�) is the transposed manipulator Jacobian of the robot arm and where 

���� is a vector describing the direction and magnitude of the external forces and 5

torques in relation to the tool flange of the robot arm.

Secondly, the dynamic model as seen from the input side of the 

robot joint transmissions becomes {14}:

10

eq. 12 ������ = � �̈ + �� + ������

where ������ is a vector comprising transmission torque τjoint,i… τjoint,n of each of 

the robot joint transmissions;  �̈ is a vector comprising the second time 

derivative of the angular position of the motor axle of the joint motor and thus 

relates to the angular acceleration of the motor axle. � is the positive-definite 15

diagonal matrix indicating the mass moments of inertia of the joint motors’ 

rotors. �� is a vector comprising the friction torques acting on the motor axles 

and ������ is a vector indicating the torque generated by the joint motors. ��

can be obtained for each robot joint as described in paragraph [0025].

20

Step 552 of obtaining the angular position of the motor axles of 

the joint motors can be obtained by measuring the angular position of the motor 

axle for instance by using an encoder such as optical/magnetic encoders as 

known in the art of robotics. The angular position of the motor axles Θ can be 

stored in a memory for later usage for instance in order to store a number of 25

angular positions of the motor axles obtained at different times. 

Step 554 of obtaining the angular position of the output axle of the 

robot joint transmission can be obtained by measuring the angular position of 

the output axle for instance by using encoders such as optical/magnetic 30

208 Appendix B. Patent Application: Torque Control [Pat. App. 2]



20

encoders as known in the art of robotics. The angular position of the output 

axles q can be stored in a memory for later usage, for instance a number of 

angular positions of the output axles obtained at different times can be stored 

in a memory. Alternatively, the angular position of the output axles of the robot 

joint transmissions can be obtained as the desired angular position of the output 5

axles upon which the controller is generating the motor torques. This makes it 

possible to estimate the angle of the output axles in robot joints that does not 

comprise encoders for measuring the angular position of the output axles or the 

One could also estimate the output axle angular position based on the motor 

axle angular position for instance by estimating the output axle based on the 10

gear ratio of the robot joint transmission.

The step 556 of obtaining the actual motor torque τmotorprovided by 

the joint motors can for instance be obtained by obtaining the current imotor

through the joint motors whereby the actual motor torque can be obtained as 15

known in the art of motor control. For instance, if the joint motors are provided 

as three-phase Permanent Magnet Synchronous Machines (PMSM) with 

dynamics much faster than that of the manipulator and if the joint motors are 

operated under their current saturation limit, the motor axle torque can be 

obtained by:20

eq. 13 ������ = ��  ������

where τmotor is a vector comprising, the actual torque provided by the motor 

axles of the joint motors (seen in the output space of the robot joint gear), Kτ

is the positive-definite diagonal matrix of torque constants and imotor is a vector 

comprising the torque-generating (quadrature) current obtained from the phase 25

currents of the joint motors using the Park Transformation.

The actual motor torque can also be obtained by using force/torque 

sensors such as strain gauges indicating the actual torque of the motor axle, as 

in many cases it can be assumed the motor torque is transferred to the motor 30

axle. 

B.1. Contribution 209



21

Step 558 of obtaining the friction �� of the input side and/or the 

output of joint transmission can be obtained based on least two of:

o the angular position Θ of the motor axle;

o the angular position q of the output axle;

o the motor torque τmotor/imotor provided to the motor axle by the 5

joint motor;

by using any method or a combination of methods within the field of Digital 

Signal Processing (DSP) or an adaptive observer method known in the art of 

adaptive state estimation in the field of control theory. This makes it possible to 

provide an online estimation of the friction of the robot joint transmission 10

whereby it becomes possible to take varying friction of the robot joint 

transmission due to wear and changes in ambient working conditions into 

account when providing a control system for the robot arm. Consequently, a 

more accurate control of a robot arm can be provided. Further in many robots 

arms the angular position of the motor axle, the angular position of the output 15

axle and the motor torque are already obtainable by various sensors and thus 

no additional sensors need to be provided in such robots. The adaptive filtering 

methods include for instance;

 Least Mean Squares (LMS) filter; and

 Recursive Least Squares (RLS) filter;20

And the observer methods include for instance;

 Luenberger Observer (LO);

 Kalman Filter (KF), including also Extended Kalman Filter (EKF) and 

Uncented Kalman Filter (UKF);

 Sliding Mode Observer (SMO), including also the Super-Twisting Sliding-25

Mode Observer (STSMO);

 High-Gain Observer (HGO);

 Fuzzy Observer (FO);

 Artificial Neural Network (ANN);

where at least two of the angular position Θ of the motor axle; the angular 30

position q of the output axle; and the motor torque τmotor/imotor provided to the 

motor axle by the joint motor serves as inputs of the observers.
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For instance, adaptive friction estimation can be conducted to 

obtain an estimate of the input-side and/or output-side friction torque(s) of the 

robot transmissions based on the position of the motor axles of the robot joints, 

and/or the position of the output axles of the robot joints, and the motor torques, 5

for instance by describing the friction torque by the linearly parametrizable 

model

eq. 14 �� = ��� ���(�) + ��� � = [���(�) �] ⋅ �
���

���

�

where � is the angular velocity of the motor axle and/or output axle, ��� is the 

vector of estimated Coulomb friction coefficients, and ��� is the vector of 10

estimated viscous friction coefficients. Due to the linear parametrization it is 

possible to estimate the unknown and assumed slowly changing coefficients by 

Recursive Least Squares (RLS) methods with some forgetting scheme 

discounting past data.

15

Assuming that data for each robot joint is sampled at times �� =

� ��, where �� is the sampling time and � an incrementing integer denoting the 

specific sample, and that the dynamic friction residual ��(�) = ������,�(�) −

��  �̈�(�) − ��,� ���(�), �̇�(�)�, the RLS method works by estimating the unknown 

filter coefficients �� = ����,� ���,��
�

through the following procedure for each 20

sample as

eq. 15 �(�) = �������(�)� ��(�)�

eq. 16 �(�) =
�

�
��(� − 1) −

�(���)�(�)��(�)�(���)

����(�)�(���)�(�)
�25

eq. 17 �(�) =
�(�)

����(�)�(�)�(�)
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eq. 18 �(�) = �(�)�(�)

eq. 19 ��(�) = ��(�) ��(� − 1)

eq. 20 ��(�) = �(� − 1) + �(�) ��(�) − ��(�)�5

where � is the forgetting factor. A forgetting factor of � = 1 is 

chosen to estimate time-invariant (constant) parameters, and a forgetting 

factor � < 1 is chosen to estimate time-varying parameters. A smaller forgetting 

factor will make the RLS method forget parameters faster.

10

Estimating for instance the input-side friction torque through the 

use of an observer can be obtained using for instance the observer structure 

shown in fig. 11 illustrating an adaptive friction module 1174, which can be 

implemented as the adaptive friction module 674 of the robot system illustrated 

in figs. 6, 8 and 10. Here, the difference between a model-based estimate of 15

the angular velocity ��̇ of the motor axle and the measured velocity �̇ obtained 

by time-differentiation of the motor axle angular position � signal is used to 

estimate the friction torque. The observer gain � is used to tune the observer.

Based on the angular position of the motor axle � and the angular position of 

the output axle �, the joint transmission deformation ������ is determined by a 20

joint transmission deformation module 1190 based on eq. 3. The time-derivative 

of the joint transmission deformation �̇����� is obtained by a joint transmission 

deformation differentiating module 1191 by differentiating the joint 

transmission deformation ������. Based on the joint transmission deformation 

and the time-derivative of the joint transmission deformation, the joint torque 25

�� is obtained by a joint torque obtaining module 1192 based on eq. 4. The 

dynamic model as seen from the input side of the robot joint transmissions (eq. 

12) is used by a motor axle inertia torque estimation module 1193 to obtain the 

torque from the angular acceleration of the motor axle. An estimate of the 

angular acceleration of the motor axle ��̈ obtained by a motor axle angular 30
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acceleration estimation module 1194 by dividing the torque obtained from 1193 

with the rotor inertia �. An estimate of the motor axle angular velocity ��̇ is 

obtained by a motor axle angular velocity estimation module 1195 based on the 

estimate of the angular acceleration of the motor axle. Based on the angular 

position � of the motor axle, the angular velocity of the motor axle �̇ is obtained 5

by a motor axle position differentiating module 1196. The difference between 

the estimated angular velocity ��̇ of the motor axle and the angular velocity of 

the motor axle �̇ is obtained by a motor axle angular velocity difference module 

1197 and multiplied by the observer gain � and the rotor inertia � in the inertia 

module 1198 to generate the input-side friction torque estimate ��� . The 10

estimated input-side friction torque is also fed back to 1193.

In another embodiment the adaptive friction module 674 can also 

be is configured to provide an estimate of the input-side and/or output-side 

friction torque(s) of the robot transmissions based on the position of the motor 15

axles of the robot joints, and/or the position of the output axles of the robot 

joints, and the motor torques. The adaptive friction module can for instance be 

obtained by describing the friction torque by the linearly parametrizable model

eq. 21 �� = ��� ���(�) + ��� � = [���(�) �] ⋅ �
���

���

�20

where � is the angular velocity of the motor axle and/or output axle, ��� is the 

vector of estimated Coulomb friction coefficients, and �� is the vector of 

estimated viscous friction coefficients. Due to the linear parametrization it is 

possible to estimate the unknown and assumed slowly changing coefficients by 

Recursive Least Squares (RLS) procedures as known in the art of adaptive 25

control.

Step 560 of obtaining the transmission torque ��� between input 

side and the output side of the joint transmissions can be obtained based on at 

least one of:30
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 the angular position (q) of the output axle;

 the angular position (q) of the output axle and the angular position 

(Θ) of the motor axle;

 the angular position (Θ) of the motor axle and the motor torque 

(τmotor) provided to the motor axle by the joint motor;5

for instance, based on the angular position (q) of the output axle using eq. 10,  

where �� have be obtained for each robot joint as described in paragraph [0024]; 

or by using eq. 4, where the joint transmission deformation Φjoint and its time-

derivative have been obtained based on the angular position (Θ) of the motor 

axle and the angular position (q) of the output axle using equation eq. 3.10

Alternatively, the transmission torque can be obtained based on the angular 

position (Θ) of the motor axle and the motor torque (τmotor) provided to the 

motor axle by the joint motor using eq. 12,  where �� have been obtained for 

each robot joint as described in paragraph [0025]. It is noted that in one 

embodiment the �� and/or �� can be obtained based on the friction �� of the 15

input side and/or the output obtained in step 558. Further it is to be understood 

the transmission torque ��� can be obtained based on two or more of the data 

sets described above and where the transmission torque is obtained as any

combination of the transmission torques obtained using the different methods.   

20

Step 562 of generating motor control signal indicative of a desired 

motor torque τcontrol for at least one of the joint motors is based on at least:

o the friction �� of the input side of the robot joint transmission and/or

the output side of the robot joint transmission;

o the robot joint transmission torque τJ between the input side and 25

the output side of the robot joint transmission;

where the friction �� have been obtained as descried in step 558 and where the 

robot joint transmission torque has been obtained as described in step 560. In 

addition to the friction �� and the joint transmission torque ��, the desired motor 

torque is also obtained based on a desired motion Md, at least a part of the robot 30

214 Appendix B. Patent Application: Torque Control [Pat. App. 2]



26

arm, and a dynamic model of the robot arm Drobot. For instance, the desired 

motor torque can be obtained using dynamic model of the robot arm as 

expressed by eq. 12 where the second time derivative of the angular position of 

the motor axle �̈ has been obtained based on the angular position Θ of the 

motor axle obtained in step 552, the friction torques �� acting on the motor 5

axles have been obtained in step 558 and the transmission torque �� have been 

obtained in step 560 based on eq. 10, and based on desired motion of the robot 

arm. In eq. 10 the desired motion parameter is provided as desired angular

positions ��, desired angular velocities �̇�, and desired angular accelerations ��̈

of the output axles of the robot joint transmissions. The friction torques �� are 10

adaptively obtained in step 558 and consequently the motor control signals 

indicating the desired motor toques are generated based on adaptive friction of 

the robot joint transmissions whereby a more accurate control of the robot joints 

can be provided.

15

Fig. 6 illustrates a structural diagram of a robot system 600

comprising a user interface 617, a robot control system 615 controlling a robot 

arm (not illustrated) by controlling the robot joints 603. The robot arm is like 

the robot arm illustrated in figs. 1-4 and comprises at least one rotational robot 

joint like the robot joint illustrated in fig. 2. The rotational robot joint comprises 20

an input encoder 637 indicating the angular position of the motor axle Θ, and 

output encoder 635 indicating the angular position q of the output axle and a 

motor torque sensor 641 indicating the motor torque provided by the joint motor. 

In the illustrated embodiment the motor torque is provided as a current sensor 

indicating the motor current imotor of the joint motor. The robot control 615 25

system is configured to control the robot joints based on the method of 

controlling a of the robot arm obtained according to the present invention. The 

user interface enables 617 a user to communicate with the robot controller 

system for instance in order to program the robot arm to perform various tasks. 

The user interface may be provided as described in connection with fig. 1. 30
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The robot controller system 615 comprises a motion planner 

module 670, an adaptive friction module 674, a transmission torque module

676, a motor controller module 680 and optional a motor torque obtaining 

module 678. 

5

The motion planner module 670 is configured to provide the 

desired motions of the robot arm, for instance by generating trajectories of parts 

of the robot arm. The trajectories can for instance be generated based on a 

robot program instructing the robot arm to perform various tasks. In the 

illustrated embodiment the motion planner module provides a desired motion 10

Md of parts of the robot arm. The desired motion of parts of the robot arm can 

for instance be indicated as motions properties of the robot joints, such as 

angular position �� of output axles of the joint transmissions, a desired angular 

velocity ��̇ of output axles of the joint transmissions, a desired angular 

acceleration �̈� of the robot transmission. It is noted that the desired motion of 15

part of the robot arm also can be indicated a position of various parts of the 

robot arm in relation a reference point, for instance the desired motion may be 

indicated as position, velocity and/or acceleration of the robot tool flange in 

relation to the robot base. 

20

The desired motion Md is provided to the motor controller module 

680. The motor controller module 680 is configured to generate at least one 

motor control signal 633 to the joint motors, for instance in form of a signal 

indicating the motor torque τcontrol that each joint motor shall provide to the 

motor axles or a current signal indicating the current icontrol, that each joint motor 25

shall provide. The motor controller module 680 is configured to generate the 

motor control signal 633 based on:

 the desired motion Md;

 a dynamic model of the robot arm Drobot;

 the friction �� of at the input side of the robot joint transmission and/or 30

the output side of the robot joint transmission;

 the robot joint transmission torque τJ between the input side and the 

output side of the robot joint transmission;
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where the friction �� is obtained by the adaptive friction module 674, the robot 

joint transmission torque τJ is obtained by transmission torque is module 676

and the dynamic model of the robot arm Drobot in a memory 645. The motor 

controller module can for instance be configured to generate the motor control 

signal 633 by carrying out step 562 of the method described in fig. 5. As 5

indicated by dotted lines the motor controller module may additionally also be 

configured to generate the motor control signal 633 based on:

 the angular position q of the output axle;

 the angular position Θ of the motor axle;

 the motor torque τmotor provided to the motor axle by the joint 10

motor.

The optional motor torque obtaining module 678 is configured to 

obtain the motor torque provided by the joint motors based on the current imotor

as known in the art and to provide the motor torque τmotor to the adaptive friction 

module 674 and optionally to the transmission torque module and the motor 15

controller module 680. However, it is noted the motor torque obtaining module 

678 also can be provided as a part of the adaptive friction module 674, the 

transmission torque module and/or the motor controller module whereby the 

current imotor is provided directly to the various modules. Further the motor 

torque obtaining module may also be provided as an external module to the 20

robot controller system 615. 

The adaptive friction module 674 is configured to provide the 

friction �� at the input side of the robot joint transmission and/or the output side 

of the robot joint transmission based can be obtained based on least two of:25

o the angular position Θ of the motor axle;

o the angular position q of the output axle;

o the motor torque τmotor/imotor provided to the motor axle by the 

joint motor;
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and is configured to carry out step 558 of the method described in fig. 5. The 

friction �� is provided the motor controller module as an adaptive parameter, 

further additionally the friction �� may also be provided to the transmission 

torque module as an adaptive parameter. 

5

The transmission torque module 676 is configured to provide the 

transmission torque ���  between input side and the output side of the joint 

transmissions can be obtained based on at least one of:

 the angular position q of the output axle (illustrated in solid line);

 the angular position q of the output axle (illustrated in dotted line) 10

and the angular position Θ of the motor axle;

 the angular position (Θ) of the motor axle and the motor torque 

(illustrated in dotted line) provided to the motor axle by the joint 

motor.

The transmission torque module is configured to carry out step 560 of the 15

method described in fig. 5. The transmission torque is then provided to the 

motor controller module. 

The robot system 600 illustrated in fig. 6 makes it possible to 

provide a robot arm comprising where the friction of the robot joint 20

transmissions is dynamically adapted whereby a more accurately control of the 

robot arm can be provided.

Fig. 7 illustrates a flow diagram of another method of controlling a 25

robot arm comprising a plurality of robot joints connecting a robot base and a 

robot tool flange, where at least one of the robot joints is a rotational robot joint 

comprising a joint motor having a motor axle, where the motor axle is 

configured to rotate an output axle of the rotational robot joint via a robot joint 

transmission. The method is like the method illustrated and described in fig. 5 30
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and similar steps and features have been given the same reference numbers as 

in fig. 5 and will not be described further. 

In this embodiment step 760 of obtaining the transmission torque 

��� between the input side and output side of the robot joint transmission is 5

further obtained based on the friction ��. Consequently, the transmission torque 

is obtained based on the adaptive friction whereby the transmission torque ��� (��)

can be obtained and adapted according the adaptive friction. For instance, the 

transmission torque ��� (��) can be obtained by using eq. 10,  where �� have be 

obtained for each robot have been obtained in step 558 or by using eq. 12,  10

where �� each robot have been obtained in step 558.

In this embodiment step 762 of generating control signals for the 

joint motors is based the joint transmission torque ��� (��) obtained in step 760 

and since the joint transmission torque ��� (��) in step 760 is obtained based on 15

the friction �� of at the input side of the robot joint transmission and/or the 

output side of the robot joint transmission the control signals of for the joint 

motor will in step 762 indirectly also be obtained based the friction ��. In addition,

as described the desired motor torque are also obtained based on a desired 

motion Md at least a part of the robot arm and a dynamic model of the robot 20

arm Drobot.

Fig. 8 illustrates a structural diagram of a robot system 800. The 

robot system is like the robot system illustrated and described in fig. 6 and 

similar elements and features have been given the same reference numbers as 25

in fig. 6 and will not be described further.

In transmission torque module 876 is configured to provide the 

transmission torque ��� between the input side and output side of the robot joint 

transmission is based on the friction ��. Consequently, the transmission torque 30

is obtained based on the adaptive friction whereby the transmission torque ��� (��)

can be obtained and adapted according the adaptive friction. For instance, the 
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transmission torque ��� (��) can be obtained by using eq. 10,  where �� have be 

obtained for each robot have been obtained in step 558 or by using eq. 12,  

where �� each robot have been obtained in step 558.

The motor controller module 880 is configured to generate 5

generating control signals for the joint motors is based the joint transmission 

torque ��� (��) obtained in step 760 and since the joint transmission torque ��� (��)

in step 760 is obtained based on the  friction �� of at the input side of the robot 

joint transmission and/or the output side of the robot joint transmission the 

control signals of rate joint motor will in step 762 indirectly also be obtained 10

based the friction ��. In addition, as described the desired motor torque are also 

obtained based on a desired motion Md at least a part of the robot arm and a 

dynamic model of the robot arm Drobot.

Fig. 9 illustrates a flow diagram of another method of controlling a 15

robot arm comprising a plurality of robot joints connecting a robot base and a 

robot tool flange, where at least one of the robot joints is a rotational robot joint 

comprising a joint motor having a motor axle, where the motor axle is 

configured to rotate an output axle of the rotational robot joint via a robot joint 

transmission. The method is like the method illustrated and described in fig. 5 20

and similar steps and features have been given the same reference numbers as 

in fig. 5 and will not be described further. 

In this embodiment step 962 of generating motor control signals 

comprises:25

 a step 963 of determining a desired transmission torque τJ,d;

 a step 964 of determining a desired feed-forward motor torque τm,FF;

 a step 965 of determining a transmission torque error correction motor 

torque  τm,torque-err;

 a step 967 of determining a resulting motor torque τr;30

 a optional step 966 of determining an error correction motor torque;
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 a step 968 of generating a motor control signal indicative of a motor 

control current.

Step 963 of determining a desired transmission torque τJ,d 

indicative of desired transmission torque of the robot joint transmission can be 5

based on:

 a dynamic model of the robot Drobot; 

 at least one motion parameter Md, ��, �̇�, �̈� indicating a desired motion 

of at least a part of the robot arm; and 

 the friction �� of at least one of the input side of the robot joint 10

transmission and the output side of the robot joint transmission.

This makes it possible to obtain a more accurate desired transmission torque 

τJ,d as the friction term adaptively can be determined and this more correct be 

incorporate into the dynamic model of the robot. For instance the desired 

transmission torque τJ,d may be obtained by using eq. 10 and the desired 15

transmission torque τJ,d may in step 965 be used to obtain a transmission torque 

error correction motor torque  τm,torque-err.

Step 965 of determining the transmission torque error correction 

motor torque τm,torque-err indicating a motor torque minimizing differences 20

between the desired transmission torque τJ,d and the robot joint transmission 

torque �̂� can be based on desired transmission torque τJ,d; and the robot joint 

transmission torque �̂� . This makes it possible to compare the actual 

transmission torque �̂�  obtained in step 560 with the desired transmission torque 

τJ,d and provide a determine a  transmission torque error correction motor torque25

which can correct eventual differences as known in the art of feed-back control 

systems. 

Step 964 of determining a desired feed-forward motor torque τm,FF

indicating a desired motor torque of the joint motor can based on:30
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 a dynamic model of the robot Drobot; 

 at least one motion parameter Md, ��, �̇�, �̈� indicating a desired motion 

of at least a part of the robot arm; and 

 the friction (�� ) of at least one of the input side of the robot joint 

transmission and the output side of the robot joint transmission.5

This makes it possible to obtain a more accurate desired feed-forward motor 

torque τm,FF as the friction term adaptively can be determined and thus be 

correct when incorporate into the dynamic model of the robot. For instance the 

desired feed-forward motor torque τm,FF may be obtained by using eq. 10 and 

eq. 12 and desired feed-forward motor torque τm,FF may in be used to generate 10

the motor control signal as known in the art of feed-forward control mechanisms.

Step 966 of determining error correction motor torque τm,err

indicating a motor torque minimizing errors between at least one of:

 a desired motion parameter of the robot arm and actual motion 15

parameter of the robot arm;

 a desired angular position qd of the output axle and the angular position 

q of the output axle;

 a desired angular velocity �̇� of the output axle and the angular velocity  

�̇ of the output axle;20

 a desired angular acceleration �̈� of the output axle and the angular 

acceleration velocity �̈ of the output axle;

 a desired angular position Θd of the motor axle and the angular position 

Θ of the motor axle;

 a desired angular velocity Θ̇� of the motor axle and the angular velocity  25

Θ̇ of the motor axle;

 a desired angular acceleration Θ̈� of the motor axle and the angular 

acceleration velocity Θ̈ of the motor axle;

 a desired torque τmotor,d provided to the motor axle by the joint motor 

and the motor torque τmotor) provided to the motor axle by the joint 30

motor.
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This makes it possible to compare the parameters of the robot arm with 

corresponding desired parameters of the robot arm and determine a correction 

parameters which can be used to correct eventual errors between desired 

parameters and actual parameters as known in the art of feed-back control 

systems for instance as described in {15}5

Step 967 of determining a resulting motor torque τr indicative of 

the resulting motor torque to be applied by the joint motor can be based on at 

least one of:

 the transmission torque error correction motor torque τm,torque-err;10

 desired feed-forward motor torque τm,FF; and

 error correction motor torque τm,err;

where the motor control signal is generated based on the resulting motor torque. 

This makes is possible to generate the motor control signals for the joint motors 

based one both feed-forward parameters and feed-back parameters where the 15

fiction op the robot joint transmissions are adapted according to the operation 

of the robot arm. 

Fig. 10 illustrates a structural diagram of a robot system 1000. The 

robot system is like the robot system illustrated and described in fig. 6 and 20

similar elements and features have been given the same reference numbers as 

in fig. 6 and will not be described further. The robot controller system 1070 

comprises a motion planner module 1070, an adaptive friction module 674, a 

transmission torque module 676, a motor controller module 1080 and optional 

a motor torque obtaining module 678. 25

The motion planner module 1070 is configured to provide the 

desired motions of the robot arm, for instance by generating trajectories of parts 

of the robot arm. The trajectories can for instance be generated based on a 

robot program instructing the robot arm to perform various tasks. In the 30

illustrated embodiment the desired motions Md provided to the motor controller 
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module 1080 are a desired angular position �� of the output axles of the joint 

transmissions, a desired angular velocity ��̇ of output axles of the joint 

transmissions and a desired angular acceleration �̈� of the robot transmission. 

The motor controller module comprises a feed-forward controller 5

module 1082, a torque feed-back module 1084, a motor current controller 1086 

and an optional a feed-back controller module 1080.

The feed-forward controller module 1082 is configured to 

determine a desired transmission torque τJ,d indicative of desired transmission 10

torque of the  robot joint transmission based on:

 a dynamic model of the robot Drobot; 

 at least one motion parameter Md, ��, �̇�, �̈� indicating a desired motion 

of at least a part of the robot arm; and 

 the friction (�� ) of at least one of the input side of the robot joint 15

transmission and the output side of the robot joint transmission.

The feed-forward controller module can for instance be configured to carry our 

step 963 of the method illustrated in fig. 9 and similar advantages are archived 

by the feed-forward controller.  

20

The feed-forward controller module 1082 can also be configured to 

determine a desired feed-forward motor torque τm,FF indicating a desired motor 

torque of the  joint motor based on:

 a dynamic model of the robot Drobot; 

 at least one motion parameter Md, ��, �̇�, �̈� indicating a desired motion 25

of at least a part of the robot arm; and 

 the friction �� of at least one of the  input side of the  robot joint 

transmission and the  output side of the  robot joint transmission.
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The feed-forward controller module can for instance be configured to carry our 

step 964 of the method illustrated in fig. 9 and similar advantages are archived 

by the feed-forward controller.  

The torque feed-back controller module 1084 is configured to5

determine a transmission torque error correction motor torque τm,torque-err

indicating a motor torque minimizing differences between the  desired 

transmission torque τJ,d and the  robot joint transmission torque (�̂�), where the  

transmission torque error correction motor torque τm,torque-err is determined 

based on:10

 the desired transmission torque τJ,d; and 

 the robot joint transmission torque �̂�.

The torque feed-back controller module 1084 can for instance be configured to 

carry our step 965 of the method illustrated in fig. 9 and similar advantages are 

archived by torque feed-back controller module 1084.  15

The robot controller comprises a feed-back controller module 1088 

configured to determine determining an error correction motor torque τm,err

indicating a motor torque minimizing errors between at least one of:

 a desired motion parameter of the robot arm and actual motion 20

parameter of the robot arm;

 a desired angular position qd of the output axle and the angular position 

q of the output axle;

 a desired angular velocity �̇� of the output axle and the angular velocity  

�̇ of the output axle;25

 a desired angular acceleration �̈� of the output axle and the angular 

acceleration velocity �̈ of the output axle;

 a desired angular position Θd of the motor axle and the angular position 

Θ of the motor axle;

 a desired angular velocity Θ̇� of the motor axle and the angular velocity  30

Θ̇ of the motor axle;
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 a desired angular acceleration Θ̈� of the motor axle and the angular 

acceleration velocity Θ̈ of the motor axle;

 a desired torque τmotor,d provided to the  motor axle by the  joint motor 

and the  motor torque τmotor provided to the  motor axle by the  joint

motor.5

The feed-back controller module 1088 can for instance be configured to carry 

our step 966 of the method illustrated in fig. 9 and similar advantages are 

archived feed-back controller module 1088.

The motor current controller module 1086 is configured to 10

generate a motor control signal indicating a motor current icontrol for the robot 

joint based on a resulting motor torque τr indicative of a resulting motor torque 

to be applied by the joint motor where the resulting motor torque τr is 

determined based on at least one of:

 the transmission torque error correction motor torque τm,torque-err;15

 desired feed-forward motor torque τm,FF; and

 error correction motor torque τm,err.

The motor current controller may be providing as any motor control 

driver driving and controlling motors base on a desired torque. Typically, such 

motor control divers generate signal indicative of the current to be provided to 20

the motor coil. In some embodiment the motor control driver generates the 

currents directly.  It is to be understood that an adaptive or non-adaptive 

system can be configured to provide smoothed estimates of the position of the 

motor axles and/or output axles of the robot joints based on noisy 

measurements.25

The invention comprises an adaptive control system having an 

adaptive feed-forward control command and a computation of the torque 

through the robot joint transmission in at least one of the robot joints. The 

present invention can for instance be provided at a robot comprising a robot 30
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control system which monitors and controls the robot joint, whereby the position 

error is reduced when the robot is subject to changes in ambient conditions, 

wear, etc. This is achieved by providing control of robot joint torque based on 

an adaptive observer estimating the robot joint friction adaptively and the robot 

joint torque.5
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BRIEF DESCRIPTION OF FIGURE REFERENCES

600, 800, 1000 Robot system

101 robot arm

103a-103f, 203, 303, 403i, 
403i+1, 403n, 603

robot joint

104b, 104c, 104d, 304i; 304i-1 robot link

105 robot base

107 robot tool flange

209, 309 joint motor

111a-111f, 211 axis of rotation

113a-113f:, 213 rotation arrow

115, 415 robot controller

117, 617 interface device

119 display

121 input device

123 direction of gravity

225, 325i motor axle

326 spring connecting input side and output 

227, 327i output axle 

328 damper input side and output 

229, 329i robot joint transmission

231 output flange

233, 433i; 433i+1; 433n, 633 motor control signal

235, 635 output encoder

236, 436i; 436i+1; 436n output encoder signal

237, 637 input encoder

238, 438i; 438i+1; 438n output encoder signal

239 encoder wheel

241, 641 motor torque sensor

242, 442i; 442i+1; 442n motor torque signal

443 Processor

445, 645 memory

550 Step of initializing 

552
Step of obtaining the angular position 
of motor axle

554
Step of obtaining the angular position 
of output axle

556
Step of obtaining the actual motor 
torque 

558
Step of obtaining the friction of joint 
transmission 

560, 760

Step of obtaining the transmission 
torque between input side and the 
output side of the joint transmissions 
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562, 762, 962
Step of generating motor control signal 
indicative of a desired motor torque 

963
Step of determining a desired 
transmission torque

964
Step of determining a desired feed-
forward motor torque

965
Step of determining a transmission 
torque error correction motor torque

966
Step of determining an error correction 
motor torque

967
Step of determining resulting motor 
torque

968
step of generating a motor control 
signal indicating desired motor current

670 motion planner

674, 1174 adaptive friction module

676, 876 transmission torque module

678 motor torque module

680, 880, 1080 motor controller module

1082 Feed-forward controller module

1084 torque feed-back controller module

1086 a current controller

1088 feed-back controller module

1190 joint transmission deformation module

1191
joint transmission deformation 
differentiating module

1192 joint torque obtaining module 

1193
motor axle inertia torque estimation 
module 

1194
motor axle angular acceleration 
estimation module 

1195
motor axle angular velocity estimation 
module

1196
motor axle position differentiating 
module 

1197
obtained by an motor axle angular 
velocity difference module

1198 A gain and inertia module 
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CLAIMS

1. A method of controlling a robot arm comprising a plurality of robot joints 

connecting a robot base and a robot tool flange, where at least one of said robot 

joints is a rotational robot joint comprising a joint motor having a motor axle,

where said motor axle is configured to rotate an output axle of said rotational 5

robot joint via a robot joint transmission, said method comprises the steps of:

 obtaining (552) the angular position (Θ) of said motor axle;

 obtaining (554) the angular position (q) of said output axle;

 obtaining (556) the motor torque (τmotor) provided to said motor axle by said 

joint motor;10

 determine (558) the friction (��) of at least one of:

o the input side of said robot joint transmission; and 

o the output side of said robot joint transmission

based on at least two of

o said angular position (Θ) of said motor axle;15

o said angular position (q) of said output axle;

o said motor torque (τmotor/imotor) provided to said motor axle by said 

joint motor;

 determining (560) a robot joint transmission torque (�̂�) between the input 

side and the output side of said robot joint transmission based on at least 20

one of:

o said angular position (q) of said output axle;

o said angular position (q) of said output axle and said angular 

position (Θ) of said motor axle;

o said angular position (Θ) of said motor axle and said motor torque 25

(τmotor) provided to said motor axle by said joint motor;

 generating (562) a motor control signal for said at least one joint motor of 

said rotational joint based on:

o said friction (��) of at least one of said input side of said robot joint 

transmission and said output side of said robot joint transmission;30
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o said robot joint transmission torque (�̂�) between the input side and 

the output side of said robot joint transmission.

2. The method according to claim 1 wherein said motor control signal is further 

generated based on at least one of:5

o said angular position (Θ) of said motor axle;

o said angular position (q) of said output axle;

o said motor torque (τmotor) provided to said motor axle by said joint 

motor;

o a dynamic model of said robot (Drobot);10

o at least one motion parameter (Md, ��, �̇�, �̈�) indicating a desired 

motion of at least a part of said robot arm.

3. The method according to any one of claims 1-2 wherein said step of 

determining said robot joint transmission torque is further based on said friction 15

(��) of at least one of said input side of said robot joint transmission and said 

output side of said robot joint transmission.

4. The method according to any one of claims 1-3 wherein said step of 

generating a motor control signal for said at least one joint motor of said 20

rotational joint comprises a step (963) of determining a desired transmission 

torque (τJ,d) indicative of desired transmission torque of said robot joint 

transmission based on:

 a dynamic model of said robot (Drobot); 

 at least one motion parameter (Md, ��, �̇�, �̈�) indicating a desired motion 25

of at least a part of said robot arm; and 

 said friction (��) of at least one of said input side of said robot joint 

transmission and said output side of said robot joint transmission.
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5. The method according to claim 5 wherein said step of generating a motor 

control signal for said at least one joint motor of said rotational joint comprises   

a step (965) of determining a transmission torque error correction motor torque  

(τm,torque-err) indicating a motor torque minimizing differences between said 5

desired transmission torque (τJ,d) and said robot joint transmission torque (�̂�), 

where said transmission torque error correction motor torque (τm,torque-err) is 

determined based on :

 said desired transmission torque (τJ,d); and 

 said robot joint transmission torque (�̂�).10

6. The method according to any one of claims 1-5 wherein said step of 

generating a motor control signal for said at least one joint motor of said 

rotational joint comprises   a step (964) of determining a desired feed-forward 

motor torque (τm,FF) indicating a desired motor torque of said joint motor based 15

on:

 a dynamic model of said robot (Drobot); 

 at least one motion parameter (Md, ��, �̇�, �̈�) indicating a desired motion 

of at least a part of said robot arm; and 

 said friction (��) of at least one of said input side of said robot joint 20

transmission and said output side of said robot joint transmission.

7. The method according to any one of claims 1-6 wherein said step of 

generating a motor control signal for said at least one joint motor of said 

rotational joint comprises a step (966) of determining error correction motor 25

torque (τm,err) indicating a motor torque minimizing errors between at least one 

of:

 a desired motion parameter of said robot arm and actual motion 

parameter of said robot arm;
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 a desired angular position (qd) of said output axle and said angular 

position (q) of said output axle;

 a desired angular velocity (�̇�) of said output axle and the angular velocity  

(�̇ ) of said output axle;

 a desired angular acceleration (�̈�) of said output axle and the angular 5

acceleration velocity (�̈ ) of said output axle;

 a desired angular position (Θd) of said motor axle and said angular 

position (Θ) of said motor axle;

 a desired angular velocity (Θ̇�) of said motor axle and the angular velocity  

(Θ̇ ) of said motor axle;10

 a desired angular acceleration (Θ̈�) of said motor axle and the angular 

acceleration velocity (Θ̈ ) of said motor axle;

 a desired torque (τmotor,d) provided to said motor axle by said joint motor 

and said motor torque (τmotor) provided to said motor axle by said joint 

motor.15

8. The method according to any one of claims 4-7 wherein said step of 

generating a motor control signal for said at least one joint motor of said 

rotational joint comprises a step (967) of determining a resulting motor torque 

(τr) indicative of a resulting motor torque to be applied by said joint motor based 20

on at least one of:

 said transmission torque error correction motor torque  (τm,torque-err);

 desired feed-forward motor torque (τm,FF); and

 error correction motor torque (τm,err);

where said motor control signal is generated based on said resulting motor 25

torque. 

9. A robot system comprising a robot arm controlled by a robot controller 

configured to control said robot arm, said robot arm comprising a plurality of 

robot joints connecting a robot base and a robot tool flange, where at least one 30
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of said robot joints is a rotational robot joint comprising a joint motor having a 

motor axle, where said motor axle is configured to rotate an output axle of said 

rotational robot joint via a robot joint transmission, said robot controller is 

configured to control said robot arm by providing a motor control signal for said 

at least one joint motor of said rotational joint and said robot controller is 5

configured to generate said motor control signal based on:

 the angular position (Θ) of said motor axle;

 the angular position (q) of said output axle;

 the motor torque (τmotor) provided to said motor axle by said joint motor;

characterized in that said robot controller comprises:10

 an adaptive friction module (674) configured to determine the friction (��) of 

at least one of said input side of said robot joint transmission and said output 

side of said robot joint transmission based on at least two of:

o said angular position (Θ) of said motor axle;

o said angular position (q) of said output axle;15

o said motor torque (τmotor/imotor) provided to said motor axle by said joint 

motor;

 a transmission torque module (676) configured to determine the robot joint 

transmission torque (�̂�) between the input side and the output side of said 

robot joint transmission based on at least one of:20

o said angular position (q) of said output axle;

o said angular position (q) of said output axle and said angular position 

(Θ) of said motor axle;

o said angular position (Θ) of said motor axle and said motor torque (τmotor) 

provided to said motor axle by said joint motor;25

and robot controller is configured to generate said motor control signal based 

on friction (��) of at least one of said input side of said robot joint transmission 

and said output side of said robot joint transmission and said robot joint 

transmission torque (�̂�) between the input side and the output side of said robot 

joint transmission.30
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10. The robot system according to claim 9 comprising at least one of:

 an encoder (237,637) configured to obtain the angular position (Θ) of said 

motor axle;

 an encoder (235,635) configured to obtain the angular (q) of said output 5

axle;

 a sensor (241,641) configured to obtaining the motor torque (τmotor) 

provided to said motor axle by said joint motor.

11. The robot system according to any one of claims 9-10 wherein said robot 10

controller comprises a feed-forward controller module (1082) configured to 

determine a desired transmission torque (τJ,d) indicative of desired transmission 

torque of said robot joint transmission based on:

 a dynamic model of said robot (Drobot); 

 at least one motion parameter (Md, ��, �̇�, �̈�) indicating a desired motion 15

of at least a part of said robot arm; and 

 said friction (��) of at least one of said input side of said robot joint 

transmission and said output side of said robot joint transmission.

12. The robot system according to claim 12 wherein said robot controller 20

comprises a torque feed-back controller module (1084) configured to determine 

a transmission torque error correction motor torque  (τm,torque-err) indicating a 

motor torque minimizing differences between said desired transmission torque 

(τJ,d) and said robot joint transmission torque (�̂�), where said transmission 

torque error correction motor torque (τm,torque-err) is determined based on:25

 said desired transmission torque (τJ,d); and 

 said robot joint transmission torque (�̂�).

13. The robot system according to any one of claims 9-12 wherein said robot 

controller comprises a feed-forward controller module (1082) configured to 30
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determine a desired feed-forward motor torque (τm,FF) indicating a desired motor 

torque of said joint motor based on:

 a dynamic model of said robot (Drobot); 

 at least one motion parameter (Md, ��, �̇�, �̈�) indicating a desired motion 

of at least a part of said robot arm; and 5

 said friction (��) of at least one of said input side of said robot joint 

transmission and said output side of said robot joint transmission.

14. The robot system according to any one of claims 9-14 wherein said robot 

controller comprises a feed-back controller (1088) configured to determine 10

determining a error correction motor torque (τm,err) indicating a motor torque 

minimizing errors between at least one of:

 a desired motion parameter of said robot arm and actual motion 

parameter of said robot arm;

 a desired angular position (qd) of said output axle and said angular 15

position (q) of said output axle;

 a desired angular velocity (�̇�) of said output axle and the angular velocity  

(�̇ ) of said output axle;

 a desired angular acceleration (�̈�) of said output axle and the angular 

acceleration velocity (�̈ ) of said output axle;20

 a desired angular position (Θd) of said motor axle and said angular 

position (Θ) of said motor axle;

 a desired angular velocity (Θ̇�) of said motor axle and the angular velocity  

(Θ̇ ) of said motor axle;

 a desired angular acceleration (Θ̈�) of said motor axle and the angular 25

acceleration velocity (Θ̈ ) of said motor axle;

 a desired torque (τmotor,d) provided to said motor axle by said joint motor 

and said motor torque (τmotor) provided to said motor axle by said joint 

motor.

30
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15. The robot system according to any one of claims 11-14 wherein said robot 

controller comprises motor controller module (1086) configured to generate a 

motor control signal indicating a motor current (icontrol) for said robot joint based 

on a resulting motor torque (τr) indicative of a resulting motor torque to be 

applied by said joint motor where said resulting motor torque (τr) is determined 5

based on at least one of:

 said transmission torque error correction motor torque  (τm,torque-err);

 desired feed-forward motor torque (τm,FF); and

 error correction motor torque (τm,err).

10

16. The robot system according to any one of claims 9-15 wherein said robot 

controller is configured to control said robot arm based on a motor control signal 

for said at least one joint motor of said rotational joint based, wherein said robot 

controller is configured to generate said motor control signal by carrying out the 

method according to claims 1-8.15
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ABSTRACT

A method of controlling a robot arm with robot joints, where the joint motors of 

the joints are controlled based a signal generated based on the friction �� of at 

least one of the input/outside of the robot joint transmission and the robot joint 

transmission torque �̂� between the input side and the output side of the 5

transmission. The friction is determined based on: at least two of the angular 

position of the motor axle; the angular position of the output axle and/or the  

motor torque provided to the  motor axle by the joint motor. The robot joint 

transmission torque is determined based on: at least one of the angular position 

of the output axle; the angular position of the output axle and/or the angular 10

position of the motor axle; the angular position of the motor axle and the  motor 

torque  provided to the  motor axle by the  joint motor.

15
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