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Résumé

The European Commission have developed a long-term energy strategy that,
if successful, will result in net-zero greenhouse gas emissions in Europe. This
may be achieved in part by designing future energy systems with a close link
between the electricity and other end-use sectors. Such well-integrated systems
take decades to engineer, which allows for additional climate change. Time is
therefore a significant constraint and timely mitigation strategies are important.
In this collection of research articles, I focus on the impact of climate change on
future European electricity and heating systems and present a selection of my
first-authored articles on this topic. Initially, I treat these sectors separately, but
by the end, I focus on the potential benefits of designing a closely linked Euro-
pean electricity and heating system.

To represent a broad range of climate outcomes for the 21st century, I adopt three
representative climate projections from the Intergovernmental Panel on Climate
Change. Based on the underlying assumptions of these projections, the World
Climate Research Programme developed state-of-the-art weather data for the
21st century that is made available for further research. I use weather data from
nine independent climate models to generate climate change affected energy
system data for this project. The large ensemble of data defines the foundation
of this project and is used in all analyses.

The electricity sector is fundamental in the energy systems and with its rising
share of renewable power production it becomes important to investigate into
its resilience to climate change. In the chapter "21st century climate change impacts
on key properties of a large-scale renewable-based electricity system", I have shown
that highly renewable electricity systems might perform equally well at the end
of this century as of now. This is in particular an interesting result for coupling
other end-use sectors with the power sector.

Measured data on space heating are not available on country scale, nor are
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highly granular estimates. To this end, I have developed a coherent method that
can be used for this purpose. The method is presented in chapter "Estimating
country-specific space heating threshold temperatures from national consumption data",
and shows that current results can improve significantly by including weather
and primary energy use.

In the chapter "Impact of climate change on the cost-optimal mix of decentralised heat
pump and gas boiler technologies in Europe", I uncover that the need for space heat-
ing may reduce significantly depending on the degree of climate change. With
a careful modelling of the coefficient of performance, I show that heat pumps
become more economically feasible with rising ambient temperatures.

I conclude this collection with an ongoing research, which shows that a closely
linked power and heating system reduces the system cost by up to 10%. The
impact of climate change and the CO2-constraints have a considerably higher
impact, with system costs ranging from below 30% of the historical reference
point to 100% above, depending on the projection.

This collection of research papers is backed up with an extended appendix,
which contains detailed information on the procedures used in the research pa-
pers.
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Resume

Europa-Kommissionen har udviklet en langsigtet energistrategi, som, hvis suc-
cesfuld, vil resultere i netto-nuludledning af drivhusgasser i Europa. Dette kan
opnås til dels ved at udvikle fremtidige energisystemer med tæt kobling mellem
elsektoren og andre slutbrugersektorer. Sådanne velintegrerede systemer vil
tage årtier at udvikle og tillader derved yderligere klimaforandringer. Tid er
således en væsentlig begrænsende faktor, og rettidige strategier for udbedring
er essentielle. I denne samling af forskningsartikler fokuserer jeg på effekten
af klimaforandringer på Europas fremtidige elektricitets- og varmesystemer og
præsenterer et udvalg af artikler på området, på hvilke jeg er førsteforfatter. Til
at starte med behandles disse sektorer hver for sig, men til slut fokuserer jeg på
de potentielle fordele ved at udvikle et tæt koblet europæisk el- og varmesystem.

For at repræsentere et bredt spektrum af mulige klimaudfald i det 21. århun-
drede bruger jeg tre repræsentative klimaprognoser fra FN’s klimapanel. Baseret
på de underliggende antagelser i disse prognoser har World Climate Research
Programme udviklet avanceret vejrdata for det 21. århundrede, som er tilgæn-
geliggjort til brug for videre forskning. Jeg bruger i dette projekt vejrdata fra ni
uafhængige klimamodeller for at generere energisystemdata, der er påvirket af
klimaforandringer. Denne store samling af data udgør grundlaget for projektet
og bruges i alle analyser.

Elsektoren er en grundlæggende del af energisystemerne, og med dens stigende
andel af vedvarende energiproduktion er det vigtigt at undersøge dens robus-
thed over for klimaforandringer. I kapitlet "21st century climate change impacts
on key properties of a large-scale renewable-based electricity system" viser jeg, at elek-
tricitetssystemer med stor andel af vedvarende energi muligvis vil kunne yde
lige så godt i slutningen af dette århundrede, som de gør i dag. Dette resultat er
særligt interessant i forhold til koblingen af andre slutbrugersektorer til elsek-
toren.
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Datamålinger på rumvarme er ikke tilgængelige på landsskala, ej heller er grove
estimater. Jeg har derfor udviklet en konsekvent metode, der kan bruges til dette
formål. Metoden præsenteres i kapitlet "Estimating country-specific space heating
threshold temperatures from national consumption data" og viser, at nuværende re-
sultater kan forbedres betydeligt ved at inkludere vejr og primær energiforbrug.

I kapitlet "Impact of climate change on the cost-optimal mix of decentralised heat pump
and gas boiler technologies in Europe" viser jeg, at behovet for rumvarme muligvis
vil reduceres betydeligt, afhængig af graden af klimaforandringer. Gennem
omhyggelig modellering af ydelseskoefficienten viser jeg, at varmepumper er
mere økonomisk realiserbare med stigende omgivelsestemperaturer.

Jeg konkluderer denne samling med igangværende forskning, der viser, at et
tæt forbundet el- og varmesystem kan reducere systemomkostninger med op til
10%. Effekten af klimaforandringer og CO2-begrænsninger har en betydeligt
højere påvirkning, med systemomkostninger, der kan variere fra 30% under
det historiske udgangspunkt til 100% over, alt efter hvilken fremskrivning, der
bruges.

Denne samling a forskningsartikler indeholder et udvidet supplerende tillæg,
som indeholder detaljeret information om metoder, der blev brugt i forskn-
ingsartiklerne.
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Rezime

Europska komisija razvila je dugoročnu energetsku strategiju koja će, ako bude
uspješna, rezultirati neto-nultom emisijom stakleničkih plinova u Europi. To se
dijelom može postići dizajniranjem budućih energetskih sustava koji su usko
povezani izmed̄u električne energije i ostalih krajnjih sektora. Za takve dobro
integrirane sustave su potrebna desetlječa inženjerstva, što omogućava dodatne
klimatske promjene. Vrijeme je stoga važno ograničenje a važne a zato su i važne
pravovremene strategije ublažavanja. U ovoj zbirci članaka o istraživanju se
fokusiram na utjecaj klimatskih promjena na buduče evropske sustave za elek-
tričnu energiju i grijanje i predstavljam izbor svojih prvih autorskih članaka na
ovu temu. U početku tretiram te sektore odvojeno, ali na kraju se usredotočujem
na potencijalne prednosti dizajniranja usko povezanog europskog sustava elek-
trične energije i grijanja.

Kako bih predstavio širok raspon klimatskih rezultata za 21. stolječe, usvajam tri
reprezentativne projekcije klime iz Med̄uvladinog Panela o Klimatskim Promje-
nama. Na temelju temeljnih pretpostavki ovih projekcija, Svjetski Program Is-
traživanja Klime razvio je izuzetne vremenske podatke za 21. stoljeće koji su
dostupni za daljnja istraživanja. Za ovaj projekt koristim vremenske podatke iz
devet nezavisnih klimatskih modela za generiranje podataka energetskog sus-
tava koji su utjecali na klimatske promjene. Velika skupina podataka definira
temelje ovog projekta i koristi se u svim analizama.

Sektor električne energije je fundamentalan u energetskim sustavima, a s pove-
ćanim udjelom proizvodnje obnovljive energije postaje važno istražiti otpornost
na klimatske promjene. U članku "21st century climate change impacts on key prop-
erties of a large-scale renewable-based electricity system" pokazao sam da bi visoko
obnovljivi elektroenergetski sustavi mogli funkcionirati podjednako dobro kra-
jem ovog stoljeća kao i sada. To je posebno zanimljiv rezultat za povezivanje
ostalih krajnjih sektora s električnim sektorom.
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Izmjereni podaci o grijanju prostora nisu dostupni na razini države, niti postoje
vrlo detaljne procjene. Radi toga sam razvio metodu koja se može koristiti u tu
svrhu. Metoda je opisana u radu "Estimating country-specific space heating thresh-
old temperatures from national consumption data" i pokazuje da se trenutni rezultati
mogu značajno poboljšati uključivanjem vremenskih prilika i korištenjem pri-
marne energije.

U radu "Impact of climate change on the cost-optimal mix of decentralised heat pump
and gas boiler technologies in Europe" otkrivam da se grijanje prostora može značajno
smanjiti ovisno o stupnju klimatskih promjena. Pažljivim modeliranjem koefici-
jenta performansi pokazujem da toplinske crpke postaju ekonomski lakše izve-
dive s povećanjem temperature okoline.

Ovu zbirku zaključujem istraživanjem koje je u tijeku, a koje pokazuje da usko
povezani sustav električne energije i grijanja smanjuje troškove sustava za do
10%. Utjecaj klimatskih promjena i proračun CO2 ima znatno veći utjecaj, pri
čemu se troškovi sustava kreću u rasponu od 30% ispod povijesne referentne
točke do 100%, ovisno o projekciji.

Ova zbirka znanstvenih radova potpomognuta je proširenim dodatkom koji sadrži
detaljne informacije o postupcima koji se koriste u istraživačkim radovima.
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Preface

Roughly two years after finishing my Master’s thesis, about May 2016, I was ap-
proached by Professor Martin Greiner and Associate Professor Gorm Bruun An-
dresen from the Department of Engineering, Aarhus University, about a vacant
position for a Ph.D. project on the topic: Impacts of Climate Change on European
Electricity and Heating Systems. After some consideration and encouragement
from family, friends and former colleagues, I agreed to take up the challenge.
This work is a collection of some of mine research articles, which serves as a
final outcome of my research during this project.

The ultimate goal of this project is to investigate into the advantage of design-
ing a fully coupled European electricity and heating system and characterise the
value of establishing such a system in the context of climate change. Such a sys-
tem comes with benefits in both sectors. Research on climate change mitigation
has become a mature line of study during the past decades. The electricity sec-
tor is currently under a strong transition towards CO2-neutrality. The heating
sector is lacking severely behind and requires significantly more attention in or-
der to reach similar goals. Therefore, I am mostly concerned with the latter in
this project. As of now, it is crucial to develop timely mitigation strategies for
climate change – either we invest heavily in green technologies or we proceed
our Business As Usual tradition. Further research into sector coupling and cross-
vector integration might lead to the right decision!

This collection is built up of three general parts. In Part I, which consists of one
research chapter, I only focus on the electricity system and investigate into the
impact of climate change on five key metrics that represent a highly weather
dependent European electricity system. Part II, which consists of three research
chapters, is initiated with a similar research question, but with a focus on the
buildings heating sector. In the final and concluding chapter of Part II, I focus
on the governing research question, which was introduced in the previous para-
graph. Each chapter is built around a research article that is either published,
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under revision or in preparation at the time of writing. I am the first author
of all articles, but detailed information on the contributions is presented at the
onset of each chapter. Part III is an appendix, which holds an extensive sup-
plemental information that covers the research Chapters 2 - 4. The research in
Chapters 3 and 4 were partially conducted during an extended research stay for
six months at the Centre for Environmental Policy, Imperial College London.
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CHAPTER 1

Introduction

1.1 Motivation

A world perspective

Natural catastrophes are common consequences of rapid weather changes and
have ravaged the Earth throughout its lifetime. Hurricanes, droughts, flooding
etc. are catastrophes known to all humans. Despite the invariable long term
history of natural disasters, our generation is witnessing increasing rates of de-
struction and generations to come will witness scales of destruction and catas-
trophes never seen before, if no undertakings are made. Figure 1.1b illustrates
this trend by the type of catastrophe on a global scale. It is evident that catas-
trophes due to flooding, erratic weather and temperature related incidents have
increased from a few events in 1930 to about 350 during this decade. This trend
is a clear signal of a changing climate and it is the primary way that most people
experience it. During the recent decades, researchers have aimed to explain the
changing climate with multiple controversial arguments, but a recent study has
shown, with a "golden standard", that anthropogenic CO2-emission is the main
driver [1]. Figure 1.1a illustrates the anthropogenic CO2-emission for different
world regions. It is clear that, although Europe was accounted for the largest
share of emission in 1990, it has undergone a decreasing trend towards 2016.
The current largest share is accounted for by Asia from which approximately
half of this amount is accounted for by China. Adding up the emissions from
Europe, America and Asia amounts to 32 Gt, which is a close approximation
to the global level in 2016. Production of electricity and heat from main activ-
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ity and auto producers and from fossil fuel combustion in the residential sector
account for about half of this amount (or 16 Gt). Decarbonising these sectors
is therefore a vital starting point towards a more CO2-neutral energy economy,
which can be achieved through energy system transition [2].

Sector coupling will become a major strategy in the process of decarbonisation
[3, 4]. Electrification of end-use sectors is currently the most promising strategy
towards a low-carbon economy, but is currently only applicable for less energy
intensive applications as, e.g., in low temperature processes and in lightweight
transportation. A complementary solution for the energy intensive sectors is
cross-vector integration, which is a form of indirect electrification, where elec-
tricity is used to produce gaseous and liquid energy carriers that can be used
in, e.g., industrial high temperature processes and heavyweight transportation.
Nevertheless, the current techno-economic barriers are still relatively high and
many technologies need further improvement in order to become competitive in
many applications and regions. The market for many power-to-x technologies
also need further development in order for these to compete with cheap fossil-
fuel driven technologies. Many places in the world lack an integrated planning
and operational schedule within the individual sectors, which certainly prevents
strong synergies and flexible interconnections between different sectors. Imma-
ture energy and climate policies in several world regions are not directly ad-
dressing the issue of climate change, which further decelerates the process of
energy system decarbonisation [5]. To summarise, even though a significant
progress has been made, there is still work to be done in all segments of energy
systems worldwide.

For the remaining of this collection, the focus is on the European energy system
and narrow into the electricity and buildings heating sectors.

Climate policies in Europe, in brief

At the COP21 meeting in Paris on December 2015, the UNFCCC member parties
reached an agreement to limit the global average temperature increase below 2
°C above pre-industrial levels and to pursue efforts to limit the increase by 1.5
°C [8]. Before the Paris agreement, the European Commission have already pro-
posed a long-term energy strategy that, if successful, will result in a low-carbon
economy by 2050 in Europe [9]. The goal was to reduce the CO2-emission by
80% - 95% compared to 1990 values and thereby pursue efforts to limit the global
temperature increase to 2 °C. For Europe to take the more stringent Paris agree-
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Figure 1.1: Panel a: Sector aggregated CO2-emission for a number of world regions. Emission
by the EU28 is split into sectors and shown as areal plots. The electricity & heating category
refers to emission from main activity and auto producers of electricity and heat. The residential
category refers to emission from fossil fuel combustion in households. The industry category
refers to emission from fossil fuel combustion in manufacturing and construction activities, oil
refineries for the purpose of coal mining, oil and gas extraction and others that are not mentioned.
Transport accounts for emission from all transportation activities, except for international marine
and aviation bunkers. Finally, the others category contains emission from the commercial sector,
agriculture, foresting, fishing and others that are not mentioned. Figure redone from [6]. Panel
b: Natural catastrophes. The extreme temperature related category defines catastrophes related to
extreme temperatures and droughts. The others category covers natural catastrophes related to
earthquakes, landslides, wildfire and volcanic activity. Figure redone with data from [7].

ment as a serious consideration and contribute to the process of reaching the 1.5
°C limit, the current roadmap had to be restructured. Therefore on November
2018, the European Commission adopted a new strategic long-term vision for
reducing the net emission by 100% by 2050 [10].

Despite these efforts, there is still a 30-year gap with contentious greenhouse
gas emission, though with lower rates in Europe. For this reason, Europeans
might develop a moral courage, rectitude and a feeling of incorruptibility, but
the global greenhouse gas emission will contentiously increase and the climate
will continue to change. A study from 2019 by the Climate Action Tracker, re-
veals that there has only been a minor progress according to the Paris Agreement
in 2019. They estimate that under current policies, the increase of the global av-
erage temperature will exceed 1.5 °C by the year of 2035, 2 °C by year 2053 and
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3.2 °C by 2100 [11]. Another study expects a global average temperature increase
of 2.0 - 4.9°C with a 3.2 °C median at the end of this century. The same study
showed that the probability for staying below 2 °C is 5% while the probability
for staying below 1.5 °C is as low as 1% [12]. Unfortunately, at the end of the
day, it seems that the 2015 Paris Agreement [8] is just becoming "another order
of business". It is now clear that the climate will continue to change, at least
to some degree, but due to insecurities in energy and climate policies, techno-
logical innovations, markets etc., and due to missing global cooperation [13, 14]
the degree of change remains unknown. Given this, it becomes important to
incorporate projections of various degrees of climate change into studies on the
design of future energy systems. In this report, three reconstructed concentra-
tion pathways, RCP [15] are applied, that represent very distinct, but plausible
outcomes of the climate during the 21st century. These are a subset of the lat-
est generation of climate projections adopted by the Intergovernmental Panel
on Climate Change [16] in their fifth assessment report AR5 [17]. These are for-
mally introduced in Section 1.5.

Advances in the European electricity sector

Production of electricity and heat in the EU28 accounts for the largest share of
the CO2-emission followed by transportation and industrial processes, as shown
in Figure 1.1a. The EU28 power sector is a special case compared to other world
regions. It has experienced a rapid transformation in all of its segments over
the past decades. For example, the transmission and distribution grids have ex-
panded significantly, the share of renewables is constantly increasing, electricity
storage is becoming popular, renewable capacities has become cost-competitive
to conventional production units, increasing consumer awareness, increasing
social acceptance of renewable capacities and research has flourished within this
area. Taking as an example the renewable penetration, a value of 32% (or a pro-
duction of 1051 TWh) in 2018 made the European power sector the holder of
the largest share of CO2-neutral power production compared to other main re-
gions [18]. In contrast, the US and Chinese power sectors held a corresponding
share of 17% (or a production of 720 TWh) in 2018 and 24% (or a production of
1546 TWh) in 2017, respectively [19, 20]. It would be inaccurate to assign climate
change mitigation as the only driver of the European advances, but certainly, it
has a significant impact.

In the new long-term vision for Europe [10], the power sector appears to be the
fastest to decarbonise and is expected to be emission-free by 2040. By means of
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several studies [21, 22, 23, 24], this implies a strong transition towards a highly
renewable electricity system. Nevertheless, with a renewable penetration of 20%
in 2010, 32% in 2018 and a projected increase of 94 TWh/yr to reach 57% in 2030
[18], decarbonisation of the European electricity sector is already on a sure-fire
way. Several studies also focus on the potential of large-scale storage options
as, e.g., batteries, pumped hydro and hydrogen storages in future highly decar-
bonised energy systems and show that different types of storages qualify differ-
ently in different applications [25, 26, 27].

Advances in the European heating sector

In the same long-term strategy [10], the residential and commercial heating sec-
tors are found to be fully decarbonised by 2050. Increasing energy efficiencies
and renovating rates are already causing these sectors to decarbonise efficiently
[10]. From a technological standpoint, the slow rate of innovation and the pro-
hibitive costs of clean options for heating [28, 29] are at the moment not con-
tributing significantly to the process of decarbonisation [30]. Decentralised heat
generation is currently dominated by fossil-fuel driven boilers, which hold 61%
of the total installed capacity. Biomass technologies hold the second largest
share with 19% of the installed capacity. Direct electricity technologies as, e.g.,
electricity driven boilers and resistive heaters (which may be clean depending
on the primary energy source for power generation) already hold a share of 13%
of the installed capacity. Heat pumps are getting more attractive with 99% of
the units installed after 2002 resulting in a share of 7% of the installed capac-
ity [31]. The increasing interest in heat pumps is motivated by several factors
as, e.g., investment subsidies supplied by governmental initiatives, increasing
carbon taxes on heat generation by combustion of fossil fuels, increasing energy
efficiency standards of buildings and increasing awareness towards information
dissemination through campaigns and other events [32, 33]. The European Heat
Pump Market Association projects that with the current sales of heat pumps,
their market would double every 10 years which should result in a cost reduc-
tion of approximately 20% by 2024 [34].

A strong coupling of the electricity and heating systems can only take place
through a large deployment of electricity driven technologies for heat genera-
tion. If heat generation is to be decarbonised, this requires an increased renew-
able penetration in the power system. This information leads naturally to the
key questions of this project, which are briefly introduced in the following para-
graphs with a detailed introduction in their respective research chapters.
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Filling the gap of knowledge

Increasing the renewable penetration in energy systems will force them to rely
more often on intermittent power generation for which it is expected, that chal-
lenges in constantly meeting the electricity demand will become increasingly
complex. In addition to the short-term weather variations, climate change is ex-
pected to add another degree of long-term weather variability. It is therefore
important to investigate into what extent long-term climate change might affect
future highly renewable electricity systems. Such a study does not only quantify
some of the key challenges that might occur in meeting the electricity demand,
but the coupling to other sectors might be affected as well. This question is
addressed in the first research chapter, Chapter 2. Here, research on the im-
pact of climate change on power production from variable renewable electricity
sources and power consumption via the electrified heating and cooling is pre-
sented. Next, five key metrics of a highly renewable European electricity system
are defined and their resilience to climate change was analysed. The addition to
the existing literature emanated by using a simplified top-down modelling ap-
proach of the electricity system that is, in particular, suitable for capturing the ef-
fect of weather on energy systems. Furthermore, the climate is allowed to affect
both the demand and supply sides simultaneously. The study is strengthen by
using carefully generated and validated energy system data. The use of climate
change data from nine independent climate models contribute to the robustness
of the results.

In Chapter 5, the benefits of introducing additional cooperation between the
European electricity and heating systems is analysed and the value of such a
system design is characterised in various degrees of climate change. This anal-
ysis requires an in-depth modelling of the buildings heat demand and supply
sides. Contrary to the systematic control of electricity consumption, the decen-
tralised ways of heating requires no smart monitoring systems to sustain system
stability and metering equipment for heat consumption are therefore rare. Data
on heat consumption are therefore either non-existing or not openly available
and has to be estimated. Similarly, there are no open available estimates of the
space heating requirements that fit the needs of this project. A model that can be
used to estimate the space heating requirements and the non-heating summer
seasons was therefore developed. The model must be given a temperature time
series and a time series on the primary energy source(s) of the region in ques-
tion. It is furthermore independent on the areal extent and can be applied to city
as well as country or continental scales. It is also straight forward extended to
estimate the need for cool. This modelling approach provides value to the exist-

6



ing literature through its prowess, simplicity and easy replication. This study is
presented in research Chapter 3.

In Chapter 4, the investigation is on the impact of climate change on the build-
ings heat demand and on the impact of climate change on the cost-optimal op-
tions for future decentralised heating. Changes in the spatial temperature fluctu-
ations and in the short and long-term temporal fluctuations will naturally affect
the synergy between the demand and supply sides in future heating systems. As
a consequence, the design of future cost-optimal heating infrastructures might
look very different from the design of today’s systems. By assuming no upper
constraints on the supply of different energy carriers for heat generation as, e.g.,
electricity, gas and biomass, an analysis that assess the full potential of the dif-
ferent options for heating under the impact of climate change is allowed. This
study is conducted by using climate change data with a high spatial resolution.
This is an important approach that allows for capturing extreme temperature
fluctuations across local regions. As in the aforementioned studies, the results
are strengthen by using weather data from nine independent climate models.

In the final and concluding chapter, Chapter 5, investigation into the advan-
tage of designing a fully coupled European electricity and heating system and
characterise its value in the context of climate change is presented. Results of
the previous two chapters are used for the modelling of the heating system.
Since climate change is expected to strongly affect the heating sector through
the temperature dependent demand and supply sides, the strong system cou-
pling might perform differently in the different outcomes of climate change. A
total of eight scenarios with different combinations of the system strengths and
climate outcomes are evaluated and compared. For each scenario, the system
costs, the technology composition and the system efficiency are quantified.
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1.2 Project design

The biggest efforts of this interdisciplinary project were devoted to energy sys-
tem analysis. Climate science enters the study through the application of vast
amounts of climate change affected weather data and CO2-constraints. The de-
sign of this project is illustrated with a schematic overview in Figure 1.2. The
individual steps of this diagram are detailed in Section 1.5. The red coloured
section illustrates the contributions to this project from other well-established
projects. The green area illustrates how I build my research on top.

The very first part of this project was purely data technical and dealt with the
acquisition of climate change affected weather data followed by the processes of
cleaning and organisation. In a second step, this data were converted into neces-
sary energy system related time series and if possible, these were bias-adjusted.
This process was rather protracted, but important to conduct carefully, as the
results of this process define the foundation of this project. This process is ex-
plained in greater detail in the Section 1.3.

Figure 1.2: A schematic overview of the project design. Shown with red are the contri-
butions from the Intergovernmental Panel on Climate Change IPCC, the World Climate Re-
search Project WCRP and the Coordinated Regional Climate Downscaling Experiment CORDEX
projects. Shown with green are my contributions to this project.
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1.3 Conversion and validation of energy system related data, in
brief

Throughout this project, data with a spatial and temporal resolution of 12 km x
12 km and 3 hours, respectively, were used. These are the results of the latest
long-term projections of gridded weather data that are open-available for fur-
ther research. They are currently seen as state-of-the-art within climatology and
to the best of my knowledge, the best in the literature. The resolution of this data
contributes significantly to an increased value and recognition of this project.
Few climate variables with the highest demand as, e.g., the gridded temperature
profiles can be found on various Earth System Grid Federation nodes, ESGF, but
due to the high resolution in space and time most variables are not deployment
on the ESGF nodes. Low resolution climate change affected weather data are
most commonly found on the ESGF nodes. Great effort have therefore been put
into contacting various meteorological institutes around Europe by person and
requesting data. Data with 100 TB of climate change affected weather data were
acquired from nine independent climate models. In Section 1.4, a selection of the
climate variables that are used in this project are presented. For the remainder
of this section, a brief introduction to the methods behind the conversion and
validation processes is presented. An immense effort has been put into devel-
oping state-of-the-art methods for both. These processes are further detailed in
the supplementary information of the article described in Chapter 2.

Starting with the electricity sector, 3-hourly country-wise wind and solar power
potential time series have been created on the basis of data on the wind speed,
surface roughness length, temperature and solar irradiation.

Wind power potential

The wind power potential has been evaluated on grid cell level and thereafter
aggregated to country size. Based on the Wind Power database [35], turbines
have been placed in grid cells that are closest to their actual positions. Turbine
specific wind power curves have been used in the conversion from wind speeds
to power production. Each power curve has been smoothed according to an
optimised Gaussian convolution. This has previously shown to account very
well for the limited temporal and spatial resolutions of the climate data [36]. The
Gaussian convolution has been optimised by minimising the Kullback-Leibler
divergence between the modelled wind power time series and an already bias-
corrected time series provided by the Renewables.Ninja [37].
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Solar power potential

A consistent database for PV-panels, their properties and information on their
actual sites is currently non-existing. Therefore, one PV-panel has been placed
in each grid cell. The conversion procedure from global radiation budgets to
solar power potential time series follows a multi-step process that accounts for
the geometry, direct, diffuse, and reflected irradiance on a tilted surface, tem-
perature dependent efficiencies and inverter losses [36]. An optimised Weibull
distribution has been used in the validation process. The optimised parameters
of the Weibull distribution have been determined by validating against already
bias-adjusted time series [38, 39], and seeks to minimise the Kullback-Leibler di-
vergence metric.

Electricity consumption

The national electricity consumption was provided by the European Network of
Transmission System Operators for Electricity [40]. To remove long-term trends
in the consumption profiles, these were detrended for each country, and then
concatenated in order to meet time span of the modelling period. The consump-
tion was then corrected for impacts of electrified heating and cooling by means
of the degree-day method and temperature data from the climate models.

Space heat consumption

National energy demand for space heating was estimated by using the theory of
heating degree-days and the model-specific temperature data. The conversion
from heating degree-days to actual energy consumption took place through val-
ues on the national energy demand provided by Heat Roadmap Europe [41].
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1.4 Climate data

In Figures 1.3 – 1.5, a selection of the climate variables that are used in this
project is presented. These are presented in terms of their spatial distribution
with a 20-year average value in each grid cell for a historical period and for
an end-of-century period in each climate pathway, RCP2.6, RCP4.5 and RCP8.5.
The pathways are formally introduced in Section 1.5. These figures are excellent
examples of the high spatial granularity of the climate variables that are used
in this project. Clearly, the three projections span a broad outcome of possi-
ble climatic conditions throughout the 21st Century. Although, each individual
pathway is based on internally socioeconomic assumptions, the RCPs cannot be
treated as a consistent set of socioeconomic logic. As an example, RCP2.6 can-
not be treated as a stringent socioeconomic reference scenario for the remaining
RCPs, since the assumptions on socioeconomics, technology development etc.
differ from the rest. The RCPs should therefore be treated as independent path-
ways representing a certain outcome of the future climate [42]. Examples are
given in the following paragraphs.

Temperature

Figure 1.3 shows spatial distributions of the temperature. The historical period
clearly illustrates increasing temperatures as a function of increasing latitudes
with values ranging from an average value of 20 °C to below -10 °C. The RCP2.6
pathway leads to a temperature increase of up to 2 °C on the mainland, RCP4.5
of up to 4 °C and RCP8.5 of more than 6 °C.

Wind speed

Figure 1.4 shows similarly spatial distributions of the 10 meter wind speeds
over Europe. In the historical frame, North-West Europe is dominated by the
strongest winds, which reduce towards the mainland. The west chain of the
Norwegian mountains and the Alps block, to a large extent, the wind from
reaching East Scandinavia and the Balkans, respectively. As indicated earlier,
the wind speeds are very different in the different climate projections. The least
extreme climate pathway, RCP2.6, leads to increasing wind speeds by more than
2% around the British Isles, while the mainland is dominated by a decreasing
trend. The intermediate pathway, RCP4.5, leads to increasing trends for most of
Europe, while the most extreme climate projection, RCP8.5, leads to decreasing

11



Figure 1.3: Spatial distributions of the temperature profiles. These are presented as 20-year
average values. The historical frame spans the years from 1986 to 2006 while the cluster of climate
pathways (RCP2.6, RCP4.5 and RCP8.5) spans an end-century period from 2080 to 2100. The
figures are based on the HIRHAM5 regional climate model [43] downscaling the ICHEC-EC-
EARTH global climate model [44].

trends. From these figures it becomes clear that the individual pathways are not
continuations of each other and should be treated separately.

Figure 1.4: Spatial distributions of the wind speed profiles. These are presented as 20-year
average values. The historical frame spans the years from 1986 to 2006 while the cluster of climate
pathways (RCP2.6, RCP4.5 and RCP8.5) spans an end-century period from 2080 to 2100. The
figures are based on the HIRHAM5 regional climate model [43] downscaling the ICHEC-EC-
EARTH global climate model [44].

Shortwave irradiation

Figure 1.5 shows spatial distributions of the incoming shortwave radiation. The
incoming radiation reduces naturally with increasing latitudes. The climate
pathways show a clear pattern of changing incoming radiation as a function
of the degree of climate change. From RCP2.6, RCP4.5 and RCP8.5 it is clear that
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the radiation increases in South Europe while it is decreasing in the north. This
is reasoned by an increasing cloud covering in the north with a decreasing trend
in the south.

Figure 1.5: Spatial distributions of the incomming shorwave radiation profiles. These are pre-
sented as 20-year average values. The historical frame spans the years from 1986 to 2006 while
the cluster of climate pathways (RCP2.6, RCP4.5 and RCP8.5) spans an end-century period from
2080 to 2100. The figures are based on the HIRHAM5 regional climate model [43] downscaling
the ICHEC-EC-EARTH global climate model [44].
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1.5 Introduction to relevant pre-projects

The bedrock of this project is built upon results from three well-established
projects. These are described in the following.

Reconstructed Concentration Pathways, RCP

The first project showing its importance for this work is the development of the
latest generation of climate projections by the Intergovernmental Panel on Cli-
mate Change [16], IPCC. IPCC is an organisation under the United Nations that
is responsible for assessing the science related to climate change. In their Fifth
Assessment Report, IPCC adopted four representative greenhouse gas concen-
tration pathways, RCP, that describe possible outcomes of the climate for the
21st Century [15]. Integrated Assessment Models [45] have been used to de-
velop the RCPs and include a diverse range of assumptions on socioeconomics,
technology developments, biophysics etc. to project their consequences for the
future climate system. The set of RCPs are defined by their total radiative forc-
ing by 2100. RCP2.6 is a stringent mitigation pathway [46, 47, 48], which is a
peak and decline scenario that reaches a radiative forcing level of 2.6 W/m2 at
2100, as shown with green in Figure 1.6a. RCP2.6 is representative of keeping
the global average temperature increase well below 2 °C above pre-industrial
levels at 2100, as seen in panel d. This requires a peak in the CO2-emission by
the year of 2020 and eventually negative emission by the year 2080, as shown
in panel b. The atmospheric concentration of CO2 follows the curve topology
of the radiative forcing, as shown in panel c. Next, IPCC adopts two interme-
diate scenarios, RCP4.5 [49, 50, 51, 52] and RCP6.0 [53, 54, 55], for which only
RCP4.5 is considered in this project. Finally, IPCC adopt a scenario with in-
creasing CO2-emission throughout this century, RCP8.5 [56, 57], which is best
known to the literature as the business as usual scenario. Figure 1.6 also shows
the corresponding metrics of these pathways. Since the underlying logic of the
pathways is broad and complex, a full description is avoided, but additional ref-
erences have been assigned to each RCP for further reading.

Global Climate Modelling, GCM

The second project with an important role is the Coupled Model Intercompar-
ison Project, CMIP, which is a framework of the World Climate Research Pro-
gramme, WCRP, [58]. WCRPs Working Group on Coupled Modelling, WGCM,
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Figure 1.6: Key metrics of the Reconstructed Concentration Pathways, RCP. Panel a: Radiative
forcing of the IPCC RCPs in W/m2. Panel b: CO2-emission of the IPCC RCPs in Gt CO2 per
year. Panel c: Atmospheric CO2-concentrations of the IPCC RCPs in parts per million. Panel d:
Temperature increase and offsets over Europe in the different IPCC RCPs in °C. The temperature
profiles are computed from the HIRHAM5 regional climate model [43] downscaling the ICHEC-
EC-EARTH global climate model [44].

along with the International Geosphere/Biosphere Programmes [59], IGBP, and
the Integration and Modelling of the Earth System project [60], AIMES, designed
a new set of climate model experiments. The outcome was a fifth phase of the
Coupled Model Intercomparison Project, which is the most recent completed
phase of global climate modelling [61]. The development of the CMIP5 project
was influenced by climate modellers, climate scientists and the biogeochemistry
community and resolves into a complex project organisation, see Figure 1 in [61].

For the GCMs to model climate change projections, they use information about
emission of air pollutants and land use patterns from the RCPs. This process
is shown as the first phase in Figure 1.2. Based on this information, the GCMs
simulate the earth system and provide data on climate variables such as wind
speeds, temperatures etc. GCMs are currently the most reliable tools, which
include anthropogenic fingerprints and simulate their impact on the climate.
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Global climate modelling results in weather data with, usually, monthly time
scales and horizontal resolutions of hundreds of kilometres. The main reason
for the coarse-grained resolution is the lack of computational power. With this
resolution, the GCMs cannot capture local effects, which precludes them from
accurately describing local weather variabilities. This provides a sincere limi-
tation for research on regional scales. To allow for this, a downscaling of the
GCMs have to take place. This leads to the next framework that is important
for this project, which is described in the following section. For the rest of this
section, the GCMs that were made available for this project are listed.

Five global climate models were made available from different climate institutes
around Europe. These are listed here, but a more comprehensive description can
be found in the supplementary information of the article described in Chapter
2 or in the attached citations. The following global climate models are consid-
ered: ICHEC-EC-Earth [44, 62], HadGEM2-ES [63, 64], MPI-ESM-LR [65], IPSL-
CM5A-MR [66, 67] and CERFACS-CNRM-CM5 [68].

Coordinated Regional Climate Downscaling Experiment, CORDEX

The third project is the Coordinated Regional Climate Downscaling Experiment
[69, 70], CORDEX, which is a framework of the WCRP. CORDEX holds the
newest and the largest set of regional climate models, RCM, which supply the
global climate modelling with, e.g., a higher resolution in space and time, which
enables them to better represent local atmospheric processes and more complex
landscapes and topographies [71]. In the most common downscaling technique,
RCMs use large-scale atmospheric information supplied by the GCMs and feed
these into the horizontal and vertical boundaries. This process is shown in the
second step in Figure 1.2.

The CORDEX initiative results in highly granular climate affected weather data,
which enables further research in various climate dependent fields. This is
shown as the final red step in Figure 1.2. In this project, the focus is on the EURO-
CORDEX domain [72], which is the European branch of the CORDEX initiative
that covers the continent of Europe. Four regional climate models have been
used in this research. These include HIRHAM5 [43], RCA4 [73, 74], RACMO22E
[75] and CCLM4. A more comprehensive description can be found in the sup-
plementary information of the article described in Chapter 2 or in the attached
citations. The ensemble of regional and global climate models add up to nine
climate models for this project. These are presented in Table 1.1.
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The ability of the Global Climate Models (GCM) to accurately model the near
surface air temperatures is receiving increasing attention. A recent study on the
European domain shows negatively biased winter temperatures in the North for
33 CMIP5 GCMs [76] compared to ground observations from ECAD [77]. Pos-
itively biased summer temperatures are observed in the East and Central Eu-
rope. The GCM ensemble mean bias is approximately −1°C ±9°C during winter
months and 0.5°C ±6°C during summer months. Similar trends are found for
the Northern Eurasia where the winter and summer periods show the largest
biases [78]. Small improvements have been made since CMIP3 GCMs [79]. A
full description of biases in climate models is provided in the Supplemental In-
formation Section 7.1.

Table 1.1: Overview of the climate models along with the available pathways in this project.

GCMs RCMs Climate Pathways
Historical RCP26 RCP45 RCP85

ICHEC-EC-
EARTH

HIRHAM5 x x x x
RACMO22E x x x

RCA4 x x x x
MOHC-

HadGEM2-ES
RACMO22E x x x x

RCA4 x x x x

MPI-ESM-LR CCLM-8-17 x x x
RCA4 x x x x

IPSL-CM5A-
MR RCA4 x x x

CERFACS-
CNRM-CM5 RCA4 x x x
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1.6 Structure

The remainder of this collection summarises a selection of four studies that were
conducted during the full project period along with their associated supplemen-
tal information.

Chapter 2 is built around the research paper: "21st century climate change impacts
on key properties of a large-scale renewable-based electricity system".

Chapters 3-5 describe my research related to the heating sector. Chapter 3 is
built around the research paper: "Estimating country-specific space heating thresh-
old temperatures from national consumption data".

Chapter 4 is built around the research paper: "Impact of climate change on the cost-
optimal mix of decentralised heat pump and gas boiler technologies in Europe".

Chapter 5 is built around a research paper with the preliminary title: "Techno-
economic benefits of a fully coupled European electricity and heating system in a 21st
century climate".

Chapter 7 is the supplemental information for Chapter 2. In the former, the in-
terested reader can find in-depth material on methods and extended results.

Chapter 8 is the supplemental information for Chapter 3. In the former, the in-
terested reader can find plots of the gas and electricity data that were used in
this study along with additional results.

Chapter 9 is the supplemental information for Chapter 4. In the former, the in-
terested reader can find in-depth material on methods and extended results.
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Part I





CHAPTER 2

21st century climate change impacts on key properties of a
large-scale renewable-based electricity system

Article
This chapter is based on the research paper:
Kozarcanin, Smail; Liu, Hailiang; Andresen, Gorm Bruun (2019). 21st
Century Climate Change Impacts on Key Properties of a Large-Scale Renewable-
Based Electricity System. Joule, 3(4), 992-1005.

Project Dissemination
The project has been published in the form of a peer-reviewed research
article in Joule. An extended supplemental material has been published
alongside the article for the interested reader. The wind and solar power
potential and electricity consumption time series have been published
in Mendeley. Several news magazines as, e.g., New Scientist, The Verge,
Eurekalert and others have covered this study.

Author Contributions
S. Kozarcanin was responsible for managing and coordinating the re-
search activities and performed the formal analysis and investigation. S.
Kozarcanin wrote the original draft, visualised the data and performed
the editing in the review process. H. Liu co-authored the chapter on elec-
tricity consumption in the supplemental information. Associate professor
G. B. Andresen stands behind the original concept.
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Highlights

• Climate change shows impacts on large-scale metrics of a European elec-
tricity system.

• Largest climate impacts are observed within fully wind-dominated elec-
tricity systems.

• 6 high-resolution CMIP5 GCMs under the forcing of three IPCC RCPs have
been used.

• State-of-the-art wind and solar capacity factors and electricity demand
data were used.

Summary

Falling prices and significant technology developments currently drive an in-
creased weather-dependent electricity production from renewables. In light of
the changing climate, it is relevant to investigate to what extent climate change
directly impacts future highly weather-dependent electricity systems. Here,
three IPCC CO2 concentration pathways were used for the period 2006-2100
with six high-resolution climate experiments for the European domain. Climate
data are used to calculate bias-adjusted 3-hourly time series of wind and so-
lar generation and temperature-corrected demand time series for 30 European
countries using a state-of-the-art methodology. Weather-driven electricity sys-
tem analysis is then applied to compare five key metrics of highly renewable
electricity systems. It is found that climate change changes the need for dis-
patchable electricity by up to 20%. The remaining key metrics, such as the ben-
efit of transmission and storage as well as requirements for balancing capacity
and reserves, change by up to 5%.

Context & and Scale

Globally, electricity production from wind and solar sources is increasing signif-
icantly. The increase is primarily driven by lower costs and by political efforts
to mitigate climate change. Climate change, however, may radically change the
weather that drives these sources of renewable energy. It is found that the im-
pact of climate change on a future highly renewable European electricity system
is up to 20% for a few key metrics when compared to corresponding numbers
for a historical climate scenario. In most cases, however, the relative impact is
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an order of magnitude smaller. The level of impact is, in general, smaller than
corresponding differences from one weather year to another and also compared
to differences between system designs, e.g., with different levels of international
power transmission lines or different mixes of wind and solar generators.

Figure 2.1: Wind and solar sources currently drive an increased weather-dependent electricity
production because of decreasing costs and efforts to mitigate climate change. Unfortunately,
some degree of climate change appears to be unavoidable. Different projections of climatic out-
comes over the 21st century were used to assess how important key metrics of a highly renewable
electricity system are affected by climate change.
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2.1 Introduction

The global climate is currently undergoing vast changes, primarily due to an-
thropogenic emission of heat-trapping gases into the atmosphere [80]. As a con-
sequence, the global average surface temperature has increased since the 1960s
by approximately 0.2 °C per decade. A similar rate of temperature increase is
projected to occur during the first half of the 21st century [81] and, at present,
the changing climate is showing global impacts on natural and human systems.
In this work, the focus is on the impacts of a changing climate on the dynamics
of a future, highly renewable, large-scale electricity system for Europe.

Research on the impacts of climate change on large-scale electricity systems is
in its infancy, and few studies have been performed in this field [82]. For an
aggregated European energy system, outweighing demand-side impacts to the
supply side have been found, based on the Prospective Outlook for the Long-
term Energy System model (POLES) [83]. Because of global heating, the cooling
demand increases while the heating demand decreases [83]. More specifically,
a decreasing need for heating in central and northern Europe have been found
based on the SRES A2, A1B, and B1 emission scenarios [84]. Southern Europe
experiences a large increase in cooling demand, which in turn overcomes the
decrease in heating demand [84]. This finding is in agreement with a study on
Germany and Austria for the last quarter of the 21st century [85]. The spatial
distribution of the heating and cooling needs are further reflected in increas-
ing needs for electricity in southern Europe and decreasing needs in northern
Europe [86]. Individual country studies on Norway [87], Finland [88], Slove-
nia [89], Austria [90], and Switzerland [91] agree upon the latter findings. The
heating degree days have shown to decrease significantly, especially over Scan-
dinavia and European Russia when using the representative concentration path-
way scenarios (RCP) 4.5 and RCP8.5 [92]. For identical projections, the cooling
degree days are increasing, especially over the Balkans and the Mediterranean
region.

By using the SRES A1B emission scenario, negligible changes have been found
in the wind power potential over the Baltic Sea and the surroundings [93, 94].
Similar results are found for Europe as a whole by using the RCP4.5 and RCP8.5
emission scenarios [95], for the UK [96], for Norway based on 10 climate exper-
iments [87] and for Germany by using the RCP2.6 and RCP8.5 emission scenar-
ios for the period 2031-2060 [97]. Moreover, increasing wind correlation lengths
have been discovered along with increasing wind power generation in the same
regions of Europe by using the RCP8.5 emission scenario [98]. A decreasing
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wind power potential over the Mediterranean area have been found by using
the SRES A1B and A2 emission scenarios [93, 99] along with decreasing correla-
tion lengths [98]. For an aggregated EU27, a slight increase in the wind power
production have been found until mid-century, based on the SRES A1B and E1
emission scenarios [83]. For a wind-dominated European energy system under
the impact of the RCP8.5 emission scenario, increasing needs for conventional
power and storage are found in most of the central, north, and Northwest ar-
eas [100], with a more homogeneous wind power generation [101] at the end of
the 21st century. A decreasing solar power generation have been projected in
the Scandinavian area with slight increases over southern Europe by using the
RCP4.5 and RCP8.5 emission scenarios [102]. This corresponds with increased
means of solar irradiation along with increased solar correlation length in large
parts of southern Europe [98]. The opposite behaviour is observed for the north-
ern parts of Europe [98]. For an aggregated EU27, an increasing amount of solar
photovoltaic (PV) generation is found [83]. Based on 44 electricity scenarios for
Europe, large penetrations of wind and solar power have been found to emit the
least CO2 within the ensemble of scenarios and, as a consequence, contribute the
most to climate change mitigation [103].

A new addition to the existing literature emanates from the investigation of the
key infrastructure metrics of a fully connected, highly renewable European elec-
tricity system by using the latest generation of climate projections provided by
the Intergovernmental Panel on Climate Change (IPCC) [15]. The climate data
used in this study originate from six combinations of four RCMs (regional cli-
mate models), downscaling three CMIP (coupled model inter-comparison project)
phase 5 [61] GCMs (global climate models) under the forcing of IPCC RCPs.
This study utilises only a subset of the GCMs that are available in the ensemble
of CMIP5 GCMs. Former studies evaluate the climate model performance of
capturing, e.g., storm track densities, temperatures, or precipitations, by using a
large ensemble of GCMs and show acceptable agreements among a majority of
the GCMs, including the ones adapted in this work [76, 104].

In order to represent a broad range of climate outcomes, three scenarios, RCP2.6
[46], RCP4.5 [49], and RCP8.5 [56], have been implemented into the global cli-
mate models. RCP2.6 is a climate projection that provides the necessary steps
consistent with the goals of the 2015 Paris agreement, which aims at keeping
long-term global temperature increases below 2 °C. In particular, there is an ur-
gent need for both short and long-term action in reducing the CO2-emission, as
explained in detail in the Emission Gap Report 2017 [105]. RCP4.5 is highly
influenced by high CO2-emission cost policies, while RCP8.5 has no climate
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Figure 2.2: RCP key metrics. Panel a: CO2 emission as a function of model year for the vari-
ous projections of climate outcomes. Panel b: Average near surface temperature over Europe for
the regional climate model HIRHAM5-EC-EARTH as a function of model year for identical path-
ways. Black, green, blue and red projections represent the historical, RCP2.6, RCP4.5 and RCP8.5
pathways.

policies implemented. The underlying assumptions of the pathways result in
CO2-emission as shown in Figure 2.2a. RCP2.6 and RCP4.5 show decreasing
projections of CO2-emission during the 21st century, while RCP8.5 leads to an
increased projection that stagnates at the end of the century. For further infor-
mation on the pathways, refer to Section 1.5. These projections are reflected in
the European average temperature, e.g., the RCM HIRHAM5 [43], downscal-
ing the global climate model ICHEC-EC-EARTH [44], from now on denoted as
HIRHAM5-EC-EARTH, shown in Figure 2.2b. Based on the emission scenarios,
3-hourly data on climate variables with a 0.11° x 0.11° spatial resolution have
been fostered on behalf of the EURO-CORDEX project [70, 106]. These data are
used to calculate the time series of wind and solar power generation as well as
climate-corrected electricity demand time series from which the final results are
derived. Figures 2.3b-d exemplify the 2080-2100 model time span average near-
surface temperature over Europe for the future emission scenarios based on the
climate model HIRHAM5-EC-EARTH. Figure 2.3a represents the absolute tem-
perature of the historical period 1986-2006. The most extreme temperature in-
creases reach values of greater than 6 °C.

In the present study, the main source of error originates from the performance
of the GCMs that provide the boundary conditions for the RCMs [107]. It is
also known that biases might occur during the downscaling from GCM to RCM
because of a change in the temporal resolution [108]. Various studies have en-
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Figure 2.3: 20-Year Average Values of the Near-Surface Temperature. The 2 meter surface tem-
perature is based on the latest generation of IPCCs climate projections, RCPs, for the climate
model HIRHAM5-EC-EARTH. Panel a: Average absolute temperature for a historical period
ranging from 1986 to 2006 along with a unique color bar. Panels b-d: Temperature increase at
the end of the century during 2080-2100 according to scenarios b: RCP2.6, c: RCP4.5, and d:
RCP8.5 relative to the historical period, sharing one color bar.

gaged in tracking the evolution of CMIP5 GCMs and their predecessor CMIP3
GCMs by comparison to observed data, satellite data, or reanalysis. In Supple-
mental Information Section 7.1, biases in the wind speed, temperature, global
radiation budget, and cloud cover projections are detailed as these are crucial
for our study.

Although improvements are evident in the prediction of climate variables, there
is still a need for more attention in this field. A detailed description of biases
within the RCMs is omitted as the GCM errors propagate through the downscal-
ing. However, the errors introduced in the downscaling should not be neglected.

In this work, the combined errors from GCMs and RCMs are partially taken
into account by evaluating the results on data from six different combinations of
GCM and RCM models. Relatively small deviations are observed between these
independent datasets, which leads to the conclusion that model-specific biases
are not a major source of error. However, biases that are similar for all model
combinations cannot be excluded.
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2.2 Experimental procedures

This section describes the electricity system modelling approach, data conver-
sion and calibration procedures, and the electricity system key metrics. For a
formal definition of these quantities, see Supplemental Information Section 7.2.

Weather-driven electricity system modelling

Weather-driven electricity system modelling was introduced for the first time in
2010 [109]. It is a type of top-down analysis that is particularly useful for isolat-
ing and understanding the impact of weather dynamics on an electricity system
with a large penetration of variable sources, e.g., wind and solar. In addition to
Europe, this type of modelling approach has previously been applied to model
large-scale electricity systems in the US [110] and China [111]. But unlike most
technology-rich bottom-up models, it is not well suited for determining, for ex-
ample, the fuel mix of conventional dispatchable production units or to include
political aspects of energy system design decisions. Further restrictions of iden-
tifying cost-optimised solutions or planning technology-based taxes, subsidies,
or standards would emerge consequently. However, before addressing these
issues, it is important to quantify how impactful climate change is on the impor-
tant electricity system key metrics since changes in these will also change the
boundary conditions for more detailed design problems. In this way, differences
in key metrics for different future climate scenarios indicate that more than one
end-point solution must be considered when planning the pathway from the
present-day electricity system to a highly renewable system, as studied here.
Similarity between the key metrics, on the other hand, indicates that the end-
point solution is likely to be independent of the climate outcome. In this paper,
a simplified large-scale European electricity system was implemented, of which
the supply side consists solely of wind and solar power generation as well as a
generic dispatchable power source, e.g., dammed hydro power or gas turbines.
The demand side consists of national electricity demand. This type of electricity
system aggregates the country-wise wind and solar power generation profiles
into system-wise profiles. The same applies for the electricity consumption pro-
files. The effect of power transmission was introduced after the development of
the original modelling framework [112, 113].

The effect of climate change enters the modelling via the weather-dependent
wind and solar generation time series as well as the temperature-dependent part
of the electricity demand. State-of-the-art methodology has been used to convert
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raw wind and solar climate data into 3-hourly country-wise wind and solar ca-
pacity factor time series. For the wind capacity factors, an optimised Gaussian
convolution is applied to the original wind power curve in the conversion pro-
cess [36]. This has been shown to compensate well for the limited spatial and
temporal resolution of the climate model data. 44 The solar conversion includes
solar position geometry, calculation of direct, diffuse, and reflected irradiance on
a tilted surface, a model for the photovoltaic panels that include temperature-
dependent efficiency and inverter losses. In this case, an optimised Weibull
curve is used to correct the model output. In both cases, the free model parame-
ters are determined individually for each country and each climate model such
that the relative entropy between the time series and an already bias-corrected
reference, provided by Renewables.ninja [37, 39], is minimised for the historical
period 1986-2006; see Supplemental Information Section 7.2. Hourly country-
wise electricity consumption profiles have been provided by the European Net-
work of Transmission System Operators for Electricity (ENTSO-e) [40]. These
have been corrected for effects of heating and cooling by using the degree-day
method; see Supplemental Information Section 7.2.

In the work presented here, wind and solar generator capacities have been scaled
such that the EU-wide average generation over the historical period matches
the average demand for electricity. This choice has previously been shown to
describe the dynamics of a highly renewable electricity system well [109]. Be-
cause of the state of fluctuating weather events and electricity consumption be-
haviour, the generation and load profiles differ in most time steps. This differ-
ence is referred to as the generation-load mismatch, which is defined formally
in Supplemental Information Section 7.2. For high renewable penetrations, the
generation-load mismatch means that a surplus of the VRE will sometimes be
available. This surplus may be either transported to other locations, used by
new flexible consumption, stored for later use, or simply curtailed. At other
times, VRE generation is lacking, and an ancillary system must balance the dif-
ference between supply and demand, e.g., by a combination of conventional
power plants, dispatchable renewable electricity such as dammed hydropower,
and electricity storage systems. Variations in instantaneous generation-load mis-
match across the continent drive the transmission of renewable surplus to re-
gions with a deficit. Furthermore, the maximum negative values of the mis-
match describe the need for dispatchable power capacity, and variations in the
mismatch describe the need for on-demand flexible reserves.

29



Key metrics

The above considerations give rise to five key metrics that describe a highly
renewable electricity system. These are all described formally in Supplemental
Information Section 7.2 and summarised here. The first key metric is the average
dispatchable electricity. This metric quantifies the amount of energy delivered
by dispatchable generators such as biomass, gas, or coal-fired power plants for
a fixed wind and solar penetration. It is a good indicator of the utility value of
the VREs, i.e., the amount of VRE that can directly cover the demand [114].

Generally, the useful electricity can be increased by means of geographical dis-
persion, e.g., by combining national systems to smooth out variations in both
demand [115] and renewable generation [116]. This effect is measured with
the second metric, which is defined as the absolute difference between balanc-
ing electricity required with and without unlimited transmission in a European
power grid. This metric is called the absolute benefit of transmission, in con-
trast to the relative benefit of transmission [116]. In this paper, the required
transmission capacities are not detailed but note that many other studies find
that it is cost efficient to build enough to harvest most of this benefit [116, 117].
The third key metric provides a measure of the short-term benefit of storage.
This key metric is defined as the absolute difference in the dispatchable electric-
ity calculated with and without a 24-h average of the generation-load mismatch.
This key metric is presented only for an unlimited transmission scenario, but
a limited transmission scenario introduces no considerable differences for this
metric. The reason is that the short-term benefit of storage primarily measures
daily smoothing of the generation-load mismatch, whereas the benefit of trans-
mission measures smoothing on the synoptic scale.

The three first metrics are concerned with the need for dispatchable electricity,
which is closely related to, e.g., CO2-emission, fuel consumption, and VRE cur-
tailment. The fourth and fifth key metrics indicate what is required to stabilise
an electricity system based on VREs and to maintain the security of supply. The
fourth metric is measured by the maximum dispatchable capacity required dur-
ing low VRE and high-demand periods. A number of studies show that VRE
provides only very limited firm capacity [113]. However, firm capacity is not a
good key metric, as it does not capture the correlation between VREs and de-
mand. The fifth and final key metric is the 3-hourly short-term variability of the
balancing time series. This measure was shown to be a good proxy for the need
for on-demand reserve capacity [118]. The variability is largely caused by meso-
scale turbulence patterns that have been shown to describe the spatio-temporal
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characteristics of wind and solar power generation well [119]. This means that
there is a direct relation between the 3-hourly values used here down to time
scales of approximately 10 minutes, where small-scale turbulence changes the
scaling.

The effects of many types of extreme weather conditions are implicitly captured
by the key metrics that are calculated from the 3-hourly generation-load mis-
match. For instance, an extended period of very hot weather in the RCP8.5
scenario would increase the use of dispatchable electricity and capacity as elec-
tricity demand for cooling would increase and the performance of solar panels
would decrease compared to the historical scenario. Likewise, strong storms
would cause wind turbines in areas with wind speeds exceeding, typically, 25
m/s to cut out abruptly, causing an increased short-term variability as well as
increased needs for dispatchable electricity and capacity.
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2.3 Results and discussions

End-of-century climate impacts

Initially, results based only on the climate model HIRHAM5-EC-EARTH are pre-
sented. Toward the end, the robustness of the results are presented by compar-
ing similar findings from all six climate models. However, throughout the anal-
yses all six climate models have been treated identically.

Except for a few cases, the different climate scenarios show a limited impact
on the five key metrics of a highly renewable European electricity system. This
is illustrated in Figure 2.4, where the key metrics are shown as a function of
the wind-solar mix for the end of the century period 2080-2100, where all RCPs
are most developed. A difference between average values for different climate
scenarios is observed and is smaller than the corresponding annual variation
(one sigma) in nearly all cases. In other words, annual variations within a given
climate change scenario are larger than the difference between scenarios. This
indicates that it is more important to incorporate existing inter-annual variation
in long-term electricity system design decisions [120] compared to including the
effect of climate change. Furthermore, a paired t-test reveals that, in most cases,
the null hypothesis of no difference between the historical and the future 20-
year mean values of the key metrics cannot be rejected (95% confidence). To
some extent, this finding is related to the choice of generator capacities relative
to demand because a decrease in demand happens to be balanced by an inde-
pendent decrease in consumption. This is evident from Table 2.1, where it can
be seen that both annual demand and wind and solar generation are decreasing
slightly in the future scenarios. Furthermore, a t-test shows that, at a 95% sig-
nificance level, the annual demand and annual solar capacity factors can both
be considered different for the different climate change scenarios in nearly all
cases. Test results for the wind capacity factors, on the other hand, are incon-
clusive. The magnitude of the effect of climate change on electricity demand is
similar to the impact on the supply side. However, the inter-annual variability
of the demand is smaller by about an order of magnitude, as can be seen in Ta-
ble 2.1. The limited demand-side impact is primarily explained by the relatively
low level of electrified heating and cooling in Europe. Should a larger share of
the heating demand be electrified in the future, as suggested by several studies
[121, 122, 123], then the effect of climate change on the demand side would in-
crease accordingly [86, 124]. All test scores, mentioned above, are listed in the
Supplemental Information Section 7.4.
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Figure 2.4: Key Metrics as a Function of the Wind-Solar Mix for the Historical and End-of-
Century Periods. The historical period covers 1996-2006 (black), and end-of-century period cov-
ers 2080-2100 for the RCP2.6 (green), RCP4.5 (blue), and RCP8.5 (red) pathways. A wind-solar
mix equal to zero represents a solar-only electricity system, and a wind-solar mix of one repre-
sents a wind-only electricity system. The averages of the annual values are indicated with fully
drawn lines, and the corresponding ranges (one sigma) are shown with dashed lines. All key met-
rics are unitless, as described in the Experimental Procedures. Panel a: Dispatchable Electricity, b:
Benefit of Transmission, c: Benefit of Storage, d: Dispatchable Capacity, e: Short-term variability.

The estimates of the difference between the climate change scenarios can also
be compared to the difference between systems with different wind-solar mixes
within a scenario. This comparison reveals to what extent it is more important
to choose the right wind-solar mix independently of RCPs or whether it is most
important to design the electricity system for the right RCP.

For the dispatchable electricity key metric, shown in Figure 2.4a, the largest dif-
ference between climate scenarios are found for a wind-solar mix of 1.0. The
RCP8.5 scenario has an average value of 0.17, while the corresponding number
for the historical period is 0.14, i.e., a difference of 0.03. The minimum dispatch-
able electricity is achieved for a wind-solar mix of about 90%. If the system is de-
signed without storage, minimum surplus variable renewable electricity (VRE)
occurs at the same mix, but if long-term storage is included, the minimum of
surplus moves to a wind-solar mix of about 60% [114]. From Figure 2.4a, a cor-
responding change in the average dispatchable electricity of approximately 0.1
for all climate scenarios is found.
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Table 2.1: 20-year average values of the normalised wind 〈W〉20yr〈W〉20yr〈W〉20yr and solar 〈S〉20yr〈S〉20yr〈S〉20yr power and
electricity consumption 〈L〉20yr〈L〉20yr〈L〉20yr for the European domain. One sigma standard deviations are
shown after each value. All values have been normalised to the corresponding values calculated
for the historical period.

Historical RCP2.6 RCP4.5 RCP8.5
〈W〉20yr 1.00±0.03 0.98±0.02 0.99±0.04 0.96±0.03
〈S〉20yr 1.00±0.01 0.99±0.02 0.98±0.02 0.97±0.03
〈L〉20yr 1.000±0.005 0.995±0.003 0.992±0.005 0.986±0.003

For each of the key metrics, the absolute value at a given wind-solar mix as well
as, e.g., the location of minimum and maximum values, can be compared to the
difference between climate scenarios.

For all climate scenarios, the dispatchable electricity peaks for a solar-dominated
system at slightly more than half the electricity consumption. This is explained
by the day-night pattern in which little dispatchable electricity is needed dur-
ing the daytime and full dispatchable electricity is needed for the nighttime.
On the other hand, the production of wind power during both day- and night
time reduces the need for dispatchable electricity to about 15% of the annual
demand. These findings are in agreement with earlier work based on histori-
cal data [114]. As stated above, the largest difference between climate scenarios
occurs for wind-dominated systems, where the absolute value is also lowest.
In this case, the dispatchable electricity may change by up to 20% as an effect
of climate change. Such a change may have a significant impact on decisions
depending on, e.g., fuel needs and levelised cost of electricity from both dis-
patchable sources and VREs.

The benefits of transmission, Figure 2.4b, and short-term storage, Figure 2.4c, ex-
hibit opposite behaviours in the sense that the former grows with an increasing
wind-solar mix and the latter declines. This is because both are highly depen-
dent on the coupled spatial and temporal correlation lengths of the wind speeds
and solar irradiance [125]. The high correlation lengths of the solar irradiance
due to the systematic variability of the sun’s position in the sky give rise to low
transmission benefits and high short-term storage benefits. Because of the simul-
taneous production of PV power over large areas, minor needs for transmission
are present for a dominant solar share, whereas the day-night cycle allows stor-
age to cycle relatively often [126]. For a large wind share, on the other hand, the
smaller wind-speed correlation length of approximately 600-1,000 km and the
related synoptic time scale of about 1 week lead to increasing transmission ben-
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Figure 2.5: Evolution of the dispatchable electricity as a function of model year for the climate
model HIRHAM5-EC-EARTH. The historical period covers 1996–2006 (black) and the future sce-
narios RCP2.6 (green), RCP4.5 (blue) and RCP8.5 (red) covers the years 2006–2100. The wind-solar
mix is 0.8. The 20 year averages of the annual values are indicated with fully drawn lines, and the
corresponding ranges of the one sigma standard deviation are shown with shaded areas.

efits and lower short-term storage utilisation. In both cases, the largest absolute
difference between climate scenarios occurs where each of the metrics peak. As
a result, the impact of climate change is limited to less than 5% here. This means
that for a large-scale electricity system, major design decisions related to inter-
national transmission and storage are not strongly affected by climate change.
At a finer spatial resolution, some changes in the spatio-temporal correlations
are expected [100, 101].

The short-term variability, Figure 2.4e, shows higher values for low solar shares.
This behaviour is due to stronger intra-day temporal variations in the solar ir-
radiance compared to temporal variations in the wind speeds. This is further
reflected in the dispatchable capacity, Figure 2.4d. In both cases, the maximum
differences between climate scenarios are all limited to less than 3% of the cor-
responding absolute value. The dispatchable capacity describes the maximum
power required to offset calms in weather-based generation, and the short-term
variability is a proxy for the reserves required on standby to compensate intra-
day weather variations. Climate change is often said to result in more erratic
weather [127], but the key metrics show that for large-scale electricity networks,
the size for both long-term and short-term reserves remains largely unchanged.
This is likely due to the fact that extreme situations also occur in the 20-year
historical period, albeit not as often.
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Climate impacts during the century

A number of studies focus on the end of the century period alone. However, the
evolution of the key metrics throughout the century was also explored. In the
following, the focus will be on dispatchable electricity for a wind-solar mix of
0.8, shown in Figure 2.5. Similar results can be found for the other key metrics
in the Supplemental Information Section 7.4. For this case, a gradual transi-
tion from the historical reference period toward the end of the century was not
found. Instead, the trajectories of the RCPs change over time such that, e.g., the
20-year average values of each RCP cross the other trajectories multiple times.
This means that the general conclusions about the relative importance of climate
change on the electricity system, drawn above for the end of the century period,
also hold for the transition, and it is not possible to regard specific numerical
differences between RCPs as the product of a gradual evolution toward a stable
climatic endpoint. Rather, the 20-year averages are not stable to an extent where
they can be regarded as different between RCPs. A longer time window could
be used instead. However, since the climate is changing over the course of the
century, see Figure 2.2, long periods do not represent a stable climatic situation.

Ensemble of climate models

Above, results based on the HIRHAM5-EC-EARTH climate model were dis-
cussed. Now, the five other combinations of regional and global climate models
included in the study are studied in order to establish to what extent the results
are in agreement across the models. In general, identical numerical results for
all models were not found despite the fact that all time series have been bias
adjusted on the same historical period against the same reference. However, the
overall findings remain, independently of the models. Figure 2.6 shows a com-
parison of the five electricity system key metrics for the different models in the
historical period as well as in the end-of-century period for the RCPs. In most
cases, the 20-year average values fall between the first and the third quartile of
the annual variation, which means that the difference between individual RCMs
is smaller than the annual difference within a given RCM. For the variability, this
is not the case. The main reason for this is that the wind and solar time series
are bias adjusted such that the distribution of instantaneous values matches the
reference. However, the variability depends on the correlation between consec-
utive hours. This difference is not directly subject to correction, which means
that models are likely to behave more differently on this parameter. Identical
key metrics are also shown for the reanalysis Renewables.ninja [37, 39] time se-

36



Dispatchable 
 electricity

Benefit of 
 transmission

Benefit of 
 storage

Dispatchable 
 energy capacity

Variability
0.6

0.8

1.0

1.2

1.4

R
e
la

ti
v
e
 d

e
v
ia

ti
o
n

HIRHAM5-EC-EARTH

RCA4-EC-EARTH

RCA4-HadGEM2-ES

RACMO22E-EC-EARTH

RACMO22E-HadGEM2-ES

CCL4-MPI-ESM-LR

Renewables.ninja

Figure 2.6: Key metrics for six regional climate models from the EURO-CORDEX project. These
are compared for the historical period 1986-2006 (black) and end of the century 2080-2100 for the
RCP2.6 (green), RCP4.5 (blue) and RCP8.5 (red) scenarios. Annual values for the HIRHAM5-
EC-EARTH model are indicated as box plots. The 5% and 95% quantiles of each key metric are
marked by "x". For the remaining models, only the median values of the annual means are shown.
The red star shows the key metrics for the Renewables.ninja reanalysis time series. All key metrics
are normalised to the median of the respective metric in the historical period of the HIRHAM5-
EC-EARTH model.

ries as a red star. Here, conclusion similar to that of the climate models was
observed. This reflects the adequacy of bias-corrected climate data in terms of
use for power system analysis.
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2.4 Conclusion

The different climate change scenarios show a modest impact on the key met-
rics that are representing the gross properties of a highly renewable European
electricity system. On the supply side, both wind and solar power generation
are affected in a way that generally reduces performance slightly as their aver-
age electricity output decreases and their variability increases with an increas-
ing effect of climate change. Consequently, the most extreme impacts of climate
change are observed within fully wind-dominated electricity systems. In this
regime, the dispatchable electricity changes up to 20% of the historical values.
Changes in the benefit of transmission and benefit of storage stay below 5% of
historical values. Changes in the short-term variability stay below 3%.

An important consequence of these findings is that for most of the key metrics
that are studied in this work, it is not required to take into account the effect
of climate change on the VREs wind and solar when designing gross properties
of future highly renewable electricity systems. However, other properties, e.g.,
siting of renewable generators and selection of conventional generators, are not
studied in this work, and the impact of climate change remains inconclusive.
The need for dispatchable electricity is influenced by climate change, in some
cases, depending on the VRE composition in the electricity system.

In designing a future highly renewable electricity system that is robust against
climate change, it is most important to focus on reaching a mixture of wind and
solar power generation that minimises the need for dispatchable electricity as
the effect of climate change simulated by typical GCMs has a modest impact on
the gross design properties of future highly renewable electricity systems. This
suggests that, to first order, the gross character of highly renewable power sys-
tem design solutions is not strongly affected by differences in climate produced
by the current generation of GCMs under different IPCC RCP scenarios. Further
investigations, however, are required to understand the quality of GCM repre-
sentation of climate change in key meteorological properties and their impact
on power system design in more sophisticated modelling frameworks.

This modelling approach is easily adaptable to model large-scale features of
highly renewable electricity systems in other parts of the world. Should a stronger
sector coupling, in particular between the heating, cooling, and electricity sec-
tors, become a reality, the demand-side impact of climate change would increase
beyond what has been discussed in this study.
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This study was published by using six independent climate models, but three
more models were added to the ensemble at a later stage and the study was
re-evaluated. Equivalent to Figure 5 in the main article, I present a new figure,
Figure 2.7, which shows equivalent results, but now with nine climate models.
This lead to an identical conclusion as for the main article and therefore strength-
ening the initial results.
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Figure 2.7: Impact of climate change on key metrics that describe a highly renewable electricity
system. This figure is an expansion of Figure 5 in the main article by adding three more climate
models. "The key metrics are compared for the historical period 1986-2006 (black) and end-of-
century 2080-2100 for the RCP2.6 (green), RCP4.5 (blue), and RCP8.5 (red) scenarios. Annual
values for the HIRHAM5-EC-EARTH model are indicated as boxplots. The 5% and 95% quantiles
of each key metric are marked with an ’x’. For the remaining models, only the median values
of the annual means are shown. The red star shows the key metrics for the Renewables.ninja
reanalysis time series. All key metrics are normalised to the median of the respective metric in
the historical period of the HIRHAM5-EC-EARTH model" [Verbatim from the caption of Figure 5
in the main article]. This figure was presented at the 5th international conference on smart energy
systems.
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Highlights

• National heat demand must be modelled since granular data are not widely
available.

• This can be modelled with heating degree-days, but comfort temperatures
must be known.

• Heating threshold temperatures range from 10-19 °C among the European
countries.

• The results corresponds well to existing studies and national laws for nine
countries.

• The methodology proves to be robust against daily, weekly or monthly
data.

Summary

Space heating in buildings is becoming a key element of sector-coupled energy
system research. Data availability limits efforts to model the buildings sector,
because heat consumption is not directly metered in most countries. Space heat-
ing is often related to weather through the proxy of heating degree-days using a
specific heating threshold temperature, but methods vary between studies. This
study estimates country-specific heating threshold temperatures using widely
and publicly available consumption and weather data. This allows for national
climate and culture-specific human behaviour to be captured in energy systems
modelling. National electricity and gas consumption data are related to degree-
days through linear models, and Akaikes Information Criteria is used to define
the summer season in each country, when space heating is not required. It is
found that the heating threshold temperatures computed using daily, weekly
and monthly aggregated consumption data are statistically indifferent. In gen-
eral, threshold temperatures for gas heating centre around 15.0 ± 1.7 °C (daily
averaged temperature), while heating by electricity averages to 13.4 ± 2.4 °C. No
evidence of space heating during June, July and August is found, even if heating
degree-days are present.
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3.1 Introduction

Two thirds of the energy consumed in north European homes is for space heat-
ing, compared to just around a third in the US and China [128, 129, 130]. In 2015,
the European heating sector accounted for more than 50% of the final energy
demand of 6110 TWh/year [41]. Together, the production of electricity and heat
accounted for approximately 30% of total CO2-emission, with heat production
accounting for more than half of this share [131]. Decarbonising the energy sec-
tor and space heating in particular, is therefore central in limiting global warm-
ing. Former studies have shown that the combined impact of climate change on
weather-dependent electricity generation and demand is negligible [132, 133]. It
is further shown that most key properties of large-scale renewable-based elec-
tricity system are robust against climate change [132]. The electricity sector is
therefore already being decarbonised, most efficiently by increasing the share of
renewables. However, heat does not have the same rate of technology innova-
tion, clean options are not reducing rapidly in cost [29, 134], and so progress is
very slow [30]. Natural gas, fuel oil and coal-fired boilers are the main source
of heat production for the majority of European countries [135], and relatively
few countries (primarily the Nordic countries) have a significant share of lower-
carbon options.

The decentralised nature of heating means that data on consumption are not
readily available. Unlike electricity, heat does not need to be monitored at high
time-resolution to maintain system stability, and the prohibitive cost of heat me-
ters means they are not becoming widespread, as are electric smart meters. This
lack of data is a key gap for energy systems modellers, as the difficulty of de-
carbonising heat, and possible synergies between flexible heating load and in-
termittent renewable generation rise up the research agenda [136].

This research seeks to support future studies on energy system research and cli-
mate change mitigation by proposing a new framework for improving the accu-
racy and ease with which country-wise energy consumption for space heating
can be estimated based on underlying weather data. The focus lays on space
heat demand (as opposed to water heating and cooking), as space heating is the
majority of final energy demand, and is the one, which depends on external con-
ditions such as weather. The theory of heating degree-days is frequently used
in the literature as a best proxy for estimating the space heating requirements
[111, 137, 138]. Such an analysis can be empirically rigorous, relying on historic
temperature data. However, it also relies critically on the threshold temperature
below which heating is required, and this is often based on generic approxima-
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Figure 3.1: Fuel shares of the final energy demand for the countries included in this study. The
plot is based on data compiled from [31, 141, 142]. Switzerland (CHE), Bosnia & Herzegovina
(BIH) and Serbia (SRB) are excluded due to missing data. Countries are referred to by their three-
letter ISO codes.

tions, which appear to have no empirical basis [139, 140]. This threshold will
influence the temporal distribution of the heating degree-days.

Through careful investigation of the temporal characteristics of space heat de-
mand and their correlation to weather data, this result allows for a new under-
standing of the energy demand for space heating. Therefore, the novelty of this
research is to present a new state-of-the-art method that is based on the com-
bined effect of using gas and electricity demand profiles along with weather
based data for estimating the country-wise unique heating threshold temper-
atures along with determining the heating seasons. Alongside the newly pro-
posed method, new country-wise heating threshold temperatures and heating
seasons for a majority of the European countries were calculated and presented.
These results are, to the best of our knowledge, the first to be derived empiri-
cally from historic data, giving a methodology that can be replicated globally.
The threshold temperatures are then used to allocate the temporal distribution
of the heating degree-days. For the purpose of this study, only the major fuel
source used by a country is necessary, which is either gas or electricity with a
few exceptions, as seen in Figure 3.1. In this work, a region is defined to be a
country of Europe, but the method is designed to work for regions of arbitrary
size as, e.g., cities. Other heating sources as, e.g., oil, coal or biomass, or direct
heat consumption are as well straight forward applicable to this method. The
method can also be used to calculate the cooling threshold temperatures for re-
gions of interest.
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In the literature, studies most commonly assume an identical threshold temper-
ature when estimating the heat demand for multiple countries. Heat Roadmap
Europe [41] adapts results from Eurostat [139], where the heating threshold tem-
perature is defined as 15 °C. Stratego on the other hand uses 16 °C for five EU
countries [143]. Odyssee uses 18 °C [144]. IEA uses 65 °F = 18.3333 °C [140].
Stratego defines, furthermore, heating seasons differently for the five nations
while Odyssee defines a common heating season from October to April for all
nations.

A considerable amount of literature has been published on estimating the en-
ergy consumption for space heating, using a diverse range of methods. Among
these, a machine learning technique have been used for time ahead energy de-
mand prediction for building heating systems [145]. A novel approach for which
RGB video cameras are used as sensors for measuring personalised thermo-
regulation states, which can be used as indicators of thermal comfort [146]. A
hidden Markov model (HMM) based learning method along with infrared ther-
mography of the human face have been used in an attempt to capture personal
thermal comfort [147]. A D-vine copula method have been used to capture the
building heating needs with historical data on German household heating con-
sumption and the respective building parameters [148]. A Modelica library was
introduced in an attempt to build a control system of building energy systems
[149]. Principal component and cluster analysis have also been used to create an
energy classification tool in an attempt to assess the energy savings in different
buildings [150]. Several studies have also explored the use of weather-based
data for estimating heat or gas demand profiles, which is a well-recognised
practice dating back several decades [151, 152]. It has been applied to multiple
case studies for gas demand estimation [153, 154] or for heat demand estimation
[137].

Two primary data sources are adapted to make this study possible: 1. tempera-
ture profiles from a global reanalysis weather model, and 2. data on the national
gross consumption of electricity and gas for each country. The choice of data is
first of all reflected by the amount of gas and electricity, 43% and 12%, respec-
tively, of the final energy demand that is used for heating purposes for the EU
[41]. Secondly, the availability of granular data on the consumption makes this
study possible. Few of the European countries cover the majority of their heat
demand by other fuels such as coal or oil products, as shown in Figure 3.1. For
these fuels, granular data is not available. Further restrictions are introduced by
the gas consumption profiles, as these are only available for all countries with a
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monthly resolution and not separated into heating and non-heating sub sectors.
Therefore, as a best proxy for the gas consumed in space heating processes the
difference in the total gas consumption and gas consumed for electricity genera-
tion is explored. Gas consumed for power generation is significant, because gas
prices vary from summer to winter relative to coal, and electricity demand in-
creases in winter. Process heating is to a high degree weather independent and
thereby not significant for the approximation. Hot water demand and cooking
are as well weather independent and so insignificant for this study. Electricity
consumption profiles, on the other hand, are typically available with hourly res-
olution at country level.

Initially, the methods section is presented. Here, the theory of degree-days is in-
troduced followed by a model for space heating along with a method to estimate
the national-wise heating threshold temperatures. Next, the Akaike’s Informa-
tion Criteria is presented and used to determine the summer season for each
nation. Finally, a procedure is presented for the bias adjustment of the temper-
ature data. This section is followed by a description of the energy data that is
used in this work. Towards the end, the results and discussions section is pre-
sented. The paper ends with the conclusions and the bibliography. Additional
information is available in the Supplemental Information Section 8.
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3.2 Experimental procedures

The degree-day method

The demand for space heating can be related to the outside air temperatures by
means of the heating degree-day method [155, 156], as explained in the follow-
ing text.

Figure 3.2: Daily averaged temperatures for Greece and Norway in 2016. The yellow filled area
represents the amount of heating degree-days for a heating threshold temperature of 10°C.

Heating degree-days, HDD, are calculated as the integral of the positive differ-
ence between a threshold temperature, T0, and the daily average outside tem-
perature, T, as illustrated in Figure 3.2 for Norway and Greece. It is clear that
Norway exhibits more heating degree-days due to its high latitudes, where tem-
peratures are lower during the year. Greece, on the other hand, has longer sum-
mer periods with no heating degree-days.

The accumulated heating degree-days, HDD∆,x, over a time period, ∆, (e.g. a
single day, a week or a month) and for a grid location, x, are related to the thresh-
old temperature as:

HDD∆,x =
∫
∆

(T0,x −Tx(t))+ dt

It is assumed that a single threshold temperature, T0,x, is used for all grid lo-
cations in the set of grid locations, X , within a country. The choice of T0,X is
not unique and can be chosen according to the region or study [156]. Tx(t) de-
notes the time dependent bias adjusted temperature profile at grid location, x.
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The procedure for the bias adjustment is detailed in Section 3.2. (T0,x −Tx(t))+ is
defined positive or zero as:

(T0,x −Tx(t))+ =
{

T0,x −Tx(t) if T0,x > Tx(t)
0 if T0,x ≤ Tx(t)

It is assumed that all individuals have an identical desire for space heating,
and so the heat demand is proportional to the population density. The national
population-weighted heating degree-days, HDD∆,X , are then calculated as:

HDD∆, X = 1
pX

∑
x∈X

px ·HDD∆, x

where px and pX denote the gridded and total population of a country, respec-
tively.

Space heat modelling

The total heat demand, Lheat, is the sum of the demand for space heating, Lspace heat,
and hot water use, Lhot water:

Lheat = Lspace heat +Lhot water

Hot water consumption is generally constant throughout the year [157], and
so assumed to be independent of the ambient temperature. Therefore, it is not
treated further in this paper. Lspace heat, on the other hand, is assumed to be
linearly dependent on the heating degree-days. In the literature, the energy de-
mand for space heating is generally considered to be proportional to the heating
degree-days [111, 138]. For a country and a time period, it takes the form:

Lspace heat
∆, X = pX ·Lspace heat

0,X ·HDD∆, X ·ΘX (3.1)

where, Lspace heat
0,X is a constant equal to the average space heating demand per

capita per degree-day in a country X . ΘX ∈ [0,1] is a binary indicator function
that defines the heating season. ΘX = 1 represents winter months where space
heating is required. Summer months are represented as ΘX = 0, for which space
heating is not required.
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In the following section a method is presented that can be used to determine
the country-specific heating threshold temperature, T0,X , and a method to de-
termine the country-specific heating season, ΘX .

Threshold temperatures for space heating

Ideally, the heating threshold temperature should be determined by comparing
the heating degree-days directly to a corresponding time series of the heat de-
mand. Since heat demand data is not widely available, except for cities with
well monitored district heating networks [158], the following analysis is based
on country aggregated gas consumption data, Lgas

X , or electricity consumption
data, Lel

X . This method can also be applied to actual heat demand data. Data on
gas and electricity consumption is available for all European countries, as de-
scribed in Section 3.2, as well as many other countries. An example of gas and
electricity consumption along with monthly aggregated heating degree-days for
France is shown in Figure 3.3.

Gas and electricity are typically converted using boilers, resistance heaters or
heat pumps, which operate with comparable efficiency over the year (given that
most heat pumps in Europe are ground source rather than air source) [29]. Refer-
ring to Equation 3.1, this motivates the following model for the gas or electricity
consumption as a function of heating degree-days:

ŷX ,∆(t;T0,X )=β0,X ·HDDX ,∆(t;T0,X )+β1,X (3.2)

where ŷX ,∆(t;T0,X ) is the modelled consumption for gas or electricity, summed
over a period, ∆, and evaluated at time, t. β0,X and β1,X are model parameters
that are assumed to be independent of both time and temperature. β1,X defines
the consumption of gas or electricity that cover all domestic energy demand
apart from space heating. β0,X defines the consumption of gas and electricity
that is used for space heating alone in units of Watt-hours (Wh) per heating
degree-day. This parameter is dependent on the culture-specific requirements
for thermal comfort and on the thermal insulation of buildings. It can therefore
be viewed as a thermal performance factor of the building envelope. Finally,
only HDDX ,∆ is assumed to depend on T0. Note that this relation only applies
in the case of ΘX = 1 (winter months).

The model parameters, β0,X and β1,X , as well as the best choice of T0,X for a
country are determined by minimising the root mean square of the errors be-
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Figure 3.3: Gas and electricity consumption and heating degree-days. Monthly aggregated gas
consumption (orange), electricity consumption (blue) and heating degree-days (black) for France
during 2010–2017. The heating degree-days are calculated by using a space heating threshold
temperature of 15 °C.

tween the modelled consumption, ŷX ,∆, of gas or electricity and the correspond-
ing measured consumption, yX ,∆ as:

min
T0,X ,β0,X ,β1,X

RMSE =
√

1
n

∑
t

(
ŷX ,∆(t;T0,X )− yX ,∆(t)

)2

s.t. 5≤ T0,X ≤ 25

where n is the sample size. In the following analysis, independent values for
T0,X are calculated for each year of data, and then a median is taken to calculate
a single value along with the 25th to 75th percentile significance range. The opti-
mal values of β0,X and β1,X relate to the energy mix and population of a country.
These are not discussed further in this study.

Heating seasons

During summer months when space heating is turned off, both the gas and elec-
tricity demand is assumed to be independent of the heating degree-days. A
constant summer demand for a country, β1,X , is then the simplest model that
describes this relationship. Thus, Equation 3.2 is extended in the following way:
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Winter model:
ŷX ,∆(t;T0,X )=β0,X ·HDDX ,∆(t;T0,X )+β1,X

Summer model:
ŷX ,∆(t)=β1,X

To make a self-consistent determination of the model parameters, an initial guess
is undertaken in which the three warmest months: June, July and August are
used to determine the single free parameter, β1,X , of the summer model and
November-March the resulting winter model free parameters, T0,X and β0,X .
Then, all months are classified by using the newly acquired heating threshold
temperature, T0,X , and Akaike’s Information Criterion (AIC), as described be-
low. The model parameters are then recalculated by using the new classification
for the winter and summer months. This process may be repeated until model
parameters and classification reach convergence, which usually happened after
a single repetition.

The Akaike’s Information Criterion, AIC [159] is a well-recognised procedure
for model selection, which takes both descriptive accuracy and parsimony into
account. The objective of the AIC model selection is to quantify the information
lost when the probability distribution associated with a model is used to repre-
sent the probability distribution of the data. The classification is then performed
by choosing the model with the lowest expected information loss, and, thus, the
lowest AIC value [159]. The AIC for a model m is defined as:

AICm,X =−2log(Lmax
m,X )+2Fm + 2Fm (Fm +1)

n−Fm −1
(3.3)

Lmax
m,X represents the maximum likelihood value for a model and country, while

Fm represents the degrees of freedom for a model. nm represents the amount of
data points for a model. Lm,X is shown in Equation 3.4. σ2

m,X can be estimated
by its maximum likelihood estimator σ̂2

m,X . A maximisation of Lm,X rewards
accuracy, leading to lower AIC values while more free parameters penalises the
lack of parsimony and leads to higher AIC values. The third term in Equation
3.3 is a modification [160], which is recommended if nm

Fm
< 40 [161].

Lm,X =
(
2πσ2

m,X

)− n
2 exp

−
1

2σ2
m,X

∑
t
(
ŷm,X ,∆(t)−yX ,∆(t)

)2

(3.4)
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Table 3.1: AIC scores for the summer and winter model classifications for heating by gas in
Hungary. Each score is followed by the associated weight of evidence in parentheses.

HUN Jan Feb Mar Apr May Jun
Winter: 52.04 (1.0) 47.82 (1.0) 45.35 (1.0) 41.89 (1.0) 36.08 (0.43) 34.21 (0.02)
Summer: 82.58 (0.0) 78.39 (0.0) 72.53 (0.0) 56.54 (0.0) 35.54 (0.57) 26.72 (0.98)

Jul Aug Sep Oct Nov Dec
Winter: 34.37 (0.02) 31.45 (0.01) 39.36 (0.06) 41.18 (1.0) 43.08 (1.0) 47.08 (1.0)
Summer: 26.64 (0.98) 22.90 (0.99) 33.97 (0.94) 62.14 (0.0) 71.46 (0.0) 79.47 (0.0)

It is also important to address the weight of evidence of choosing the model with
the lowest AIC. The Akaike weight of evidence, wm,X (AIC), [161] is defined as:

wm,X
(
AICm,X

)= exp− 1
2∆m,X AIC∑M

m=1 exp− 1
2∆m,X AIC

where
∑

m,X wm,X
(
AICm,X

) = 1. ∆m,X AIC = AICm,X −min
(
AICM,X

)
and M de-

notes the ensemble of possible models.

In general, a preferred model is accepted if the ratio of the weights of evidence
exceeds 2 [162], alternatively, an ensemble average of models is recommended.
In this work, the AICs are respected regardless of the evidence ratio but in cases
of a low evidence ratio, extra attention is paid to the classification. These issues
arise mostly in spring and autumn, where the outdoor temperatures vary sig-
nificantly.

Figure 3.4 exemplifies the method, described above, for the case of using gas for
heating in Hungary. Test data belonging to each month (shown with black) is
classified into either of the two classes. January to April are classified as winter
months with high weights of evidence, as seen in Table 3.1. May is classified as
a summer month, but with a very weak weight of evidence and the model selec-
tion is indecisive. June to September are classified as summer months. October
to December are classified as winter months with strong weights of evidence.
The classification of September shows the importance of a summer model. For
this month the national gas consumption show no significant relation to the
heating degree-days and so gas is not used for heating purposes.
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Figure 3.4: Monthly gas consumption as a function of monthly aggregated heating degree-days for Hungary.
Winter (blue) and summer (red) classes with monthly data (black) to be classified for Hungary. The data spans
the years from 2009 to 2018. The winter class is trained by the blue coloured data while the summer class is
trained by the red coloured data.
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Bias adjustment of temperature profiles

This section presents a simple method that can be used to bias adjust any tem-
perature data. In this study, a best representation of real temperature data is
important for a correct estimation of the heating degree-days.

The reanalysis air temperature data comes from the Climate Forecast System
Reanalysis (CFSR) data set, which is supplied by the National Center for Atmo-
spheric Research (NCAR) [163]. This data covers the entire globe from 1979 to
present and is updated on a monthly basis. The spatial and temporal resolution
covers Europe with 0.312° and 1 hour, respectively. The main advantage of us-
ing global reanalysis data is a high availability in all locations, consistency across
many decades, and preservation of correlations between different weather fields
relevant for energy system analysis, e.g. temperature, wind, solar and precipita-
tion data.

Temperature data based on direct measurements comes from the European Cli-
mate Assessment (ECAD) who as well provides an interpolation in space [164].
The data set covers Europe for the period 1950–2017 with a spatial and temporal
resolution of 0.5° and 1 day, respectively. The data covers various time periods
depending on the mast operation span. In a simple bias correction procedure,
the CFSR reanalysis temperature data was compared to the ECAD air temper-
ature measurements in all grid locations, x, and with a daily resolution. ECAD
air temperature measurements were interpolated in space by the "nearest neigh-
bour" method to meet the resolution of CFSR.

In a linear regression, as in Equation 3.5, the ECAD temperature data set acts as a
predictor variable while the CFSR temperature data set acts as the response vari-
able. The least square estimators α0 and α1 denote, as usual, the gradient and
offset, respectively. The system of linear equations is solved for every grid cell,
x, contained within the set of grid cells X . The bias adjusted CFSR temperature
profiles are finally calculated as:

Tad j
x (t)= 1

α0,x
Tx(t)− α1,x

α0,x
(3.5)

where t ∈ [0;1826] denotes the day number in the period from 01/01/2011 to
31/12/2015. The corrections are summarised in Figure 3.5. In general, the cor-
rections are relatively small, and the most extreme bias correction parameters
are observed in sparsely populated mountainous regions as, e.g. the Alps, Sierra
Nevada, Sierra Blanca and the West chain of the Norwegian mountains.
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Figure 3.5: Upper plot: Spatial distribution of the uncorrected average temperatures from 2005-
2010. Lower plot: Spatial distribution of the average temperature correction.

Energy data

Acquisition of energy consumption data varies significantly between energy sec-
tors and countries, and nationwide data on energy use with high granularity are
generally not available. This data gap introduces a serious weakness for energy
system research. In the following detailed information is provided on the data
that is used in this study.

Electricity consumption data

National electricity consumption profiles with hourly resolution were acquired
from the European Network of Transmission System Operators for Electricity,
(ENTSO-E). The data covers the period 2006-17 [40] (See also Figures 8.1 and
8.2 from the Supplemental Information). Data from 2009 and earlier is limited
to the member TSOs of the Continental Europe region. Data from 2010 and on
includes all ENTSO-E members. National data for the UK [28], France [165] and
Denmark [166] were obtained separately to correct for gaps and inconsistencies
in the ENTSO-E data.
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Gas consumption data

Data on electricity production from gas is available through the ENTSO-E trans-
parency platform with daily resolution [40]. From this, the amount of gas that
was used to produce electricity is estimated with a conversion efficiency of 51.5%.
Total national gas consumption with monthly resolution is available through
Eurostat from 2008 to 2018 [167] (See also Figures 8.3 and 8.4 from the Supple-
mental Information). This covers all end-uses, including consumption by the
gas sector it self, but excludes export. End use consumption includes the res-
idential, service, industrial and agriculture sectors. Data on gas entering and
exiting a country is metered by the national gas TSOs with a daily resolution
and made available through the ENTSO-G transparency platform from earliest
September 2013 [168]. National gas consumption with daily resolution is then
estimated for a few countries by the difference in the amount entering and ex-
isting gas combined with gas storage data from AGSI [169]. The UK national
gas consumption excluding the share of gas used in electricity production was
provided by the UK TNO. Danish total gas consumption was provided by En-
erginet [168].
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3.3 Results and discussions

Initially, results from a first analysis is presented where the iterative procedure
(described in Section 3.2) has been used to estimate the threshold temperatures
and the corresponding heating seasons for all countries. For this, exclusively
monthly aggregated gas and electricity consumption data were used. In both
cases, the iteration converged after the first cycle. Next, the resulting classifi-
cation is adopted and used to recalculate the threshold temperatures by using
weekly and daily gas and electricity consumption data. This allows for an as-
sessment of the influence of data granularity.

Heating threshold temperatures

Figures 3.6 and 3.7 show the median score of the yearly threshold temperatures
which were computed by using daily, weekly and monthly aggregated gas and
electricity consumption data, respectively. Nine yearly values of the threshold
temperature allows for a determination of the corresponding [q25%, q75%] un-
certainty ranges for the monthly Eurostat gas consumption data and ENTSO-E
electricity consumption data. In the following, the focus is on results computed
by using monthly aggregated consumption data.

From Figure 3.6 it is clear that the estimated threshold temperatures by using
Eurostat (black) and ENTSO-G (red) gas consumption data are not significantly
different within the Eurostat uncertainty range. Threshold temperatures for
Norway and Portugal are not shown as by classification no space heat demand
is covered by gas. For Norway, this is in agreement with radical changes in
the Norwegian energy system with a ban of using gas for domestic heating by
2020. Results for Spain, Greece, Lithuania and Romania appear with substan-
tial 25th to 75th percentile uncertainties. These are not unexpected as for these
countries, gas covers a minor share of the final energy demand (Figure 3.1) and,
consequently, no penetrative relation might be developed to the weather. There
are, however, other possible explanations as, e.g., data quality or quantity. In the
case of heating by electricity, a majority of the countries show unstable threshold
temperatures along with extensive 25th to 75th percentile range. As for heating
by gas, these results could have impacts from several sources. A few countries as
Finland, France, Norway and Sweden show valid results with small error scores.

Heating threshold temperatures that are based on monthly consumption data
have been summarised in Table 3.2. Results are not presented where a fuel type
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covers less than 15% of the final heating demand, as below this, the relationship
between fuel consumption and heating degree-days (Equation 3.2) lost statisti-
cal significance. Because of missing gas demand data for Bosnia & Herzegov-
ina and Serbia the heating threshold temperatures for heating by gas cannot be
estimated. Moreover, the missing fuel shares for these countries (as shown in
Figure 3.1) makes the presence of the heating threshold temperatures for heat-
ing by electricity in Table 3.2 indecisive. However, for the sake of complete-
ness of Table 3.2 , it is chosen to present these as special cases. A few countries
hold a heating threshold temperature for both fuel types. It is clear that thresh-
old temperatures for heating by electricity are smaller in comparison to heating
by gas. It is difficult to explain this result, but it might be related to that elec-
tricity is a more expensive source of heating in countries for which gas is the
predominantly heating source. Therefore, electricity could be used as a supple-
mentary for gas during extreme temperature drops. In general, the ensemble
of country-wise threshold temperatures for heating by gas average to 15.0±1.7
°C (1 sigma standard deviation). The electricity values average 13.4±2.4 °C. A
graphical overview of the country-wise heating threshold temperatures for heat-
ing by gas and electricity is provided in Figure 3.8.

The need for space heating is determined by the difference between ambient
air temperature and the desired indoor temperature, and how well the build-
ing is insulated. The latter can be measured by the building U-value [170, 171],
which is a thermal transmittance coefficient that measures the rate of heat trans-
fer through the building’s fabric in units of W/m2K. From the EC buildings
database for U-values [172], it is clear that the Nordic countries, with a few
exceptions, hold the lowest building U-values compared to the rest of the Eu-
ropean countries. This suggests that the national building standards could ex-
plain the lower heating threshold temperatures for the Nordic countries as well-
insulated buildings can maintain a comfortable temperature from passive and
solar gains at lower outdoor temperatures. The human relationship between
temperature and comfort may also explain some of the differences. For exam-
ple, personal comfort desires or personal incomes hold an important role in this
relationship. In general, it is difficult to assign any specific explanation for the
variance in the national threshold temperatures and there might, however, be
other possible explanations. In conclusion, the need for space heat is controlled
by the indoor temperatures, which in turn is dependent on the indoor and out-
door environments of the building.
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Figure 3.6: Median of the yearly heating threshold temperatures calculated by using Euro-
stat gas demand data with monthly resolution (black) and ENTSO-G gas demand data with
monthly (red), weekly (blue) and daily (green) resolutions. Threshold temperatures for Den-
mark and UK were recalculated by using data from national sources, as explained in Section 3.2.
[q25%, q75%] uncertainty ranges are provided for the monthly Eurostat gas consumption data.
Switzerland, Serbia and Bosnia & Herzegovina are not shown due to missing data. Norway and
Portugal are not shown as heating by gas is classified as non-existing for these countries.

Figure 3.7: Median of the yearly heating threshold temperatures by using ENTSO-E electricity
consumption data with daily (black), weekly (blue) and monthly (red) resolutions. [q25%, q75%]
uncertainty ranges are provided for the case of all data resolutions. Countries of which the final
heat demand is covered by less than 15% by electricity are shown with faint colors. Results for all
countries apart from Denmark, France and UK were obtained by using electricity consumption
data provided by ENTSO-E. Results for France, Denmark and UK were obtained by using data
from national sources, as explained in Section 3.2. Italy is not shown as heating by electricity is
classified as non-existing.
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Table 3.2: Heating threshold temperatures for heating by gas and electricity with 25th to 75th
percentile uncertainty ranges. The results are based on monthly consumption data. n.a denotes
either a fuel type share that is below 15% and the results cannot be trusted, or missing consump-
tion data and the results cannot be obtained.

Electricity Gas - Eurostat

Country T0 [q25%, q75%] °C T0 [q25%, q75%] °C

AUT n.a. 14.59 [14.08,15.41]

BEL n.a. 15.20 [14.59,16.02]

BGR 12.76 [11.53,14.08] 16.02 [15.31,18.06]

CZE n.a. 14.80 [14.80,15.10]

CHE 16.84 [15.61,17.65] n.a.

DEU n.a. 13.98 [13.67,14.80]

DNK n.a. 15.20 [14.69,15.71]

EST n.a. 11.12 [10.71,13.47]

ESP 9.69 [5.00,13.27] 18.47 [17.35,21.94]

FIN 13.16 [11.53,14.18] n.a.

FRA 13.98 [13.47,14.39] 15.61 [15.20,16.02]

GBR n.a. 14.18 [13.37,15.10]

GRC n.a. 16.84 [13.57,19.59]

HRV n.a. 18.67 [17.76,20.20]

HUN n.a. 16.84 [16.53,17.24]

IRL n.a. 12.76 [10.51,14.18]

ITA n.a. 15.61 [15.20,16.02]

LTU n.a. 15.20 [11.53,17.65]

LVA n.a. 12.96 [12.04,13.98]

NLD n.a. 13.98 [12.55,15.51]

NOR 11.53 [10.71,12.45] n.a.

POL n.a. 15.2 [14.49,16.33]

PRT 11.94 [10.20,15.20] n.a.

ROU n.a. 15.41 [13.78,18.88]

SWE 13.16 [12.76,14.08] n.a.

SVN n.a. 15.41 [14.80,16.02]

SVK n.a. 14.18 [13.06,15.92]

BIH 12.76 [10.71,13.67] n.a.

SRB 17.65 [16.84,17.86] n.a.
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Figure 3.8: Estimated heating threshold temperatures for heating by gas and electricity. Left
figure: Estimated heating threshold temperatures by using gas consumption data. Right figure:
Estimated heating threshold temperatures by using electricity consumption data. Hatched areas
indicate either missing data and no results can be computed or a poor relation between energy
consumption and outside ambient temperature.

Non-heating summer seasons

Table 3.3 presents a 10 year average (2008-2017) of monthly aggregated heating
degree-days for each country. Enveloped values represent the summer seasons
for which space heating is usually not required, since the heat absorbed during
daylight hours is enough to keep the buildings warm during colder periods. The
binary indicator function, ΘX , takes a values of zero for the enveloped months
and one for the rest. Countries for which threshold temperatures are available
for both heating by gas and electricity, the minimum required heating season is
shown. It is clear that all countries exhibit a summer period from June-August.
Apart from this, the classification shows a spread in the summer months, which
mostly depends on the geographical location of the countries. As could be ex-
pected, South European countries usually hold longer summer periods without
heating while the Northern countries tend to have shorter summer periods.

Daily and weekly aggregated gas and electricity consumption data that belong
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Table 3.3: Results of the AIC classification procedure. Each number denotes the monthly aver-
aged heating degree-days from 2008 to 2017. These are calculated by using the heating threshold
temperatures that are presented in Tab. 3.2. Enveloped values denote the classified summer
months.

Country Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

AUT 482 406 315 171 78 26 13 15 62 181 287 431

BEL 366 317 264 161 75 19 4 4 33 119 224 328

BIH 380 309 226 95 33 4 1 0 22 96 180 333

BGR 502 386 304 163 53 8 1 1 28 147 250 422

CHE 556 496 426 292 188 92 59 65 153 272 390 520

CZE 503 416 325 173 71 16 3 5 51 187 292 437

DEU 401 344 274 147 58 12 1 2 31 134 241 351

DNK 427 393 355 229 110 29 2 3 34 147 255 365

EST 474 416 372 206 56 5 0 0 13 140 241 363

ESP 175 152 106 46 14 1 0 0 1 13 78 156

FIN 620 536 497 326 136 37 4 11 74 264 368 507

FRA 356 311 247 150 70 16 3 4 28 104 211 320

GBR 301 270 248 171 90 26 5 5 26 90 193 270

GRC 287 234 194 92 17 0 0 0 3 41 112 236

HRV 523 438 349 202 100 24 6 6 72 209 318 471

HUN 521 414 309 144 50 7 1 1 39 178 302 465

IRL 225 204 197 135 65 15 2 2 16 62 152 207

ITA 287 241 173 74 22 4 2 2 10 49 134 259

LTU 595 493 428 245 87 25 2 7 68 254 340 480

LVA 519 436 375 199 55 8 0 0 26 184 274 401

NLD 335 299 247 141 61 11 0 1 14 88 192 290

NOR 440 393 350 221 107 33 8 11 47 172 281 391

POL 521 434 362 200 83 22 4 7 61 208 306 444

PRT 73 62 31 10 1 0 0 0 0 0 23 64

ROU 530 417 305 140 42 6 1 2 32 161 275 451

SRB 507 400 300 144 55 10 2 2 37 164 279 448

SVK 507 410 317 155 58 13 4 6 48 178 284 447

SVN 486 411 312 157 63 11 3 4 52 176 282 441

SWE 500 442 397 248 109 26 2 7 49 196 304 429
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to the winter classified months have been used to recalculate the heating thresh-
old temperatures for the daily and weekly time resolutions. The results are
shown in Figures 3.6 and 3.7, respectively. For both consumption types, the sta-
tistical similarity in threshold temperatures for each individual country provide
a robust indication of the adequacy of using less granular data for estimating the
threshold temperatures. On the other hand, it is clear that the threshold temper-
atures increase with increasing data granularity.

In the following, the significance of reaching country specific heating thresh-
old temperatures and summer seasons is presented. As a case study, results for
Great Britain are used but an identical analysis can be performed for each in-
dividual country by utilising the heating degree-days in Table 3.3. For Great
Britain, October averages to 90 heating degree-days, and is classified as a win-
ter month, while May, which as well averages to 90 heating degree-days, is not.
Contrary to May, the winter classified October is explained by an existing rela-
tion between gas consumption and heating degree-days. On the other hand, the
AIC evidence ratio for May is below 2 and, thus, more years of consumption
data would be needed to fully justify this classification. A similar classification
is shown for Hungary for May and September, as shown in Figure 3.4. Similar
cases appear for Denmark, Estonia, Greece, Romania, Switzerland and Bosnia &
Herzegovina, as shown in Table 3.3. These issues arise mostly during autumn
and spring where the monthly temperature differences exhibit large variances
over the years.

Average heating degree-days that are calculated by using a threshold temper-
ature of 14 °C, 16 °C and 18 °C for Great Britain are shown in Figure 3.9. The
summer season is shown by a depreciation of heating degree-days from May
to October. It is clear that a 2 °C increase in the threshold temperature intro-
duce a significant difference in the accumulated heating degree-days over a year.
The most striking result, which emerges from the classification, is the extreme
change in the seasonal pattern of the heating degree-days.

Quantitative measures of the heating degree-days are shown in Table 3.4 for six
case studies. In the most extreme scenario, case study (c) overestimates the heat-
ing degree-days by approximately 93%, which is almost a doubling in compari-
son to case study (d). For a fixed average space heat demand per capita per space
heat heating degree-day, Lspace heat

0,GBR , GBR, the energy demand for space heating,
Equation 3.1, is consequently overestimated by identical shares. These results
suggest that the current estimations of the energy demand for space heating
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Figure 3.9: Daily averaged heating degree-days over 10 years for Great Britain. These are cal-
culated with heating threshold temperatures, T0 = 14°C (yellow), T0 = 16°C (red) and T0 = 18°C
(black). Fully drawn lines illustrate the heating degree-days during winter months as a result of
the classification. Dotted lines illustrate summer months for which space heating is not needed
and has to be removed.

in various projects might be highly over or underestimated for some countries.
This might introduce further changes as, e.g., the estimation of CO2-emission,
technology choice for heating or peak demand estimation. On the other hand,
a yearly fixed energy consumption for space heating will be distributed differ-
ently according to the seasonal distribution of heating degree-days.

Table 3.4: Overview of the yearly aggregated heating degree-days for six case studies of Great
Britain denoted by a)-f). Previous studies have used threshold of 15°C, 16 °C, 18 °C or 18.33°C
across all countries.

With summer season Without summer season

T0 = 14°C a) 1654 d) 1510

T0 = 16°C b) 2235 e) 1927

T0 = 18°C c) 2896 f) 2350

Figure 3.10 illustrates the synergy between the monthly averaged air tempera-
ture measurements (blue curve), the threshold temperatures (red dashed line)
and the classified summer seasons (hatched area) for Greece, Italy and Norway.
From these figures, it is clear that the monthly averaged temperatures fall be-
low the heating threshold temperature outside the hatched area, which indicates
that space heating is needed. Figures for all countries, for which air temperature
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measurements are available, can be seen in the Supplementary Information Fig-
ures 8.5-8.7.

Country-wise verification

Denmark has no heating season defined by law. 54% of the end-use heat de-
mand is provided by district heating [173] which dominates the Danish heat
production. During summer time, the district heating utilities mainly deliver
hot water. A similar summer season is determined in this work with a heating
threshold temperature of 15.20 [14.69,15.71] °C. A similar finding was presented
by [158].

Czechia has a legally defined heating season that lasts from September 1st to
May 31st [143]. If the daily average outside temperature is below 13 °C then
the district heating utilities start to deliver heat. An identical heating season is
determined by this work with a threshold temperature of 14.80 [14.80,15.10] °C.
A possible explanation for this discrepancy is that our results covers the com-
plete heating production by electricity and gas while 13 °C only refers to district
heating.

Great Britain has no heating season provided by law but a typical heating season
starts by October 1st and ends at April 30th and is further restricted with a day
time peak temperature being 16 °C or lower for a few consecutive days [143]. An
identical heating season is proposed in this study with a threshold temperature
of 14.18 [13.37,15.10] °C which is conductive with 16 °C daytime and 9 °C night
temperatures. A threshold temperature of 13 °C is proposed by the [174] based
on qualitative surveys.

Germany has no legal heating season, but the German Tenants Association,
[175] , states the heating season typically runs from October 1st to April 30th.
This gives a heating season that is two months shorter than found in this work,
which is explained by the threshold temperatures. The Association of German
engineers, VDI2067, estimate a German heating threshold temperature of 12 °C,
whereas a threshold of [13.67,14.80] is presented by this study.

Finland also has no heating season defined by law. An accepted heating thresh-
old temperature is 12 °C from autumn to December and lowers to 10 °C during
the spring [176]. Here, a value of 13.16 [11.53,14.18] °C is proposed to be used
from September through to May.
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Figure 3.10: Monthly averaged temperatures from 2008 to 2017. Blue full drawn curves show the
monthly averaged temperatures with 1 sigma uncertainty ranges (shaded blue regions), heating
threshold temperatures (red dashed lines) with [q25%, q75%] uncertainty ranges (shaded red re-
gions) and classified summer season (black hatched areas) for Greece (upper figure), Italy (central
figure) and Norway (lower figure)

Italy has several heating seasons defined by law depending on six different cli-
matic zones from the mountainous North with a colder climate to the flat South
with a temperate climate [143]. October 15th is the earliest date at which heat-
ing is permitted and lasts at most to April 15th. A national-aggregate heating
period is found to run from October 1st to March 31st with a threshold of 15.61
[15.20,16.02] °C.

Croatia has a typical heating season to range from September 15th to May 15th.
The heating season is in this study proposed to start at September 1st and last to
April 30th with a heating threshold temperature of 18.67 [17.76,20.20] °C.

Romania’s district heating utilities begin to operate by law if the outside aver-
age temperature reaches 10 °C or lower for three consecutive days, and no later
than November 1st. Heat delivery stops, by law, if the daily average temper-
ature exceeds 10 °C for three consecutive days and not earlier than April 15th.
In this work, the overall heating season is found to start from October 1st and
last to March 31st with a heating threshold temperature of 15.41 [13.78,18.88] °C.

Spain holds heating threshold temperatures from 13 to 14.8 °C depending on
the region [177, 178]. In this work, 9.69 [5.00,13.27] °C is found for electricity
use and 18.47 [17.35,21.94] °C for gas use.

70



3.4 Conclusion

This study was undertaken to design a new method to determine the national
energy demand for residential and commercial space heating with better than
annual resolution. Furthermore, the study was designed to work for any given
country based on its historic fuel consumption and weather data. In doing so, a
new method is proposed to determine a consistent empirically-derived national-
wise heating threshold temperature which can be used to determine the national
aggregated heating degree-days. Secondly, the extent of a winter period is de-
termined for which space heating is required. This is represented by a binary in-
dicator function taking only values of zeros and ones. The final energy demand
for space heating is then a function of the newly acquired heating degree-days
and the binary indications. As a case study, these methods have been applied to
the majority of European countries, using data on national aggregated heating
degree-days along with national demand for gas and electricity. The following
conclusions can be drawn:

The country specific heating threshold temperatures for heating by gas range
from 11.12 °C to 18.67 °C with a country ensemble mean of 15.0 ± 1.7 °C (1 sigma
standard deviation). The electricity values range from 9.69 °C to 17.67 °C with a
corresponding ensemble mean of 13.4 ± 2.4 °C. This suggests that the currently
used threshold temperatures might be overestimated by approximately 5 °C for
some countries in the literature.

It is found that the newly empirically-derived country-wise heating threshold
temperatures and the estimated summer seasons make considerable differences
to the temporal allocation of the heating degree-days. Based on an in-depth
case study of Great Britain, it is found that previous studies might have over-
estimated the annually accumulated heating degree-days by up to 93%. With
our newly proposed heating threshold temperature of 14 °C excluding the May-
September summer season, the heating degree-days reach an annually accumu-
lated value of 1510 degree-days for Great Britain. In contrast, by using 18 °C
including the summer season as, e.g., in the Odyssee project, the alternative
value reaches 2896 degree-days. The heating threshold temperatures given in
the literature are often not unique for countries and so a direct comparison be-
tween the existing values and the results of this study is difficult to make and
should be done with care.

The heating threshold temperatures were computed by using daily, weekly and
monthly aggregated data and shown to be marginally different within 25th to
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75th percentile significance range. This provides a good indication of the ade-
quacy of using monthly aggregated data for such an application.

The heating threshold temperatures tend to increase with increasing temporal
resolution of consumption and weather data.

Based on the AIC classification theorem, the European countries exhibit a sum-
mer period of at least June, July and August where space heating is not required.
South European countries exhibit longer summer periods, up to a maximum of
7 months for Portugal.

Ultimately, heterogeneous threshold temperatures were found for space heat-
ing across neighbouring countries in Europe, which suggest that the threshold
temperatures cannot be extrapolated to neighbouring countries. Therefore, this
study excels from the standard practice of using a blanket, even arbitrary value,
such as 16 °C or 18 °C across multiple countries which over-simplify and misrep-
resent the true nature and scale of national space heating demand. If an unrep-
resentative heating threshold temperature is used then the seasonal behaviour
of the heat demand becomes incorrect.

Some limitations of this study need to be considered. Firstly, the lack of data for
national gas consumption specifically for space heating purposes adds a layer of
complexity, as the end-uses of space heating, water heating, cooking and other
industrial processes cannot be disentangled. Gas consumed for electricity gen-
eration could be estimated, but consumption data would also be useful for this
purpose. ENTSO-G and other authorities could consider increasing the trans-
parency of data reporting to aid further research on heating demand. Secondly,
this study did not evaluate data on coal and oil consumption, which was not
found at monthly or better resolution. This may prove important for coun-
tries such as Poland and Greece, and would further enhance results. Thirdly,
countries with various climatic areas and a diverse terrain might hold differ-
ent threshold temperatures in different regions, as might countries with large
socio-economic differences between regions. Assessing sub-regions of countries
would require more granular data on electricity and gas demand than is cur-
rently made openly available, but would be an interesting future topic for re-
search.
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Highlights

• Increasing global warming decreases the need for space heating.

• Current climatic conditions favour gas boilers and heat pumps.

• Climate change makes heat pumps more cost competitive and gas boilers
less.

• Heat policies in Europe are broadly consistent with cost-optimal technolo-
gies.

• In several countries, cost-optimal technologies and real deployment do not
match.

Summary

Residential demands for space heating and hot water account for 31% of the to-
tal European energy demand. Space heating is highly dependent on ambient
conditions and susceptible to climate change. A techno-economic standpoint is
adopted and used to assess the impact of climate change on decentralised heat-
ing demand and the cost-optimal mix of heat pump and gas boiler technologies.
Temperature data with high spatial resolution from nine climate models imple-
menting three Representative Concentration Pathways from IPCC are used to
estimate climate induced changes in the European demand side for heating. The
demand side is modelled by the proxy of heating-degree days. The supply side
is modelled by using a screening curve approach to the economics of heat gen-
eration. A decrease of about 16%, 24% and 42% in the space heating demand
in low, intermediate and extreme global warming scenarios. When considering
historic weather data, a heterogeneous mix of technologies are cost-optimal is
found, which depends on the heating load factor (number of full-load hours per
year). Increasing ambient temperatures toward the end-century improve the
economic performance of heat pumps in all concentration pathways. Cost op-
timal technologies broadly correspond to heat markets and policies in Europe,
with some exceptions.
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4.1 Introduction

Energy consumption for space heating is by far the most important end-use
in the European (EU28) residential heating sector with an estimated share of
52% in 2015 [41]. Space heating is strongly temperature dependent and mostly
consumed during cold winter seasons [179]. Heating systems are therefore de-
signed to meet peak demand during cold winter periods, but for long-term de-
sign decisions, it is necessary to focus on long-term changes in the climate. De-
pending on the degree of climate change in the future, it is believed that the peak
demand for space heating might change significantly. Given these points, the
principal aim of this study is to analyse the 21st Century climate change impact
on the selection of cost-optimal, decentralised heating technologies for different
locations in Europe. Decentralised heating is defined as all heating systems in-
stalled on a per-building basis. This means that the focus is not on large-scale
centralised heating systems such as combined heat and power plants or other
district heating facilities. This paper draws upon climate affected temperature
data from the newest simulations carried out in the framework of the CMIP
(Coupled Model Inter-comparison Project) Phase 5 [61, 180] and the EURO-
CORDEX project [70, 72]. Data from nine climate models from a combination
of 4 regional climate models, RCM, downscaling 5 global climate models, GCM,
under the forcing of the latest generation of climate projections provided by the
Intergovernmental Panel on Climate Change, IPCC [15] are used. For this study,
data with the best available resolutions is used, which is 3hr in time and 0.11°
× 0.11° in space for Europe. A full description of the climate data is provided
in Section 1.5 and a full description of biases in climate models is provided in
the Supplemental Information Section 7.1. An overview of the models in use is
presented in Table 1.1.

A fundamental impact on the selection of heating technologies, that to the best
of the authors knowledge has not been studied in detail, is the impact of local
climates on the cost-optimal design of decentralised heating systems. Through-
out this article, system design refers to the cost-optimal selection of decentralised
heat generating technologies. Spatial variations in the ambient temperatures
fluctuate heterogeneously from the oceanic to the mainland climates of West
and East Europe, respectively, and from the cold northern to the warmer south-
ern climates. Climate change is furthermore expected to introduce long term
and heterogeneous temperature anomalies across Europe. Whereas hot water
demand is relatively constant throughout the year and between years [157], the
energy consumed for space heating will therefore fluctuate more wildly and be
subject to long-term trends that are currently not well understood.
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Figure 4.1: Shares of the installed stock of heating technologies across the European countries
in 2012. The x-axis lists the countries, referred to by their three-letter ISO codes. Data from [31].

A secondary aim of this paper is to evaluate the fit between cost-optimal tech-
nologies for decentralised heating and heat policies in Europe. Actual deploy-
ment of heating technologies in different countries may not necessarily reflect
which technologies are most cost-optimal in a given location. The purpose of
this policy assessment is to identify where policy intervention might be required
to achieve lower cost outcomes, while contributing to overall efforts to decar-
bonise heating.

Figure 4.1 illustrates the current technology shares that are responsible for de-
livering the decentralised heat for a majority of the European countries. The
European average bar shows that fossil fueled boilers dominate the heat gener-
ation, followed by biomass fueled technologies. Heat pumps are relatively new
technologies compared to boilers and consequently hold a minor share of the to-
tal installed technology stock. On the other hand, heat pumps are gaining more
attention with 99% of the units installed after 2002 while 42% of the fossil fuel
boilers were installed previous to 1992 [31]. The large increase in the penetra-
tion of heat pumps in European homes has been motivated by various policy
and regulatory drivers such as subsidies and carbon taxes, building regulations,
improved technical standards and information dissemination [32, 33].

The focus of this paper is on the European aggregated space heat demand and
used to examine the extent to which it changes under the impact of global warm-
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ing. Then the consequent changes in the CO2-emission are estimated. To isolate
the effect of climate change, an unchanged stock of national heat generating
technologies throughout the 21st Century is assumed. For each 144 km2 grid
cell, defined by the spatial resolution of the climate data, a cost-optimal tech-
nology for a historical time frame 1970-1990 and for an end-century time frame
2080-2100 is mapped, and compare the differences. The demand and supply
sides are modelled as highly temperature dependent. The heat demand is mod-
elled through the heat load factor, which most commonly is determined as the
fraction of the yearly averaged heat demand to the maximum. For the sup-
ply side, a simplified techno-economical standpoint of heat generation is used.
Initially, policy decisions are excluded but a section is devoted to a policy as-
sessment of the results. The application of state-of-the-art technical procedures
combined with the large ensemble of highly granular climate data, that support
the analyses, is considered as novel to existing literature. In summary, this ap-
proach provides new and more robust results that quantify the change in space
heat demand throughout this century.

A limited amount of research has been devoted to this field, all with a focus on
historical heating systems. Heat load capacity factors have been calculated for
80 locations in Europe for a historical time frame spanning the years 1981-2000
[181]. Under historical weather conditions that are typical to the European re-
gion, the seasonal performances of six heating system configurations have been
investigated and finds that these are sensitive to the selection of electricity and
gas driven heat pumps [182].

This paper is structured as the following: Section 2 presents the methodologies
of this paper. Results are presented in Section 3. Current policies on decen-
tralised heating in Europe along with future prospects are presented in Section
4 along with the study limitations. Conclusions and policy implications are pre-
sented in Section 5. Finally, a nomenclature is added in Section 6.

4.2 Experimental procedures

This section is devoted to a qualitative description of the methods that are used
in this work. A detailed derivation of the mathematical formulations can be
found in the Supplemental Information Section 9.1.
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Technology and price assumptions

Inspired by Figure 4.1, the following listed technologies compose the ensemble
of the decentralised heat generating technologies in this study:

Electricity driven air source heat pumps (ASHP) draw heat from the ambient air
to supply hot water and space heating through hydraulic based water systems.
Air source heat pumps require only an outdoor and indoor unit and are there-
fore easy to retrofit into existing houses. A limited amount of equipment and
installation procedures give this technology an economic advantage compared
to ground source heat pumps. On the other hand, the large temperature fluctua-
tions between the external heat collector (source temperature) and the output at
home (sink temperature) throughout the year, especially in winter periods with
high heat demand and low ambient temperatures, challenge their efficiency, de-
noted by the Coefficient Of Performance (COP). In this work, the temporally-
and spatially-explicit COP values are calculated and based on the prevailing air
and soil temperature, with a sink temperature of 55 °C [29]. Full details are given
in the Supplemental Information Section 9.2.

Electricity driven ground source heat pumps (GSHP) are identical to the previ-
ous, but draws heat from the soil instead, which offers a substantially higher
yearly averaged COP. Temperature measurements from existing boreholes in
Denmark show that at a depth of 20 meters, the ground temperatures have set-
tled, i.e., become seasonally independent [183]. In this work, the ground tem-
peratures are estimated as an average of 20-year air temperatures. The resulting
values correspond to temperatures at a depth of approximately 50 meters be-
low ground, depending on soil type and geographical location [183]. The higher
capital investments of ground source heat pumps are compensated by the lower
running costs compared to air source heat pumps.

Air-to-air heat pumps with auxiliary electricity driven boilers (A2A+EB) is a
hybrid system that consists of an electric boiler for hot water supply and an air-
to-air heat pump that draws heat from the ambient air and supply heat through
air exchangers. Air-to-air heat pumps have the lowest capital investments of all
the heat pumps. Furthermore, air-to-air heat pumps utilise a lower sink temper-
ature, which in this work is assumed to be 30 °C [29]. This increases the COP
further, and consequently reduces the running costs by around 20% when com-
pared to underfloor heating operating at 40 °C which is typical for GSHP [29].
Since air-to-air heat pumps cannot provide hot water they have to be installed
alongside a hot water technology, which is assume to be an electricity driven
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boiler. The combined technology efficiency will then be reduced. The share of
each technology is determined by the individual shares of space heat and hot
water demand to the total amount.

Natural gas fired boilers are assumed to cover both the hot water demand and
space heat with hot water circulating through radiators. This technology has a
very low capital cost but a relatively high running cost.

Oil fired boilers are identical to the previous but fired with oil.

Biomass boilers cover both the space heat demand and hot water by connection
to radiators. The boiler is assumed to be automatically stocked. These types of
boilers most commonly utilise wood pellets as fuel, which leads to the expensive
fuel price in Table 4.1.

The stock of coal fired boilers has reduced heavily since 1992 with 58% of all
units being installed before 1992 and 12% after 2002 [31]. Currently, coal fired
boilers comprise only 2% of the total heating technology stock in Europe [31].
The decreasing trend is mainly believed to be a result of aggressive CO2 and
air quality policies in the European countries. As a result, coal fired boilers are
excluded in this study.

Technologies such as fossil fuel driven boilers are very mature and possess rela-
tively small price variability. Technologies such as heat pumps are still relatively
new to the market and therefore subject to significant price variability between
manufacturers and countries, and uncertainties in the future cost reductions and
learning rates. These are mostly related to overcoming technological barriers,
future markets and the technology demand [184]. Upper and lower bounds of
these uncertainties are presented in Table 4.1 for all technologies that are in-
cluded in this study.

In Table 4.1 the technology properties and prices for retrofit into existing sin-
gle family houses are summarised. As the focus of this paper is on the impact
of climate change on heating across a continent, rather than modelling the be-
spoke heating mix in individual countries, all prices are excluding national taxes
and levies, and assumed to be constant across regions. This allows for a direct
measure and comparison of the impact of climate change across regions and
time. Furthermore, this procedure reduces uncertainties related to national poli-
cies on tax regulations. For the same reasons, infrastructure constraints such as
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the absence of gas distribution networks in many countries and the inability of
electricity distribution networks to meet large demands for heating from other
countries are ignored, which is discussed further in Section 4.4.

Heat load factors

The heat load factor, HLF, denoted as µ, is defined as the unitless ratio of the
residential heat demand, LTotal, to the maximum possible output of heat, PTotal,
over a given time period, ∆, as:

µ= LTotal

PTotal ·∆ (4.1)

The decentralised nature of heating means that data on consumption is not read-
ily available and therefore not applicable. Known to the literature, the theory
of heating degree-days is most frequently used as a best proxy for modelling
the variations in the day-to-day heat demand. The heating degree-days are
calculated by using national temperature profiles. In this study, the 3-hourly
temperatures are averaged into daily values, to emulate a night storage since
the daily averaged value is higher than night-temperatures but lower than day-
temperatures. The theory of the heating degree-days and its application to ap-
proximate LTotal is described formally in the Supplemental Information Section
9.1. The maximum output of heat, PTotal, depends on the cold extreme tempera-
ture, as described in the Supplemental Information Section 9.1.

As stated previously, the heat load factors are determined as the fraction of the
yearly averaged heat demand to the peak. Thus, large heat load factors are com-
mon in cold climates due to long running hours, but also in mild climates where
hot water demand dominates the heat load. High load factors are consistent
with a reduction in the overall cost per kWh of heat generated, since fixed ex-
penses would be spread across more units of energy generated, hence the cost
per unit of generation is reduced. Technologies with low marginal costs such
as heat pumps prove as economically favourable in these circumstances. On
the other hand, warmer climates tend to decrease the heat load factors, as peak
hours deviate considerably relative to the base load hours. Technologies with
low capital investments would serve as economically favourable in these condi-
tions.
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Techno-economic standpoint of heat generation

In a simplified approach to the economics of heat generation, only the most sig-
nificant costs and properties of decentralised technologies are included. Firstly,
capital investments are included which are fixed, one time expenses, made up of
equipment and installation costs. Equipment expenses cover the machinery in-
cluding environmental facilities, whereas installation expenses cover engineer-
ing, civil works, buildings, grid connection, installation and commissioning of
equipment [184]. A yearly fixed maintenance expense is added. It includes all
costs that are independent of how the technology is operated [184]. Finally,
marginal costs are included, which primarily depend on the technology oper-
ation time. Small scale effects such as the decrease in efficiencies or increase in
maintenance expenses as a function of time are ignored. All technology proper-
ties and prices are formally introduced in Section 4.2.

The hourly accumulated cost, XTOT
x,θ , for a technology, θ, depends linearly on the

heat load factor, µx, at each grid location, x, as:

XTOT
x,θ =XCAP

θ +µx ·XOP
x,θ (4.2)

A detailed review of the capital and marginal expenses, XCAP
θ

and XOP
x,θ , respec-

tively, is conducted in the Supplemental Information Section 9.1. In this work,
it is chosen to set the installed capacity to 10 kW for all technologies to scale the
total cost to an appropriate value for a typical household. The capacity is kept
fixed throughout the grid cells. However, the choice of capacity will not affect
the results of this study as it is chosen to be identical for all technologies, see the
Supplemental Information Section 9.1 for further details.

Example of an application

The heat load factor, µx, is calculated at first for each grid location, x, as shown
in Equation 4.1. The heating expenses are then calculated for each technology,
θ, and each grid location, x, by using Equation 4.2. The data covers a mod-
elling time span of 20 years, since 20 years define the approximate extent of
a climatic period and the typical lifespan of a heating technology. Figure 4.2
shows the accumulated expenses as a function of the heat load factor, µ, for the
grid cell of southern Stockholm, Sweden. This is termed in the screening curve
for heating technologies, analogous to the screening curves used for comparing
electricity generation costs [190]. In the case of oil and biomass boilers, high
fuel prices and low efficiencies result in large operational expenses, which make
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Figure 4.2: A screening curve showing annual cumulative heating costs. These are shown in
1000 Euro/kW as a function of heat load factors, µ, for the grid cell of southern Stockholm.
µTech Shift defines the heat load factor for which two technology crossing points occur. µStockholm
defines the heat load factor for Stockholm, Sweden.

these technologies highly uncompetitive. On the other hand, high COPs of heat
pumps compensate for their high capital investments, which make these tech-
nologies competitive to gas boilers at high values of µ.

For Stockholm, the optimal technologies consist of gas boilers, air-to-air heat
pumps with auxiliary electricity driven boilers and ground source heat pumps.
For heat load factors below 0.11, gas boilers would serve as the cost-optimal
choice for heating purposes. Since heat load factors never reach this domain
it stays as non-applicable. For heat load factors between 0.11 and 0.42, air-to-
air heat pumps with auxiliary electricity driven boilers would serve as a cost-
optimal choice. Finally, for heat load factors above 0.42, ground source heat
pumps would be cost-optimal. The heat load factor of southern Stockholm,
µStockholm, equals 0.32, for which air-to-air heat pumps with auxiliary electric-
ity driven boilers would serve as cost-optimal. This procedure is repeated for
each of the 412 x 424 grid locations in the data set and for all of the nine climate
models.
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4.3 Results

Impact of climate change on the heating degree-days

Initially, results that show the extent to which the European heating degree-days
change under the impact of global warming are presented. The gridded temper-
ature profiles, Tx(t), have been weighted according to the population density
in each grid cell [191]. The population weighted temperature profiles are used
to calculate the heating degree-days, which have been aggregated by summing
over all grid-cell values within a country. The weighting is especially important
for the Nordic countries as, e.g, Norway, where the sparsely populated areas in
the north, otherwise, would contribute significantly to the aggregation. Figure
4.3 presents the yearly aggregated heating degree-days for Europe from 1970 to
2100 for each of the three projections of climatic outcomes, RCP2.6, RCP4.5 and
RCP8.5. Each yearly result is composed of a climate model ensemble average
and shown relative to the corresponding 1970 value. A 10 year moving aver-
age (full drawn curves) is used to highlight the long-term trends over annual
fluctuations. It is clear that all climate change pathways result in a decreasing
trend in the heating degree-days, with magnitudes being specific to the climate
conditions of each RCP. The year of 2100 in RCP8.5 shows a decrease of ap-
proximately 42% in comparison to 1970, which is a consequence of almost 5 °C
temperature increase in the business-as-usual scenario. Corresponding values
for RCP2.6 and RCP4.5, are 16% and 24%, respectively. The uncertainties stay
below ±8% of the ensemble average for all RCPs, which provides a strong ev-
idence of agreement among the ensemble of climate models. The temperature
data have been bias adjusted as explained in [179].

To estimate the resulting change in the CO2-emission from space heating, a fixed
national stock of heating technologies throughout the century is assumed in or-
der to remove the effect of technological change and to isolate the effect of cli-
mate change. Based on 2015 values, the production of electricity and heat in the
EU28 accounted for approximately 30% of total CO2-emission, with heat pro-
duction accounting for more than half of this share [192]. Altogether, a decrease
of 42% in the heating degree-days for RCP8.5, leads to a decrease of 12.5% in
the CO2-emission. For RCP2.6 and RCP4.5 the respective values are 4.8% and
7.2%. In the following, the focus is on the supply side of heat, in a search for the
cost-optimal technologies to cover the changing demand throughout the 21st
Century.

For the remainder of the results section the focus is on each grid location sepa-
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Figure 4.3: 10 year moving average of the yearly aggregated heating degree-days. Full drawn
curves shows the heating degree-days for each of the three projections of climatic outcomes,
RCP2.6 (green), RCP4.5 (blue) and RCP8.5 (red). Each yearly result is composed of a climate
model ensemble average and shown in percent of the corresponding 1970 value. ±1σ standard
deviations are shown with shaded regions.

rately rather than a country aggregation. For each location, a cost-optimal heat-
ing technology is found by following the procedure explained in Section 4.2.
Initially, results are presented that are based on a predefined reference period
for the ICHEC-EC-EARTH HIRHAM5 climate model. Equivalent results are af-
terwards presented for all climate projections and climate models, but during
the analysis, all data has been treated equivalently.

Cost-optimal heating technologies in a historic time frame

The unperturbed cost assumptions, presented in the first four rows of Table 4.1,
are subjected to uncertainties that strongly reflect the maturity of the technolo-
gies. These will naturally propagate into output uncertainties, meaning that
the selection of cost-optimal technologies might be as uncertain as the input
prices, which they are subjected to. In order to assess the robustness of the se-
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lection of cost-optimal technologies, the optimisation process, as explained in
Section 4.2, has been run with 100 Monte Carlo trials for the pricing scheme.
Each pricing scheme consists of a random perturbation of the unperturbed in-
stallation, equipment, maintenance and fuel prices subjected to their respective
uncertainty ranges.

The results of the optimisation processes are presented on the radar chart in Fig-
ure 4.4a for all pricing schemes. Each plot shows the normalised number of grid
cells (proportional to land area across Europe) for which a technology serves as
a cost-optimal, i.e., sum of the technology shares for a single plot is 100%. It
becomes clear that each individual pricing scheme defines a unique technology
distribution, resulting in a highly cost-sensitive outcome of the optimisation.
The unperturbed pricing scheme, as presented in Table 4.1, has a tendency to-
wards single technology dominance, i.e., gas boilers serve as cost-optimal in all
grid locations, as shown with blue in Figure 4.4a. This results from a combined
effect of the range of possible fuel prices, which is larger than the diversity in
heat load across grid cells and the substantially lower gas boiler prices compared
to the costs of the remaining technologies. A detailed discussion on the single
technology dominance is provided in the Supplemental Information Section 9.2.
Focusing briefly on the end of century climatic periods, it is found that the un-
perturbed pricing scheme leads to an identical technology distribution as for the
historical period, for all projections of climatic outcomes. This is an important
issue to address, as with this pricing scheme, the impact of climate change will
not show its potential significance in the selection of technologies. The signifi-
cance of climate change is therefore clarified by selecting a pricing scheme that
to a high degree defines a balanced distributions of technologies. The selection
is based on minimising the sum of squares of the difference between a technol-
ogy share, θi, and the maximum appearing technology share, θmax,i, as shown
in Equation 4.3, which leads to the balanced pricing scheme, presented in Table
4.2. The balanced pricing scheme is classified as a unique outcome of the pertur-
bation process, where the gas boiler expenses increase significantly compared
to the respective increase in heat pump expenses, which gives heat pumps an
economic benefit. The red plot in Figure 4.4a illustrates the resulting technology
share by using the balanced pricing scheme. Gas boilers cover 59% of Europe
whereas ground source heat pumps cover 26% and the hybrid of air-to-air heat
pumps and auxiliary electricity driven boilers cover 15%.

min
θ

∑
i

(
θi −θmax,i

)2 (4.3)
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Figure 4.4: Panel a: Cost-optimal technology distributions based on the ICHEC-EC-EARTH
HIRHAM5 climate model. Blue line is a result of the unperturbed pricing scheme. Shown with red
is the resulting technology distribution by using the balanced pricing scheme. Black curves show
technology distributions from 99 perturbed pricing schemes (see Equation 4.3). Panel b: Spatial
distribution of technologies resulting from the balanced pricing scheme, which is summarised
with red in Panel a. GSHP denotes ground source heat pumps. A2A+EB denotes the hybrid of
air-to-air heat pumps with auxiliary electricity driven boilers.
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Oil and biomass boilers, and air source heat pumps are not economically viable
for all pricing schemes and therefore not considered further. For most of these
technologies, this is explained by a combination of high oil, biomass and elec-
tricity prices and low technology efficiencies. The unexpected outcome that air
source heat pumps serve as economically unfavourable, can be justified by the
technology COP that to a high degree determines the operational expenses. The
empirical equations for the COPs, as presented in the Supplemental Informa-
tion Section 9.2, are highly dependent on the heat source and sink temperatures.
Soil temperatures are in general higher and more uniform over the the winter
heating season compared to air temperatures. Ground source heat pumps there-
fore offer higher COPs over the year compared to air source heat pumps for any
given sink temperature. Again, this reflects purely techno-economic potential,
and does not consider geological or social barriers to uptake, especially the sig-
nificant disruption caused by retrofit installations [29]. Depending on the hot
water to the space heat ratio, the combined technology efficiency of air-to-air
heat pumps with auxiliary electricity driven boilers will lower accordingly.

The spatial distribution of the cost-optimal technologies, resulting from the bal-
anced pricing scheme, is shown in Figure 4.4b. This reflects where technologies
would be best placed throughout Europe if there were homogenous prices, poli-
cies and public attitudes towards each - which is not the case in reality. The
difference between the present-day distribution of technologies and this figure
shows the impact of non techno-economic considerations on heating choice. The
"marginally better" category defines a ±5% region around the intersection point
of two cost curves, which defines an indecisive region where either of the tech-
nologies can provide a cost-optimal option for heating. The "dominant" category
defines the outside region. Each technology is therefore subjected to one of the
two categories:

Marginally better:
µTech Shift, x −0.05<µx <µTech Shift, x +0.05

Dominant:
µTech Shift, x −0.05≥µx

µTech Shift, x +0.05≤µx

where µTech Shift, x defines the heat load factor at the intersection point of two
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cost curves at a grid location, x, as shown in Figure 4.2. Interestingly, the histor-
ical time frame does not illustrate an expected north-south dipole, but a split for
which heat pumps are dominating the coastal areas, and gas boilers the main-
land areas. This result is partially explained by the Köppen–Geiger climate clas-
sification system for Europe [193] and partially by the assumption of constant
hot water use across Europe, as detailed in the following.

The cold oceanic climate of West Europe results naturally in a large heat con-
sumption throughout the year that, as a result, increases the heat load factor to
a value of 0.5, depending on the grid location. Ground source heat pumps serve
as cost-optimal in these regions, as a result of their relatively low operational
expenses at high heat load factors. Air-to-air heat pumps with auxiliary elec-
tricity driven boilers serve as cost-optimal in Scandinavia. This is a result of the
low hot water to space heat ratio in cold climates, which in turn limits the de-
crease of the combined technology efficiency. Contrary to North-West Europe,
the tempered Mediterranean climate results in a decreased energy consumption
for space heating. The hot water to the space heat ratio increases therefore signif-
icantly, which results in increased heat load factors. As for the West European ar-
eas, technologies with low operational expenses for high heat load factors serve
as economically favourable. On the other hand the increased hot water to space
heat ratio, decreases the combined efficiency of the air-to-air heat pumps with
auxiliary electricity driven boilers, which makes this technology economically
unfavourable in temperate climates. The overall cold winters and hot summers
in the East European mainland result in low heat load factors. As a result, gas
boilers become economically favourable.

From this point, the paper will only discuss results that are based on this pricing
scheme, which is referred to as the balanced pricing scheme.

End-of-century projections

Figure 4.5 shows the spatial distribution of cost-optimal technologies resulting
from the balanced pricing scheme. These are now shown for the three end-of-
century time periods defined to span the years 2080–2100 for all of the climate
projections. Historical results are added for easy reference. The most striking
observation to emerge is the large increase in the attractiveness of heat pumps
towards continental Europe, as a result of changing climatic conditions. This is
the product of many interlinked factors, considering that climate change affects
both the supply and demand side simultaneously. However, the main effect
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is observed on the supply side, because of increasing heat pump COPs due to
increasing winter temperatures. Another contributing factor might be the in-
creasing heat load factors that emerge as a result of a fixed hot water use and
a decreasing demand for space heat. For Scandinavia, the hot water to space
heat ratio increases significantly due to a decreased need for space heating. As a
result, the combined efficiency of air-to-air heat pumps with auxiliary electricity
driven boilers decreases and therefore makes this technology economically un-
favourable and out-priced by gas boilers.

Climate model ensemble average

Finally, in Figure 4.6 the results of Figure 4.5 are summarised for all climate mod-
els. The bars illustrate the climate model ensemble average of the population
weighted technology distributions, for each individual country. The categories
of dominance, "marginally better" and "dominant" have been merged in this fig-
ure. The errorbars denote the respective 25th and 75th percentiles. The bars
are ordered according to descending shares of ground source heat pumps in the
RCP8.5 end-of-century time frame. It is clear that the heating infrastructure for
the far west and far south countries is largely unaffected by the climate induced
weather changes. This can be seen from the largely unaffected shares of ground
source heat pumps for the different climate periods. The robustness of this result
is confirmed by the small uncertainties, illustrating a high agreement among cli-
mate models. Norway and Sweden make a sharp transition from air-to-air heat
pumps with auxiliary electricity driven boilers to a mixture of gas boilers and
ground source heat pumps, also confirmed by the high agreement among the
climate models. The Baltics, including Finland make a transition from air-to-air
heat pumps with auxiliary electricity driven boilers towards strong gas boiler
dominance with high agreement across models. For the remaining countries,
it is clear that a higher degree of climate change, suggests a transition from
gas boilers to ground source heat pumps. These results come with relatively
large uncertainties, which results in a fluctuating degree of technology transi-
tion among the climate models. In general, it is observed that a higher degree
of global warming tends to increase the stock of heat pumps towards the main-
land of Europe. On the other hand, this trend is difficult to compare between
the climate projections because of different underlying assumptions from the
Integrated Assessment Modelling.
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Figure 4.5: Spatial distributions of the cost-optimal heating technologies by using the balanc-
ing pricing scheme. The historical period is defined to span the years 1970–1990. RCP2.6, RCP4.5
and RCP8.5 spans a climatic period from 2080–2100. GSHP denotes ground source heat pumps
and A2A+EB denotes the hybrid technology of air-to-air heat pumps with auxiliary electricity
driven boilers.

94



Figure 4.6: Climate model ensemble average of the population weighted shares of the national
technology distribution. For each country the order of bars represent results from the historical,
RCP2.6, RCP4.5 and RCP8.5 climate projections. Error bars illustrate the respective 25th and 75th
percent quantiles. The shares of gas boilers and heat pumps have been separated for the matter of
visualisation. The y-axis illustrates therefore the same quantity but in separate directions. GSHP
denotes ground source heat pumps and A2A+EB denotes the hybrid of air-to-air heat pumps with
auxiliary electricity driven boilers.
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4.4 Discussions

Current status of heat policies in Europe affecting the stock of heating
technologies

This paper finds that across Europe as a whole, space heating demand declines
by 16% to 42% under different climate change projections from 1970 to 2100. This
is consistent with other studies where a decreased heating demand in Europe
have been observed across an ensemble of Earth System Models under RCP4.5
and RCP8.5 [194]. Similarly, a 37% decrease in residential heating demand have
been found by the period 2071-2100, compared to 2010, based on five global cli-
mate scenarios [195]. In section 4.4, the focus is on general policy implications in
particular relating to the flexibility of existing heat policy frameworks to adapt
to reduced heating loads given more stringent building regulations and climate
change.

The second part of this analysis points to different zones of Europe where heat
pumps or gas boilers may be more or less optimal in cost or performance terms
given projected temperature increases to the end of the century. In general,
ground source heat pumps are shown to be more economically optimal in west-
ern and southern Europe, whereas gas boilers are more optimal in eastern Eu-
rope and some Nordic countries.

In this section, the numerical findings on cost-optimal decentralised heating
technologies under climate change projections are compared with the current
state of policies, national policy strategies and technological deployment in dif-
ferent European countries. Cost-optimal technologies have been found for the
period 2080-2100, and it is argued that current heat policies and longer-term
strategies for heat decarbonisation, for example to 2050, are relevant to the in-
terpretation of these findings. Although the European stock of heating tech-
nologies will have undergone several replacement cycles by the late 21st Cen-
tury, there are important sources of path dependency and lock-in that have led
in particular to increasing returns to adoption of incumbent heating technolo-
gies such as natural gas boilers in the UK, or biomass-based district heating
in Sweden [196]. Without policy intervention to address these, there is a risk
that existing, incumbent heating technologies and linked infrastructures are self-
perpetuating, limiting opportunities for and slowing the deployment of alter-
native decentralised heating technologies such as heat pumps. In addition, it
would be advantageous to support learning and cost reduction of heat pumps
[197] through policies to support their increased installation in regions where
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they are likely to become more cost-optimal under climate change in the longer
term.

It is found that in general, national heat policy outcomes and intentions align
reasonably well with cost-optimal technologies as indicated by the model used
in this work. However, there are also important mismatches between cost-
optimal technologies and their real-world deployment. These mismatches are at
least partly a product of the presence or absence and balance of policies which
support or hinder the deployment of heat pumps or gas boilers. It is argued that
policy makers should be mindful of which technologies are most economically
optimal in particular regions both currently and under projected climate change,
in order to deliver cost-optimal policy outcomes.

Another focus of this section is on national-scale policies in order to understand
variation between countries. Nevertheless, a number of EU heat pump support
policies have been implemented and are interconnected with some national poli-
cies. For example, the EU Renewable Energy Directive in 2009 officially recog-
nises heat pumps as a renewable energy technology [198]. It sets out a minimum
efficiency level needed to produce renewable heat from electrically-driven heat
pumps, equivalent to a seasonal performance factor (SPF) of over 2.88 [199].
This Directive also contributed to quality assurance in Europe by requesting
that member states should introduce or have in place certification schemes for
installers of heat pumps by 2012 [198, 200]. In 2016, the European Commission
published the first EU Heating and Cooling Strategy [201]. This strategy was
endorsed by the European Parliament, which also proposed that subsidies sup-
porting fossil fuel heating should be phased out [202].

Policy frameworks and changes in heating demand

The findings of this study point to lower heating demand with increased global
warming. Heating demand is also expected to fall further through the 21st Cen-
tury based on EU-wide and national efforts to tighten building standards. Poli-
cies and regulations promoting building energy efficiency are relatively recent
and will take time to address around three quarters of the European building
stock which is considered to be energy inefficient [203]. There are significant
challenges with reducing heat loss from buildings and replacing old, inefficient
heating appliances, and these challenges vary across different sectors, e.g. ser-
vice buildings, public buildings, problems with split incentives in privately-
rented homes, industry [201, 204].
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In Europe, mandatory standards at an EU and national level have resulted in in-
creased thermal efficiency of new and refurbished buildings, and greater use of
more efficient heating appliances such as condensing boilers and heat pumps,
leading to decreasing heat demand at an individual building level [205, 206,
204]. There is significant potential for this trend to continue with further re-
placement and renovation of existing buildings, particularly since the average
number of new dwellings built every year from 2000 to 2012 represented just
1% of the EU housing stock [206]. In 2016 in the EU, heating consumption per
m2 was 68% of the level of heating demand in 1990. However, overall heating
consumption only declined by 4% due to the increase in building floor area over
this period [205].

The Energy Performance of Buildings Directive was introduced in the EU in
2010 and stipulates minimum energy efficiency standards for building renova-
tions, while also requiring new buildings to consume close to zero energy from
the end of 2020 [203]. The Energy Efficiency Directive (2012) further requires EU
member states to produce a long-term strategy for investing in improving the
energy performance of existing residential and commercial buildings after 2020.
This should include action plans for reducing heating and cooling demand and
undertaking deep building renovations typified by 60% or greater energy effi-
ciency improvements. These regulations are technology neutral and therefore
allow flexibility to achieve stipulated energy savings with a diversity of highly-
efficient, decentralised heating technologies [203].

Similar mandates have also been enacted at a national level in Europe. For ex-
ample, Germany introduced the Energy Efficiency Ordinance to implement the
European Energy Performance of Buildings Directive. In the Netherlands, pro-
gressively stronger energy efficiency standards have resulted in decreasing heat
demand. France introduced the Régulation thermique in 2012, requiring all new
buildings (constructed from 2013 onwards) to meet a maximum level of primary
energy consumption meaning that direct electric heating could not be used in
new buildings [204].

Technology support policies: southern and eastern Europe

The findings in Section 4.3 indicate that ground source heat pumps are favourable
under the end-of-century scenario in southern European countries with a Mediter-
ranean climate such as Spain, Portugal, Italy and Greece. However, there ap-
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pears to be relatively limited policy support for heat pumps in these countries,
where the majority of sales are for air-to-air heat pumps which can provide both
heating and cooling [202, 207]. In Portugal, there has been an absence of national
incentives for heat pumps [207]. In Spain, reversible air-to-air heat pumps are
mainly used for cooling; gas boilers are more likely to be used for space heat-
ing [34]. Small air-to-air heat pumps may be combined with electric heating to
provide both heating and cooling in some Mediterranean coastal zones of Spain.
Italy has made tax reductions available for the installation of heat pumps on the
condition that high seasonal performance factors are achieved [32, 208]. There
have also been information dissemination activities - the Gruppo Italiano Pompe
di Carole is a group of manufacturers which promotes heat pumps through ex-
hibitions, seminars and training courses [34].

Most homes in Greece use diesel heating oil for space heating, while electric-
ity, natural gas and biomass provide less than 12% of total space heating each
[209]. The installed capacity of ground source heat pumps in Greece has experi-
enced a rapid growth in the last two decades, from 0.4 MWthermal in 1999 to 135
MWthermal in 2014 [210]. This is a result of several factors, including rising oil
prices compared to electricity prices, higher public awareness of ground source
heat pumps and legislation introducing a licensing process for installations. In
recent years, the development of the ground source heat pump market has been
adversely affected by the economic crisis and an inactive construction industry
[210].

The results show gas boilers to be optimal in eastern Europe particularly under
RCP2.6 and RCP4.5, see Figure 4.6. There is uneven agreement between this
finding and the direction of heating policies in different eastern European coun-
tries. Following the decline of communism, many eastern and central European
countries began to shift away from expensive and poorly maintained district
heating systems towards individual household heating technologies [211, 212].
In Poland, coal is the dominant fuel for heating, and therefore a transition to
gas heating and/or heat pumps would help to improve air quality and achieve
decarbonisation. 40% of Poland’s 13 million houses use individual coal boilers
or furnaces for space heating [34, 202], while coal-fuelled district heating sup-
plies space heating to approximately a further 30% of total dwellings [202, 213].
Around two thirds of the 2 million gas boilers installed in Polish houses are used
only as a supplementary heat source in cold periods [34]. Despite a lack of spe-
cific policy support for heat pumps from the Polish state, sales of heat pumps
grew to over 20.000 per annum by 2015 [33, 34, 202].
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Heat pump sales in Slovakia have been constrained by the presence of a dense
gas network [34]. There were no investment subsidies for heat pumps prior
to 2015, and retrofitting heat pumps to buildings with existing gas connections
is an unattractive investment; most market potential for heat pumps is in the
new build sector. In the Czech Republic, the findings reveal ground source heat
pumps as economically favourable in RCP8.5 (although gas boilers are more
cost-optimal in the other projections). Investment subsidies were introduced
in the Czech Republic in 2014 and support ground source and air source heat
pumps which achieve a minimum efficiency standard [34].

Technology support policies: northern and western Europe

The findings in this study show that ground source heat pumps are more cost-
optimal in western Europe even under moderate temperature increases, but less
optimal in northern Europe. In a number of western and northern European
countries, a combination of policies have been effectively implemented to stim-
ulate the take-up of heat pumps, including policies to raise technical standards,
promotion and information campaigns and investment subsidies [32]. Up-front
grants have been provided in Austria for consumers to switch from fossil fuel
heating to heat pumps which achieve minimum performance standards based
on the seasonal performance factor [214]. In Denmark, an information campaign
was followed by a subsidy scheme in 2010 to promote the replacement of dilap-
idated oil heaters with energy efficient heat pumps [215]. A subsidy scheme
in Sweden from 2006 to 2010 made up-front grants available for households to
switch from oil heating to heat pumps, district heating or biomass. The entire
budget for this subsidy was used up after the first year of the scheme, with heat
pumps being the most popular replacement for oil heating [204, 216].

Long-term stability of policy support has been an important success factor for
substantial deployment of heat pumps in countries such as Sweden, Switzerland
and Austria, since this increases industry and consumer confidence [32]. Carbon
and fuel taxes represent further instruments capable of incentivising the switch
from fossil fuel heating to low carbon alternatives. Carbon taxes have been
adopted, in particular, by northern European countries since the early 1990s,
including Finland, Norway, Sweden and Denmark [217]. Sweden has the high-
est carbon tax in Europe, which has been increased threefold since 1991 [218].
Separate taxes have also been applied on natural gas heating and heating oil.
Energy and carbon taxes in Sweden have helped to encourage the substitution
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of oil boilers with heat pumps [204, 216].

In Germany, where 54% of households are connected to the gas grid [32], there
were over 700.000 heat pumps in operation in 2015 [202]. This is consistent with
cost-optimal technologies indicated for this country in Figure 4.6: principally
gas boilers in RCP2.6 and RCP4.5, and a mixture of heat pumps and gas boilers
in RCP8.5. Heat pumps have replaced some gas boilers in Germany, but this is
largely restricted to new build homes: the share of heat pumps’ contribution to
primary heating energy increased from 1% of new build homes in 2000 to 27%
in 2017. The equivalent share for natural gas declined from over three quarters
of new homes in 2000 to 39% in 2017 [219].

A combination of building regulations and investment subsidies have helped to
increase the proportion of heat pumps providing heating in new build houses
in Germany [204]. The Market Incentive Programme (MAP) for renewable heat
has made investment grants available since 2008 for the installation of ground-
source and air-to-water heat pumps, linked to minimum seasonal performance
factors [33, 204]. Higher investment grants are available for ground source heat
pumps (given their higher up front costs) in comparison to air source heat pumps.
This policy is in line with the numerical model output which shows ground
source heat pumps as economically favourable in Germany under higher tem-
perature increases, see Figure 4.6. While MAP also offers higher grants for heat
pumps installed in existing homes compared to new builds, the share of heat
pump sales to the retrofit sector has still been decreasing in recent years. This
illustrates that increasing the portion of renewable heat in the existing housing
stock continues to be a key priority [204].

The results indicate that combined air-to-air heat pump/electric boiler systems
are cost-optimal in Norway and Sweden under moderate temperature increases,
see Figure 4.6. In Norway, electricity price rises and investment subsidies for
end users have stimulated the uptake of heat pumps [204]. A subsidy pro-
gramme for householders was introduced in 2003 which covered 20% of the
initial costs for installing air-to-air heat pumps, although this subsidy has since
ended [204, 220]. In 2015 there were approximately 750.000 heat pumps in-
stalled in a third of all households in Norway [221]. In Sweden, over half of
heat pump sales in buildings in 2016 were for reversible air-to-air heat pumps,
which can operate in conjunction with direct electric heating in existing homes
[202, 207, 222]. Swedish building regulations requiring greater energy efficiency
and lower heating demands in new buildings have contributed to the increas-
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ing dominance of air-to-air heat pumps compared to ground source heat pumps
since 2005 [33].

Prospects for heat pumps: lessons from countries with natural gas heating

In this paper, a cost-optimal distribution of decentralised heating technologies
for Europe is presented. The analysis does not reflect how country to country
possibilities for shifting to a more optimal mix of heating technologies are con-
strained by path dependency and lock-in to existing heating infrastructure. Se-
lection and replacement of heating technologies is dependent upon contingent
factors such as the coverage and extent of gas networks, and availability of local
natural resources for fuels and energy sources [32, 196, 204].

Policy support aimed at achieving a transition from gas boilers to heat pumps is
challenging in countries such as the Netherlands and the UK where gas heating
is dominant. Both countries have made very limited progress in substituting gas
heating for lower carbon alternatives. The numerical findings show that ground
source heat pumps are a definitively cost-optimal solution in the UK, see Fig-
ure 4.6. However, the UK has a low uptake of heat pumps compared to many
northern and western European countries. In part this is due to path dependent
developments that led to the emergence of gas central heating as an affordable,
convenient and familiar technology for UK household consumers, which pro-
vides high levels of thermal comfort [196]. There is also a lack of continuous,
coordinated policies on technical standards and promotion of heat pumps in the
UK, leading to poor consumer awareness and low confidence in the technology
[32, 223]. In order to help meet the 5th carbon budget [224], the UK’s Committee
on Climate Change has set a target for at least 2.5 million heat pumps to be in-
stalled in UK homes by 2030, compared to a total stock of approximately 160.000
in 2016 [225].

In contrast to the UK, the Netherlands has ambitious long-term policy targets to
phase out the contribution of natural gas to its heat supply. Figure 4.6 suggests
that in the Netherlands, heat pumps are cost-optimal under climate change sce-
narios. On other hand, approximately 85% of dwellings in the Netherlands use
natural gas for space heating [202]. The dominance of natural gas as a heating
source was cemented after the discovery of extensive local gas reserves in the
Groningen gas field in 1959 [204]. Earthquakes in 2012 caused by gas extraction
from the Groningen gas field led to public protests and the government there-
fore decided to reduce gas production [226]. Depletion of the gas field is also
expected, so that the Netherlands is likely to become a net importer of natural
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gas from 2030 to 2035 [227]. Energy security concerns over the potential future
need to import Russian gas, in addition to climate policy, have also motivated
long-term national goals to seek low carbon alternatives to natural gas [204].
The 2050 Dutch Energy Agenda implies that most of the country’s 6 million
homes currently heated with natural gas will need to be disconnected from gas
supply by 2050 [202, 228]. This is based on a long-term target to reduce CO2-
emission from the residential and commercial heating sector by 80-95% by 2050
[228]. The Dutch government has indicated that electrification could be central
to plans to phase out natural gas heating, and have stated that energy efficiency,
heat pumps and district heating would be three key elements to a low emission
building sector. Strategic decisions will need to be made about the future of the
existing gas grid, in terms of whether it could be utilised as a carrier for alter-
natives to gas such as hydrogen and green gas, or whether it might need to be
decommissioned and replaced [204].

Study limitations

The analyses of this paper are subject to a number of limitations. The main lim-
itation deals with the assumption of constant fuel and technology related prices
across regions and time. As previously stated, this is a simple approximation
which leads to an unrepresentative picture of the real world. However, this is
necessary for performing an objective study of the influence of climate change,
separate from the political and personal drivers, and thus answer the research
questions of this work.

Secondly, the optimisation was limited to only consider cost constraints. Other
important subjects to constrain are the different projections of RCP related CO2-
emission. This limitation suggests that results belonging to otherwise low or
negative CO2-emission scenarios as, e.g., for the end-of-century RCP26 pathway,
should be interpreted with caution. An in-depth analysis of the cost-optimal de-
sign decisions, including CO2-emission constraints, would additionally require
a coupling to the electricity sector. Such an extensive work require a study on its
own.

Then, this study is limited to only consider decentralised heating technologies,
such as small scale fossil fueled boilers or heat pumps. Large-scale centralised
technologies, such as district heating, are also important to consider, but these
are subject to different economic and political considerations, and thus cannot
be thought of as a like-for-like replacement for existing heating systems in all
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countries of Europe. This study can be extended to include these by assigning
heat transportation to densely populated areas as, e.g., cities or suburbs.

A fourth limitation is the relatively low number of climate models that are used
to acquire the results. To the best of the authors’ knowledge no other climate
affected data exists with higher data granularity. If applicable, an identical anal-
ysis can be performed by including more climate data.

The results do not consider the practicality of deploying technologies in differ-
ent countries or locations given the relative coverage of gas or electricity net-
works, natural resource endowments, and the origins of path dependencies in
incumbent heating systems. Therefore, in some countries or areas, certain heat-
ing technologies, even though being cost-optimal, might not be physically fea-
sible to install because of the lack of distribution networks to meet the large
demands for heating [229].

Additionally, this analysis does not account for the costs of network infrastruc-
tures (also given their local availability) required to operate the heating tech-
nologies, i.e. gas and electricity networks. It is recognised that network costs
may vary significantly by location or depending on energy sources and vectors
used to achieve heat decarbonisation [230], and this could have a significant im-
pact on the results in terms of overall system and end user technology costs.
Also, location-specific barriers to technology uptake are not considered, such as
lack of suitable building types or land availability for ground source heat pumps
in urban areas. Together, these constraints could have a significant impact on re-
sults, and are recommended as areas for further study.
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4.5 Conclusions and policy implications

This study set out to determine the cost-optimal design decision for decentralised
heating in European homes. With fixed costs, the climate is allowed to determine
the most economical heating technologies over a timespan of 20 years in a histor-
ical period defined to span the years 1970-1990 and for three end-of-century time
periods defined to span the years 2080-2100. Bias-adjusted high resolution tem-
perature data from 9 combinations of 5 global climate models downscaled by 4
regional climate models under the EURO-CORDEX project, have been adapted
to model the heat demand and supply side. Due to transparency issues on actual
heat consumption data, the theory of heating degree-days is used as a proxy for
the variations in the day-to-day heat demand over 20 years. Notwithstanding
the impact of policies or consumer preferences, it is shown that the climate holds
a vital role in the cost-optimal design of decentralised heating infrastructures in
Europe.

It is found that climate change introduces a decreasing demand for space heat-
ing. This demand is estimated to decrease by approximately 42%, 24% and 16%
in 2100 for the RCP8.5, RCP4.5 and RCP2.6 climate projections, respectively,
compared to the corresponding value in 1970. Peak heating demand may have
been overestimated in the UK for example [231], and can also be expected to
reduce with the implementation of tighter building energy efficiency standards
and a more thermally efficient European building stock by later in the century.
In Europe, current EU and national heat policies and regulations do not appear
to be future-proofed to account for potential long-term changes in heat demand,
and how these changes might affect the optimal mix and economics of decen-
tralised heating technologies. It is recommended that similar to EU mandates for
energy efficiency in buildings, it is important that heat policy frameworks take
a flexible and technology neutral approach that allows for uncertain changes in
heat demand due for example to climate change, energy efficiency policies, or
increased electrification of heating. The calculation in the EU Renewable Energy
Directive, which stipulates a minimum SPF for heat pumps to be considered a
form of renewable energy [199], may also need to be revised to account for the
impact of lower end-use heating load on heat pump performance.

Climate change and cost-optimisation suggest a shift in the decentralised heat-
ing infrastructure from gas boilers to ground source heat pumps, for a majority
of the European countries. This is driven by the two main factors. Firstly, climate
change will increase ambient temperatures and thus improve the efficiency of
heat pumps. Secondly, the diminishing need for space heating means the year-

105



round demand for hot water becomes more important, increasing the utilisation
of heating technologies through the year, thus benefiting heat pumps with their
high upfront, but low ongoing, costs. For many countries this is in correspon-
dence with aggressive policies on increasing penetrations of heat pumps. The
far west and far south European countries are subjected to a high heat load fac-
tor, for which ground source heat pumps serve as economically favourable. As
for the UK, there is a comparatively low uptake of heat pumps, where key bar-
riers to further uptake are a lack of policy continuity and co-ordination and low
consumer confidence and awareness. On the other hand, the Netherlands is de-
veloping ambitious long-term policies to increase the penetration of heat pumps.
Portugal, Spain, Italy and Greece lack policy support for heat pumps, where the
majority of sales are for reversible heat pumps which provide both heating and
cooling. Aggressive policies for substantial deployment of heat pumps are ev-
ident in countries such as Sweden, Switzerland and Austria. For Switzerland,
this is in correspondence with a higher penetration of ground source heat pumps
at the end-of-century time frames in all RCPs. Climate conditions in Sweden
and Austria lead to a marginal increase in the penetration of ground source heat
pumps, while gas fired boilers take the largest technology share. High carbon
taxes in Finland, Norway, Sweden and Denmark are used to pursue a decrease
in the use of fossil fuel heating technologies. Only for Denmark do the climate
conditions align with these policies. The continental climate across eastern Eu-
rope leads to a robust choice of gas boilers as the cost beneficial choice of heating
in all RCPs.

Despite the findings suggesting a wider deployment of ground source heat pumps,
the majority of heat pump sales in Europe over the last decade have been for air
source heat pumps and in particular reversible air-to-air heat pumps which can
provide both heating and cooling [202, 207]. Air source heat pumps tend to be
cheaper and easier to install than ground source heat pumps, and have benefited
from technical improvements, which have raised their efficiency and increased
their suitability to perform effectively in a wider range of climatic conditions
and building types [202].

In general, ground source heat pumps are used to a greater extent in countries
with colder climate zones, e.g., Nordic countries, where the heat source tem-
perature needs to be more stable, although reversible air-to-air heat pumps still
have the highest share of heat pump sales in these countries over the last ten
years [202]. Reversible air-to-air heat pumps dominate sales in warmer, south-
ern Mediterranean countries, where purchases of ground source heat pumps
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are minimal or absent. This overall pattern is by no means universal and the
country-to-country distribution of ground source versus air source heat pumps
is affected by various non-climate related factors affecting consumer uptake of
heat pumps, including upfront costs, building regulations, availability of suffi-
cient space for ground source heat pump components and thermal stores, and
inconvenience caused by installation [202, 232].

It is recognised that national heating policies aimed at decarbonisation should
be designed with respect to a portfolio of technologies, including those not fea-
tured in this analysis, for example district heating or hydrogen. These findings
should therefore not be treated as a policy prescription, and moreover the anal-
ysis focuses on the impact of climate change on technology costs and excludes
a calculation of carbon intensity. This carries the consequence that under higher
temperature increases, gas heating is indicated as a more optimal technology
in a country such as Sweden, which has promoted deep decarbonisation of its
heating sector and where the heat pump market is mature. Meeting the 1.5 °C
target under the Paris Agreement and net zero emission reduction targets imply
a significantly reduced or minimal role for natural gas in the energy mix. Gas
heating could have a role as a bridging technology to low carbon heating for
example through the use of hybrid heat pumps, whereby a heat pump operates
in parallel with a gas boiler.

This study underlines the benefit of accelerating heat pump support policies in
countries such as the UK and Netherlands which depend largely on natural gas
heating. These countries can learn from the experience in northern and west-
ern Europe. While this study points to heat pumps being more cost-optimal in
western Europe under projected climate change, heat pump markets in coun-
tries such as Austria, Switzerland, France and Germany are actually less mature
than in northern Europe. Gas boilers are also identified as being more optimal
in eastern Europe, where in some cases (such as Poland) there may be potential
to displace more carbon intensive coal heating with natural gas heating. One of
the most surprising outcomes of the study is that ground source heat pumps are
identified as suitable solutions in southern Mediterranean countries. This points
to a need for more coordinated policies in these countries to support heat pumps
as a low carbon alternative for heating in buildings, given the current predom-
inance of reversible heat pumps which are also used for air conditioning, and
have emerged largely as a market development in the absence of specific policy
assistance.
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Summary

Anthropogenic activities have already exposed the global climate to significant
change with devastating results. Timely mitigation strategies are therefore im-
portant and can be achieved through cross-vector integration and sector cou-
pling, but time is limited. As a first step towards a carbon neutral energy econ-
omy an investigate into sector coupling is performed by imposing additional
synergy between the European electricity and heating systems. Because of un-
certain outcomes of climate change, three diverse CO2-concentration pathways
from the IPCC AR5 are introduced. Three-hourly time series on the national
wind and solar capacity factors, electricity and space heat consumption, which
were carefully generated from an ensemble of nine climate models, are used
to represent various outcomes of the European climate during the 21st Cen-
tury. Through a techno-economic cost-optimisation, it is found that radical CO2-
constraints are consistent with extreme electrification, which almost doubles the
system costs compared to historical standards. Carbon intensive pathways al-
low for fossil-fuel dominance with significant cost reductions. Independent of
the concentration pathways, the costs of a flexible system coupling are compa-
rable to that of a weak system coupling.
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5.1 Introduction

It is now definite that anthropogenic CO2-emission is the main driver in cli-
mate change [1] leading to increasingly frequent and devastating weather events
around the globe. Mitigation of climate change requires therefore immediate
action, which can be enforced through energy system transformation [2]. 195
member countries of the United Nations Framework Convention on Climate
Change, UNFCC, [233] have recognised this issue to be the ultimate objective
of international climate negotiations. Electrification of end-use sectors is cur-
rently the best known and most feasible solution for rapid decarbonisation [3, 4],
but time becomes a limited factor if increasing degrees of climate change are to
be avoided. Studies even suggest that the energy demand could be met with
pure renewable technology [234, 235]. Electrification of the energy system can
in turn provide additional flexibility, reliability and adequacy. Based on previ-
ous studies the initial hypothesis is that the design of energy systems will change
from traditional fossil fuel dominance where the electricity and heating sectors
are loosely coupled into a fully coupled system [236, 237]. It is expected that a
change in the cost-optimal system design will influence the energy system trans-
formation in the direction of the cost-optimum over a period of about 30 years.
Thus the real-world system is expected to drift towards the cost optimum, but
not to closely resemble it, e.g., due to technology lock-in.

Given this, the benefits of imposing additional synergy between the European
electricity and heating systems are analysed and compared to the alternative
of maintaining today’s pure system coupling, which to some extent might per-
form equally well. However, mitigating climate change is a global collective
work, which today is one of the most difficult social challenges [238], and so
it becomes important to consider a diverse range of climatic outcomes. Infor-
mation on long-term projections of climatic outcomes for the continent of Eu-
rope are contained within the Representative Concentration Pathways [15], RCP,
provided by the Intergovernmental Panel on Climate Change [239], IPCC, on a
yearly time scale from 2000-2100. The transition towards net-zero carbon emis-
sion is represented by the reconstructed concentration pathway 2.6, or RCP2.6
[46], which closely resembles the 2015 Paris Agreement [8] to keep the global
average temperature increase below 2 °C and pursue efforts to reduce the limit
to 1.5 °C. Additionally two reconstructed concentrations pathways are imple-
ment, RCP4.5 [49] and RCP8.5 [56], which contain intermediate and relaxed
CO2-emission targets, respectively. Previous work has shown that the variable
renewable power production and power consumption change by up to 5% com-
pared to historical levels as a consequence of a changing climate [132]. On the
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other hand, climate change is expected to strongly influence the heating sector
via the temperature dependent heat demand [240], and the final systems may
be quite different in different climates. With this in mind, a techno-economic
cost optimisation is applied for the capacity investments and dispatch of energy
producing technologies for each climatic pathway through a new power system
optimisation framework for simulating and optimising modern power systems,
PyPSA, [241].

Initially, a loosely coupled electricity and heating system is designed that serve
as a base-line scenario. Methanisation is the only technology linking the indi-
vidual systems, as shown in Figure 5.1. The produced methane can be used in
all gas-fired technologies. Combustion of pallets and gas are the only ways of
heat generation. The more sophisticated strong coupling, as shown in Figure 5.2,
includes heat pumps, electricity driven boilers and cogeneration of power and
heat. Detailed descriptions of the systems are supplied in the Methods section.
The electricity node is connected to a large-scale transmission system, which
consists of a network of 30 nodes each representing a country of Europe with
50 cross border AC and DC transmission lines operated by members of the Eu-
ropean Network of Transmission System Operators, ENTSO-E. Such a network
was first time introduced in 2010 [109] and modified hereafter [112] and later
commonly used in the literature [132, 242, 243].

Each node is supplied with a carefully generated 3-hourly, national aggregated,
time series on the wind and solar power potential, electricity and heat con-
sumption covering the years from 2000 to 2100. The time series have been gen-
erated on the grounds of cutting edge climate change affected weather data
[132, 240, 179]. Weather data has been supplied from fours regional climate
models, RCM, downscaling five CMIP5 global climate models [61, 180], GCM,
forced by the different climatic pathways provided by the IPCC. This results in
nine high resolution climate models. The data is a final product of the EURO-
CORDEX project [70] and comes with a temporal and spatial resolution of 0.11°
x 0.11° and 3-hours, respectively. Such granularity is important for capturing
regional and temporal weather differences for energy system analysis. Climate
change data with this granularity is suitable for energy system research where
extreme events such as cold winters with low winds are captured [132].

Modelling all sectors of the energy system with highly granular data is computa-
tionally demanding and previous studies have either focused on a few demand
sectors or sacrificed the granularity [237]. The large ensemble of climate models
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in this study adds up to 11200 model years with a real simulation time of about
30 days. This study illustrates the importance of early decision making if the
global average temperature increase is to stay below catastrophic levels.

Although a technical assessment of energy system transformations is used, im-
proved political actions, better economical management or behavioural changes
have to be considered as well and improved [244, 245]. This gap between science
and policy has to be addressed and improved. So far a limited amount of studies
have reported detailed research on the impact of climate change on sector cou-
pled energy system transformations for climate change mitigation [2, 246]. In
general, studies mainly focus on individual sectors as, e.g., heating, electricity,
agriculture, etc. or various political assessments. In one study, transport electri-
fication was introduced to assess the necessary transitions of energy systems for
the transport sector by using the MESSAGE integrated assessment modelling
framework [247]. Several studies argue for an energy system transition towards
a higher consumption of biomass for energy production [248]. Higher penetra-
tions of nuclear [249] and hydro power [250] are options discussed as well as
an energy system transformation towards a low carbon future. Few studies fo-
cus on a transition from high intensity fossil fuel technologies such as, e.g., coal
plants to lower intensity fossil fuels as, e.g., gas plants. The effect of natural gas
on the CO2-emission is not based on the difference between the emission fac-
tors of, e.g., gas and of coal, but on the emission factor of gas relative to that of
a broader basket of energy technologies [251]. Political actions are as well key
elements for energy system transitions. In this regard, a framework of how to di-
agnose possible obstacles for climate change mitigation has been provided [252].
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Figure 5.1: Weak system coupling. Renewable electricity sources (or RES) along with coal and
gas fired power plants (Integrated Coal Gasification Combined Cycle, IGCC and Open Cycle Gas
Turbines, OCGT) are suppliers of electricity. Heat is supplied by combustion of pallets and gas
in boiler technologies. Methanisation is the only technology linking the electricity and heating
systems. Hot water, electricity and gas storage facilities add flexibility to the system.

Figure 5.2: Strong system coupling. Renewable electricity sources (or RES) along with coal and
gas fired power plants (Integrated Coal Gasification Combined Cycle, IGCC and Open Cycle Gas
Turbines, OCGT) are suppliers of electricity. Cogeneration of power and heat (or CHP) supplies
both electricity and heat through combustion of gas, coal and pallets. Heat is supplied by combus-
tion of pallets and gas in boiler technologies. Methanisation, heat pumps and electricity driven
boilers allow for further synergies between the individual systems. Hot water, electricity and gas
storage facilities add flexibility to the system.
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5.2 Experimental procedures

Energy system design

Wind, solar and hydro electricity capacities represent the primary power pro-
duction. The generated electricity is used to cover whole or in part the electric-
ity demand or to feed the bridging technologies. Renewable power production
is to a large extent weather dependent, and issues of intermittency enforces the
use of flexible power plants as OCGT and IGCC. The role of these is to support
renewable power production in meeting the electricity demand. Decentral com-
bustion of pallets and gas are the main sources of heat production. In RCP2.6, as
the only negative emission scenario, direct air capture, DAC, is used to capture
a portion of carbon from the air that corresponds to the negative emissions. The
captured carbon is then stored and not used in any chemical processes. DAC
appears therefore as exogenous to the model. The radical assumption of using
DAC was chosen because other sources could not be guaranteed [237]. In low
emission scenarios as RCP2.6 and RCP4.5, methanisation, which includes both
DAC and chemical processes, is used to counter balance CO2-emission from
conventional power and heat generation. The generated methane is then reused
in gas fired technologies. IPCC has, controversially, assumed systems mainly
based on conventional technologies as coal, gas and biomass fired power plants
as well as nuclear energy. For the low emission scenarios, most of the former
are equipped with carbon capture and storage, CCS. However, many studies of
low emission systems conclude that energy systems based on variable renew-
able energy generation, e.g., wind and solar, are more cost efficient and more
technically feasible than the alternatives. E.g. CCS does not work well yet at
large scale. In addition, decreasing costs of wind and solar energy are currently
making them competitive with conventional energy generation whereas a con-
ventional plant equipped with CCS will naturally always be more expensive
than a conventional plant on its own. As a consequence some cost scenarios will
naturally predict increasing wind and solar generation even in the absence of
political and economical instruments that target low CO2-emission.

Finally, decentralised heat pumps have gained significant political and econom-
ical attention in Europe during the past decade. These have shown to benefit
from the increasing global temperatures throughout the 21st Century, and that
they will dominate the cost optimal generation of heat among decentralised elec-
tricity driven technologies [240]. This makes heat pumps central in defining a
separation between the week and strong coupled energy systems. Electricity
driven boilers are introduced to compete with heat pumps. Cogeneration of
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electricity and heat, CHP, have gained significant potential in energy systems.
Although CHP plants hold a large share of the energy production in the Nordic
countries [253], the remainder of European countries fall severely behind [254].
This gives CHP a central place in defining the difference in the strong and weak
coupled systems. Electricity hot water and gas storages are introduced for both
system types.

Production system optimisation

During the past few decades numerous models on energy systems have emerged.
A majority of these are not adequate to deal with modelling of modern energy
systems [255]. Therefore a new power system optimisation framework for simu-
lating and optimising modern power systems – Python for Power System Anal-
ysis, PyPSA, [241] is adopted. PyPSA include features as vRES, non-vRES tech-
nologies, various forms of storage or sector coupling etc. Since PyPSA is de-
signed to scale well with large networks and long time series it is well-suited for
this analysis. A complete overview of how PyPSA excels from the remainder of
energy system models is provided in [241]. Here, only the main components are
describe. PyPSA solves a linearised optimal problem subject to a minimisation
of the overall system cost.

Renewable generator capacities are all subject to optimisation, though with an
upper capacity limit that is country specific. Conventional generators, storage
capacities, heat generation capacities and transmission capacities are all as well
subject to optimisation. Electricity and heat demand along with the hydroelec-
tricity capacities are not subject to optimisation.

The optimisation objective function is given as:

min
Fl ,Gn,r ,gn,r,t,Hn,s,hn,s,t, f l,t

(
∑
l

clFl+ (5.1)∑
n,r

cn,rGn,r +
∑

n,r,t
on,r gn,r,t (5.2)∑

n,s
cn,sHn,s +

∑
n,s

ĉn,sEn,s +
∑

n,s,t
on,sh+

n,s,t) (5.3)

where Equation 5.1 describes flow cost minimisation, Equation 5.2 heat and
power production cost minimisation and Equation 5.3 storage cost minimisa-
tion. In this minimisation cn,r/s and on,r/s defines the fixed and marginal cost in a
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node n of a certain generator technology r or storage technology s. cl defines the
fixed cost of a cable l. Fl denotes the cable capacities on each cable. Gn,r denote
the generator capacities at each node. The generator capacity is further split into
power and heat technologies. The dispatch energy at time t is denoted by gn,r,t.
Hn,s and Gn,s defines the storage unit power capacities and energy capacities,
respectively, for a storage technology s. Finally, h+

n,s,t defines the positive part of
the storage dispatch.

The objective function is supported by the following constraints for the dispatch
of generators and storage. The dispatch of generators is constrained by their
generator capacities and an upper and lower time-dependent availability gu

n,r,t
and gl

n,r,t, respectively as:

gl
n,r,t ·Gn,r ≤ gn,r,t ≤ gu

n,r,t ·Gn,r ∀n, r, t (5.4)

where gl
n,r,t and gu

n,r,t equals 0 or 1, respectively for a fully flexible generator. The
dispatch of storage units is similarly constrained by a lower and upper availabil-
ity hu

n,s,t and hl
n,s,t, respectively as:

hl
n,s,t ·Hn,s ≤ hn,s,t ≤ hu

n,s,t ·Hn,s ∀n, s, t (5.5)

where hl
n,s,t is negative while hu

n,s,t is positive due to charging and discharging of
the storage. The energy levels en,s,t of all storage units are similarly constrained
as:

el
n,s,t ·En,s ≤ en,s,t ≤ eu

n,s,t ·En,s ∀n, s, t (5.6)

where en,s,t is defined in great detail in [241]. The cable flows f l,t are optimisa-
tion variables but do not appear in the objective function. The flows are as well
constrained by an upper and lower availability f u

l,t and gl
l,t, respectively as:

f l
l,t ·Fl ≤ f l,t ≤ f u

l,t ·Fl ∀l, t (5.7)

CO2-emission constraints

CO2-emission enters the techno-economic cost-optimisation as constraints and
clearly, as shown in the upper plot of Figure 5.3, these represent a broad range
of climate projections. IPCC provides information on CO2-emission on smaller
spatial scales such as the world economic regions. However, an aggregate for the
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individual continents as Europe is not available. Therefore, the CO2-emission
accounted for by the European power and heating sectors have to be estimated.
This is done in two steps. Firstly, these are approximated by the OECD90 (UN-
FCCC Annex I countries) total CO2-emission. This allows for a downscaling
of the world wide CO2-emission to only consider constraints available for the
OECD90 countries, which in turn account for a majority of the European coun-
tries. Secondly, the OECD90 CO2-emission take into account emissions by fos-
sil fuel burning (liquid, gas and solid fuels), industry (combustion and process
emissions [256]) and transportation (bunker fuels) (RCP Database v2.0.5 [257]).
The emissions are then rescaled to align the historical values of European elec-
tricity and heating sector CO2-emission provided by odyssee [144]. The result
is shown in upper plot in Figure 5.3. Due to missing projections of historical
CO2-emission model data, only 5 years were available for the comparison. This
approximation separates the electricity and heating CO2-emission from the re-
maining sectors, removes non-European countries from the OECD90 and adds
missing European countries. To the best of the authors knowledge, this is a
state-of-the-art approximation of the CO2-emission accounted for by the Euro-
pean electricity and heating sectors throughout the 21st Century and no other
approximations are available in the literature. The bottom plot of Figure 5.3
shows the respective temperature increases for Europe in the different projec-
tions.

These constraints are implemented as:

∑
n,r,t

1
ηn,r

wt · gn,r,t · er ≤ COu
2 ↔µCO2 (5.8)

where CO2 constraints are introduced by an upper limit for CO2-emission COu
2 .

er denotes the specific emissions of the technology fuel r and technology effi-
ciency η. wt is a weighting that can be introduced. µCO2 defines the shadow
price of this constraint.

Energy-demand mismatch

Equating the energy and demand assures that all demand dn,t will be satisfied
either by generators and storage or flows f l,t as:∑

r
gn,r,t +

∑
s

hn,s,t +
∑
l

Kn,l · f l,t = dn,t ↔ wt ·λn,t ∀n, t (5.9)
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Figure 5.3: Important reconstructed concentration pathway metrics. Upper plot: Annual CO2-
emission accounted for by the European electricity and heating sectors (EU28 + Norway and
Switzerland). Full drawn curves illustrate emissions provided by the IPCC. The historical,
RCP2.6, RCP4.5 and RCP8.5 projections are shown with black, green, blue and red curves, re-
spectively. The black dotted curve shows CO2-emission accounted for by the European electric-
ity and heating sectors provided by odyssee. Lower plot: Yearly average European temperatures
calculated from the climate model ICHEC-EC-EARTH HIRHAM5 [43, 44].

where Kn,l is the incidence matrix of the network. λn,t is the marginal price
at each bus and guarantees energy conservation at each node by implementing
Kirchoff’s current law. Kirchoff’s voltage law is implemented as well as:∑

l
Cl,c · xl · f l,t = 0 ∀c, t (5.10)

where c defines each independent cycle which is expressed as a direct combina-
tion of cables l by a matrix Clc. xl is the reactance of cable l.

Data

Power production data

The conversion and validation procedures of climate data into country specific
wind power potential (capacity factors) follow a state-of-the-art method [132]
and so only a summary is provided here. The time series of national wind
power potential was constructed by using climate model specific 10m wind
speeds. These were extrapolated to the turbine hub height by using climate
model specific surface roughness lengths. Since the initial time series several
improvements have been made. 1) National wind power potential is now split
into onshore and offshore potential. 2) Previously, a single wind power curve
have been used to represent the conversion procedure regardless of the turbine
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properties. The improved version utilise a range of wind power curves, now
depending on the wind turbine capacity [258]. The wind power potential is val-
idated according to already bias-corrected time series [37].

The conversion and validation procedures of the national solar power potential
are equally presented in [132]. Climate model specific temperature data along
with the incoming and outgoing solar radiation was used in the conversion pro-
cedure. The REAtlas [36] was used to model the solar geometry, account for
diffused radiation, efficiency loss due to temperature and inverter losses. The
validation of the the solar power potential is performed by comparing to al-
ready bias-corrected time series [38].

The upper limits of the onshore and offshore wind power and solar power gen-
erator capacities are fixed to the national specific usable areas. For example,
wind farms are not placed in highly populated areas such as urban areas and
solar PV panels are not build in highly overgrown areas such as forests. [243]
provide a detailed overview of the capacity layouts for the renewable power
production.

Hydroelectricity generators are fixed to their current national capacities. These
are divided into reservoir and run-of-river generators with river inflow, and
pumped hydro storage as pure storage units. These are then concatenated in
time to cover the model time span from 2000 to 2100. [243] details the underly-
ing assumptions of the hydroelectricity generators.

Heat production data – COP

Heat production by heat pumps are governed by the heat pump Coefficient of
Performance, COP, which defines the ratio of the heat output to the amount
of electricity input. The COP is strongly temperature dependent and there-
fore fluctuates accordingly on intra and inter-annual time scales. National-wise
COP time series have therefore been generated by using climate model specific
temperatures. The COPs are calculated by using two empirical formulations
[29, 240], which separates defrost operations at temperatures below 5 °C. A sink
temperature of 55 °C is used [29]. The heat pumps are assumed to be air-source
heat pumps that cover both space heating and hot water demand. These are
favoured due to their straight forward retrofit installations in already existing
buildings.
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Electricity consumption data

The preparation of electricity demand data is presented in great detail in [132]
and so a summary is provided here. National hourly electricity consumption
from 2006-2015 was provided by the European Network of Transmission Sys-
tem Operators for Electricity, ENTSO-E, [40]. In order to remove the inter-
annual trends the time series was detrended linearly to represent a constant
inter-annual consumption. As the main goal of this work is to assess the impact
of climate change on the energy system, any human impacts from the electricity
consumption are avoided. The inter-annual time series is therefore concatenated
to meet the time span from 2000–2100. The electricity consumption was then
corrected for impacts from electrified heating and cooling by using the theory of
degree-days.

Heat consumption data

The decentralised nature of heating means that data on consumption is not read-
ily available and therefore not applicable. The theory of degree-hours is most
frequently used as a best proxy for modelling the variations in the day-to-day
heat demand. For every country, a time series of the heating degree-hours is de-
veloped by using national specific heating threshold temperatures and heating
seasons [240, 179]. For Luxembourg the heating threshold temperature is de-
fined to be 17 °C. The country specific heating threshold temperatures allow the
national climate and culture-specific human heating behaviour to be captured in
the calculation of the heating degree-hours. Furthermore, national non-heating
periods allow for a more realistic representation of the intra-annual allocation of
the heating degree-hours.

The heating degree-hours are straightforwardly converted into national heat de-
mand by multiplying with country specific values of the energy demand for
space heating and hot water use. Estimated values of the national energy con-
sumption for space heating and hot water demand was obtained from the Heat
Roadmap Europe project [41]. Table 5.1 provides an overview of the heating
degree-hours, space heating and hot water demand in units of kJ

HDH·cap and
kJ

hours·cap , respectively. Data for Norway, Switzerland, Serbia and Bosnia & Herze-
govina are not available and average values of neighbouring countries are used
instead.

Prior to the calculation of the heating degree-hours, the temperature data was
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bias corrected by comparing to temperature ground measurements provided
by the European Climate Assessment (ECAD) who provide an interpolation in
space [132, 164]. National temperature profiles are population weighted [191]
to avoid strong impacts from sparsely populated areas as, e.g., northern Scandi-
navia [240].

This study, as the only in the literature apply a consistent method to model
the national day-to-day variability in the heating requirements for all European
countries by making use of country specific heating threshold temperatures and
heating seasons.

Table 5.1: Overview of the national population, heating degree-hours and space heat and hot
water demands. Space heat demand is provided in units of kJ

HDH·cap while hot water demand

is provided in units of kJ
hours·cap . HDH denotes the heating degree-hours and cap denotes the

population.

Country Population
heating degree

hours
Space heat

demand
Hot water
demand

AUT 8557761 56770 500.92 475.42
BIH 3819684 37443 252.20 168.14
BEL 11183411 39733 798.83 455.67
BGR 7112641 45119 216.51 219.55
CHE 8238610 78408 706.51 431.22
CZE 10777060 55573 407.54 427.09
DEU 82562004 43755 690.70 618.22
DNK 5661723 46409 619.28 616.98
EST 1280227 42602 673.26 288.90
ESP 47199069 15256 494.45 500.65
FIN 5460592 69247 629.31 368.77
FRA 64982894 35274 685.85 289.64
GBR 63843856 33400 617.39 522.68
GRC 11125833 27682 377.55 295.50
HRV 4255374 60672 326.28 299.38
HUN 9911396 55390 423.61 277.80
IRL 4726856 21899 1088.55 434.71
ITA 61142221 29354 742.96 385.81
LTU 2998969 59968 278.24 287.77
LUX 543261 65192 782.69 529.53
LVA 2031361 48501 515.21 364.15
NLD 16844195 34204 766.69 392.80
NOR 5142842 51625 576.48 482.61
POL 38221584 58529 339.39 250.52
PRT 10610014 7307 520.07 348.60
ROU 21579201 48768 213.80 175.21
SRB 9424030 54860 252.20 197.39
SWE 9693883 56687 480.86 462.09
SVN 2079085 54083 384.19 415.09
SVK 5457889 53672 333.04 293.66
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Pricing

Fixed technology and fuel costs along with technology properties throughout
the century are assumed. The key problem with this approach is the misrepre-
sentation of the real world fluctuations in prices and properties. Nevertheless,
this approach is necessary in order to convey the research questions of this study.
The reason of using constant prices is to enforce an objective study of the influ-
ence of climate change on future energy systems, separate from political and
personal drivers.

Tables 5.2–5.6 provides an overview of the technology prices and properties. As
the focus of this paper is the impact of climate change on the technology-mix on
a European scale, rather than modelling the technology mix on country scale,
the prices are excluding national taxes and levies, and assumed to be constant
across Europe. This procedure reduces uncertainties from national policies on
taxes and levies.

Table 5.2: Fuel types. Pallets are assumed to be carbon neutral by means of the biomass-carbon
cycle.

Fuel CO2 intensity
tCO2/MWth

Fuel price
e/kWth

Gas1 0.19 21.6
Coal1,2 0.36 8.4

Pallets3 0.00 51
1 Schröder et al. [DIW Data Documen-

tation, 259]
2 Natural Resources Canada [Natural

Resources Canada, 260]
3 Cross Border Bioenergy/European

Biomass Association [Cross Border
Bioenergy/European Biomass Asso-
ciation, 188]
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Table 5.3: Power producing technologies. From left: Lifetime in years, overnight expense in
e/kWel , fixed and operational maintenance expense in percent of the overnight expense and
efficiency.

Technology Lifetime
Yr

Investment
costs e/kWel

FOM
% η

Wind1

onshore
25 1182 2.96 1

Wind1

offshore
25 2506 3.19 1

Solar3 25 575 2.5 1
Hydro1 80 2000 1 0.9
ROR1 80 3000 2 0.9
PHS1 80 2000 1 0.74

OCGT1,4 30 400 3.75 0.39
IGCC1,4 40 1450 3.75 0.45

1 Schröder et al. [DIW Data Documentation, 259]
3 Vartiainen et al. [The true competitiveness of solar PV,

261]
4 Danish Energy Agency and Energinet.dk [DEA, 262]

Table 5.4: Decentral conversion technologies. From left: Lifetime in years, overnight expense
in e/kWel , fixed and operational maintenance expense in percent of the overnight expense and
efficiency.

Decentral
Technologies

Lifetime
Yr

Investment
costs e/kWth

FOM
%

η

Gas boilers5 20 175 2 0.9
Pallet boilers4 20 590 1 0.88

Air source5,6

heat pumps
20 1050 3.5 t

Power to gas5,7

(DAC + methanation)
25 500 3 0.6

DAC5,7 25 200 3 0.4
4 Danish Energy Agency and Energinet.dk [DEA, 262]
5 Palzer [PhD Thesis, Fraunhofer 263]
6 Palzer and Henning [264]
7 Fasihi et al. [265]
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Table 5.5: Central conversion technologies. From left: Lifetime in years, overnight expense in
e/kWel , fixed and operational maintenance expense in percent of the overnight expense, electric
efficiency, power-to-heat ratio of CHP plants in back-pressure operation and the specific electrical
power loss.

Central
technologies

Lifetime
Yr

Investment
costs e/kWel

FOM
% ηel α ξ

CHP gas8 25 900 3 0.55 1.7 0.15
CHP coal8 40 1900 3 0.46 0.75 0.15

CHP pallets8 25 2000 3 0.46 0.75 0.15
8 Dahl et al. [189]

Table 5.6: Storage technologies. The investment cost of the water tank storage is 860e/m3. By
using 40K temperature difference and 1.17 kWh/m3/K it approximates to 18 e/kWh.

Technology Lifetime
Yr

Investment
costs

FOM
%

η

Battery storage9 15 145 e/kWh 0 1
Battery inverter9 20 310 e/kWel 3 0.81

Decentral water
tank storage10,11 20 18 e/kWh 1 τ= 3 d

Decentral water
dis/charging10 0.81

9 Budischak et al. [266]
10 Henning and Palzer [267]
11 Gerhardt et al. [268]
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5.3 Results and discussions

Initially, the overall system costs for the end-century of all climate pathways are
presented. Although the system costs misrepresent the real world price fluc-
tuations, they onset a central discussion on the potential influence of global
parameters such as the weather year and CO2-constraints on the prices. Then
the underlying energy system transformations that lead the overall system costs
are discussed. To this end, the focus is on a single climate model, ICHEC-EC-
EARTH [44] HIRHAM5 [43], but strive that during this time all the other climate
models have been treated equally.

Energy system transitions

The total system costs are presented in Table 5.7 in the form of climate model
ensemble averages along with the corresponding 1σ standard deviations. The
total system cost is defined as a summation of all node-individual costs. Two
major results can be extracted from this table: 1) Independent of the climate
pathways (Historical, RCP2.6, RCP4.5 or RCP8.5), the strong coupling introduce
lower system costs, which is reasoned by the enhanced flexibility of technology
selection and 2) Independent of the system coupling (weak or strong), the end-
century of RCP2.6 is associated with the highest system cost, increasing by more
than 100% compared to historical values. The end-century of RCP4.5 results
in the second most expensive system followed by the end-century of RCP8.5.
Two global attributes of the energy systems are driving the system costs: 1) The
weather, which is determined by the input data and 2) The CO2-constraints. The
potential effect of each is evaluated in an upcoming section, but first the energy
system transitions leading to these system costs are discussed.

Figure 5.4 illustrates the energy flow for each climate pathway in terms of sankey
diagrams. Each sankey diagram show the energy flow of the aggregated Eu-
ropean energy system and is not country-specific. The left and right columns
present the weak and strong system coupling, respectively. The rows represent
the different pathways in the following order: Historical, RCP8.5, RCP4.5 and
RCP2.6. Focusing initially on the historical period, a moderate system change
when transforming towards a strong coupling is observed. In the latter, CHP
plants cover a moderate share of the energy production by replacing the in-
efficient coal plants for electricity production and 20% of the heat production
initially generated by gas boilers. This reduces the system efficiency by almost
50% and therefore lowers the system cost, as seen in Table 5.7. The reduction
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Table 5.7: Total system costs. Model average of the total system costs in billion EUR per year with
1σ standard deviations. The upper half shows the system costs from the weakly coupled system
and lower half shows similarly for the strongly coupled system. The historical column represents
model year 2000 and the RCP columns represent the model year 2100.

historical rcp26 rcp45 rcp85

Weak system coupling

223 ± 7 453 ± 16 253 ± 14 169 ± 8

Strong system coupling

189 ± 7 418 ± 18 228 ± 10 141 ± 7

amounts to 30 billion EUR per year which is 15% of the weak system cost.

Because of system similarities, our next focus is on the end-century of RCP8.5,
shown in the second row of Figure 5.4. RCP8.5, as the only pathway, leads to
a reduced system cost compared to historical values. The system costs reduce
by 25% in both the weak and strong coupled systems relative to historical val-
ues. The cost reduction is first and foremost regulated by the lower heat de-
mand leading to a lower heat production, which is discussed in detail for all cli-
mate pathways by [240]. Secondly, the reduced emission constraints allows coal
plants to replace the more expensive renewable capacities for electricity produc-
tion. The new system comes with a significantly increased energy loss, exclu-
sively reasoned by the ineffective coal plants. Identical to the historical period,
the transition towards a strong coupling introduces a large share of CHP plants,
which replace the coal plants for power production and a significant share of
heat production by gas boilers. This comes with a total system cost reduction of
17% relative to the weak system costs.

A system transition towards the end-century of RCP4.5, reveals a clear change
in the composition of energy producing technologies even though the energy
demand stays relatively unchanged. This modification is predominantly justi-
fied by the moderate CO2-constraints for the end-century of RCP4.5, as will be
discussed in detail in the following section. RCP4.5 is the first pathway that
introduce radical changes to the traditional energy systems by deviating from
fossil-fuel domination, but comes with an increasing cost of 7% and 20% for the
weak and strong system couplings compared to the historical values. In general,
coal fired technologies are eliminated while gas fired technologies are exposed
to significant capacity reductions, which in turn reduces the system loss. The
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power is mainly provided by renewable capacities and covers the electricity de-
mand along with the power supply for the methanisation process. Methanisa-
tion is used to stabilise the system emissions to meet the overall emission con-
straints. The generated methane is already included in the left drawn gas store,
but shown explicitly in the right side of the sankey diagram in order to illustrate
the magnitude. The heat demand is met by decentralised boilers burning exca-
vated gas, methane (generated by the methanisation process) and wood pallets.
Although pallets are expensive they come with the benefit of being CO2-neutral.
The system composition for the strong coupling is slightly modified by replac-
ing pallet boilers with heat pumps and electric boilers which in turn increases
the renewable power production. This transition reduces the system cost by 6%
compared to the weak system cost.

Finally, the extreme CO2-constraints at the end-century of RCP2.6 enforces an
energy system transition similar to the end-century of RCP4.5, but with a more
aggressive approach. This results in a system cost increase of more than 100% for
both system couplings, respectively. It is clear that reaching a stable future with
stable global temperatures requires a costly system transformation. In this case,
the increased renewable capacities along with increasing use of expense pallets
for heat production are the main drivers for the increased system cost. Direct air
capture, DAC, is introduced and used to capture a portion of the atmospheric
carbon that corresponds to the negative emission. As for RCP4.5 where methane
was used to subsidise the heat generation, in this case the gas store to left in the
sankey diagram consist solely of methane that is generated by the methanisa-
tion process. The strong coupling is not significantly different from the weak
coupling in terms of the technology composition. As for the RCP4.5, the transi-
tion towards a strong coupling reduces the system cost by 5%.

In conclusion, it is evident that focusing on reaching a strong system coupling
would give financial benefits of about 15% for the RCP2.6 and RCP4.5. With the
current emerging policies and efforts on climate change mitigation, it is likely
that the end of the 21st Century would experience a climate that is well-defined
by the RCP2.6 or RCP4.5 pathways or a mixture of these. In this regard, it is far
more important to focus on keeping the current coupling between the electricity
and heating sectors and focus more on the transition towards a renewable dom-
inated system, as in the end-century of RCP2.6 and RCP4.5, rather than focusing
on reaching a strong coupling. RCP8.5 shows the benefit of a strong coupling
with a system cost reducing of 25%. However, this is an extremely unlikely
pathway for the end-century and should not be considered in detail.
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Figure 5.4: Sankey diagrams illustrating the energy flow. Left and right columns show the energy flow in the
weak and strong coupled systems, respectively. The first, second, third and fourth rows illustrate the energy
flow in cost-optimal energy systems that are subject to climate conditions from the historical period and to the
end-of-century in the RCP8.5, RCP4.5 and RCP2.6 pathways.
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Figure 5.5: Average system costs in EUR billion per year. Climate model ensemble average of
the total system costs as a function of model year. Shaded regions represent the climate model
1σ ensemble standard deviation. The dashed and fully drawn curves represent the strong and
weak system couplings, respectively. Black, green, blue and red plots represent results from the
historical, RCP2.6, RCP4.5 and RCP8.5 climate pathways, respectively.

Expanded system costs

In the previous section, system costs for the years of 2000 and 2100 were dis-
cussed. In Figure 5.5 these are expanded and present similar values for all model
years. Small standard deviations illustrate a strong agreement among climate
models. A 10 year moving average is used to highlight the long term trends
over annual fluctuations. Certainly, the different climate pathways evolve dif-
ferently throughout the 21st Century. RCP8.5 distinguishes from RCP2.6 and
RCP4.5 as the only pathway with system costs lower than present values. The
climate pathways RCP2.6 and RCP4.5 distinguish them selves from RCP8.5 al-
ready previous to 2020.

Weather vs. CO2-constraints

This section is devoted to an assessment of the potential influence of the weather
and CO2-emission constrains on the energy system costs. The focus is again on
the years 2000 and 2100 as in Table 5.7. The logic behind this assessment is
explained by using the historical time frame (year of 2000) as an example. To as-
sess the impact of CO2-constraints on the system costs, the weather year of 2000
is kept fixed, but exposed to the CO2-constraints from the remaining climatic
pathways. Oppositely, to assess the impact of weather, the CO2-constraint are
fixed to the year of 2000 and expose the weather of the remaining climatic path-
ways to this constraint. This procedure is done for all possible combinations.
The results are shown in Table 5.8. Each of the three sections are made up of em-
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phasised diagonal and off-diagonal values. Values from Table 5.7 are shown in
the diagonal of Table 5.8 and emphasised with bold. As an example, 223 billion
EUR is the system cost for a weak coupling in a historical weather year and with
a historical CO2-constraint. Just below, 469 billion EUR is the system cost for a
weak coupling in a historical weather year but now with a RCP2.6 end-century
CO2-constraint.

In this discussion, the focus is only on the weak system coupling, the upper
section of Table 5.8, but identical statements can be pursued for the strong sys-
tem coupling. By fixing the CO2-constraint as, e.g., for the historical time frame
as in the first row, it is clear that the system cost decreases depending on the
weather of each pathway. This decrease is either governed by the electricity or
the heating sector. In evaluating the potential influence of each, similar results
are presented for a pure electricity sector at the bottom of Table 5.7. It is clear
that for fixed CO2 constraints the system costs change at most by 2%, which
clearly rules out any impacts from the electricity sector. This is a robust result
that directs the focus away from the electricity sector and onto the heating sec-
tor. This result is well-aligned with previous studies [132, 240]. In conclusion,
the system costs are to a high degree independent of the electricity sector, but
partially governed by the changing heat demand due to temperature increases.

Oppositely, by fixing the weather year as, e.g., in column 1, the impact of the
CO2-constraints on the system costs is assessed. It is clear that, for a fixed path-
way, the system costs fluctuate severely. These change significantly, which gives
a robust indication of the substantial impact of CO2-constraints on the system
costs. In this case, it is also important to notice the identical fluctuations for the
pure electricity system.

In conclusion, the change in system costs for a transition towards the end-century
of each pathway is governed by the decreasing heat demand and changing CO2-
constraints. The shares of each fluctuate according to the pathway. The increas-
ing system costs for the end-century of RCP2.6 is strongly affected by the sig-
nificant decrease in CO2-emission. A 16% decrease in the heat demand holds
an insignificant share in the system price. A moderate decrease in the CO2 con-
straints at the end-century of RCP4.5 governs the moderate increase in the sys-
tem costs. The 24% decrease in the heat demand has a moderate share in the
system costs. The system cost for the end-century RCP8.5 is equally regulated
by the increasing CO2-constraints and the 42% decrease in the heat demand.
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Table 5.8: Total system costs. Model average of the total system costs in billion EUR per year with
1σ standard deviations. The upper half shows the system costs from the weakly coupled system
and lower half shows similarly for the strongly coupled system. The "Historical" panes represent
the model year of 1990 and the "rcp" panes represent the model year of 2100. cProj (the columns)
defines the climate projection and year from where weather data has been used. co2 (the rows)
defines the climate projection and year from where co2 constraints have been used.

co2
cProj

historical rcp26 rcp45 rcp85

Weak system coupling

historical 223 ± 7 219 ± 6 200 ± 7 174 ± 8
rcp26 469 ± 10 453 ± 16 415 ± 15 353 ± 27
rcp45 300 ± 15 292 ± 14 253 ± 14 209 ± 14
rcp85 217 ± 8 210 ± 2 193 ± 6 169 ± 8

Strong system coupling

historical 189 ± 7 185 ± 5 167 ± 6 143 ± 7
rcp26 432 ± 13 418 ± 18 381 ± 16 321 ± 29
rcp45 265 ± 16 260 ± 14 228 ± 10 190 ± 13
rcp85 180 ± 7 176 ± 3 162 ± 6 141 ± 7

Electricity only

historical 98 ± 1 99 ± 1 98 ± 1 98 ± 1
rcp26 178 ± 4 179 ± 612 180 ± 5 178 ± 6
rcp45 115 ± 2 117 ± 4 117 ± 2 115 ± 3
rcp85 95 ± 2 93 ± 2 91 ± 1 93 ± 2

Sensitivity analysis

Optimising energy systems through a cost-minimisation exposes the modelling
procedure to a significant weakness that is subject to the cost assumptions. These
might change over the course of the future and the current assumptions might
therefore become unrepresentative of future energy systems. In this study, the
robustness of the results is assessed through a sensitivity analysis on the input
parameters.

To this end, 100 perturbed pricing schemes were generated on the basis of Monte
Carlo trials of the initial fuel and investment cost assumptions, which are shown
in Tables 5.2 – 5.6. The perturbed prices are subject to a random selection from
a normal distribution with a mean and standard deviation equal to the unper-
turbed price and 10% of the unperturbed price, respectively. This ensures a rep-
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Figure 5.6: Price sensitivity of the individual components of the fully coupled system design.
The System category shows the sensitivity of the full system. The Renewables category shows the
sensitivity of all renewable capacities combined. The Pallet, Gas and Coal fired categories combine
all related technologies and show their sensitivity. The Heat pumps category shows the sensitivity
of of heat pumps. Finally, the Methanisation category shows the sensitivity of the methanisation
processes. The black, green, blue and red colors illustrate the historical period, and the end-
century of the RCP2.6, RCP4.5 and RCP8.5 pathways. The boxes in the plots show the 25% and
75% quantile. The center line shows the median. The whiskers show the minimum and maximum
values.

resentative sample of many combinations of perturbed cost assumptions. The
strong coupling is used as a case-study because of the larger ensemble of tech-
nologies. Furthermore, the sensitivity analysis is only applied to the historical
period for the model year 2000 and for all pathways at year 2100.

The results are shown in Figure 5.6 as box plots. The total system costs are
shown in the System category while the remaining categories show the costs of
grouped system components. It is observed that the total system costs (most left
category) in the historical and end-century of RCP8.5 stay relatively unaffected
by a change in the input prices. Oppositely, the system cost at the end-century of
RCP2.6 and RCP4.5 are subject to some price fluctuation. From the Gas Fired cat-
egory, it is clear that the total cost of gas related components stay relatively un-
affected, independent of the climate pathways. Because of strong CO2-emission
constraints, coal is not consumed in the RCP2.6 and RCP4.5 pathways. For the
historical period and the end-century of RCP8.5, the cost of coal related compo-
nents stay as well unaffected. Costs related to pallet combustion and renewable
power production change significantly as a function of input prices. This indi-
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cates that cost competition between pallet fired technologies and power driven
technologies may appear. Finally, it is observed that although the costs of the in-
dividual system components may change significantly depending on the input
prices, the total system costs are affected to a lower extent.
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5.4 Conclusion

It is found that transitions from the current traditional fossil fuel dominated en-
ergy systems towards the end-century in each of the potential climatic outcomes
are strongly affected by the weather and constraints on CO2-emission.

Our modelling of a cost-optimal European energy system reveals an intense use
of conventional power capacities for energy production. About 20% - 50% of the
power production is delivered by coal power plants and co-generation of power
and heat while the remaining is provided by renewable capacities. All heat pro-
duction is delivered by gas boilers or co-generation of power and heat. This
comes with a total system cost between 189 ± 7 and 223 ± 7 billion Euros per
year for the strongly and weakly coupled systems, respectively. Such systems
are furthermore found to be impassive towards fluctuating price assumptions.

Relaxed CO2-constraints at the end-century of RCP8.5 allows for additional en-
ergy production by CO2-intense power capacities compared to traditional sys-
tems - especially by coal fired technologies. Increasing global warming reduces
the need for space heating by about 45% compared to historical values and
thereby reduces the need for heat generation. Taken together, these factors con-
tribute to a lowering of the system cost by 25% compared to the similar for
the traditional system. This type of transition comes with the disadvantage of
designing highly inefficient systems caused by the increased use of ineffective
conventional power capacities. On the other hand, this makes the system less
susceptible towards price fluctuations. Although, this system design is an inter-
esting case study, it is very extreme and unlikely scenario of global warming.

The end-century of RCP2.6 and RCP4.5 lead to significantly different system de-
sign decisions compared to the end-century of RCP8.5. An energy system transi-
tion towards any of these pathways requires a substantial increase in renewable
power capacities to replace the conventional energy production. Moderate CO2-
constraints in RCP4.5 still allows for heat production by gas consumption, but
the emissions have to be stabilised by methanisation. Heat production is sub-
sidised by pallet boilers, which are assumed to be CO2-neutral, heat pumps and
electric boilers. The full electricity demand is exclusively provided by renewable
capacities. Such a system reduces the energy loss by a factor of 2 but increases
the system cost between 7% and 20% compared to traditional values. This sys-
tem is subject to a higher degree of variability of the total system costs.

The end of century in RCP2.6 is subject to the most intense CO2-constraints and

135



thereby eliminating conventional technologies altogether. Gas fired technolo-
gies are still available but consumes methane provided by methanisation. This
system requires direct air capture technologies to capture a portion of the at-
mospheric carbon that corresponds to negative emission. A major share of heat
demand is provided by expensive biomass combustion. Taken together, this
radical energy system transition comes with an increased system cost of more
than 100% compared to traditional values.
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CHAPTER 6

General Conclusion

This dissertation is the final product of a three-years Ph.D. project, outlining my
research into the impacts of climate change on the European electricity and heat-
ing systems. It consists of four research chapters, each representing a study that
is either published, submitted for review or in preparation. Climate science en-
ters this project as a result of using a range of climate projections to represent di-
verse, but plausible outcomes of the 21st century climates. These were provided
by the Intergovernmental Panel on Climate Change in their latest assessment
report. The World Climate Research Programme has developed high-resolution
weather data with built-in information on climate change from these projections.
In continuation of the aforementioned projects, I have applied cutting-edge pro-
cedures to develop 3-hourly state-of-the-art energy system related time series,
which represent the national averaged wind and solar power potential, national
aggregated electricity and heat consumption and national averaged coefficient
of performance of heat pumps. Weather data from nine climate models have
been used to generate nine independent datasets, which span the years from
1970 to 2100. These data form the foundation of this project and are used in all
analyses.

In the first analysis, I show that independent of the level of climate change,
power production from wind and solar sources and power consumption change
at most by 5% compared to historical levels. This study also revealed that to-
day’s design of a highly renewable European electricity system might perform
equally well at the end of this century as of now and that it is more important to
design future electricity systems with a focus on the inter-annual weather vari-
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abilities rather than climate change. This is an important result for this project,
as it implies that the coupling to other sectors is to a large extent unaffected by
changes in the variable renewable electricity production and the electricity con-
sumption. These conclusions are based on analyses of five important metrics
that describe a highly weather dependent electricity system.

Turning to the heating sector, it becomes evident that a lack in monitoring the
historical energy consumption for space heating results in a significant short-
age of open-available data that can be used in research. Estimates that fit the
requirements of this project are as well not available. To this end, I have devel-
oped a coherent method that can be used for this purpose. As a case study, the
method was applied to generate national space heat consumption time series for
the European countries. By taking the national temperature and primary energy
consumption into consideration, the method showed to improve the modelling
of space heating to a great extent compared to existing results.

In the third analysis, I am investigating into the impact of climate change on the
European space heat consumption and into the cost-optimal options for decen-
tralised heat generation. In contrast to the electricity system, the demand and
supply sides of the heating sector are both significantly affected according the
degree of climate change. Energy demand for space heating decrease by up to
40% compared to historical levels. Heat pumps are becoming more economic
viable and more widespread in Europe. These results indicate that the design
of future cost-optimal heating systems look very different from the design of to-
day’s systems. As a consequence, the benefits of a strong coupling between the
electricity and heating systems might look very different in the different out-
comes of climate change. An assessment into the related policies reveals that in
many countries aggressive policies have to be implemented in order to meet the
results of this study.

The core topic of this project deals with an investigation into the extent to which
a stronger synergy between the European electricity and heating systems proves
beneficial compared to a weakly coupled system. I reveal that, independent of
the climate projections, a strongly coupled electricity and heating system re-
duces the system cost by 10% and increases the system efficiency by 50% com-
pared to its loosely coupled counterpart. From an economic standpoint, the
benefits of a fully coupled system are rather small. The energy efficiency in-
creases on the other hand significantly. This is reasoned by the use of more
energy efficient technologies in the strong coupling. Independent of the system
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coupling strengths, climate change has a significant impact on the cost-optimal
design of future energy systems. The total system costs fluctuate from below
30% for the most extreme climate projection to above 90% for the least extreme
projection compared to a historical reference point. These changes are driven by
strong impacts of a changing climate and changing CO2-emission constraints
within the different climate projections. Strict emission constraints allow only
for expensive renewable technologies, biomass combustion and methanisation
facilities to operate, while the opposite allows for the cheaper options of fossil
fuel driven technologies.

The aim of this project was to provide more insight to the impact of climate
change on the European electricity and heating systems. This study makes sev-
eral noteworthy contributions to the existing literature and extends our knowl-
edge within this field. In the following, I summarise each contribution to the
literature in a few sentences. 1) Variable renewable power production and con-
sumption are hardly affected by a changing climate. 2) Space heating is signifi-
cantly affected according to the degree of climate change. 3) Modelling the en-
ergy consumption for space heating by incorporating the weather and primary
fuel consumption has shown improvements compared to the existing literature.
4) Heat pumps become more economic viable and more widespread in Europe
with an increasing degree of climate change. 5) Independent of the climate out-
comes, modest cost-benefits are observed for a strongly coupled European elec-
tricity and heating system compared to the weakly coupled counterpart. Cli-
mate change has on other hand a significantly higher impact on the costs of
designing future coupled systems compared to historical reference values.
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CHAPTER 7

21st century climate change impacts on key properties of a
large-scale renewable-based electricity system

The material in this chapter is the Supplemental Information (SI) for the paper
21st Century Climate Change Impacts on Key Properties of a Large-Scale Renewable-
Based Electricity System. The material is not intended for the regular reader, but
only for other researchers, with special interests. Section 1 provides a general
overview of the climate models that are used in this work along with a short
description on their numerical biases. Section 2 presents the electricity system
modelling and system key metrics. In section 3 the underlying procedures of
the data conversion and validation processes are explained along with the re-
sults. Section 4 presents the methods of correcting the electricity consumption
profiles for impacts from electrified heating and cooling along with the results.
The methods of sections 2, 3 and 4 are straight forward applicable to other stud-
ies. In Section 5, the statistical test that is used for this work is presented. Section
6 presents additional results to the main article.
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7.1 Extended introduction

In this section, the climate models are introduced and how they assist research
on climate change. The need for climate models is explained at first and fol-
lowed by a description of biases that might be introduced due to the underlying
climate assumptions. A short technical description of the local and global mod-
els that are used in this work is presented. After that, the latest generation of
IPCC’s climate projections are explained. In the last section, the data that is
available for this study is presented.

The need for climate models

Studies on the impact of climate change on human and natural systems are
highly dependent on state-of-art mathematical models of climate projections.
These are most commonly built upon assumptions on the average concentra-
tions and emission of heat trapping gases in the atmosphere. The need for in-
formation on climate change is necessary in order to perform timely mitigation
strategies. So far, synoptic scale climate models succeed in representing trends of
large scale weather changes but lacks in describing these on the meso or lower
spatial scales. Meso scale models with high accuracy of prediction are impor-
tant due to climate weirding, which is a term that describes how climate change
may cause local weather to become more unpredictable and extreme in addition
to general increase in average temperature [269, 270]. Regional and global cli-
mate models are a set of models describing the past and present climates on the
meso and synoptic scales, respectively. Below, the most common climate models
known to the literature are described.

General circulations models or global climate models, GCM, are a class of com-
plex mathematical representations of the coupling between atmospheric and
oceanic global climate models, AGCM and OGCM, respectively. AGCM’s con-
sist of a dynamical core which solves the equations of fluid motion for e.g.
surface pressure along with other variables as solar radiation, velocity or the
temperature. Apart from atmospheric components the AGCM’s usually con-
tain a model representing the land surface. Examples of AGCM’s common to
the literature are the Integrated Forecasting System, IFS, made available by the
European Centre for Medium Range Weather Forecasts ECMWF, the ECHAM6
developed at the Max Planck Institute MPI or the Hadley Atmospheric Model
3 HadAM3 available from the Hadley Centre. OGCM’s model the oceans with
fluxes imposed from the atmosphere and may as well contain sea ice models.
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Examples of OGCM’s are the Nucleus for European Modelling of the Ocean
NEMO, the Max Planck Institute ocean model MPIOM or the Hadley Oceanic
Model 3 HADOM3. AGCM’s and and OGCM’s can be coupled forming AOGCM’s
here after denoted as GCM’s.

Most of the current GCM’s run with a spatial resolution of 1° which corresponds
to approximately 110km over Europe. These large scale grid cells are able to
cover vastly differing areas from high mountains to flat coasts. In order to un-
derstand the outcome of future climate projections on smaller scales a down
scaling from the GCM’s to regional climate models RCM’s is needed. A tech-
nique used most commonly is dynamical down scaling, DD, in which outputs
from the driving models, GCM’s, are used as forcing data to provide boundary
and initial conditions for the RCM run [271, 272]. In this regard, the large scale
information from the GCM’s are contained within the RCM domain. The RCM
run is hereby able to simulate meso scale properties on a finer domain. Through-
out this work this process will be referred to as "RCM run GCM forcings". This
method has so far been used in a variety of projects as the Ensembles-based pre-
dictions of climate changes and their impacts ENSEMBLES [273], the Regional
Climate Model Inter-comparison Project RMIP [274], the North American Re-
gional Climate Change Assessment Program NARCCAP [275], the Prediction
of Regional scenarios and Uncertainties for Defining European Climate change
risks and Effects PRUDENCE [276], the Europe–South America network for cli-
mate change assessment and impact studies CLARIS [277], and A COordinated
Regional climate Downscaling EXperiment CORDEX [70, 106] which is used in
this work. The CORDEX experiment provides data with spatial resolution of
0.11° or 0.44° corresponding to approximately 12km or 50km in Europe, re-
spectively. The standard temporal resolutions are 3hr, 6hr, 12hr, monthly.

Biases in global climate models

Although successive research within climate modelling provides comprehen-
sive knowledge on the climate there is still a need for more attention in this
field. Below a brief discussion on biases is presented that are evident within the
climate variables that are important for this study.

The North Atlantic eddy-driven jet stream was investigated with 11 CMIP5
GCMs by evaluating the jet latitudes and wind speeds in a historical run from
1980-2004 [278]. Compared to reanalysis, typical biases between 1° and 2° are
observed in the latitude mean seasonal cycle anomaly for a majority of the GCMs.
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The corresponding seasonal amplitude variations reach up to ±10° for a few
GCMs, which is an over or underestimation of about 5° compared to reanalysis.
But compared to identical CMIP3 GCMs, it is an improvement [279]. In addi-
tion, a slight poleward shift in the jet stream was shown under the IPCC RCP4.5
and RCP8.5 induced global warming during the end of the century [278]. This
is further confirmed for 26 CMIP5 GCMs under the IPCC RCP8.5 emission sce-
nario, which shows a poleward jet shift of approximately 2° in the Southern
Hemisphere and 1° in the North Atlantic and North Pacific [280]. In all GCMs,
the mean seasonal anomaly bias for the jet stream wind speeds is overestimated
for the winter months while the opposite is the case for summer months. A ma-
jority of the GCMs are overestimating the corresponding amplitudes [278]. The
jet wind speed biases are smaller in the CMIP3 GCMs compared to the CMIP5
GCMs [279].

The GCM cloud simulations, which most directly affect the solar energy yield
calculated in our study, remain the major source of inaccuracy in climate pre-
dictions. Total amount of cloud cover, amongst other climate variables, in 27
CMIP5 GCMs was evaluated by comparing to satellite data covering the years
1986-2007 [281]. It is shown that the linear correlation coefficient of the GCM
wise 20 year annual average of the total cloud amount ranges from 0.11 to 0.83
with a root mean square error of 10% to 23%. For CMIP5 experiments, the IPCCs
Fifth Assessment Report AR5 [282] presents a difference of 2% to 3% in regional
changes of cloud fractions for the years 2081–2100 under the RCP4.5 emission
scenario. For the RCP8.5 emission scenario, a difference of 5% to 6% is pre-
sented.

The global radiation budget biases that are most strongly influenced by clouds
are the incomming radiative shortwave flux at the surface along with the out-
going flux at top of the atmosphere and the reflected flux. For a number of
CMIP5 GCMs, regional biases were found to range from −25Wm−1 to more than
30Wm−1 for the incomming flux compared to EBAF-Surface flux radiation prod-
uct for a time period 2000-2010 [283]. The multimodel global area average bias
is reduced by 30% compared to CMIP3 GCMs. Similar findings are evident
for the regional outgoing flux as well as reflected flux with an improvement of
the multimodel global area average bias with a factor of 2 compared to CMIP3
GCM. With these consideration in mind, it is evident that CMIP5 GCMs have
improved since phase 3, although room for further improvement remains. In
this work, the compensation for static biases in the solar energy yield as ex-
plained in the methods section.
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In the present study, surface air temperatures are used to adjust the electrical
demand for changes in heating and cooling needs. The GCM ability to accu-
rately replicate this field is receiving increasing attention. A recent study on the
European domain shows negatively biased winter temperatures in the North
compared to ground observations [76, 77]. Positively biased summer tempera-
tures are observed in the East and Central Europe for 33 CMIP5 GCMs. For the
total European domain, the GCM ensemble mean bias is approximately −1°C±
8°C during winter months. The corresponding values for summer months are
0.5°C± 6°C. Similar trends are found for Northern Eurasia where the winter
and summer periods show the largest biases [78]. Small improvements has been
made since CMIP3 GCMs [79].

Global and regional climate models

EC-EARTH [44] is a coupled global climate and earth system model that was
developed on the basis of the numerical weather prediction model, NWP, of the
European Centre for Medium-Range Weather Forecasts, ECMWF. The compo-
nents of EC-EARTH consist of ECMWF’s atmospheric model IFS, a land model
H-TESSEL [284], an oceanic circulation model NEMO [285] and a sea ice model
LIM [286]. The Integrated Forecasting System IFS cycle31r1, utilises the 3-dim
Navier Stokes equations and uses a spectral method to compute the dynamics
of the atmosphere in each grid-point. A complete description of the IFS specific
cycle31r1 can be found on the website of ECMWF. This model includes Obser-
vation Processing [287], Data Assimilation [288], Dynamics and Numerical Pro-
cedures [289], Physical Processes [290], The Ensamble Prediction System [291],
Technical and Computational Procedures [292] and the Wave model [293]. Mi-
nor changes to the physics parametrisations evolving from a set of later ECMWF
cycles has been utilised in order to optimise the model for climate simulations.
IFS and H-TESSEL are coupled to NEMO and LIM2 by the Ocean Atmosphere
Sea Ice Soil version 3, OASIS [294].

The Hardley Global Environment Model 2 - Earth System, HadGEM2 [63], is a cou-
pled earth system model based on a two stage development from its predecessor
HadGEM1 [295] along with additional improvements as described in [296]. The
components of the HadGEM2 model consist of a land surface exchange scheme
MOSES II [297], a large-scale hydrology module LSH [298] which is based on the
TOPMODEL approach [299], a river scheme based on the TRIP model [300], an
improved representation of the aerosols [301], an atmospheric chemistry com-
ponent based on the UK Chemistry and Aerosols model UKCA [302], a terres-
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trial carbon cycle component which is developed on the basis of the TRIFFID
dynamic vegetation model [303] and a soil carbon model RothC [304], and an
ocean carbon cycle component [63].

The Max Planck Institute Earth System Model MPI-ESM-LR is a coupled earth
system model which consists of the atmospheric circulation model component
ECHAM6 [305] which is development from its predecessor ECHAM5 [306, 307].
A land vegetation model JSBACH [308] and an ocean-sea ice component MPIOM
[309] is implemented as well. The coupling of the atmospheric and oceanic mod-
els is done by OASIS as in EC-EARTH.

HIRHAM5 [43] is a regional atmospheric climate model developed on the basis
of the dynamics used in the High Resolution Limited Area Model HIRLAM7
[310] and the physical parametrisation schemes from the global climate model
ECHAM5 [306, 307]. The set of HIRLAM models are numerical short-range
weather forecasting systems developed by the international HIRLAM program
and used for weather forecasting by numerous meteorological institutes as DMI,
FMI, KNMI, met.no, INM and SMHI. ECHAM5 is a general atmospheric circu-
lation model developed on the basis of the dynamics from ECMWF operational
forecast model cycle 36 and a comprehensive parametrisation package devel-
oped at Hamburg. The full summary of changes of the model cycles of ECMWF
can be seen on the website of ECMFW.

The set of regional climate models RCA are initially based upon the numeri-
cal short-range weather forecasting system HIRLAM [311]. The latest release of
the RCA models, RCA4 [74], includes both physical and technical upgrades in
respect to RCA3 [73]. RCA3 performed substantially well over Europe due to
incorporated European climate parametrisations and compensating errors. The
focus of RCA4 was to create a model that is usable in any domain worldwide
without the need for retuning. In RCA4, the physical parametrisation was im-
proved by including a new global physiography data base amongst other phys-
ical parametrisations.

RACMO2.2 is the latest release of its family of RACMO2 [75] regional climate
models in which the dynamics has not been changed since its predecessor
RACMO2.0 [312]. Certain physics are changed as a new physics package ema-
nating from ECMWF cycle 31r1 has been used.

The climatic version of the COSMO model, CCLM, is a non-hydrostatic regional cli-
mate model developed by the Climate Limited-area Modelling-Community, the
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CLM-Community, which became the regional community model for the Ger-
man climate research in 2005. CCLM is based upon its predecessor Local Model,
LM, of the German Meteorological Service.
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7.2 Extended experimental procedures

Electricity system modelling

The electricity system network topology is composed of 30 nodes with 50 inter-
connecting links as seen in Figure 7.1. Each node, n, represents a country of Eu-
rope. All nodes are supplied by a wind and solar power generation time series,
GW

n (t) and GS
n (t), and an electricity demand time series Ln(t). The country-wise

total renewable electricity generation, GR
n (t), is given in terms of the total wind,

GW
n (t), and solar, GS

n (t), power generation as:

GR
n (t)= γn

(
αnGW

n (t)+ (1−αn)GS
n (t)

)
〈Ln〉t (7.1)

where 〈〉t denotes the time average. The wind-solar mix, αn, and renewable
penetration, γn, are defined as:

αn = 〈GW
n 〉t

〈GR
n 〉t

and γn = 〈GR
n 〉t

〈Ln〉t

αn allows for a any desired mixture of wind and solar power within the total
renewable generation. γn allows for any share of renewable power to cover the
demand. αn = 1 represents a pure wind dominating electricity network while
αn = 0 represent complete solar domination. The instantaneous mismatch be-
tween the renewable electricity generation and the electricity demand

∆n(t)=GR
n (t)−Ln(t) (7.2)

is in most instances non-zero as a consequence of fluctuating weather and con-
sumption [109] in the search for an optimal mixture of wind and solar power in
electricity systems. The more advanced electricity system modelling includes a
balancing response [113], Bn(t), between renewable power and demand along
with a power transmission response [112], Pn(t). Equation 7.3 defines the nodal
balancing equation that has to be fulfilled by all nodes at all time steps:

∆n(t)= Bn(t)+Pn(t) (7.3)

The instantaneous mismatch has to be balanced by power generation or by cur-
tailing renewable power and/or by the means of power transmission response.

Two extremes of nodal coupling are defined. In the first, a limited power trans-
mission introduces nodal independence. The power transmission response, Pn(t),
is consequently zero for all nodes at all time steps:
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Pn(t)= 0 ∀n, t,

From Equation 7.3 it is evident that each node has to sustain its own power
balancing either by subsidising with dispatchable power or curtailing renewable
power. In the second approach, infinite transmission capacities introduce full
nodal coupling. The countries are forced to synchronise their electricity system
balancing response relative to their mean load [113] as:

Bn(t)= 〈Ln〉
Σk 〈Lk〉

Σm∆m(t)

Fixed installed wind and solar capacities

The already presented electricity system modelling approach has to be extended
in order to ensure fixed wind and solar capacities, KW

n and KS
n , for all climate

simulations. In the current approach, the installed wind and solar capacities
fluctuate in time and space according to weather fluctuations presented by the
wind and solar capacity factors, CFW

n (t) and CFS
n (t), as shown by Equation 7.4.

Nodal wind and solar capacities that are fixed in time are then defined by taking
an average of the reference/historical, re f , capacity factors from 1986-2006 for
the HIRHAM5-EC-EARTH climate model as shown in Equation 7.5.

KW
n (t)= γnαn〈Ln〉t

CFW
n (t)

and KS
n (t)= γn(1−αn)〈Ln〉t

CFS
n (t)

(7.4)

KW
n,re f =

γn,re fαn,re f 〈Ln,re f 〉t

〈CFW
n,re f 〉

and KS
n,re f =

γn,re f (1−αn,re f )〈Ln,re f 〉t

〈CFS
n,re f 〉

(7.5)

αn,re f and γn,re f are assumed to be fixed at 0.8 and 1 , respectively, as these
values minimise the need for dispatchable power [114]. Future wind and solar
power generation, GW

n,scen and GS
n,scen, for any time period, scen, are defined as:

GW
n,scen(t)= KW

n,re f ·CFW
n,scen(t) and GS

n,scen(t)= KS
n,re f ·CFS

n,scen(t)

The newly acquired wind-solar mixture, αn,scen, and the renewable penetration,
γn,scen, are defined as:

αn,scen = 〈GW
n,scen〉

〈GW
n,scen〉+〈GS

n,scen〉
and γn,scen = 〈GW

n,scen〉+〈GS
n,scen〉

〈Ln,scen〉
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and the total renewable electricity generation is defined as:

GR
n, scen(t)=GW

n,scen(t)+GS
n,scen(t)

GR
n,scen(t) replaces GR

n (t) in Equation 7.2. Ln(t) is replaced by Ln,scen(t). The
electricity demand profile is corrected for impacts from electrified heating and
cooling as explained in Section 7.2.

Key metrics

The dispatchable electricity, GB
n (t), is extracted from the system balancing response

and is defined as:

GB
n (t)=−min(Bn(t),0)

For an aggregated network topology, the dispatchable electricity is normalised
to the total system-wise load and defined as:

GB =
∑

n〈GB
n (t)〉t∑

n〈Ln(t)〉t

The benefit of transmission, βT , is defined as the absolute difference of the system-
wise backup power, GB, for zero and infinite transmission, T0 and T∞, respec-
tively, as:

βT =GB(T0)−GB(T∞)

The benefit of storage, βS , is defined as the absolute difference of the system
backup power, GB, when calculated by using the original generation-demand
mismatch, ∆n(t), and a 24-hour running average, ∆smoothed

n (t), as:

βS =GB(∆n(t))−GB(∆smoothed
n (t))

The dispatchable capacity, κB, defines the amount of dispatchable electricity that
can be produced at each time step as:
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0.99=
∫ κB

n

0
pn

(
GB

n

)
dGB

n

where pn denotes the probability. By using a 100% quantile of the dispatchable
energy would over estimate the need for backup energy as these events are rare
and occur only in few hours during a year. A 99% quantile is around half as
large. The total system-wise value is a summation over all nodes as:

κB =∑
n
κB

n

The system-wise variability is defined as:∑
n

stdt

(
GB

n (t)−GB
n (t+1)

)
/KW+S

where stdt denotes the standard deviation in time. KW+S denotes the system-
wise installed wind and solar capacities.
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Figure 7.1: Network topology of the European electricity system
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Conversion and validation of energy system related data

Known to the literature, climate models tend to over or underestimate their
data output with different local biases around the globe [313, 314, 315]. Cli-
mate model data is applicable to studies as energy system modelling, but re-
quires calibration in order to meet the weather events for the region of inter-
est. Climate data is used to produce wind and solar capacity factor profiles for
the different countries of Europe. The time series calibration is then performed
on the capacity factors due to their direct use in the electricity system. These
are calibrated according to already bias adjusted wind and solar capacity factor
time series provided by the Renewables.ninja [37, 39]. Renewables.ninja provide
hourly wind capacity factors for the EU-28 plus Norway and Switzerland sim-
ulating the present-day fleet of wind farms and hourly solar capacity factors for
the EU-28 plus Norway and Switzerland, simulating the present-day fleet of PV
farms. The capacity factors are calibrated within the reference/historical period
ranging from 1986 to 2006. The acquired biases are then applied to all future
time periods.

Wind speed to wind power conversion

In this section, the conversion process of the wind speeds into wind capacity
factors is presented. To represent the current country-wise installed wind capac-
ities, the equivalent amount of 3.6MW SIEMENS SWT 107 turbines are placed
at the nearest grid points according to their real sites [35]. Figure 7.3 shows the
real turbine distribution across Europe.

The full conversion procedure is composed of a wind speed extrapolation pro-
cess and wind speed to wind power conversion process, as shown in Figure 7.2.

Figure 7.2: Schematic presentation of the wind speed to wind power conversion procedure.
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This is performed in each grid cell followed by a country-wise aggregation. The
10m wind speeds have been extrapolated to meet the wind speeds at the turbine
hub height of 90m. Vertical extrapolation of wind speeds is most commonly de-
scribed by a logarithmic scaling law in planetary boundary layers, see Equation
7.6, and treats the vertical variation of the mean wind speed, u, as a function of
the height, h, above the ground, the surface roughness length, z0, and the 10m
wind speeds, u10m [316]

Figure 7.3: Wind turbine/fleet sites positioned according to the wind database [35]
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u(h)= u10m ·
ln h

z0

ln 10m
z0

(7.6)

The extrapolated wind speeds are converted into wind power by a smoothed
version of the original wind power curve, shown as the dashed and full drawn
curves, respectively, in Figure 7.4. Essentially, turbines assigned to one grid cell
are not all affected by the same wind speeds. Furthermore, the turbines may
not perform as specified by the manufacturer or some turbines could be out of
operation due to maintenance. To take all effects into consideration a simple
heuristic smoothing function [36], is applied to the original wind power curve.
The smoothed power curve, Psmooth, has been calculated for all wind speeds, v0,
below the cut-out speed as the convolution:

Psmooth(v0)= η

∫ ∞

0
P0(v)Ker(v0,v−∆v)dv (7.7)

Ker(v0,v−∆v)= 1p
2πσ0

e−
1
2

(
(v0+∆v−v)

σ0

)2

The integral of the kernel is normalised to unity and its functional form is a
Gaussian curve with a standard deviation, σ0, and a mean value, v0 +∆v. The
smoothing parameters, ∆v and σ0, determine the shape of the smoothed power
curve. ∆v determines a simple offset in the power production while σ0 deter-
mines the smoothing degree of the original power curve. The country-wise wind
power generation time series have been normalised to the maximum installed
wind power capacity. This normalisation provides the wind capacity factors
which have to be corrected for the bias that appears within the climate models.
The country-wise smoothing parameters are determined during the bias adjust-
ment as explained in the following section.

Wind power calibration

The optimisation problem in Equation 7.8 determines the smoothing parame-
ters by minimising the Kullback-Leibler (KL) divergence between the Renew-
ables.ninja and climate model capacity factors. The KL-divergence is a well
known non-symmetric measure of the difference between two probability distri-
butions. It measures the information lost, when in this context, the climate data
capacity factor profiles are used to approximate the Renewables.ninja profiles.
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Figure 7.4: Wind power curves for the Siemens SWT 107 3600kW turbine. The full drawn curve
represents the original power curve and the dashed curve represents the smoothed power curve
for σ0 = 2.29 and ∆v = 1.27.

In Equation 7.8, CFW
R,q represents a certain quantile, q, of the Renewables.ninja ca-

pacity factor time series while CFW
C,q represents the same quantile for the climate

model time series. The set of σ0 and ∆v that leads to the lowest KL-divergence
are then fixed as the final smoothing parameters an applied to the original wind
power curve. This optimisation is performed for each country in all climate
models. The optimised wind power curve is then used in the conversion pro-
cess for all future periods.

minimise DKL =∑
q

CFW
R,q ln

(
CFW

R,q

CFW
C,q(σ0,∆v)

)
(7.8)

subject to 1≤σ0 ≤ 10

−2≤∆v ≤ 10

Wind power calibration results

Figures 7.5 to 7.10 show the resulting DKL from each minimisation step in Equa-
tion 7.8 as heat maps for all climate models: HIRHAM5-EC-EARTH, RCA4-
EC-EARTH, RCA4-HadGEM2-ES, RACMO22E-EC-EARTH, RACMO22E-
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HadGEM2-ES and CCLM4-MPI-ESM-LR. DKL is normalised to the maximum
occurring value, 325.60, which appears for Luxembourg in the climate model
RCA4-HadGEM2-ES. The black dots indicate the optimal values of σ0 and ∆v
that minimises DKL.

Table 7.1 summarise the resulting DKL from each minimisation step in Equation
7.8. Some countries as e.g. Denmark and Germany indicate a very localised
distribution of DKL and small changes in σ0 and ∆v leads to prominent changes
in DKL. Other countries show a more smoothed distribution in which the same
changes in σ0 and ∆v lead to negligible changes in DKL. In general, DKL for
the regional climate models HIRHAM5 and RACMO22E show a more localised
distribution compared to the respective countries in RCA4 and CCLM4. Wind
time series for Serbia and Bosnia are not available in Renewables.ninja. To attain
σ0 and ∆v for these countries the average of the neighbouring countries was ap-
plied.

Figure 7.11 show a comparison of the climate model historical capacity factors
to the Renewables.ninja capacity factors as qq-plots. The wind capacity factor
profiles from the different climate models compares statistically well to the Re-
newables.Ninja for the majority of the European countries. Few countries, as
Portugal, show results that are either over or under estimating the wind power
profiles, even after the bias adjustment has been performed. As a secondary re-
sult, qq-plots of the wind power increments are shown for the different countries
in Figure 7.12. The method of power curve smoothing, Equation 7.7, is able to
track the wind power increments to a high degree for the majority of countries.

Table 7.2 shows the average values of the wind capacity factors for the different
models and countries. These are furthermore shown as bar plots for each climate
model in Figure 7.13.
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Figure 7.13: Comparison of the average wind capacity factors for the different models within each
country.

170



Solar data to solar power conversion

The conversion procedure of solar data into solar power is shown schematically
in Figure 7.14 and is implemented in the REAtlas [36]. Due to missing literature
on actual PV-sites, one PV panel of type Scheuten215IG is placed in each grid
cell. As for the wind power generation, this process is performed in each grid
cell and followed by a a country-wise aggregation. In the first part of the con-
version procedure, the fraction of diffusive radiation on a horizontal surface is
calculated [317]. Here, the incoming and outgoing short wave radiation and the
2m surface temperatures are used along with the solar position. The amount of
radiation hitting the horizontal surface along with the diffused radiation frac-
tion is then used to calculate the amount of radiation hitting a tilted surface
[318]. The tilted surface irradiation is highly dependent on the PV panel ori-
entations. Due to restricted knowledge on actual orientations, azimuth angles
and tilts are chosen to be Gaussian distributed in order to cover a variety of ac-
tual orientations [39]. Azimuth angles are distributed with a standard deviation
σ = 40 and mean µ = 0 as seen in Figure 7.15a. Panel tilts are distributed with
a standard deviation σ = 15 and mean µ = 25 as seen in Figure 7.15b. Finally,
efficiency losses due to high temperatures are calculated [319]. The inverter effi-
ciency during the conversion from DC to AC signals is assumed to be 90%. The
country-wise aggregated solar power generation time series are nosmalised to
the maximum installed solar power capacity in each country.

Figure 7.14: Schematic presentation of the solar variables solar power conversion procedure.

Solar power calibration

Due to several approximations in the solar conversion process the final solar
capacity factors are adjusted by using the cumulative Weibull distribution as
shown in Equation 7.9. The Weibull adjusted solar capacity factors, CFS

C (t,λ,k),
was separated from the initial solar capacity factors, CFS,pre

C (t) by a superscript,
pre. k>0 is the shape parameter or Weibull slope, and λ>0 is the scale parameter
of the Weibull distribution.
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Figure 7.15: Panel a: Gaussian distribution of the azimuth angles. The values on the figure indi-
cates the probability of a solar panel having a certain azimuth angle. Panel b: Gaussian distribu-
tion of the tilts. The values on the figure indicates the probability of a solar panel having a certain
tilt.

CFS
C (t,λ,k)= 1−exp

−
(

CFS,pre
C
λ

)k

(7.9)

The optimal set of bias adjusting parameters, λ and k, are determined by min-
imising the Kullbak-Leibler divergence as shown in Equation 7.10.

minimise DKL =∑
q

CFS
R,q ln

(
CFS

R,q

CFS
C,q(λ,k)

)
(7.10)

subject to 0.1≤λ≤ 1

1≤ k ≤ 3

The optimal set of k and λ that minimise the KL-divergence is used to Weibull
adjust all future solar capacity factors.

Solar power calibration results

Results from each step of minimisation are shown in Figures 7.16-7.21 for the
models HIRHAM5-EC-EARTH, RCA4-EC-EARTH, RCA4-HadGEM2-ES,
RACMO22E-EC-EARTH, RACMO22E-HadGEM2-ES and CCLM4-MPI-ESM-LR,
respectively. These are normalised to the maximum occurring value, 29938.81,
which is for Portugal in the model CCLM4-8-17_MPI-ESM-LR. The black dots
indicate the optimal values of k and λ for which DKL is minimised.
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Results from each step of minimisation are summarised in 7.3. Across the en-
semble of models, the southern European countries show less variance in DKL

compared to the northern countries. As an example, small changes in k and
λ leads to minor changes in DKL for e.g. Finland whereas similar changes in
k and λ lead to major differences in DKL for Spain. This behaviour is further
visualised in the qq-plots shown in Figure 7.22 comparing the solar capacity
factors from Renewables.ninja and the climate models. Less good fit is seen
in the capacity factors for the South European compared to the North Euro-
pean countries. This behaviour is further pronounced in the capacity factor in-
crements shown in Figure 7.23. Examples of less god fits are seen for Greece
amongst others, whereas fairly good fits are seen for the Norway amongst oth-
ers. The mean values of the capacity factors are shown in Table 7.4. For Greece
as an example, the climate models deviate between 1.7% and 5.8% compared to
Renewables.Ninja. To exemplify a Northern country, the climate models show
deviations from 1.1%-2.3% for Norway compared to Renewables.Ninja. The cli-
mate models RCA4-EC-EARTH and RCA4-HadGEM2-ES generally lead to the
best match in the country-wise capacity factors. Figure 7.24 illustrates the solar
power capacity factors as bar plots.
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Figure 7.24: Comparison of the average solar capacity factors for the different models within each
country.
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Generation of future electricity load time series

Historical consumption data shows that electricity consumption is heavily de-
pendent on the ambient temperatures due to electrification of heating and cool-
ing. To reflect this effect, the theory of Degree Days is applied to estimate the
future electricity demand by combining historical load and temperature data
with future temperature projections from the climate models. This way, the fu-
ture load time series does not only retain temporal fluctuation patterns but also
reflect climate change induced heating and cooling demand variations.

As seen in Figure 1.6 the ambient temperatures show an absolute increase of 2
– 5 °C up to 2100. This can cause major impacts on the electricity usage, conse-
quently power systems, due to less demand for electrical heating in winter and
higher cooling demand in summer.

Degree Days

The theory of degree days are used to quantify the relationship between the am-
bient temperatures and the 3-hourly electricity consumption time series. The
underlying idea, is that, when the ambient temperature increases, the electric-
ity consumption increases as well in order to cover electrified cooling demands.
Oppositely, in winters during cold days the electrified heating demand increases.
In most European countries, due to its high latitudes, summer is mostly not too
hot for air conditioning and more heating utilities are built for cold winters.

The mathematical formulations of the heating and cooling degree hours, Dheating
n

and Dcooling
n , are shown in Equations 7.11 and 7.12, respectively. These are for-

mulated as the temperature exceedance over certain heating and cooling cutoff
values, Theating

cutoff and Tcooling
cutoff , respectively.

Dheating
n (t)=max{0, Theating

cutoff −Tn(t)} (7.11)

Dcooling
n (t)=max{0, Tn(t)−Tcooling

cutoff } (7.12)

Tn(t) is the 3-hourly population-weighted temperature time series for a country,
n. Population densities [320] are shown in Figure 7.25. The cutoff temperatures,
Theating
cutoff and Tcooling

cutoff , equal 10 °C and 18 °C, respectively, which is both empiri-
cal and supported by data.
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Figure 7.25: Temperature at 12 pm January 1st 2016, and population density in CFSR gridded
cells.

The historical temperature is extracted from a high spatial resolution gridded
hourly reanalysis dataset called Climate Forecast System Reanalysis (CFSR) [321],
a product of NOAA. In CFSR, the globe is meshed into 880×1760 raster cells of
the size 40×40km2, and at the center of each, hourly temperature values from
2006 to 2015 at 2m above ground are available. The load time series, on the
other hand, are hourly electricity consumption profiles for 33 European coun-
tries collected from the European Network of Transmission System Operators
for Electricity (ENTSO-E).

The relation between degree hours and the electricity consumption, Ln(t), is rep-
resented by a linear relation as in Equation 7.13.

Ln(t)= β̂0,n + β̂1,nDheating
n (t)+ β̂2,nDcooling

n (t) (7.13)

β̂0,n, β̂1,n, β̂2,n denote the intercept and slopes, respectively, for each country. In
Figure 7.27, the heating degree-day hours and the corresponding electricity con-
sumption are shown for 33 European countries as black dots and blue lines as
model fit based on the slopes and intercepts.

Scandinavian countries, like Sweden, Finland and Norway are characterised
by high slopes and small intercepts. This is attributed to their high latitudes.
Denmark and Iceland does not exhibit good fits as their well-established dis-
trict heating utilities can meet most of the heating demand in winter. The Baltic
countries, Latvia, Lithuania and Estonia exhibit good fits. As for inland coun-
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tries, Austria, Poland, Czech Republic, Slovakia, Bulgaria, Romania and Serbia
all fit the degree hours fairly well. The same holds true for the northern Balkans,
Bosnia& Herzegovina, Croatia and Macedonia. The linear model is not able to
fit the load profile for Greece and Italy, both giving almost horizontal fits in the
linear regression. This is due to their low latitude and warm winters. Special
attention is given to Germany and Hungary, as they are the countries which
heavily rely their heating on natural gas. This constitutes approx. 40% and 70%
of the demand, respectively. Hence, the electricity consumption in winter fits
poorly with degree hours.

Identify heating power in historical load time series

The coefficients of the linear regression, β̂0,n, β̂1,n and β̂2,n, are used to identify
the fraction of electricity used for heating and cooling at each time step depend-
ing on the ambient temperature in that hour.

Take the example of a Nordic country as Finland, Figure 7.28 shows a clear linear
fit, where the points are closely distributed around the fitting line. An intercept
of 0.85 means that when temperature drops below 10 ◦C in Finland, 15% of the
load can be attributed to heating demand on average, which is called the heating
power.

Given the population-weighted temperature time series and combining Equa-
tions 7.11, 7.12 and 7.13, a heating, Lheating

n , and cooling power, Lcooling
n , time

series can be determined by:

Lheating
n (t)= β̂1,nDheating

n (t) (7.14)

Lcooling
n (t)= β̂2,nDcooling

n (t) (7.15)

In Figure 7.29, the time series (averaged over 3-day windows for better visuali-
sation) of population-weighted temperatures (red), original load (blue) and base
load Lbase(t) (green) is shown, which is defined by:

Lbase
n (t)= Ln(t)−Lheating

n (t)−Lcooling
n (t). (7.16)

It is clear that, whenever the ambient temperature drops below 10 ◦C, there are
difference between the original and base load, and the lower the temperature,
the greater the differences be. The same procedure was applied to 33 European
countries and their base load are plotted in Figure 7.30. Resulting time series

187



Jan
2011

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
5

6

7

8

9

10

11

12

13

14

3-
da

y
av

er
ag

ed
Lo

ad
[G

W
h]

Finland 2011 Original load
2011 Base load
2100 Future Load

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
ti

on
-w

ei
gh

te
d

am
bi

en
tt

em
pe

ra
tu

re
[◦

C
]

Figure 7.26: 3-day averaged 2011 historical, 2011 base and modelled future load time series for
Finland.

show that, Greece and Italy are mostly affected by summer cooling demand.

Future load time series based on CORDEX temperature

By using the climate model temperatures, the future electrical heating and cool-
ing consumption using the degree-hour theory are estimated. Then, the future
load time series is determined by combining its terms β̂1,nDfuture−heating

n (t), β̂2,n,
Dfuture−cooling

n (t) and the 2011 base load:

Lfuture
n (t)= Lbase

n (t)+ β̂1,nDfuture−heating
n (t)+ β̂2,nDfuture−cooling

n (t),

in which Dfuture−heating
n (t) and Dfuture−cooling

n (t) are calculated in the same way
as Equations 7.11 and 7.12, except that future ambient temperature time series is
used instead.

In Figure 7.26, the example of Finland is taken again to show the differences
among the historical load in 2011, base load 2011 and future load in sample
year 2100 in the climate projection rcp8.5 within the climate model ICHEC-EC-
EARTH-HIRHAM5. It is clear that, with future temperature increases, Finland
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exhibits significantly lower electricity demand in winter and summer load re-
mains intact.

Among the 33 countries studied, the majority share the same trend as Finland,
with decreased electricity demand during winter but with summer demand un-
changed. Greater load drop in winter is seen in northern countries, such as
the Scandinavians and the Baltic countries. Also slightly more cooling power is
needed in summer for Greece and Italy due to projected higher summer temper-
atures. Iceland, Macedonia and Montenegro give no future load since they are
not covered by this work.

189



Fi
gu

re
7.

27
:L

in
ea

r
re

la
ti

on
s

be
tw

ee
n

no
rm

al
is

ed
el

ec
tr

ic
it

y
lo

ad
an

d
he

at
in

g
de

gr
ee

ho
ur

s
in

33
Eu

ro
pe

an
co

un
tr

ie
s.

190



−10 0 10 20 30 40 50

Degree hours [◦C]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

no
rm

.E
lL

oa
d

FinlandSlope: 0.0171
Intercept: 0.85
Score: 0.65

Figure 7.28: Linear relation between normalised electricity consumption and heating degree
hours in Finland.
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Figure 7.29: 3-day averaged electricity load, base load and population-weighted ambient temper-
ature for Finland in 2011.
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7.3 Statistical tests

To test if the key metrics for historical or/and end-of-century electricity sys-
tems are significantly different from one another the independent two-sample
Welch’s test [322] is evaluated in two different ways. The independent two-
sample Welch’s test is an extension of the Student’s t-test [323]. Unlike the for-
mer, which assumes equal sample sizes and equal variance of the sample dis-
tributions, the latter is designed to deal with unequal sample sizes and data
distribution variances. Although the property of unequal sample sizes is not
necessary for this approach different sample variances are assumed. Welch’s
test statistic is calculated as:

t = µX1 −µX2√√√√σ2
X1

nX1

+
σ2

X2

nX2

where the subscripts denote data samples, µ the sample mean, σ sample vari-
ance and n the sample size.

In the first approach, the corresponding p-value is estimated by simple table
lookup. The degrees of freedom are approximated by the Welch-Satterthwaite
equation [322]. In the second approach, bootstrapping is used with replacement
on random sampling in accordance to [324]. Both test evaluations test if the
mean of the populations over a time period has changed. This is observed in the
t-test statistic which explores the difference in the population average.

Data samples are prepared by calculating 20 yearly averages of the key metrics
for a historical period from 1986-2006 and for an end-of-century period from
2080-2100 for each of the climate models.

194



7.4 Additional results

In this section, additional results to the article are presented. Table 7.5 is an
extension of Table 2.1 from Chapter 2, showing the average values and one
σ standard deviation of the annual values for wind and solar power genera-
tion and the electric consumption for all climate models. All variables are nos-
malised to the historical values in the climate model HIRHAM5-EC-EARTH.
This gives an average value of 1 for all variables in the historical period within
HIRHAM5-EC-EARTH. Across all climate models, the average annual wind and
solar power production and electric consumption decreases slightly towards the
end of the century.

Table 7.6 shows the t-statistic evaluations of the change in 20 year average pop-
ulations of the wind and solar power production and the electric consumption
from the different climatic periods. The p-values for the t-statistic have been
evaluated by two methods as described in Section 7.3. For both evaluations of
the t-statistic, the annual demand and annual solar capacity factors can both be
considered different for the different climate projections due to p-value scores
lower than 5% in a vast majority of the test results. The statistical difference
in the wind capacity factors, on the other hand, is inconclusive when testing
between the historical period and end-of-century periods. The wind capacity
factors cannot be considered different in the ensemble of end-of-century periods
due to high p-score values in most cases.

Figure 7.32 shows the evolution of the nosmalised wind and solar power gener-
ation and the electric consumption as a function of model year for HIRHAM5-
EC-EARTH. For all variables, a slight decrease is seen towards the end of cen-
tury. The one σ standard deviations for wind and solar power generation are
higher compared to the respective values for electric consumption. This reflects
the nature of the high variance in the wind speeds and incoming short wave ra-
diation as a product of the climate models. The smaller standard deviations for
the electricity consumption reflects a fairly stable temperature increase during
the 21st century.

Table 7.7 shows similarly the t-statistic evaluations of the change in 20 year av-
erage populations of the key metrics resulting from the different climate pro-
jections. The p-values for the t-statistic have been evaluated by two methods
as described in Section 7.3. The wind-solar mix and renewable penetration are
fixed at 0.8 and 1, respectively. In most cases for both test evaluations, the distri-
butions of annual scores cannot be assumed to come from different underlying

195



distributions due to p-value scores fairly higher than 5%. The null-hypothesis
that climate change has no impact on the key metrics cannot be rejected with
a 95% confidence in this case. As stated in the article, a wind solar mix of 0.8
forces high wind domination into the system and consequently results in rela-
tively high uncertainties.

Figures 7.33 - 7.38 show the evolution of the dispactable electricity, benefit of
transmission, dispatchable capacity and the short-term variability as a function
of model year for the climate models. As in Table 7.7, the wind-solar mix and re-
newable penetration are fixed at 0.8 and 1, respectively. None of the key metrics
show a gradual transition from the historical period towards the end of century.
The disptachable electricity, benefit of transmission and storage, dispatchable
capacity and variability does not show a gradual transition from the historical
reference point and towards the end of the century for all climate models. The
key metric pathways tend to cross multiple times during the model years and a
diverse impact on the electricity system as a consequence of the different climate
projections can be rejected.
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Table 7.5: Average values and one σ standard deviation of the annual wind and solar power generation and
the electric consumption values for the historical calibration period (1986-2006) and the end-of-century period
(2080-2100) for all climate models. All values have been nosmalised to the corresponding values spanning the
period 1986 to 2006 for HIRHAM5-EC-EARTH.

HIRHAM5-EC-EARTH
Historical RCP2.6 RCP4.5 RCP8.5

〈W〉20yr 1.00±0.03 0.98±0.02 0.99±0.04 0.96±0.03
〈S〉20yr 1.00±0.01 0.99±0.02 0.98±0.02 0.97±0.03
〈L〉20yr 1.000±0.005 0.995±0.003 0.992±0.005 0.986±0.003

RCA4-EC-EARTH
Historical RCP2.6 RCP4.5 RCP8.5

〈W〉20yr 1.01±0.03 0.99±0.03 0.98±0.03 0.97±0.04
〈S〉20yr 0.99±0.03 0.97±0.02 0.95±0.02 0.93±0.03
〈L〉20yr 1.005±0.006 0.999±0.005 0.993±0.004 0.987±0.003

RCA4-HadGEM2-ES
Historical RCP2.6 RCP4.5 RCP8.5

〈W〉20yr 1.01±0.04 0.98±0.03 0.99±0.04 0.97±0.03
〈S〉20yr 1.00±0.02 0.96±0.03 0.94±0.03 0.92±0.02
〈L〉20yr 1.00±0.005 0.995±0.004 0.993±0.006 0.989±0.003

RACMO22E-EC-EARTH
Historical RCP2.6 RCP4.5 RCP8.5

〈W〉20yr 0.97±0.02 N.A 0.97±0.03 0.98±0.03
〈S〉20yr 1.00±0.02 N.A 0.98±0.02 0.96±0.02
〈L〉20yr 1.007±0.004 N.A 0.996±0.005 0.990±0.003

RACMO22E-HadGEM2-ES
Historical RCP2.6 RCP4.5 RCP8.5

〈W〉20yr 0.97±0.03 0.98±0.03 0.99±0.04 0.98±0.03
〈S〉20yr 1.00±0.03 0.99±0.03 0.98±0.04 0.96±0.03
〈L〉20yr 1.008±0.006 1.001±0.006 0.997±0.006 0.992±0.004

CCLM4-MPI-ESM-LR
Historical RCP2.6 RCP4.5 RCP8.5

〈W〉20yr 0.98±0.02 N.A 0.97±0.03 1.00±0.04
〈S〉20yr 1.00±0.02 N.A 0.98±0.02 0.92±0.03
〈L〉20yr 1.000±0.004 N.A 0.996±0.003 0.990±0.004
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Table 7.6: Welch t-statistic p-values for the average wind and solar power along with consumption for the dif-
ferent climate scenarios within each climate model. p-values in front of "/" are evaluated by table lookup while
values after "/" are evaluated by bootstrapping. Shaded p-values indicate values below the significance level of
5%. 0.00 indicates values smaller than 10−4

HIRHAM5
EC-EARTH

RCA4
EC-EARTH

RCA4
HadGEM2-ES

RACMO22E
EC-EARTH

RACMO22E
HadGEM2-ES

CCLM4
MPI-ESM-LR

Wind

hist-rcp26 0.01/0.00 0.05/0.05 0.03/0.02 N.A 0.88/0.88 N.A
hist-rcp45 0.19/0.18 0.01/0.02 0.19/0.16 0.36/0.36 0.25/0.32 0.24/0.32
hist-rcp85 0.00/0.00 0.00/0.00 0.00/0.00 0.83/0.83 0.38/0.50 0.11/0.13

rcp26-rcp45 0.41/0.50 0.59/0.60 0.48/0.50 N.A 0.29/0.37 N.A
rcp26-rcp85 0.12/0.15 0.10/0.08 0.22/0.25 N.A 0.77/0.43 N.A
rcp45-rcp85 0.05/0.03 0.20/0.14 0.10/0.12 0.32/0.36 0.69/0.70 0.02/0.01

Solar

hist-rcp26 0.56/0.63 0.02/0.01 0.00/0.03 N.A 0.27/0.30 N.A
hist-rcp45 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.01 0.03/0.04 0.00/0.00
hist-rcp85 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.01 0.00/0.00 0.00/0.00

rcp26-rcp45 0.04/0.05 0.00/0.00 0.05/0.03 N.A 0.26/0.41 N.A
rcp26-rcp85 0.01/0.01 0.00/0.00 0.00/0.00 N.A 0.00/0.00 N.A
rcp45-rcp85 0.31/0.30 0.00/0.00 0.03/0.03 0.01/0.01 0.12/0.14 0.00/0.00

Load

hist-rcp26 0.00/0.00 0.00/0.00 0.00/0.00 N.A 0.00/0.00 N.A
hist-rcp45 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
hist-rcp85 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00

rcp26-rcp45 0.04/0.03 0.00/0.00 0.03/0.05 N.A 0.00/0.00 N.A
rcp26-rcp85 0.00/0.00 0.00/0.00 0.00/0.00 N.A 0.00/0.00 N.A
rcp45-rcp85 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
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Figure 7.32: Evolution of the nosmalised wind power production, solar power production and
electric consumption as a function of model year for HIRHAM5-EC-EARTH. The historical period
covers 1996–2006 (black), and the future scenarios RCP2.6 (green), RCP4.5 (blue) and RCP8.5 (red)
cover the years 2006–2100. The averages of the annual values are indicated with fully drawn lines,
and the corresponding ranges of the one sigma standard deviation are shown with shaded areas.
All key metrics are unit less as described in the methods section.
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Table 7.7: Welch t-statistic p-values of the key-metrics for the different climate scenarios within each climate
model. p-values in front of "/" are evaluated by table lookup while values after "/" are evaluated by bootstrap-
ping. Shaded p-values indicate values below the significance level of 5%. 0.00 indicates values smaller than
10−4.

HIRHAM5
EC-EARTH

RCA4
EC-EARTH

RCA4
HadGEM2-ES

RACMO22E
EC-EARTH

RACMO22E
HadGEM2-ES

CCLM4
MPI-ESM-LR

Dispatchable electricity

hist-rcp26 0.07/0.06 0.16/0.10 0.02/0.00 N.A 0.78/0.75 N.A
hist-rcp45 0.38/0.38 0.06/0.04 0.25/0.27 0.16/0.21 0.29/0.35 0.23/0.19
hist-rcp85 0.01/0.01 0.00/0.01 0.00/0.00 0.80/0.83 0.93/0.89 0.61/0.60

rcp26-rcp45 0.44/0.48 0.74/0.67 0.32/0.33 N.A 0.19/0.23 N.A
rcp26-rcp85 0.51/0.60 0.10/0.11 0.20/0.20 N.A 0.72/0.75 N.A
rcp45-rcp85 0.18/0.11 0.13/0.08 0.05/0.04 0.24/0.21 0.33/0.36 0.12/0.14

Benefit of transmission

hist-rcp26 0.04/0.05 0.70/0.60 0.86/0.86 N.A 0.73/0.76 N.A
hist-rcp45 0.43/0.40 0.27/0.25 0.81/0.75 0.31/0.34 0.35/0.37 0.56/0.57
hist-rcp85 0.02/0.04 0.01/0.00 0.12/0.08 0.69/0.61 0.33/0.27 0.01/0.02

rcp26-rcp45 0.29/0.28 0.19/0.19 0.93/0.93 N.A 0.53/0.50 N.A
rcp26-rcp85 0.83/0.78 0.01/0.01 0.15/0.10 N.A 0.53/0.49 N.A
rcp45-rcp85 0.20/0.20 0.08/0.03 0.24/0.24 0.50/0.39 0.92/0.93 0.00/0.00

Benefit of Storage

hist-rcp26 0.00/0.00 0.58/0.64 0.00/0.01 N.A 0.51/0.51 N.A
hist-rcp45 0.80/0.84 0.01/0.02 0.00/0.00 0.00/0.00 0.05/0.08 0.00/0.00
hist-rcp85 0.30/0.32 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.01 0.00/0.00

rcp26-rcp45 0.00/0.00 0.02/0.00 0.06/0.05 N.A 0.23/0.29 N.A
rcp26-rcp85 0.03/0.04 0.00/0.00 0.00/0.00 N.A 0.02/0.04 N.A
rcp45-rcp85 0.26/0.26 0.01/0.01 0.03/0.03 0.05/0.05 0.37/0.30 0.00/0.00

Dispatchable Capacity

hist-rcp26 0.21/0.21 0.41/0.33 0.08/0.12 N.A 0.62/0.67 N.A
hist-rcp45 0.73/0.72 0.86/0.88 0.89/0.87 0.27/0.27 0.21/0.22 0.89/0.90
hist-rcp85 0.61/0.58 0.27/0.22 0.08/0.07 0.73/0.68 0.35/0.30 0.38/0.38

rcp26-rcp45 0.10/0.05 0.39/0.48 0.07/0.09 N.A 0.32/0.21 N.A
rcp26-rcp85 0.38/0.34 0.72/0.77 0.96/0.96 N.A 0.56/0.61 N.A
rcp45-rcp85 0.36/0.33 0.25/0.30 0.07/0.09 0.10/0.10 0.66/0.71 0.40/0.39

Short-term variability

hist-rcp26 0.00/0.00 0.30/0.26 0.15/0.14 N.A 0.78/0.82 N.A
hist-rcp45 0.67/0.67 0.54/0.59 0.98/0.97 0.81/0.83 0.10/0.12 0.35/0.27
hist-rcp85 0.02/0.02 0.44/0.37 0.15/0.17 0.08/0.06 0.21/0.22 0.03/0.03

rcp26-rcp45 0.01/0.00 0.59/0.67 0.16/0.13 N.A 0.20/0.24 N.A
rcp26-rcp85 0.21/0.19 0.84/0.81 0.95/0.96 N.A 0.39/0.35 N.A
rcp45-rcp85 0.11/0.16 0.78/0.85 0.17/0.17 0.17/0.17 0.52/0.60 0.01/0.01
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Figure 7.33: Evolution of the key metrics as a function of model year for the climate model
HIRHAM5-EC-EARTH. The historical period covers 1996–2006 (black) and the future scenarios
RCP2.6 (green), RCP4.5 (blue) and RCP8.5 (red) covers the years 2006–2100. The 20 year averages
of the annual values are indicated with fully drawn lines, and the corresponding ranges of the one
sigma standard deviation are shown with shaded areas. All key metrics are unitless as described
in the methods section.
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Figure 7.34: Evolution of the key metrics as a function of model year for the climate model
RCA4-EC-EARTH. The historical period covers 1996–2006 (black) and the future scenarios RCP2.6
(green), RCP4.5 (blue) and RCP8.5 (red) covers the years 2006–2100. The 20 year averages of the
annual values are indicated with fully drawn lines, and the corresponding ranges of the one sigma
standard deviation are shown with shaded areas. All key metrics are unitless as described in the
methods section.
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Figure 7.35: Evolution of the key metrics as a function of model year for the climate model RCA4-
HadGEM2-ES. The historical period covers 1996–2006 (black) and the future scenarios RCP2.6
(green), RCP4.5 (blue) and RCP8.5 (red) covers the years 2006–2100. The 20 year averages of
the annual values are indicated with fully drawn lines, and the corresponding ranges of the one
sigma standard deviation are shown with shaded areas. All key metrics are unitless as described
in the methods section.
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Figure 7.36: Evolution of the key metrics as a function of model year for the climate model
RACMO22E-EC-EARTH. The historical period covers 1996–2006 (black) and the future scenarios
RCP2.6 (green), RCP4.5 (blue) and RCP8.5 (red) covers the years 2006–2100. The 20 year averages
of the annual values are indicated with fully drawn lines, and the corresponding ranges of the one
sigma standard deviation are shown with shaded areas. All key metrics are unitless as described
in the methods section.
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Figure 7.37: Evolution of the key metrics as a function of model year for the climate model
RACMO22E-HadGEM2-ES. The historical period covers 1996–2006 (black) and the future sce-
narios RCP2.6 (green), RCP4.5 (blue) and RCP8.5 (red) covers the years 2006–2100. The 20 year
averages of the annual values are indicated with fully drawn lines, and the corresponding ranges
of the one sigma standard deviation are shown with shaded areas. All key metrics are unitless as
described in the methods section.
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Figure 7.38: Evolution of the key metrics as a function of model year for the climate model CCL4-
MPI-ESM-LR. The historical period covers 1996–2006 (black) and the future scenarios RCP2.6
(green), RCP4.5 (blue) and RCP8.5 (red) covers the years 2006–2100. The 20 year averages of
the annual values are indicated with fully drawn lines, and the corresponding ranges of the one
sigma standard deviation are shown with shaded areas. All key metrics are unitless as described
in the methods section.
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CHAPTER 8

Estimating country-specific space heating threshold
temperatures from national consumption data

The material in this chapter is the Supplemental Information (SI) for the paper
Estimating country-specific space heating threshold temperatures from national con-
sumption data. The material is not intended for the regular reader, but only for
other researchers, with special interests. Section 1 provides a general overview
of the gas and electricity consumption data that is used in this project. Section 2
presents additional results.
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8.1 National electricity and gas consumption data

In Figures 8.1 and 8.2 the national electricity consumption data for the countries
that are used as case studies in this work are presented. The data spans from ear-
liest 2006 to 2018. A few countries as, Austria, Switzerland, Denmark, United
Kingdom show anomalies in the data. For Denmark and United Kingdom these
were avoided by having data provided by national sources. For Austria data
between 2006-2011 are not taken into consideration. For Switzerland data from
2015-2018 are not taken into consideration.

In Figures 8.3 and 8.4 the national gas consumption data for the countries that
are used as case studies in this work are presented. The data spans from 2008 to
2018. The black plots show the gas consumption data provided by Eurostat. For
a few countries, gas consumption data is available from the ENTSO-G trans-
parency platform (red plots). For the available years these show a satisfying
comparison. Gas consumption data from national sources is available for Den-
mark and United Kingdom (dashed green plots).

8.2 Additional results

Figures 8.5-8.7 illustrate the synergy between the monthly averaged air tem-
perature measurements (blue curves), the heating threshold temperatures (red
dashed lines) and the classified summer seasons (hatched areas) for countries
that possess air temperature measurements.
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Figure 8.1: Monthly electricity consumption in TWh from earliest 2006 to 2018. Black plots illus-
trate electricity consumption data from ENTSO-E. Dashed green plots illustrate electricity con-
sumption data provided by national sources.
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Figure 8.2: Monthly electricity consumption in TWh from earliest 2006 to 2018. Black plots illus-
trate electricity consumption data from ENTSO-E.
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Figure 8.3: Monthly gas consumption in TWh from 2008 to 2018. Black plots illustrate gas con-
sumption data from Eurostat. Red plots illustrate gas consumption data that is available through
ENTSO-G’s transparency platform. Dashed green plots illustrate data provided by national
sources.

211



Figure 8.4: Monthly gas consumption in TWh from 2008 to 2018. Black plots illustrate gas con-
sumption data from Eurostat. Red plots illustrate gas consumption data that is available through
ENTSO-G’s transparency platform.
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Figure 8.5: Monthly averaged temperatures from 2008 to 2017 (blue full drawn curves) with
1 sigma uncertainty ranges (shaded blue regions), heating threshold temperatures (red dashed
lines) with [q25%, q75%] uncertainty ranges (shaded red regions) and classified summer season
(black hatched areas).
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Figure 8.6: Monthly averaged temperatures from 2008 to 2017 (blue full drawn curves) with
1 sigma uncertainty ranges (shaded blue regions), heating threshold temperatures (red dashed
lines) with [q25%, q75%] uncertainty ranges (shaded red regions) and classified summer season
(black hatched areas).
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Figure 8.7: Monthly averaged temperatures from 2008 to 2017 (blue full drawn curves) with
1 sigma uncertainty ranges (shaded blue regions), heating threshold temperatures (red dashed
lines) with [q25%, q75%] uncertainty ranges (shaded red regions) and classified summer season
(black hatched areas).
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CHAPTER 9

Impact of climate change on the cost-optimal mix of
decentralised heat pump and gas boiler technologies in Europe

The material in this chapter is the Supplemental Information (SI) for the paper
Impact of climate change on the cost-optimal mix of decentralised heat pump and gas
boiler technologies in Europe. The material is not intended for the regular reader,
but only for other researchers, with special interests. The material of the SI is in-
tended to give a broader perspective on the methods that are applied to conduct
the technical analysis of this paper. Section 1 provides a general overview of the
heating degree-days and how it used as a proxy to model the day-to-day fluctu-
ations in the heat demand. Section 2 presents our approach to model the supply
side of the residential heating sector. In section 3, the approach to model the Co-
efficient Of Performance (COP) of heat pumps is described. Section 4 presents
the climate data that is implemented into this study. In Section 5 the discussion
on the unperturbed pricing scheme is extended. Finally, in Section 6 the results
on the impact of climate change on the heat pump coefficient of performance are
discussed.
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9.1 Extended experimental procedures

Heat load factors

The heat load factor, denoted as µ, is defined as the unitless ratio of the residen-
tial heat demand, LTotal, to the maximum possible output of heat, PMax, over a
given period of time, ∆, as:

µ= LTotal

PMax ·∆ (9.1)

where the total residential heat demand, LTotal, is the sum of the individual space
heating and hot water components, LSpace Heat and LHot Water, respectively:

LTotal = LSpace Heat +LHot Water

The decentralised nature of heating means that data on consumption is not read-
ily available and therefore not applicable for further research. Known to the
literature, the theory of heating degree-days is most frequently used as a best
proxy for the variations in the day-to-day heat demand [91, 137]. In this study,
a direct proportionality between the total residential space heat demand, LTotal,
and the heating degree-days, HDDSpace Heat, is assumed as:

LTotal = LSpace Heat +LHot Water (9.2)

=α ·HDDSpace Heat +LHot Water

α is a constant of proportionality in units of energy per heating degree-day. In-
spired by [179], the accumulated heating degree-days, HDDSpaceHeat

∆,x , for a single
grid location, x, over a period of time, ∆, is given as:

HDDSpace Heat
∆,x =

∫
∆

(T0 −Tx(t))+ dt (9.3)

(T0 −Tx(t))+ defines a positive value or otherwise zero [156]. To elaborate, if
T0 > Tx(t), the output of (T0 −Tx(t))+ will add to the heating degree-days. On
the other hand, if T0 ≤ Tx(t), (T0 −Tx(t))+ will be put to zero. (T0 −Tx(t))+ is
defined as:

(T0 −Tx(t))+ =
{

T0 −Tx(t) if T0 > Tx(t)
0 if T0 ≤ Tx(t)
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The base temperature, T0, is defined as the outside temperature below which
a building is assumed to need heating. For simplicity, the base temperature is
assumed to be 17 °C although strong evidence suggests that this value vary ac-
cording to region and study [179]. Tx(t) defines the gridded time series of the
ambient air temperature.

The maximum output of heat, PMax, is in a similar way to the total heat con-
sumption defined by a maximum output of space heat, PSpace Heat, and hot wa-
ter, PHot Water, as:

PMax = PSpace Heat +PHot Water (9.4)

=
α

(
T0 −Tx, design

)
·1day

∆
+ LHot Water

∆

The maximum output of hot water, PHot Water, equals the consumption of hot
water, LHot Water, normalised to ∆. PSpace Heat is defined in a similar way to
LSpace Heat. Tx, design is the system design temperature and calculated as a 0.05%
quantile of the gridded daily ambient temperature, Tx(t), as:∫ Tx, design

0
px (Tx) dTx = 0.0005

A small quantile is used to ensure an operation time in conditions above the de-
sign temperature in 95.95% of the time. A 0.05% quantile corresponds to approx-
imately 5 hours during a year. A 100% quantile would otherwise overestimate
the technology capacity and increase the capital investments.

Finally, replacing LTotal and PMax in Equation 9.1 by the expressions given in
Equation 9.2 and 9.4 leads to:

µx =
α ·HDDSpace Heat

∆,x +LHot Water(
α

(
T0−Tx, design

)·1day
∆ + LHot Water

∆

)
∆

This can be simplified by removing the ∆ in the denominator and dividing both
the numerator and denominator by α as:

µx =
HDDSpace Heat

∆,x + LHot Water

α(
T0 −Tx, design

)
·1day+ LHot Water

α

(9.5)
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Much like the energy demand for space heating, measurements of hot water
consumption, LHot Water, are not available on scales that match the needs of this
study. Therefore in Equation 9.5, LHot Water

α
, which is given in units of heating

degree-days, is used as a best proxy for hot water consumption. To provide a
best approximation of LHot Water

α
, measured hot water and space heat consumption

data from Stockholm [325] are used. The general logic is to estimate the ratio of
hot water to space heat for Stockholm and use this value to estimate LHot Water

α
.

Based on the measured consumption data, the ratio of hot water to space heat is
26%, i.e.:

LHot Water
Stockholm = 0.26 ·LSpace Heat

Stockholm

LHot Water
Stockholm = 0.26 ·α ·HDDSpace Heat

∆,Stockholm

LHot Water
Stockholm

α
= 0.26 ·HDDSpace Heat

∆,Stockholm

Depending on the time extent,
LHot Water

Stockholm
α

can be estimated simply by evaluating
Equation 9.3. If data from other locations are known, these can in an identical
way be used to estimate the heating degree-day proxy of the hot water con-
sumption. Finally, a constant hot water consumption across space and time is
assumed, which means that LHot Water

α
is fixed to the value for Stockholm for each

grid location, x.

Techno-economic standpoint of heat generation

The hourly accumulated cost, XTOT
x,θ , for a technology, θ, and grid location, x,

depends linearly on the heat load factor, µx, as:

XTOT
x,θ =XCAP

θ +µx ·XOP
x,θ

The capital expense, XCAP
θ

, is assumed to be proportional to the installed ca-
pacity, κθ, as shown in Equation 9.6. The per MW equipment, installation and
maintenance expenses are denoted as xκ

θ
, xI

θ
and xFM

θ
, respectively. The capital

cost is annuitised by the technology life time and a discount rate of 4%.

XCAP
θ =

(
xFM
θ +xI

θ+xκθ
)
·κθ (9.6)

The marginal expense, XOP
x,θ , is proportional to the installed capacity, κθ as well

as the ratio between the fuel price, xFuel
θ

, and efficiency, effx,θ:
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XOP
x,θ = xFuel

θ

effx,θ
·κθ

The efficiency takes a constant value, ηθ, for technologies different from heat
pumps, as:

effx,θ =
{

COPx,θ(t) if θ defines a heat pump
ηθ otherwise

where t defines the time. All prices and technology properties are given in Table
4.1 in Chapter 4.

Coefficient of performance (COP)

Heat pumps are implemented with a Coefficient Of Performance (COP), which
defines the ratio of heat output to the amount of electricity input. COP is strongly
temperature dependent, thus, long-term average values are not meaningful. An
empirical relationship between the COP and the temperature difference between
the heat source and heat sink, ∆T = Tsink − Tsource, x(t), is presented in Equa-
tion 9.7 for air and ground based heat pumps, respectively. These are based
upon the derivations in [29], updated to include new data from [326]. Further-
more, the COP for air source heat pumps was separated based on whether or
not defrosting is required. Defrosting is required when outdoor temperatures
fall below 5°C, lowering the COP by around 4%. For air and ground source heat
pumps, Tsource, x represents the gridded air and soil temperatures, respectively.
The ground temperature is estimated as an average of air temperatures over a
20 year time period. As discussed in the main paper, this corresponds to tem-
peratures at a depth of approximately 50 meters below ground, depending on
soil type and geographical location [183]. Tsink is assumed to be 30°C for air to
air heat pumps and 55°C for large area hot water heating [29].

COPAir driven, x(t)=
{

0.0012∆T2 −0.1702∆T +7.855 if Tair ≤ 5°C
0.0019∆T2 −0.2258∆T +9.073 if Tair > 5°C

COPGround driven, x(t)= 0.0019∆T2 −0.2544∆T +11.008 (9.7)

During winter periods, when the need for heat is high, COP takes lower values.
Oppositely, during summer periods the need for heat is small but the COP in-
creases considerably. Consequently, the yearly averaged COP for air-to-air and
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air-to-water heat pumps, COPASHP, x, is weighted by the heating degree-days
for space heating, HDDSpace Heat

x (t), as shown in Equation 9.8. The hot water
component makes no difference to the weighting due to the assumption of con-
stant consumption throughout the year. A similar weighting is not necessary for
the ground-to-water heat pumps as temperatures at a depth of 50 meters below
ground are seasonally independent [183].

COPAir driven, x =
1

HDDSpace Heat
x,∆

∑
t∈∆

HDDSpace Heat
x (t) ·COPAir driven, x(t) (9.8)
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9.2 Additional results

Extended discussions on the original pricing scheme

In this section, the unperturbed pricing scheme and the single technology dom-
inance across Europe are further discussed.

Figure 9.1 shows the screening curves for all technologies that are included in
this study. Since the heat pump coefficients of performance fluctuate accord-
ing to the ambient temperatures, as demonstrated by Equation 9.7 and Figures
9.3-9.5, heat pumps are subject to a range of screening curves. Figures 9.3-9.5
are discussed in detail in Section 9.1. Taking the air-to-water heat pump as an
example, it is seen from Figure 9.3 that the coefficients of performance fluctuate
between 2.0 and 3.0. As a consequence, air-to-water heat pumps are subject to
an upper and lower screening curve that define the cost region, as illustrated
in Figure 9.1. Similar arguments can be made for the soil-to-water and air-to-air
heat pumps. On the other hand, uniform efficiencies of biomass, oil and gas boil-
ers result in a single screening curve for these technologies. The black shaded
region defines the range of heat load factors across Europe. A spatial distribu-
tion of the heat load factors is shown in Figure 9.2 and discussed in detail in
the next paragraph. From Figure 9.1 it is clear that within the range of the heat
load factors, only gas boilers qualify as cost-optimal. This singularity lead to
the balanced pricing scheme, which is used to enforce a more diverse technology
distribution. This is needed in order to illustrate the potential impact of climate
change on the heat generating technologies.

Figure 9.2 shows the heat load factors across Europe for the historical period and
for the end-of-century periods for each climate projection. Focusing initially on
the historical frame, it is clear that the cold oceanic climate increases the heat
load factors significantly across the British Isles. The similar is evident for Scan-
dinavia. The Iberian Peninsula is as well dominated by high heat load factors.
This is a result of a warm Mediterranean climate, which may seem contradict-
ing. However, the increased temperatures across these regions reduce naturally
the need for space heating. As a consequence, the constant hot water consump-
tion takes up a significant share of the total heat demand and in turn increasing
the heat load factors.

A detailed investigation of Figure 9.2 reveals that it is difficult to assign any
trend to the heat load factors as a function of the degree of climate change.
The change in heat load factors results from a combined effect of changes in
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Figure 9.1: Screening curves showing the annual accumulated costs of heating in 1000 Euro/kW
as a function of the heat load factor, µ. Technology prices and technology properties are taken
from Table 4.1 in Chapter 4. The upper and lower screening curves for air-to-water heat pumps
(ASHP) are defined by coefficients of performance equal to 2.0 and 3.0, respectively. The similar
for the ground-to-water heat pumps (GSHP) are 2.5 and 4.5. For the hybrid system of air-to-air
heat pumps and electricity driven boilers the combined efficiency are 3.0 and 5.0. The region
shaded by a black color is constrained between 0.25 and 0.50 and defines the range of the heat
load factors across Europe.

the heating degree-days and changes in the design temperatures, as seen from
Equation 9.5. The Balkan countries possess almost the same heat load factors,
while other parts of Europe are significantly affected by changes in the ambient
temperatures. Modest temperature increases at the end-century of the RCP2.6
climate projection lead naturally to modest changes in the heat load factors. The
intermediate temperature increase at the end-century of the RCP4.5 climate pro-
jection decreases the heat load factors to some extent. This change is mainly
observed across the British Isles and Scandinavia. The extreme temperature in-
crease at the end-century of the RCP8.5 climate projection leads to a significant
decrease in the heat load factors in some parts of Europe as, e.g., across the
British Isles, while other parts as, e.g., the Iberian Peninsula and East Europe
stay almost unaffected.
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Extended discussions on the heat pump COP

Figures 9.3 - 9.5 show the spatial distributions of the coefficients of performance
for the three types of heat pumps in this study. Focusing initially on the air-
to-water coefficients of performance in the historical time frame, it is clear that
Scandinavia holds the lowest values. Higher ambient temperatures across the
Mediterranean result in the highest values. In general, the values range between
2.0 and 2.7. The modest temperature increase at the end-century of the RCP2.6
climate projection does not lead to significant changes in the coefficient of per-
formance. On the other hand, the end-century of the RCP4.5 and RCP8.5 lead
to a significant increase in the coefficients of performance. In RCP8.5, the co-
efficients of performance increase by up to 2.5 in Scandinavia and up to 3.0 in
the southern Iberian Peninsula. These changes contribute significantly to the
increased distribution of heat pumps across Europe at the end-century of each
climate projection. Similar arguments can be made for the ground-to-water and
air-to-air heat pumps, as seen in Figures 9.4 and 9.5, respectively.

Comparing the coefficients of performance from the different heat pumps, it is
evident that the values for ground-to-water heat pumps are significantly higher
compared to air-to-water heat pumps. This is mainly reasoned by the stable
ground temperatures, which provide a high coefficient of performance indepen-
dent of the yearly seasons. The low sink temperature of the air-to-air heat pumps
results in the highest coefficient of performance.
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Figure 9.2: Spatial distributions of the heat load factors. The historical period is defined to span
the years 1970-1990. RCP2.6, RCP4.5 and RCP8.5 spans a climatic period from 2080-2100. The
figures are based on the ICHEC-EC-EARTH HIRHAM5 climate model.
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Figure 9.3: Spatial distributions of the coefficients of performance for air-to-water heat pumps
with a sink temperature of 55 °C. These are weighted according the annual space heat demand
as demonstrated in Equation 9.8. The historical period is defined to span the years 1970-1990.
RCP2.6, RCP4.5 and RCP8.5 spans a climatic period from 2080-2100. The figures are based on the
ICHEC-EC-EARTH HIRHAM5 climate model.
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Figure 9.4: Spatial distributions of the coefficients of performance for ground-to-water heat
pumps with a sink temperature of 55 °C. The historical period is defined to span the years 1970-
1990. RCP2.6, RCP4.5 and RCP8.5 spans a climatic period from 2080-2100. The figures are based
on the ICHEC-EC-EARTH HIRHAM5 climate model.
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Figure 9.5: Spatial distributions of the coefficients of performance for air-to-air heat pumps with a
sink temperature of 30 °C. These are weighted according the annual space heat demand as demon-
strated in Equation 9.8. The historical period is defined to span the years 1970-1990. RCP2.6,
RCP4.5 and RCP8.5 spans a climatic period from 2080-2100. The figures are based on the ICHEC-
EC-EARTH HIRHAM5 climate model.
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Nomenclature

Subscripts Explanatory text
x Grid cell
∆ Time period
θ Technology

Variables Explanatory text
t time
LTotal Total residential heat demand
LSpace Heat Space heat demand
LHot Water Hot water demand
PTotal Total output of heat
PSpace Heat Output of space heat
PHot Water Output of hot water
T0 Heating threshold temperature
Tx(t) Gridded ambient air temperature
Tx, design Gridded design temperature
µx Gridded heat load factor
HDDSpace

x (t) Gridded heating degree-days as a proxy for space heating
DHW Heating degree-days as a proxy for hot water demand
HDDx,∆ Gridded heating degree-days as a proxy for the combined

space heating and hot water over a time period
XCAP
θ Fixed capacity expense

XFM
θ Fixed yearly maintenance expense and auxiliary electricity

use
XOP

x,θ Gridded operational expense
XTOT

x,θ Gridded yearly accumulated expense
XI
θ Fixed installation expense

XFuel
θ Fixed fuel price

ηx,θ Technology efficiency
κθ Installed technology capacity
COPx,θ Gridded coefficient of performance
Tsource Temperature of hot reservoir
Tsink Temperature to be met by technology
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CHAPTER 10

Project contributions

Dissemination of results had a high priority in this project and was conducted
in the form of journal and conference articles, data publishing, talks, conference
organisation and writing grant proposal. All activities are listed in the sections
to come. The project also delivered about 100 TB of high-resolution state-of-the-
art climate change affected weather data to be used in later research. The data
have been acquired from various Earth System Grid Federation data nodes and
from personal contact to various meteorological institutes around Europe. The
data have been cleaned, structured and made easy accessible on a local server
for others to use. This project also leaves behind prepared state-of-the-art en-
ergy system related data.

The core contribution of this project consist of six first-authored articles. Only
four are presented in this dissertation. The papers: "Grid integration of solar PV for
multi-apartment buildings" and "Impact of climate change on the backup infrastructure
of highly renewable electricity systems" are excluded due to missing relevance. The
remaining articles are presented according to a project storyline. In the following
pages, I list the main outcomes of my academic activities in this project.
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Journal Articles

• Kozarcanin, Smail; Liu, Hailiang; Andresen, Gorm Bruun (2019). 21st Cen-
tury Climate Change Impacts on Key Properties of a Large-Scale Renewable-Based
Electricity System. Joule, 3(4), 992-1005.

• Kozarcanin, Smail; Andresen, Gorm Bruun; Staffell, Iain (2019). Estimat-
ing country-specific space heating threshold temperatures from national gas and
electricity consumption data. Energy and Buildings, 199, 368-380.

• Kozarcanin, Smail; Hanna, Richard; Gross, Robert; Staffell, Iain; Andresen,
Gorm Bruun. Impact of climate change on the cost optimal mix of decentralized
heating in Europe. arXiv:1907.04067. Submitted to Energy Policy.

• Kozarcanin, Smail; Andresen, Gorm Bruun. Techno-Economic Benefits of a
Fully Coupled European Electricity and Heating System in a 21st Century Cli-
mate Change. In preparation

• Kozarcanin, Smail; Andresen, Gorm Bruun; Greiner, Martin (2018). Im-
pact of climate change on the backup infrastructure of highly renewable electricity
systems, J. sustain. dev. energy water environ. syst., 6(4), 710-724

• Kozarcanin, Smail; Andresen, Gorm Bruun (2018). Grid integration of so-
lar PV for multi-apartment buildings. International Journal of Sustainable
Energy Planning and Management, 17, 3-14.

Data Publishing

• Kozarcanin, Smail; Liu, Hailiang; Andresen, Gorm Bruun (2019). Supple-
mentary Data: 21st Century climate change impacts on key properties of a large-
scale renewable-based electricity system. Mendeley Data, v1
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Conference Articles

• Kozarcanin, Smail; Andresen, Gorm Bruun; Greiner, Martin (2017). Im-
pact of climate change on the backup infrastructure of highly renewable electricity
systems. 12th Conference on Sustainable Development of Energy, Water
and Environment Systems: 12th SDEWES. International Centre for Sus-
tainable Development of Energy, Water and Environment Systems, 2017.
SDEWES2017-0364.

Conference and Workshop Talks

• The 9th workshop of the Open Energy Modelling Initiative (OpenMod),
Aarhus Denmark (2019) (co-organiser)

• 3rd World Summit on Climate Change and Global Warming, Prague Czech
Republic (2019)

• Imperial College Centre for Energy Policy and Technology book club, Lon-
don UK (2019)

• 5th World Conference on Climate Change, London UK (2018)

• Integrated Assessment Workshop IAM, Clermont Ferrand France (2018)

• The 8th workshop of the Open Energy Modelling Initiative (OpenMod),
Zürich Switzerland (2018)

• Energy Futures Lab, London UK (2018)

• The 13th Conference on Sustainable Development of Energy, Water and
Environment Systems, Dubrovnik Croatia (2017)

• Wind Energy conference, Herning Denmark (2017)

• Open Power System Data workshop (OPSD), Berlin Germany (2017)

• Institute for Geoscience - Aarhus University, Aarhus Denmark (2017)

• The 5th workshop of the Open Energy Modelling Initiative (OpenMod),
Milano Italy (2016)
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News Magazines

• Wind and solar will still work in a climate-change ravaged Europe.
NewScientist (2019)

• Even in a warmer Europe, wind and solar could still keep the lights on.
The Verge (2019)

• Good news! Europe’s electric grid will still work even as the world crum-
bles.
EurekAlert! The Global Source for Science news (2019)

• Europe’s Renewable Electricity Would Survive Catastrophic Climate Change.
INVERSE (2019)

• Vil klimaændringer også ændre forudsætningerne for vind- og solenergi?
Ingeniøren (2019)

• Europe’s power grid will survive climate change. The US, not so much.
Cosmos - The Science of Everything (2019)

• Europe’s Weather-dependent Electricity Systems Will Withstand Climate
Change.
Interesting Engineering (2019)

• Renewable energy systems will still work in a changing climate.
Earth.com news (2019)

• Europes electricity grid will work as intended as the world heats up.
Power Technology (2019)

• Europa mantendrá su red eléctrica a salvo del calentamiento global.
Cienciaplus - Europa Press (2019)

• Gode nyheder: Elnettet vil fungere, selv om verden går under.
AU VIA RITZAU (2019)

• Impacts of climate change on the electricity system design decisions for
the 21st Century.
Energy Futures Lab - Imperial College London (2018)

• Climate change and the future European electricity supply.
Profile 2018, Department of Engineering - Aarhus University (2018)
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