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Abstract: 

 

This paper describes different methods for particle characterization, specifically 

size and shape, from a technical perspective. It emphasizes on analytical proce-

dures in the laboratory, practical challenges and data processing. The content is 

based on hands-on experience with soil and sediment materials and provides the-

oretical background information, examples of relevant computations, descriptions 

of hardware and discussions of using different settings. It is intended to be used as 

a handbook and may be useful as a guide when designing a local procedure for 

particle size and shape methods. 

 

To achieve results of the highest quality, attention should be given to the im-

portance of sample handling, relevant pretreatment and dispersion into single, 

free flowing particles. Equally important is the attention to detail, ranging from 

proper laboratory working conditions to critical evaluation of data. 

 

One of the main and most important conclusions is the difficulties in comparing 

data obtained by techniques that measure different properties. This observation 

does not only apply to particle characterization but is universally applicable. 
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1.1 Background  
1.1.1 The use of particle size 

In geoscience particle size analysis (PSA) or particle size distribu-

tion (PSD) are used as standard procedures for research on soil 

and sediments within sedimentology, Quaternary geology and 

geomorphology.  

 

Like most laboratory disciplines, PSA and PSD support the field 

observations and information already generated and available 

by other means. Particle size is considered an extremely im-

portant clue to the history of geological material: Particle size re-

veals how the soil or sediment initially was formed and how it has 

been influenced since formation.  

 

Size distributions contribute to answering questions related to cli-

mate, processes and geochemical properties. The following list 

contains various different areas where PSA or PSD are used: 

 

Agriculture: Silt (and especially fine silt) influences the soils ability 

to retain water. Thus, particle size information plays a major part 

in optimizing plant growth, crop health, yield etc.  

 
Construction: Fine and coarse material has been used for thou-

sands of years for building material, ranging from simple shelters 

to modern-day buildings (clay, bricks, cement). Sand and gravel 

are used for building processes and landscaping, as well as ge-

otechnical engineering when creating infrastructure such as 

roads/runways (road base, asphalt), foundations (concrete) etc. 

 

Industrial processes: In industries with milling and grinding, parti-

cle size is a critical element in determining efficiency of a process 

and final quality of a product. Many industrial processes are very 

much dependent on sand, e.g. manufacturing of glass. Paint is 

made from powder of a certain texture. 

 

Water: Environmental protection (location of impermeable sub-

surface clay layers which protects layers below that contain 

freshwater reservoirs). Hydraulic properties (the soils ability to 

transport water is dependent on its clay, silt and sand content). 

Sand is also used in many countries as a filter to purify water. 

 

From this relatively short list it is not questionable that the need 

for particle size determination has literally been the foundation 

on which cultures and human civilizations are built. Building ma-

terial has been used early on to build structures, evidence of this 

dates back to Mesopotamia (4000 years BC) and the Indus Val-

ley (3300 to 1900 BC). (Nagaraj, Rajesh and Sravan 2016) Siev-

ing is one of the oldest techniques for powder classification: It 

was used in Ancient Egypt to grade grain during harvesting – and 

it still is today. (Baert 2019)  

 

So far only few methods have reached and retained a dominant 

position in industrial application: Sieving, sedimentation and la-

ser diffraction (LD).  

 

1.1.2 The basis of this paper 

The author of this paper has worked with research projects and 

method development, using various techniques for PSA on soil 

and sediment samples: LD (Sympatec HELOS system), sedimen-

tation (by Andreasen pipette), sieving and image analysis. Most 

analyses have been carried out at the laboratories at the Depart-

ment of Geoscience, Aarhus University, in collaboration with sci-

entists, students and visiting researchers. 

 

At the department soil samples are often investigated to de-

scribe chemical and biological processes and ultimately for soil 

classification. Sediment samples are often marine (sea or ocean) 

or lacustrine (lake) deposits from cores, or till, sand or clay sedi-

ments from the Quaternary period. Commonly only material <2 

mm is analyzed to determine the amount of clay, silt and sand. 

These classes represent the most important characteristics and 

are used to estimate fundamental physical properties. 

 

Sieving and sedimentation analyses by Andreasen pipette have 

been the traditional methods for PSA of soil and sediments at the 

department. (Nørnberg and Dalsgaard 2009) A more informative 

alternative is now LD or image analyses. The choice of technique 

depends on the PSD and purpose of the analysis.  

 

Note, that there is no "correct" way to represent a size distribution 

of irregular shaped three-dimensional particles. Each method 

describes particle size, but it may be by different means. It has 

1 INTRODUCTION 
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 been assumed and accepted that the traditional methods pro-

vided the most reliable and “true” particle size information. 

Maybe a method had its limitations, maybe it over- or underesti-

mated certain size fractions. (Rasmussen and Dalsgaard 2017)  

 

1.1.3 Physical particle properties 

In general, comparison between different methods is complex. 

Especially if methods are based on analyzing different physical 

properties. Physical particle properties used in PSA are: Geomet-

ric properties (linear dimension, surface area/projected area, 

volume), mass, settling velocity and other types (distortion of 

electrical, optical or acoustic field). PSA is traditionally known as 

texture analysis when based on mass. 

 

As an example, LD and sieving are difficult to compare: LD is an 

optical measurement (where the measured area is transformed 

into volume) and sieving is a width measurement based on mass 

(figure 1).  

 

Method Particle property Quantity  

Sieving Linear dimension Mass 

Sedimentation Settling velocity Mass 

LD Distortion of optical field Area 
Figure 1: PSA methods related to physical properties and quantity type. 

 

Unless the material is uniformly shaped, a mono-mineral and ex-

hibits perfect physical behavior (such as fine, windblown quartz 

sand) it will be impossible to compare measurements directly 

without creating an advanced model or calibration that suits the 

exact type of material and specific samples in a batch. 

 

1.1.4 Geology in Denmark 

Soils and sediments form by weathering and erosion of geologi-

cal parent material. The result is a fragmentation of the solid rock 

or sediment into smaller particles of amorphous and crystalline 

(inorganic and organic) material (box 1). It is common to include 

only inorganic crystalline material for PSA. 

 

Danish soils (figure 2) are well described (Sundberg, et al. 1999) 

and mostly formed in glacial sediments of Weichselian and Saal-

ian ages. Clayey tills dominate in Eastern Denmark, producing 

loamy soils (generally 10-25 % clay), while mostly sandy tills, 

glaciofluvial sediments and windblown sands are found in West-

ern Denmark, resulting in sandy soils (generally <10 % clay). Ex-

tensive marine terraces with sandy and silty soils are found in the 

northern part of the country. (Sørensen and Dalsgaard 2005) 

 

 
Figure 2: Surface Geology map of Denmark 1:200 000, version 2. (GEUS, 2011/19) 

 

1.1.5 Classification: Triangular plots 

Particle size groups (or classes) for soils and sediments range 

from clay, silt, sand, gravel, pebbles, cobbles up to boulders. Of-

ten PSD can be described simply by using the content of clay, silt 

and sand. For this paper (and unless otherwise noted) the follow-

ing definitions apply: Clay: <0.002 mm, silt: 0.002-0.063 mm and 

sand: 0.063-2 mm. 

 

These three classes help determine the soil type and formation. 

Different distributions within a soil profile could indicate that the 

different horizons have been formed under various geological 

events and conditions. Some material may have been trans-

ported by river water, some particles are windblown and some 

sediments deposited by moving glaciers. (Bridges 1997) 

 

When classifying soils the sum of clay, silt and sand is always 100 

% and any organic material, carbonates (limestone), gravel etc. 

is disregarded. Therefore clay, silt and sand can easily be 

presented on a triangular diagram known as the textural triangle, 

by plotting the percentages of the three fractions (figure 3). 

 

 
Figure 3: The textural triangle, showing the classification of different soil types. (U.S. 

Department of Agriculture) 

BOX 1 

 

Rock: 
Naturally occurring assemblage or aggregate of mineral 

grains, crystals or mineral based particles compacted, 

cemented or otherwise bound together and which can-

not be disaggregated by hand in water. 

 

 (International Organization for Standardization 2017) 

 

Mineral: 
A naturally occurring, solid crystalline substance, gener-

ally inorganic, with a specific chemical composition.  

 

(Press and Siever 1998) 
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 1.1.6 Transportation effects on size 

The effects of weathering and transportation largely determines 

the basic nature of the soil (i.e. the size, shape, composition and 

distribution of the particles). The environment into which deposi-

tion takes place, and subsequent geological events that take 

place there, largely determine the state of the soil, (i.e. density, 

moisture content) and the structure (or fabric) of the soil. 

 

Sorting is depending on the density and viscosity of the transport 

medium. Sorting reflects the transport agent which can be wind, 

water, ice etc. Usually and over time, particles are reduced in size 

by weathering and when transported. Meanwhile the sorting will 

also change: The variation in particle size is reduced. Changes in 

transport agents and deposition may change the particle size 

systematically, known as ”fining” effects. 

 

Air: Particles are transported by wind through suspension, salta-

tion (skipping or bouncing) and creeping (rolling or sliding) along 

the ground. Wind will sort particles efficiently because it has low 

density and viscosity values. 

 

Water: In flowing water, larger particles are deposited as velocity 

drops, e.g. gravels in river terraces, sands in floodplains and estu-

aries, silts and clays in lakes and seas. Some currents may have 

densities close to the particles and a high viscosity. In extreme 

cases, these currents do not sort the material. In still water hori-

zontal layers of successive sediments are formed, which may 

change with time (varve), even seasonally or daily. 

 

Ice: Ice has a lower density than water but a higher viscosity. Sort-

ing by ice (figure 4) is ineffective and transport by ice produces 

particles of all sizes. When grinding and crushing occur, the size 

distribution becomes wider: Deposits are well-graded, ranging 

from rock flour to boulders. 

 

 
Figure 4: Ice is able to carry all sizes of “particles”. Here ice has melted and large 

boulders are left behind. Kangerlussuaq, Greenland. 

 

1.2 Particle size 
1.2.1 Units 

Particle size is commonly described in the metric system using 

mm (1 mm = 1/1000 m, 1 m is the international unit for length as 

defined by the International System of Units, SI) or µm (1 µm = 

1/1000 mm). Refer to the Wentworth grain size chart (appendix 

A) for different size representations. 

 

1.2.2 φ-notation 

The φ (phi) scale avoids names and merely uses numerical num-

bers to represent size: The φ unit is a logarithmic transformation 

of size into whole integers (figure 5). This is ideal for statistical 

data evaluation. On the φ scale increasing values equals de-

creasing size. If d is a dimensionless particle size, the following 

relation (Kuhlman 1957) applies: 

 

φ = −(
log⁡(d)

log⁡(2)
) ⁡or⁡d = 2−φ⁡ 

Figure 5: The φ scale. Examples of use in box 2.  

 

1.2.3 Size classes and definitions 

Unfortunately, a common problem in science communication is 

the lack of standardization of some basic definitions, including 

size classes. Traditionally the clay-silt boundary as well as the silt-

sand boundary has not been universally defined. This has been 

the cause of many errors in academia.  

 

As an example (figure 6), the silt-sand boundary is defined as 

0.050 mm by USDA (United States Department of Agriculture) 

and FAO (Food and Agriculture Organization of the United Na-

tions). However, The Danish Soil Classification is based on the 

ISSS (International Society of Soil Science or now IUSS, the Inter-

national Union of Soil Sciences) that defines the silt-sand bound-

ary to be at 0.020 mm. (Breuning-Madsen, Krogh and Kristiansen 

2013) Within geology typically 0.063 mm is used as the silt-sand 

boundary. (International Organization for Standardization 2017) 

 

 
Figure 6: Particle size class limits in several systems. Note that boundaries of clay-silt 

and silt-sand are often quite different. (Blake and Steinhardt 2008) 

 

Likewise, the exact upper limit of the particle size of clay (box 3) 

is not universally defined either: Most geologists and soil scientists 

define clays as having a particle size <0.002 mm. However, sed-

imentologists often use 0.004 mm and colloid chemists use 0.001 

mm. (Guggenheim and Martin 1995)  

 

When discussing clay, silt and sand, it is essential to note what 

system is used to avoid errors and misunderstandings. 

 

BOX 2 

 

Examples of using the φ scale: 
φ = 2, then size d = 2-(2) × 1 mm = 0.250 mm 

φ = -2, then size d = 2-(-2) × 1 mm = 4 mm 
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1.2.4 Common parameters 

The relationship between different particle sizes and how much 

(or how often) each particle size occurs is the frequency and is 

described in the PSD: Particle size values are plotted on the ab-

scissa and frequency values on the ordinate as (x, y) coordinates. 

When evaluating any distribution, graphical representations are 

interesting to examine. The cumulative curve is often used in-

stead of individual frequency values: On cumulative diagrams all 

data sets sums to 100 % and the sloping of the curve, peak loca-

tion etc. enables the interpreter to evaluate relevant parameters 

of the distribution. 

 

Sorting, mean, median and other common parameters are sim-

ple to deduce. Refer to chapter 8 for mathematical equations of 

the most common statistical parameters as well as more ad-

vanced computational options. 

 

1.2.5 Equivalent sphere theory 

One basic challenge in PSA is characterizing particle properties 

using just one number. As described earlier, most particle sizing 

techniques aim to report PSD using a two-dimensional diagram. 

However, there is only one shape that can be described by a sin-

gle unique number, and that is the shape of a sphere. The sphere 

is the only shape whose properties can be fully defined by a sin-

gle dimension of length. A sphere of the size “0.1 mm” describes 

it exactly in three dimensions. If a cube was described as having 

the size of “0.1 mm”, that may describe the length of one edge 

of the cube, or a diagonal transect of the cube. An irregular (non-

spherical) particle can approximately be described as a sphere. 

Depending on the methods used the resulting size may be very 

different (figure 7). (Rasmussen and Dalsgaard 2010)  

 

 
Figure 7: The challenges describing size and equivalents to a sphere.  

  

For this reason, all particle sizing techniques measure the prop-

erty of a particle and relate this to the size of an “equivalent 

sphere”. One of the most common methods is to measure the 

volume of each particle and report the size of a sphere which 

has the same volume as the particles being measured. This ap-

proach applies to LD methods. (ATA scientific instruments 2019) 

 

1.3 Minerals and material 
1.3.1 Parent material 

Particle size and sorting reflects part of the history of the sediment 

itself, i.e. the composition of parent material and the weathering 

conditions (physical, chemical etc.). The degree of weathering is 

depending on climate and sloping conditions, as well as many 

other factors related to mineral morphology.  

 

In geology the most abundant and important minerals to know 

are the rock-forming minerals: Feldspars, quartz, amphiboles, mi-

cas, olivine, garnet, calcite and pyroxenes. All of these are influ-

enced differently by weathering and some of them are minerals 

that are known to influence PSA greatly. 

 

1.3.2 Clay 

Many methods for PSD depend on the basic assumption that the 

particle is spherical. This is not the case with clay particles, nor 

minerals such as mica: They are all elongated or platy. (Hayton, 

et al. 2001)  

 

There are four groups of clay: Kaolinite, Smectite (or Montmoril-

lonite), Illite and Chlorite. All four groups of clay consist of silica 

(SiO4) and alumina (Al). I.e. kaolinite is built by one layer of silica 

atoms and one layer of alumina atoms. This structure of one tet-

rahedral sheet and one octahedral sheet is known as 1:1 clay 

(figure 8). 

 

 
Figure 8: Kaolinite is a typical 1:1 clay mineral. (Bridges 1997)  

 

Clay minerals are hydrous aluminum phyllosilicates with a varia-

ble number of cations. Their structure is similar to that of mica: 

Mica is known to cause interferences during measurement with 

LD. Mica also has a negative effect on accuracy because of its 

refractive properties. (Hayton, et al. 2001) Clay minerals form flat, 

hexagonal sheets. Platy particles play an important role in under-

standing variations in PSD when comparing between different 

methods. (Pabst, et al. 2000) Especially kaolinite has often been 

used to demonstrate how clay particles are measured using LD. 

(Beuselink, et al. 1998) 

 

Clay minerals usually form by chemical weathering of rocks and 

soils. Each type of clay has a specific crystal structure. Due to their 

BOX 3 

 

Three definitions of CLAY: 
The term clay covers a particle size range, a specific 

group of minerals with negative valence and a soil type.  
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 tiny size, clay particles often require special analytical tech-

niques such as X-ray diffraction and electron microscopy to an-

alyze their properties in detail (figure 9). Such studies with elec-

tron microscope and X-ray diffraction have given clear evidence 

that many soil clays are made of layered crystals. (Kohnke 1968) 

 

 
Figure 9: Electron microscopy image showing the platy clusters of kaolinite. Note 

the size of these clusters are >0.010 mm. (Used by permission from Margrethe Tho-

rup Dalgaard, 2020) 

 

1.3.3 Quartz 

Many X-ray diffraction experiments have been performed at the 

Department of Geoscience on clay as well as the crystal structure 

of quartz minerals. (S. E. Rasmussen 2009) 

 

Quartz is abundant in soil and sediment samples: Quartz (figure 

10) is one of the major rock-forming minerals and on Mohs’ scale 

of hardness, quartz has a value of seven (absolute hardness 100).  

 

 
Figure 10: Electron microscopy image showing micro-quartz and larger quartz 

overgrowths on the surface of a sandstone. (Used by permission from Margrethe 

Thorup Dalgaard, 2020) 

 

Milled quartz (grinded and carefully sieved) is appropriate to use 

as a reference or check-material. It is suitable for several PSD 

techniques including LD. (C. Rasmussen 2004) Quartz has a re-

fraction index (RI) of 1.544-1.553, which is needed for some LD 

measurements. Grinding has little effect on the shapes of the par-

ticles; grinding is applied to reduce the material into its individual 

crystal elements. However, it has been shown that milled quartz 

particles usually are angular and somewhat elongated, occa-

sionally platy too. Grinding is therefore no guarantee that all 

quartz particles are non-platy. (Beuselink, et al. 1998) 

 

Quartz has the overall formula SiO2 and is built from a framework 

of silicon-oxygen tetrahedra (figure 11). As such, quartz particles 

are often found to be spherical and therefore one of the most 

perfect structures to carry out PSA on. 

 

 
Figure 11: Quartz has an ideal crystal shape as a six-sided prism terminating with 

six-sided pyramids at each end. Each oxygen atom is shared between two tetra-

hedra. (Bridges 1997)  

 

1.3.4 Sampling 

Proper sampling (box 4) is key to obtain the most accurate and 

true result. To ensure optimum conditions, the sampling proce-

dure starts before entering the field with preparation. Once at the 

sampling site, the material should be handled carefully and sep-

arated from other material right away to avoid mixing and cross-

contamination. Use sealed plastic bags and permanent markers 

for labelling. All details regarding the sampling method, location 

and other parameters relevant to the sample material should be 

noted for later use in a waterproof notebook. 

 

 

Note that natural soils are rarely the same from one point in the 

ground to another. The content and nature of particles varies, but 

more importantly, so does the arrangement of these. The ar-

rangement and organization of particles and other features 

within a soil mass is termed its structure or fabric. This includes 

BOX 4 

 

Sample: 
A portion of a lot of materials which is taken for testing or 

for record purposes.  

 

Particle: 
A discrete element of material regardless of its size.  

 

(Jillavenkatesa, Dapkunas and Lum 2001) 
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 bedding orientation, stratification, layer thickness, the occur-

rence of joints and fissures, the occurrence of voids, artefacts, tree 

roots and nodules, the presence of cementing or bonding agents 

between particles. Structural features can have a major influ-

ence on in situ properties. When retrieving till sediments the sed-

imentary fabric refers to particles or components that have some 

sort of orientation that imply the direction of glacial movement. 

 

When returned to the laboratory, the representative sub-sample 

volume for particle size characterization depends on the ex-

pected maximum particle size (figure 12). For small particles 

sizes, less material is needed. (DGF's laboratoriekomité 2001) 

Working with material >2 mm requires a larger amount of mate-

rial to ensure that the sample is representative and the results 

valid. (Krumbein and Pettijohn 1938) 

 

Maximum particle size [mm] Sample volume [kg] 

>31.5 40 

16-31.5 5 

8-16 0.7 

2-8 0.2 

<2 0.1 

Figure 12: Sample volume related to maximum particle size of the material.  

 

Plan the laboratory work in detail to make sure there is sufficient 

time as well as safe and optimal work conditions. Keep the la-

boratory setting clean at all times to avoid cross-contamination. 

Be extra careful when sub-sampling, transferring material be-

tween containers or when using scales. Each step contributes to 

the final quality of data and sample loss can be a significant er-

ror. 

 

1.3.5 Material variations 

At present no standardized method exists for sample preparation 

of geological material for PSA. At least none that considers dif-

ferent mineral properties and matrices. 

 

In order to eliminate interference and create reproducible data, 

samples should by default be pretreated when possible. Select a 

procedure after careful consideration of the content of non-crys-

talline material: 

 

• Organic material 

• Salt 

• Carbonates 

 

Depending on the sample origin, it can be necessary to remove 

organic material beforehand. For soil, oxidation using hydrogen 

peroxide is standard procedure. Alternatively, when very little 

material is present, PSA for soil and sediments can be based on 

an LOI (loss on ignition) sample. Note that high heating temper-

atures for LOI will affect clay minerals. If the material is heated it 

will often make the process of suspending the material after-

wards a challenge: Once heated the material becomes firm and 

dispersion is difficult. 

 

For marine samples, it may be necessary to remove traces of salt 

by rinsing continuously. If salt is not removed, suspended material 

may be prone to flocculation. The salt minerals can also recrys-

tallize as particles during one of the pretreatment steps (if the 

material is dried). Marine sediments may also contain biogenic 

opal with low specific densities that do not comply with Stoke’s 

law because of their irregular shape. (Buurman, et al. 2001) Such 

a sample is not suitable for sedimentation analysis.  

 

Samples that are rich in CaCO3 should be treated with acid to 

remove the sticky effect caused by carbonates. Not only will car-

bonates make particles agglomerate, but it will also alter the sur-

face of individual particles and make them appear larger and/or 

rounder.  

 

Clay minerals tend to form complex colloids with humus. On the 

surface of the colloids different ions are attached. Because of 

these colloids, it is likely that the content of silica, iron and alumi-

num oxides in soil samples can form non-soluble aggregates that 

affect the PSD or cause flocculation. (Eshel, et al. 2004) 

 

Choosing appropriate pretreatment (and which PSA method to 

apply in general) can be tricky. They both rely on the sample ma-

terial (are grams or kilograms available?), composition of mate-

rial (the presence of organic content, salt, carbonate and type of 

crystalline minerals), expected size range, timeframe, purpose 

etc. 

 

All of the common options for pretreatment are described in the 

next chapter.
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2.1 Basic pretreatment 
2.1.1 Drying and homogenizing 

Pretreatment should prepare the material for analysis. For soil 

and sediments, particle size is determined on the crystalline ma-

terial from the original rock material. Not salt, carbonates or or-

ganic material that will interfere.  

 

All samples should be dried at 50°C ±5oC for at least 48 hours, 

homogenized and split on a rotating sample divider (or similar) 

to ensure consistent homogenizing. Note that drying at higher 

temperatures than 50-60°C may alter clay minerals.  

 

Soil samples are crushed mechanically through a 2 mm sieve, 

using a porcelain dish and mortar (figure 13). A gentle approach 

is necessary to avoid breaking larger particles into smaller parti-

cles. The fraction >2 mm is archived. The fraction <2 mm is used 

for PSA by LD or sedimentation.  

 

 
Figure 13: Initial 2 mm sieving of soil prepares two fractions. For sediments 2 mm 

sieving can be added later. 

 

Note that mass <2 mm can be important for calculations later on. 

2.1.2 Salt 

Marine samples should be pretreated because they may contain 

a considerable amount of salt that will hinder dispersion and risk 

making smaller particles flocculate.  

 

Weigh approximately 50 g of marine sample into a large centri-

fuge glass (300 mL) and wash with water to remove salt: Rinse 

the material numerous times with deionized water, centrifuge; 

remove the water, rinse again, centrifuge and so forth.  

 

2.1.3 Carbonates 

The easiest way to remove carbonates in a sample is to treat the 

material gently with a solution of HCl. Depending on the car-

bonates present (and the size of sample), start by adding 10 % 

HCl to a centrifuge glass containing the material. Use a pipette 

and check the effect: Carbonates decompose into carbon diox-

ide, water and salt: 2HCl + CaCO3→ CO2 + H2O + CaCl2. 

 

Rinse the material numerous times with deionized water, centri-

fuge; remove the water, rinse again, centrifuge and so forth. All 

excess HCl and salt must be completely removed: If using LD the 

acid will corrode the flow-cell and inner parts while the salt will 

have unwanted effects on dispersion, as described earlier. 

 

2.1.4 Finishing basic pretreatment 

If preparing for oxidation, weigh the pretreated sample <2 mm 

into a 1 L heavy-duty Pyrex-type glass beaker of known weight. 

 

Afterwards treat the sample in the individual steps described in 

the following: Removal of organic material, dispersion, wet siev-

ing, additional dry sieving, and then measurement using the pre-

ferred particle sizing technique. 

 

2.2 Organic material, C 
2.2.1 Bias caused by humus 

Organic material consists of more or less transformed plant ma-

terial known as humus. Organic material strongly influences the 

soils ability to retain water and also has an effect on the soil PSD. 

(Sundberg, et al. 1999) 

 

To avoid bias caused by organic material, it should be removed 

before PSA for several reasons: 

2 PRETREATMENT PROCEDURES 
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• Organic material will make particles stick together, altering 

their size.  

 

• Humus are particles and they have a “particle size” too. 

Overall humus will affect the PSD.  

 

• An inclusion of organic material violates one of the basic 

principles of LD; that all light passing through the suspension 

is diffracted. This is not entirely correct for organic material, 

since the dark material may absorb some light. (Beuselink, 

et al. 1998)  

 

In conclusion, organic material may heavily disturb the signal 

from crystalline material during all types of PSA. 

 

2.2.2 Oxidation agent 

Oxidation of soil is commonly performed with hydrogen peroxide 

(H2O2) to remove all organic content. H2O2 is an excellent oxida-

tion agent since it has moderately strong oxidizing properties and 

is highly reactive.  

 

At high concentrations H2O2 is hazardous and will corrode many 

materials, including human skin. H2O2 may never be in contact 

with organic solvents (refer to local safety documentation before 

proceeding) and work is carried out in a fume cabinet using ap-

propriate gloves, safety goggles and suitable laboratory clothing. 

 

Oxidation is carried out by adding H2O2 to the sample in a 

heavy-duty Pyrex-type glass beaker whilst heated. Hereby water 

and carbon dioxide form: 2H2O2 + C → 2H2O + CO2.  

 

The temperature may never exceed 60oC; otherwise, H2O2 will 

boil off as water (H2O) and oxide (O2) molecules without reacting 

with the organic material. For samples that are high in humus 

content this treatment can take several weeks to complete.  

 

Other oxidation agents may be even more effective in removing 

organic carbon, i.e. sodium hypochlorite (NaOCl) and disodium 

peroxydisulfate (Na2S2O8). 

 

Note that many laboratories choose to oxidize only when the hu-

mus content is >5 % (Sørensen and Bülow-Olsen 1994), other la-

boratories set the limit at >3 %. Often sediment samples contain 

less organic material than soil and oxidation can be disregarded. 

 

2.2.3 Procedure for oxidation using H2O2 

Weigh approximately 50 g material into a 1 L heavy-duty Pyrex-

type glass beaker of known weight. Add 250 mL deionized water 

and 50 mL 35 % H2O2. Cover the beaker with a watch glass and 

leave until the following day (figure 14). 

 

 
Figure 14: Oxidation process after 1 day (left) and from day 2 and onwards (right). 

 

When foaming and fizzling has decreased (approximately 12-

24 hours later) the sides of the beaker and the watch glass can 

be scraped with a rubber spatula. Rinse the loosened material 

back into the solution using deionized water. Add 50 mL of con-

centrated H2O2. Place the beaker on a hot plate (make sure the 

temperature never exceeds 60oC) and continue oxidation until 

all organic material is oxidized: Add 50 mL concentrated H2O2 

every day (this step usually needs to be repeated 5-6 days or 

more). Make sure to stir the sample carefully with a glass spatula 

and check the color of the solution every day. 

 

When oxidation is completed, the sample will turn light brown or 

yellowish. Never add more H2O2 than necessary at a time, high 

concentrations may cause explosions! On the last day: Raise the 

temperature to 90oC and leave the beaker for evaporation, tak-

ing the watch glass off. Make sure to continue to scrape the sides 

of the beaker with a rubber spatula to make sure as many parti-

cles as possible are kept at the base of the beaker.  

 

When the sample is almost dried out, turn off the heat and let it 

cool before transferring to a heating cabinet and leaving it at 

105oC ±5oC overnight (figure 15).  

 

 
Figure 15: Oxidation of material <2 mm. Removal of organic material will lighten 

the color. When oxidation is complete the sample is dried into a powder.  

 

Place the beaker in a desiccator to cool off, then weigh beaker 

and sample before calculating the loss (= content of organic ma-

terial). For later calculations, it is important to know the weight of 

the total (oxidized) sample. 

 

2.2.4 Alternative: Use LOI samples 

When working with sediment and especially cores there is not 

much material at hand to perform many different types of anal-

yses: The procedures must be optimized when using valuable 

material. If LOI at 550oC already has been carried out on a sub-

sample (i.e. 2cc), it can be expected that most organic material 

is removed. The material that is left in the crucible can be used 

for PSA. 

 

To perform LD measurement subsequently, add droplets of pep-

tizer to the crucible and leave until the following day to dissolve. 

Then gently stir with a glass spatula and/or a rubber spatula to 

destroy any clayey aggregates. Once mixed into a paste, this 

material is measured on LD as-is. Since the LOI material contains 

the entire particle size range, select an appropriate dispersion 

system and flow-cell (e.g. 6 mm cuvette). 

 

2.3 Dispersion 
2.3.1 Water 

Dispersion occurs when objects are distributed over a wide area 

(or in the case of a solution: Over a large volume). Dispersion can 

be regarded as a fragmentation process. (Bittelli, Campbell and 

Flury 1999) The purpose of dispersion is to overcome the binding 

forces between agglomerated particles and make particles 

measurable as individual and freely moving objects. 
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Use deionized water for dispersion. It is vital that the conductivity 

of the water is low. In most laboratories, the water quality is mon-

itored to ensure high quality, however check before proceeding. 

Considering the combined effect of Van der Waals forces and 

electrostatic bonds of particles dispersed in water, an unwanted 

effect is instant flocculation: Water molecules (figure 16) have di-

polar properties as described by H. L. Nielsen. (Dalsgaard, 

Nørnberg and Kristiansen 2000) 

 

 
Figure 16: A water molecule has polar covalent bonds between two hydrogen at-

oms and one oxygen atom.  

 

2.3.2 Agglomerates 

If small particles (and especially clay) combine, they form ag-

glomerates that react like a large particle in the suspension and 

will be measured as such. During sedimentation analysis, these 

agglomerates will be subjected to Stoke’s law at their current 

size: For all PSA the size of the agglomerate rather than the indi-

vidual particles will be measured and overall yield a result with a 

PSD being coarser than it really is.  

 

2.3.3 Flocculation 

Flocculation is the process where colloids form out of suspension 

as flocs or flakes that are larger and heavier than the original, 

individual particles (figure 17). For PSA flocculation should be 

avoided (box 5). Flocculation often occurs after mechanical ag-

itation ceases: If stirring or shaking stops, the dispersed clay plate-

lets spontaneously form flocs due to attractions between nega-

tive face charges and positive edge charges.  

 

 
Figure 17: The types of suspensions: Dispersed particles (right after mechanical ag-

itation has stopped), with normal settling and with flocculation.  

 

2.3.4 Exchanging cations 

When using a dispersing agent, the Na+-ions are exchanged 

with flocculating ions such as Ca2+
 and Al3+

 on the surface of the 

clay minerals. Clay particles become negatively charged and 

thereby repel each other. It is ideal that they split into individual 

particles as required for PSA. 

 

 
 

2.3.5 Adhesive forces 

Normally, particles <0.0001 mm in water remain continuously in 

motion due to electrostatic charge (often negative) which 

causes them to repel each other. Once their electrostatic charge 

is neutralized, the finer particles start to collide and agglomerate 

under the influence of Van der Waals forces. Van der Waals 

forces are defined as the attractive or repulsive force between 

molecules (or between parts of the same molecule), atoms and 

surfaces. Van der Waals forces are relatively weak compared to 

chemical bonds. (Young and Freedman 1996) Attraction in-

creases with higher particle density; thus, the risk of flocculation 

increases with a higher concentration of particles. 

 

Adhesive forces caused by Van der Waal forces may create col-

loid particles and induce aggregation of particles which in effect 

will influence size measurements. Mass forces (gravity, centrifu-

gal forces etc.) dominate >0.050 mm and work against binding 

forces and the formation of agglomerates. This particularly is en-

forced if the dispersion is in motion (e.g. stirred).  

 

Electrostatic attraction occurs between particles with oppositely 

charged surfaces; this can play a significant role on particles 

<0.050 mm. (Sympatec) 

 

2.3.6 Dispersion agent: Peptizer 

Peptizers (box 6) are used as deflocculating agents, i.e. sodium 

pyrophosphate Na4P2O7*(10H2O) or sodium hexametaphos-

phate (NaPO3)6. Peptizers are salts and soluble in water. Used as 

dispersing agents they prevent agglomerates from forming and 

aid the dispersion process. (Krumbein and Pettijohn 1938) The 

BOX 5 

 

Flocculation can be avoided in several ways: 
If the concentration of the dispersed material is kept at a 

minimum, clay particles will find it difficult to floc. Typi-

cally, 20-30 g sample per liter is sufficient and not more 

than 15 g clay per solution. (Sørensen and Bülow-Olsen 

1994) Especially clay minerals with shrink-swell capaci-

ties (smectite and vermiculite) may cause flocculation. 

 

Dispersion should take place in a solution of deionized 

water without the normal level of ions present in Danish 

tap water. If the deionized water is of poor quality (high 

conductivity level) the surface of the colloids will become 

charged and the particles will not repel each other well. 

Thus, larger and more stable agglomerates form. 

 

Dispersing with a peptizer can minimize flocculation. By 

using sodium pyrophosphate, the ions with a high va-

lence exchange for ions of lower valence (Na+) from the 

peptizer. The surface now is neutral and there is less risk 

of flocculation. Adding too much sodium pyrophosphate 

will have the opposite affect and can produce flocs. 

 

Treating the sample with a reasonable amount of ultra-

sonic treatment will aid the disintegration of agglomer-

ates. However, too much treatment may break large par-

ticles into smaller particles, altering the PSD. 
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concentration of the peptizer is important, since a high concen-

tration will turn it into a coagulant and create the opposite effect: 

Flocculation. (Elonen 1971) 

 

Other studies have concluded that the PSD (especially for clayey 

samples) is influenced by the dispersion method: The dispersion 

agent (and its concentration), as well as the use of mechanical 

end-over-end shakers or ultrasonic sound. (Berthold, et al. 2000) 

 

 
 

2.3.7 Dispersion of soil samples 

Disperse (figure 18) by adding peptizer to the beaker (use meas-

uring glasses of 250 mL and 50 mL respectively): Add 250 mL di-

rectly; pour 50 mL into a small spray flask and use this for rinsing 

of the spatula and ultrasonic equipment later. Carefully destroy 

any clay with the rubber spatula by scraping against the side of 

the beaker.  

 

 
Figure 18: Dispersion using water and adding peptizer.  

 

Treat the sample for 2 minutes with an ultrasonic probe to destroy 

any possible aggregates. Leave until the following day, covered 

with a watch glass (and no longer because of possible algae 

growth). Check for flocculation (figure 19). If necessary, proceed 

to neutralize flocculation. 

 

 
Figure 19: A flask containing material <0.063 mm with visible flocs. 

 

2.3.8 Neutralizing flocculation 

The signs of flocculation are a clear liquid on top with a jelly-like 

layer above the sediment. If the glass is tipped the surface of the 

jellylike layer will stay horizontal.  

 

First, remove the clear liquid, and then add 300 mL 0.1 M 

Na4P2O7*(10H2O) and stir. Leave until the following day. The 

sample should be centrifuged (to remove Na4P2O7*(10H2O)) and 

500 mL 0.002 M Na4P2O7*(10H2O) is added once more. Apply 

ultrasonic sound for 2 minutes and then leave it 24 hours. Check 

for flocculation again and continue the treatment until the sam-

ple is dispersed correctly. 

 

2.4 Fractionizing 
2.4.1 Splitting into fractions 

A major part of prepping for LD analysis is ensuring that no inter-

ferences affect the measurements. It is therefore desirable to 

separate a sample into several fractions. These fractions are 

measured individually and data merged later to obtain a full PSD. 

When considering available time, sample volume etc. splitting of 

the material is sometimes left out, or alternative versions are con-

sidered. 

 

What is the reasoning behind fractionizing? When preparing the 

sample for LD analysis it is important to consider adhesive forces 

and physical properties of different particles: 

 

• Broadly distributed material contains small and large parti-

cles which will interact if together in the same suspension. 

 

• Since fine material is not suitable for dry measurements (fine 

particles may become electrically charged) clay and silt 

must be measured in a solution.  

 

• Large particles may be difficult to keep in motion in a liquid 

and are better dispersed using gravitational force.  

 

For these and practical reasons it is best to split the material into 

at least two fractions, separating fine from coarse particles. 

BOX 6 

 

ALTERNATIVE 1:  

Preparation of 1 L basic 0.1 M Na4P2O7*(10H2O) 
Add 800 mL deionized water into a 1 L flask and gently 

heat on a magnetic stirrer. Weigh 1.0 L x 0.1 mol/L x 

446.06 g/mol = 44.61 g (technical quality) peptizer and 

wash into the flask with deionized water, wait for it to dis-

solve.  Remove from heat, let cool and fill to the mark with 

deionized water. Store the solution in a 1 L plastic flask.  

 

0.002 M version (for dispersion and/or wet sieving) 
Add 40 mL of 0.1 M solution to a 2 L plastic flask and fill 

to the mark with deionized water. 

 

ALTERNATIVE 2:  

Preparation of 5 L basic 7.5 % (NaPO3)6  
Add 800 mL deionized water into a 1 L beaker and gently 

heat on a magnetic stirrer. Weigh 75.00 (technical qual-

ity) peptizer and wash into the beaker with deionized 

water, wait for it to dissolve. Transfer to a 5 L plastic con-

tainer. Repeat 5 times (in total 375.00 g) and fill to the 

mark with deionized water. 

 

1.5 % version (for dispersion and/or wet sieving) 
Add 1 L of 7.5 % solution to a 5 L plastic container and fill 

to the mark with deionized water. 

 

Shake all solutions thoroughly before use. 
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Traditionally, fine particles are separated by wet sieving and 

coarse particles are separated by dry sieving. Once the sample 

is dispersed correctly, it is easy to split the finest particles from the 

rest of the material by wet sieving at a select size (usually at 0.063 

mm but 0.038 mm has also been seen). Use peptizer or deionized 

water in a spray flask. 

 

2.4.2 Wet sieving 

The meshes on the sieve should be wet before starting; other-

wise, they will initially repel the liquid and material is stopped by 

the meshes. Stir the sample with a rubber spatula and wet sieve 

at 0.063 mm (figure 20) with deionized water in a spray flask (or 

alternative: A solution of peptizer). Use a funnel and wash into a 

2 L plastic flask. Ensure that wet sieving is sufficient by checking 

the color of the water passing through the meshes against a 

white background (a porcelain bowl can be used): The process 

is completed when the water is clear. To avoid algae growth, 

store the flask in a cool place until use. 

 

 
Figure 20: Wet sieving at 0.063 mm.  

 

Wash the remaining particles on the sieve meshes into a porce-

lain bowl and rinse 2-3 times with deionized water. Transfer using 

deionized water into a previously dried (105oC ±5oC) and 

weighed beaker. Carefully remove some of the excess water. Dry 

the beaker with the material overnight in a heating cabinet at 

105oC ±5oC. Cool off before weighing the next day. Subtract the 

weight of the beaker and calculate the mass of the coarsest frac-

tion. From this mass the mass of the finest fraction in the flask is 

calculated, using the total mass of the sample before wet sieving 

was commenced. 

 

2.4.3 Dry sieving 

If using an LD system with gravitational dispersion, additional dry 

sieving is called for to be able to measure the coarsest particles 

in the most optimum way. Choose a reasonable particle size (e.g. 

0.250 mm) to split the fraction >0.063 mm into two sub-fractions.  

 

No matter how many fractions a sample is split into, the mass of 

each fraction must always be known for the final data calcula-

tions and especially during LD data evaluations. 

 

2.4.4 Procedure for dry splitting 

Sieve the dry fraction >0.063 mm using the selected mesh size 

(figure 21) in a Ro-Tap sieving machine for 20 minutes (refer to 

the next chapter describing sieving techniques in general).  

 

 
Figure 21: Dry sieving at 0.250 mm produces two additional fractions.  

 

After sieving is completed, empty the meshes carefully using a 

fine brush (figure 22). Brush the two fractions into two previously 

dried (105oC ±5oC) and weighed beakers. The mass of each 

fraction is found directly. 

 

 
Figure 22: Use appropriate brushes for cleaning sieve meshes: To the left a soft-

haired brush for soft (normally fine) mesh material and to the right a wire brush for 

metal mesh material. 
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3.1 Background 
3.1.1 Separating coarse material 

The simplest technique to measure the size of an object is by us-

ing a measuring tape. This is a one-dimensional method, deter-

mining the length of one axis only. If the technique is improved 

by adding a dimension, the sieve is developed: A two-dimen-

sional method. 

 

Sieving is the process of separating a mixture of particles accord-

ing to their size by means of one or more surfaces provided with 

apertures of suitable size and shape while using gravitation. 

Screen scale is metric and based on a sieve with an opening of 

1 mm. (Allman and Lawrence 1972) DS 405.9 describes the 

standardized Danish sieving procedure. 

 

The use of sieves with different sized meshes is one of the oldest, 

most reliable, and most commonly used methods for providing 

PSD. Sieving is widely used for measuring, separating or filtering 

particles of different sizes: It is simple and relatively low cost to 

perform. When eliminating person-dependable errors due to 

weighing and cleaning the meshes, the method is highly accu-

rate and precise on two-dimensional (spherical) materials. When 

using qualified sieving equipment, the difference between 

sieves of various fabricate is eliminated. 

 

3.1.2 Sieve 

A sieve analysis is carried out in a series of woven-wired square-

mesh screens. The screen residue measures the quantity of par-

ticles retained (figure 23): It does not describe the size of those 

retained particles, except that they are larger than the screen 

openings in at least two dimensions. The sizes of the particles that 

pass through the screen is unknown, except that they are smaller 
than the screen openings in at least two dimensions.  
 

Percentage⁡retained⁡ = (
Weight⁡of⁡material⁡retained

Weight⁡of⁡total⁡material
) × 100 

 

Cumulative⁡percentage = ∑Percentage⁡retained 

Figure 23: Calculations of retained material. 

 

Sieves come in different sizes and various materials (i.e. brass, 

steel etc.). Some sieves are expensive and the finer meshes del-

icate: Handle them with care. For standard geological sieving 

analysis, usually a diameter of 20 cm (8-inch) width is used; how-

ever, geotechnical sieves can be much wider to be able to han-

dle massive loads of material and/or relatively large particles. 

For smaller volumes a 10 cm sieve set can be used. 

 

Sieving as means of separation is only possible on coarser mate-

rial: The mechanical disintegration is not suitable to separate fine 

particles. Here other methods are necessary (e.g. sedimentation). 

 

3.1.3 Calibrations 

The weaving of sieves cannot be perfect. The apertures are not 

always square, nor are they of exactly uniform size.  

 

Consequently, PSD determined by sieving particles often show a 

kinky curve when plotted against the nominal sieve apertures. A 

kink in the size distribution curve might arise from a real trait of 

the particle grading. However, if kinks of the same kind occur at 

the same size fraction in a series of samples from different local-

ities and with different PSD, it is very likely that one or more inac-

curate nominal sieve apertures cause the kinks. Therefore, a 

method of calibrating sieves by means of empirical PSDs of hy-

perbolic shape has been developed. The corrections found suc-

cessfully adjust the displacement arising from erroneous aper-

ture up to 0.6 mm. (Dalsgaard, Jensen and Sørensen 1991) 

 

3.1.4 Square root and fourth root 

Aperture sizes were early on based on a ratio of the square root 

of two (√2 = 1.4142) resulting in the aperture width doubling at 

every second sieve in the series. This was later changed to the 

fourth root of two (√2
4

= 1.1892), where the aperture width dou-

bles at every fourth sieve. These techniques were named square 

root and fourth root sieving respectively. 

 

Now sieving is usually performed using the halving scale with the 

following mesh sizes: 2, 1, 0.5, 0.250, 0.125 and 0.063 mm. When 

working with till sediments the range can be extended to include 

16, 8 and 4 mm. 

 

3 SIEVING 

 
  



18 

 

 

PARTICLE SIZING IN GEOSCIENCES 

 

BY CHARLOTTE RASMUSSEN 

3 SIEVING 

 

 

 

 

 

 

 
3.1.5 Aspect ratio and shape factor 

In geoscience, crystalline particles occur in different shapes and 

sizes. Two geometrical parameters are used to describe particles: 

Roundness (sharpness regardless of shape) and sphericity (the 

degree to which the shape approaches that of a sphere). Three 

axes can describe the dimensions of any given form: Length, 

breadth and thickness (or long, intermediate and short), provid-

ing four different classes of forms (figure 24). (Zingg 1935) 

 

 
Figure 24: The four classes of particle shape based on ratios of the long (a), inter-

mediate (b) and short (c) diameters. Class I: Oblate (tabular or disc shaped), II: 

Equant (cubic or spherical), III: Bladed and IV: Prolate (rod-shaped). (Zingg 1935) 

 

The ratio between the shortest and longest axis on a particle is 

the aspect ratio. When these two axes are equal in length, the 

aspect ratio is 1. Particles that have high aspect ratios are by this 

definition not spherical. Chapter 6 deals with this in detail. 

 

Measurements with sieves are depending on the sieve meshes, 

which yield the two smallest axes on the particle passing 

through. Meshes are usually square. Particles can therefore be 

measured smaller than their actual size, since some particles 

may have two short and one long axis (figure 25). 

 

 
Figure 25: The form dependencies during sieving where some larger particles pass. 

 

This common problem (that non-spherical particles can 

erect during the sieve procedure and pass with their smaller di-

ameter through the meshes) will alter the PSD: Compared with 

spheres of the same volume, the sieve information shifts towards 

a finer PSD. (Sanetra 2004)  

 

There is a certain probability that a given particle will present it-

self at the mesh opening. The rejection or passing of the particle 

through the mesh is determined by various factors: The load on 

the sieve, the particle surface, the dimension and form of the par-

ticle and the method of shaking the sieve. Whether or not the 

particle will actually pass the mesh is dependent on the particle’s 

three dimensions and angle at which it is trying to pass. (Allen 

1974)  

 

The sieving process can be controlled by the operator (time, vol-

ume of material and means of shaking) but particle properties 

cannot. 

 

3.2 Measurement 
3.2.1 Wet sieving 

Fine particles that are dry may choke the meshes and are not 

properly free-flowing. To conduct a sieving analysis, finer parti-

cles are usually removed beforehand by wet sieving. The limiting 

size for splitting fine from coarse material has been described as 

0.075 mm (Allen 1974) and 0.105 mm (Griffiths 1967), therefore 

it is reasonable to use 0.063 mm to ensure proper separation. 

 

3.2.2 Considerations 

Samples may have been pretreated (oxidation etc. are optional, 

wet sieving is mandatory) and must be dried at 105oC ±5oC. In 

order to avoid hygroscopic water influencing the sieving loss, the 

samples are allowed to equilibrate their water content with at-

mospheric air before sieving. 

 

The initial total (dry) weight is needed before proceeding. Refer 

to appendix B for a flow chart of all steps of the sieving analysis. 

 

3.2.3 Procedure for sieving 

Arrange the series of sieves in a descending order of decreasing 

particle size. Insert a receiver pan at the base (to collect fine ma-

terial) and a lid at the top (to prevent escaping particles).  

 

The set is sieved on a sieve shaker or rotational/tapping (Ro-Tap) 

machine for a fixed time, typically 20 minutes. During this time, 

all particles must have contact with the meshes so no more than 

100-150 g should be sieved at a time. (Griffiths 1967) Longer du-

ration can cause coarser particles to disintegrate into smaller 

fragments from the mechanical action performed by the sieve. 

 

After sieving is completed each fraction is weighed and the 

meshes are emptied carefully and without force onto black 

glossy paper using a soft hair brush (for fine, fabric meshes) and 

brass brush (for coarse, metal meshes) (figure 26). For larger 

meshes a needle or other pointy utensil is used. >2 mm should be 

completely clear of material at all times. Finally, the sieves can 

be cleaned using pressurized air. 

 

  
Figure 26: Use appropriate accessories to clean each sieve by hand (left), ranging 

from brushes of different material and sizes to various needles (right). 
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The sieving loss should be monitored to ensure quality of the data 

and track possible sources of errors (meshes can tear, or if sieves 

are not firmly secured in the shaker particles can escape): Siev-

ing loss should be < 0.1 % for 30 g material or < 3 % for the small-

est material of 0.05-0.1 g (Dalsgaard, Jensen and Sørensen 

1991) Note that sieving loss can be positive or negative. 

 

3.2.4 Reliability of the method 

Sieving by hand is easy to learn but difficult to perform in detail. 

Results are somewhat subjective to the user and the fabricate of 

the sieves and sieve shakers. Standard sieving machines should 

perform a three-dimensional movement: A vertical vibration and 

horizontal movement (known as “Ro-Tap” for rotating and tap-

ping motion, figure 27). This will jolt the particles at all possible 

angles, giving them opportunity to align and fall through the 

meshes. (Thorum 2012) 

 

  
Figure 27: Sieving should be performed with a certified set of calibrated sieves, and 

by use of a sieving machine. At the left is the standard Pascall Inclyno model used 

at the Department of Geoscience. At the right is a custom-built version, suspended 

from the ceiling (seen at VIA University College in Horsens). 

 

The two principle parameters of length and mass are directly 

traceable to international standards: A sieve can be calibrated 

using microscopy, and a scale can be calibrated using reference 

standard weights. 

 

The sieving time depends on a variety of factors, such as the 

characteristics of the material, sieve diameter, volume of the 

charge, relative humidity, and so on, although the rule is that with 

one additional minute of sieving, if the amount retained on any 

one sieve changes <1 %, the endpoint of the PSA has been 

reached. 

 

3.3 Producing data  
3.3.1 PSD curves 

Data for sieving analysis is normally based on >0.063 mm only.  

 

Each sieve fraction has traditionally been weighed and the data 

plotted into a histogram. The PSD can be produced by either a 

frequency or cumulative diagram, usually both are needed for 

evaluation. 

 

3.3.2 Software 

The Windows software KORN (latest version 1.107) is used at the 

Department of Geoscience, Aarhus University, for interpreting 

data from sedimentation and/or sieving analysis. The software 

was developed from the previous DOS version by Mads Østerby 

Jespersen during the SESAM project (2001-2010). The KORN 

software (figure 28) offers various particle size parameters as 

well as the common PSD diagrams. 

 

Sieving data in KORN can be combined with data obtained by 

the Andreasen pipette. Alternatively (if KORN or similar is not 

available), refer to section 5.3 for combining sieving data with 

data obtained by sedimentation or LD methods in a simple 

spreadsheet. 

 

 
Figure 28: The user interface of KORN, developed by Mads Østerby Jespersen for 

the SESAM project. 
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4.1 Background 
4.1.1 Use of laser diffraction 

Laser diffraction or LD (also known as Static Light Scattering) is 

one of the most widely used techniques today for PSD. LD is de-

scribed in the international standard ISO 13320. 

 

Experiments as far back as the 1840s resulted in the Fraunhofer 

diffraction physics, named after the German optician Joseph von 

Fraunhofer (1787-1826). Fraunhofer assumed that particles are 

opaque (absorb light completely) and refract the light at low an-

gles. For very fine particles, the Fraunhofer theory is an approxi-

mation. Fraunhofer theory assumes that light waves are parallel. 

 

The Danish mathematician and physicist Ludvig V. Lorenz (1829-

1891) developed the theory of refraction (figure 29). He pub-

lished his research in 1890 to a limited audience: “Lysbevægel-
sen i og uden for en af plane Lysbølger belyst Kugle”.  

 

The German physicist Gustav Mie (1869-1957) could rediscover 

the model in 1908. It is now known by the name of Lorenz-Mie 

theory or Mie scattering. Gustav Mie studied chemistry, mathe-

matics, physics, geology and mineralogy. One of his most prom-

inent contributions to natural science is still used in meteorology 

today: Determining water content in the atmosphere by radar. 

 

   
Figure 29: Ludvig Valentin Lorenz (left) and in the middle the front page of Lorenz’ 

famous paper. To the right Gustav Mie (ca. 1905) who rediscovered Lorenz’ theory. 

 

Later LD theory was described in the 1980s and innovative com-

panies started to produce high-end instruments. LD instruments 

have been developed since then and usage has been further re-

fined during the past decades. LD is used extensively in many in-

dustries and research institutions: It is now one of the most im-

portant types of analytical tools available. LD is used in material 

science to describe properties in particle shape, PSD and PSA.  

 

Along with microscopy and X-ray diffraction, LD is one of the 

most common methods for particle characterization. (Jones 

2003) LD instruments are fast and easy to operate: They carry a 

high reproducibility and mode of detail. Some LD setups are ca-

pable of determining particle size up to 8.5 mm i.e. the Sympatec 

HELOS system that with the correct configuration covers a range 

up to 8.75 mm. (Sympatec) 

 

4.1.2 Fraunhofer approximation and Mie theory 

The diffraction of the laser light results from the interaction of the 

light with spherical particles and (as mentioned earlier) this can 

be described mathematically by the Fraunhofer or Mie models.  

 

The term Mie theory is misleading since it is considered to be a 

solution for the Maxwell equation for the scattering of electro-

magnetic radiation and not a theory in its own right. The Mie 

model applies to spheres with diameters between 0 and infinity. 

Mie evaluation is applicable for monocrystalline materials with a 

known refraction index (RI) and a particle size <0.010 mm. 

(Sympatec) When using the HELOS Windox software, re-evalua-

tions based on Mie theory is only applicable up to a focal dis-

tance of 200 mm (R4). (Sanetra 2004)  

 

Because different LD systems use different models to evaluate 

data, data from different systems may not be easily comparable. 

 

4.1.3 Light and particle interaction 

LD for PSA is based on the principle, that particles of a given size 

diffract light with a given angle, the angle being inversely pro-

portional to particle size: A large angle thus indicates a small par-

ticle size. (Pedersen 2003) 

 

During the interaction of light with particles, different light phe-

nomena occur at the same time: Diffraction, refraction, absorp-

tion and reflection (figure 30). (Rasmussen and Dalsgaard 2010) 

4 LASER DIFFRACTION 
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Figure 30: Particle interacting with light waves. 

 

What is the relationship between diffraction patterns and parti-

cle size? When a narrow beam of monochromatic light is passed 

through the measuring area containing the sample, the light 

wave will break when hitting the edge of a particle. The resulting 

light wave phenomena form the characteristic diffraction pat-

tern. This pattern is focused onto a detector, which records the 

angular distribution of light intensity I() (figure 31). (McCave and 

Syvitski 1991) 

 

I(θ) =
1

θ
∫ r2
∞

0

n(r)J1
2(krθ)dr 

Figure 31: The angular distribution of light intensity.  is the scattering angle, r is par-

ticle radius, n(r) is the size distribution function, J1 is the Bessel function of the first 

kind, k=2/ and  is the wavelength of monochromatic light used by the system. 

 

Having measured I() the expression above can be inverted to 

obtain the size distribution. (Singer, et al. 1988) 

 

4.1.4 Diffraction patterns 

Either Mie theory or Fraunhofer approximation are used to inter-

pret the scattered pattern and convert it into a size distribution. 

The acquisition of diffracted light is usually performed with the 

help of a multi-element photo-detector. 

 

For a single spherical particle, the diffraction pattern shows a typ-

ical ring structure (figure 32). The distance r0 of the first minimum 

to the center is depending on the particle size. On large particles 

the incident light will be diffracted in a small scattering angle and 

on small particles the light will be diffracted in a large scattering 

angle (figure 33).  

 

 
Figure 32: Example of diffraction patterns for spherical particles, small and large. 

The distance from the center to the first ring is defined as r0. (After Sympatec) 

 
Figure 33: Small and large angle scattering. 

 

The beam intensity (figure 34) is a measure of the volume of the 

fraction, or how many particles of the same size is present during 

measurement. 

 

 
Figure 34: Example of intensity measurement on one particle size. (After Sympatec) 

 

It is assumed that particles are presented to the incident light in 

all possible directions. This may not always be true: Particles with 

a large aspect ratio tend to have a preferred orientation. 

(International Organization for Standardization 2020) 

 

4.1.5 HELOS setup 

The HELOS instrument at the Department of Geoscience is 

equipped with two main modules (figure 35): A unit for wet sam-

ples called QUIXEL, containing a reservoir with deionized water. 

The reservoir is directly connected to a flow-cell with two op-

posed windows that allow the laser-beam to penetrate the solu-

tion. Secondly a shaft unit for dry samples called GRADIS (gravi-

tational dispersion). The latter has a vibrational feeder attached 

above called VIBRI that enables particles to fall in a controlled 

manner downwards through the shaft and through the measur-

ing area. Particles must be free flowing and dry to successfully 

use GRADIS.  

 

 
Figure 35: Different parts of the HELOS instrument, from left to right: VIBRI module 

(located above the GRADIS shaft), the QUIXEL module and the 2 mm flow-cell 

(which is inserted in the measuring area inside the QUIXEL module). 

 

Once entered into the measuring area, light waves target each 

particle. The diffraction of light is subsequently measured on the 

far side of the laser unit where a detector with 31 ring elements 

is located (figure 36). In-between the laser source and the detec-

tor appropriate lenses and optics are located. 
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Figure 36: Principle of the Sympatec HELOS system.  

 

4.1.6 Laser source 

The instrument uses a helium-neon (He-Ne) laser of protection 

class/type 34/IP40. The laser beam is created by a mixture of 

helium and neon gas inside a quartz tube. The beam is formed 

by photons which are reflected between mirrors on each end of 

the tube and at the same time stimulating excited atoms to emit 

photons. The excited atoms appear when the laser medium is 

connected to electrical power and this process starts spontane-

ous emission. The process is re-enforced between the mirrors 

while a certain percentage of the photons is allowed to pass at 

one end, allowing the He-Ne laser to emit red light at a wave-

length of exactly 632.8 nm. (Elvekjær and Nielsen 1993) 

 

He-Ne lasers need warm-up time (>30 minutes) for the system to 

become stable. The laser beam must not be interrupted during 

measurement since the evaluation of diffraction patterns de-

pend on a laser-beam always being perpendicular to the lens 

and detector: The beam’s direction and intensity can be influ-

enced by parameters such as touching of the instrument or table 

surface, closing of door/window and nearby electronic noise.  

 

4.1.7 Detector 

The detector is the most sophisticated element of an LD instru-

ment. It has a number of discrete sensitive elements of precise 

geometry, usually rings (180o) of homogeneous sensitivity and a 

reflectivity of zero. Detection of very coarse particles require very 

small elements and an exact alignment of the highly sensitive 

central-beam (figure 37). (Witt and Röthele 1995) 

 

 
Figure 37: Sector fields in the center are surrounded by ring elements. 

 

4.1.8 Lens systems 

The HELOS instrument is equipped with three lenses. The depart-

ment chose a setup with R1, R4 and R7 respectively. Each lens 

size is a factor 10 larger than the previous (figure 38). For a par-

ticular measurement, a lens is chosen that covers the range of 

the expected PSD of the material measured. Whenever a lens is 

chosen, the system will autofocus and align the laser beam par-

allel to the lens revolver and focus the laser onto the detector. 

LENS SYSTEM Measuring size [µm] of lens 

Ring element R1 R4 R7 

(1) (0.10) (0.5) (0.5) 

2 0.18 1.8 18.0 

3 0.22 2.2 22.0 

4 0.26 2.6 26.0 

5 0.30 3.0 30.0 

6 0.36 3.6 36.0 

7 0.44 4.4 44.0 

8 0.52 5.2 52.0 

9 0.62 6.2 62.0 

10 0.74 7.4 74.0 

11 0.86 8.6 86.0 

12 1.00 10.0 100.0 

13 1.20 12.0 120.0 

14 1.50 15.0 150.0 

15 1.80 18.0 180.0 

16 2.10 21.0 210.0 

17 2.50 25.0 250.0 

18 3.00 30.0 300.0 

19 3.60 36.0 360.0 

20 4.10 41.0 410.0 

21 5.00 50.0 500.0 

22 6.00 60.0 600.0 

23 7.20 72.0 720.0 

24 8.68 86.0 860.0 

25 10.20 102.0 1020.0 

26 12.20 122.0 1220.0 

27 14.60 146.0 1460.0 

28 17.40 174.0 1740.0 

29 20.60 206.0 2060.0 

30 24.60 246.0 2460.0 

31 29.40 294.0 2940.0 

32 35.00 350.0 3500.0 

Range limit 0.18-35.0 1.8-350 18.0-3500 
Figure 38: The three measuring lenses available in this HELOS system: R1, R4 and 

R7. Sizes measured by ring element no. 1 are considered detection limits. (After 

Sympatec) 

 

The origin of the PSD is (according to the lens) found at the loca-

tion where the measurement is 0 %. This means that all measure-

ments acquire their first measured data in ring element no. 2.  

 

It is a common misconception that the available size classes of a 

LD system are directly related to the number of rings in the de-

tector. That is not the case. The measured sizes are to be consid-

ered the raw data from which any size class can be deduced. If 

anything, a large number of rings is the basis of better accuracy 

of each measurement. Size classes can normally be defined in 

any way needed; the software simply interpolates the relevant 

size if they are not already measured directly by the detector.  

 

4.1.9 Flow-cell 

The case of the flow-cell (often referred to as the cuvette) is 

made of hardened steel. It comes in different sizes, depending 

on the particle size of the material fed into the system.  

 

This HELOS system has two optional flow-cells, a 2 mm and a 6 

mm flow-cell (figure 39) allowing for up to 2 mm or 6 mm parti-

cles to pass on their longest axis. The 2 mm flow-cell should be 

used on samples that are split into fractions and definitely <2 mm. 

The 6 mm flow-cell is used for samples that for one reason or an-

other can’t be split into fractions. 
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Figure 39: The 6 mm flow-cell. 

 

The flow-cell windows are made of quartz which is one of the 

hardest materials available: The use of quartz minimizes 

scratches on the glass surface by the particles and ensures the 

flow-cell a long life.  

 

Any flow-cell needs regular cleaning (refer to the manual for 

specific procedure with special cleaning tissue) and at times the 

inner rubber ring must be replaced. During long standby, algae 

may form. Each flow-cell can be dismounted and opened to 

clean the inside with acetone and deionized water to avoid par-

ticles or algae to stick to the glass. The outside is carefully 

cleaned with pressurized air and lens paper. Never leave the 

flow-cell dry: Always keep it filled with deionized water by filling 

the reservoir to the top, or filling the flow-cell manually with de-

ionized water when kept in storage. 

 

Note that a QUIXEL setup with the reservoir and the 6 mm flow-

cell has issues of keeping coarse particles in suspension. When 

using the 6 mm flow-cell the software automatically raises the 

stirring speed in the reservoir to avoid this error, but sorting within 

the flow-cell may occur anyway. An immediate effect of higher 

pump speed is the formation of unwanted air bubbles, notably 

the longer a sample is held in the reservoir. These bubbles tend 

to be led towards the flow-cell where they can’t easily escape. 

Here they affect the measurement by falsifying the result by cre-

ating artificial fractions. (Vendelboe 2004-2005) The speed of 

circulation through the flow-cell can at very high velocities cause 

particles to orient parallel (rod-shapes particles) or perpendicular 

(plate-shaped particles) to the direction of flow, causing the 

measurement to be faulty. (Blott, Croft, et al. 2004)  

 

In conclusion, even though an option, the 6 mm flow-cell setup is 

not suitable for heavy and coarse crystalline material >2 mm. 

Generally, inappropriate pumping velocity may lead to sedi-

mentation of the larger particles in the pumping circuit. 

 

4.1.10 Reservoir and sonication 

This QUIXEL reservoir has two levels: First filling adds 250 mL de-

ionized water and the second filling adds up to 1000 mL respec-

tively. The suspension is constantly stirred to avoid sedimentation 

and thus sorting of the particles by size.  

 

Some studies recommend ultrasonic sound treatment up to 2 

minutes. Longer treatment times can cause disintegration of 

some type of particles. (Blott, Croft, et al. 2004)  

 

4.1.11 In-line, On-line and At-line analyzers 

The HELOS instrument at the Department of Geoscience is a so-

called At-line (off-line) analyzer. For industrial purposes, where it 

is necessary to know particle sizes and material composition of 

e.g. cement, metal powders or pharmaceutical products during 

and after production, PSA can be incorporated directly into the 

production line (with an In-line analyzer), or a sub-section of it 

(by line). This secondary line often leads to the quality control line 

or R&D section where an On-line analyzer performs the PSA (fig-

ure 40). 

 

 
Figure 40: Different types of analyzers. 

 

At-line and On-line analyzers tap into the production line. For in-

dustrial production the aim is to interfere with the production line 

as little as possible while having real-time measurements. This 

can be obtained by using In-line analyzers. Hereby the material 

can be continuously monitored by PSA and sampling bias is pre-

vented. In-line measurement is not always an option in a specific 

industrial setting, then an On-line analyzer (located on the by 

line) can be used. The material is here returned to the production 

line after analysis is completed. Note that it is important that the 

re-circulation line design prevents cross-contamination when re-

turning the material to the production line. In-line and On-line 

analyses both permit continuous product and process control. A 

third option is removing a portion (a representative sub-sample) 

from the main line and measuring sample properties elsewhere 

on a standalone system. This will inevitably be more time-con-

suming and it may not be cost-efficient to remove a sub-sample 

too often. (Heydenrych 2020) 

 

4.1.12 Forced stability issues 

It is possible to switch off one or more ring elements. This is carried 

out by applying Forced Stability (FS) in the HELOS software.  

 

When using R7, the first ring element corresponds to particle sizes 

>2.46 mm. When selecting FS = 1 (FS1) the first ring element 

(closest to the center of the detector) is neglected and the instru-

ment does not consider the coarsest particle class. Because of 

the long focal length, the inner ring element can easily be hit by 

the laser beam or false light and detect an erroneous signal. It 

can be necessary to eliminate this part of the signal, when feed-

ing the system with material pre-sieved at 2 mm and seeing a 

PSD that is coarser than expected. (Romann 2004) 

 

4.1.13 Variance 

LD systems are based on first principles, though with idealized 

particle properties. Thus, calibration by a user is not required. 

Sympatec informs that the variance on LD is 1.5 % for coarse par-

ticles and 1.0 % for fine particles. 

 

Sympatec states that working on 107 particles provides a “very 

low” standard deviation of 1 % on wide distributions. The repro-

ducibility is “very good” as long as the procedures recommended 

by Sympatec is followed. (Röthele and Puckhaber 2000) As 

standard procedure Sympatec split at 0.063 mm to avoid inter-

ferences. It thus follows that for measurements involving an un-

split sample (<2 mm or even <6 mm) the standard deviation will 

be larger. Therefore at least one split (into two fractions) is pre-

ferred, two splits (into three fractions) are optional.  
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 4.2 Measurement 
4.2.1 System configuration 

There are different options for measurement, refer to appendix C 

for flow charts of the different approaches. 

 

The instrument as well as software is provided by Sympatec. The 

operating software (Windox version 5.3.0.0) controls all settings 

during measurement programs, most importantly: 

 

• Stirring of the reservoir: A suitable pump speed ensures ran-

dom orientation of particles. 

 

• Ultrasonic sound application: Supports the dispersion of indi-

vidual particles and prevents air bubbles. 

 

• Vibrational effect for the gravitational feeder. 

 

• Pauses and duration of measurement. 

 

Other parameters are configured to ensure maximum effect and 

high-quality measurements.  

 

The signal is monitored continuously in the Signal window. Meas-

urement is possible with an optical concentration of 5-50 % but 

preferably 15-30 %. Too low or too high concentrations yield low-

quality results. A minimum of three determinations on the same 

material (sub-sample or fraction) is carried out, depending on the 

reproducibility of the measurements: These measurements 

should be similar, otherwise instrument errors or interferences 

may have affected the measurement.  

 

Before each measurement, the signal is reset by running a refer-

ence (background) measurement on the dispersing agent (a so-

lution of peptizer or air) without particles in the measuring area. 

If an error occurs, it is an indication that there may be contami-

nated system units that need to be cleaned manually. Later, the 

background signal will be subtracted from the detector signal 

during measurement. The live signals from all detector rings dur-

ing the blank measurement should be observed: Fluctuations, 

negative values or overload readings may indicate faulty ring el-

ements. (International Organization for Standardization 2014) 

 

4.2.2 Choosing appropriate lens 

As an example, for a sample pre-sieved at 0.25 mm one would 

logically expect to use the R4 lens on the Sympatec HELOS sys-

tem for the fine fraction: R4 covers <0.35 mm and provides many 

relevant raw data points. However, due to software and sieving 

issues of geological material it has proven necessary to use R7 to 

ensure no coarse material is cut off. The R7 lens covers <3.5 mm 

and unfortunately provides fewer relevant data points. 

 

4.2.3 Standard procedure for wet measurements 

As mentioned earlier, due to complex mineralogy and wide size 

range, soil samples require fractionation and separated treat-

ment of fines and coarse material. (Sympatec 2002)  

 

If the sample has been split into several fractions <2 mm, the 2 

mm flow-cell is used. If the entire sample is run as-is (or the oper-

ator is inexperienced or unsure of the maximum particle size), the 

6 mm flow-cell is used.  

 

The software ensures that ultrasonic sound treatment is applied 

at the beginning of each measurement program (60 seconds) in 

order to degas the solution and disperse particles. This is followed 

by a short break (10 seconds) before the measurement (20 sec-

onds). 

 

Before the addition of material to the reservoir, the signal is reset 

with a reference (blank) measurement: Add 10 mL of peptizer to 

the reservoir. Different wet measurement options using QUIXEL 

are seen in figure 41 and described in detail below. 

 

 
Figure 41: Example of two alternative measurements of wet material: Finest parti-

cles in a suspension and coarser particles in a paste. 

 

<0.063 mm measured with R4, 2 mm flow-cell 
The fraction in the flask is treated 2 minutes with an ultrasonic 

sound probe. The sample (in a plastic flask with a stopper) should 

be shaken well before use. At first 20 mL is added to the reservoir 

with a small plastic beaker that fits within the flask mount and 

large tweezers (quickly submerged in the plastic flask). Observe 

the concentration. Each sub-sample is measured at least three 

times. After completing all analyses, the sub-sample is discarded 

and the remaining material in the flask can be stored cold. 

 

If the optical concentration is too low a second sub-sample can 

be added. If the concentration of the suspension is still very low 

and there is little or no material left, it is optional to run with a low-

filling of the reservoir to artificially increase the concentration. 

 

0.063-0.250 mm measured with R7 (FS1), 2 mm flow-cell 
The fraction in a beaker is worked into a homogenous paste right 

before the analysis, using a few drops of deionized water and a 

glass spatula. Then a sub-sample (2-4 scoops with a spatula, ob-

serve the concentration) is added to the reservoir. Each sub-sam-

ple is measured at least three times. After completing all anal-

yses, the sub-sample is discarded and the remaining sample can 

be air dried and archived.  

 

If too much liquid is added to the paste, the material will be 

sorted in the beaker and it will not be possible to sub-sample rep-

resentative material. It is better to leave the sample until the fol-

lowing day (to let water naturally evaporate), then re-do the mix-

ing again. 

 

Alternative: Use the 6 mm flow-cell on an unsplit sample. Settings 

for QUIXEL is R7 (FS1) and the sample is worked into a homoge-

nous paste. Measure three times as described above. 
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4.2.4 Standard procedure for dry measurements 

During cold and dry periods of the year, it may be necessary to 

moist the air in the laboratory while measuring dry material. Oth-

erwise there is a risk of particles being subjected to static elec-

tricity. 

 

The coarse fraction will be underestimated if too few particles 

are being measured. Therefore, Sympatec has developed a 

gravitational dispersion system (GRADIS): The software controls 

the flow of particles through the shaft by a certain feed rate (here: 

50) created by gentle vibration from a second unit (VIBRI). This 

will ensure a continuous flow of particles into the measuring area. 

It is better to opt for a slow feed rate, otherwise particles will block 

each other and the diffracted light will contain too much noise. 

 

0.250-2 mm measured with R7 (FS1) 
A reference is run (on air) between each measurement. A suita-

ble amount of material is placed in the funnel and fed down 

through the shaft during measurement (figure 42). After the 

measurement, the remaining parts of the material can be 

brushed down the shaft and collected in the drawer at the base 

of the unit.  

 

 
Figure 42: Example of measuring dry fractions. 

 

The funnel and drawer are cleaned with pressurized air and/or 

a vacuum cleaner. Dry measurements are non-destructive so the 

entire fraction can be archived and re-used for other purposes if 

desired. However, expect to lose some particles in the cleaning 

process. 

 

4.2.5 Contamination 

The contamination index is based on an absolute reference 

measurement which is carried out right after thorough cleaning 

of all parts of the system and stored in the database. The con-

tamination index is also dependent on the intensity of each de-

tector ring element.  

 

In the QUIXEL unit the reservoir and flow-cell are rinsed in-be-

tween measurements with deionized water until the contamina-

tion index is <1 %.  

 

Wide distributions require little contamination to affect the PSD, 

narrow distributions are less of a problem. Also note that the cal-

culation of the contamination index requires that the dispersing 

medium during normal measurement is the same as during the 

absolute reference measurement. 

 

4.2.6 Reliability of the method 

The Windox software ensures that the material in the QUIXEL unit 

is mixed while under constant stirring and treated with ultrasonic 

sound to de-gas the solution and prevent clay aggregates to 

form. The length of time of applying ultrasonic sound in the res-

ervoir should be considered: It should never exceed 60 seconds, 

since crystalline particles (i.e. mica) can break when affected. 

(Elonen 1971) 

 

The optical concentration (Copt) is the obscuration of the center 

of the detector caused by particles in the laser beam (figure 43). 

Iref is the mean intensity on the detector center during reference 

measurement and Imeas is the mean intensity on the detector 

center during a normal measurement.  

 

Copt = (Iref − Imeas)/Iref 
Figure 43: Optical concentration. 

 

An optical concentration in the reservoir of approximately 15-30 

% is preferred, according to Sympatec the optimal concentration 

is 30-40 % but varies with the material.  

 

It is desirable with an acceptable signal-to-noise ratio with re-

spect to precision: If the sample concentration is too low, the ob-

scuration and the intensity of the scattered light are low, leading 

to noisy data. If the sample concentration is too high and the so-

lution too dense, the light scattered from a particle may be scat-

tered again by a second particle (known as a multi-scatter ef-

fect), causing errors. (Bittelli, Campbell and Flury 1999) 

 

Note that obscuration is the light that does not reach the detec-

tor. During measurement a fraction of the transmitted light is 

blocked (and scattered) by particles: Obscuration = 1 – transmis-

sion. In other words, 100 % transmission is the laser intensity with 

no particles present (obscuration = 0 %). When adding particles 

to the system, the obscuration increases and the transmission de-

creases. (Horiba Instruments 2010) 

 

Although small amounts of material are necessary to run a LD 

measurement it is a precondition that the selected material is ho-

mogenous and representative of the entire sample, in order for 

the results to be easily reproduced. (Møller and Pedersen) 

 

4.3 Producing data  
4.3.1 Software 

Raw data (figure 44) is stored in a database and is non-change-

able. Readouts however are always changeable: Whenever it is 

necessary to test different settings on an existing measurement, 

the measurement can be loaded into the software and the data 

manipulated by changing the settings as desired.  

 

 
Figure 44: Example of data generated by Windox. Note the high reproducibility: The 

three measurements are hard to distinguish on the diagram. 
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All measurements produce a data report based on a personal 

template. The report by default includes many standard particle 

size parameters (box 7). 

 

 
 

Frequencies (in the HELOS software denoted p3) and cumulated 

diagrams are used to present PSD. Where data has been pro-

vided within a particle size range, the end point is used for com-

putations of (x, y). When creating histograms, the midpoint of the 

interval is typically used for (x, y). 

 

The Q(x) evaluating software by Sympatec furthermore provides 

a third output option to express the distribution density by vol-

ume: A smoothing of the frequency values, q3* (figure 45). 

 

q ∗ (x) =
∆Q(xi)

∆ln(xi)
 

Figure 45: Equation for smoothing the frequencies, q3* in the software. 

 

4.3.2 Re-evaluation using Mie theory 

For a normal measurement the HELOS uses the Fraunhofer ap-

proximation (in the Windox software denoted HRLD) by default.  

 

Data can be re-calculated using the Windox software. Mie theory 

can only be applied on measurements carried out using R4 (or 

smaller) lens and then it only makes sense on finely grinded, ho-

mogenous minerals with a known refractive index. (Sanetra 

2004) There are certain difficulties to consider when applying 

Mie theory to soil and sediment samples so it is not used very of-

ten. (Micromeritics Instrument Corporation 2006) 

 

Both Fraunhofer and Mie models can be used for particle sizes 

>0.010 mm. Mie theory provides the most accurate results <0.010 

mm since this model adds the effect of the absorption of light as 

well as the refraction of light through the particle itself. The use of 

the Mie theory presumes the precise knowledge of the complex 

refractive indices of the particle and medium. The application of 

Mie theory provides good results for fine, highly transmissive, 

spherical materials with well-known physical properties. The 

choice of the refractive indices can have a great influence on the 

calculated results of the PSD. In conclusion, applying Mie theory 

is not recommended for the analysis of a mixture of components 

with different refractive indices such as geological material. 

(Sympatec)  

 

4.3.3 Export 

All raw data must first be imported from the database into the 

Q(x) software. To keep track of the measurements it is easiest to 

keep a log (in a spreadsheet) with the unique database 

timestamp and the operator’s notes taken during measurement. 

From each set of measurements, the PSD is evaluated and a rep-

resentative measurement is chosen.  

 

Using a mean PSD of the three measurements proves to be dis-

advantageous in the software later, since certain information 

linked to the raw data is lost.  

 

Q(x) provides solutions for merging the PSDs found by measure-

ment from different lenses, as well as calculating statistical val-

ues and create user-defined tables for the output. Also, Q(x) has 

an option to import external data (i.e. retrieved by traditional 

sieving) to combine with present LD data and thereby create a 

total PSD based on several different analytical methods. 

 

4.3.4 Merging: Automatically (default) 

When two or more measurements have to be combined into one 

single PSD curve the merging can be carried out automatically 

by the Q(x) software (figure 46). Merging is carried out by select-

ing the measurements in the database, manually typing in each 

fraction’s mass, choosing the fractions that are to be combined 

and then merging them into one PSD. Then a specific output 

class is defined. Select an output type which is a combination of 

the raw data measured by the lenses (R4+R7), as well as the 

clay-silt-sand information when those are applicable. The se-

lected output is exported to a text-file that can be imported to a 

spreadsheet. With the acquired raw data the operator is free to 

interpolate new particle sizes or calculate preferred parameters. 

 

 
Figure 46: Merging all measurements into a full PSD. 

 

How is default merging carried out? The Q(x) software uses a 

mathematical approximation to fit the curve-gradients of two 

distributions in the “best” coordinate. This to make sure that the 

curves are indeed overlapping. However, the best particle size 

suggested by the software can be near the limit of the measuring 

range of the lens, where the curve from R4 is breaking off. If so, 

the PSD is not optimum and therefore it is not always considered 

the most realistic choice for a suit of samples to merge by default. 

 

4.3.5 Merging: Linked Analysis Special 

A work-around to receive more measuring points without split-

ting the sample, is to run a representative sample twice, each 

time choosing a different lens (e.g. first R4 and later R7). After-

wards the measurements can be merged (or linked) in a single 

coordinate: Using this special function the software takes the par-

ticle size range of each lens into account. Therefore, it is a pre-

condition that the ranges overlap in at least one coordinate.  

 

There are mathematical disadvantages when using Linked 

Analysis Special, i.e. the software does not allow for the individ-

ual masses of each fraction to be typed in and thus does not take 

BOX 7 

 

SMD and VMD: 
Terms such as Sauter mean diameter (SMD, the surface-

volume mean), and Volume mean diameter (VMD) are 

sometimes used in PSA. SMD is defined as the diameter 

of a sphere that has the same volume-to-surface ratio as 

a particle of interest. VMD refers to the midpoint particle 

size (or mean): Here 50 % of the volume of the particles is 

smaller, and 50 % of the volume of the particles is larger 

than the VMD. 
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the mass of each fraction in relation to the entire sample into ac-

count. (Sanetra 2004) Another disadvantage is that the neces-

sary material volume for the QUIXEL unit is twice as big as nor-

mal: Effectively this procedure resembles the measurements of 

two samples. For the GRADIS unit the material can be reused. 

Sadly, recycling material is not an option on this HELOS system: 

On newer models it is possible to switch lenses once material is 

in the reservoir of the QUIXEL. 

 

The evaluation of the ability to connect in a single coordi-

nate uses a criterion, which is calculated from the gradient of 

the two PSDs to the right and left of the connecting particle size 

value. A smooth connection (figure 47) is achieved if the gradient 

of the transformed PSD in the fine range coincides with the gra-

dient of the PSD in the coarse range. (Sympatec) 

 

K(x) = ⁡− |log {[
qF(x)

qG(x)
] ∙ [

QG(x)

⁡QF(x)
]}| 

Figure 47: Formula calculating the smooth factor K(x). 

 

Low K-values corresponds to the best smoothing. (Sanetra 2004) 

Criterions for smooth factor K(x): 
QG(x): PSD in the coarse range. 

QF(x): PSD in the fine range. 

qG(x): Linear density distribution value in the coarse range. 

qF(x): Linear density distribution value in the fine range. 

 

It seems a reasonable approach to select a size for linking lo-

cated at a distance from the limits of the lens such as 0.1 mm 

(R4). Unfortunately, more often than not it has been difficult to 

achieve a nice smoothing using this technique. 

 

4.3.6 Comparing data sets 

In calculating results based on LD-theory, there are certain as-

pects to note. 

 

Users often have different preferences and resource limitations: 

Changes in the applied technique and software can alter the ob-

served and evaluated measurements; without question there is a 

need for standardization of procedures. (Callesen, Palviainen, et 

al. 2017) (Borggaard, et al. 2011)  

 

Generally, it can be troublesome and confusing to compare re-

sults derived from different types of instruments, since various sys-

tems may operate with different hardware configurations and 

calculation models. (Callesen, Andersen, et al. 2016) Differences 

in the number of ring elements in the detector, or type of lens sys-

tem and optics in different systems will affect the PSD. (Fisher, et 

al. 2017)  

 

It has proven difficult to find equations that accurately describe 

the relationship between LD results and traditional sieving/sedi-

mentation results. None of the models derived fit into an over-all 

conclusion. Especially between LD and the Andreasen pipette 

method there is no common denominator observed: LD meas-

urements are likely to be dependable on the mineral type. To 

complicate the matter further: Studies have concluded that fitting 

performance varies with particle size, not only type and shape of 

particles. (Bah, Kravchuck and Kirchhof 2009) 

 

However, depending on the material composition the PSD can 

be quite similar. As an example, the sample 1MP-V3 (windblown 

sand from Staby, Western Jutland) was measured on two differ-

ent instruments and the two distributions are very similar (figure 

48). (Rasmussen and Dalsgaard 2017) 

  
Figure 48: A sample measured on two different instruments: The Malvern Mastersizer 

E (University of Copenhagen) and the Sympatec HELOS (Aarhus University).  

 

4.3.7 The clay-silt boundary 

As mentioned in the first chapter, there are different definitions of 

the boundary between clay and silt, one has traditionally been 

at 0.002 mm.  

 

As an example, the content of clay and silt is of high importance 

for soil treatment procedures within agronomy. For many reasons 

(economic, ecological, practical) it is essential to determine ac-

curate particle sizes near the clay-silt boundary.  

 

Samples containing clay particles are almost always measured 

coarser by LD as opposed to data obtained by traditional meth-

ods. I.e. particle sizes evaluated by the sedimentation method to 

be coarse clay is by LD determined as fine silt. For practical use 

LD experiments indicate that the limit between clay and silt is at 

0.006 mm. (Rasmussen and Dalsgaard 2017) Other studies have 

concluded that clay particles determined by sedimentation are 

registered on the laser instrument as being in the size range 

0.005-0.008 mm because of their platy form. (Konert and 

Vandeberghe 1997) A recent study support these ideas and ob-

servations: The research used SEM to conclude that  silt-sized par-

ticles were wrongly included in the clay fraction identified by the 

sieve-pipette method. (Yang, et al. 2019) 

 

4.3.8 A note on specific minerals 

Detector signals and distribution diagrams should be evaluated 

continuously, here are some common observations:  

 

• If the PSD changes rapidly while measuring in the QUIXEL 

unit, the sample may contain magnetite: When present in a 

solution, magnetite produces a PSD with a single peak that 

suddenly changes to a bimodal diagram on the next meas-

urement; the concentration drops and a coarsening effect 

takes place. This is a sign of the individual magnetite parti-

cles agglomerating into larger objects. 

 

• Samples rich in iron may coat the glass of the flow-cell win-

dows, causing a high contamination error and the need to 

clean more often.  

 

• For podzol B-horizons there may be interferences from iron- 

and manganese oxides. 
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5.1 Background 
5.1.1 Settling 

Sedimentation occurs when particles settle in a suspension. In 

theory, particles with the largest diameter will settle faster than 

particles with smaller diameters. 

 

The pipette sedimentation method was developed by Alfred 

Herman Munk Andreasen (figure 49) and makes use of a cylinder 

and a pipette with a constant volume, known as the Andreasen 
pipette. (Andreasen 1939)  

 

The method requires moderately skilled personnel to carry out 

the analysis. This method is limited to particle sizes <0.050 mm. 

(Krumbein and Pettijohn 1938) 

 

  
Figure 49: The Andreasen pipette used in the sedimentation analysis is named after 

its inventor, Alfred H. M. Andreasen, a Danish chemist. (Right photo: Elfelt) 

 

The sedimentation method is based on Stoke’s law. The concen-

tration of the particles has to be held at a reasonable level, typi-

cally 5-10 g per liter is sufficient. Stoke’s law assumes that the sus-

pension has a single particle density. However, soil is not hetero-

geneous and particles not always spherical in the measured 

range. (Bah, Kravchuck and Kirchhof 2009) 

 

5.1.2 Stoke’s law 

When particles with a known density settle in a solution of known 

volume, the particle size at a certain location in a cylinder can be 

calculated to a certain point in time. Stoke’s law (figure 50) is 

based on spherical particles with smooth surfaces. A large parti-

cle will settle faster than a small particle.  

 

v =
h

t
=
2gr2(ρp − ρf)

9
 

t =
18h

gr2(ρp − ρf)

 

Figure 50: Stoke’s law used for time calculation at an exact particle size. 

 

v: Velocity of settling particle (cm/s) 

p: Particle density (“crystalline” material: 2.65 g/cm3) 

f: Fluid density (1.00 g/cm3) 

g: Gravitational force (981.6 cm/s2) 

: Fluid viscosity at 20oC (0.01002 poise or g/(cm . s)) 

h: Height of fall (cm) 

t: Time in seconds (s) 

r: Particle radius (cm) 

 

The cylinders used are filled to 15 or 20 cm. Assuming that each 

extract removes exactly 10.00 mL, h is found to be 0.4 cm on 

these types of Andreasen cylinders. For inexperienced users, 

some pipettes offer the option of reading additional volumes 

over 10.00 mL. 

 

5.1.3 Brownian motion 

In a fluid, sub-micron particles will move randomly in a process 

known as Brownian motion. This process is based on thermal en-

ergy fluctuations that causes molecules in a suspension to inter-

act and be in constant motion. Some particles collide and are 

forced into random directions and moved in a process called dif-

fusion. 

5 ANDREASEN SEDIMENTATION 
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Diffusion is size-dependent. Brownian motion therefore affects 

settling of particles during sedimentation: If a number of particles 

subject to Brownian motion are present in a given medium and 

there is no preferred direction for the random oscillations, the 

particles will tend to spread evenly throughout the medium over 

time. In result, very fine particles may remain indefinitely in sus-

pension and do not settle. Stoke’s law assumes that particles for 

sedimentation analysis are large enough to be unaffected by 

Brownian motion. (Encyclopedia Britannica 2006) 

 

5.2 Measurement 
5.2.1 Sedimentation procedure 

Refer to appendix D for a flow chart of the sedimentation analy-

sis. Material is wet-sieved at 0.063 mm. 

 

Since Stoke’s law is dependent on temperature: The analysis 

should be carried out in a climate-controlled laboratory or simply 

by using a temperature-regulated water bath. 

 

The rate of settling of a given particle size in all cylinders is cal-

culated beforehand using Stoke’s law and a fixed time schedule 

prepared (figure 51). The analysis is performed on three consec-

utive days. On the first day the cylinders and beakers are pre-

pared, as well as an extract retrieved at t = 0 s (0.063 mm). The 

second day sedimentation is re-started and performed over 10 

hours. Beakers with extracts are left to dry overnight. Finally, on 

the third day, all extracts are weighed and a PSD is created.  

 

 
Figure 51: Exact time schedule for one person, operating 14 cylinders (A-N). For this 

example, the cylinders are initially filled to 15 cm and the temperature is 22oC. 

 

Depending on personal experience and available equipment, it 

is recommended to analyze a series of 7-14 samples at a time. It 

is a precondition that the sample is dispersed in a solution of de-

ionized water and has been pre-sieved at 0.063 mm. Finally, an 

appropriate (and known) volume of peptizer should be added to 

the suspension beforehand to avoid flocculation of the material. 

 

Wash all glassware thoroughly (use a solution of HCl or deconex) 

and rinse with deionized water. Dry one beaker per extract 

(0.063, 0.032, 0.016, 0.008, 0.004 and 0.002 mm respectively) at 

105oC ±5oC, cool in a desiccator and weigh in advance. Shake 

the flask containing the dispersed sample well and pour into the 

Andreasen cylinder. Often fine material is left in the lid or on the 

sides of the flask: Make sure to rinse all remaining particles into 

the cylinder before proceeding, use deionized water. Insert the 

Andreasen pipette and turn the tap to a neutral position to let the 

fluid and air reach equilibrium. Fill carefully to the mark with de-

ionized water. Clip each cylinder firmly into its position in the wa-

ter bath and turn on the heater. 

The next day the samples have reached the temperature used 

for calculation. Each sedimentation analysis must be started in a 

way that doesn’t allow for any of the extracts to be sampled at 

the same time. Refer to the time schedule based on the exact 

laboratory conditions (cylinder volume and temperature) and 

use a timer all day to be precise (figure 52). 

 

 
Figure 52: Sedimentation analysis with the Andreasen pipette method. 

 

At the exact calculated times 10.00 mL of the suspension (the 

“extract”) is carefully led up and into the pipette and immediately 

out into a beaker (figure 53). Quickly thereafter the pipette is 

rinsed by leading deionized water up into the pipette and out 

again into the same beaker. Over time, the particle sizes left in 

suspension become smaller according to Stoke’s law. 

 

 
Figure 53: In the Andreasen pipette 10.00 mL sample is led into the pipette bulb 

(left) and then released into an empty beaker (right). 

 

Dry all beakers at 105oC ±5oC overnight, cool in a desiccator and 

weigh. The mass of each fraction is determined (corrected for 

weight of dissolved peptizer) and the PSD can be found. 

 

5.2.2 Reliability of the method 

The most stable position of a settling non-spherical particle is the 

one in which the maximum cross-sectional area is perpendicular 

to the direction of motion.  

 

This however decreases the settling velocity during sedimenta-

tion analysis and the fine fraction is overestimated. (Eshel, et al. 

2004) According to this theory, laminar particles (clay) do not set-

tle like a spherical particle during sedimentation. They either cut 

downwards through the liquid in abrupt cycles with minor 
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pauses, very much similar to a leaf cutting through air when fall-

ing from a tree. Or they can fall slowly like a parachute, their wide 

area hindering them to reach the expected settling velocity ac-

cording to their volume. (Berthold, et al. 2000) The result is a finer 

PSD than expected. 

 

Disturbance of the settling (creating currents and turbulence in 

the cylinder) must be avoided. Some disturbances are caused by 

temperature fluctuations giving raise to convection currents in 

the cylinder. This can be minimized using a temperature-con-

trolled environment and providing sufficient time for the sample 

in the Andreasen cylinders to reach the same temperature as 

their surroundings. Sedimentation is also affected if the cylinder 

is not entirely vertical or when a too fast extraction disturbs the 

settling near the base of the capillary tube.  

 

The Andreasen pipette is designed to allow a small amount of 

liquid to be retained in the capillary tube which gives rise to a 

systematic positive error. For some type of distributions, the error 

is substantial. To avoid this error the sample residue can be re-

moved before the next extraction by slowly leading it back into 

the suspension. This procedure however may generate another 

error: Disturbance of the sedimentation. (Allen 1974) Experi-

enced users may become skilled in letting back the pipette resi-

due without disturbing the settling particles. 

 

The density of the particles in a non-heterogeneous suspension 

will always be an approximation. Commonly 2.65 g/cm3 is used 

as density for soil and sediments originating from parent material 

like granite and gneiss: These rock types produce particles of 

mainly quartz (2.65 g/cm3) and feldspar (2.55-2.76 g/cm3).  

 

Extracting the sample at the exact time (down to seconds) is cru-

cial for the analysis to be of high quality. In figure 54 a series of 

settling velocities for different particle sizes has been calculated 

according to Stoke’s law. Note that incorrect extraction (removal 

too late) turns out to have a larger effect on the PSD in the begin-

ning of the analysis (yellow area) rather than when the particle 

size has increased (green area): Once the slope stabilizes (hori-

zontal), the effect of being late will not change the particle size 

(or the PSD) significantly.  

 

 
Figure 54: The error when extracting too late becomes smaller over time. 

 

In the example (and according to the calculations using Stoke’s 

law) the extract for 0.032 mm should be retrieved at t = 3 min 19 

s after starting the sedimentation. If by mistake 30 s is added, 

Stoke’s law can be reversed to find that the particle size retrieved 

is instead 0.030 mm. This error corresponds to a deviation of 6 % 

from the expected particle size value. If the same mistake (30 s 

late) is repeated for the extract at 0.004 mm, the calculated cor-

responding particle size is still 0.004 mm and deviation 0 %.  

Most of the time a PSD can be created based on incorrect extrac-

tions. The only requirement is to note the exact time (minutes and 

seconds) that the operator is late, where after the corresponding 

particle size can be recalculated. 

 

Andreasen cylinders are all designed for the same purpose but 

the outcome from the production process by different glass com-

panies has turned out slightly different. Original cylinders and pi-

pettes can be hard to come by nowadays. Wear and tear, espe-

cially near the pipette or on the capillary tube, may have re-

quired the glass to be mended several times and the intended 

fixed volume may have changed. Therefore, each cylinder and 

pipette bulb should initially have their exact volume (mL) deter-

mined. This is important in order to know how much peptizer (g) 

the pipette bulb contains exactly: During data processing the 

mass of the peptizer should be subtracted from the mass of each 

extract. 

 

The start volume should be as large as possible: Usually the cyl-

inder can be filled to 20 cm and it is recommended to utilize its 

maximum capacity. However, in order for the operator to make 

a realistic schedule that fits a normal work day, the start volume 

can be reduced to 15 cm or similar, just make sure to recalculate 

the time schedule accordingly. The reduced height will speed up 

the process of sedimentation (the particles will reach the base of 

the cylinder faster), but this will also raise the error margin so it is 

not a recommended approach. 

 

5.3 Producing data  
5.3.1 Visualization 

Results are expressed as equivalent spherical diameters based 

on mass. 

 

For easy data manipulation, use the KORN software or a simple 

spreadsheet such as Microsoft Excel (figure 55).  

 

 

 
Figure 55: Using a spreadsheet for PSD. In this example data from the sedimentation 

analysis has been merged with data from the sieving analysis, presenting a total 

PSD in the range 0.002-16 mm. Frequency (top) and cumulative (below) diagrams. 
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6.1 Background  
6.1.1 Shape and form  

Manual (static) microscopy is now replaced in many laboratories 

with automated (dynamic) image analysis. Choosing image 

analysis is often driven by the desire to generate results that are 

accurate, sensitive to second populations, contains shape infor-

mation and includes image representations of the particles. 

 

Different terms (including shape, morphology and form) have 

been used by different authors to describe the external geomet-

rical expression of sediment particles and rock fragments. (Blott 

and Pye 2008) 

 

Note that shape is two-dimensional or “flat” (an area that is de-

fined by a line) and form is three-dimensional or “fat” (forms have 

height, width and depth) (figure 56).  

 

 
Figure 56: Shape (two-dimensional) and form (three-dimensional). 

 

In a transport medium, particle shape will affect transportation 

and final settling of a particle. Collision and force during transport 

determines how fast a particle will become more rounded. Wind 

rather than water will make particles more spherical.  

 

Particles with irregular shapes will be deposited with a preferred 

orientation. Therefore, shape often affects size measurements.  

 

Shape and form are key to understanding sediment attributes 

like compaction, deformation resistance, flow characteristics 

and particle density. These properties are often vital to under-

stand and control in geotechnical engineering, especially within 

construction. 

6.1.2 Particle shapes 

Shape of particles supports determining the properties of soil and 

sediments: It influences the strength and stability of the material. 

The shape of particles varies from very angular to well-rounded 

(figure 57). Angular particles are generally found near the rock 

from which they are formed. Angular particles have greater 

shear strength than rounded ones because it is more difficult to 

make them slide over one another. 

 

 
Figure 57: Visual chart for estimating roundness and sphericity of sand particles. 

(Krumbein and Sloss 1951) 

 

Two general shapes are normally recognized: Bulky and platy. 

 

Cobbles, gravel, sand, and silt particles cover a large range of 

sizes; however, they are all bulky in shape. The term bulky is con-

fined to particles that are relatively large in all three dimensions, 

as contrasted to platy particles, in which one dimension is small 

as compared to the other two. The bulky shape has the following 

four subdivisions (figure 58) listed in descending order of desira-

bility for construction purposes. (Embuido, Azucena and Davis 

1991) 

 

• Angular particles are those that have been recently broken 

up and are characterized by jagged projections, sharp 

ridges and flat surfaces. Angular gravels and sands are gen-
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erally the best materials for construction because of their in-

terlocking characteristics. Such particles are seldom found in 

nature, however, because the weathering process does not 

generally produce them. Angular material must usually be 

produced artificially, by crushing. 

 

• Sub-angular particles are those that have been weathered 

to the extent that the sharper points and ridges have been 

worn off. Glacial sediments are often irregular shapes with 

round edges (sub-angular and sub-rounded). From glaciers, 

deposition varies from well-graded basal tills and boulder 

clays to poorly-graded deposits in moraines and outwash 

fans. 

 

• Sub-rounded particles are those that have been weathered 

to a further degree than sub-angular particles. They are still 

somewhat irregular in shape but have no sharp corners and 

few flat areas. Materials with this shape are frequently found 

in stream beds. If composed of hard, durable particles, sub-

rounded material is adequate for most construction needs. 

 

• Rounded or well-rounded particles are those on which all 

projections have been removed, with few irregularities in 

shape remaining. The particles resemble spheres and are of 

varying sizes. Rounded particles are usually worn by water 

or air and found in or near stream beds or beaches. 

 

 
Figure 58: The four bulky shapes. 

 
Platy (or flaky) particles are those that are flat and plate-like. As 

mentioned earlier, clay and mica are common examples. Be-

cause of clay’s shape, these flaky particles have a greater con-

tact area for moisture and are normally undesirable for construc-

tion purposes. 

 

6.1.3 Instrument basics 

The Sympatec QICPIC instrument measures particle size as well 

as particle shape parameters. This instrument is compatible with 

the international standards ISO 13322-1 and 13322-2. 

(International Organization for Standardization 2014) 

 

As with the Sympatec HELOS system for coarse material, the Dy-

namic Image Analyses (or DIA) system is using gravitational dis-

persion with a vibrational unit. However, unlike the HELOS system 

using a red laser and a detector system to convert a diffraction 

pattern into equivalent particle sizes, the Sympatec QICPIC sys-

tem uses a green laser pulse at 532 nm and a high-speed CMOS 

camera to capture black and white images. (Rasmussen and 

Mootz 2012) The CMOS camera is a simple “active-pixel” sensor 

based on metal-oxide-semiconductors (MOS) technology. 

 

At the Department of Geoscience, the lens M8 is installed. M8 has 

a magnification of 2. The size of 1 pixel is 0.010 x 0.010 mm. The 

physical particle size range covered by the M8 lens is 0.020 mm 

and up to 20 mm (ISO conformity up to 6.820 mm). However, 

considering the pixel size, Sympatec suggest the range starting 

point at 0.060 or 0.080 mm for proper shape recognition. Windox 

software (version 5.3.0.0) controls all measurement settings. 

 

6.1.4 Camera 

A camera frame rate of 70 Hz (70 fps) is used at the Department 

of Geoscience. Despite the selected frame rate, the projected 

frame rate is always 20 fps. The resolution of the camera is 1024 

x 1024. The technology is limited by the captured resolution of 

the objects: A minimum of 3 x 3 = 9 pixels is necessary to describe 

a shape and thus provides an acceptable size and shape result. 

3 pixels still provide acceptable size results. The uncertainty of 

particle size increases with very low pixel numbers. 

 

6.1.5 Dispersion system 

Moving particles can be introduced into the measuring area in 

different ways. At the Department of Geoscience particles are 

fed using a vibrational feeder (VIBRI): Gravitational force then 

leads the particles through a vertical shaft for dispersion 

(GRADIS). The feed rate (the velocity of the feeder vibration) can 

be anywhere from 0 to 100 % but should not exceed 50 %. 

 

The shaft is designed to enhance particle distribution in the 

measurement area and in front of the camera (figure 59). This 

will minimize the risk of particles blocking each other on the cap-

tured images. 

 

 
Figure 59: Distribution of particles inside the GRADIS unit. 

 

The GRADIS unit ensures that particles are measured in the cen-

ter of the measuring area, capturing the full particle and not cut-

ting its edges off. Otherwise size and shape parameters cannot 

be deduced. To optimize the centering of particles, the end of 

the shaft consists of an outlet tip of various sizes. Use a tip size of 

2 x the expected size of the largest particle. 

 

6.1.6 Size classes 

In theory, an infinite number of particle sizes (and classes) can be 

evaluated. The information is present as long as the database 

contains images that can be re-evaluated. On a daily basis 20-

50 classes can be used for the data report, more than 100 classes 

are impractical to use. According to Sympatec, if using too wide 
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a selection, the sensitivity of evaluated results will become poor. 

Too narrow a selection, the percentages of the measured classes 

will be small (some even empty), yielding low statistical rele-

vance and oscillating diagrams.  

 

Size classes should be kept constant over a series of measure-

ments to obtain comparable results. 

 

6.1.7 Diameter descriptors 

Numerous definitions of size related to shape are used interna-

tionally. The Feret diameter and EQPC are both used by the 

QICPIC software and described below. 

 

Feret diameter: The measure of the size of an object along a 

specified direction (in general the distance between two parallel 

lines restricting the object perpendicular to that direction). Maxi-

mal or minimal Feret diameter are found after consideration of 

all possible orientations (0-180°). The Feret diameters for a suffi-

cient number of angles are calculated and their maximum or 

minimum is selected. XF, max is the longest distance, XF, min is the 

shortest distance. Also, XF, max90 is the Feret diameter measured at 

an angle of 90° to XF, max (figure 60). 

 

 
Figure 60: Definition of the Feret diameter. (After Sympatec) 

 

EQPC: EQPC (or Equivalent Projected Circle) is the diameter (XE-

QPC) of a sphere that has the same area as the projection area of 

the (maybe irregular) particle (figure 61). 

 

 

 

XEQPC = 2√A π⁄  

 

 
Figure 61: Definition of EQPC. (After Sympatec) 

 

6.2 Measurement 
6.2.1 Startup 

Refer to appendix E for flow charts describing two versions of DIA. 

Ensure that the sample (or sub-sample) is homogenous and rep-

resentative of the original material. The material is preferably 

wet-sieved beforehand to avoid coating. 

 

Also avoid contamination of the QICPIC system and GRADIS unit 

by using only coarse material. 

 

Select a suitable measurement program that is optimized for the 

type of material. Choose class limits depending on the expected 

particle size range, including buffers. 

 

6.2.2 Feeding 

The number of particles to be used is size dependent: Having 

larger particles, there is less particles at work in the same volume 

of material, and more particles are needed to ensure a statisti-

cally valid measurement (figure 62). 

 

Figure 62: Example of the relationship between the number of particles and mass. 

 

Material is placed as close to the mount of the chute as possible, 

to avoid time-out errors in the software: Too low concentrations 

in the measuring area will initiate a cleaning process. The feed 

rate is 20 %. For normal use, a single measurement of each sam-

ple/material is sufficient (figure 63). 

 

  
Figure 63: The dispersion unit (a vibrational feeder) to the left, introducing material 

into the measurement area through the GRADIS. The QICPIC system to the right. 

 

Refer to the online videos for visualization (box 8). 

 

The optical concentration Copt is an indicator for the volume flow 

of the particles. It is the ratio between the number of black pixels 

BOX 8 

 

Feeding: https://youtu.be/5fZVpaButFE 

 

Captured particles: https://youtu.be/vjBtGzWDges 

https://youtu.be/5fZVpaButFE
https://youtu.be/vjBtGzWDges
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(particle pixels) with respect to the total number of pixels (figure 

64). 

 

Copt ⁡= ⁡ nblack/ntotal⁡⁡ 
Figure 64: Copt is the ratio between particle pixels to the total number of pixels. 

 

Copt is preferably 10-20 % but the value depends on many meas-

uring factors (size, feed rate etc.) and thus is rarely within this 

range. 

 

The number of particles measured is saved in the data report. 

The counted number is an approximation, depending on over-

lapping particles, contamination in the system, etc. 

 

6.2.3 Optional: Extraction 

Particles can be extracted using vacuum. Extraction will aid dis-

persion of the particles and reduce contamination within the 

GRADIS. However, the sample is ultimately lost. Alternatively, 

without extraction, the particles can be collected at the base of 

the instrument (in a drawer) and re-used for other purposes. 

 

6.2.4 Cleaning 

Feeding using material >1 mm may produce (and measure) par-

ticle sizes <1 mm. This is caused by the mechanical effect of 

gravitational dispersion and the particle interaction: Particles (es-

pecially brittle material such as mica) may disintegrate and con-

taminate the system. The following are cleaning procedures at 

the department: 

 

• Run a coarse “cleaning sample” (i.e. 2-4 mm) to use as a 

medium to extract smaller particles from the shaft. Remove 

contaminated particles from the extracted particles by per-

forming a quick 1 mm sieving. This step may be repeated 

(repeat until the particle count after cleaning is as expected 

and stable).  

 

• The GRADIS can be dismounted and cleaned with a vac-

uum cleaner, pressurized air etc. Due to the internal design 

cleaning can be difficult. The shaft must be mounted and 

aligned correctly before proceeding with measurements. 

 

• Make sure to use a suitable outlet tip and check on a regular 

basis that particles can enter the measuring area freely. 

 

• If the threshold value (see Signal Test window of the Windox 

software) is <70, additional cleaning of camera window etc. 

may be necessary. Without particles in the measuring area 

the threshold value should be >75. 

 

Note that image segmentation is the process of partitioning a 

digital image into multiple segments. Pixels in a dynamic image 

are either background pixels or pixels belonging to the fore-
ground (e.g. particles). The threshold value discriminates be-

tween pixels that are considered part of the foreground objects 

and pixels that are part of the background of the recorded im-

ages. To ensure that segmentation is carried out correctly, the 

threshold value must be monitored continuously. 

 

6.2.5 Reliability of the method 

It is crucial that particles are appropriately dispersed and fixed in 

the object plane of the instrument: The number of particles 

touching each other should be minimized. For this type of 

method, it is a prime objective that the measurements are carried 

out on isolated particles. Touching particles measured as one 

particle without proper separation will introduce errors. However, 

it is often not possible to reliably detect touching particles by im-

age evaluation alone, a great deal of user experience is needed. 

 

To avoid the effects of velocity bias it is necessary that all parti-

cles traverse the measurement area at the same velocity. The 

selected frame rate has statistical relevance on the result. Both 

missed particles and multiple detection is possible, depending 

on the frame rate. Errors introduced by overlapping particles 

have a large effect on aspect ratio and length. As a conse-

quence, the resulting PSD (and its characteristic values) may be-

come coarser than it really is. 

 

Image analysis on moving particles is somewhat different from 

static image analysis, there are some additional considerations: 

 

• Any movement may create a motion blur effect which the 

image software must be able to process. To achieve the best 

result an optimum exposure time is crucial. This can be ob-

tained by providing as much intensity as required for a suffi-

cient contrast between background and particles, as long as 

the illumination is uniform over the total field of view. 

 

• The movement must be aligned and positioned within the 

optical axis (depth of field). It is important that out-of-focus 

particles and other optical effects are minimized (otherwise 

these may introduce serious errors). 

 

• The particles must be able to orient themselves freely with 

respect to the camera and relatively to each other.  

 

• Particle images must be clearly distinguishable from the 

static background, aiming for threshold values >75. 

 

Only objects within the image frame (field of view) should be ac-

cepted for measurement and counting. 

 

If using reference materials for DIA they should be suitable for the 

technique and have known distributions and shape values. They 

must be easily dispersible and not exhibit electrostatic behavior. 

 

6.3 Producing data 
6.3.1 Evaluation 

The system generates an rtf-file report (figure 65) that contains 

selected size and shape parameters based on a personalized 

template. The Department of Geoscience created a Python-ex-

ecutable to transform the text-information and import as data 

into a spreadsheet (Microsoft Excel compatible). 

 

 
Figure 65: An example of a report containing size distribution and shape data (here 

cumulative distribution, sphericity, aspect ratio and convexity parameters).  
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Raw data can at all times be re-evaluated using different math-

ematical filters. In the Particle Gallery of the Windox software fur-

ther image manipulations can be carried out. Here it is possible 

to setup filters for selected size and shape parameters (figure 66). 

 

 
Figure 66: Example of applying filters to sort data provides size and shape infor-

mation of single particles as well as a black and white image. 

 

6.3.2 Sphericity 

Sphericity S is the ratio of the perimeter PEQPC of the equivalent 

circle with diameter XEQPC to the perimeter Preal of the corre-

sponding projection area A (figure 67). If follows that 0 < S < 1, 

and a sphere has S = 1. The smaller the value, the more irregular 

is the shape of the particle.  

 
 
 
 

S =
XEQPC

Preal
=
2√π ∙ A

Preal
 

 

 

 
Figure 67: Definition of sphericity, P is perimeter and A is area. (After Sympatec) 

 

6.3.3 Aspect ratio 

Aspect ratio YA is defined as the ratio of the Minimum to the Max-

imum Feret Diameter (figure 68). It follows that 0 < YA < 1. Note 

that particles with high aspect ratios have a tendency to show 

preferred orientations during DIA: Even with optimum dispersion 

and perfect measurement conditions their orientation may not 

be fully random. 

 

 

 

 

 

YA = XF,min XF,max⁄  

 

 

 
Figure 68: Definition of aspect ratio. (After Sympatec) 

 

6.3.4 Convexity 

The convexity ψc⁡describes the compactness of a particle. Figure 

69 shows a particle with projection area A (grey) leaving open a 

concave region of area B (red). The convexity is defined as the 

ratio of the projection area itself (A) and the area of the convex 

hull (A+B). The maximum theoretical convexity is 1, if there are 

no concave regions. 

 

 

 

ψc =
A

A + B
= 1 −

B

A + B
 

 

 

 

Figure 69: Definition of convexity. (After Sympatec) 

Due to the detector design of a digital camera (square pixels), 

however, all particles seem to have small concave regions, cor-

responding to the tiny steps with every pixel in the perimeter line. 

Therefore, the maximum convexity calculated in reality is mostly 

limited to 0.99. 
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8.1 Logarithmic computations 
8.1.1 Aeolian sediments 

From 1920 Ralph Alger Bagnold (figure 70) worked as a scientist 

and British army engineer in Libya and Egypt. While stationed in 

the deserts he investigated the physics of aeolian particles, mov-

ing through the atmosphere and deposited by wind: Aeolian 

sediments are dust, loess and sand. From this work the physics of 

sand transport has been developed. (Bagnold 1941)  

 

 
Figure 70: Bagnold (left) was a pioneer, here he is inspecting the migrating coastal 

dune of Råbjerg Mile, Denmark, the largest moving dune in Northern Europe (pho-

tograph provided by Ole Barndorff-Nielsen, 2010). 

 

The traditional interpretation of segmented curves in a probabil-

ity diagram is often unjustified: Further investigations have shown 

that (under appropriate sampling conditions) the distribution of 

the logarithm of particle size for sands sorted by wind or water 

can generally be expected to be described by the hyperbolic 

distribution. (Barndorff-Nielsen, et al. 1982) The parameters of 

the curves (and thus the interpretation of the distribution) can be 

better observed using the hyperbola instead of the parabola. 

(Christiansen, Blæsild and Dalsgaard 1984)  

 

8.1.2 Parameters for log-hyperbolic distribution 

The hyperbolic distribution requires several parameters for its 

specification, some describe the position and scale of the hyper-

bola and others describe the shape of the hyperbola. A combi-

nation of the parameters defines a hyperbolic log-size distribu-

tion, both visually and quantitatively: Roundness around the 

peak, sloping of the asymptotes and their interception (figure 71). 

(Bagnold and Barndorff-Nielsen 1980) 

 

 LOG-HYPERBOLIC DISTRIBUTIONS 

Symbol Name Parameter description 

 Delta Measure of roundness 

 My Peak diameter (µm) 

 Phi Slope, left linear asymptote (fine tail) 

 Gamma Slope, right linear asymptote (coarse tail) 

 Kappa Spread (an average of  and ) 

 Ny Mode of distribution (typical particle size) 

− Tau Sorting (radius of circle inside curve) 

 Chi Approximate of skewness 

 Xi Approximate of kurtosis (peakedness) 

Figure 71: Description of the log-hyperbolic parameters. (Mikkelsen 2000-2004) 

 

The domain of variation of the parameters  and  is referred to 

as the hyperbolic shape triangle. The smaller the radius of the 

circle inside the triangle, the better the sample is sorted (figure 

72). (Hartmann and Bowman 1993)  

 

When estimating log-hyperbolic distributions the DOS software 

SAHARA has proven very useful. (Christiansen and Hartmann 

1988) Note that the SAHARA software has certain limitations: 

Multimodal distributions cannot be processed and zero values 

are not accepted.  

 

An alternative is GRADISTAT that only requires Microsoft Excel 

and allows for efficient transfer of data and statistics between 

other applications. It can be downloaded from the Internet: 

http://www.kpal.co.uk/gradistat.html (Blott and Pye 2001) 

 

8 ADVANCED DATA MANIPULATION 

 

http://www.kpal.co.uk/gradistat.html
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Licensed Windows software packages are also on the market 

(e.g. https://www.ggu-software.com/en/geotechnical-soft-

ware/). 

 

 

 
Figure 72: A geometric explanation of the parameters of the hyperbolic distribution 

(top). Below the log-hyperbolic shape triangle with logarithmic probability-func-

tions corresponding to select values of ( ). (Dalsgaard 2006) 

 

8.2 Miscellaneous equations 
8.2.1 Calculating statistics and parameters 

Often basic statistical parameters must be calculated to evalu-

ate a size distribution. This is carried out by identifying typical size 

parameters such as D10 (the particle size where 10 % is below the 

size) or D90 (the particle size where 90 % is below the size), etc.  

 

Note that the diameter of a particle size can be expressed in dif-

ferent ways. As an example, the particle diameter corresponding 

to the 10th percentile of the cumulative undersize distribution by 

volume: D10 = D10,3 = 10 = Dv10 = D10 = x10. D10 is also called the 

effective particle size. 

 

In the example r (D10,3 r = 3) describes the quantity type and is a 

number (r = 0), length (r = 1), area (r = 2) or volume (r = 3).  

 

Statistical parameters and graphic representations are usually 

given in φ units. Here are some of the most common values. 

Sorting (figure 73) describes the spread of the distribution or the 

variation of particle size, also known as standard deviation (fig-

ure 74). Most soils are sorted, some however contain few varia-

tions, e.g. soil classified as “silt” can partially contain clay and fine 

sand. Till material usually contain considerable amounts of all 

fractions. Sorting values in the interval 1.0-2.5 is defined as well-

sorted, 2.5-4.5 normally sorted and > 4.5 poorly sorted as first in-

troduced by Trask in 1932. (Friedman 1962)  

 

 
Figure 73: Sorting, ranges from poorly (left) to normally and well sorted (right). 

 

Sorting = √
D25

D75
 

Figure 74: A simple sorting expression for normal (Gaussian) distributions. 

 

Other variations of sorting equations are also used (figure 75), the 

“inclusive graphic standard deviation” or 1. Folk presented a 

verbal classification for this sorting: 1 < 0.350 very well sorted, 

0.35-0.500 well sorted, 0.5-1.00 moderately sorted, 1.00-2.00 

poorly sorted, 2.00-4.00 very poorly sorted and 1 > 4.00 ex-

tremely poorly sorted. (Folk and Ward 1957) 

 

σ1 =
D84 − D16⁡

4
+
D95 − D5⁡

6.6
 

Figure 75: A more complex sorting expression, the “inclusive graphic standard de-

viation”. 

 

The mean is a weighted average (center of gravity) and can be 

calculated by using the particle size at 25 % and at 75 % respec-

tively (figure 76) for Gaussian distributions. Mean is the most 

widely compared parameter. 

 

Mean =
D25 + D75

2
 

Figure 76: Mean, using two values. 

 

This representation of mean is sensitive to the quantities of the 

extreme lower and upper ends of a distribution. Therefore, alter-

native methods to calculate the mean is also common such as 

M2 (figure 77). This version may reflect bimodal and strongly 

skewed distribution curves more accurately. (Folk and Ward 

1957) 

 

M2 =
D16 + D50 + D84

3
 

Figure 77: Mean, using three values. 

 

The median corresponds to the 50 % percentile (50 % on a cu-

mulative curve), where half of the particles are coarser and half 

of the particles are finer than this size (figure 78).  

 

Median = D50 
Figure 78: Median. 

 

The median can be a misleading value (any value based on one 

point only can be deceptive) and interpretation must be carried 

out with care. 

 

https://www.ggu-software.com/en/geotechnical-software/
https://www.ggu-software.com/en/geotechnical-software/
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The mode is the peak of the distribution or the most frequently-

occurring particle size. For a symmetrical (normal) distribution the 

mode = median = mean (figure 79). Bimodal distributions have 

two modes (two distinct peaks) in the frequency distribution. 

 

 
Figure 79: Examples of mean, median and mode on different distributions. 

 
Skewness measures the degree to which the cumulative curve 

approaches symmetry, or the measure of deviation from sym-

metry (figure 80). Symmetrical curves have skewness 0. Different 

samples may have the same average particle size and similar 

sorting but be quite different in their degree of symmetry. 

 

Skewness =
D25 × D75

Median2
 

Figure 80: A simple skewness expression. 

 

Again, other variations of calculating skewness are available, 

some describe tailing (the extremes of the distribution) better 

such as the “inclusive graphic skewness” or sk1 (figure 81). The 

verbal classification for sk1: +0.10 to -0.10 is nearly symmetrical, -

0.10 to -0.30 is coarse-skewed and -0.30 to -1.00 is strongly 

coarse-skewed. (Folk and Ward 1957) 

 

sk1 =
D16 + D84⁡ − 2D50⁡

2(D84 − D16)
+
D5 + D95⁡ − 2D50⁡

2(D95 − D5)
 

Figure 81: A complex skewness expression, the “inclusive graphic skewness”. 

 

Kurtosis is the flatness or peakedness of the distribution (figure 

82). Many curves designated as “normal” by the skewness meas-

ure turn out to be markedly non-normal when the kurtosis is com-

puted. 

 

Kurtosis =
D75 − D25

2(D90 − D10)
 

Figure 82: A simple kurtosis expression. 

 

An alternative version of kurtosis is the “graphic kurtosis” or KG 

(figure 83).  

 

KG =
D95 − D5

2.44(D75 − D25)
 

Figure 83: A complex kurtosis expression, the “graphic kurtosis”. 

 

Gaussian curves have KG = 1.00. On Gaussian curves sorting in 

the tails are equal to the sorting in the central portion. If a curve 

is better sorted in the central part than in the tails, the curve is said 

to be excessively peaked, or leptokurtic. If the curve is better 

sorted in the tails than in the central part, the curve is flat peaked 

or platykurtic (figure 84). The following verbal limits have been 

used for kurtosis: KG < 0.67 very platykurtic, 0.67-0.90 platykurtic, 

0.90-1.11 mesokurtic, 1.11-1.50 leptokurtic, 1.50-3.00 very lepto-

kurtic and KG > 3.00 extremely leptokurtic. In general, leptokurtic 

curves have KG > 1.00 and platykurtic curves have KG < 1.00. 

(Folk and Ward 1957) 

 
Figure 84: Examples of kurtosis. 

 

Both skewness and kurtosis are vital clues to the bimodality of a 

distribution. Strictly unimodal distributions should have normal 

curves. Non-normal values of skewness and kurtosis indicate a 

mixing of two or more modal fractions. (Folk and Ward 1957) 

 

Once all relevant parameters for a set of samples are calculated, 

it can be beneficial to select two parameters and plot them 

against each other in an (x, y) diagram to observe the trends. 

 

8.2.2 Gradation 

Another parameter sometimes used to describe material is the 

uniformity coefficient U or Cu (figure 85). A value of U < 2 classi-

fies the particles as well-sorted, 2-3.5 as sorted, 3.5-7 as poorly 

sorted and U > 7 as unsorted.  (Larsen, et al. 1995)  Sometimes in 

international literature the equation is U = D10/D60 (which pro-

vides coefficients < 1). 

 

U =
D60

D10
 

Figure 85: The uniformity coefficient or U. 

 

Related to the uniformity coefficient is the coefficient of curvature 

Cz or Cc (figure 86).  

 

Cz =
D30

2

D10 × D60
 

Figure 86: Coefficient of curvature or Cz. 

 

A soil sample is said to be well graded if it has all sizes of particles, 

where 1 < Cz < 3. Poorly graded soil is material in which most of 

the particles are approximately of the same size, or uniformly 

graded. For uniform soil, Cz = 1. 

 

Coarse-grained soils, mainly gravels or sands, are graded as ei-

ther well graded or poorly graded. Poorly graded soils are further 

divided into uniformly-graded or gap-graded soils (figure 87). 

Soils that have some intermediate size or sizes not well repre-

sented, or at least one particle size missing, are called gap 

graded or skip graded. (Embuido, Azucena and Davis 1991) 

 

 
Figure 87: Different soil gradations. 
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For a gravel to be classified as well graded, the following criteria 

must be met: U > 4 and 1 < Cz < 3. If both of these criteria are not 

met, the gravel is classified as poorly graded (GP). If both of these 

criteria are met, the gravel is classified as well graded (GW). 

 

For a sand to be classified as well graded, the following criteria 

must be met: U ≥ 6 & 1 < Cz < 3. If both of these criteria are not 

met, the sand is classified as poorly graded (SP). If both of these 

criteria are met, the sand is classified as well graded (SW). 

 

Soil gradation is an important aspect of geotechnical engineer-

ing and soil mechanics. It is an indicator of other engineering 

properties such as compressibility, shear strength, and hydraulic 

conductivity. Some examples: 

 

• A well graded soil is able to be compacted more than a 

poorly graded soil.  

 

• A poorly graded soil will have better drainage than a well 

graded soil because there are more void spaces. 

 

8.2.3 Sortable Silt 

Sediment enters the seas and oceans through various sources: 

Volcanic ash, aeolian dust, ice rafted debris, river runoff, etc. For 

marine sediments and in palae-oceanography the term sortable 

silt (SS) is of importance. Silt >0.010 mm displays size sorting in 

response to hydrodynamic processes and its properties may be 

used to infer oceanic bottom current velocity. (McCave, 

Manighetti and Robinson 1995)  

 

The SS fraction is non-cohesive and therefore sortable by deep 

marine currents. If the site is far enough from land to not be influ-

enced by e.g. river input or meltwater from glaciers, a larger SS 

value indicates strong currents at the ocean floor. 

 

As flow speed increases, accumulation increases until a critical 

point is reached. After that point, the flow speed becomes too 

great and the flow begins to erode the sediment rather than de-

positing it. 

 

The fraction of sortable silt, SS (%), is defined as the ratio of 0.010-

0.063 mm grains in relation to all grains <0.063 mm. The second 

important parameter is the mean size of the sortable silt fraction, 

SS̅̅ ̅ (µm). This parameter is calculated as the sum of the products 

of the percentages and size of each class within 0.010-0.063 

mm, divided by the total % of particles within 0.010-0.063 mm. 

 

If SS is used along with tracers (such as isotope ratios), valuable 

information about the flow speed, the age of the body of water 

and chemical characteristics can be uncovered. 

 

8.2.4 Interpolate particle size at specific percentile 

Sometimes a percentile comparison diagram can be very useful: 

It is constructed from a set of percentiles (5, 10, 15 … 95 %) by 

plotting particle size values, e.g. to compare two PSA methods. 

An equation is used to interpolate corresponding particle sizes at 

specific percentiles from each method (figure 88), taking into 

consideration that data is log-based.  

 

Size⁡(Y)

= (log(Y) − log [y1 (
y2
y1
)
−x1/(x2−x1)

]) (log [(
y2
y1
)
1/(x2−x1)

])

−1

 

Figure 88: Two sets of particle sizes x (µm) and cumulated percentages y (%) are 

used for interpolation of particle size at a select percentile, Y. (Mikkelsen 2000-2004) 

The equation looks complex but simply uses two coordinates (x1, 

y1) and (x2, y2) to interpolate a particle size at a select percentile, 

Y. This is repeated for relevant percentiles of each PSA method. 

It may be necessary to use some coordinates several times to 

interpolate different percentiles; it depends on how wide the 

distribution is. 

 

As an example, PSA using the Andreasen pipette and LD has 

been performed on kaolinite. The material was carefully grinded 

and thus is expected to be fine. To test how data from the two 

methods compare, interpolation is carried out on each method, 

using their raw PSD data (figure 89 and 90). Differences in meas-

ured values are expected to be shape dependent. 

Figure 89: Cumulated raw data of kaolinite by Andreasen pipette.  

Figure 90: Cumulated raw data of kaolinite by LD (based on R4).  

Raw data of method 1 (Andreasen pipette), kaolinite 

Particle size [µm] Cumulated percentage [%] 

2 63.73 

4 75.50 

8 83.88 

16 94.11 

32 99.30 

Raw data of method 2 (LD), kaolinite 

Particle size [µm] Cumulated percentage [%] 

(0.5) (0) 

1.8 29.32 

2.2 36.27 

2.6 42.10 

3.0 46.97 

3.6 52.93 

4.4 59.01 

5.2 63.51 

6.2 67.70 

7.4 71.50 

8.6 74.57 

10 77.64 

12 81.41 

15 86.04 

18 89.61 

21 92.35 

25 95.09 

30 97.37 

36 98.89 

41 99.55 

50 99.87 

60 99.99 

72 100 

86 100 

102 100 

122 100 

146 100 

174 100 

206 100 

246 100 

294 100 

350 100 
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The two tables indeed show that the material has been meas-

ured as fine by both methods: According to method 2 (with the 

largest measured size) all particles seem to be < 0.060 mm. 

 

Now the equation can be used to interpolate particle size values 

at percentiles, from 5, 10 etc. up to 95 %. In this example kaolinite 

is fine material and when evaluating the data, the percentiles to 

be used are in the range 65–95 % (the first cumulated percent-

age for method 1 is 63.73 %). E.g. if method 1 has (x, y) where x 

= particle size and y = cumulated percentage and the particle 

size at the 65 % percentile needs to be calculated, then select 

the closest relevant data points below and above 65 % from the 

raw data (figure 91) which is (x1, y1) = (2; 63.73) and (x2, y2) = (4; 

75.50) respectively.  

 

Figure 91: Selected raw data for method 1 and calculating corresponding particle 

size X at each percentile Y using the interpolation equation.  

 

The procedure is repeated for method 2 (figure 92). 

Figure 92: Selected raw data for method 2 and calculating corresponding particle 

size X at each percentile Y using the interpolation equation.  

The calculated values of particle size from each interpolation ta-

ble of the two methods are plotted in an arithmetic coordinate 

system, where i.e. the particle size for method 1 is plotted on the 

abscissa and the particle size for method 2 on the ordinate (fig-

ure 93). As an example, for the percentile at 65 % the coordinate 

becomes (2.23; 5.56). The rest is added likewise. 

 

 
Figure 93: Creating a visual comparison between data obtained by two methods 

by using interpolation of particle sizes at specific percentiles. Here LD and sedimen-

tation by Andreasen pipette are compared, the material measured is kaolinite. 

 

Request a copy of a Microsoft Excel-template from the author to 

effortlessly interpolate log-based data as shown above. 

65%
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Andreasen pipette [m]

Kaolinite

Interpolation, method 1 (Andreasen pipette) of kaolinite 

Per-

centile 

[µm], Y 

Particle size 

[µm], x 

Cumulated 

percentage 

[%], y 

Interpolated par-

ticle size [µm], X 

65 
2 63.73 

2.23 
4 75.50 

70 
2 63.73 

3.11 
4 75.50 

75 
2 63.73 

3.92 
4 75.50 

80 
4 75.50 

6.20 
8 83.88 

85 
8 83.88 

8.92 
16 94.11 

90 
8 83.88 

12.90 
16 94.11 

95 
16 94.11 

18.82 
32 99.30 

Interpolation, method 2 (LD) of kaolinite 

Per-

centile 

[µm], Y 

Particle size 

[µm], x 

Cumulated 

percentage 

[%], y 

Interpolated par-

ticle size [µm], X 

65 
5.2 63.51 

5.56 
6.2 67.70 

70 
6.2 67.70 

6.93 
7.4 71.50 

75 
8.6 74.57 

8.80 
10 77.64 

80 
10 77.64 

11.26 
12 81.41 

85 
12 81.41 

14.34 
15 86.04 

90 
18 92.35 

18.43 
21 92.35 

95 
21 92.35 

24.87 
25 95.09 
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9.1 Technical perspectives 
9.1.1 Sampling 

As is the case with all laboratory experiments and analysis, best-

practice sampling and best-practice PSA is an important invest-

ment from day one.  

 

All the time and effort put into one analysis is wasted, if sampling 

is poorly executed: Sampling needs care and attention. It is 

equally important to sub-sample carefully and measure repre-

sentative material every time. It is essential to have a robust and 

tested protocol for sampling that describes sub-sampling and 

sample preparation, as well as having considered dispersion and 

measurement procedures that are suitable for the material. 

 

Any systematic error may arise from poor sample preparation, 

departure from the theoretical assumptions for the material and 

the applied method, as well as improper operation of the equip-

ment. Errors made in sample preparation are often the largest 

contributor to the total error, as well as the assumption that all 

particles are spherical. 

 

Because of the differences in measuring particle properties, the 

obtained results should always be provided along with infor-

mation about the sampling method, pretreatment and analytical 

procedure for others to be able to duplicate the result.  

 

9.1.2 Quality of data 

Reproducibility, standard deviations and accuracy are among 

the important factors to consider when qualifying a PSA proce-

dure.  

 

Precision and accuracy are two ways that scientists think about 

error. Accuracy is how close to the true value a given measure-

ment is. Precision is how well a number of independent meas-

urements agree with one another, in other terms: A measure of 

statistical variability (figure 94). 

 

For PSD techniques it is recommended to ensure accuracy, by 

using traceable spherical certified reference materials (CRMs), 

e.g. particles with certified values. This ensures that instruments 

are correctly functioning. When any modification or major 

maintenance is required, use CRMs to test accuracy of the instru-

ment and quality of the PSD. 

 

 
Figure 94: High accuracy and low uncertainty is desirable when evaluating data. 

 

The straightforward strategy to increase precision in the labora-

tory and with PSA is by paying close attention to detail, using 

equipment properly and increasing sample volume. 

 

Take each measurement multiple times, especially if performing 

experiments that require specific amounts (weight or volume). If 

weighing objects, remove them from the scale after the first 

reading and check the scale between the first and second read-

ings. If using a beaker or pipette to measure volume, examine 

the approximate amount of liquid in the beaker while it sits still 

on a flat surface; check pipette settings between each use, etc. 

 

9.1.3 Experimental factors 

Again, when performing analytical experiments and analysis, 

many factors contribute to ensuring a fast and reproducible result 

of high-quality: 

 

• The instrument/equipment and accessories 

• Settings during each particular measurement 

• The operator  

 

In total: Available time, user experience, sample concentration 

(volume), dispersion, temperature, contamination, condition of 

the equipment, etc. Many factors contribute to the final result. 

9 CONCLUSIONS 
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 9.2 Other alternatives 
9.2.1 NIR – for soil application 

Another method not described in this paper but nevertheless in-

teresting uses near-infrared (NIR) spectroscopy (or NIRS in short) 

to determine soil attributes, including chemical, physical and bi-

ological properties. NIRS for clay determination can be used di-

rectly on a bulk sample without pretreatment. NIRS can be used 

in the laboratory, in-situ and in remote sensing and is therefore a 

very flexible and non-destructive method for fine particles. 

(Cécillon, et al. 2009) 

 

In short, this technique uses the near-infrared region of the elec-

tromagnetic spectrum to measure parameters that also deduce 

particle size. Chemical bindings (O-H, N-H and C-H) will absorb 

energy from light and reflect it by sending out radiation at a char-

acteristic wavelength. Wavelengths in the mid-infrared region 

(MIR) is in the range 0.0025-0.025 mm and wavelengths in near-

infrared region (NIR) is in the range 0.0007-0.0025 mm. (Knadel 

2011) 

 

Physical properties: 
Particle size fractions, specific surface area, wet aggregate sta-

bility, physical surface crust. 

 

Chemical properties: 
Hygroscopic water, OM fractions (humic, fulvic acid), total N, min-

eral N, active N, P, pH, EC, CEC, K, Na, alkali earth metals (Ca, 

Mg), carbonate, sulfate, Al, Fe, Si, heavy metals (Mb, Zn, Cu, Co, 

Pb, Ni, Cd, Mo, Se, Hg, V, Cr, Ag). 

 

Biological properties: 

Methane production, enzyme activities, microbial respiration, mi-

crobial biomass, organic C, total N, C/N, inorganic C. 

 

There are different NIRS instruments and they all have sample 

holders of different dimensions and offer different scanning 

methods. Some have large sample cups and for those it isn’t nec-

essary to do replications. By standard, the instrument scans in dif-

ferent areas of the material. For those with a smaller sample cup 

it is necessary to make additional replications. As an example, 

the FOSS sampling cup for model DS2500 (figure 95) has a ca-

pacity of approximately 50 g.  

 

 
Figure 95: The Foss NIRS tabletop model as seen at Department of Agroecology, 

Aarhus University. 

 

The FOSS instrument is not specifically designed for soil material. 

Normally 7 scans in different spots of the sample holder is per-

formed and then a mean is calculated. For other commercially 

available NIRS sensors for soil, sampling cups can hold approxi-

mately 20 g of soil. Here is the option of doing measurements on 

soil surfaces with a contact probe, not much material is needed: 

Approximately 5-10 g could be sufficient and replications are 

needed. For a sufficient number of sub scans and a relatively 

large sample volume the reproducibility is usually good. (Knadel 

2020) Depending on the instrument resolution, 3-4 replicates 

have been shown to be the optimal number for MIR measure-

ment. (Peng, et al. 2014) 

 

Because of the complex nature of spectral data, the instrument 

must be calibrated on a series of natural samples representative 

of the population to be measured. Factors that affect the spectra 

are sample composition, particle size and moisture. NIRS meth-

ods must be validated continuously against reference methods 

to secure optimal performance and accuracy which is relatively 

resource demanding. When NIRS data is compared to data de-

rived by traditional methods it shows a good compatibility. 

(Sørensen and Dalsgaard 2005) 

 

A major advantage of using this method for soil analysis is that 

from a single spectrum many properties may be (accurately) de-

termined, thus offering the possibility for considerable cost sav-

ings and increased efficiency over conventional laboratory anal-

ysis. Furthermore, the technique is still considered rapid, making 

it possible to analyze a large number of samples in a practical 

and timely manner. These properties make spectroscopic anal-

yses very attractive for e.g. environmental monitoring and agri-

culture. (Viscarra Rossel, et al. 2006) 

 

9.3 Final comments 
9.3.1 Discussion 

Different methods measure different parameters and data is thus 

not easily compatible, especially when dealing with complex 

variables such as unique shape and mineral composition.   

 

When we improve our understanding of the physical context, we 

are often able to develop more advanced methods or models 

that fit the description of nature better. When evaluating tradi-

tional and new techniques, there seems to be no clear or univer-

sal relationship between the sieve or pipette methods and LD yet. 

One reason is the fact that the sieve and pipette methods meas-

ure mass percentages of particles whereas LD measures volume 

based on an optical diameter.  

 

For all PSD techniques the basic idea of measuring each primary 

particle independently is vital. More investigations are needed 

on the boundary between clay and silt to clarify the mineralogy 

and particle shape dependencies. Since the clay limit is not fixed 

it would be beneficial to analyze fine silt in detail, since these 

particles exhibit some of the same properties as clay. 

 

The use of LD, DIA and NIRS have many advantages: The meth-

ods are fast and offer a high reproducibility. A wide variety of pa-

rameters can be obtained within a short period of time, providing 

fast and detailed information. Care must be taken when match-

ing historic data or correlate with other techniques or instruments. 

 

Uncertainty errors arise when trying to compare data. Generally, 

most PSD techniques are most suitable for spherical particles of 

the same mono-mineral (which soil and sediment samples rarely 

are). Also, tiny variations in the techniques applied can affect the 

final PSD of any given sample; therefore, also differences in la-

boratory methods and pretreatment will affect the final data in-

terpretation. (Cramp, et al. 1997) 
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9.3.2 Overview of methods 

Different methods provide different options and opportunities to 

describe particle characteristics (figure 96). Choose the method 

that is best for the material and available resources as well as 

fulfills the immediate need for information.  

 

 SIEVING LD SEDI DIA 

Theoreti-

cal valid-

ity [mm] 

>0.075  0.001-6  <0.050  <6.820  

Typical 

range 

[mm] 

0.063-16 0.002-2 <0.063 1-4 

Classes 10 (or 

more) 

Infinite (in 

theory), 

31 meas-

ured 

data-

points 

(HELOS) 

<5 (more 

could be 

added) 

Infinite (in 

theory) 

Medium Dry Wet, dry Wet Dry 

Material 

[g] 

150-200 

(20 cm 

sieve) 

5-150 5-8 500-5000 

Destruc-

tivity 

No Yes and 

no 

Yes Yes and 

no 

Pre-siev-

ing 

Yes Yes Yes Yes 

Repro-

ducibility 

Medium High Medium High 

User skills Medium Low High Low 

Require-

ments 

- - Tempera-

ture-con-

trol 

- 

Use Labora-

tory, in 

situ 

Labora-

tory 

Labora-

tory 

Labora-

tory 

Acquire-

ment 

[DKR] 

<10000 + 

shaker 

500000 <10000 500000 

Figure 96: Comparing the different methods described in this paper. 

 

All of the analyses described here are still relevant today. Alt-

hough LD and DIA are considered more modern and technically 

advanced methods, and sieving and sedimentation analysis tra-

ditional, there is still a need and a market for the older methods 

too: They are simple, low-cost and relatively easy to learn and 

can fit in almost any setting. 
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 B: Flow chart sieving 
The entire procedure for sieving analysis is described here, with-

out pretreatment (refer to chapter 2). 
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 C: Flow charts LD 
Refer to pretreatment procedures in chapter 2 and detailed de-

scription of LD measurements in chapter 4. Note that “Standard 

procedure < 2 mm” is described thoroughly in chapter 4 and the 

four other versions shown here are variations of this procedure. 

 

1: Standard procedure < 2 mm 

(3 fractions, start mass 50 g) 

 
Standard procedure for soil and sediment samples at the Depart-

ment of Geoscience. Note that Sympatec’s standard method is 

limited to two fractions, splitting at 0.063 mm and working < 

0.063 mm into a paste. Then using GRADIS for > 0.063 mm. 

 

 

3+4: Material “< 2 mm” 

(1 fraction, start mass < 5 g) 

 
Two variations when there is only little material available. Make 

sure that the material is < 2 mm, this can often be done visually 

or by doing a quick 2 mm sieving at the instrument. Useful for 

marine core material. 

 

 

 

 

 

 

 

 

 

 

 

2: Material < 2 mm 

(2 fractions, start mass 10-20 g) 

 
“Poor man’s” version of the standard procedure for soil and sedi-

ment samples: You want to separate the material into coarse and 

fine particles, but can only afford to do two fractions. Useful when 

only small volumes of material are available or time is limited. 

 

 

5: Material < 0.063 mm only 

(1 of 2 fractions, start mass 150 g) 

 
This version assumes that you have other means of determining 

particle size > 0.063 mm but want to ensure a quick PSA < 0.063 

mm by LD. Used for lab-courses of till material where > 0.063 mm 

is sieved.  
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 D: Flow chart sedimentation 
The entire procedure for sedimentation analysis is described 

here, normally there is no further pretreatment. 
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 E: Flow charts DIA 
The entire procedure for DIA is described here in two versions. 

 

 

 

 

Version 1, step 1 

 
 

 

 

 

 

 

 

 

Version 2, step 1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Version 1, step 2 

 
 

 

 

 

 

 

 

 

Version 2, step 2 
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