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Preface

After graduating as a civil engineer from Aalborg University in 2013, I moved
to Bergen in Norway to get hands-on experience with the offshore industry. I
was employed at the contracting company DOF Subsea, which delivers vessel-
based support to offshore installations. The primary part of the work being
performed involved commissioning, maintenance and decommissioning - most
of which was done subsea, using remotely operated vehicles, also known as
ROVs. After spending many days offshore in the freezing winds of the North
Sea, I decided to return to the study desk once again. Certainly, the drop
in crude oil price, leading to mass layoff, fueled my eagerness to pursue my
academic endeavors. However, it was clear that the study should extend the
experience gathered and thus be related to offshore engineering. So after three
great years with the Norwegians, I returned to Denmark and began my Ph.D.
study under the supervision of Christos Georgakis and Rune Brincker.

The Ph.D. study is outlined by the Danish Hydrocarbon Research and
Technology Centre (DHRTC), also known as the Centre for Oil and Gas. The
centre was established in 2014 as an outcome of an agreement between the
DUC and the Danish government. As part of the long-term agreement for
exploration and production in Denmark, the DUC donated one billion Danish
kroner to research with the purpose of increasing the production in Denmark.
This Ph.D. project falls under the category of "Structural Integrity and Pipeline
Technology" which concerns lifetime extensions of existing structures.

This thesis is generated as "papers based" under requirements by the Grad-
uate School of Science and Technology (GSST) for the fulfillment of the Ph.D.
degree. In accordance with GSST rules, parts of this thesis were also used in
the progress report for the qualifying examination.

Michael Vigsø,
Aarhus, December 14, 2019.
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Abstract

Wave loading of offshore structures may pose a governing element to their
design and drive the operational conditions. As offshore structures, such as oil
rigs and wind turbines, are exposed to the harsh environment at sea, they are
prone to fatigue damage, which limits their operational lifetime. Predicting the
wave loading is subject to much uncertainty as it depends on the site-specific
metocean conditions and surface properties of the structure. These conditions
may change during the lifetime of the installations. It is thus of great interest
to monitor the wave loading occurring at actual conditions to ensure that the
reliability is maintained.

This thesis features methods of indirect measurements of wave loading.
Since it is unfeasible to measure the loading directly, operators need to rely
on indirect methods instead. This is done by utilizing the information embed-
ded within the vibrations of the structure. By means of output-only system
identification techniques, it is possible to decipher these vibrations to obtain
an estimate of the loads. The thesis addresses the current state-of-the-art
techniques for system identification and, successively, load identification algo-
rithms. Solutions are evaluated in both the frequency domain as well in the
time domain. The performance of load identification is demonstrated through
multiple experimental campaigns in both dry and wet conditions. It is sought
to determine the limitations of the methods under different loading conditions.

Attached to this thesis are eight papers which combined span the extent
of this study. Chapter 6 shows the papers arranged by the suggested reading
order.
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Resumé

Bølgebelastning på offshore konstruktioner kan være et afgørende element for
designet og diktere eventuelle operationelle begrænsninger. Idet offshore kon-
struktioner, som eksempelvis olierigge eller vindmøller, er eksponeret for det
barske miljø på havet, vil de være tilbøjelig til at få fatigue skader, hvilket vil
begrænse levetiden. At forudsige størrelsen af bølgebelastningen vil være un-
derlagt en stor usikkerhed, idet den afhænger af lokale metocean forhold samt
overfladeegenskaberne af konstruktionen. Disse er elementer, som ændrer sig
igennem levetiden af installationerne. Det er derfor af stor interesse at ovevåge
bølgebelastningen under de aktuelle forhold, for at sikre at reliabiliteten er
overholdt.

Denne afhandling berører metoder for indirekte målinger af bølgebelastning.
Siden det sjældent er muligt at måle belastningerne direkte, må man i stedet
støtte sig til indirekte metoder. Dette kan gøres ved at udnytte den informa-
tion, der ligger gemt i konstruktionens vibrationer. Ved hjælp af output-only
system identifikationsteknikker er det muligt at afkode disse vibrationer og
herved opnå et estimat på belastningen. Denne afhandling kommer omkring
nogle af de aktuelle state-of-the-art system identifikationsteknikker og efter-
følgende lastidentifikationsalgoritmer. Løsninger er evalueret i både frekvens-
domænet samt i tidsdomænet. Metodernes performance testes igennem en
serie af eksperimentelle forsøg under både tørre og våde forhold. Det søges
at afdække metodernes begrænsninger igennem forskellige belastningsscenar-
ier. Vedhæftet denne afhandling findes otte artikler, som tilsammen udspænder
omfanget af dette studie. Kapitel 6 viser artiklerne arrangeret iht. anbefalet
læserækkefølge.
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Nomenclature

This list contains the most common nomenclatures used in the thesis. In the
appended papers, however, please be aware the the symbols may deviate from
the list below.

Latin symbols

cr Modal damping
Cd Drag coefficient
Cm Mass coefficient
C Damping matrix
dt Time increment
D Pile diameter
f / F Load
fn Natural frequency
Fw Total wave load
g Load scaling function
h Still water depth
H Frequency response function or state to measurement matrix
j Imaginary unit, j2 = −1
kr Modal stiffness
K Stiffness matrix or Kalman gain matrix
mr Modal mass
M Mass matrix
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CONTENTS

q Modal coordinates
Q Process error covariance matrix
Qr Mode shape scaling function
R Measurement error covariance matrix
S Load error covariance matrix
Sa Sensor selection matrix, acceleration
Sv Sensor selection matrix, velocity
Sd Sensor selection matrix, displacement
s Laplace operator
Sp Spatial distribution matrix
t Time
u Water particle velocity
u̇ Water particle acceleration
v Measurement noise (Gaussian function)
w Process noise (Gaussian function)
x State vector
y / Y Structural displacement
ẏ / Ẏ Structural velocity
ÿ / Ÿ Structural acceleration
z General measurements vector
Z Impedance matrix

Greek symbols

ζr Damping ratio
η Surface elevation / Load noise (Gaussian function)
λr Pole
Λ Pole matrix
ρ Fluid density
φr Mode shape
Φ Mode shape matrix
ω Angular frequency
ωr Natural angular frequency (2πfn)
ωdr Natural (damped) angular frequency
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Superscript

ẋ Derivative with respect to time
† Pseudo inverse
H Hermitian transpose
T Transpose
∗ Complex conjugate
a Augmented state

Subscript

Throughout this thesis (papers included), vectors will be denoted by a single
underline and matrices by a double. Hence, X should be interpreted as a scalar,
X as a vector and X as a matrix.
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CONTENTS

Abbreviations
API American Petroleum Institute
AU Aarhus University
CFD Computational Fluid Dynamics
COSL China Oilfield Services Limited
DHRTC Danish Hydrocarbon Research and Technology Centre
DNV Det Norske Veritas
DOF Degree Of Freedom
DTU Technical University of Denmark
DUC Danish Underground Consortium
EMA Experimental Modal Analysis
ERA Eigensystem Realization Algorithm
FDD Frequency Domain Decomposition
FE Finite Element
FRF Frequency Response Function
GPS Global Positioning System
GSST Graduate School of Science and Technology, Aarhus University
IMAC International Modal Analysis Conference
iomac International Operational Modal Analysis Conference
ISOPE The International Society of Offshore and Polar Engineers
JONSWAP Joint North Sea Wave Project
LC Local Correspondence
LASIF Large Air-Sea Interaction Facility
MAC Modal Assurance Criterion
MDOF Multi Degree Of Freedom
MWL Mean Water Level
NAM Nederlandse Aardolie Maatschappij (Dutch Petroleum Company)
OMA Operational Modal Analysis
PSD Power Spectral Density
RMS Root Mean Square
SD Spectral Density
SDU University of Southern Denmark
SEREP System Equivalent Reduction-Expansion Process
SHM Structural Health Monitoring
SVD Singular Value Decomposition
UBC University of British Columbia
UK United Kingdom
US United States (of America)
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Chapter 1

Introduction

Since 1972 and until today, oil and natural gas have been extracted from the
Danish part of the North Sea. The production of oil and gas is administrated
by the Danish Underground Consortium (DUC) which consists of the major
shareholders: Shell, Mærsk (now Total), Nordsøfonden and Chevron. DUC
manages the concession, given to Mærsk in 1962, for the exploration and pro-
duction of oil and natural gas in the Danish shelf. In 1991, the oil production
exceeded the consumption and thus made Denmark self-sufficient. However,

Norway

Germany

UK

100 km

Valdemar
Tyra

Halfdan

Svend

Figure 1.1: Location of some of the oldest/largest production sites in the Danish
part of the North Sea.

5



CHAPTER 1. INTRODUCTION

in 2013, this was again turned to a net consumption and this situation has
remained since.

Although a transition towards renewable energy has taken much of the
focus in the last decade, the billions of kroner in annual state revenue still
makes oil and gas production a necessary part of the Danish economy. In 2015,
more than 55 platforms were in operation in Danish waters located at roughly
200km off the West Coast of Denmark. These are distributed among 19 fields.
Figure 1.1 shows a few selected oil fields which are some of the oldest/largest
in our continental shelf. Most of the remaining structures are located within
100km of those shown in the figure.

Figure 1.2: Target structure type. Photo shows the Valdemar BA 2006 well-
head platform in the North Sea. Photo courtesy of Mærsk Oil.
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CHAPTER 1. INTRODUCTION

These assets at sea are facing challenges ahead as many of them are nearing
the end of their design lifetime. This calls for decisions as to whether the
structures should be decommissioned or lifetime extensions should be pursued.
Lifetime extension can be granted given the operators prove that structures
are still fit for operation. This can be done through inspections and repairs.
The subsea inspections are challenged by the nature of the environment, where
marine growth, waves, and currents complicate the operation. Another great
challenge is subsidence, which means that the airgap is diminished, thus leaving
the topside more exposed to the harsh environment at sea.

Many different types of structures are to be found in the North Sea, so to
limit this study we will select one target structure type. This will be the tripod
structure shown in Figure 1.2. Valdemar BA is a monopile structure supported
by a tripod foundation. It is located at a water depth of approximately 42m.
DUC currently has 15 similar tripod supported monotowers in the North Sea.

Typical wind and wave spectra are shown in Figure 1.3 along with the first
two bending modes of the Valdemar platform. Please note that the spectra are
normalized and shown on a normal y axis. From the figure we can note that
the main frequency content of the wave spectrum is well below the natural fre-
quency of the platform. Hence, the expected response should be dominated by
quasi-static behavior. We will however not restrict the study to this frequency
regime, but rather undertake a general approach.

0 0.1 0.2 0.3 0.4 0.5 0.6
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Figure 1.3: Typical wind and wave spectra from the North Sea.[14, 16] The
first two bending modes of the Valdemar BA platform are pinned for reference.
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Chapter 2

Motivation

The motivation for this study is based on the concerning events recently recorded
in the North Sea, where unexpected large waves (rogue waves) were reported
near offshore structures. In 2015, the COSL Innovator drilling rig was hit by an
enormous wave which resulted in severe damage and one casualty at the Troll
oilfield in Norway [30]. During a December storm with an approximately 10m
significant wave height, a rogue wave hit the platform with extensive damage
to the living quarters (lower deck). The incident report states that the COSL
Innovator suffered damage all the way to the main deck, which in survival
mode should have a still water airgap of 24m [49]. The windows, which were
smashed, were estimated to have a breaking strength of 180kPa. The inci-
dent raised questions as to whether the design basis for offshore structures is
sufficient in these extreme events.

Extreme wave incidents, including breaking waves, have also been docu-
mented in the Danish part of the North Sea. In November 2017 at the Tyra
field, a plunging breaking wave was seen. The wave event was even pho-
tographed by one of the employees. The photo is given in Figure 2.1. During
the same storm, another extreme wave was reported for the area with a crest
height of 17m. From wave statistics for the area, this wave was assessed to
exceed the 10000-year return period. Breaking waves of this type were not ex-
pected to occur in these waters, and the structures were not designed against
the extensive loads which plunging breaking waves induce. Luckily, no damage
was caused by this storm, but these concerning events were the starting point
for an intensive study on the reliability of Mærsk’s offshore structures [60, 61].

The complexity of abnormal and potentially breaking waves yields uncer-

9



CHAPTER 2. MOTIVATION

Figure 2.1: Plunging breaking wave at Tyra West, November 2017. Photo
courtesy of Mærsk Oil.

tainty regarding the loading effects, and these may have severe consequences
for the integrity of the structures at sea. In general, considerable uncertainty
persists in the field of wave loading of offshore structures as the load models are
based on scaled laboratory experiments. When the structures are in operation
for decades, the conditions under which they operate are constantly changing.
These changes may be in terms of operational purposes (connecting bridges,
structural modifications, mass loading), or changes to the kinematics, (marine
growth, seabed scour, seabed subsidence), or general structural degradation
(corrosion, fatigue, ageing). Since the wave loading couples to the structure
through geometry, surface roughness, and dynamics, all of these factors give
rise to doubt about the basis for the design. It is therefore of great interest to
monitor the loading to ensure that reliability is maintained throughout the life
span.

2.1 Traditional ways of calculating wave forces

The design of offshore structures is traditionally done in accordance with the
recommended practice of Det Norske Veritas (DNV) [15] or relevant standards

10



CHAPTER 2. MOTIVATION

by the American Petroleum Institute (API). If a dynamic response is deemed
likely, then a dynamic analysis shall be conducted in the time domain using
stochastic modelling of the sea state, including directional spreading. If the
response is dominated by quasi-static behavior, then the design is based on a
deterministic approach using regular waves. The procedure for determining the
wave loads on a fixed structure is hence based on a given return period. Meto-
cean data provide a probabilistic basis for establishing a design wave height
and corresponding period. The fluid acceleration and velocity are calculated
using a suitable wave theory, such as the Stokes or Stream theory. For deep
water design, the Airy (linear wave theory) is used.

The linear and Stoke wave theory provide wave kinematics below the mean
water level (MWL). Here, stretching or extrapolation methods can estimate
kinematics above the MWL [72]. The loads are consequently derived from the
fluid motion using the Morison equation [43]. The Morison equation is based on
empirically determined coefficients for the added mass and drag, Cm and Cd,
which describe the load proportionality to fluid acceleration and squared veloc-
ity. They are dependent on the member shape and levels of surface roughness,
i.e. the Reynolds number and the Keulegan Carpenter number. The resulting
wave loads can hence be obtained as:

Fw(t) =
∫ η(t)

−h

π

4 D2 ρ Cm u̇(z, t) dz︸ ︷︷ ︸
Inertia

+
∫ η(t)

−h

1
2 Dρ Cd u(z, t) |u(z, t)| dz︸ ︷︷ ︸

Drag

(2.1)

here, h is the still water level, η is the surface elevation, D is the structure
diameter, ρ is the fluid density, Cm and Cd are the empirically determined mass
and drag coefficients to account for different shapes and surface roughness.
Finally, u̇ and u are the fluid particle acceleration and velocity in the cross
member direction.

The equation is valid for rigid slender structures in undisturbed waves. This
means it does not account for coupling effects between the structure and fluid.
For a floating or flexible structure, the Morison equation can be expanded by a
weak coupling to account for the relative movements between the fluid and the
structure. It is a weak coupling as it still assumes an independent flow field.

When waves grow sufficiently steep, they will become unstable and possibly
break and/or induce slamming loads to the structure. The loads are very
dependent on the type of wave breaking. A huge effort has been made in
deriving methods to describe the wave kinematics and loads of breaking waves,
either through adding another term to the Morison equation (slamming) or by

11



CHAPTER 2. MOTIVATION

a numerical/CFD approach. However, the methods are most often verified by
scaled laboratory experiments and scaling effects of unknown magnitude may
be present when a full-scale breaking wave is impacting on a structure [13, 56].
Air entrapment, for instance, is not easily scalable.

The low order wave theory combined with the Morison equation is still
widely used in the industry. This is probably due to its computational effi-
ciency. The linear wave theory, however, is based on a linearisation of the
boundary condition which does not accurately describe the kinematics in the
splash zone and subsequently misjudges the loads in this region. Besides the
modelling uncertainty, the load model is based on assumptions on the seabed,
structural dynamics, and surface properties. These are factors that may change
during the lifetime, for instance due to scour, marine growth or operational
conditions.

2.2 Original contributions

A new approach, not subjected to scaling limitations for wave load quantifica-
tion, is presented in this Ph.D. thesis. By monitoring the vibration response of
an offshore structure, the structure itself can be used as a live, full-scale load
cell. It will thus be possible to monitor the loads occurring in real conditions,
with the actual level of marine growth, scour, and all structural boundary con-
ditions, etc. This will then be a valuable input to the SHM and serve the design
basis for future platforms.

At the time of initiation of this Ph.D. thesis, only limited research has
been performed specifically to this application [26, 52]. Until now, more focus
has been placed on indirect methods of, for example, fatigue assessment and
damage detection of offshore structures [39, 47]. The load identification from
the wave action is a challenging discipline to verify, and even more difficult if a
dynamic response is present. This may be the reason why little work has been
done in the past. This study focuses on the state-of-the-art load identification
methods in structural dynamics and assesses whether these are applicable in
the context of wave loading on offshore structures. It has been an essential task
to modify the available methods such that they accommodate the challenges
inherent in the marine environment.

The load identification procedure requires a long list of subroutines needed
for a successful estimate. We will rely on the output only analysis - which
does not interfere with the production. Load identification from an output
only analysis is considerably more difficult compared to calibrating a model
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CHAPTER 2. MOTIVATION

to a known input as there are only limited means for verifying the estimates.
Laboratory experiments hence form the majority of this study, which, to some
extent, allows for verifying the estimated input.

Current methods are highly reliant on the model accuracy and assumptions
on the location of the input. It has thus been a focus to assess the sensitiv-
ity given different assumptions. It was found that, in general, the structural
accelerations are insufficient to determine the loads accurately if no additional
information is available. It is thus evaluated how the algorithm stabilizes by
merging it with different load models or scenarios. The study is, in general,
restricted to linear models.

13





Chapter 3

State of the art

Since the introduction of modal analysis, identifying the input forces using the
system response has been an intriguing task in structural dynamics. In contin-
uation of modal analysis and system identification, many attempts have been
made to derive methods to determine the loads in a dynamic system. As for
modal analysis; load identification originates from the automotive and aircraft
industries. Many researchers have explored the principles of load identification
and the potential pitfalls it entails [17, 38, 58]. The first published research in
this area can be traced back to the mid-70s where Flannelly et al. [6, 21, 23]
performed modal testing on helicopters on behalf of the US air force. They
deployed classical experimental modal analysis and made the identification by
using the pseudo inverse method as described in Section 4.4. They examined
the consequences of model errors by introducing mass changes into the system
simulating fuel consumption. They found that when analyzed with care, the
load could be identified within 20% accuracy; however, the object was a steel
helicopter chassis with suspended boundary conditions.

Later, Brenda Hillary followed, with her Ph.D. thesis on indirect measure-
ments of vibration excitation forces [24]. She studied several aspects of load
identification. Also she used the pseudo inverse approach while conducting
both numerical and experimental works while targeting the unsteady aerody-
namic forces on a turbo blade. Although most of her work was limited to
cantilever beams, she also studied how the residuals from omitted modes could
affect the result.

In 1986, James Fabunmi [18] followed the studies by examining some of the
challenges to the pseudo inverse method. While his focus was constrained to the
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CHAPTER 3. STATE OF THE ART

frequency domain, he introduced random errors into the mobility matrix (also
known as frequency response function) and discovered that small perturbations
could cause large variations in the identified load. He also studied how the
method could be used to identify multiple loads, although with limited success.

In 1987, Karl Stevens [58] wrote his overview on the topic. Despite the fact
that his work included neither experimental nor simulated cases, his paper is
often referred to as one of the cornerstones in the history of load identification
methods. He suggests that to overcome the sensitivity issues, it is necessary to
aid the inverse calculations by knowledge about the nature of the load. This
may involve the frequency content or spatial distribution.

After the millennium, Ma et al. made some of the first attempts in formu-
lating a recursive model for a multi-degree-of-freedom system. They made the
state-space formulation of the structural system and by using a Kalman filter
[27] they obtained an estimate of the system state along with the load. The
theory, which they adopted from heat transfer analysis, allows for real-time
estimates of the load. Since then, many different modifications to the tech-
nique have been made. These, for instance, include merging of different sensor
types, different ways of expanding the state vector, or different system models
or different interstep assumptions, etc. [22, 25, 32, 37, 44].

From 2012 and onwards, Maes and Lourens devoted their studies to im-
proving the Kalman filter-based method. They formulated the state space
equations from modal parameters. This, in particular, is convenient if the sys-
tem identification is based on operational modal analysis [12]. They showed
various cases of application of the theory, including, for instance on footbridges
[41] and monopiles [39, 42].

In Figure 3.1 some of the pioneering works on load identification are shown.
Between 2012 and 2019, an exponential growth in papers per year is seen. Note
that Figure 3.1 shows only a selection in these papers. Methods using artificial
intelligence such as neural networks have not been in focus and are hence
omitted from the literature review.

3.1 Offshore industry practice

Loland, Dodds, and Begg conducted extensive studies on vibration-based mon-
itoring of offshore structures in the mid-70s. They examined whether damage
could be detected by monitoring the changes in natural frequencies. They did
both laboratory work and full-scale tests on several platforms in the North Sea
[7, 34, 45]. Their motivation was to remove the continuous diver-driven inspec-
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CHAPTER 3. STATE OF THE ART

tions by introducing vibration-based structural health monitoring instead. If
SHM could supersede the traditional inspection scheme, it would also become
weather and sea state independent. After a considerable number of studies,
they realized that there is a strong limitation to the accuracy of damage de-
tection - especially if the location of the sensors are constrained to the topside
[20].

In the early 90s, an extensive monitoring campaign was conducted by an
association of major oil companies (Shell, British Petrolium, Conoco, Cheveron
etc.) [4]. The study was based on the steel jacket platform, Tern, in the
North Sea. Over a period of two years, they monitored the loading on the
platform in order to assess current design models and statistics. The platform
was equipped with strain gauges distributed to the subsea structure. These,
together with an FE model, were used for determining the global loads. Wave
gauges and particle velocity meters were used to assess the wave conditions.
They found that, in general, the Morison equation was a good load model
with little conservatism to the actual conditions. Extreme wave events were
reported during the monitoring period, yet the report states nothing about
the occurrence of breaking waves. The current design basis benefits from the
experience gathered from this study.

With the digitalization of data acquisition, monitoring became easier and
was thus reintroduced as a natural element in the offshore industry. More so-
phisticated and accurate data post-processing and structural modelling gave
new life to structural health monitoring. The SHM is consequently introduced
to both offshore wind turbines and production platforms. The monitoring
process may in general cover many different aspects. Load monitoring and
adaption is a natural element in the operation of wind turbines. The dynamic
complexity of turbines is substantially different due to the adaptation for opti-
mized power production and reduced loads [3, 47]. Consequently, the offshore
wind industry is hence pushing the development in structural monitoring tech-
niques. Regarding production platforms, Rambøll has put extensive effort into
developing their own structural monitoring program. This program includes
health monitoring and fatigue assessment and also load monitoring from indi-
rect methods. The monitoring is based on automated OMA and FE-updating.
They name the concept "digital twin". The process is based on cloud computing
allowing for remote monitoring [5, 52, 53, 62, 63].
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Chapter 4

Theory

Let us open this section by describing what load identification is and which
challenges persist within this field of study. If we consider the general forward
flow of a dynamic system, we may describe the process as schematically shown
in Figure 4.1. Here, we imagine that an arbitrary input feeds the system. This
input can be a single or multiple source. This consequently yields a response
(output) of the system. The response depends on the characteristics of both
the input and the system (and possibly coupling effects).

In the field of structural dynamics, the input corresponds to loading and
the response will thus be the displacements, velocities, and accelerations of
the structure. The dynamic properties will drive the behavior of the system.
These may be described in terms of natural frequencies, mode shapes, and

Load
System

Response

Input identification

(input) (output)

Figure 4.1: General principle of load identification.
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damping ratio. These modal parameters relate to the geometry, mass, and
stiffness of the structure and are thus independent to the input. (This is only
valid for linear systems and in real-life situations this decoupling between the
three components may not be as straightforward.) Naturally, the system may
be linear or nonlinear, but we shall confine our discussion to the linear systems
and assume time-invariant behavior.

The art of input identification will now be the reverse order of this flow.
This implies that the response of the structure is measured, and we aim to
decipher these measurements in order to identify the load which caused this
response. This is why input identification may also be referred to as indirect
load measurements. Generally, it is impossible to relate the response directly
to the input without knowledge of the system.1 We thus need to use system
identification as a stepping stone in order to achieve what we desire - the load.

4.1 System identification

Modal analysis is a very commonly used approach in extracting the system
properties in an experimental framework. Traditional Experimental Modal
Analysis (EMA), also known as input-output identification, has proven suc-
cessful in the field of automotive and aviator industries for decades. Yet, when
it comes to application in large civil engineering structures, EMA has some
limitations. EMA relies on a known input, either force or forced vibration.
Artificial excitation of large structures is very difficult if not impossible and
requires a large experimental setup. This may interfere with daily operations,
which cannot be allowed in the context of offshore structures where access time
may be restricted and where operational downtime is unacceptable. Another
approach in modal testing saw the light no more than a few decades ago. This
technique is based on an output-only approach. It is called Operational Modal
Analysis (OMA) and has become well established for testing of civil engineer-
ing structures [11, 55]. As the name indicates, the method relies on operational
loading, i.e. ambient excitation. If it can be assumed that the loading is close
to Gaussian white noise, i.e. excitation at all frequencies and all locations of
the structure, the response from this random excitation can be used to iden-
tify the modal parameters. We thus assume that the physical properties are
independent of the loading and that the correlation time of the load is limited.

1Some methods, which use neural networks, actually aim to make the identification
without the need for the system description. These methods rely on training data instead.
We will, however, not pursue this approach further.
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The convenience of output-only analysis is a double-edged sword, meaning
it is quick and reliable, but is misses the information on the scaling of the mode
shapes as the input is unknown. The scaling of the mode shapes or rather the
modal mass is an essential ingredient in load identification. Despite this flaw
to the method, OMA has been the key approach in this thesis. The scaling
issue can be mitigated by different approaches. For instance, the mass change
method can be applied [10, 28], or introducing a harmonic vibration force [9]
or, finally, from an FE model [1]. The latter is used as it does not interfere
with operations.

4.2 Response measurement

The response of the structure may be measured by accelerometers. These
are the most common instrumentation used offshore. The measurements may
be supported by GPS measurements to compensate for the static/quasi-static
displacements. The sensor installation for offshore structures is often restricted
to the topside, which puts the subsea structure out of reach. This is obvious
due to the harsh environment which surrounds the offshore structures. Subsea
monitoring is both a great challenge for the sensor installation and the lifetime
of the sensors is greatly reduced. However, it is possible to indirectly estimate
the response at remote locations.

Several different methods for estimating the response at unmeasured loca-
tions (Virtual sensing) exist. For the sake of this study, the modal expansion
technique is used. The general principle is that the response is transformed
into modal domain by the experimentally obtained mode shapes ΦA as:

q̂(t) = ΦA†yA(t) (4.1)

here, yA(t) is the measured response and q̂(t) is the estimated modal co-
ordinates. The response is transformed back to the physical domain using
a set of expanded mode shapes ΦB . This consequently provides interpo-
lated/extrapolated values of the response.

yB(t) = ΦB q̂(t) (4.2)

The number of modes (i.e. columns) in ΦA and ΦB must be the same,
while the increase in mode shape resolution will drive the expansion. The
mode shapes in ΦB may be obtained from a finite element model. The mode
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shapes can either be linear combinations for a best fit [48, 57] or they can be
directly taken from the FE model. In order to obtain a meaningful expansion
(and thus avoiding over-fitting) the best result is achieved if the FE model
is updated such that experimental mode shapes and the finite element mode
shapes are well correlated. The virtual sensing is in practice limited to the
global behavior of the structure, especially if sensors are located far away from
the points of interest.

Once the response is estimated at all positions in the structure, it allows for
load identification at these locations. The need for transfer functions between
a measurement point and a load source is hence eliminated.

4.3 Input identification

This section will describe the load identification process. In this thesis, mainly
two approaches are evaluated in this regard. Sections 4.4 and 4.5 outline the
principles of identification in the frequency domain and Section 4.6 outlines
the principles of identification in the time domain. It will be shown how the
formulae in both cases descend from Newton’s equation, which for a multiple
degree of freedom (MDOF) system is commonly written as:

M ÿ(t) + C ẏ(t) +K y(t) = f(t) (4.3)

here, M, C, and K are the system mass-, damping-, and stiffness matrices
respectively. The system response is described by the three vectors ÿ(t), ẏ(t),
and y(t), which correspond the system acceleration, velocity, and displacement.
Finally, f(t) is the load. Here, we assume that the system matrices remain
linear, symmetric, and constant in time.

Now, the response from a dynamic system can be evaluated as the convo-
lution between the impulse response function and the load.

y(t) = h(t) ~ f(t) (4.4)

,
∫ ∞
−∞

h(t− τ)f(t)dτ (4.5)

here, h(t) is the impulse response function and τ is the time lag between the
response function and the load. Assuming that the MDOF equation of motion
shown in Eq. (4.3) can be decoupled into a series of N uncoupled equations by
using modal decomposition, the time domain response is then obtained from
the Duhamel integral, which in the modal coordinates reads:
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qr(t) = 1
mrωd,r

∫ ∞
−∞

pr(τ)e−ζrωr(t−τ) sin (ωd,r(t− τ))dτ (4.6)

where mr is the modal mass, ωd,r is the damped natural frequency, pr is the
modal load, ωr is the undamped natural frequency, ζr is the damping ratio, all
for mode r. In practice the integral is truncated to [0; t].

To obtain an estimate on the modal load, it requires a deconvolution be-
tween the response function and the response measurements. A deconvolution
is an aggravating task to handle for most applications, but as a convolution
between two functions in the time domain corresponds to a point-wise mul-
tiplication in the frequency domain, the problem is conveniently analyzed in
here. Likewise we note that the impulse response function and the frequency
response function are mutual Fourier transforms.

4.4 Identification in the frequency domain

To derive the frequency response function for an MDOF system, it is common
to start out in the Laplace domain where Eq. (4.3) transforms into2:[

s2M + sC +K
]
Y (s) = F (s) (4.7)

From here, we can define Z(s) as the system impedance matrix, which is:

Z(s) =
[
s2M + sC +K

]
(4.8)

We wish to obtain a relation between the input and the output. So inserting
the definition of impedance and rewriting, Eq. (4.3) becomes:

H(s)F (s) = Y (s) (4.9)

where
H(s) = Z(s)−1 (4.10)

Finally, to obtain the frequency response function, we adhere to the imaginary
axis in the s-plane by putting s = jω, which yields:

H(jω)F (jω) = Y (jω) (4.11)
2The derivation shown in this section can be found in most dynamic textbooks e.g. [8]

or [11].
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where H(jω) is the frequency response function, often written as H(ω). The
frequency response function (FRF) can be written in terms of displacements,
velocities or accelerations. It may consequently be referred to as dynamic
flexibility, mobility, or accelerance. A transformation from one type to another
merely requires a multiplication of jω.

Frequency response function from OMA
The system identification - OMA - yields modal parameters rather than com-
plete system matrices, so it is convenient to derive an expression for the fre-
quency response function based on the output from the modal analysis. Start-
ing from Eq. (4.8) and Eq. (4.10):[

s2M + sC +K
]

= H(s)−1 (4.12)

Pre- and post multiplying by the mode shape matrix ΦT and Φ respectively
gives:

ΦT
[
s2M + sC +K

]
Φ = ΦTH(s)−1Φ (4.13)

This operation diagonalizes the system matrices given that the system is pro-
portionally damped and the mode shapes are orthogonal. We consequently
define Λ(s) as the pole matrix.

Λ(s) =

s
2m1 + sc1 + k1 . . . 0

...
. . .

...
0 . . . s2mn + scn + kn

 (4.14)

where, mr, cr and kr are the modal- mass, damping, and stiffness. n is the
number of modes in the system. The polynomials can be factored into a func-
tion of their roots, which come in pairs of complex conjugates:

Λrr = s2mr + scr + kr (4.15)
= mr (s− λr) (s− λ∗r) (4.16)

where
λr = −ζrωr ± jωr

√
1− ζr 2 (4.17)

here, ζr is the damping ratio for mode r and ωr is natural angular frequency
for mode r:

ω2
r = kr

mr
and ζr = cr

2
√
mrkr

(4.18)
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With the introduction of the pole matrix Λ(s), Eq. (4.13) becomes:

Λ(s) = ΦTH(s)−1Φ (4.19)

Next, we can take the inverse of both sides, which yields:

Λ̂(s) = Φ−1H(s)
(

ΦT
)−1

(4.20)

Here, Λ̂(s) is the inverse pole matrix. Since the pole matrix is diagonal, the
inverse corresponds to the reciprocal value of each element along the diagonal.
Again premultiplying by the mode shape matrix and postmultiplying by the
transposed mode shape matrix we obtain:

H(s) = ΦΛ̂(s)ΦT (4.21)

We note that this corresponds to a sum of N modal contributions, which we
can be split by partial fraction expansion. Meanwhile we again adhere to the
frequency domain by letting s = jω and hence obtain a very useful expression
for the frequency response function:

H(ω) =
N∑
r=1

Qr φr φr
T

jω − λr
+
Q∗r φr

∗φr
H

jω − λ∗r
(4.22)

Here, φr is the mode shape vector and Qr is a scaling constant, both for mode r.
Superscript ∗ and H means the complex conjugate and Hermitian transpose
respectively. The nominator in the equation, i.e., the outer vector product
between a set of scaled mode shapes is known as the pole residue.

The mode shape scaling constant Qr is obtained in the following manner:

Qr = 1
j 2ωdrmr

(4.23)

where, ωdr is the damped natural frequency and mr is the modal mass, both
for mode r. It is common to scale the mode shapes according to the mass of
system such that we obtain unity modal mass. The roots to the polynomials
in Λ(s), λr are also referred to as poles of the system as they correspond to
points of resonance.

The expression shown in Eq. (4.22) is based on system displacements, i.e.,
the receptance or dynamic flexibility. Following Maxwell’s reciprocity theorem,
the FRF matrix is a symmetric square matrix. Its size depends on the number
of degrees of freedom i.e., the length of the mode shape vector. Meanwhile,
we note that the rank of the response function will be equal to the number of
modes N , given that the mode shapes are orthogonal.
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Load identification
If we recall the flow in Figure 4.1 along with Eq. (4.11), the tempting first
approach to determining the unknown load is to premultiply by the inverse
FRF matrix on both sides such that:

F̂ (ω) = H(ω)−1Y (ω) (4.24)

However, since the FRF matrix is often ill-conditioned and thus close to sin-
gular, the inverse matrix is prone to large numerical errors. The ill-condition
may descend from rank deficiency, which occurs if the number of independent
modes is less than the length of the mode shape vector. A workaround for
this singularity issue can be through the Moore-Penrose pseudo inverse [51] or
inverse using the singular value decomposition. The Moore-Penrose inverse of
a matrix A may be obtained as:

A† =
(
AHA

)−1
AH (4.25)

here, superscript H is the Hermitian transpose and † is the pseudo inverse.
This approximation can be made even though A is a non-square matrix.

The inverse using the singular value decomposition (SVD) is performed
in the following manner: The singular value decomposition of a matrix A
factorizes it such that:

A = U ΣV ∗ (4.26)

where U and V contain the left and right singular vectors and Σ contains the
singular values on the diagonal in descending order. The inverse of A will hence
be:

A† = V Σ†U∗ (4.27)

Since Σ is diagonal, its inverse corresponds to the reciprocal in all non-zero
elements. The SVD approach can be used to remove noise by setting a threshold
on the singular values. With the introduction of the pseudo inverse, Eq. (4.24)
now becomes:

F̂ (ω) = H(ω)†Y (ω) (4.28)
This evades the singularity issue, but the truncation errors still persist, which
can yield large numerical errors. This is shown in paper II.

To ensure a consistent result from this relation, the solution must be con-
strained. This can be done by defining loading scenarios implemented as a
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factorization of the load into m different sources, each with a fixed spatial
distribution Sp and a corresponding scaling function g(ω):

F̂ (ω) = Sp
(1)g(ω)(1) + Sp

(2)g(ω)(2) ...+ Sp
(m)g(ω)(m) (4.29)

= Sp g(ω) (4.30)

here, Sp is the spatial distribution matrix, where the columns contain the
spatial distribution from each source. g(ω) consequently becomes a vector
with the scaling function for each source. If the spatial distribution is known,
this definition can be inserted into Eq. (4.11) and the equation can be solved
for the scaling functions.

Y (ω) = H(ω)Sp g(ω) (4.31)

ĝ(ω) =
(
H(ω)Sp

)†
Y (ω) (4.32)

This shows the general approach with several load sources. In practice, this will
only work if a single or few sources are present at the same time. If a single
load source drives the response, the expression simplifies as ĝ(ω) becomes a
scalar such that

ĝ(ω) =
(
H(ω)Sp

)†
Y (ω) (4.33)
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Example I

Here we will make an example with dual input on a uniform plane cantilever
beam. We will consider a six DOF system with a load acting on the middle
and top node, i.e., in DOF 3 and 5, see Figure 4.2. The figure shows the input
and corresponding response for each node in the cantilever beam model.

The load identification will be based on a truncated FRF matrix including
only the first three bending modes (fn = 3, 19, 53Hz). The FE model provides
the modal parameters without any error. The response due to the loading
history is simulated using a Newmark solver. Noise is subsequently added to
the response and thus considered as the "measured" signal. We will assume
that the displacements are measured at all six DOFs.

The load identification will be split in two; one following Eq. (4.28) and one
following Eq. (4.32). The estimate from Eq. (4.28) corresponds to an unknown
load position while the estimate from Eq. (4.32) corresponds to a known spatial

t = 0s t = 0s t = 10s t = 10sTime Time

Input System Output

DOF 1

DOF 3

DOF 5

DOF 4

DOF 6

DOF 2

Figure 4.2: Simulated system for example. The dashed lines indicate moment
and corresponding rotations while the solid lines indicate the force and cor-
responding displacements. A flat line corresponds to zero loading and zero
response.
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distribution. The spatial distribution matrix in the latter case becomes:

Sp =


0 0
0 0
1 0
0 0
0 1
0 0

 (4.34)

The result is shown in Figure 4.3, where the value from knowing the spatial
distribution is evident. NB, an unknown spatial distribution corresponds to
having Sp equal to the identity matrix. A more detailed study of the modal
truncation and errors in modal parameters is given in papers II and III.

t = 0s t = 10sTime t = 0s t = 10sTime

Known spatial distribution Unknown spatial distribution

Figure 4.3: Estimated input forces. The dashed lines indicate moment, and
the solid lines indicate the force. A flat line corresponds to zero loading. The
FRF matrix is in this example truncated to three modes.
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4.5 Identification in the modal domain

This section is dedicated to load identification in the cases of random loading.
Through having a well-defined system subjected to (perfect) white noise input,
it is possible to derive an expression for a load estimate based on the variance
of the response. The theoretical response variance of a linear SDOF system
subjected to white noise forced excitation is given by the integral of the squared
response function and scaled by the load density [46]:

E[y2(t)] =
∫ ∞
−∞
|H(ω)|2S0 dω = πS0

kc
(4.35)

where, E[y2(t)] is the variance of the zero mean response, S0 is the constant
spectral density of the load (S0(ω) = S0), k and c are the stiffness and damping
coefficients of the system respectively.

The expression in Eq. (4.35) may be considered as a single mode of reso-
nance in a linear MDOF system. It should thus be possible to estimate the
spectral density of the modal load for an MDOF system subjected to random
loading. The problem is thus transformed into the modal domain through
modal decomposition. First, we have the response in modal coordinates:

q(t) = Φ†y(t) (4.36)

The response variance in modal coordinates follows mode by mode as E[q2
r(t)].

It is now possible to rearrange the expression in Eq. (4.35) to obtain an
estimate on the modal load density which for mode r reads:

Ŝ0r = E[q2
r(t)] kr cr
π

= E[q2
r(t)] 2 ω3

r ζr
π

(4.37)

Here we assume that the mode shapes in Φ are mass-normalized. ωr is the
natural angular frequency and ζr is the damping ratio, both for mode r.

The estimates on the constant spectral modal load, Ŝ0r, should be consid-
ered as diagonal values in the estimated power spectral density matrix of the
modal load:

Ĝqx(ω) =


Ŝ01 0 . . . 0
0 Ŝ02 . . . 0
...

...
. . .

...
0 0 . . . Ŝ0n

 (4.38)
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Example II

Again, considering a cantilever beam with a total of 6 DOFs as shown in
Figure 4.4. (Please be aware that the dynamic properties differ from the model
shown in Example I). The beam is subjected to zero-mean uncorrelated random
loading at all DOFs and the response is recorded in terms of displacements.
The power spectral density of the input load is shown in Figure 4.4. Here we
verify that the load is uncorrelated among the different DOFs (yielding a zero
cross spectrum). The spectral density matrix of the load Gxx(ω) (in physical
coordinates) is obtained from the magnitude squared of the Fourier transform
and normalized with the signal length, thus leaving the auto spectra on the
diagonal and the cross spectra on the off diagonals. The spectra shown in
Figure 4.4 to 4.6 are all averaged using the principles of Welch segmenting.
The indices used on the spectral densities x, y, q indicate input, output and
modal transformation respectively.

For the system at hand the size of Φ is 6×6. The response is now projected
onto these six modes and the power spectral density of the response can be
obtained in modal coordinates. The auto spectra are shown in Figure 4.5.
We note that for each of the modal lines, the area underneath corresponds
to the variance of the response for that mode. Once the modal variance is
calculated for all modes, r, an estimate on the spectral density of the modal
load is obtained from Eq. (4.37).

The estimates of Ŝ0r are shown in Figure 4.6 as the solid black lines. The
result is plotted at an arbitrary frequency band near the resonance frequency
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Figure 4.4: Single-sided load power spectral density in physical domain.
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Figure 4.5: Single-sided response autopower spectral density in modal domain.
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Figure 4.6: Single-sided load autopower spectral density in modal domain.

but should in principle be considered as a constant value for all frequencies
Ŝ0r(ω) = Ŝ0r. The underlying grey lines in Figure 4.6 are the diagonal values of
the true input spectra in modal coordinates composed from any of the following:

Gqx(ω) = PSD
(
qx(t)

)
= PSD

(
ΦT f(t)

)
= ΦTGxx(ω) Φ (4.39)

here, qx(t) contains the modal load, f(t) is the load vector for the MDOF
system in the time domain. The PSD should be considered a transformation
into power spectral densities.

By this example, we have shown that it is possible to estimate the constant
load spectra in the modal domain for a linear MDOF system. However, chal-
lenges remain as a transformation back into the physical domain is deceitful.
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Despite the load cross spectra being zero in the physical domain, as was shown
in Figure 4.4, and hence reducing the spectral density matrix, Gxx(ω), to a
diagonal matrix, this is not the case in the modal domain as Gqx(ω) is not
diagonal as it was assumed in Eq. (4.38). Therefore a transformation back to
the physical domain is not feasible:

Gxx(ω) 6=
(

ΦT
)†
Ĝqx(ω)Φ† (4.40)

Sadly, it has not been possible to derive an expression for the off-diagonal
values in Ĝqx(ω) which imprisons us in the modal domain. It was thus chosen
to conclude this study and not proceed with cases of colored input or truncated
response functions.
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4.6 Identification in the time domain

In recent decades, much attention has been given to identification in the time
domain using a Kalman filter [27] and other adaptive filters. This section will
outline some of the basic principles for this technique. The main difference
is that the input is derived recursively along with an estimate on the system
state.

The formulae can be found in numerous works, but an excellent reference is
Lourens et al. [35, 36]. The derivation presented in this section will originate
from the system matrices, but can be formulated from modal parameters as is
shown in paper VI.

State space formulation
We start out from the equation of motion:

M ÿ(t) + C ẏ(t) +K y(t) = f(t) (4.41)

As for the frequency domain approach, the load f(t) is separated into a spatial
distribution and the scaling as

f(t) = Sp g(t) (4.42)

Every column in Sp is the spatial distribution for the corresponding element in
g(t). If only a single input is present, Sp becomes a vector and g(t) a scalar.
The spatial distribution may vary in time as well although this is omitted from
this section. A convenient representation of Eq. (4.41) is also: (which we will
return to later on.)

ÿ(t) = −M−1C ẏ(t)−M−1K y(t) +M−1Sp g(t) (4.43)

The system response can be written in state space format by defining the state
vector:

x(t) =
[
y(t)
ẏ(t)

]
(4.44)

which means that Eq. (4.43) can be written in a first order state space form:

ẋ(t) =
[

0 I

−M−1K −M−1C

]
x(t) +

[
0

M−1Sp

]
g(t) (4.45)

= Ac x(t) +Bc g(t) (4.46)
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Subscript c indicates that the equation is on continuous form. A discrete state
prediction can be obtained from the state space equation. This is made from a
zero-order hold assumption which presumes a constant load throughout a time
step.

xk+1 = A xk +B g
k

+ wk (4.47)

where

A = e
Ac dt (4.48)

and

B =
(
A− I

)
Ac
−1Bc (4.49)

Here, dt is the sampling time step. We include the process noise wk to account
for discrepancies in the relation. More about this noise model later on.

Measurements
Before proceeding to the Kalman filter and load identification, a measurement
model must be formed. The measurements are stored in a vector z(t). It may
be composed of different types of sensors. We consequently need to establish a
link between the measurements and the system, so the sensor selection matrices
are introduced:

z(t) = Sa ÿ(t) + Sv ẏ(t) + Sd y(t) (4.50)

For example, if a displacement sensor is placed in DOF 2 and an accelerometer
is placed in DOF 3 this yields the following selection matrices: (Assume that
the system has six DOFs in total similar to the model in Examples I and II)

z(t) =
[
0 0 1 0 0 0
0 0 0 0 0 0

]
ÿ(t) +

[
0 0 0 0 0 0
0 1 0 0 0 0

]
y(t) (4.51)

The size of z(t) will then be equal to the number of sensors while the size of the
selection matrices depends on the number of sensors and DOFs in the system;
nsen × ndof . Next, we need to link the state vector x(t) to the measurements
z(t). This is done by inserting Eq. (4.43) into Eq. (4.50) and rewriting into
state space format:

z(t) =
[
Sd − Sa M−1K , Sv − Sa M−1C

]
x(t) + Sa M

−1Sp g(t) + v(t)

= Gc x(t) + Jc g(t) + v(t) (4.52)
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This is often referred to as the observation equation. Again the measurement
noise v(t) is included to account for discrepancies in the relations.

The transformation from continuous time to discrete time is straightforward
by changing the t = k dt. The matrices, Gc and Jc remain the same.

zk = Gc xk + Jc gk + vk (4.53)

Augmented state space
Since the load scaling, g(t), is the target for this exercise, it needs to be merged
into the state vector (as this is the output estimate from the Kalman filter).
This is done by expanding the discrete state vector as follows:

xak =
[
xk
g
k

]
(4.54)

here, superscript a indicates augmented/expanded state vector. Eq. (4.47) can
now be rewritten in augmented form as:

xak+1 =
[
A B
0 I

]
xak +

[
wk
η
k

]
(4.55)

=Aaxak + ζa
k

(4.56)

The size of the null matrix, 0 is nloads × 2ndof . Here, we assume that the load
is constant throughout the time step and that variations only come from the
noise process η

k
. That is:

g
k+1 = g

k
+ η

k
(4.57)

Here, η
k
is also assumed to be a Gaussian variable leaving Eq. (4.57) similar

to a random walk. In case of a single input, g
k
and η

k
thus become scalars.

The measurement transformation matrices Gc and Jc also need to be rewrit-
ten into augmented form.

zk =
[
Gc , Jc

]
xak + vk (4.58)

=Ha xak + vk (4.59)

here, Ha is the augmented state to measurement matrix.
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Noise
As promised, we now turn our focus to the noise models. To accommodate
the format of the Kalman filter, we need to establish the covariance matrices
for the noise processes. Normally we assume uncorrelated Gaussian noise for
all processes, in the sense that each process is uncorrelated with the other
processes and each instance of time is uncorrelated to the other instances of
time for each noise process. However, the noise/random walk for the load may
show correlation with previous time steps, but let us just assume that it does
not. The covariance matrix for the augmented state noise Qa reads:

Qa =E
[
ζa
k
ζaT
k

]
(4.60)

≈

[
Q 0
0 S

]
(4.61)

The Q part relates to the state process noise and the S relates to the load noise.
Q and S are both diagonal matrices since the noise processes are assumed to be
uncorrelated. The magnitude of S must be much greater than Q in order for
the filter to perform well on load identification when sharp variations may be
present. The covariance matrix for the measurement noise likewise becomes:

R = E
[
vk v

T
k

]
(4.62)

here, R is also a diagonal matrix. The magnitude of R should be ranging
between Q and S depending on the sensor noise level and model accuracy.

Kalman filter implementation
The linear Kalman filter [27] is used for the state estimate given a response
measurement. Figure 4.7 shows the loop within the Kalman filter algorithm.
The augmented state matrix Aa and measurement transformation matrix Ha

remain constant for all time steps k. Meanwhile the Kalman gain matrix Ka

k
and error covariance matrix P a

k
are updated for each time step.

Regarding the initial conditions - if no knowledge exists on the content of
the system state xa0 at time zero, the initial error covariance matrix P a0 should
be increased, giving more emphasis to the measurement for the first time steps.
We do not want to go into detail on the derivation of the Kalman filter, but
it is worth mentioning that only the system state at one previous time step is
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used along with the system matrices. This approach allows for a computational
efficient and real-time implementation.

x 0 , P0

0:  Set initial conditions

1:  Predict state and error covariance

2:  Calculate the Kalman gain

x  = A xk k -1
aa a

P  = A  P   A  + Q
k k -1

aa a

a a

aT a

K  = P  H   ( H  P H  + R )
k k k

aa aT a aT -1

3:  Update the state estimate

x  = x + K  ( z - H  x  )
k k kk

aa a a a

4:  Calculate the error covariance

P = P - K  H  P
k k k

aa a aa

k

k

x  k
a

k = k + 1

z  k
New measurement

State estimate

^

^

^ ^

^^

^ ^

Figure 4.7: Linear Kalman filter with augmented state vector. The figure is
made with inspiration from [29].
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Example III
Here, an example will be introduced using the augmented state estimation
method as presented in Section 4.6. The same six-DOF cantilever beam as
introduced in Example I will be reused. Here a scenario with loading at a
single node will be considered as shown in Figure 4.8. Again, the FE model
provides the mass-, stiffness- and damping matrices. The loading is selected
such that both a dynamic and quasi-static response occur. The response due
to a loading history is simulated using a Newmark solver and noise is added
to the response and thus considered as the "measured" signal. In this example,
we will assume that only the translations are measured at each node.

We will assume that the spatial distribution of the load is known. Since
only one load source is present, the load spatial distribution matrix becomes a
vector:

Sp = [ 0 0 1 0 0 0 ]T (4.63)

Displacements sensors are located at DOF 1, DOF 3 and DOF 5, which yields

t = 0s t = 0s t = 10s t = 10sTime Time

Input System Output

DOF 1

DOF 3

DOF 5

DOF 4

DOF 6

DOF 2

Figure 4.8: Simulated system for example. The dashed lines indicate moment
while the solid lines indicate the force and corresponding displacements. A
flat line corresponds to zero loading and zero response. Only the horizontal
translations are measured and hence the nodal rotations are not shown in the
output.
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the displacement selection matrix:

Sd =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 (4.64)

The acceleration and velocity selection matrices will be zero-matrices with the
same size as Sd. This yields an (augmented) state-to-measurement transfor-
mation matrix as

Ha =

1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

 (4.65)

Here, Ha ∈ Rnsen×(2ndof +nloads), where nsen is the number of sensors, ndof is
the number of degrees of freedom in the system and nloads is the number of
load sources.

The augmented noise covariance matrix is a user input and may be based on
experience. In this case we will assume that the noise is uncorrelated yielding
a diagonal covariance matrix.

Qa =



10 0 0 0 0 0 0
0 10 0 0 0 0 0
0 0 10 0 0 0 0
0 0 0 10 0 0 0
0 0 0 0 10 0 0
0 0 0 0 0 10 0
0 0 0 0 0 0 S


(4.66)

Here, Qa ∈ R(ndof +nloads)×(ndof +nloads). The last element, S, is the covariance
on the load. In comparison to the modelling noise, this must be selected high
in order to identify sharp variations in the load. The result will be presented
from three different choices of this value.

The measurement covariance is selected as follows:

R =

103 0 0
0 103 0
0 0 103

 (4.67)

where, R ∈ Rnsen×nsen . Along with the system matrices, M , C and K, these
are all the information needed for the load identification. These are fed into the
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True
Measured
Kalman

True
Kalman

t = 0s t = 10sTime t = 0s t = 10sTime

Displacements Velocity

Figure 4.9: State estimate using a Kalman filter.

Kalman filter and an augmented state estimate is returned real-time. Besides
the load estimate, the state vector also includes displacements and velocities.
These are plotted in Figure 4.9 along with the true value. The load estimate
is shown in Figure 4.10 for three different values of the load covariance, S. It

0 10Time 0 10Time 0 10Time

S = 105 S = 107 S = 109

Kalman force estimate
True input force

Figure 4.10: Identified load from the augmented state identification method
using different magnitudes of the load covariance S. All are based on a known
spatial distribution and complete system matrices.
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is seen that the Kalman filter smoothens the estimates, which yields a poor
estimate on the high frequency harmonic load. (Load frequency between 1st

and 2nd mode) A small time lag between the input load and the estimated load
is also observed. The method, however, is computational efficient and handles
measurement noise well. The greatest benefit, however, is the capability of
merging different sensors.
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4.7 Principle of wave load identification

The load identification outlined in Sections 4.3 to 4.6 shows the principles in a
general framework. This section will describe how the identification process can
be implemented for an offshore structure. Imagine that we wish to include wave
load identification as part of an SHM procedure for an existing platform such
as the wellhead structure, Valdemar BA in the North Sea. The implementation
of the load identification procedure is shown by two separated workflows given
by Figure 4.11 and Figure 4.12. The first step is system identification, and the
second step is load identification. The two steps are carried out under different
environmental conditions as symbolized by the photos in the left-hand side of
the flow charts. NB, the images show two different platforms. These are merely
showcasing the principle of varying loading conditions. The load identification
must naturally be conducted on the same structure as was used for the system
identification.

Step 1/2: The system response is measured under operational conditions
suited for OMA. This implies that the loading must be random both in terms
of time and space. The ambient vibration will here be caused by waves, wind,
and other operational sources. Once sufficient data are collected, OMA can be
performed and modal parameters, such as mode shapes, natural frequencies,
and damping ratios can be obtained. Ideally, this is implemented in an auto-
mated fashion allowing for continuous system identification.

Response 
measurement

Operational Modal
Analysis

FE model

System description

Updating Scaling and 
expanding

Valdemar BA 2006
Danish continental shelf, Mærsk.
Photo courtesy of Mærsk Oil
 

Figure 4.11: Step 1/2: Flowchart for the system identification process.
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There are three immediate challenges which must be considered. 1) Often,
the sensor layout will be limited by the number of sensors and be restricted to
the topside. 2) Scaling of the mode shapes is unavailable from classical OMA.
3) If accelerometers are used, noise may mask the low-frequency movements.
The first two can be mitigated by the use of a surrogate FE model. The model
can be used for optimal sensor positioning, and it can be used for scaling and
expansion of the mode shapes, thus allowing for an estimation of the subsea
response. The FE model must be continually updated to reflect the dynamics
of the structure, including the added effect from the sea, e.g., mass loading.
The third challenge concerning the static displacements is not covered in this
work, but sensor fusion using GPS is seen as mitigation.

At the end of this procedure, verified modal parameters for the actual con-
ditions are available, and an identification modelling can be initiated.

Step 2/2: At a later stage in time, the structure may experience storm
conditions yielding wave loading that we wish to quantify. We assume that
the system parameters that we previously obtained are still valid during the
storm and that the response is linear. The vibration response is then mea-
sured while the system description is used to deconvolute the response into
an estimate on the load. Due to the underdetermined nature of the problem,
the load identification must be constrained. Accordingly, this is performed by
introducing a load model. This load model may be formed based on the given
situation. For wave loading, the model can be based on information on the

Response 
measurement System description Load identification

Fusion with 
load models

L09-BF 2007 
Dutch continental shelf, NAM and Shell UK Ltd
Photo courtesy of flying focus B.V.

Figure 4.12: Step 2/2: Flowchart for the wave load identification.
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sea elevation, frequency content, or semi-analytical models using wave theory.
The load models can be supported by other sensors like wave gauges, Radar,
LIDAR, or velocimeter depending on the nature of the problem. The attached
papers addressing specifically the wave load identification are: Papers V, VI,
VII, and VIII.
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Conclusion

In this study, indirect methods for wave load identification have been exam-
ined. It was chosen to rely on output-only system identification, which allows
for easy implementation offshore. During the work, different aspects of the
application were studied in detail. Although we did not manage to cover all
aspects, some conclusions can still be drawn. When structures are placed in
the sea, the dynamics will be affected by interaction effects. Some of the in-
teraction effects were shown in paper IV. Here it was presented how the modal
parameters changed due to the influence of water. The presence of surround-
ing water, however, did not affect all modes equally, which caused reordering
in some cases. When affected modes were transcending the unaffected modes,
we saw exchanges within the subspace of their mode shapes. In paper VII,
the interaction effect through the dynamic pressure distribution on the flexible
cantilever was studied. It was seen that the analytical formulae deviate once
interaction effects are present.

For offshore structures, the wave loading occurs in the splash zone or sub-
sea while the sensors are safely located at the topside. This calls for a transfer
function to interpret the link between the load and the response measurements.
This was solved by expanding the mode shapes and thus obtaining means for
estimating the response at the subsea location. Having this "virtual sensing"
omitted the need for analytical transfer functions. The task of identifying
the input loads has been targeted from three different domains: The estimates
obtained in the frequency domain require that the complete time series is avail-
able before the identification can be made. If the input includes both low- and
high-frequency content, then the frequency domain approach was most consis-
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tent. The method originates from the automotive and aviator industry and can
be established from both EMA or OMA. The method can be computationally
demanding when treating a large system at long time signals. A noise filter
should typically assist the process.

In modern identification problems, identification in the time domain has be-
come wildly used. The method extends the state estimation technique where a
Kalman filter combines a predicted system state with measurements and pro-
vides a joint estimate considering the uncertainty of both model and measure-
ments. The state-space formulation and state-to-measurement transformation
allow merging of different sensors into a combined state estimate. The formula-
tion is rewritten such that the load scalar becomes part of the state vector. The
method is then renamed as augmented state estimate. This method performs
the state estimate (and hence the load estimate) one time step at a time. The
process can accordingly be implemented at real-time with little computational
strain. The estimates following this method are a mix between a predicted and
a measured and consequently assigned to the same properties as of a lowpass
filter.

When monitoring an offshore structure to determine the wave loads, dis-
cretization must be considered. The structure will have an infinite number of
degrees of freedom. The response (vibrations) are perhaps measured at a few
tens of locations. This yields an incomplete description of the structural be-
havior. The loads, on the other hand, may act on the entire structure, or may
work at a single location. The exact location is, in most cases, unknown. The
underdeterminacy of the problem produces multiple solutions (load estimates),
which yield nearly the same response - or at least within the noise level and
truncated sensor resolution.

"In actual fact we should recognise the general principle
that a lack of information cannot be remedied by any
mathematical trickery" - Cornelius Lanczos [31]

The inverse problem was supported by assuming a fixed spatial distribution
of the load. This hence reduced the identification problem to determining a
scalar function. For wave loading, the spatial distribution was derived from
wave gauges and supported by wave theory. We have shown that wave loads
can be identified with reasonable accuracy for a few selected cases (papers V-
VIII). However, for full-scale implementation, a verification program should be
considered - for instance, a pull-test or similar artificial excitation, which can
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verify the indirect estimates.
In theory, if a complete system description is available, loads can be de-

termined at perfect accuracy using indirect methods. In practice, however,
there is a limitation to this accuracy. When noise and modal truncation errors
are introduced, the accuracy drops dramatically. In paper VII, a complicated
case study revealed that even under ideal conditions, indirect methods could
not distinguish between an equivalent point load and distributed line loads.
The indirect load estimate, thus remain an estimate for all practical purposes
concerning wave loading on offshore structures.

5.1 Future work

The work covered by this thesis does not encompass all aspects of (wave)
load identification. This section will outline some of the most fundamental
assumptions or limitations to the study and which could be considered for
future works.

The proposed implementation of the load identification is based on two
separate parts: a system identification step and a load identification step. One
of the two most significant assumptions is that the structure does not change
between the two stages. It is known that a structure which experiences changes
in temperature will also yield a change in dynamic behavior. This change, if
present, may influence the dynamics. In extreme cases, wave loading may
introduce non-stationary added mass and damping. The effect from this is
of unknown magnitude and should be evaluated. Likewise, for extreme cases,
the response may not be linear, which is the second fundamental assumption.
Tilting effects and large deflections may also challenge the measurements.

The structural system which has been studied assembles a monopile struc-
ture. More complex structures, where several members are loaded by wave
forces with a difference in phase, may yield an interesting case study. This will
be the natural conditions for jacket structures or multi-legged structures.

The coupling effect between the sea and the structure should be evalu-
ated further, and more work should be put into determining the load distribu-
tion. Cases of multidirectional loading should also be evaluated while emphasis
should be placed into identifying impact wave loads from a random sea.

Finally, considerations should be put towards the automation of the process
with quantification of the uncertainty.
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Chapter 6

Publications

6.1 Reading guide

In total eight publications are attached to this thesis. They are written in
whole or in part by the author. A short summary and their context relations
are outlined prior to each paper. The papers are not listed by chronological
order, but as they are intended to be read.

I Scenario based approach for load identification [67]
II Evaluating the effect of modelling errors in load identification using

classical identification methods [64]
III Modal truncation in experimental modal analysis [59]
IV Operational modal analysis and fluid-structure interaction [66]
V Indirect wave load estimates using operational modal analysis [70]
VI Identifying wave loads during random seas using structural response [69]
VII Estimating wave load distribution from structural response
VIII Estimating loads from breaking waves using operational modal analysis [65]

In addition, following publications were produced yet not attached to this the-
sis.

IX The effect of modal truncation and spatial distribution in load
identification [68]
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Chapter 7

Identifying impact loads

Paper I

"Scenario based approach for load identification"

Michael Vigsø, Marius Tarpø, Jannick Hansen, Rune Brincker and Christos
Georgakis

Published in Proceedings of the 36th International Modal Analysis Confer-
ence, IMAC, Orlando, 2018

This chapter presents the author’s first study on load identification. The identi-
fication is driven by scenarios and once the correct loading scenario is identified,
then the loading can be quantified. The author has performed the main part of
the ideation, experiments, analysis and the writing of the paper. Marius Tarpø
contributed to the success of the experiments while Rune Brincker contributed
to the ideation. The paper has been formatted with minor grammatical ad-
justments to suit this thesis.
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1. Introduction

Being able to determine the dynamic loading of a mechanical system is of interest in many
contexts. In most civil engineering structures, however, it is not feasible to get direct measurements
of the dynamic loading and one must rely on indirect methods by measuring the response. Often,
however, either due to inaccessibility or to limited amount of sensors, the response of the structure
is hardly ever available at all desired locations, which increases the complexity of the problem [1].

Utilizing the concepts of Operational Modal Analysis, OMA, on a structure, it is possible to
extract key parameters of the system, which can be used to reconstruct a model representation
[2]. Then, by carefully expanding the mathematical formulation of the system, it is possible to
estimate the response at locations where it is not feasible to get measurements. By using the
expanded mode shapes along with the frequencies and damping ratios obtained from the OMA,
one can establish a frequency response function of the system. This yields an inverse identification
problem where the number of unknowns exceeds the number of equations and a unique solution
cannot be achieved. Methods to cope with this inversion instability have been proposed, either
through least square schemes [3] or filtering using singular value decomposition [4]. Since complete
dynamic characteristics of the system are rarely available, truncation errors and noise can cause
the input estimates to be rather non-physical.

This paper presents a way to improve the load estimate by constraining the inversion problem
by evaluating a set of pre-defined load scenarios. The hypothesis is that when evaluating the
”correct” load scenario it yields a minimum error. The mode shape expansion provides the option
to detect loads at locations where the response is not originally recorded. The method is developed
for time invariant systems with linear assumption and small damping.

2. Concept

The main idea in this approach is to assume the load can be written as a product of a spatial
distribution, f0, and a time dependent scaling function, g(t) ∈ R.

f(t) = f0 g(t) (1)

There is nothing novel in making this separation of variables as several authors have already
published papers including this approach, e.g. [5–10]. However, the assumption proves to yield
robust solutions for load identification. In the time domain, the response of a multi-degree-of-
freedom system can be found as a convolution between the impulse response function and the
load.

y(t) = h(t) ~ f(t) (2)

Given that the load, f(t), can be written as in equation (1), the response can then be approximated
as:

ŷ(t) =
(
h(t) f0

)
~ g(t) (3)

= c(t) ~ g(t) (4)

The easiest way to evaluate this convolution is in the frequency domain, so by means of the Fourier
transform, equation (3) becomes:
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Ŷ (ω) =
(
H(ω) f0

)
G(ω) (5)

= C(ω) G(ω) (6)

It is then possible to obtain a least square solution for the scaling function, G(ω).

Ĝ(ω) = C†(ω) Y (ω) (7)

By making this formulation, one is omitting the challenges associated with inverting the fre-
quency response function H(ω), which very well may be ill posed [1, 4]. Then, by evaluating
Eq. (7) and back substituting into Eq. (5), it is possible to obtain an estimate of the response of
the system given the load distribution, f0, which was chosen initially. This can then be compared
to the recorded response and f0 can be changed until the error has been minimized.

3. Simulation case

A simulation case is made on a plane cantilever beam. The Bernoulli-Euler beam element
formulation is used with two degrees of freedom at each node and a distributed mass. Assuming
that the cantilever beam is subjected to loading approaching Gaussian white noise, the modal
parameters can be extracted using common OMA approaches [2]. Mode shapes, Φ, associated
frequencies, ωr, and damping rations, ζr, are extracted from the model and are assumed to be
of high quality. For the sake of convenience, the damping ratio is assumed to be the same for all
modes. Table 1 shows the extracted modal parameters for the first eight modes and their associated
damping ratio.

f(t)

y(t),  F,  zr,  wr

“Measured”
response

8DOF

Expanded 
model
128DOF

Simulated
system
32DOF

Add 
noise

FFE  

Figure 1: Simulation case setup. Note: only every second node is visible on the expanded model.
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Table 1: Extracted modal parameters.

Mode 1 2 3 4 5 6 7 8

Frequency [Hz] 8.32 52.1 146 286 473 707 988 1320
Damping ratio [%] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

In the current simulation case, the model is subjected to a load at a single node as shown
in Figure 1. Responses are extracted from a limited number of nodes in the model, which are
considered ”measured” or ”experimental” responses. Noise is added to the ”measured” response
in order to stress the algorithm. The level of noise in this case is 100dBW and no filtering is
performed.

Often, the load source will be located at a point where no response is recorded. This is also
chosen to be the case in this simulation, where the load is acting exactly between two experimental
nodes, see Figure 1. In order to estimate the loads at locations where data is not available, the
measured response must be expanded to the unknown locations. This is done by a transformation
into modal coordinates as follows:

q̂(t) = Φ† y(t) (8)

yFE(t) = ΦFE q̂(t), (9)

where index FE indicates expanded response using Finite Element mode shapes. Several other
expansion techniques are available for this task, e.g. SEREP [11] or LC [12], but in this case the
FE mode shapes are adopted presuming high correlation between the FE model and the physical
model. The size of ΦFE is determined by the desired resolution during load identification, but it

is limited to the same number of experimentally determined mode shapes.
A new receptance FRF matrix is formed based on the obtained information from the OMA and

an updated FE model.

H(ω) =

N∑

r=1

(
Qrψr ψr

T

iω − λr
+
Q∗r ψ

∗
r ψ
∗
r
T

iω − λ∗r

)
(10)

where Qr is a modal scaling constant and ψr is the expanded and mass normalized mode shape r.
The loading scenarios are now defined as a set of different load distributions, f0, and stored in

F0. The distributions can be chosen arbitrarily but for this case say that F0 is equal to the identity

matrix meaning that each column corresponds to a single localized force or moment. That is

F0 =
[
f0

(1), f0
(2)... f0

(N)
]

=




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1



N×N

(11)

where N is the total number of free degrees of freedom in the system. Then, by evaluating the
different distributions, f0, one by one, it is possible to get an estimate of the approximated response
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corresponding to that distribution, Eq. (5) to (7). Letting the error on the estimate, ε, be quantified
as the difference between the measured response and the synthesized:

ε =
∑

all DOFs

RMS
(
y(t)− ŷ(t)

)
(12)

In Figure 2, the error for each load scenario is shown. The curve for the rotational DOFs
is included merely for academic interest as the most likely physical input will be a force rather
than a moment. In this case, a clear minimum is observed at a force acting at node 28. From
Figure 1 it can be seen that node 28 in the expanded model coincides with the position of the load.
By selecting the load distribution, f0, causing the minimum error and multiplying by the scaling
function, g(t), associated with this distribution, it is then possible to get an estimate of the load,
f(t). The result is shown in Figure 3. In the time domain, small fluctuations around the true value
is seen. These are caused by the added noise in the response signal. In the frequency domain, this
yields a noise floor under which the load cannot be reconstructed.
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Figure 2: Calculated error. Each datapoint corresponds to a load scenario in F0. Every second is loading to a

translational DOF and rotational DOF, respectively, hence the separation of curves.
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Figure 3: Time- and frequency domain estimate. Five modes were included to establish the frequency response
function. The power spectra are computed using Welch averaging with a block size of 211 corresponding to 2s.
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4. Experimental case

An experimental case study has been performed at the facility at Aarhus University. A can-
tilever T-structure made from RHS 40× 40× 2 is used for the experiment. The T measures 1.5 m
in height and is 1 m wide. The T is clamped to the floor through the base plate seen in Figure 4.
Ten uni-axial accelerometers are distributed as shown in Figure 4. Accelerometers used are Brüel
& Kjær type 4508-B 100mV/g.

First, a test with random excitation from compressed air is recorded from which modal pa-
rameters are extracted. The identification technique used for this task is the frequency domain
decomposition, FDD, [13]. The response is recorded for 300 seconds at a sampling frequency of
1652 Hz. The recordings from the test are represented in terms of singular values from the spectral
density matrix, see Figure 5. Note the harmonic peaks at 50 Hz and 100 Hz caused by the power
grid. The damping ratio for the first mode is estimated to 0.25% and is assumed to be applicable
for all modes. Ten modes were identified in the frequency band of 0-350 Hz and their frequencies
are listed in Table 2.

Secondly, an impact hammer is used to generate and record loading of the structure. A Brüel
& Kjær impact hammer type 8206 22.5mV/N is used for the experiment. The hammer is equipped
with a soft tip and an impact is made between sensor S03 and S07 in the y direction. The exact
position is 12 cm below the sensor S03, i.e. 1/4 of the distance between the two sensors, see
Figure 4.

xy
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S06

S07
S08
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S10

Figure 4: Left: Schematic sensor layout. Right: Photo of test subject.
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Figure 5: Singular value decomposition of the response from random loading. The spectral matrix is computed using
Welch averaging with a block size of 212 which corresponds to 2.5s.
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Figure 6: Impact response shown for all channels.

Figure 6 shows the raw acceleration response recorded during the impact. The accelerations
are integrated twice in the frequency domain to obtain the displacements. During integration,
a highpass filter of 5 Hz is used. In order to improve computational efficiency, only 12/60 s are
included in the analysis. In addition, the signal is decimated with a factor four pushing the Nyquist
frequency down to 207 Hz [14].

An FE model is made and updated to increase the correlation of frequencies and mode shapes.
The model is made from Bernoulli beam elements with six degrees of freedom at each node and
distributed mass. Meshing of the structure is done so that the sensor locations match an FE node.
The number of FE nodes is chosen with respect to convergence of the modes of interest and the
desired spatial resolution for the successive load identification. The mesh density may be seen in
Figure 9. The model is then updated in two subsequent steps. 1) Material density is increased until
the total weight of the FE model corresponds to the physical model. 2) The rotational stiffnesses
at the base of the T, Rx,Ry,Rz, are updated until a best fit for the first 10 modes is achieved.
The MAC matrix (after updating) can be seen in Figure 7. The MAC matrix is computed using
DOF pairs between the FE model and the experimental DOFs.
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Figure 7: Modal Assurance after updating.

Table 2: Natural frequencies.

Mode 1 2 3 4 5 6 7 8 9 10

Frequency OMA [Hz] 8.17 9.08 23.1 44.8 81.4 116 146 211 274 317
Frequency FE [Hz] 8.34 8.83 24.6 45.3 81.1 116 147 207 277 315

Once the FE model is updated to an acceptable level, the frequency response function can yet
again be formed using equation (10). The mass normalized mode shapes from the updated FE
model are used along with the eigenfrequencies identified from the OMA. All ten mode shapes are
included in the process.

When defining the set of possible load distributions, F0, again the identity matrix is used as

a basis. However, this time, omitting the rotational DOFs. Since the expanded model contains
41 nodes, (including the fixed node at the base), this yields in total 120 different load scenarios
to be evaluated. The error associated with each load scenario is shown in Figure 8. The results
have been broken into three groups depending on their direction. As seen in Figure 8, impact in
the y-direction yields substantially less error than for the other directions. The minimum is more
indistinct compared to the simulated case study in Figure 2. However a minimum is observed at
the location of impact - node 23. Since the load distributions used in this case consist of localized
forces acting at one node at a time, the errors associated with each distribution can be assimilated
with a spatial position and provide a visual feedback on where an impact was most likely to have
happened. This is shown in Figure 9.
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Figure 8: Calculated error. Node 1 is located at the base of the T and node 25 is located at the joint.
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Figure 9: Re-representation of the calculated error from Figure 8 - y-direction impact. The figure indicates at which
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Figure 10: Identified load. The power spectra are computed using Welch averaging with a block size of 211.

The load distribution causing the minimum error can be multiplied by its scaling function and
an estimate for the temporal variation can be obtained as it was done in the simulation case study.
The result of the load estimate is shown in Figure 10. In the time domain, the estimate follows the
trend of the hammer with a peak deviation of three percent. It is observed that a negative load
is estimated prior to the impact and some ringing afterwards. Looking at the response data in
Figure 6, it is observed that the structure is not at complete rest at the time of impact. Since the
load estimate is directly related to the response of the structure, any ambient vibration will skew
the identification of hammer input. In the frequency domain, the estimate shows some discrepancy
around the resonance frequencies. This may be due to the assumption that all modes bear the
same damping ratio. Noise spikes are observed at 50 and 100 Hz; these are a remaining product
of the harmonic noise in the response signal.

5. Conclusion

A method for indirect load identification has been presented. The method is titled ”scenario
based” as a keystone to success is having a set of good load distributions to select from. The
method was demonstrated by a numerical simulation and a physical experiment. Some of the main
observations are recaptured here:

By use of expanded mode shapes, the method shows potential in load identifications, even at
locations where the response is not recorded immediately. In the two cases, the method proves
not to yield any false-positive estimates for the position of the impact load although the estimated
location of impact is more outspoken for the numerical study than for the physical experiment. The
rank deficiency of the FRF matrix is mitigated by assuming a load distribution prior to making a
least square fit. This makes the method insensitive to modal truncation, but it remains reliant on
a well-updated FE model. The noise and harmonic disturbance to the recorded response signal is
causing the load identification to deviate, but the algorithm remains stable.

Obviously, one of the shortcomings of this method is the need for engineering judgement in
order to develop a set of reasonable load distributions. Since this method is scenario based, it
is crucial that a fairly good distribution has been foreseen prior to the analysis, otherwise the
estimate may be erroneous.

Another challenge to this method arises if the distribution changes with time. Segmenting the
response may improve this limitation but further work is needed in this area.
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It is fundamental that the response is recorded at the time of loading, i.e. the structure
must be at rest at the beginning of a time series, otherwise this may alter the load estimates. This
assumption seems to be violated to some extent in the physical experiment presented in this paper.
From Figure 6 it seems like the T was vibrating from excitation not caused by the hammer.

6. Future work

In principle, there are no limitations to the load distribution and the method could be applied
to other cases, where some prior knowledge on loading pattern exists. For instance, wave loading
on an offshore structure.

Some limiting factors which have not been covered in great detail could be a basis for further
work. For example, what is the sensitivity of the estimated modal parameters and how will a small
change influence the load identification process or how this method will perform on highly damped
systems.
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Chapter 8

Model uncertainty

Paper II

"Evaluating the effect of modelling errors in load identification
using classical identification methods"
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This chapter presents the study on uncertainties when conducting load identi-
fication using the pseudo inverse method. We imagine that load identification
follows modal identification such as OMA, and we then introduce errors into
the identified modal parameters and show how they influence the load identifi-
cation. The study is based on a simulated case. The author has performed the
main part of the ideation, experiments, analysis and the writing of the paper.
The paper has been formatted with minor grammatical adjustments to suit
this thesis.
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Abstract

Load identification, or input identification as the more general term, is a field of study that re-
quires a wide set of disciplines, which suffers from uncertainties caused by the challenges within
each discipline. When making load identification, several different approaches exist. For all (or at
least most) methods, however, some sort of system model is required. This model may be simple
or complex depending on the system at hand. Typically, if the identification process is vibration
fed, the system model will be created from modal parameters. These parameters, however, are
often subject to uncertainty and thus may be considered as stochastic variables. In this paper,
the root causes of uncertainty for load identification are demonstrated using classical identification
techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simula-
tions. Two results are outlined: one where the identification process is completely blindfolded in
its most naive form, and one where the spatial distribution of the load is predefined. In general,
it is found that fixing the spatial distribution of the load can compensate for truncation errors in
the modal parameters.

Keywords: Load identification, Uncertainty modelling, Modal truncation, Load spatial
distribution

1. Introduction

Modal analysis is a convenient and efficient method for retrieving the dynamic properties of a
civil engineering structure in a condensed form. Traditionally, two methods exist for modal analysis
- experimental modal analysis (EMA) and operational modal analysis (OMA). The return from
a modal analysis consists of the following modal parameters: mode shapes, natural frequencies
and modal damping [1]. Modal analysis is a commonly used approach, yet the confidence in the
extracted modal parameters will depend on the quality of excitation and response measurement.
Although new methods are continuously surfacing to overcome some of the challenges, a remaining
uncertainty on the estimates persists. In the application for civil engineering structures, another
range of challenges may arise, for instance, when the stationary assumption is violated through
variations in environmental conditions such as temperature or mass loading.
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The exertion of indirect load identification may be a successive step to the modal analysis. If
the retrieved modal parameters accurately and in whole can describe the dynamics of the system,
they can be used in the inverse calculation needed when doing indirect load measurements. The
principle is that if a dynamic model is available (from EMA or OMA) and the response of the
system is measured, then an estimate of the load can be obtained through deconvolution. Load
identification has been in focus in the recent decade, and many attempts have been made in order
to obtain a stable and accurate method. In recent years, identification techniques in real-time using
Kalman filters have proven successful in certain cases [2–7]. Besides the recursive model description,
another benefit from these methods is the capability to merge different sensor type information.
For these filters to perform well, however, several noise models must be determined, which may be
difficult. Aucejo et al. [8] thoroughly examined how the different fitting parameters may influence
the performance of identification though they omitted model errors from their analysis. Using
identification techniques in the time domain, Wang et al. [9–11] studied the interval envelope on
the load estimation given uncertainty in the response measurements and integration errors.

Another approach is to deconvolute the response in the frequency domain. [12–15]. This was the
main approach from the early days in the automotive and aviation industry [16, 17]. The method
is based on establishing the relation between the system response and force at different frequencies.
The technique requires a recording time, which is why the method does not perform well in real-
time applications. Comparative studies between the two approaches are also seen in e.g. [18]. The
response measurements are often recorded in terms of displacements, velocities, accelerations, or
strains. These can be obtained through attached sensors (invasive) or from noninvasive techniques
such as lasers, digital image correlation, or even by acoustics [19, 20].

For every method referred to above, a system model is needed. This model may be derived from
a finite element (FE) model or from modal parameters directly obtained from the EMA or OMA.
Now, an obvious question arises: how accurate must the modal parameters be in order for the
load identification to be satisfying? Although some authors already have addressed some of these
questions [21–24], this paper will revisit some of the fundamental challenges from a visual point of
view. By studying a practical example, the sensitivity of estimation errors will be demonstrated
through a Monte Carlo simulation. In order not to disappoint the reader, we note that this paper
deals merely with the consequence and not mitigation of the estimation errors in modal parameters.

2. Simulation setup

A plane cantilever beam will host the basis for this study. The beam is made from Euler-
Bernoulli beam elements with two degrees of freedom (DOFs) at each node - a translational and a
rotational as indicated in Figure 1. We assume that the beam is proportionally damped through
the Rayleigh coefficients α and β. The mass is assumed to be distributed along the elements. The
beam is discretized by three elements and fixed at the bottom node which yields, in total, six free
DOFs and hence six modes of vibration. We note that the FE model has not yet fully converged
for all modes at this nodal resolution; however, this is not of importance for the given study.

The beam model is then subjected to a loading history from which the dynamic response
is simulated at a sampling frequency of 1 kHz. The loading time history is selected so that
both dynamic response and quasi-static response will be visible within the output. The load is
composed of a square impulse followed by a low-frequency wave, again followed by a superimposed
high-frequency wave train (15 Hz). Figure 1 shows the system in focus for this current study. The
four-noded cantilever beam constitutes the system model. The loading history (input) is shown in
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Figure 1: Simulated system. Left shows the input: 10 s load history applied at each node. Right shows the
corresponding response. Dashed lines are the moment and corresponding nodal rotation. Solid lines are the force
and the corresponding nodal displacement.

the left-hand side of the figure. Each line corresponds to a load time series for the corresponding
node, i.e., a flat line resembles zero loading. The solid lines are the horizontal force, whereas the
dashed lines are the moment. The loading is set to act at one node only - the second node from
the top. The right-hand side shows the corresponding response (output) for each node. Solid lines
are the horizontal displacements, and the dashed lines show the rotation of the nodes. Amplitude
scaling is irrelevant as the system is linear.

The process of load identification will hence be the reverse order of the process shown in
Figure 1. First, the response of the structure is measured. Then, if the dynamic properties of
the system are known, we can make an inverse calculation and thus estimate the load causing the
measured response. Before proceeding to the load identification, a small amount of noise is added
to the system response and hereafter considered as the measured signal (100dB Gaussian white
noise is added).

3. Load identification process

In order to assess the sensitivity of the load estimate given the variations in the estimated
modal parameters, a method must be chosen. For this paper, two methods will be outlined - both
operating in the frequency domain. We have selected two methods that easily can be applied
using the results from an EMA or OMA1. The methods originate from the automotive and aviator
industry [22, 23] and are often referred to as the ’transfer path analysis matrix inversion’ or just
’pseudo inverse technique’.

1Typically, if modal parameters are obtained from an OMA, problems persist as the modal mass and hence the
mode shape scaling is unknown. For now, we will ignore this challenge and assume that the mode shapes obtained
are correctly scaled.
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3.1. Method 1

The first method, referred to as Method 1, is the most simple and straightforward. This
method might be a tempting first approach, but it shall be demonstrated later on why it could
lead to unfortunate results. Consider the response of a linear, time-invariant system which, in the
frequency domain, is given as follows:

Y (ω) = H(ω)F (ω) (1)

where, Y (ω) is the system response, H(ω) is the frequency response function (FRF), and F (ω) is
the load, all given at the discrete frequency ω. This process resembles very well what has been
illustrated in Figure 1. The FRF matrix can be computed as a sum of N modal contributions as
follows:

H(ω) =
N∑

r=1

(
Qr φr φr

T

iω − λr
+
Q∗r φr

∗φrH

iω − λ∗r

)
(2)

where, φr is the mode shape vector, Qr is the mode scaling function, and λr is the complex pole,

all for mode r. Superscript T is the transpose, ∗ is the complex conjugate and H is the Hermitian
transpose. See [25] for the derivation of this formula.

Now, we presume that the output Y (ω) is available through measurements - both the translation
and the rotation of all DOFs. All that is left to do is to calculate the inverse of the FRF and
premultiply on both sides in order to obtain an estimate on the load F̂ (ω).

F̂ (ω) = H†(ω)Y (ω) (3)

Since errors or modal truncation can cause the inversion of the FRF to become singular, the
inversion is performed using the Moore-Penrose pseudo inverse. [26] Method 1 has been used in
[15, 27, 28] with the minor change that the inversion of the FRF matrix is performed through a
singular value decomposition technique. Regularization techniques have also shown to reduce the
sensitivity in the matrix inversion [29].

3.2. Method 2

Another method, Method 2, will be added for comparison. This method resembles Method 1
to a high degree with only one minor, yet important, difference. In Method 1, there were no
restrictions to the solution and the load estimate F̂ (ω) could be distributed to any DOF in the
system. If the spatial distribution of the load is known (and unchanging), this can be incorporated
into the identification process through a separation of variables as follows:

F (ω) = f0 g(ω) (4)

where f0 constitutes the spatial distribution of the load and g(ω) is its scaling function. If the given
loading scenario allows this separation and if f0 is known, Eq (1) and Eq. (3) can be rewritten as

Y (ω) = H(ω) F (ω) (5)

= H(ω) f0 g(ω) (6)

= c(ω) g(ω) (7)
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Which then can be solved for the scaling constant g(ω):

ĝ(ω) = c†(ω) Y (ω) (8)

and the final load estimate then reads

F̂ (ω) = ĝ(ω) f0 (9)

Methods to derive the distribution f0 in a similar system have been shown in [13, 30–32], but for

this study let us assume that the distribution is a known quantity; hence, f0 = [0 0 1 0 0 0]T .
The equations, Eq. (1 - 9), describing Method 1 and Method 2 directly yield a frequency-

domain estimate of the load. All the following figures in this paper will show the load estimate
as a time history in line with the input (left-hand side) in Figure 1. The equivalent time-domain
representation is obtained by means of the inverse Fourier transformation.

3.3. Condition of the frequency response function

The condition number may be a measure of how sensitive the matrix is to inversion, where
a large condition number indicates an ill-conditioned matrix and vice versa [33]. Singular value
decomposition may separate the FRF matrix into singular vectors and singular values. Letting the
condition number be defined as the ratio between the largest and smallest singular value, we thus
obtain a quantitative measure on the sensitivity. Since the FRF matrix, H(ω) is defined for a range
of frequencies, each frequency will be inherent to a condition number. The condition number(s)
for the full rank FRF matrix is shown in Figure 2 as a function of frequency. Here, it is seen how
the condition number increases at the resonance frequencies.
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Figure 2: Condition number for the full rank frequency response function at different frequencies.

There is no sharp limit to assess whether a condition number will yield a stable inversion, but
a condition number larger than 100 should call for immediate concern which is the case for most
frequencies in our case [33]. Since the FRF matrix is constructed from a set of modal contributions,
the rank of the FRF matrix will depend on the number of independent modes. If modal truncation
is present, this causes the FRF matrix to be rank deficient, which means that the smallest singular
value becomes close to zero and consequently yields a condition number going to infinity.

cond
(
H(ω)

)
→∞ | rk

(
H(ω)

)
< min(m,n) (10)
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where, m and n are the number of rows and columns in H(ω) while cond(·) and rk(·) indicates the
condition number and rank respectively.

If the FRF matrix is constrained by a spatial distribution vector f0 as it is done in Method 2,
the product reduces to the vector c(ω). Singular values of an m × 1 nonnull vector is a single
non-zero element arranged in an m×1 vector [34]. This consequently provides a condition number
of unity, which means that the ”inversion” will be stable for all frequencies.

cond
(
H(ω)f0

)
≡ 1 (11)

4. Modal truncation

The number of DOFs in a real structure will, of course, be approaching infinity, but the modes
which can be identified are depending on the sensor distribution and capability. Consequently,
truncation of the modal space will always be present in real-life situations, which is why this
section is included [35, 36].

From Eq. (2), it is seen that the response of a system is a linear contribution from all modes in
the system. If modes are omitted from this sum, this will truncate the response function. Figure 3
and Figure 4 show how this modal truncation affects the estimate on the load estimate from the
inverse calculations. One additional mode is removed for every case. All modal parameters are
treated as deterministic and at their true values, i.e., the only error in the FRF is the higher modes
being omitted.

Full rank, 6 modes 5 modes 4 modes6 5 4

Figure 3: Load estimate using Method 1. The figure shows the time domain load estimate based on the number of
modes included in the FRF matrix. Each time series shown has a 10 sec. duration. Solid lines show the force [N]
and the dashed lines show the moment [Nm].
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Full rank, 6 modes 5 modes 4 modes
6 5 4

Figure 4: Load estimate using Method 2. The figure shows the time domain load estimate based on the number of
modes included in the FRF matrix. Each time series shown has a 10 sec. duration. Solid lines show the force [N]
and the dashed lines show the moment [Nm].

As seen in Figure 3, the load estimate is acceptable when all six modes are used despite the
small content of noise on the response measurements. However, when omitting modes from the FRF
matrix, the load estimate from Method 1 quickly becomes erroneous, both in terms of distribution
and magnitude. Even though the resonance frequency of the modes omitted may be far from the
frequency of the load, this truncation still makes a great impact. Meanwhile, in Figure 4, it is seen
that Method 2 retrieves more consistent estimates on the load. Any DOF, besides DOF 3, obtains
a zero-load estimate following the definition of the spatial distribution given in Eq. (9). For both
methods, it is seen that the estimate for the square impulse overshoots at the discontinuities caused
by the Gibbs phenomena for the truncated modal space [37].

If we consider the resynthesized response Ŷ (ω) from the load estimates F̂ (ω) from either
Method 1 or Method 2 and the truncated response function Ĥ(ω), we observe

Ŷ (ω) = Ĥ(ω)F̂ (ω) (12)

ε
(
Y (ω), Ŷ1(ω)

)
< ε

(
Y (ω), Ŷ2(ω)

)
(13)

Here, ε is an arbitrary error function between the measured response Y (ω) and the re-synthesized
response Ŷ (ω). The solution from Method 1 will yield a better response approximation than
Method 2. This means that Method 1 is a more mathematically accurate solution. Yet, when
comparing Figure 3 and Figure 4 it is clear that in a physical sense Method 2 is more consistent.
This is one of the major challenges when making load identification solely based on the response
using a least-square approach. Consequently, the load estimate may return as an equivalent loading
rather than the actual, as seen in Figure 3.

For the given simulation, the load is conveniently acting at a point where the response is being
”measured”. In other cases one might not be this lucky and expansion is needed in order to
estimate the response at locations that were not recorded originally. Several expansion techniques
(/virtual sensing techniques) exist for this [38, 39], but effectively, similar truncation errors will be
introduced as no new modes are added during the expansion.
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5. Stochastic modelling

The modal parameters needed to establish the response function may be obtained through
an experimental identification process - either EMA or OMA. The parameters obtained in this
process will always be subject to variations. The variations can originate from physical causes such
as influence from temperature, operational mass loading, or other nonanticipated nonlinearities
violated by the model description. Also, nonphysical uncertainties related to data postprocessing
and pole extraction are known to exist [40–43]. These magnify if the excitation of the structure is
unfortunate or if the sensor resolution and location is poorly chosen. Noise and other limitations
on the sensor may also be a cause of uncertainty.

The variations in the modal parameters can be implemented from many different uncertainty
models. The most common is probabilistic, where a probability density function is used to describe
the statistical variations. Other formulations such as the fuzzy-set model or a nonprobabilistic
interval method could also have been utilized. For this study, however, we will rely on the proba-
bilistic approach and assume that all these aforementioned causes of uncertainty effectively can be
modelled as an uncorrelated stochastic variation in each of the estimated modal parameters. The
uncertainty in natural frequencies is assumed to follow a normal distribution given a coefficient
of variation; hence, estimates for the lower frequencies are the most certain. The coefficient of
variance is chosen as cv = 2 % for all frequency estimates. The stochastic model for the natural
frequency of mode r hence reads

Ωr ∼ N (µ, σ) (14)

where, the expectation µ is assumed to be in line with the true natural frequency for mode r, i.e.,
µ = ωr. The standard deviation is derived from the coefficient of variation as σ = cv ωr.

Damping estimates are known to be the most uncertain parameters to quantify. Since the
damping typically involves fairly low values - say a few percents - and the estimates are subjected
to a vast amount of uncertainty, it must have some skewness in order to avoid negative estimates.
The study [44] also noted a positive skewness in damping estimates, yet the distribution fit was not
studied. For this simulation, we assume that the distribution can be modelled as a standard gamma
distribution with a shape parameter α. The stochastic damping parameter model for mode r hence
reads

Zr ∼ Γ(α) (15)

were the shape parameter is assumed to be equal to the true damping ratio for mode r (in percent).
That is, α = ζr which yields a mean E [Zr] ≈ ζr.

We assume that mode shapes always will be real following the proportionally damped system.
The variations in mode shapes are implemented as a stochastic process described by a spatially
uncorrelated variation in individual DOFs and a variation in scaling of the mode shape. For mode r
this means

Φr = Σ φr κ (16)

were, φr is the true mode shape for mode r, Σ is a diagonal matrix whose entries contain the
uncorrelated noise on individual DOFs, and κ is the scaling of the mode shape. Both noise models
are assumed to be normally distributed with a mean µ and standard deviation σ as

Σ
ii
∼ N

(
1, 5× 10−3

)
(17)
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Figure 5: Realization of the different modal parameters from 100 000 Monte Carlo simulations. The mode shape
uncertainty band is shown for the 98% quantile using cubic interpolation.

κ ∼ N
(
1, 1× 10−2

)
(18)

The mode shapes are assumed to be mass normalized. Thus, the alteration in mode shapes will
affect the modal mass as well. The spatially uncorrelated alterations may violate the mode shape
orthogonality, but only to a small degree as the error standard deviation for the mode shapes’
DOFs is set at 0.5%. The consequences of omitting modes have already been shown; hence, only
small variations are now included.

Using the principles of Monte Carlo simulation, a realization of the stochastic modelling is
shown in Figure 5 for the first three and the last mode. The uncertainty band for the mode shapes
is shown using cubic interpolation in order to show the rotational DOFs. The modal assurance
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criterion (MAC) [45] between the true mode shape and the stochastically altered is shown for each
mode. We note that the variations in MAC values are small compared to what may be experienced
from experimental work.

6. Results

Before turning to the identification process, let us have a look at the FRF matrix. The stochastic
variables shown in Figure 5 are fed into Eq. (2) through a Monte Carlo simulation, and a sample
of the FRF matrix is shown in Figure 6. For the 100 000 Monte Carlo simulations, the upper and
lower 98% quantiles are indicated in the figure as the hatched green area. The black solid line is
the mean value. The consequences of missing modes in the FRF matrix were studied by Maes et
al. [46] and shall not be repeated here.

In order to evaluate the sensitivity in load estimates, the frequency response function is now
considered as a stochastic process given the natural variation in modal parameters. Keep in mind
that the ”measured” system response is kept the same for all simulations and at its true value
with a minimum of noise added. In the following three sections, the parameter variations are
introduced a little at a time so that it will be more clear what happens to the estimates. Since
the mean value of the modal parameters is in line with the true values, the averaged value of the
estimates converges towards the true value as well. All six modes will be used in the making of the
FRF matrix.
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Figure 6: Sample frequency response function (dynamic flexibility) for DOF 3 given an input in DOF 3. Figure
shows the upper and lower 98% uncertainty band, given the modal parameters presented in Figure 5. Solid black
line indicates the mean value.

6.1. Natural frequencies

First, only the natural frequencies are treated as stochastic variables, and the remaining modal
parameters are kept as deterministic and exact. For the 100000 Monte Carlo simulations, the FRF
is synthesized, and a load estimate for each simulation is obtained through both methods. Figure 7
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shows the upper and lower 98% quantiles for the time-domain load estimates. It is seen that both
methods yield a reasonably stable result despite variation in natural frequencies. Three points in
time (a, b, and c) are extracted to highlight the error distribution on the estimate. The relative
error for the two methods is given by the error standard deviation and summarized in Table 1.

6.2. Natural frequencies and damping ratios

Next, in addition to variations in natural frequency, the damping ratios are also treated as
stochastic variables. That means only the mode shapes are left deterministic. The variation in the
estimated load is shown for the two methods in Figure 8. As expected, the uncertainty bound for
the estimates increases as the damping ratios are also treated as stochastic parameters. Method 1
seems to outperform Method 2, given this level of uncertainty in the modal parameters and noise
in the output signal. A ringing effect in the estimate is observed at the discontinuities near the
square impulse. In Method 1, however, it is seen how the load estimates are spreading to different
nodes to compensate for the errors in the FRF matrix.

6.3. Natural frequencies, damping ratio and mode shapes

Finally, all modal parameters are now considered as stochastic processes, and the consequent
result for the estimated load is given in Figure 9. Although the mode shapes are altered by values
down to one or two percent for each node, the uncertainty in the load estimates for Method 1
shows an exponential growth. When mode shape errors occur, Method 1 fails to predict the load
distribution and consequently the scaling of the load. For reference, the sample FRF shown in
Figure 6 host the basis for the load estimate given in Figure 9. Note that in Figure 9 the error
probability density is unequally scaled for Method 1 and Method 2.

Method 1 Method 2

Error %
0 20-20

Error % Error % Error % Error % Error %
0 20-20 0 20-20 0 20-20 0 20-20 0 20-20

a b c a b c

Figure 7: Natural frequencies are introduced as stochastic variables. The figure consequently shows the time history
of the identified load using Method 1 and Method 2. Each time series shown has a 10 sec. duration. The solid lines
are the mean values of the estimated force [N] and the dashed lines are the mean values of the estimated moment
[Nm]. The hatched green area indicates uncertainty on the force while the hatched orange area is the uncertainty
of the moment. Both are shown using the upper and lower 98% quantiles. Three selected points in time show the
error probability density (in percent) for the estimated load in DOF 3.
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Method 1 Method 2

Error % Error % Error % Error % Error % Error %
0 20-20 0 20-20 0 20-20 0 20-20 0 20-20 0 20-20

a b c a b c

Figure 8: Natural frequencies and damping ratios are introduced as stochastic variables. The figure consequently
shows the time history of the identified load using Method 1 and Method 2. Each time series shown has a 10 sec.
duration. The solid lines are the mean values of the estimated force [N] and the dashed lines are the mean values
of the estimated moment [Nm]. The hatched green area indicates uncertainty on the force while the hatched orange
area is the uncertainty of the moment. Both are shown using the upper and lower 98% quantiles. Three selected
points in time show the error probability density (in percent) for the estimated load in DOF 3.

Method 1 Method 2

Error % Error % Error % Error % Error % Error %
0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100

a b c a b c

Figure 9: Natural frequencies, damping ratios and mode shapes are introduced as stochastic variables. The figure
consequently shows the time history of the identified load using Method 1 and Method 2. Each time series shown
has a 10 sec. duration. The solid lines are the mean value of the estimated force [N] and the dashed line is the mean
value of the estimated moment [Nm]. The hatched green area indicates uncertainty on the force while the hatched
orange area is the uncertainty of the moment. Both are shown using the upper and lower 98% quantiles. Three
selected points in time show the error probability density (in percent) for the estimated load in DOF 3. Note that
the probability density is scaled differently between Method 1 and Method 2.
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Each of the load estimates shown by Figures 7 to 9 has three highlighted points in time,
where an error probability density is shown. The corresponding standard deviation (std) is given
in Table 1. We note that Method 1 seems to perform better than Method 2 as long as the mode
shapes are intact. However, when introducing minor changes to the mode shapes, Method 1 cannot
fully predict to which node the load is applied, which results in a poor estimate on DOF 3.

Table 1: Error standard deviation for different levels of uncertainty and for three selected points in time. All based
on the force estimate in DOF 3.

Method 1 Method 2

Uncertainties introduced Error std [%] Error std [%]
a b c a b c

Natural frequencies 2.73 2.29 2.13 6.08 4.39 3.64
Natural frequencies and damping ratios 3.28 2.31 2.12 7.67 4.45 3.64
Natural frequencies, damping ratio and mode shapes 53.1 46.3 36.9 7.96 4.94 4.10

7. Discussion

We have studied the performance of the two methods given the natural variation in the modal
parameters used for the model description. The load estimates when using Method 1, shown in
Figure 3 and Figure 9, are not as diverse as they might appear at first glance. If the resulting
force is considered instead of every single entry in the estimated load vector, this leads to a more
appealing result. First, reexamining the estimates shown in Figure 9 and by summarizing the
contributions from each DOF, an equivalent baseline load is obtained. This resulting load estimate
is compared with the true baseline load and shown in Figure 10. Now, it is seen how the uncertainty
band is narrowed down. For this static system, an equivalent global loading can be estimated using
Method 1 despite the stochastic variations in modal parameters as long as all modes are represented.
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Figure 10: Estimated resulting baseline forces given stochastic modelling used for Figure 9 for Method 1. The black
line is the true baseline force and the hatched area shows the upper and lower 98% uncertainty bounds for the
estimated moment and force, respectively.
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Figure 11: Resulting baseline forces given the different levels of modal truncation for Method 1. Every coloured line
corresponds to an estimate given a number of modes, while the black lines are the true input.

Returning to the modal truncation example in Section 4, we once again compute the resulting
load estimate from Method 1 as previously shown in Figure 3. Using the same analogy as explained
above, a resulting baseline load is estimated for different number of modes included in the FRF. As
the estimates from the truncation study are deterministic, we choose to plot each result on top of
each other in Figure 11 together with the true baseline load. We see that the overturning moment
is fairly accurate regardless of the number of modes included, while the shear force is drifting when
modes are being omitted. When modes are omitted, Method 1 fails to estimate the point of attack
and thus the scaling of the load, as it is seen in Figure 11. It should be noted that the degree
of overshooting at the impulse is increased as modes are being omitted. Whether the resulting
moment estimate remains stable is likely dependent on the static system.

There are some items which have not been covered by this study and which should be mentioned
as they limit the conclusions.

• We have chosen a simple static system with plane deformation. The system is blessed by not
having any closely spaced modes and is behaving perfectly linear. Now, if the system is more
complex, which may be the case for most civil engineering structures, the generalization of
the number of modes needed and the precision on the modal parameters may differ.

• We have not touched upon multiple load sources or a moving load.

• For this paper, the response function is driven by displacement measurements. It has not been
assessed whether acceleration or strain measurements would have yielded different results.

• Only one noise level on the output signal has been studied.

• From Figure 8 it may seem like the variation in damping ratios and frequency yields nearly
no effect on the load estimate. If the system is subjected to a harmonic load at a frequency
near a natural frequency, these modal values may be vital for the load estimate.

90



8. Conclusion

The sensitivity in load identification following the uncertainty in modal parameters has been
studied for two different methods. The uncertainties have been introduced stepwise into the system
to demonstrate the influence of different parameters. It was found that fixing the spatial distribu-
tion of the load can compensate for the modal truncation in the response function. If one mode is
dominating in the response, parameter estimation following this mode is crucial for the following
load identification. However, modes with a resonant frequency above the frequency of the load still
contribute to the quasi-static response, and omitting these modes will cause an error. A possible
idea is to compensate through static deflection shapes / Ritz vector in the FRF matrix, but this
has not been included. The spatial distribution of the load was fixed in Method 2 through the
distribution vector f0. If the assumption regarding the load distribution f0 is not correct, this will
introduce some systematic errors in the load estimate. Demonstrating this has been omitted from
this paper.

Whether or not the stochastic modelling outlined in Section 5 is appropriate for a real-life
structure will be left for the reader to decide. However, it has been demonstrated how variations
in these parameters may alter the estimates on the loading, and shown how a sensitivity analysis
may reveal flaws in the algorithm.

As a general observation, when doing vibration-based load identification, the algorithm for
estimating the input must be supported by additional information besides the system response.
This additional information may be in terms of the spatial distribution of the load - which was shown
with Method 2 - or it may be other load models which are driven by wind speed measurements,
wave gauge readings, local pressure measurements, or possibly information about the frequency
content of the loading. Without aiding the inverse calculations with one of these, the uncertainty
of the estimate will exceed what is acceptable. For most of the successful methods available in the
literature, the spatial distribution of the load is also defined as a fixed measure, which leaves room
for further research in this field.
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Appendix A. Examining different loading positions

In order to demonstrate that the sensitivity is not uniquely related to the position of the load,
a few additional cases are included in this appendix.
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Appendix A.1. Case I

For the first case, the load is moved to the top node at DOF 5 (see Figure 1). Any other
settings are the same as described previously. We jump to the result, where all modal parameters
are treated as stochastic variables. The results are shown in Figure A.12, and again three selected
points in time are highlighted. The error standard deviations are given in Table A.2. Note that for
Method 2, we once again assume that the distribution is correctly foreseen i.e., f0 = [0 0 0 0 1 0]T .

Method 1 Method 2

Error % Error % Error % Error % Error % Error %
0 0 0 0 0 0200-200 200-200 200-200 200-200 200-200 200-200

a b c a b c

Figure A.12: The loading is applied at DOF 5. Natural frequencies, damping ratios and mode shapes are introduced
as stochastic variables. The figure consequently shows the time history of the identified load using Method 1 and
Method 2. Each time series shown has a 10 sec. duration. The solid lines are the mean values of the estimated
force [N] and the dashed lines are the mean values of the estimated moment [Nm]. The hatched green area indicates
uncertainty on the force while the hatched orange area is the uncertainty of the moment. Both are shown using the
upper and lower 98% quantiles. Three selected points in time show the error probability density (in percent) for the
estimated load in DOF 5. Note that the probability density is scaled differently between Method 1 and Method 2.

Table A.2: Error standard deviation for different levels of uncertainty and for three selected points in time. All based
on the force estimate in DOF 5.

Method 1 Method 2

Uncertainties introduced Error std [%] Error std [%]
a b c a b c

Natural frequencies 3.19 2.99 2.80 5.79 4.16 3.74
Natural frequencies and damping ratios 4.08 3.01 2.79 7.44 4.22 3.74
Natural frequencies, damping ratio and mode shapes 75.7 66.2 52.8 7.71 4.70 4.13
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Appendix A.2. Case II

Next, we examine the consequences, if the loading is applied as a moment instead. Here, the
moment is applied in DOF 4 i.e. at the same node as the base case shown in Figure 1. Again we
jump to the stage where all modal parameters are treated as stochastic parameters. The results are
shown in Figure A.13 and the error standard deviation for point a, b, and c is given in Table A.3.
For Method 2, again we assume that the distribution is correctly foreseen i.e., f0 = [0 0 0 1 0 0]T .

Method 1 Method 2

Error % Error % Error % Error % Error % Error %
0 0 0 0 50-50 0 50-50 0 50-5050-50 50-50 50-50

a b c a b c

Figure A.13: The loading is applied at DOF 4. Natural frequencies, damping ratios and mode shapes are introduced
as stochastic variables. The figure consequently shows the time history of the identified load using Method 1 and
Method 2. Each time series shown has a 10 sec. duration. The solid lines are the mean values of the estimated
force [N] and the dashed lines are the mean values of the estimated moment [Nm]. The hatched green area indicates
uncertainty on the force while the hatched orange area is the uncertainty of the moment. Both are shown using the
upper and lower 98% quantiles. Three selected points in time show the error probability density (in percent) for the
estimated load in DOF 4. Note that the probability density is scaled differently between Method 1 and Method 2.

Table A.3: Error standard deviation for different levels of uncertainty and for three selected points in time. All based
on the estimated moment in DOF 4.

Method 1 Method 2

Uncertainties introduced Error std [%] Error std [%]
a b c a b c

Natural frequencies 1.89 2.15 2.17 5.57 4.05 3.76
Natural frequencies and damping ratios 1.90 2.16 2.17 7.37 4.11 3.77
Natural frequencies, damping ratio and mode shapes 16.6 14.7 11.8 7.62 4.57 4.13
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Appendix B. Evaluating the number of sensors

The final case is dedicated to the study of how many sensors are required for a successful
estimate. It has already been shown that for the truncated modal space, Method 1 does not yield
any meaningful result despite having the full-field response measurements. This case study will
hence be limited to Method 2 only. Since only a single load source is present, in theory, a single
sensor should be sufficient of estimating the load. However, it is needless to say that the number
of sensors needed depends on the position of the sensors. If a sensor is positioned at a nodal point
for a mode, the corresponding modal load will be poorly estimated.

Reduction in sensor information can be done through the selection matrix Sd as:

Yred(ω) = Sd Y (ω) (B.1)

here Yred(ω) will be the reduced measurement signal. The load scaling constant will consequently
be

ĝ(ω) =
(
Sd H(ω)f0

)†
Yred(ω) (B.2)

For example, if only the response is measured in DOF 1 and 5, the selection matrix becomes

Sd =

[
1 0 0 0 0 0
0 0 0 0 1 0

]
(B.3)

This rewriting means that we can still identify loads in any of the six DOFs, although we only
measure the response in a few selected DOFs. Figure B.14 shows the estimated loads using only
two sensors located in DOF 1 and DOF 5.

Full rank, 6 modes 5 modes 4 modes

Figure B.14: Load estimate using Method 2 with displacement sensors at DOF 1 and DOF 5 as indicated by the
arrows. The figure shows the time domain load estimate based on the number of modes included in the FRF matrix.
Each time series shown has a 10 sec. duration. Solid lines show the force [N] and the dashed lines show the moment
[Nm].
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Full rank, 6 modes 5 modes 4 modes

Figure B.15: Load estimate using Method 2 with a displacement sensor only at DOF 1 as indicated by the arrow.
The figure shows the time domain load estimate based on the number of modes included in the FRF matrix. Each
time series shown has a 10 sec. duration. Solid lines show the force [N] and the dashed lines show the moment [Nm].

Figure B.15 shows similar load estimate, but here, the response is measured at only the bottom
node, in DOF 1. We see that even with one sensor, a reasonable estimate is obtained. Only the
discontinuity at the impulse is off. Note that neither of the sensors in Figure B.14 and Figure B.15
are located at a mode nodal point.

The precision of the load estimate is evaluated from different numbers of modes in the FRF
matrix. The load is consequently estimated at a location where the response is not measured. This
corresponds to a flawless modal expansion process [38, 39] or system identification from a set of
roving sensors. In general, one may argue that having more modes in the FRF than sensors pose
a challenge from a system identification point of view. However, we will not justify this here.
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Chapter 9

Modal truncation
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This chapter presents a study of response truncation by considering out-of-
band modes and spatial distribution of the load. The author has contributed
to the ideation and the experiment while Marius Tarpø has performed the main
part of the analysis and the writing of the paper. The paper has been formatted
with minor grammatical adjustments to suit this thesis.
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Abstract

Some methods in experimental modal analysis rely on a finite set of modes and they neglect
the higher modes. However, this approach causes a truncation of the modal decomposition and
the modal truncation introduces errors of unknown magnitude. In this paper the effect of modal
truncation is investigated on a test specimen in the laboratory. It is found that the system response
is dependent of the frequency and the distribution of the load. Modal truncation can introduce
significant errors if the set of mode shapes does not efficiently span the spatial distribution of the
load.

Keywords: Operational modal analysis, Experimental modal analysis, Modal truncation, Modal
decomposition

1. Introduction

The modal decomposition describes the structural dynamic response where the mode shapes
of the system uncouple the dynamic response into the modal coordinates. When we truncate the
modal decomposition to only include the first number of modes, we have a smaller set of modal
coordinates to describe the system. This simplifies the structural response and it is frequently
used to ease the calculation in structural dynamics. In experimental modal analysis, we identify
a number of modes and we use them with experimental techniques for different purposes like; full
field response estimation, fatigue analysis, load estimation, damage detection etc..

Normally, the truncated set of mode shapes provides good results however it might result in
significant errors in certain instances where omitted modes contribute to the response [1–7]. The
gross behavior of structures is generally captured by the modes that are located in the frequency
range of the load [3, 8]. However, higher modes might influence the localized behavior by their
non-trivial contribution. Therefore, a truncation of the modal decomposition can lead to errors of
the representation of the response [1, 5, 7, 8]. This is also the case for experimental techniques
that uses a truncated set of mode shapes to represent the structural response.

The phenomenon of modal truncation is described in structural computation and finite ele-
ment modelling. Generally, these fields of research state that we can calculate the response as a
combination of the dynamic responses of the lower modes and a correction term, which is based
on the quasi-static response of the remaining modes. Two types of corrections are created; static
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residual and residual vectors. The static residual uses static correction terms to adjust for the
modal truncation. Whereas the other method make use of residual modes, also called ”assumed
modes” or ”pseudo modes”, combined with the mode shapes [9].

This paper showcases the potential problem of the modal truncation in an experimental setting.
We find that the required number of modes in a modal decomposition depends on the frequency
range and the spatial distribution of the loading.

2. Theory

2.1. Truncation of the modal decomposition

The modal decomposition says that any response from a linear system is a linear composition
of its mode shapes. This means that the response of a linear structure is located in the subspace
of its mode shapes.

y(t) =

N∑

i=1

φi qi(t) (1)

where y(t) ∈ RN×1 is system response, φi ∈ RN×1 is the mass normalized mode shape, qi(t) is the
modal coordinate for mode i and N is the total number of degrees of freedom in the system.

Let us say that we only use K modes in the modal decomposition then we have a smaller set
of modes to describe the system. Hence, we have introduced an error in our representation of the
structural response due to the modal truncation. This error is often referred to as the residual
effect.

ε(t) =

N∑

i=K+1

φi qi(t) (2)

As long as this error is insignificant then the truncation of the modal decomposition is acceptable.
However, it is hard to estimate the magnitude of this error. We will look at the modal coordinates
to get a better understanding of the truncation error. We calculate the modal response in the
frequency domain.

Qi(ω) = Hi(ω) φi
T X(ω) (3)

where X(ω) ∈ CN×1 is the load in the frequency domain, Hi(ω) is the frequency response function
for the ith mode.

Hi(ω) =
1

mi

(
−ω2 + j 2ζiωiω + ω2

i

) (4)

where mi is the modal mass, ωi is natural frequency and ζi is the damping ratio for mode i.
In the following, we will look at two types of loading: random or fixed spatial distribution of

the load. A load with a fixed spatial distribution can be separated like

X(ω) = F S(ω) (5)

where F ∈ RN×1 is the spatial distribution of the load and S(ω) is the scalar function defining the
temporal variation of the load. Therefore, we can rewrite the expression for the modal coordinates
in the frequency range, Eq. (3), if the load has a fixed spatial distribution.

Qi(ω) = Hi(ω)S(ω)φi
T F (6)
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We see that the contribution of each mode is dependent of the scalar product of frequency response
function and the frequency range of the load. However, it is also dependent on the inner vector
product between the given mode shape and the spatial distribution of the load. This tells us that
a modal coordinate is given both by the frequency range and the spatial distribution of the load.
But if the load has a random spatial distribution then the modal response only depends on the
frequency range of the load. Therefore, the residual effect depends on frequency range and spatial
distribution of the load.

Modal truncation of the quasi-static contribution

Often, the omitted modes are located above the frequency range of the load when we truncate
the modal decomposition. When the load frequency is located way before the natural frequencies
of the modes then the omitted modes act quasi-static.

We will show this by an example where the frequency range of the load is restricted and we
omit all modes outside this range. Here we assume that the first omitted mode n and all higher
modes have much higher natural frequencies, ωn, than the highest load frequency, ωx. This means;
ωx << ωn. So we can rewrite the frequency response function, Eq. (4), for the truncated modes
when we roughly approximate that any term in denominator with ω is insignificant compared with
the term ω2

n. Then the modal coordinates for truncated modes are

Q̃n(ω) ≈





1

mnω2
n

S(ω)φn
T F 0 ≤ ω ≤ ωx

0 ω > ωx

(7)

We see on Eq. (7) that the modal coordinates are no longer a dynamic response but a quasi-static
response. Therefore, we approximate the residual effect as

ε̃(t) ≈ s(t)
N∑

n=K+1

φn φn
T F

mnω2
n

(8)

This is a quasi-static error, which depends on the inner vector product between the mode shape
and spatial distribution of the load and the modal mass and frequency. So a truncation of higher
modes might give a amplitude error of the system response because we have removed a quasi-static
contribution from the residual modes.

2.2. Reduction of subspace

We would like to be able to remove the influence of certain modes from a measured system
response in order to access the effect of modal truncation. In order to do this we will use a linear
transformation, which we base on the modal decomposition. The estimated modal coordinates for
K modes is found when we project the system response onto the subspace of the mode shapes.

q̂(t) = ΦK
† y(t) (9)

where q̂(t) ∈ RK×1 is the estimated modal coordinates and ΦK ∈ RN×K is the truncated mode

shape matrix, which contains the applied mode shape as columns. Then we can find the truncated
system response.

ŷ(t) = ΦK q̂(t) (10)

where ŷ(t) ∈ RN×1 is the truncated system response with a reduced subspace. This transformation
projects the response onto the column space of the mode shape matrix and thereby it reduces the
subspace of the response to only include the given modes.
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2.3. Quality measurements

It is useful to access the difference between a measured and the equivalent truncated response
so we know the errors of a modal truncation. To assess the difference, we utilize the coefficient of
determination, R2

t,i, from model validation in both time and frequency domain [10].

R2
t,i = 1−

∑M
k=1 (yi(tk)− ŷi(tk))2

∑M
k=1 (yi(tk)− E [yi(t)])

2
(11)

R2
f,i = 1−

∑M
k=1

(
|Yi(fk)| − |Ŷi(fk)|

)2

∑M
k=1 (|Yi(fk)| − E [|Yi(f)|])2

(12)

where E [X] is the expected value of X, yi(t) and ŷi(t) are the measured and truncated response
for sensor i and Yi(f) and Ŷi(f) are the Fourier transformed measured and truncated response for
sensor i. Finally, M represents the number of samples for each sensor.

3. Case study

We will show the effect of modal truncation on a small structure in the laboratory. The test
specimen is a T-shaped steel structure, which is fixed with claps, see Figure 1. In this case study,
we will assume that we are only interested in the first 100 Hz of the system. We will identify the
modes located inside this frequency region and we will project the response onto the column space
of the mode shapes using equation (10). By projecting the response onto the subspace of the used
mode shapes, we remove the contribution of the higher modes and all noise that are perpendicular
to this subspace. This is to illustrate the effect of neglecting the contribution of the others modes
in an experimental setting.

Figure 1: Photo of the test specimen in the lab.
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Figure 2: Position of sensors, red arrows are for uniaxial
accelerometers and blue arrows are the geophones.
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In this paper, we will call the modes located in given frequency range for the ”dynamic modes”
and we will define the modes located outside this range as ”residual modes”. So we will look at
the truncation error by using the dynamic modes that are located in the given frequency range.
Then we will add one and then two residual modes to the modal decomposition from outside this
frequency range and calculate the truncation error. This is in order to see if modes outside the
frequency range will have a contribution to the system response.

3.1. Experimental setup

Ten uniaxial accelerometers with a sensitivity of 100mV/g and two geophones are attached
to the structure as seen on Figure 2. The geophones work as shakers when we apply a current
to them. Compressed air excites the structure from three directions and this loading creates
turbulence around the structure and the excitation resembles white Gaussian noise. One set of
data is acquired where the geophones are idle and this data set is used to identify the modal
parameters using operational modal analysis [11].
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Figure 3: Case 1, singular value decomposition of the spectral density matrix.

Mode 1
Frequency 7.94 Hz
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Mode 9
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Mode 10
Frequency 317 Hz

Figure 4: Identified experimental mode shapes.
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A time length of 300 seconds is used with a sampling frequency of 1651Hz for each data set.
The data is decimated to a new frequency of 825.5Hz [11]. We bandpass filter the data sets from
5 to 100Hz, see Figure 3. The low frequency cut-off is applied to remove noise from DC.

An Operational Modal Analysis is preformed where the Frequency Domain Decomposition is
used to identify the modes [12]. Five dynamic modes are identified in the frequency region up to
100Hz and five residual modes outside this range, see Figure 3 and Figure 4.

3.2. Case 1

In this case, the geophones are idle and only compressed air is used as excitation and therefore
the load has no defined spatial distribution. The measured response is projected onto the subspace
of the five dynamic modes using equation (10). Afterwards, we add one and then two residual
modes to the modal decomposition. We calculate the coefficient of determination in time and
frequency domain for each version of the modal decomposition, see Table 1.

Generally, we do not achieve a better representation of the response by adding residual modes
to the modal decomposition. The two worst truncated responses are sensor 8 and 10 and the
recorded acceleration for these two sensors plotted on Figure 5 and Figure 6 for the scenario with
dynamic modes only.

Table 1: Quality measurements for Case 1.

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Dynamic modes
R2

t 1.0000 0.9916 0.9990 1.0000 0.9919 0.9958 0.9997 0.9969 0.9977 0.9850
R2

f 1.0000 0.9955 0.9995 1.0000 0.9975 0.9977 0.9998 0.9979 0.9985 0.9866

Dynamic modes +

1 residual mode
R2

t 1.0000 0.9924 0.9990 0.9999 0.9917 0.9992 0.9997 0.9986 0.9977 0.9973
R2

f 1.0000 0.9960 0.9995 1.0000 0.9974 0.9995 0.9998 0.9991 0.9985 0.9984

Dynamic modes +

2 residual modes
R2

t 1.0000 1.0000 0.9990 1.0000 1.0000 0.9996 0.9997 0.9986 0.9977 0.9978
R2

f 1.0000 1.0000 0.9995 1.0000 1.0000 0.9997 0.9998 0.9991 0.9985 0.9986
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Figure 5: Case 1, only dynamic modes: Response of trun-
cated response, black is the measured and red is the trun-
cated response.
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Figure 6: Case 1, only dynamic modes: Spectrum of
truncated response, black is the measured and red is
the truncated response.
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3.3. Case 2

In the next case, we excite the structure with compressed air. Additionally, we apply a current
to the second geophone so it excites the structure at a frequency of 64Hz, see Figure 7 for spectral
density plot. This means that a significant part of the load has a fixed spatial distribution in this
case.

Like in Case 1, the five dynamic mode shapes are used for the projection of the subspace using
Eq. (10). Next, we add one and two residual modes from outside the frequency region. Then the
coefficients of determination are calculated for the time and frequency domain, see Table 2.

Table 2: Quality measurements for Case 2.

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Dynamic modes
R2

t 0.9999 0.9759 0.9991 0.9999 0.9236 0.8625 0.9991 0.9947 0.9976 0.9745
R2

f 0.9999 0.9759 0.9996 0.9999 0.9227 0.8565 0.9991 0.9947 0.9984 0.9745

Dynamic modes +

1 residual mode
R2

t 0.9999 0.9709 0.9991 0.9999 0.9300 0.9718 0.9994 0.9990 0.9977 0.9993
R2

f 0.9999 0.9708 0.9995 1.0000 0.9293 0.9706 0.9995 0.9991 0.9985 0.9994

Dynamic modes +

2 residual modes
R2

t 1.0000 1.0000 0.9990 0.9999 1.0000 0.9977 0.9997 0.9989 0.9978 0.9989
R2

f 1.0000 1.0000 0.9995 1.0000 1.0000 0.9977 0.9998 0.9990 0.9985 0.9990

Generally, the truncated response using only the dynamic mode has a high correlation with
the measured response but a few sensors deviate. The two worst channels are for sensor 5 and 6
and the responses for the sensors have wrong amplitudes, see Figure 8 and Figure 9. By adding
residual modes, we see an increase in the quality measurements, which is especially evident for
sensor 5 and 6. The quality fit for sensor 6 increases with more than 0.1 by adding one residual
mode. Whereas, sensor 5 needs two residual modes to have a quality fit above 0.93. The response
for sensor 5 and 6 using two residual modes are plotted in Figure 10 and Figure 11.
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Figure 7: Case 2, singular value decomposition of the spectral density matrix.
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Figure 8: Case 2, only dynamic modes: Response of trun-
cated response, black is the measured and red is the trun-
cated response.
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Figure 9: Case 2, only dynamic modes: Spectrum of
truncated response, black is the measured and red is
the truncated response.
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Figure 10: Case 2, dynamic modes + 2 residual modes:
Response of truncated response, black is the measured
and red is the truncated response.

0 10 20 30 40 50 60 70 80 90 100
Frequency [Hz]

-80

-60

-40

-20

0

dB
 r

el
. t

o 
un

it

Sensor 5

0 10 20 30 40 50 60 70 80 90 100
Frequency [Hz]

-80

-60

-40

-20

0

dB
 r

el
. t

o 
un

it

Sensor 6

Figure 11: Case 2, dynamic modes + 2 residual modes:
Spectrum of truncated response, black is the measured
and red is the truncated response.

4. Discussion

First, we should note that the projection onto a fixed number of mode shapes removes noise
and modal response alike if their subspaces are orthogonal to the new subspace of the projection.
Therefore, we will remove noise and this reduction of noise will affect the quality measurements
since we are using a signal with noise as reference. The resolution of the experimental mode shapes
also has an influence on the assumption that we can reduce the subspace. However, we will assume
that these errors are insignificant.

Overall the modal truncation has a low error and most sensors maintain the same response
as measured when we use the five dynamic mode shapes. In Case 1, the first five dynamic mode
shapes were sufficient to span the measured response but in Case 2 we needed additional mode
shapes to accurate span the measured response for a few of the sensors. Here sensor 5 and 6 are
less precise in Case 2 where a part of the load had a defined load pattern. By observing Figure 2,
we can see that the excitation by the second geophone primarily results in responses for sensor 2,
5 and 6. Furthermore, we can observe in Figure 4 that the first five mode shapes do not span this
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movement. The sixth and seventh mode shapes add more information to better span the response
that is caused by the geophone.

In these tests, we see that an excitation with a fixed spatial distribution has a higher residual
effect compared with an excitation with a random load pattern. This is in accordance with the
theory of the residual effects. The theory suggests that a fixed spatial distribution of the load
causes contributions from modes outside the frequency of load. Therefore, a fixed load pattern
seems to activate quasi-static response of the higher modes even-though the frequency of the load
is located before the natural frequencies of these modes. These modes should be included in the
lower frequency region if we want a proper representation of the response for localized behavior.

5. Conclusion

In this paper we have shown the possible errors caused by truncating the modal decomposition
in experimental modal analysis. Often this truncation error is insignificant but it is pronounced if
a significant part of load has a fixed spatial distribution. The magnitude of the error is hard to
estimate but localized structural behavior seem to be highly affected by this residual effect. This
means that experimental techniques that use a truncated set of modes to describe the response
might introduce errors in localized behavior.

To sum up, we cannot rely purely on the frequency range to choose the number of modes in a
experimental modal analysis since the combination of higher modes may contribute to the response.
Therefore, modal truncation introduces errors in response representation if the set of mode shapes
inefficiently span the spatial distribution of the load.
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[5] P. Léger, E. L. Wilson, Generation of load dependent ritz transformation vectors in structural dynamics, Engi-
neering Computations 4 (4) (1987) 309–318.

[6] J. M. Dickens, J. M. Nakagawa, M. J. Wittbrodt, A critique of mode acceleration and modal truncation aug-
mentation methods for modal response analysis, Computers and Structures 62 (6) (1997) 985–998.

[7] O. E. Hansteen, K. Bell, On the accuracy of mode superposition analysis in structural dynamics, Earthquake
Engineering and Structural Dynamics 7 (1979) 405–411.

[8] P. Avitabile, P. Pingle, Prediction of full field dynamic strain from limited sets of measured data, Shock and
Vibration 19 (5) (2012) 765–785.

[9] N. Roy, A. Girard, Impact of residual modes in structural dynamics, Proceedings of the European Conference
on Spacecraft Structure, Materials and Testing (2005).

109



[10] P. C. Hansen, V. Pereyra, G. Scherer, Least squares data fitting with applications, Johns Hopkins University
Press, Baltimore, MD, 2013.

[11] R. Brincker, C. Ventura, Introduction to Operational Modal Analysis, John Wiley and Sons, Ltd, Chichester,
West Sussex, UK, 2015.

[12] R. Brincker, L. M. Zhang, P. Andersen, Modal identification of output-only systems using frequency domain
decomposition, Smart Materials and Structures 10 (3) (2001) 441–445.

110



Chapter 10

Fluid-structure interaction

Paper IV

"Operational modal analysis and fluid-structure interaction"

Michael Vigsø, Thomas Kabel, Marius Tarpø, Rune Brincker and Christos
Georgakis

Published in Proceedings of the 28th International Conference on Noise and
Vibration Engineering, ISMA, Leuven, 2018
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Operational modal analysis and fluid-structure interaction
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Abstract

Operational modal analysis (OMA) has in the last decade shown its potential in the field of offshore
structures such as oilrigs and wind turbines etc. Typically, the estimated modal parameters will
be used in conjunction with a finite element (FE) model. However since bottom-fixed offshore
structures typically will be semi-submerged this affects the modal parameters by fluid-structure
interaction. Fluid surrounding a structure is known to retard the response and locally introduce
an increase in mass and damping. These local changes yield a complex alteration of the modal
parameters and this paper highlights these effects by a wave flume experiment conducted on a
cantilever structure. The structure is a scaled offshore structure and its modal parameters are
examined at different water levels ranging from dry state to 60% submerged.

Keywords: Modal analysis, Added mass, Fluid-structure interaction

1. Introduction

Modal analysis is an effective tool in describing the dynamic behavior of a structure. When
dealing with civil engineering structures, traditional experimental modal analysis (EMA) has some
shortcomings and hence opens the playground for its cousin named operational modal analysis
(OMA). OMA utilizes the operational conditions in providing the excitation of the structure and
if the loading is approximating white noise, the modal parameters can elegantly be extracted from
the structural response. The application of OMA is gaining ground and is becoming the preferred
approach when evaluating modal properties of offshore structures. [1] The motivation for making
modal analysis may be multiple; for instance in the field of structural health monitoring (SHM),
model updating, fatigue estimation or indirect load estimation. Most of these disciplines use an
FE model (updated to insitu conditions) as a basis.

There will always be some natural variations in the estimated modal parameters; besides
estimation- or statistical error also environmental changes such as wind speed, scour or other
seabed changes, structural degradation, mass loading, temperature or even tidal variations can
cause the modal parameters to fluctuate. This paper will focus on how variations in the surround-
ing water may alter the dynamics of the structure.

The fluid-structure interaction is a complex topic and existing research in this area is plentiful.
Both analytical, experimental and numerical work has been done in the past, e.g. [2–5]. The
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content of this paper does not intend to challenge these works, instead it will demonstrate an
application in the field of operational modal analysis conducted on a miniature offshore model.
The results shown in this paper are preliminary findings which will be the basis for a later study,
where an accurate model update is required. The model design does not descend from any actual
physical structure, but is constructed as a simple cantilever with a topside in order to better
monitor the torsional modes.

2. Experiment setup

The experimental campaign is conducted at Luminy University at Marseille, France in 2018.
A cantilever structure made from plexiglass will be the scope for this study. The structure is a
cylindrical mono tower with a truss box topside. The columnar part of the model is constructed
by segments bolted together through an internal flange. Each segment is 200mm in length and has
an outer diameter of 150mm. The structure is dry on the inside at all times during the tests. The
topside has an outer geometry of l× b× h of 400× 200× 200mm. The entire model is situated on
a load cell connected to an aluminium base plate, which yields a total height of the model to be
1485mm. The maximum water level, which can be applied in the flume, is 900mm as indicated
by Figure 1 a) and b). The sizing of the segments is primarily based on accessibility concerns
regarding sensor installation. The joints between the circular sections are waterproofed through a
gasket which may be seen in Figure 1 c).

Load cell

Max water level

Accelerometer

200

400

150
3

5

200
typ

900

385

a) b) c)

50

Figure 1: Experimental setup. a) shows the sideview cross section including the overall dimensions of the model, b)
indicates the sensor position and direction, c) shows a picture from the test. Dimensions in mm.
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The model is equipped with 16 uni-axial accelerometers; nine of which are positioned inside
the pile and the remaining seven are distributed to the corners of the topside. The position and
measuring direction are indicated in Figure 1 b). The accelerometers used are Brüel & Kjær type
4508-002 1000mV/g and the sampling rate is 2kHz.

The scope of the test is to monitor the structure during water filling of the flume and track
the changes in modal parameters due to the influence of water. The test will begin at zero water
level (referred to as dry state) and the water level will be increased to a maximum of 900mm.
Intermediate tests are conducted at 150mm, 400mm, 670mm, 800mm and 850mm respectively.
For each of these water levels, 3-4 individual tests are performed. The tests are conducted by
introducing some random loading to the structure and record the response for approximately
300 seconds. The concepts of operational modal analysis are then applied on the response data
from the accelerometers and modal parameters (natural frequencies, damping ratios and mode
shapes) are extracted [6].

In order for OMA to be successfully applied, the loading of the structure should be approx-
imately white noise i.e. random in time and space [6]. The excitation medium utilized in this
case is a soft brush swept over the structure along with disturbance to the surrounding water.
Additional instrumentation not relevant for the topic of this paper includes: ATI 6 DOF load cell,
Wave gauges, 8 pcs kulite pressure transducers. These are installed for a later purpose in the test
campaign.

3. ID algorithm

A total of 22 tests are conducted and though of different quality, each of these will yield an
estimate on a number of modes. The frequency band of interest is 0 - 160Hz as anything above
this is too inflicted by noise and the sensor resolution not capable of spanning the modes shapes.
Nine modes are identified in this frequency band and these nine modes will be examined in greater
detail.

Now, several different identification methods are available both in the time domain and in
the frequency domain. The identification algorithm selected is the Time Domain Poly Reference
(TDPR) [7]. Although it was developed for impulse response functions, it can easily be adopted
in OMA by using the correlation functions instead [8, 9]. Note that this section is not intended to
go into details on the algorithm, however a brief overview of the method is outlined. For further
details, the reader may find use of literature such as [6, 10].

Basically, the response data of the structure are used to calculate the correlation functions.
The transposed correlation function matrix is then considered as free decays of the system and
the concepts of the TDPR can be applied; A Hankel matrix is constructed and the polynomial
coefficients are solved by a least square approach. Then, the coefficients are stored in a companion
matrix and by making an eigenvalue decomposition, the modal parameters can be found.

Now, in order to get the best conditions for the modal identification, filtering and DOF con-
densation are applied as a pre-step to the TDPR. This is exercised in the frequency domain by
reducing the number of DOFs and amplifying the remaining principal components. The details on
condensation can be found in [11].

The data is examined by looking at one frequency band at a time. While moving the frequency
band and shifting the model order in the TDPR, stable poles are extracted from the signal. Typ-
ically these are represented by stabilization diagrams, but in order to limit the data flow in the
figures of this paper, only the single picked modes are shown.
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Figure 2: Singular values of the spectral density. The three first singular values are shown for different water levels.
The water levels shown are 0, 150, 400, 670, 800 and 900mm respectively. The different mode shapes identified are
sketched in the top of the figure in ascending order and indicated by a coloured dot.
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4. Modal parameter tracking

To give an indication of the quality of the data, a compilation of spectres are shown in Figure 2.
The data series for each water level are merged into a single file and the spectra are averaged using
the Welsh technique with a block size of 213 samples corresponding to four seconds. A singular
value decomposition of the spectral density is made and the figure shows the first three singular
lines. The modes in Figure 2 are identified by peak picking and tracked by colour coding.

5. Results

For the seven different water levels ranging from 0 to 900mm, modal identification is conducted
using the TDPR technique outlined in Section 3. For each water level, 3-4 separate tests are made
and the modal parameters are shown along with the average of the estimates. Figure 3 and Figure 4
show the identified modes in the frequency band of 0-160Hz. The natural frequency, damping ratio
and mode shape complexity are all given as a function of the water level. The individual mode
shapes (1-9) are sketched in Figure 2 for reference.

The data in Figure 4 are merely the same as given in Figure 3, but normalized with respect
to the average dry conditions to show the relative development in modal parameters. As seen
in Figure 3 and 4, the scatter in the estimates are significantly higher on the damping ratios and
complexity indicators than for the frequencies. This is not uncommon when engaging in modal
analysis on experimental data (especially when dealing with closely spaced modes), yet it masks
the conclusion on the fluid influence on these parameters - more about this in the following.

First, looking at the frequencies; it is seen that in general the natural frequencies drop with the
increase in water level due to the hydrodynamic added mass. Yet, mode 3 and mode 6 are nearly
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Figure 3: Estimated modal parameters at different water levels. Each mark represents an estimate from a data series
and the solid lines are the water level averages. a) shows the development in natural frequency for each mode. b)
shows the development in damping ratio for each mode. c) shows the development in mode shape complexity of each
mode.
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Figure 4: Relative changes in modal parameters due to shift in water level. Each mark represents an estimate from
a data series and the solid lines are the water level averages and normalized with respect to the dry state. a) shows
the relative development in natural frequency for each mode. b) shows the relative development in damping ratio
for each mode. c) shows the relative development in mode shape complexity of each mode.

unaffected by the water. The mode shapes for these are characterized by predominant deformation
to the topside and nearly no subsea deformation, see Figure 2. Literature such as [12, 13] states
that one may encounter these effects when fluid-structure interaction is present. Since all modes,
but the ones concerning only the topside, have a decrease in frequency, this yield an interesting
phenomena as the modes start to cross each other by frequency. This is seen in Figure 3 a) at a
water level of 670mm for mode 3 and at a water level of 250mm for mode 6.

Next looking at the damping estimates; the scatter from test to test is high compared to the
average changes due to the influence of water. However, there is a tendency of an increase in
damping for all modes. The higher modes (with exemption to mode 6) seems to be affected the
most with respect to the damping with relative changes > 30% whereas the the changes on the
first two bending modes and the two topside modes are less significant, see Figure 4 b).

Finally, the complexity of the mode shapes are shown in Figure 3 c) and Figure 4 c). The details
on how the mode complexity factor is calculated is described in Section 6.1. In general there is a
considerable level of complexity in the mode shapes ranging between 1 and up to 30%. However,
given the level of scatter in the estimates it is inconcludable whether the complexity originates
from the influence of water or rather non-linearities in the model. The latter is anticipated to be
the main reason for the complexity considering the number of structural joints, material selection
etc.

6. Mode shape alteration

6.1. Complex mode shapes

When identifying mode shapes from experimental data, often the identified mode shapes tend
to have a imaginary part. This may be due to ID algorithm, non-linearities or cases of non

118



proportional damping. The complex part is often considered as noise and disregarded, but it may
indicate some physical properties of the system [14]. If the purpose of the modal analysis is to link
the experimental mode shapes to ones obtained from an FE model, the most natural choice would
be to disregard the imaginary part or use the absolute value.

Several different indicators can be used to quantify the complexity in a mode shape. For this
case the mode complexity factor (MCF) will be utilized. The MCF is calculated for mode r as

MCFr = 1−
(Sxx − Syy)2 + 4S2

xy

(Sxx + S2
yy)

(1)

where

Sxx = <
(
φr

T
)
<
(
φr
)

Syy = =
(
φr

T
)
=
(
φr
)

Sxy = <
(
ψr

T
)
=
(
ψr

)
(2)

Here, φr is the mode shape vector for mode r while <(·) and =(·) extract the real and imaginary
part reepectively. The MCF value is real and ranging between 0 and 1.

6.2. Mode shape

For complex modes, the MAC value between two mode shape vectors φa and φb can be calcu-
lated from [15, 16] as

MAC(φa, φb) =
|φaT φb∗|2(

φa
T φa

∗) (φbT φb∗
) (3)

In order to quantify the changes in mode shapes the MAC value is calculated for every mode
compared to a reference mode shape. The reference mode shape is the mode shape at dry state
identified by the first test series - i.e. the first column in Figure 5. The MAC values depicted are
hence the same mode for all successive tests compared to the reference test.

When modes are closely spaced in frequencies, their associated modes shapes may be rotated
within the subspace spanned by the modes engaged [17]. For instance, this can be observed in the
case of mode 3, 4 and 5 whose mode shapes start to mix at a water level of 670mm, see Figure 3 a)
or Figure 2. How much the mode shapes will blend among the conjointly modes depends on ID
algorithm used and its fitting parameters. Surely it is more convenient if this rotation does not
occur, but it does not pose a problem as they can be reorientated to fit the reference modes better.
This is done by assuming a linear combination of the mode engaged and making a least square fit
to the reference modes.

Test series 2, 6 and 17 showed poor results due to improper excitation. As a result of this, only
the first 4 modes were extractable from the data, hence the missing bars in Figure 5. Although a
true random excitation was attempted also mode 7 was not greatly engaged in several tests as seen
from the spectra in Figure 2, this may be the reason for increased fluctuations in the estimates.

6.3. Mode shapes in details

In this section, a close-up on two selected mode shapes is presented. The mode shapes displayed
are mode 7 and mode 9 which are highlighted by an asterisk (*) in Figure 5. The mode shapes
have been normalized to a maximum deflection of 0.15m i.e. 10% of the total height of the model.

Note that the mode shapes presented by Figure 6 and 7 are shown by utilizing some assumptions
on the behavior of the structure. By looking at Figure 7 a), it is clear that the nodal value for
the 4th node from bottom is incorrect. Since no sensor is positioned at this node in this direction
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the nodal value depicted is simply an interpolation value between the adjacent nodes. These
assumptions are just for visualization purposes and do not influence the MAC values presented
earlier. Same applies to the topside.

Looking at these two modes shown by Figure 6 and Figure 7, the changes in mode shape are
predominant subsea where the bending amplitude of the pile is reduced. The nodal point (zero
vibration amplitude) for the pile is moved down for both cases.

-0.4-0.200.20.4
Sideview [m]

0

0.5

1

1.5

V
er

tic
al

 c
oo

rd
in

at
e 

[m
]

-0.4-0.200.20.4
Sideview [m]

0

0.5

1

1.5

V
er

tic
al

 c
oo

rd
in

at
e 

[m
]

a) b)

Figure 6: Mode shape 7 before and after water filling. MAC value between the two modes is 0.12.
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Figure 7: Mode shape 9 before and after water filling. MAC value between the two modes is 0.80.
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7. Full scale perspective

The model considered in this paper is constituted as a hollow plexiglass model with a fairly
large diameter to water depth ratio. This yields a large volume of water to be displaced by the
structure and hence a large amount of added mass. Since the model itself is made from light weight
material and air filled, the ratio of added mass versus the mass of the structure is also large. In
the full scale perspective, the mass of the displaced water compared to the structural mass is likely
to be a different ratio.

Now, if the structure is considered as an idealized SDOF system, the natural angular frequency
is found as

ωdry =

√
Kdry

Mdry
(4)

where the Kdry is the generalized stiffness of the structure and Mdry is the generalized mass both at
a dry state for a mode of vibration. If it is assumed that the stiffness of the structure is unchanged
by the presence of water, the equation for the wet conditions becomes:

ωwet =

√
Kwet

Mwet
=

√
Kdry

Mdry +Madded
(5)

Here, Madded symbolizes the added mass from the fluid-structure interaction [2, 4, 13]. Now, this
is strictly only valid if the mode shape of interest is unchanged by the influence of water. This is
a fair assumption for the first few modes in this case, see Figure 5. The change in frequency from
the influence of water is hence seen as

ωwet

ωdry
=

1√(
1 + Madded

Mdry

) (6)

From equation (6) it is evident that the change in frequency depends on the ratio between the mass
of the structure and the added mass from the fluid. Since the cross section of the model in this case
is circular, there is no cross coupling and the added mass is somewhat proportional to the mass of
the fluid displaced by the structure: Madded ∝ V, ρw, where V is the displaced volume and ρw is the
fluid density. However other aspects such as boundary conditions for the fluid, viscosity, vibration
amplitude and frequency can also influence the effect of added mass [13, 18]. Since the fluid density
in this scaled experiment is larger than in full scale the effect from the fluid- structure interaction
is amplified. This means that the relative changes in modal parameters shown by Figure 3 and
Figure 4 may be less for the full scale scenario.

The model considered in this paper is dry on the inside (concerning the sensors). Offshore
mono tower structures may be constructed as dry or wet on the inside where the latter is the most
common. Water inside the structure will yield a different alteration of the structure as the internal
water will further increase the added mass. This effect is not studied additionally but is worth
mentioning.

8. Conclusion

This paper has outlined the changes in modal parameters from the influence of surrounding
water on a small scale model. The model is a bottom fixed, surface piercing mono tower made from
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plexiglass. It was through operational modal analysis demonstrated how the modal parameters
changes by the presence of water. Most significant finding was that the order of the modes were
changing as the flume was filled with water. This was due to the nature of the individual mode
shapes; mode shapes, where deflection is predominant ascribed to rotation and not bending of the
tower will yield little or no changes from the water whereas especially higher order bending of the
tower will experience great influence from the added mass. If modes are closely spaced this may
cause them to change order.

Damping estimates were examined and found to increase with water level as expected. For
semi-submerged structures, where fluid-structure interaction is present, it might be expected that
non-proportional damping could cause the mode shapes to become complex. However it was not
possible to show a decisive relation for this due to the scatter in the estimates. The mode shapes,
however, were examined in details and it was seen that especially for higher modes; the deflection
subsea were reduced.

The development in modal parameters are based on averages from different tests, where it was
assumed that the water yields a constant alteration of the modal parameters. The conclusions
from this study are hence based on small vibration amplitudes as different levels of excitation force
is not examined.

8.1. Further work

As mentioned by the introduction, the work shown in this paper will be the basis for a successive
study in indirect load estimation. The knowledge gained will feed the updating process of a finite
element model needed for the dynamic analysis of wave action.
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Chapter 11

Wave loading using frequency
domain identification
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This chapter presents a study of regular wave loading on a highly flexible
cantilever structure. The load identification is performed in the frequency do-
main. The author has performed the main part of the ideation, experiments,
analysis and the writing of the paper. Julie Kristoffersen took part in planning
and conducting the experiments. The paper has been formatted with minor
grammatical adjustments to suit this thesis.

125





Indirect wave load estimates using operational modal analysis –
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Abstract

Wave loading on offshore structures has proven difficult to quantify through direct full-scale mea-
surements. Therefore, engineers rely on codes and guidelines, numerical simulations, and scaled
experiments in the design and as-built evaluation process. In this paper, it is shown that by moni-
toring the response of the structure and utilizing Operational Modal Analysis (OMA) it is possible
to indirectly identify loads, occurring in actual conditions. A method employing modal parameters
to establish a response function, which is used to back-calculate the hydrodynamic wave loading
of a structure is presented. The process of inverting the system matrices is stabilized by merging
the model with linear wave theory and hence constraining the solution to a scaling function of a
predefined load distribution. The method is validated through a numerical case study and by wave
flume experiments. Both cases are constituted as two-dimensional loading on a semi submerged
cantilever cylinder.

Keywords: Wave loading, Indirect measurements, Operational modal analysis, Offshore
structures

1. Introduction

In recent years concerning footage from the North Sea have been fuelling an intensive inves-
tigation lead by Mærsk. The recordings show plunging breaking waves at the Tyra field in close
proximity to the offshore structures [1]. It was estimated that the wave heights were exceeding the
10000 year return period for abnormal wave design. Questions have been raised whether the load
effect of these extreme waves will compromise the reliability of the structures at sea.

Although much research has been done in the field of abnormal and breaking waves, it is
evident that more research is needed in the field of extreme wave loading to offshore structures.
Some issues remain elusive as most methods are based on scaled laboratory experiments. When
conducting wave lab experiments, scaling effects will inevitable be present and especially in the
case of breaking waves [2].

A new approach - not subjected to scaling limitations for wave load quantification - is presented
in this study. By monitoring the response of an offshore structure, the structure itself can be used as
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a live full scale load cell. This is done by inverse computations from the response of the structure.
Limited research has been done specific to this application [3, 4], whereas more focus has been
given to indirect methods of e.g. fatigue assessment of offshore structures [5, 6]. The indirect load
identification of the wave action is a challenging discipline to verify, which may be the reason why
little work has been done on this in the past. Input estimation in general is not a new topic as
people have worked with this for many years.

In the late 80’s Karl Stevens wrote an excellent overview on the topic of indirect load identi-
fication [7]. The paper outlines the challenges associated with this field of research, but also its
potential. Many different approaches have since been tried out within the field of input identifi-
cation. Most of the work done in this context are based on cases where the input is well defined
and hence capable of verifying the results - either by using impact hammers or by simulation e.g.
[8–10]. In resent years input identification using Kalman filters has proven successful [11–15].

In this paper, Operational Modal Analysis (OMA) will be used as a tool for modal identifica-
tion of the structures in as-build conditions. The result from the OMA is used to make a model
representation and this will be the key in deciphering the vibrations of the structure and hence
estimate the wave loading.

The mathematical notation used is denoting matrices by a double underline and vectors by
a single underline. Superscript* is a complex conjugate and superscriptT is a transposing opera-
tion.

2. Theory

The response of a linear dynamic system, y(t), is defined as the convolution integral between
the impulse response function, h(t) and the a time varying load. [16]. The principle of load
identification is to measure the response and then de-convolute this expression.

y(t) = h(t)~ f(t) ,
∫ ∞

−∞
h(τ) f(t− τ) dτ (1)

This integral is more conveniently evaluated in the frequency domain, so by means of the Fourier
transformation Eq. (1) becomes:

Y (ω) = H(ω) F (ω) (2)

here, Y (ω) and F (ω) contain the Fourier coefficients of the response- and load vectors respectively.
H(ω) is referred to as the Frequency Response Function (FRF). The FRF matrix can be constructed
from either mass-, damping- and stiffness matrices or from modal parameters, which will be the
case for this paper.

H(ω) =

N∑

r=1

(
Qrψr ψr

T

iω − λr
+
Q∗rψ

∗
r ψ
∗
r
T

iω − λ∗r

)
(3)

where, ψr is the mode shape vector for mode r. Qr is a mode shape scaling constant and λr is
the complex pole. The parameters needed for the FRF matrix - mode shapes and poles - can be
experimentally determined by utilizing the concepts of operational modal analysis. [17]. This is
done by monitoring the response caused from what may be assumed as random excitation. For
instance, in the context of offshore structures: small crested random waves and a light breeze
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Figure 1: Principle of spatial distributions, f0.

touching the topside. The ID algorithm of choice can be applied and the modal parameters can be
extracted from the signal. Both time- and frequency domain techniques exists for this.

Once the FRF matrix is estimated and the response of the structure, Y (ω), is measured, the
load can be calculated. This yields a type of inverse computation, where the load indirectly can be
determined from measuring the response. Although it seems simple, problems persist as Eq. (2) is
sensitive to truncation errors so when inverting the FRF matrix, the load estimate quickly becomes
erroneous and may appear as non-physical.

As it was demonstrated by Vigsø et al. [18] - if the load distribution is known this can be
utilized to constrain the solution and hence improve the load estimate. This is implemented by
separating the load variable from Eq. (1), into a spatial distribution, f0, and scaling function, g(t):

f(t) = f0 g(t) (4)

when inserting this definition into Eq. (2) we have

Y (ω) = H(ω) F (ω)

= H(ω) f0 G(ω)

= C(ω) G(ω) (5)

here, C(ω) is the matrix product of the FRF matrix and the spatial distribution. The scaling
function can now be estimated by a pseudo inverse operation.

Ĝ(ω) = C†(ω) Y (ω) (6)

The final load estimate is then found by an inverse Fourier transformation and back substitution
into Eq. (4). In order to do this, the spatial distribution, f0, must be known.

In order to apply this in the context of wave loading of an offshore structure it may be assumed
that the structural loading is solely caused by water waves. Figure 1 shows the principle of how
the spatial distribution can be defined.

If the wave height is not recorded, the spatial distribution may be assumed as time invariant
- for instance varying between the seabed and the mean water level as indicated by Figure 1 a).
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On the other hand - if the surface elevation is recorded simultaneously as the response of the
structure, this additional information can be incorporated in the calculations, Figure 1 b) and c).
For instance, taking the same distribution as in a) and stretching it to follow the surface elevation
near the structure and hence assuming that the loading will occur at the entire wetted area.

When the spatial distribution of the load is changing in time (case b) and c)), the procedure
for solving the scaling function changes. That is due to the convolution theorem which states that
a product in the time domain is a convolution in the frequency domain and vice versa. If we apply
the time variant definition of the spatial distribution, Eq. (2) becomes

Y (ω) = H(ω) F (ω)

= H(ω)
(
f0(ω)~G(ω)

)
(7)

= H(ω)

∫ ∞

−∞
f0(ξ) G(ω − ξ) dξ (8)

here, ξ is the frequency lag. As seen in the equation; when f0(t) is a time variant function this
yields a more complex problem to be solved. If the frequency content of the load is known this can
be included else wise the equation can be solved through iteration.

3. Simulation

This simulation case study will demonstrate, that by monitoring the response of an offshore
structure and applying the procedure described above, it is possible to indirectly estimate the wave
load. A plane semi-submerged cantilever structure exposed to non-breaking waves will be the scope
of this demonstration. The benefits of a simulation is that the method can be evaluated with as
much noise as desired and the result can be compared to the precise input and hence indicate how
sensitive the solution is to different assumptions and sources of error.

The simulation is conducted as a plane scenario using an finite element (FE) cantilever beam
model. The wave loading is evaluated using linear theory and Wheeler stretching to account for
fluid motion above mean water level [19]. Although fluid surrounding a structure is known to retard

Random waves

b)a)

Regular waves

Figure 2: Simulation sea states.
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the response by added mass and damping, for this simulation, it is assumed that no interaction
between the fluid and structure is present. The drag- and added mass coefficients are set to 1.3
and 1.9 respectively and the loads are evaluated using the Morison equation [20]. (The coefficients
are assumed to be unknown in the successive load identification). The geometrical quantities and
hydrodynamic properties are selected to resemble the physical experiment covered by this paper
(water depth 0.9 m, structure diameter 50 mm).

The simulation will be divided into two parts: 1): A simulation of the system response caused
by a series of random waves. This shall be the basis for the OMA analysis and hence provide
estimated modal parameters needed for the successive analysis of the wave loads. The random
waves are synthesized from a Pierson–Moskowitz spectra with a peak frequency of 0.5Hz and a
significant wave height of 0.2 m.

2): Next a series with regular waves is simulated and shall be the basis for the indirect load
identification calculations. A wave height of 0.2m and period of 2s is chosen as the sea state for the
simulation. This gives a relative wave height of H/h = 0.22 and a wave steepness of H/L = 0.04.
The two different simulation cases are shown by Figure 2, where a set of five FE-DOFs are chosen
as sensor information and only the response from these are kept for the analysis. The sensors in
Figure 2 are indicated by squares (�). For both of the simulation cases, a noise level of 150 dBW
is added to the recorded signal.

Modal identification from random waves

The frequency domain response from 180 seconds of random wave simulation can be seen
in Figure 3 in terms of singular values [17]. Despite the loading not being perfect white noise,
four modes are revealed in the signal within the frequency band of 0-300Hz. The modes are
peak picked and analysed using the Frequency Domain Decomposition method [21]. The damping
estimates are found by applying the Eigensystem Realization Algorithm [22] at a band passed
signal near the resonance frequencies. The modal parameters are listed in Table 1. Since no
fluid/structure interaction is considered, the estimated modal parameters shall resemble the FE
model with deviation only caused by noise and statistical error. The 4th mode shape from the FE
model is an axial deformation mode and since only horizontal sensor information is available for
the OMA, this mode cannot be estimated from the signal.
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Figure 3: Singular value decomposition of the response spectral density. Data composed using Welch averaging.
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Table 1: Modal parameters from simulation case study.

FE model

Mode 1 2 3 4 5
Natural Frequency, ω [Hz] 4.47 39.5 121 180 250
Damping Ratio, ζ [%] 1.80 0.33 0.45 0.61 0.82

OMA estimates

Mode 1 2 3 4 5
Natural Frequency, ω [Hz] 4.46 39.5 122 251
Damping Ratio, ζ [%] 2.07 0.31 0.44 0.82

Assuming that the structural properties, geometry and material, are known quantities for the
offshore structure. These can be used to make a new FE model to aid in the mass normalization
of the OMA mode shapes. This FE model can also be used for mode shape expansion [23] in
order to obtain a higher resolution near the splash zone as desired. Now, the obtained modal
parameters can be used to establish the frequency response function for the structure at actual
in-place conditions, Eq. (3).

Load identification

The response due to regular wave loading is seen in Figure 4. The response of the structure
will be truncated in terms of the sensor position and noise level though still be of value for the
load identification.

Before making the final load identification calculation, the spatial distribution must be revisited.
As the assumed load distribution is of great importance for the quality of the load estimate this
must be selected with care. In principle any reasonable distribution can be used and for this
study, two different distributions will be tried out. They are shown by Figure 5. Distribution a) is
generated from linear wave theory by assuming velocity squared proportionality at du(z, t)/dt = 0.
Distribution b) is likewise generated from linear wave theory but from an acceleration proportional
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Figure 4: Steady state response from top sensor when subjected to regular wave loading.
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assumption at u(z, t) = 0. Information regarding water depth, wave height and period are of course
needed to derive these. The normalized z coordinate is 0 at the seabed and 1 at the water surface.
Both the distributions are normalized with a maximum value of 1 N/m. Neither of these will
perfectly describe the actual loading used in the simulation, however it is demonstrated that they
yield a reasonable approximation.

Figure 6 shows the final load estimate for both the time variant and time invariant approach
- recall their definitions from Figure 1. The figure shows the total load applied to the structure
from the wave action. As a general observation, for this type of cantilever structure, the assumed
point of attack for the load distribution is governing for the load estimate. When the point of
attack is assumed to be lower than the real, this will result in a over estimated load and vice versa.
Hence the two time variant distributions (drag- or inertia dominated) will yield an absolute lower
and upper bound for the estimate respectively and the span between should be considered as the
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Figure 6: Wave load estimate from the simulation case study. Both the time variant (with stretching) and time
invariant (without stretching) solution are shown and compared to the actual input force in the simulation. The
windowing is added during post processing.
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uncertainty of the estimate.
If the surface elevation is not recorded - hence the distribution is described as time invariant

- this yields an offset in the load estimate as the point of attack at some instances of time will
be too low and at some instances too high. As seen from the estimates, the two solutions using
stretching of the load distribution, yield a better estimate, than the time invariant distribution. It
is expected that the deviation between the two methods will increase with the wave height.

Experiment

An experimental campaign has been conducted in a wave flume at Newcastle University, UK
2016 [24]. A cantilever beam made from plexiglass is used for the experiment. The model is
equipped with 7 uni-axial accelerometers; 6 positioned in the the wave direction and one in the
transverse direction. Accelerometers used are Brüel & Kjær type 4508-B 100mV/g. Three wave
gauges are positioned in line with the model and an average of these are used as a basis for the
surface elevation, η(t). The model and the sensor layout is sketched in Figure 7.

The model is resting on a 6 DOF ATI load cell which is used to record the all the mudline
forces. The mean water level of the flume is 0.9m and the plexiglass model has a diameter of
Ø50mm. The total height of the model is 1.35m.

Modal identification

As for the simulation case study; the model is observed at two stages, 1): Recording the response
due to random excitation - the excitation is caused by making some random disturbance to the
water surface surrounding the model. Again the concepts of OMA are deployed and mode shapes
and damping estimates of the structure are obtained. For the frequency band of 0-100Hz four
in-plane bending modes were identified. Their frequency and damping ratio are listed in Table 2.
The ID algorithm used is the same as for the simulation case study.

A
ccelerom

eters

ATI 6DOF
load cell

Figure 7: Experimental setup.
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Disregarding the complex part of the mode shapes, an FE model is made and updated with
focus on mode shape correlation and frequency match. The model is made using beam elements
with 6 degrees of freedom (DOF) at each node. The influence of water is included as added mass
below the mean water level. As a simplification; proportional damping is assumed and coefficients
adjusted for a best fit. The FE model is used for mode shape expansion and mass normalization
of the experimentally obtained mode shapes from the OMA analysis.

A frequency response function (FRF) of the system can yet again be formulated using Eq. (3).
Obviously when using expanded mode shapes to construct the FRF matrix, the matrix will suffer
from rank deficiency as no new modes are added. However, when the estimate is afterwards
constrained by the assumed load distribution and solved by the pseudo inverse operation, this
stabilizes the result.

Table 2: Modal parameters from experimental case study. (In-plane modes only).

OMA estimates

Mode 1 2 3 4
Natural Frequency, ω [Hz] 2.12 13.4 44.5 97.7
Damping Ratio, ζ [%] 2.0 4.2 3.6 2.1

Load identification

2): Next step is to generate a wave configuration which can be used for the load computations.
For this, a series of regular waves is chosen and the structural response is recorded. The waves
are synthesized as linear waves with a period of 1.43 s and a wave height of 114 mm. These yield
a relative wave height of H/h = 0.127 and a wave steepness of H/L = 0.038. The recording is
initiated once the wave maker has reached a steady state output. As for the simulation case study;
a set of two spatial distributions is used for the estimates. The distributions are generated in the
same manner by assuming acceleration- or velocity proportionality and using linear wave theory.
Only the solution using the time variant approach will be shown, i.e. utilizing the readings from
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Figure 8: Estimated total wave load from physical experiment. The shear force measured by the load cell is shown
for reference. The windowing is added during post processing.

135



the wave gauges and hence stretching the assumed load distribution to always cover the wet surface
of the pile.

The solution on the load estimate can be seen in Figure 8. The estimate is shown as an interval
between the drag dominated and the inertia dominated distribution. From the same reasoning as
mentioned earlier: the absolute lower bound is the drag dominated result and the absolute upper
bound is the inertia result. In principle, now the wave load has been indirectly determined from
the response. However, since the structure at hand has some dynamic properties, which yields a
dynamic amplification to the wave loading, it is not possible to directly measure the wave load
at the load cell and hence verify the estimates. The estimated load from Figure 8 must then be
transformed to reaction forces in order for a direct comparison to be made. Although accumulated
uncertainty is present, this can be done by solving the unconstrained system of motion in Eq. (9),
where the three response vectors are synthesized using the estimated load from Figure 8 along with
the mass, damping and stiffness matrices from the updated FE model.

M ÿ(t) + C ẏ(t) +K y(t) = f(t) (9)

here, y(t) is the nodal displacement, ẏ(t) is the nodal velocity and ÿ(t) is the nodal acceleration.
The results of the estimated mudline forces (including dynamic amplification) are shown in Figure 9
and Figure 10 along with the readings from the load cell. The measurements from the load cell are
affiliated by a severe degree of noise from 50Hz. Thus the measured values shown by Figures 8 to
10 have been low-pass filtered at 40Hz.

In terms of peak values for each passing wave, the estimated value of the force and moment
is fairly good. Especially for the drag dominated end of the range. When it comes to variations
between the peaks, the FE model is not capable in predicting the load variation and the estimate
deviates more. This is naturally enough as the peak values of the load are the most governing
for the response and as the response is the basis for the load estimate; the estimated load should
have a best fit towards the peak values. The maximum and minimum forces and moments for each
passing wave are plotted in Figure 11. Figure 11 a) shows the maximum negative forces i.e. caused
during wave trough and Figure 11 b) shows the maximum positive forces i.e. caused during wave
crest. The mean value and standard deviations are given by Table 3.

From Figure 11, linear wave theory adjusted by stretching of the profile seems to yield a too low
point of attack - especially for the positive forces as indicated by Figure 11 b). As a result of that,
the mean value of the estimated bending moments is in good agreement with the measurements,
whereas the force is overestimated. The increase in standard deviation in the estimated values are
suspected to originate from integration error and noise in the response measurements.
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Figure 9: Estimated dynamic reaction forces, shear.
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Figure 11: Maximum mudline forces for each passing wave. Average relative wave height H/h = 0.127 and average
wave steepness H/L = 0.038.

Table 3: Mean and standard deviation of the maximum loads, i.e. from Figure 11 a) and b).

Moment [Nm] Force [N] Moment [Nm] Force [N]
µ σ µ σ µ σ µ σ

Measured -2.44 0.22 -2.98 0.16 2.60 0.22 3.07 0.15
Drag proportional estimate -2.31 0.53 -2.94 0.49 2.54 0.44 3.26 0.55
Inertia proportional estimate -2.39 0.36 -3.36 0.56 2.65 0.45 3.76 0.62

︸ ︷︷ ︸
Loads during wave trough

︸ ︷︷ ︸
Loads during wave crest

4. Conclusion

It has been demonstrated that operational modal analysis can be used for indirect load quan-
tification for offshore structures. For the analyses presented, it has been assumed that the only
loading to the structure is originated from wave action. If several other contributions are present
this complicates the procedure. The paper also demonstrates that by merging different sensor in-
formation (accelerations and wave gauges/LIDAR) this can be incorporated in the load estimate.
The method is not subjected to scaling issues and can be applied on a full scale if the response of
the structure is successfully recorded and a well updated FE model is available.

Although the structures considered by this paper are based on a simple static systems, nothing
dictates that the method cannot be applied on more complex systems as long as there are sufficient
sensors to describe the additional mode shapes.

5. Future work

Although the results presented by this paper are promising, they are based on a single structural
system and one directional regular waves only. More research is needed in order to verify this
method in cases where multi directional- irregular and even breaking waves are present.
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Chapter 12

Wave loading using time domain
identification

Paper VI

"Identifying wave loads during random seas using structural
response"
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This chapter presents a study of random wave loading on a cantilever struc-
ture. The load identification is performed real-time using state-space models
and Kalman filters. The author has performed the ideation, experiments, anal-
ysis and the writing of the paper. The paper has been formatted with minor
grammatical adjustments to suit this thesis.
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Abstract

Structural monitoring is increasingly becoming everyday business in the offshore industry. The
monitoring may target the strain estimation or focus on tracking the changes in the dynamic
properties of the structure in order to predict damages at remote / or possibly subsea locations.
This paper will show that by monitoring the structural response, it is also possible to indirectly
estimate the wave loading acting on the system. This information can be used to increase confidence
in the load probability models for the structural design or aid the health monitoring procedure.
During ambient vibration, the principles of operational modal analysis (OMA) are applied to
harvest the dynamic properties of the structure. Successively, a dynamic model is formulated and
used to calculate the loading from a random sea state using the response of the structure. A
laboratory experiment is conducted in a wave flume at LASIF, Marseille, France, where a scaled
offshore model is equipped with accelerometers to monitor the structural response during a random
sea. The study shows that it is possible to use the structure as a dynamic load cell and monitor
the loads occurring in actual conditions. Both the short time variations and the load spectra can
be computed successfully using the structural response.

Keywords: Wave loading, Indirect measurements, Operational modal analysis, Offshore
structures

1. Introduction

In the field of offshore structures, an increase is seen in the subject of monitoring. Recently,
TOTAL announced that as for the redevelopment of the Tyra field, the platform Tyra East will be
equipped with no less than 100000 sensors [1]. Most of these will, of course, target the production
processes, but the monitoring scope will also include the structural performance. The aim of
structural monitoring may be plentiful, for instance with regards to operational limitations such
as heading, static deformation or vibration level. The vibration pattern can be used for health
diagnostics, and since offshore structures are prone to fatigue damages, monitoring their well-being
is essential for ensuring safety and reliability.

Due to the nature of offshore structures, it is common to monitor the surrounding sea state,
but more interesting is the wave loading itself rather than the surface elevation. The wave load-
ing depends on the geometry and surface properties of the structure, but also on its dynamics.
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Therefore, it is challenging to obtain the load measurements directly and hence we need to rely on
indirect methods. By monitoring the response of a structure, it is, indirectly, possible to identify
the loading during operational conditions with the actual boundary conditions.

Indirect (wave) load identification has been used in ship design, but it is becoming more common
in the field of fixed offshore structures as well. Within industry practice, wind turbines or oil and
gas installations are exploited for this. For example the ”digital twin” concept introduced by
Ramboll Oil and Gas as part of their monitoring programme [2], [3], [4] and [5]. Within academia,
early studies [6] suggest the feasibility of wave load estimates using the structural response on a
simulated case study. Later studies [7–11] demonstrate how wave loads can be estimated using
existing load identification techniques. The studies include both numerical and experimental work
and aim to quantify loads from a variety of wave types, including breaking waves.
In this paper, we will add to the study of indirect methods for wave load identification by monitoring
a scaled model in a wave flume. The aim of this study will be to estimate the load variations during
random seas.

The mathematical notation used is denoting matrices by a double underline and vectors by a
single underline.

2. Theory

For the load identification process, we shall rely on the time domain technique using the modally
reduced model. The method is adopted from [12] with reference to [13]. The principle is that a
modal analysis is performed and modal parameters are obtained for the structure at in-place
conditions. The modal parameters are then fed into a recursive modal description together with
response measurements from the structure, and by using the means of a linear Kalman filter, an
estimate of the wave loading is obtained in real-time.

The performance of the method is sensitive to assumptions regarding the spatial distribution
of the load and hence a wave gauge is used to fix the loading to the wetted area of the structure
during the random sea. The algorithm is recapped here in a condensed form suited for the need of
this study. We start out by defining the state modal coordinates:

x(t) =

[
Φ 0

0 Φ

]
ζ(t) (1)

Here, ζ(t) is the state vector in modal coordinates while x(t) is the state vector in physical coor-
dinates. Φ contains the mode shapes, expanded, mass normalized and arranged in columns. We
arrange the natural frequencies ωi and the modal damping ξi in diagonal matrices such that:1

Ω =



ω1 0 0

0
. . . 0

0 0 ωn


 , and Γ =




2ξ1ω1 0 0

0
. . . 0

0 0 2ξnωn


 (2)

1This formulation is based on proportionally damped systems and thus might be violated by the hydrodynamic
contribution.
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For the classic continuous state space in modal coordinates we have:

ζ̇(t) =

[
0 I

−Ω2 −Γ

]

︸ ︷︷ ︸
Ac

ζ(t) +

[
0

ΦTSp

]

︸ ︷︷ ︸
Bc

p(t) (3)

Here, we assume that the hydrodynamic added mass and damping are embedded in the modal
parameters and thus do not appear directly in the state equation. Another important aspect of
this formulation is the separation of the load into the spatial distribution Sp and the scaling p(t).
Note that the loading may be composed of multiple sources and thus the spatial distribution will
be a matrix with load sources arranged in columns, and the scaling will be a corresponding vector.
For this study, however, we assume that only one load source is present, i.e. the load caused by
the waves. The subscript c indicates that the state matrices are on continuous form.

Since the spatial distribution is not constant during the wave loading, but instead will relate
to the water runup on the pile, we will adjust the spatial distribution accordingly using the wave
gauge measurements. The position of the wave gauge may be seen in Figure 2. Consequently, the
modal load is adjusted as:

q(t) = ΦTSp p(t) → q(t) = ΦTSp (η(t)) p(t) (4)

Here, η(t) is the water surface elevation near the structure. The principle is sketched in Figure 1.
The distribution of the load is derived as an inertia dominated load from a linear wave, given a
peak frequency and significant wave height matching the wave spectrum. The distribution is then
(with similarity to Wheeler stretching [14]) stretched such that it follows the surface elevation as
shown in Figure 1.

Sp (t)

a)

h (t)
Sp (t + Dt)

b)

h (t + Dt)

Figure 1: Principle of time varying load distribution. The spatial distribution Sp(t) is stretched by the information
from the wave gauge η(t).
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Augmented state

Now, since we wish to obtain an estimate on the input rather than the response, we expand
the state vector to include the load (referred to as augmented state vector). That is:

ζa(t) =

[
ζ(t)

p(t)

]
(5)

In Eq. (5), p(t) shall be interpreted as the load scalar function. The subscript a indicates augmented
state.

We assume that the augmented state equation in discrete form can be written for time step
k + 1 as:

ζa(k + 1) = Aa ζa(k) +

[
w(k)

γ(k)

]
(6)

Here, w(k) and γ(k) are the noise processes which account for discrepancies in the relation (more
about these later). The discrete state transition matrix Aa is written as:

Aa =

[
A B

0 I

]
(7)

where
A = e

Ac dt
, and B =

[
A− I

]
Ac

−1Bc (8)

Now we have defined the augmented state equation in discrete form and hence we can implement
the Kalman filter for a real-time input estimate.

Kalman filter

We assume that the load scalar p(k) remains constant during the time steps and that variations
are caused only by a stochastic process also known as a random walk. Hence:

p(k + 1) = p(k) + γ(k) (9)

Here, γ is assumed to be Gaussian.
Since the resolution of the mode shapes is greater than the number of sensors, we must define

the selection matrix. In general, we wish to link the measurement z(k) to the system state ζ(k).
Since only accelerations are measured, the state observation equation reduces to (in discrete form):

z(k) =
[
−Sa Φ Ω2 −Sa Φ Γ Sa Φ ΦTSp(η(k))

]
ζa(k) + v(k) (10)

The selection matrix Sa is a matrix that picks the degrees of freedom (DOFs) which coincide with

the sensors. For example, sensor 1 coincides with DOF 8 and sensor 2 with DOF 7. This yields:

Sa =




0 0 0 0 0 0 0 1 . . .
0 0 0 0 0 0 1 0 . . .
...

. . .



nsensors×nDOF

(11)
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An important ingredient for the Kalman filter algorithm is the error covariance matrices (noise
models). In lack of information, we often assume that the noise processes are Gaussian and mutually
uncorrelated. Hence for the augmented error covariance matrix (with single loading) we get:

E

{[
w(k)

γ(k)

]
[
wT (k) γ(k)

]}
=

[
Q 0

0 S

]
δkl (12)

Here, δkl is the Kronecker delta to ensure that the covariance matrix remains diagonal. We will
assume a constant value in the system error covariance matrix Q.

In Eq. (9) we have defined the load as a Gaussian random walk. In order to capture any
sharp variation in the load, the associated error covariance S must be increased. Several power of
magnitude is needed compared to the values in Q and R.

The measurement noise is also assumed to provide an error covariance matrix with constant
values on the diagonal. That is:

E

{[
v(k)

] [
vT (k)

]}
=
[
R
]
δkl (13)

The remaining part of the algorithm follows the general linear Kalman filter, but with an update
in state matrices for each time step given the wave gauge measurements. [15]

3. Experiment

An experiment campaign was conducted at the wave flume facility at LASIF, Marseille Uni-
versity in France, 2018. The laboratory framework covers a bottom-fixed mono-pile structure
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Figure 2: Experimental setup. a) shows the side view cross section including the overall dimensions of the model,
b) indicates the sensor position and direction, c) shows a picture from the experiment. Dimensions are in mm. The
figure is taken from [16].
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subjected to wave loading. Although the model does not descend from any physical (full scale)
counterpart, it is roughly scalable as 1/100 given the conditions in the North Sea. The model with
key dimensions is shown in Figure 2. The pile is made from hollow sections leaving the inside dry
at all times. The sections are bolted together through internal flanges. The model is made from
plexiglass and equipped with 16 uniaxial accelerometers (Brüel & Kjær type 4508-B 100mV/g).
Eight of these are facing the incoming waves (red), and eight are facing the transverse direction
(blue) as indicated in Figure 2 b). A wave gauge is installed to monitor the surface elevation near
the structure. It is positioned at the front of the pile with a transverse offset of 200 mm from the
pile centre. The model is attached to an ATI load cell which captures the global loading on the
system including dynamic amplification. This is used for verification purposes only. The dynamic
characteristics may be seen in Table 1.

A unidirectional random sea is released towards the structure from the front, and the corre-
sponding vibrations are captured by the sensors along with the surface elevation of the passing
waves.

Wave Spectrum

The waves are created as a series of random waves generated from a JONSWAP (Joint North
Sea Wave Project) wave spectrum. A sample of the wave train is shown in Figure 3 along with the
spectrum. The structure is tested for 20 minutes at a sampling rate of 1024 Hz. The spectrum is
made using the Welch averaging technique with segments of 32 s and a 50 % overlap [17].
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Figure 3: Random sea state: a) shows the wave spectrum of the random waves measured from a wave gauge in close
proximity to the pile. b) shows a sample of the unfiltered wave gauge time signal. The significant wave height is
calculated as the mean of the 1/3 highest waves using zero down-crossing separation.

Acceleration Spectrum

As a consequence of the random waves, the structure will initiate some vibrations. The vibra-
tions are shown in Figure 4 in both the frequency domain and the time domain. The frequency
domain representation is made using the Welch averaging technique with segments of 32s and a
50% overlap. The spectra from the 16 accelerometers are decomposed into singular values and the
three most significant are shown.

From Table 1 and Figure 3 a) we note that the natural frequency of the structure is well above
the main frequency content of the waves and thus expect the response to be mainly quasi-static.
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Figure 4: Structural accelerations: a) shows the acceleration spectrum in terms of the singular values [18]. Only
the three most significant singular values are shown in descending order. b) shows a sample of the corresponding
(unfiltered) accelerations for sensor 9 during the random sea. Sensor 9 is positioned above the water level and is
facing the incoming waves.

When we examine the frequency content of the accelerations shown in Figure 4 a), we see how the
wave peak frequency fp is scattered between 1.0fp and 2.5fp. The second thing that appears is
how the natural frequency is represented in the response at approximately 8.4 Hz. The remaining
modes between 35 and 50 Hz are barely visible in the signal.

From the acceleration spectrum in Figure 4 a) it is noted that cross vibrations are present
during the experiment as the second singular value near 8.6Hz corresponds to the first bending
mode in the transverse direction. See also Table 1.

Modal Analysis

The acceleration spectrum generated from the one-directional random waves yields a poor basis
for operational modal analysis (OMA). Instead, the OMA is based on additional loading, either
by including wind or brush strokes by the testing team. The modal analysis is omitted from this
paper and the reader may refer to [16] for further details. The first five modes are summarized in
Table 1.

Table 1: Estimated modal parameters. See [16] for more details.

Natural frequency Damping ratio Comment on mode shape
fn [Hz] ξn [%]

8.37 3.7 First bending mode
8.66 3.5 First bending mode, transverse direction
37.6 4.9 Second bending mode
40.3 3.7 First torsional mode
47.0 4.4 Second bending, transverse direction

The experimental mode shapes are scaled and expanded using a surrogate FE model such that
the full field deformation of the structure can be estimated. The effect of the hydrodynamic added
mass is included as a non-structural mass that only affects the horizontal inertia and not the
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Figure 5: Global loading: a) shows the load spectrum (moment) during the random sea. Red is the estimated load
while black is measured by the load cell. b) shows a sample of the corresponding time signal. The load cell data is
low-pass filtered at 50 Hz.

torsional. The added mass is included in the updated FE model and is mainly used to scale the
mode shapes.

Wave Loading

The global loading on the structure is measured by a load cell at the base. The load cell
measures all six degrees of freedom, but we shall confine ourselves to the overturning moment in
the direction of the waves. Once again, the spectrum is computed by means of Welch averaging
with segments of 32s and a 50% overlap, and shown in Figure 5 a). The data from the load cell
is contaminated by harmonic noise at 50Hz. Hence the data shown in Figure 5 has been low-pass
filtered to compensate for this. When comparing the time signal in Figure 5 b) and Figure 3 b),
we see that the structure experiences the maximum loading before the apparent wave reaches its
maximum crest height. When examining the spectrum in Figure 5 a), it is seen that the resonant
frequency of the structure is repeated in the reaction forces. This is due to the dynamic interaction
between the loading and the system.

4. Results

During random sea, the structural accelerations and wave gauge measurements are recorded
and fed into the algorithm. The algorithm then provides a real-time estimate on the wave load
(red). The estimated wave load is compared to the measurements from the load cell at the base
(black). The comparison is shown in Figure 5 in terms of the overturning moment. We see that
the overall trend is captured through the indirect method, although some discrepancies are seen:

When examining the load spectra in Figure 5 a), we see that the estimated spectrum includes
some low frequency content that is not seen by the load cell. We expect that this is a result from
the performance of the accelerometers at low frequency (< 0.5Hz).

Next, we observe how the energy is less near the resonant frequency of 8.4Hz. We recall the
objective of the algorithm which is to identify the input, i.e. the wave loading, while it should
omit any dynamic amplification from the structure. Since the peak at 8.4Hz represents a dynamic
amplification from the first mode, it also represents a flaw in the identification algorithm as it
should not have been represented.
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In Figure 5 b), a comparison is made between the estimated input (wave load) and the measured
reaction force in the time domain. Again, since the measured force includes the dynamics of the
structure and the estimates do not, it is not completely comparable. However, since the primary
part of the response is of a quasi-static nature, the difference should be limited and we will not
pursue to adjust for this.

When using a real-time algorithm as presented in this paper, it is common to encounter a
phase shift in the estimate compared to the measured. Note that the result shown in Figure 5 b)
is adjusted for this by an offset of 0.09s.

5. Discussion

When applying this type of Kalman filter approach for load identification, it is a challenge
when only accelerations are available as the state estimates are likely to drift. Filtering and
detrending may improve this issue. As an alternative, one can convert an accelerometer into a
pseudo displacement sensor through integration in the frequency domain, however, this makes the
real-time implementation more challenging.

The performance of the Kalman filter is dependent on the tuning of the noise models, i.e. the
error covariance matrices in Eq. (12) and Eq. (13). The parameters chosen for this study are as
follows:

Q
ii
∼ 100, S ∼ 109 and R

ii
∼ 10 (14)

We admit that access to the measured load is very convenient when tuning these parameters for
the Kalman filter.

In Eq. (4), we have assumed that the spatial distribution is constant in time apart from the
stretching. This is a crude simplification for a random sea as waves with shorter wavelengths will
concentrate the load near the surface and vise versa. The spatial distribution could also have been
refined in such way that it adds a contribution from a drag dominated scenario and an inertia
dominated scenario. This has not been pursued in this paper. In the event that wave breaking
or slamming occur near the structure, the frequency content of the accelerations is expected to
broaden and hence yield modal activity from higher modes. In order to estimate these loads, more
modes are likely needed and possibly another local load model for the impact area. This will be
the focus for future study.

6. Conclusion

Through this study, we have experienced the challenges associated with both indirect and di-
rect measurements of wave loading when dealing with both quasi-static and dynamic response.
Although challenges remain, we have demonstrated the feasibility of indirect estimation of wave
loads on a structure during random seas. The results are based on experimental system identifica-
tion (OMA) and driven by acceleration measurements. Through simultaneous monitoring of the
surrounding sea, the wave loading was constrained to the wetted area of the structure.

We have examined a scenario where the natural frequency of the structure is well above the
wave peak frequency. This yields a high portion of quasi-static response. Note that for actual
offshore installations, the frequency gap between the peak wave and the structure may be smaller
and thus the dynamic response may be larger, e.g. the Valdemar platform in the North Sea, [19].
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Chapter 13

Wave load distribution

Paper VII

"Estimating wave load distribution from structural response"

Michael Vigsø and Christos Georgakis
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This chapter presents a detailed study of wave load (spatial) distribution dur-
ing regular wave loading on a flexible structure. The author has performed the
ideation, experiments, analysis and the writing of the paper. The paper has
been formatted with minor grammatical adjustments to suit this thesis.

153





Estimating wave load distribution from structural response

Michael Vigsøa,∗, Christos Georgakisa

aAarhus University, Inge Lehmanns Gade 10, 8000 Aarhus, Denmark

Abstract

Wave loading of offshore structures such as oil rigs and wind turbines are governing for the design
of these structures. Since the environmental conditions may change during the lifetime, it is of
great interest to evaluate the loads which the structure is exposed to at its current state. Since
direct measurements of the loads are often not feasible, operators must rely on indirect methods
like vibrations based load identification. In the field of indirect measurements, predicting the
distribution of the loading is crucial in determining the magnitude. This paper will focus on this
task. By analyzing the response from a miniature platform in a wave flume, a method for mapping
the load distribution caused by regular wave loads is outlined. Using the output-only system
identification from acceleration measurements of the structure, it is evaluated how accurate the
load distribution can be predicted. In the experiment, the load distribution is estimated using both
indirect methods (vibration-based) and ”direct” methods using a roving set of pressure sensors.

Keywords: Load identification, Pressure distribution, Fluid-structure interaction, Operational
modal analysis

1. Introduction

Since structural health monitoring was introduced to the offshore industry in the mid 70s,
[1–3] state of the art has undergone major advances. Currently, it has become industry practice
to monitor offshore structures on a continuous basis. The primary reason for this monitoring is
health assessment / damage detection and also estimating the fatigue damage accumulation [4–7].
These are used for inspection planning and may in principle extend the operational lifetime of the
structures. Since the structures often are monitored in terms of response, it is appealing to use
this data to evaluate whether the loads, which the structure was designed against, is valid for the
actual in-place conditions.

Indirect methods for evaluating the wave loads (on fixed structures) are seen on a couple of
occasions in the literature. For instance, Jensen et al. [8, 9] studied the use of ARMA models for
identifying wave loads on a cantilever. They assumed that the system could be equivalised as a
single-degree-of-freedom system and compared the estimates with analytical results. Maes et al.
[10] studied the impulsive loads from breaking waves on a monopile. They used the joint input-
state algorithm, [11] and pressure sensors to locally derive the pressure distribution in the splash
zone. Vigsø et al. [12, 13] conducted wave flume tests where the wave load spatial distribution was

∗Corresponding author
Email addresses: mvigso@eng.au.dk (Michael Vigsø ), cg@eng.au.dk (Christos Georgakis)

Submitted to Ocean Engineering
This paper has been formatted to suit this thesis November 2019

155



estimated by merging linear wave theory with wave gauge measurements. Fallais et al. [14] and
Perisic et al. [15] did similar research, on a monopile structure, but in a numerical framework. They
assumed that the spatial distribution was a known quantity. Generally, for indirect measurements,
knowing the spatial distribution is paramount to the success of recreating the input force.

This paper extends the work in indirect measurements of wave loads on offshore structures.
Based on a physical experiment conducted in a wave flume at LASIF in Marseille, it is shown how
the structural response can be used to derive, not only the phase and magnitude of the load, but
also estimate its spatial distribution. We will analyze the response of a miniature structure with
similarities to monopile structures in the North Sea. The geometry and dynamic behavior of the
structure are causing interaction effects, which makes current load models such as the Morrison
equation invalid. The paper will start by outlining the theory of indirect measurements, then
followed by the results of direct measurements and in the end, a comparison between the estimated
and the measured load will be shown. The study will focus on regular wave loading with coupling
effects between the fluid and structure. The direct measurements of the load are done by pressure
sensors and a load cell. Due to a limited set of sensors, the approach in mapping the pressure
distribution will be based on repetitions where the pressure sensors are repositioned. Since the test
focuses on regular waves, and thus the steady-state response, the variations can then be averaged
to obtain the full pressure field.

2. Theory

Different approaches exist in indirect load identification, both in the frequency domain and
in the time domain. Since the aim of this paper is to analyze the steady-state response, it is
convenient to tackle this problem in the frequency domain. We will hence rely on one of the first
known methods, which was developed for load identification for military helicopters [16–18]. We
start out by assuming that the response from the system will be a linear relations such that

Y (ω) = H(ω) F (ω) (1)

here, Y (ω) is the system response, H(ω) is the frequency response function and F (ω) is the load,
all represented in the frequency domain. The response is measured by the accelerometers, and the
frequency response function is estimated from the modal testing. That leaves the load as the only
unknown in this relation, which then can be estimated using inverse methods. Before doing so,
we need to establish a frequency response function. From Operational Modal Analysis (OMA), we
obtain the modal parameters: mode shapes, damping ratio and natural frequencies. These can be
used to synthesize a response function using the modal superposition:

H(ω) =
N∑

r=1

Qrφrφr
T

jω − λr
+
Q∗r φr

∗φrH

jω − λ∗r
(2)

here, φr is the mode shape vector, Qr is a scaling constant, λr is the complex pole, all for mode

r. Superscript ∗ and H means the complex conjugate and Hermitian transpose respectively. The
poles, λr can be written as

λr = −ζrωr ± jωr
√

1− ζr 2 (3)

here, ζr is the damping ratio and ωr is the natural frequency, both for mode r. The scaling constant
Qr is obtained as

Qr =
1

j 2ωdrmr
(4)
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where, mr is the modal mass and ωdr is the damped natural frequency.
Simply pre-multiplying by the inverse response function in Eq. (1) has shown to yield poor

estimates on the load [19–22]. This is due to high sensitivity from truncation errors and singularity
issues at some frequencies. Now, if a loading scenario constrains the estimation process, it makes
the process more stable. If we say that the system is subjected to a single load source, it is
convenient to separate the load into a spatial distribution and an associate scaling function.

Y (ω) = H(ω) Sp g(ω) (5)

here, Sp is a time invariant spatial distribution of the load and g(ω) is the corresponding scaling
function. When making this formulation, it is essential to note that the distribution is not changing
in time, although it can scale to zero.

2.1. Procedure for determining the load distribution

Next, the procedure for predicting the load distribution is outlined. The concept is adopted
from [23]. We expect the structure to be inertia dominated, i.e. the maximum and minimum load
will appear around the wave zero crossings and, thus, making the assumption on a time-invariant
distribution more valid. The procedure is based on systematic guesswork (evaluating a set of likely
scenarios) as indicated by the flowchart below.

guess Sp (6)

Evaluate the product between the response function and the spatial distribution

c(ω) = H(ω) Sp (7)

The expression is substituted into Eq, (5) and solved for the scaling constant g(ω) in a
least square manner:

ĝ(ω) = c(ω)†Y (ω) (8)

In order to evaluate the quality of the guess, the response is synthesize using the estimated
distributed and scaling:

Ŷ (ω) = H(ω) Sp ĝ(ω) (9)

Compare the synthesized response with the measured response and assess the error.

ε
(
Ŷ (ω), Y (ω)

)
(10)

Change Sp until a minimum error is achieved or all likely scenarios are evaluated.

here, ε is an error function between the two signals. For this implementation, the Root Mean
Square (RMS) error is used in the time domain. We will return to the actual distributions and
results in Section 5.
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3. Experimental setup

An experiment campaign was conducted in April 2018 at LASIF (Large Air-Sea Interaction
Facility) in Marseille. In the wave flume, a bottom-fixed monopile structure with a box girder
topside is positioned. The model, which is flexible, is characterized by having a low mass ratio
and a large diameter to wavelength ratio. These combined are expected to yield interaction effects
which are hard to predict through analytical methods. The literature on the experimental study
of wave load distributions on flexible models is limited. Luhar and Nepf [24] did research in this
area, but the dynamics and scale were much different from what is presented in this study as they
analyzed seabed vegetation, which engages large deflections. Paulsen and Bredmose et al. [25, 26]
studied the wave loads on bottom fixed flexible models similar to this current paper, yet their main
focus was the total loading rather than the distribution. Many sources have worked on the dynamic
pressure distribution on a cylinder caused by wave diffraction, for example, Neelamani et al. [27]
or Akyuldiz [28], but these were focusing a rigid structural system. Marine risers, which are very
flexible in nature, are often studied with regards to vortex shedding, e.g. [29, 30]. These structures,
however, have a different static system as they are fixed in either both ends or suspended from the
top.

Due to the nature of the problem, it is not straightforward to measure the loads directly, when
interaction effects occur. This may be why limited experimental work has been carried out in the
past. Methods for estimating the effect from a weak coupling on linear systems are seen in [31],
where a generalization to the Morison equation is implemented by the relative movement between
the fluid and the structure.
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Figure 1: Experimental setup. The figure is a modified reprint taken from [32]. a) shows the overall dimensions of
the model (Measurements in mm). b) shows the accelerometer location. c) shows a photo from the experiment prior
to water filling.
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Figure 2: The sketch is showing the pressure sensor array. The section contains 24 mounting holes, eight of which
are used at a time. Dummy sensors are installed at slots not used.

3.1. The model

The pile is hollow, circular and made from plexiglass material. The pile remains dry on the
inside during the experiment, and this is mainly due to sensor concern. A picture from the ex-
periment can be seen in Figure 1 along with the overall dimensions of the model. As seen, the
pile is built from a set of identical 200mm sections which are bolted together through internal
flanges. This makes the sensor installation more manageable, but it also serves another purpose
as one section of the pile is made a little different compared to the rest. As seen in Figure 2, this
section is perforated such that pressure sensors can be inserted. An array of eight pressure sensors
(Kulite XTL-190SM 60mV/bar) are placed at 45◦ intervals. The section has more holes than sen-
sors available, and dummies hence blind the unused holes. The model can then be disassembled
and the section containing the pressure sensors can be moved up and down as the wave tests are
repeated. Once averaging, this provides the full field pressure map during regular waves.

In order to measure the structural response, the model is equipped with 16 uni-axial accelerom-
eters (Brüel & Kjær 4508-B 100mV/g). Eight of these are facing the incoming wave and eight are
facing in the transverse direction. It may be seen from Figure 1 that nine sensors are positioned
inside the pile of the model while the remaining seven are positioned at the corners of the topside.
For offshore structures, sensor installation below the sea level is uncommon due to maintenance
and accessibility on installation.

At the very base, the model is attached to a six-DOF force transducer (ATI Mini-58), which
then can measure the global reaction forces. The force transducer is based on strain gauges, i.e.,
the load is derived from relative movements between the structure and the base.

In front of the pile, a wave gauge is positioned. The wave gauge will give information on the
water surface and allow for segmenting the measurement from individual waves.

3.2. The flume

The laboratory facility at the campus of Luminy in Marseille hosts a 40m long wave flume.
The flume is 2.6m wide and allows for a water depth of 0.9m. The waves are generated from
one end by a piston-type wavemaker. In the opposite end, the waves are passively absorbed by a
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permeable beach. The model is placed at approximately 30m from the wavemaker in the center of
the flume. During the experiments, the water temperature was 12◦C while the room temperature
was at 19◦C.

3.3. The tests

The experiment is conducted as a series of repetitive sets which, in the end, is combined to a
single conclusion. The tests related to this paper can be grouped into two categories: 1) regular
waves and 2) random loading. The random loading should not be confused with random sea state.
It is generated by the testing team by brush strokes to any part of the structure above water level.
Meanwhile, as the person supplying the brush strokes is standing in waders next to the model,
this generates also some activity in the waters. The response from this exercise is used for system
identification, i.e., Operational Modal Analysis [33]. The paper, [32], describes in detail the modal
identification process and how the modal parameters changed as the flume was filled with water.

The tests regarding the regular waves will be used for load identification. Due to a limited
set of pressure sensors, the model must be reconfigured in order to map the full pressure field.
This consequently means that the model is build to one configuration, then after a series of wave
tests, the model is extracted from the flume, rebuild and then reinserted into the flume for more
tests. This is then repeated until sufficient resolution is obtained for the pressure distribution.
Between each test, OMA is again performed to ensure that the dynamic properties are not altered
unacceptable. The OMA tests each had a duration of 300s, which corresponds to approximately
2400 times the first natural period.

For each build configuration, two tests of regular waves were conducted. Each test was simulated
for approximately 300s. During the tests, pressure sensors, force transducer and accelerometers
were sampling at 2048Hz while the wave gauge was measuring at 1024Hz.

3.4. The wave of interest

The wavemaker generates a sinusoidal wave train with a frequency of 0.6Hz and a wave height
of 7cm. What was obtained in the flume is shown in Figure 3. The figure shows the average wave
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Figure 3: Average wave profile including the uncertainty bound of twice the standard deviation, ± 2σ. The figure
is generated from 1445 waves using the zero-down crossing. Waves with period outliers have been removed prior to
the analysis.
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Table 1: Characteristic wave.

Parameter Symbol Value Unit

Average water level d 0.89 m
Average wave height H 0.069 m
Average wave length λ 3.88 m
Average wave period T 1.67 s
Average wave (crest) amplitude a 0.037 m
Wave number k 1.62 m−1

Relative wave steepness H/λ 0.018 -
Relative wave height H/d 0.078 -
Relative wave length λ/d 4.36 -
Incident wave length and cylinder diameter ratio λ/D 25.9 -
Structure mass / displaced mass ratio 0.31 -

profile when waves are separated through zero-down crossing. Only waves at a wave period of
± 2% of the average are stored for analysis. Likewise are waves with outlying amplitude omitted.
When looking at the average wave profile shown in Figure 3, we note a small asymmetry around
the mean water level yielding a wider trough and a steeper crest. The wave parameters can be
seen in Table 1.

4. Direct measurements

This section contains the methodology and results for ”direct” mapping the load distribution.
Recall that the purpose is to estimate the distribution through indirect methods, and hence, the
outcome of this section shall be used for comparison and verification purposes.
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Figure 4: Average mudline loads recorded by the load cell including the uncertainty bound of twice the standard
deviation, ± 2σ.
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4.1. Force transducer

First, the measurements obtained from the force transducer will be analyzed. As the regular
waves are passing the structure, the reaction forces are measured by the load cell. The data is
segmented into individual waves and averaged. The result is shown in Figure 4 in terms of shear
force and overturning moment. The data is composed from all tests combined and lowpass filtered
at 50Hz. The maximum load is achieved at a wave phase angle of 1.07π (i.e. close to the wave
zero-up crossing) indicating that the structure is likely inertia dominated.

4.2. Pressure sensors

The measurements obtained from the pressure sensors can be used to derive a load distribution,
given by the difference in pressure on the front and backside of the pile. If the pressure is integrated
over the entire wet surface of the pile, this yields the total wave loads. Since the number of pressure
sensors is limited, this will be done stepwise: The pressure sensors are placed in an array covering
360 degrees of the pile at 45-degree intervals. During the regular wave tests, the average pressure
variation is thus obtained at a given depth. The pressure from such an exercise can be seen in
Figure 5, where the pressure has been interpolated between the sensors. The figure shows the
pressure at a constant depth at four different phases of the average wave.

The corresponding line load at this depth is calculated by circumferential integration:

fy(z, t) =

∫ 2π

0
p(z, t, α)r cosα dα (11)

fx(z, t) =

∫ 2π

0
p(z, t, α)r sinα dα (12)

here, fy(z, t) is the resulting line load in y direction [N/m], i.e. acting in the direction of the wave
and fx(z, t) is the resulting line load in the transverse direction. p(z, t, α) is the absolute pressure
as a function of depth, time and angle, r is the pile radius and α is the angular offset as defined in
Figure 2.

The section containing the pressure sensors is now moved up or down, and the test is repeated.
Once combined, the load distribution from the waves can be found. Figure 6 shows the pressures
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Figure 5: Average pressure variations during the passing of a wave including the uncertainty bound of twice the
standard deviation, ± 2σ. The pressure is measured at a constant depth near the surface. The scale indicates
pressure in terms of mm water column. The solid black line indicates the static pressure at still water. Interpolation
is performed using a spline function.
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at different depths at a given phase angle. The phase shown corresponds to the time of maximum
loading. In the right-hand side of the figure, the model is sketched and shows where six different
levels are evaluated.

The obtained line load is shown in Figure 7 again at the time of maximum loading. Here the
load at the base of the structure has been assumed as a fraction of the nearest measurement. A
fraction of 0.9 is used. The line load obtained from the pressure integration is compared with
estimates from linear wave theory and the Morison equation [34]. Note that the characteristic
wave has a steepness which borderlines the validity range for linear theory, yet the result is shown
for reference.

A deviation between the integrated pressure and the analytical result from the Morison equation
is evident. As the line load from the analytical approach keeps increasing near the surface, the load
measured from the pressure sensors decreases. This effect can be attributed to the fluid-structure
interaction. As the structure experiences the highest vibration amplitude away from the floor, the
interaction effect also increases. This may also be seen directly from the pressure measurements
in Figure 6. If we compare the pressure at z/d = 0.88 and z/d = 0.99, we see that the restoring
pressure on the aft side of the pile is increased near the surface while the driving pressure is nearly
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Figure 6: Pressure distribution at maximum loading. Four selected positions are shown on the left-hand side with
the mean pressure distribution and an uncertainty bound of twice the standard deviation, ± 2σ. Here, the pressure
has been normalized to zero pressure at still water level, and the scale consequently shows the absolute variation in
mm water column. The right-hand side shows the corresponding surface elevation. Note that the surface elevation
has been scaled by a factor 4.
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Figure 7: Load distribution calculated from the integrated pressure and shown with linear interpolation at the time
of maximum loading. An uncertainty band of ±σ is shown in grey. The dashed line indicates the theoretical wave
loading using linear wave theory and the Morison equation (Cd = 1.3 and Cm = 1.9). Note that the surface elevation
has been scaled by a factor 4.

unchanged. This naturally generates a reduced line load. This result is rarely reported for this
type of structures, although similar near-surface pressure drop seen in cases of sloshing in flexible
container walls [35].

The loads in the transverse direction are subjected to high scatter and do not pose any interest
for the future study. We hence aim our attention at the loads parallel to the wave, that is the
’y’ direction. The line load is consequently integrated over the wet surface of the model and a
global load is derived from pressure sensors and thus making it comparable with the readings from
the load cell. The result is shown in Figure 8. Again we note that the maximum loading occurs
near the time of zero-up crossing, which indicates inertia dominated loading scenario. It is seen
that the scatter in the total load is higher compared to what is measured by the load cell, but the
phase, amplitude and point of attack are in good correlation. Here the line load has been linearly
extrapolated to the water surface when needed. A comparison of the estimated point of attack
during maximum positive and negative wave loading is summarized in Table 3 in Section 6.
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Figure 8: Average mudline loads estimated by integrating the pressure. An uncertainty band of ±σ is shown in grey
(Calculated as a sum of uncorrelated variables).

5. Indirect measurements

Now we turn to the indirect estimates. This approach involves a couple of pre-steps before a
result can be obtained. We start by noticing that the FRF matrix expressed by Eq. (2) is based
on the structural displacements (also known as receptance or dynamic flexibility) and whilst the
response is measured in terms of accelerations these must be converted to accommodate the basis
of the FRF matrix. The accelerations can be converted to displacements through integration in
the frequency domain.

y(t) ≈ F−1
(F (a(t))

−ω2

)
(13)

where F(·) is the Fourier transform, F−1(·) is the inverse Fourier transform, a(t) contains the
accelerations and y(t) holds the displacements. In practice, this operation requires a highpass filter
to avoid drift caused by noise near DC. Here a threshold of 0.5Hz is applied.

The response during wave action is shown in Figure 9. Here, the typical structural acceleration
response is shown for three passing waves. The figure shows the accelerations measured in the
forward-aft direction at approximately still water level. As seen, the structure yields vibration at
a higher frequency than the waves. This frequency corresponds to the first natural frequency of
the structure.

5.1. System identification

The response from the ’pseudo’ random loading can be used for the purpose of system identifi-
cation if we assume a stationary process. Operational modal analysis can be applied in this context
[33]. Many different identification techniques exist for this job, and any one of these can be used.
For this study, the time domain poly-reference technique is used. We will not go into details with
the method, but a general description is outlined so that the basic principle is clear.

The correlation function matrix is made from the response during random loading

R(τ) = E
[
y(t) yT (t+ τ)

]
(14)
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Figure 9: Forward-aft accelerations measured at the mean water line as indicated by the red arrow in the top-right
corner (Positive acceleration is in the aft direction). The figure shows the time series for three successive waves.
Oscillation at 8.4Hz is seen which corresponds to the first natural frequency of the structure. Note that the signal
has been decimated from 2048 to 128Hz.

These are treated as free decays of the system and the poly-reference technique by Vold [36] can
be applied. The block Hankel matrices are formed, and the autoregressive coefficients can be
obtained by a least-square approach. Finally, the AR coefficients are fed into a companion matrix
from which an eigenvalue decomposition grants the poles and mode shapes of the system. Please
see [32] for the detailed analysis.

Although OMA (in principle) does not require any artificial excitation of the structure and thus
being a very convenient method for modal testing, one major drawback persists. This drawback
concerns the scaling of the mode shapes and consequently the modal mass. Some methods exists
to overcome this issue experimentally e.g. [37, 38]. However, in the present study, a Finite Element
(FE) model is used to aid the scaling issue. The model is made from simple Bernoulli beam elements
and updated to reflect the behavior of the physical model. The FE model suits as a surrogate model
which can be used both for mass normalization and expansion of the experimentally obtained
mode shapes. The effect from the hydrodynamic added mass is included as a static contribution
to the translational degrees of freedom so that it does not affect the torsional modes [39]. The
hydrodynamic added damping is assumed to be included in the estimated modal damping and is
not processed further. The expansion makes it possible to interpolate the response between the
sensors, which yields a higher resolution during the load identification. The expansion is done using
the principles of SEREP [40] using five modes. The frequency response function is subsequently
established using the same five modes, i.e., the modes up till 60Hz, see e.g. Figure 14. The modal
parameters from the FE model and the OMA is summarized in Table 2.

Table 2: Modal parameters obtained from the FE model and the OMA.

Mode 1 2 3 4 5

FE frequency [Hz] 8.37 8.65 37.0 39.6 50.1
OMA frequency [Hz] 8.37 8.66 37.6 40.3 47.0
OMA damping [%] 2.7 2.1 4.9 3.7 4.4
Modal assurance criterum [41] [-] 0.99 0.99 0.96 0.91 0.87
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5.2. Result from an equivalent point load

We will now turn to the load identification process. The procedure outlined in Section 2.1 states
that the spatial distribution (Sp) must be guessed. We will open this guesswork by using a brute
force approach. It is hence assumed that the wave loading can be approximated as an equivalent
point load. Systematically, starting the bottom of the pile and moving upwards, we will make a
guess on the position of this point load. An error is evaluated from each guess, and the minimum
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Figure 10: Normalized error chart. Every point in the chart corresponds to the position of an equivalent point load.
The minimum error corresponds to the most likely point of attack. The estimates above the water level are included
for the sake of completeness, although these could have been filtered away beforehand.
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Figure 11: Average mudline loads estimated using the structural response (accelerations). An uncertainty band of
±σ is shown in grey. The result is based on an equivalent point load located at the 0.504m from the seabed. This
corresponds to the minimum error in Figure 10.
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error hence corresponds to the most likely position. Figure 10 shows the results from this. Here it
should be noted that the resolution of the model has been increased through the modal expansion,
thus allowing for interpolation between sensors. The wave load magnitude and phase can now be
obtained from the product between the spatial distribution and its corresponding scaling function.
The load is again averaged over one wave period, and the result is showed in Figure 11.

5.3. Result from distributed loads

The results from the equivalent point load showed a very distinct minimum at a distance of
0.504m from the bottom. The scenarios are now expanded to evaluate a series of distributed
loads. Four different distributions are evaluated. These are sketched in Figure 12 along with the
equivalent point load. All of the distributions span the area between the seabed and mean water
level. Distribution b) is a constant load over the entire water column which yields a centroid below
a). Distribution c) is a trapezium yielding the same centroid as the point load in a). Distribution
d) is a triangle which yields a centroid above a). Distribution e) is the result obtained from
the pressure sensors. This is included for reference only as the pattern is an unlikely guess. The
same procedure is carried out to evaluate if a more detailed load distribution can be foreseen in
this given study. The RMS errors are shown in Figure 13. As seen from the error bars, it is not
possible to definitive pick one distribution as a better alternative to the point load.

d

Wave direction

z

y
a) b) c) d) e)

Figure 12: Different load distributions. a) is the point load estimated from Figure 10. b) is a uniform distribution
over the wetted area. c) is a trapezium-shaped distribution with the same point of attack as in a). d) is a triangle
ranging from zero at the seabed to unity at mean water level. Finally, c) is the distribution obtained from the
pressure sensors in Figure 7.
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Figure 13: RMS error from different load distributions. For reference, the errors associated with the point loads in
Figure 10 are ranging between 7.2× 10−5 and 14× 10−5 m2 thus making all of these good candidates in comparison.

6. Discussion

The estimated variation in load during an averaged wave are evaluated using three different
approaches; force transducer, pressure integration and acceleration data. The estimates have
similar phase and amplitude although the scatter varies. The estimated point of attack during
the maximum loading is summarized in Table 3. Here we see that the loads are well in phase while
deviations of ±4% exists on the estimated point of attack. For the indirect method, it was assumed
that the spatial distribution is time-invariant. This may sound like a crude assumption considering
the wave runup during wave crest. However, since the structure is inertia dominated (maximum
loading at wave zero-crossing), it can be used as a reasonable estimate.

Table 3: Measured and calculated point of attack (PoA) for the three different approaches.

Max positive load Max negative load
Calculation PoA Phase PoA Phase

Load cell Mx(t)/Fy(t) 0.499 m 1.07π 0.472 m 1.94π

Pressure sensors
∫ d+η
0

fy(z, t) z dz/
∫ d+η
0

fy(z, t) dz 0.518 m 1.06π 0.500 m 1.95π
Accelerometers min(ε) 0.504 m 1.06π 0.504 m 1.92π

The loading obtained from the pressure sensors is based on several tests where the sensors are
moved around. In order to move the section containing the pressure sensors, the model needs to
be disassembled and rebuild into a new configuration. This alteration causes deviations in the
dynamics of the model, which may cause uncertainty to the results. It has been assumed that
this effect is neglectable for the purpose of measuring the pressure field. In order to quantify the
deviations between each build operational modal analysis was conducted each time the model was
reassembled. The scatter in natural frequency and damping estimates can be seen in Figure 14 for
each build. The clusters within each build are obtained by a sliding bandpass filter in the frequency
domain. System identification is performed as the filter moves. The estimates are filtered and sorted
according to the modal assurance criterium [41]. Note that only sensors attached to the topside
are kept once the model was disassembled the first time.
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Figure 14: Cluster diagram of identified modal parameters. The z/d value in the legend indicates the relative position
of the pressure sensors. Note that build configuration number two was not subjected to random loading, thus modal
parameters are not available. The mode shapes shown in the corner are taken from the FE model.

7. Conclusion and future work

In this paper, we have studied the wave load distribution from regular wave loading on a flexible
structure. This study was based on the axiom that ”all good comes to those who average.” A finite
amount of pressure sensors was prohibiting a detailed mapping of the pressure field around the
structure during the waves. This was remedied by a roving group of sensors and repetitions of
the test which allowed for an averaged result. The pressure was integrated to yield a line load
distribution and a total load caused during one wave period. The result from this was compared
with the measurements from a force transducer at the base, and the result showed good agreement.

It was found that due to the coupling between the structure and the waves, traditional methods
for evaluating the loads were inadequate. Instead, a different approach using indirect methods
was evaluated. By using the structure accelerations, an equivalent point load was estimated.
Both the location and amplitude of the estimated load were in good agreement with the direct
measurements. It was evaluated whether a more detailed load distribution could be obtained from
the indirect method; however, for this experimental setup, this was not possible. In the end,
the effect from noise, modelling and truncation errors made it difficult to distinguish between the
presented distributions. Although the indirect method gave good result in terms of the averaged
variation, the scatter obtained is more significant compared to the direct measurements.

The results from pressure sensor integration are also subjected to scattering compared to the
load cell. Small misalignments between test repetitions could be masking local effects from the in-
teraction, so to instead PIV (Particle Image Velocimetry) or DIC (Digital Image Correlation) could
have been an alternative approach. This, however, requires a substantially different experimental
setup.

The model was constructed in segments which allowed for sensor installation at any point
desirable. But with this, many sources of non-linearities are likewise introduced. If the model
could be simplified, it would reduce the amount of uncertainty in the study. In addition, if a fixed
model could be analyzed in parallel, it could be used for verification of the influence of flexibility.
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Abstract

Load effects from breaking waves on offshore structures may be a driving point for the design. It
is hence important to assess the likelihood of occurrence along the magnitude of the loads in the
event of an impact. Traditionally, loads are predicted using wave theory combined with a load
model such as the Morison. This paper features an alternative approach in determining the loads
from wave breaking. It is demonstrated how the structural response can be used for (indirectly)
estimating the magnitude of the loads caused by wave breaking. The theory is applied to an
experimental setup in a wave flume, where a flexible model is subjected to loads from breaking
waves. The dynamic properties are mapped using operational modal analysis and it is consequently
shown that the loads can be identified using the vibration measurements.

Keywords: Load identification, Breaking waves, Operational modal analysis

1. Introduction

Breaking waves may be a severe loading scenario for marine structures. Local pressures may
rise to extreme levels and, thus, drive the design of the structures. Unexpected, large, and breaking
waves is a frightening phenomenon to those at sea. History provides cases of fatal consequences,
for instance, the COSL Innovator in 2015 at the Troll field in Norway, where a large wave slammed
into the rig and caused severe damages and the death of one worker [1].

Now, much uncertainty exists when predicting the magnitude of the loads caused by breaking
waves. The type of wave breaking (plunging, spilling, collapsing, or surging) is the most critical
for the loads. However other things like air entrapment or fluid/structure interaction may also be
important for the load effects. When determining the loads from breaking waves one may seek
help from the guidelines by the Norske Veritas (DNV), which yields the possibility of adding a
slamming term to the Morison equation. The amplitude coefficients for the slamming load are
subjected to much disagreement among the community of fluid research. The estimates are most
often derived from laboratory experiments where scaling effects of unknown magnitude may alter
the application for large, deep water structures. Now, another approach is to monitor the response
of a structure. Using load identification techniques, it is then possible to decode the response and
thus obtaining an estimate on the external loads.

Allow this paper to showcase the principles of load identification in the context of breaking
waves. The theory used is already presented by Vigsø et al. [2–5], thus, leaving the main focus
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of this study to be application in the case of impulsive loads caused by the wave breaking. Load
identification from breaking waves has also been studied by Maes et al. [6] although they used
another method compared to what will be presented in this paper, [7]. They solved the inverse
problem in state space using a Kalman filter and pressure sensors were used to locally derive the
pressure distribution in the splash zone.

2. Theory

The method used in this study is referred to as ”transfer path analysis” or ”pseudo inverse
method” [8]. It operates in the frequency domain which means that the complete response history
must be recorded before the load identification can be performed. The theory for establishing the
load identification algorithm corresponds to the one given by Vigsø et al. [2]. We assume linear
behavior and establish a relation between the input and the output for any discrete frequency, also
known as a frequency response function (FRF).

Y (ω) = H(ω)F (ω) (1)

where, F (ω) is the load, H(ω) is the frequency response function, and Y (ω) is the response mea-
surements, all given in the frequency domain. Once the response function is established, its inverse
can be premultiplied to the response and, thus, leaving an estimate on the input. The inverse
operation is sensitive in nature and care must be taken to avoid unphysical estimates [3, 9]. To
mitigate, the load is first split into a spatial distribution Sp and a scaling function g(ω). Assuming
that only a single load source is present, we have:

F (ω) = Sp g(ω) (2)

Here, it is provided that the spatial distribution is time-independent. The expression for the load
is now substituted into Eq. (1) and an estimate for the scaling function is:

ĝ(ω) =
(
H(ω)Sp

)†
Y (ω) (3)

Finally, the load estimate is obtained as:

F̂ (ω) = Sp ĝ(ω) (4)

The spatial distribution of wave loading is complex when wave breaking is present. Different
components will be present at the same time i.e., inertia forces, drag forces, along with the slam-
ming. Many load models may be used in this case, but to simplify, we assume that the load is
effectively approximated as a concentrated point load near the mean water level.

3. Experimental setup

A cantilever plexiglass model is placed in a wave flume at the facilities at LASIF in Marseille.
Figure 1 shows a picture from the experimental setup. The pile of the model is Ø150 mm and the
topside measures 400× 200× 200mm. The mean water level in the tank is 900mm and the model
extends 585mm above the waterline. The model is equipped with 16 uniaxial accelerometers, where
eight are facing the incoming wave and the remaining eight are facing in the transverse direction.
The accelerometers are distributed along the inside of the pile and in the corners of the topside.
These are used for measuring the impact response of the structure and for system identification
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purposes. The accelerometers used are Brüel & Kjær type 4508-002 1000mV/g. The sensor layout
is sketched in Figure 2, but the reader may refer to [10], or [11] for the detailed description of the
model. A wave gauge is positioned next to the model such that the wave profile can be documented.
The model is placed on a six-DOF ATI load cell and fixed to the base of the flume. The load cell
is only used for verifying the estimated loads. The experiment is split into two consecutive stages;
system identification and later load identification from the breaking waves.

Figure 1: Pictures from the wave impact experiment. Picture a - f is given in chronological order and show the
structure before, during, and after the wave impact. The points a - f are also represented in Figure 3, which shows
the associated time history of the surface elevation.
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3.1. System identification

The frequency response function is synthesized from a set of modal parameters. The modal
parameters may be obtained from experimental system identification techniques. In this case, the
concepts of operational modal analysis (OMA) are utilized [12, 13]; Artificial random excitation
is hence applied (brush strokes to the structure and sloshing of the water) and the structural
acceleration response is recorded. The sampling rate is 2 kHz and the response is recorded for
15 minutes. The response spectrum is shown in Figure 2 in terms of singular values. The modes
are extracted using time-domain poly reference [14] using a sliding band-pass filter. The detailed
system identification procedure is given in paper [10]. By default, OMA does not yield any scaling
information on the mode shapes. This is important information for establishing the response
function. To mitigate this, a finite element (FE) model is established and updated. The FE model
will now aid the scaling and interpolation of the modes shapes obtained from the OMA.

Table 1: Modal parameters used in establishing the frequency response function with an uncertainty bound for each
parameter. The mode shapes are mass normalized yielding unity modal mass.

Mode 1 2 3 4 5

Natural frequency [Hz] ±2% 8.37 8.66 37.6 40.3 47.0
Damping ratio [%] ±40% 2.7 2.1 4.9 3.7 4.4
Modal mass [-] ±10% 1 1 1 1 1

Table 1 summarizes the modal parameters extracted from the data. We do acknowledge poles
in the spectra above 50 Hz, but the identification of the modes is unstable and a confident match
with the FE model is not possible. We, hence, truncate the response function to include modes
up till 50 Hz, which covers five. The modal parameters given in Table 1 are naturally subjected
to some variations/uncertainties. The consequences in load estimates due to an uncertain system
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Figure 2: Singular values of the spectral density from random loading. The four first singular values are shown. The
spectrum is computed using the Welsh averaging technique with a block size of 213 samples corresponding to four
seconds. The sketches in the upper right corner show the distribution of the sensors. Red are facing the incoming
wave and the blue are facing in transverse direction.
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Figure 3: Wave profile during the breaking wave impact. The surface elevation is measured by a wave gauge (WG)
located at the front of the pile with transverse offset of 20 cm as indicate in the top right corner. The points a - f
corresponds to the pictures given in Figure 1.

identification should instinctively be evaluated. The second column shows the span which we
assess should be evaluated. The FRF matrix is thus established for any combination and a load is
identified for each. This more computationally demanding, but it provides a valuable confidence
band around the load estimate.

3.2. Breaking wave

The wavemaker is set to generate a series of focused waves in order to provoke wave breaking.
The identification algorithm presumes no information on the type of waves and the details of the
wave generation is also omitted. The time history of the surface elevation may be seen in Figure 3.
The exact position of the wave gauge is at the pile front with a transverse centreline offset of 20
cm. This means that wave runup on the pile is not visible in the time history.

4. Results

Since the model is somewhat flexible, the input load will differ from the load measured by
the load cell at the base. I.e., when the model experiences an impulse, the model will afterward
oscillate at its natural frequencies. These oscillations are interpreted as external loads by the load
cell at the base. The estimated input load is thus immediately transferred to the base using the
FE model to provide an estimated reaction force. It is now possible to compare the estimated
reaction force to the measured reaction force. The comparison is given in Figure 4, which shows
the shear force and overturning moment. The solid black line provides the measurements from the
load cell while the grey area spans the indirect estimate given variations in the modal parameters.
Please be aware that the load cell data is unfiltered. This maintains the harmonic disturbance in
the signal at 50 Hz as seen by the ripples, especially in the shear force.

Firstly, we note that the overall trend is captured by the indirect method. The uncertainty in
modal parameters provides a range for the load estimate and it is seen that the estimate easily
varies with ±20% given our confidence in the system identification. The identification of the load
in the wake of the impulse is not as well determined. After the time of impact, the reaction force
estimate is much dominated by the properties of the FE model. If the transfer function between the
input forces and the reaction forces contains errors this yields more uncertainty to the conclusions.
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Figure 4: Identified mudline loads during wave impact. The solid black lines are the direct measurements from the
load cell while the grey areas indicate the estimates using the indirect method and accounting for the uncertainty in
the modal parameters.

5. Conclusion

We have applied a linear theory on a case that is likely nonlinear and shown that the load can
be indirectly approximated using the system response. A uncertainty bound on the load estimate
is shown. The uncertainty band originates from variations in the estimated modal parameters;
here the natural frequencies were varied by ±2%, the damping ratio was varied by ±40%, and
finally, the scaling of the mode shapes was varied by ±10%. Although it is not directly seen from
the presented results, the variations of the mode shape scaling showed the most significant effect
in the load estimate.
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