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Abstract

Fibre-reinforced composites and layered materials have a heterogeneous composition of two
or more constituents and have anisotropic material behaviour. This heterogeneous structure
enables numerous failure mechanisms. One of the dominant compressive failure mechanisms
of the latter composites is composed of so-called kink bands. These are bands of material
where the fibres inside the band have rotated relative to the fibres outside.

This dissertation mainly concerns the examination of kink band formation in fibre com-
posites and layered materials using several different methodologies. Five publications on
the latter topic have arisen based on the work done in this project. The four introductory
chapters in the dissertation are devoted to explanations and elaborations of the methods used
and developed during the project. Several finite element models are developed specifically to
examine either the peak strength of the composite or the post-buckling kink band behaviour.
Two novel constitutive formulations are developed that can be used in a general framework
to investigate the elastic-plastic behaviour of composites, including the study of kink bands.

The following results and conclusions are drawn from the project results. Compressive
kinking strength is affected by:

• Fibre-misalignments

• Insufficient fibre-to-matrix bonding

• Matrix yield strength

• Multi-axial loading

The stress at steady-state kink band broadening can be seen as the lower bound of the
compressive strength and is lowered by:

• Increasing band inclinations to a certain limit

• Decreasing matrix Poisson’s ratio

• Decreasing maximum tangent modulus of the matrix

As part of my visit to the Department of Engineering at the University of Cambridge,
contributions are made to the field of joint mechanics, particular regarding composites made
from ultra-high molecular weight polyethylene. The latter study is a secondary focus of
this dissertation. The research questions, problems, methodologies, results and conclusions
appear in an attached article.



Resumé

Fiberforstærkede kompositter og lagdelte materialer har en heterogen sammensætning af to
eller flere bestanddele og har en anisotropisk materialeopførsel. Denne heterogene struktur
muliggør adskillige fejlmekanismer. En af de dominerende fejlmekanismer i kompression for
sidstnævnte kompositter er ved såkaldte kinkbånd. Disse er bånd af materiale, hvor fibrene
inde i båndet har roteret relativt i forhold til fibrene udenfor.

Denne afhandling vedrører primært undersøgelsen af kinkbåndsformation i fiberkomposit-
ter og lagdelte materialer ved anvendelse af flere forskellige metoder. Fem publikationer om
sidstnævnte emne er opstået på baggrund af arbejdet i projektet. De fire indledende kapitler i
afhandlingen er afsat til forklaringer og uddybninger af de anvendte og udviklede metoder
under projektet. Der er udviklet adskillige finite element modeller, der er specielt designet til
at undersøge enten topstyrken eller post-buckling adfærden af kompositter. To nye konstitu-
tive formuleringer er udviklet, der kan anvendes til generelle formål ifm. undersøgelsen af
kompositters elastisk-plastiske adfærd, heriblandt undersøgelsen af kinkbånd.

Følgende resultater og konklusioner blev draget gennem projektet. Den kompressive
kinkbåndsstyrke påvirkes af:

• Vinkelimperfektioner af fibrene

• Utilstrækkelig binding mellem fiber og matrix

• Faldende matrix flydestyrke

• Multiaksial belastning

Spændingen ved kinkbåndsudvidelse kan ses som den nedre grænse af kompressionsstyrken
og sænkes ved:

• Stigende båndhældninger til en vis grænse

• Faldende matrix Poissons forhold

• Faldende maksimal tangentmodul for matrixen

Som en del af besøget ved ingeniørafdelingen ved Cambridge universitet blev der udført
forskning indenfor mekanikken for samlinger lavet af kompositter lavet af polyethylen med
ultrahøj molekylevægt. Sidstnævnte studie er et sekundært fokus ved denne afhandling.
Forskningsspørgsmålene, problemerne, metoderne, resultaterne og konklusionerne fremgår i
en vedhæftet artikel.
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Chapter 1

Introduction

Throughout human evolution,humans have striven to find the ideal materials for a given
application. During the prehistoric periods, the Stone Age, Bronze Age and Iron Age, humans
developed tools made from different materials to achieve desired properties such as increased
stiffness and strength.

In the modern world of structural mechanics efforts to find and develop new materials is
still ongoing and particularly materials with low density and high strength are desirable in
many applications. One way to achieve these properties is to make a composition of different
constituent materials, leading to the material term, composite materials. A composite material
is composed of two or more constituents on the macroscopic level i.e. the constituents can be
observed with the naked eye.

Besides high stiffness and low density it is possible to obtain other tailored properties that
are different from the properties of the individual constituents in their bulk form. Jones (1975)
identified some of the properties that can be improved: strength, stiffness, corrosion resistance,
wear resistance, attractiveness, weight, fatigue life, temperature-dependent behaviour, thermal
insulation, thermal conductivity and acoustical insulation.

One of the earliest uses of composite materials made by humans was wattle and daub,
which is a woven lattice of wooden strips embedded in clay (Shaffer, 2006). Wattle and
daub were initially used in the Neolithic era i.e. the late Stone Age. When talking about
composites today, concrete, glass- and fibre-reinforced polymer composites are among the
most widely known composite materials. Fibre-reinforced composites find wide application
and examples of industries where composites materials are used are shown in Fig. 1.1.

In the 1970s, fibre composites were used in aerospace and defence-related industries due
to their superior properties. Like many other technologies, the use of fibre composites in
everyday products was initially limited due to price. Today, prices are reduced and composites
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(a) (b)

(c) (d)

(e) (f)

Figure. 1.1 Examples of industries where composites are used. (a) TAHOE 700 Sport boat (b)
Bulletproof vest (c) F-35 Lightning II combat aircraft (d) Ferrari’s Formula one car 2018 (e) the
International Space Station (ISS) (f) Vestas 8 MW Wind turbine



3

150

75

5

1970 1985 1990 2004 2008

Rocket &
Aerospace

Sporting
goods

Industrial Automotive Wind Energy
Fuel cell

0

25

50

$
lb 106 lb

Consumption

Price

Figure. 1.2 Consumption of composites in million of pounds versus time, and price of composites in
dollars per pounds versus time. Shown in a reconstructed edition. Source: The University of Tennessee
Space Institute (https://www.utsi.edu/)

are increasingly used in the automotive, construction and sport-industries, as indicated in
Fig. 1.2, taken from the University of Tennessee Space Institute. The price of composites
is still relatively high due to the complexity of producing these materials e.g. laminated
structures composed of fibre plies are still mainly hand-laid.

Composite materials are divided into four categories:
• Fibre composites

• Laminated composites

• Particulate composites

• Combinations of the above
Fibre composites, as the name suggests, are composed of fibres embedded in a resin material
also known as a matrix. Laminated composites are materials composed of two or more
layers of material and can be composed of layers of the same material where the individual
layers have anisotropic properties e.g. carbon fibre laminated composites. A sandwich
structure is another example of a laminated composite. Particulate composites are composed
of particles of one or more materials embedded in a matrix material e.g. concrete or rocket
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propellants consisting of aluminium powder in polyurethane. The current dissertation focuses
on fibre composites and laminated composites (also known as layered materials).

As mentioned earlier, fibre-reinforced composites are widely used due to their high
strength and stiffness together with their low density. Most commonly, stiff and strong fibres
are embedded in a soft and ductile matrix material. Fibres in one layer are primarily oriented
in a given direction e.g. uni-directional fibre composites. In these materials, high stiffness is
only achieved in the direction of the fibres. Moreover, the high strength is mainly in tension
in the direction of the fibres. The strength in compression is often only 60% of the strength
in tension (Fleck, 1997). Many structures are prone to bending where the structure, and
therefore the material, is exposed to both tension and compression e.g. a wind turbine blade
that acts like a cantilever beam. Therefore, understanding how fibre-composites react to
compression is of great importance. The study of fibre composites on the micro-mechanical
level is rather complex due to the heterogeneous structure leading to anisotropic material
behaviour. The heterogeneities can lead to several different compressive failure mechanisms,
presented in the subsequent section.

1.1 Compressive failure modes

Compressive failure can occur due to the initiation of different mechanisms. Rosen (1965)
was one of the first to investigate the mechanism of compressive failure in fibre composites.
Fleck (1997) provided a thorough review of the different failure modes of fibre composites
prone to compressive loading in the direction of the fibres. In his work, he distinguishes
between six failure modes as presented in Fig. 1.3 and as described below:

a) Elastic micro-buckling is a shear buckling instability initially studied by Rosen
(1965).

b) Plastic micro-buckling or kink band formation is a plastic shear instability that occurs
with large shearing of the matrix and was initially studied by Argon (1972).

c) Fibre crushing is a failure of the fibres prior to matrix failure and can occur due to
several mechanisms, e.g. fibre yielding, longitudinal splitting and microscopic fibre
kinking.

d) Splitting is a fracture failure of the matrix along the fibres similar to the tensile mode
I cracking and was studied by Sammis and Ashby (1986).

e) Buckle-delamination is an out-of-plane buckling mode that is seen when a surface
layer has insufficient bonding and was studied by Hutchinson and Suo (1991).

f) Shear band formation is yielding of the matrix that occurs in a band oriented at
approximately at 45◦ with respect to the loading axis.
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Figure. 1.3 Failure modes in fibre composites under compressive loading. Shown in a reconstructed
edition (Fleck, 1997). (a) Elastic micro-buckling (b) Plastic micro-buckling (c) Fibre crushing (d)
Splitting (e) Buckle-delamination (f) Shear band formation
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Figure. 1.4 Compressive failure map showing three competing modes of failure. The failure map
has the axis of composite shear modulus G and the ratio between in-plane shear strength τy and fibre
misalignment φ0. Shown in a reconstructed edition (Fleck, 1997)

Fleck (1997) created several failure maps with appropriate axes to graphically observe the
competition between the different failure modes by using simple upper bound solutions for
the compressive failures. One of the failure maps constructed by Fleck (1997) is presented in
Fig. 1.4. The map has the in-plane composite shear modulus G as the first axis and the second
axis is the ratio between in-plane shear strength τy and fibre misalignment φ0. The two-
dimensional failure map distinguishes between three final failures: elastic micro-buckling,
plastic micro-buckling and fibre crushing. Material data for eight different carbon fibre-
reinforced composites is included in the map and for these materials, plastic micro-buckling
or kink band formation is the dominant mode of failure in compression. The following
section will further clarify the mechanisms of kink band formation.

1.2 Kink band formation

Kink band failure is also known as plastic micro-buckling or fibre kinking. In the current
dissertation, the failure will mainly be referred to as kink band formation. Two experiments
showing the formation of kink bands are shown in Fig. 1.5 for two different materials. Vogler
and Kyriakides (1997) considered the initiation and propagation of kink bands in a carbon
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(a) (b)

Figure. 1.5 Kink band formation in two different fibre composites. (a) AS4/PEEK composite (Vogler
and Kyriakides, 1997). (b) Cu/Nb nanolaminate composite (Nizolek et al., 2017).

fibre-reinforced PEEK composite shown in Fig. 1.5a. At the former stage, the kink band
width is approximately b ≈ 2000 µm: see Fig. 1.6. In an experiment conducted by Nizolek
et al. (2017) on a Cu/Nb nanolaminate composite, the kink band width is approximately
b ≈ 50 µm (Fig. 1.5b). The two orders of magnitude difference in kink band width is due
to the difference in fibre and layer sizes. Based on experimental findings (e.g. Fig. 1.5), an
idealised kink band geometry can be introduced, such as the one demonstrated in Fig. 1.6.
The idealised kink band geometry is composed of two material states: a kinked state and an
unkinked state. The kinked material, which is localised within a narrow band of width b,
has rotated an amount of φ relative to the base material. The localisation band is oriented at
angle β with respect to the x2-axis, as presented in the figure. The material state within the
kink band has undergone large shear straining.

One of the studies earliest studies in which kink band formation was observed was con-
ducted by Paterson and Weiss (1966) on a phyllite that is a type of foliated metamorphic rock.
In his early work, Rosen (1965) derived an analytical expression based on the compressive
bifurcation load of beams surrounded by an elastic matrix. He suggested two bifurcation
modes: a tension and a shear mode. The shear mode gave the lowest compressive strength
σ cr

11 at bifurcation and was equal to
σ

cr
11 = G (1.1)

where G is the in-plane elastic shear modulus of the composite. The estimate by Rosen
(1965) overpredicts the compressive strength (Lager and June, 1969). Experiments show
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Figure. 1.6 Idealised kink band geometry

compressive strengths down to 1/4 of the prediction by Rosen (1965). Later, Argon (1972)
suggested an upper bound solution concerning a composite with rigid plastic properties
in shear with a shear yield strength of τy. He showed that the compressive strength was
influenced by initial fibre misalignments equal to

σ
cr
11 =

τy

φ0
(1.2)

The estimate by Argon (1972) explains the knock-down in compressive strength compared
to the estimate by Rosen (1965). The two estimates by Rosen (1965) and Argon (1972)
given by Eqs. (1.1) and (1.2) were used by Fleck (1997) to create the two-dimensional failure
map presented in Fig. 1.4. Several other attempts have been made to develop analytical
expressions of the compressive strength of fibre composites and layered materials due to
kink band formation. Budiansky (1983) investigated the elastic-plastic shear behaviour of a
composite with rigid fibres. Fleck and Budiansky (1991) examined the influence of shear
stresses and later, Slaughter et al. (1993) considered transverse stresses. In all of the above
analytical expressions the kink band angle β is assumed to be zero. Christoffersen and Jensen
(1996) provided a method for finding the compressive bifurcation stress of a composite with
an arbitrary non-linear composite behaviour where the constituents can be described by two
independent constitutive relations. Furthermore, the formulation could take nonzero values
of the kink band angle β . Christoffersen and Jensen (1996) derived an analytical expression
of the bifurcation strength in the case of rigid fibres and found that the lowest compressive
strength was achieved with a kink band angle β = 0.
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Figure. 1.7 Shear strain in matrix constituent, ε12, for five deformed stages of a unit cell. The
geometry has an initial imperfection φ0 = 2◦ and a band orientation β = 10◦

To further enhance the reader’s understanding of kink band instability, a compressive
response from a representative finite element (FE) simulation is presented. Instead of showing
the deformation pattern of a full kink band geometry, the deformations of a single unit cell
strip with periodic boundary conditions are shown in Fig. 1.7. The model set-up is described
in Chapter 2. A compressive displacement is applied in the direction of the fibres. The
FE-model is composed of two layers of fibre and a single matrix layer. In the current example,
material parameters for an AS4/PEEK composite are used, taken from Kyriakides et al.
(1995). Five deformed stages of the geometry are presented in Fig. 1.7. The normalised
compressive stress −σ11/G as a function of end-displacement is shown in Fig. 1.8, and the
normalised compressive stress as a function of fibre rotation φ is shown in Fig. 1.9. The
geometric quantities L0, u and φ are designated in Fig. 1.6. The dark regions in Fig. 1.7
correspond to zones of large shear strain.

As described by Liu et al. (1996), the formation of kink bands can be divided into different
stages: the linear response and incipient kinking 1 , peak stress 2 , transient kinking 3
and steady-state kink band broadening 4 and 5 . Initially, a linear response is observed.
With increasing displacement, the stress in the matrix approaches the yield strength at stage
1 . At stage 2 the matrix has undergone adequate material softening, so that the composite

becomes unstable and a kink band initiates. Following the peak load 2 , the load drops and
the compressive displacement decreases due to elastic relaxation at stage 3 . The snap-back
phenomenon can not be captured in experiments; rather a dynamic response will follow the
peak-load in a real experiment for this particular choice of initial imperfection. The load
drops further and asymptotically approaches a constant stress at stage 4 , known as the
steady-state kink band broadening stress σ ss

11 or Maxwell stress. Going from stage 4 to 5
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Figure. 1.8 Applied normalised stress −σ11/G as a function of normalised end shortening u/L0 for a
simulation with a band orientation β = 10◦. The five deformation stages are designated in Fig. 1.7.

the end-displacement has increased and the kink band has broadened or propagated under
the constant applied stress σ ss

11. Moreover, by focusing on Fig. 1.9 shows almost, nearly no
further fibre rotation is observed going from stage 4 to 5 .

The instability phenomenon, kink band formation, discussed in the current dissertation is
similar to a number of other physical phenomena seen on both structural and material scales.
Common to several of these phenomena is that a critical load is followed by a steady-state.
Examples of instabilities on the material scale include neck propagation in the drawing of
polymers, e.g. Hutchinson and Neale (1983); crushing of metal foams, e.g. Ashby et al.
(2000); and instabilities in elastic bars, e.g. Ericksen (1975). Other examples of propagating
phenomena include channelling of cracks (e.g. Beuth (1992); Jensen and Thouless (1995))
and phase transformation of mediums, e.g. Guggenheim (1959).

Similar instabilities on the structural level were discussed in the review by Kyriakides
(1998) and include bulging of internally pressured rubber cylinders (e.g. Kyriakides and
Yu-Chung (1991); Corneliussen and Shield (1961); Chater and Hutchinson (1984)), buckling
and propagation of externally loaded undersea pipelines (e.g. Mesloh et al. (1973); Palmer
and Martin (1972); Jensen (1988)), and buckling of long shallow arches (e.g. Timoshenko
and Young (1962); Schreyer and Masur (1966); Kyriakides (1993)).
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Figure. 1.9 Applied normalised stress −σ11/G as a function of fibre rotation φ for a simulation with
a band orientation β = 10◦. The five deformation stages are designated in Fig. 1.7.

1.3 Scope of work

The current dissertation is written and structured based on the ’Guidelines for writing a
cumulative PhD thesis’ set out by the Department of Engineering, Aarhus University. The
three subsequent chapters include the methods and the theoretical foundation behind the
articles written during the PhD. Brief descriptions of the articles are attached prior to the
articles themselves and include the motivation, methods, contributions and main findings for
the given article. The dissertation includes the following chapters:
Chapter 2 presents the inspiration, assumptions and implementation of the finite element
models used and presents appropriate equations and illustrations. The chapter does not
include the results obtained using the models since these are presented in the articles.
Chapter 3 describes an idealised kink band model used in the publications [P1-P4]. The
kink band model was initially developed by Jensen and Christoffersen (1997). Variations
of the model were developed during the PhD so a substantial amount of time was spent
understanding, modifying and developing the models.
Chapter 4 describes an analytical model used to study the kink band broadening phenomenon.
The model was initially developed in [P3] and was used in a similar form in [P4].
Chapter 5 summarises the work done during the PhD. Furthermore, the chapter puts the
contributions in perspective and suggestions for further work are given.
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Chapter 6 includes the first article and deals with the development of a three-dimensional
constitutive model that can predict strain localisation in fibre-reinforced composites. The
constitutive model is implemented within a kink band model that is presented in Chapter 3.
Chapter 7 includes the second article, which deals with the development of a constitutive
model for a fibre composite that takes imperfect fibre/matrix interfacial bonding into account.
The constitutive model is used together with a kink band model that is presented in Chapter 3.
Chapter 8 includes the third article and deals with the study of steady-state kink band
propagation using the three different models presented in Chapters 2, 3 and 4.
Chapter 9 includes the fourth article, which again deals with kink band broadening. This
publication includes two case studies, of different length scales, and involves different
materials.
Chapter 10 presents the fifth article. This article is written based on the work done during
my visit to the Department of Mechanical Engineering in Cambridge, UK. It deals with the
study of load transfer in a bolted joint in a laminate made from ultra-high molecular weight
polyethylene.
Chapter 11 includes an article, mainly written by the master’s student Vedad Tojaga, for
which I am a co-author. The article deals with the development of kink bands in open-hole
fibre composites under compressive loading.



Chapter 2

Finite element models

This chapter will describe the finite element models used to study fibre-kinking during the
project. Different FE-models of varying complexity have been developed for the study of
kink band formation in the last couple of decades. The FE-models presented in this chapter
are comparable to the models by Kyriakides et al. (1995) and Hsu et al. (1999). Either two- or
three-dimensional models can be used. In the current work, both two- and three-dimensional
models were used when appropriate.

The models are further divided into discrete and homogenised models. In the discrete
models, the composite constituents are modelled explicitly as different geometry parts, where
different material behaviours are given to the constituents e.g. fibre and matrix. For the
homogenised models, the average properties of a representative volume element are used.
There are advantages and disadvantages to each method. The advantages of using discrete
models are: details about the fibre geometry and distribution can be included; the interaction
with the surrounding matrix can be studied. If commercial software such as Abaqus/CAE
is used, the built-in material behaviour can be utilised. When the constituents are modelled
separately, the interaction between the parts can be modelled explicitly by e.g. using cohesive
elements or contact friction. Moreover, using X-ray tomography, a real fibre configuration
can be built. Based on the X-ray scan, discrete FE-models can be built by reconstruction
followed by segmentation into fibre and matrix parts. Some disadvantages of using discrete
models can be the computational time due to the level of detail. It can be rather difficult
to build the fibre-matrix layout explicitly, even for simple geometries, which gives a key
advantage to the use of homogenised models.

Most of the composites of interest exhibit non-linear material behaviour in the form of
plastic deformation, at the deformations required for kink band formation. Furthermore, by
using the common geometrical configurations used to study fibre-kinking, snap-back and
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snap-through, instabilities occur in the equilibrium path when using an implicit finite element
code. This leads to the use of non-linear arc-length solvers. In all of the FE-simulations,
time-independent formation of kink bands is studied using Abaqus/CAE.

2.1 Geometries

A typical composite structure consists of multiple layers. A popular choice is to use uni-
directional fibre plies (or lamina) and stack them together with different fibre orientations, as
seen in Fig. 2.1. An assembly of plies is called a composite laminate, or simply a laminate.
The average anisotropic constitutive behaviour of a laminate is used on a larger scale to
predict the overall structural behaviour. A representative volume element (RVE) of a laminate
structure will in the general case be exposed to a three-dimensional stress and strain state.
Classical laminated plate theory is frequently used in connection with composite laminates.
Using the theory, assumptions about the continuity of displacements are made. Therefore,
if the deformation of a ply is known based on the deformation of the laminate, and if the
constitutive relation is also known, the stress state can be determined. Multiple authors have
developed failure criteria for composite plies for different loading conditions e.g. shear-,
tensile-, compressive-, fatigue failure and others. In the current study, the focus is given to
compressive failure in the fibre direction

Fig. 2.1 shows a laminate together with an exploded view of the same laminate. The
principal strains at a point can be determined based on the general strain state. The direction
of maximum compressive strains is of interest when considering a laminate composed of
uni-directional plies. The plies with fibre orientations closest to the direction of the maximum
principal compressive strain will be exposed to the highest compressive stresses due to higher
stiffness in the fibre direction. The blue highlighted plies in Fig. 2.1 will be exposed to the
highest stresses and will therefore fail first. Thus, it is a valid simplification to study a single
ply when regarding the compressive failure of laminates.

A section of a ply is illustrated in Fig. 2.2 to the left. A hexagonal distribution of the
fibres is assumed based on the assumption of equal spacing between fibres and an even
distribution of the matrix. The effect of variations in the layout of fibre distribution upon
the constitutive behaviour was studied by e.g. Huang (2018). A full model as displayed in
Fig. 2.2 can be very computationally expensive to solve when with regard to the study of kink
band formation. Naya et al. (2017) considered a full model using approximately 50 fibres that
were randomly distributed. In the simulations, they included cohesive elements between the
fibre and matrix components. Furthermore, finite deformation and material non-linearities
were included. Using a cluster, the full model studied by Naya et al. (2017) took more than
72 hours to solve. This high computational time has led to the use of simplified models,
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Figure. 2.1 Illustration of a laminate section (left) and an exploded view (right) of the same laminate.
The lamina that have the same fibre directions as the direction of loading are highlighted with blue.

either by simplifying the FE-problem or by using alternative computational methods, e.g. the
constitutive models presented in Chapters 3 and 4.

Examples of possible simplifications of the full FE-model are demonstrated in Fig. 2.2.
Here the simplifications are divided into two- or three-dimensional versions. Moreover, two
levels of simplification are shown: a layered model and a unit cell model. The layered models
make it possible to study variations of the geometry in the plane i.e. both initial geometry and
post-buckling configuration. As an example, Fleck and Shu (1995) identified the influence
of imperfections confined within an elliptically-shaped domain in the plane upon kink band
formation. Hsu et al. (1998) used a three-dimensional layered model and compared it with a
two-dimensional version; only small variations between the results were observed. Wind et al.
(2014) used a two-dimensional layered model, inspired by the one introduced by Kyriakides
et al. (1995).

The next level of simplification after layered models is unit cell models. A three-
dimensional unit cell model is used in [P2] in order to study the influence of bonding between
the fibre and matrix. Prabhakar and Waas (2013) used a two-dimensional model to study
the influence of fibre-to-matrix bonding; however when using a two-dimensional model and
when low or no bonding is present, the shear straining in the matrix becomes unrealistic.
This fact led to the use of a three-dimensional model in [P2]. The model was simplified into
a unit cell model to decrease the computational time. A two-dimensional unit cell model is
the most computationally efficient discrete kink band FE-model and was used in [P3] and
[P4] to study kink band broadening. When using the unit cell models to study kink bands,
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Figure. 2.2 An illustration of a section from an uni-directional lamina (left). Two simplification levels,
Layer models and Unit cell models, are illustrated from Full models for both 2D and 3D models.

periodic boundary conditions (PBC) are required, which will be described in Section 2.3, to
avoid structural Euler buckling.

An alternative simplification from the full model is to use a homogenised model. An
example of a homogenised FE-model is presented in Fig. 2.3. As described earlier, the overall
constitutive behaviour is needed for these models. An example of a constitutive formulation
that was developed by Christoffersen and Jensen (1996) will be presented in Chapter 3. The
latter constitutive formulation was implemented in an FE-model and was used in [C1] to
study the compressive response of fibre composites with open-holes.

2.2 Imperfection

The critical compressive stress at the initiation of kink bands is highly sensitive to geometrical
imperfections as confirmed in the review by Fleck (1997). There are several ways to
introduce imperfections into the analyses. One choice of initial imperfection is to use a
superposition of deformations obtained from a linear buckling analysis. Alternatively, an
assumed imperfect geometry can be implemented; e.g. Kyriakides et al. (1995) introduced a
uniform sinusoidal waviness of the fibres and Fleck and Shu (1995) considered an area of
fibre imperfections confined to an ellipse. Sørensen et al. (2009) studied kink band formation
using a homogenised model with the constitutive formulation developed by Christoffersen
and Jensen (1996). In the FE-model by Sørensen et al. (2009), an imperfection in the form of



2.2 Imperfection 17

Figure. 2.3 An example of an FE kink band simulation using a homogenised constitutive model. The
dark zone is an area of high plastic strain.

an infinitesimal kink band was used where the directions of fibres φ were described by the
analytical expression

φ (X1,X2) =


1
2

φ0

[
cos
(

2π cosβ

b
(X1 +X2 tanβ )

)
+1
]
+α if X1,min < X1 < X1,max

α otherwise

(2.1)

where φ0 is the largest imperfection angle, β is the angle of the band, b is the band width and
α is the fibre angle outside the band. The equation above was presented in Sørensen et al.
(2009) and can also be presented in the equivalent form

φ (X1,X2) =


φ0 cos2

(
π cosβ

b
(X1 +X2 tanβ )

)
+α if X1,min < X1 < X1,max

α otherwise

(2.2)

The geometric quantities are presented in Fig. 2.4. Hutchinson and Koiter (1970) wrote a
review on the bifurcation and post-buckling of plates and shells. According to Hutchinson
and Koiter (1970), an imperfection in the shape of the buckling mode results in the largest
reduction in buckling load. An imperfection in the form of a kink band will therefore be the
most critical imperfection. By assuming that the fibre imperfection angle φ , described by
Eq. (2.1) or (2.2), is equal to the derivative φ = dx2/dx1, the deformed coordinates x2 can be
determined. Small letters xα refer to deformed coordinates while capital letters Xα are initial
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Figure. 2.4 Illustration of initial imperfection in the form of fibre misalignments. Sørensen et al.
(2009) introduced the current imperfection and is used in the simulation presented in Fig. 2.3.

coordinates. It is assumed that the deformed coordinate x1 is equal to the initial coordinate
(x1 = X1). The deformed coordinate x2 can be integrated into the form

x2 (X1,X2) =



X2 +
1
2 φ0

(
−b

2cosβ
−X2 tanβ

)
+α X1 if X1 < X1,min

X2 +
1
2 φ0

[
b

2π cosβ
sin
(

2π cosβ

b (X1 +X2 tanβ )
)
+X1

]
+α X1 if X1,min < X1 < X1,max

X2 +
1
2 φ0

(
b

2cosβ
−X2 tanβ

)
+α X1 if X1,max < X1

(2.3)

where the boundaries X1,min and X1,max are introduced, which are simply two equations for
the two boundary lines

X1,min (X2) =
−b

2cosβ
−X2 tanβ X1,max (X2) =

b
2cosβ

−X2 tanβ (2.4)

The imperfection, Eq. (2.3), is used in [P2], [P3] and [P4]. A geometrical representation
of an initial geometry and the corresponding imperfect geometry are illustrated in Fig. 2.5.
The imperfection angle used in the figure is φ0 = 15◦ where the initial imperfection angles
used in the simulations are in the range φ0 ≈ 0◦-5◦. In both Fig. 2.4 and Fig. 2.5, the initial
geometry width w0 and length L0 are presented.
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Figure. 2.5 Illustration of an uni-directional lamina before (left) and after (right) the imperfection is
used given by Eq. (2.3). The fibre angle outside the band is α = 0◦ in the current illustration.

2.3 Boundary conditions

The most simple boundary conditions are applied to the geometries that still capture the kink
band phenomenon. The displacements ui are, introduced which are the displacements along
the corresponding axes Xi. In all of the simulations, the left boundary is simply supported
and the lower left corner is fully fixed. With a coordinate system placed in the geometry
centre, the boundary condition can be described by

u1 = 0 on X1 =−L0

2

u2 = 0 on (X1,X2) =

(
−L0

2
,−w0

2

)
(2.5)

The boundary conditions are graphically displayed in Fig. 2.6. Furthermore, in the
FE-simulations where a three-dimensional model is used, the front and back are simply
supported as well:

u3 = 0 on X3 =− t0
2

u3 = 0 on X3 =
t0
2

(2.6)

where t0 is the initial thickness of the geometry. Besides the boundary conditions, loading is
applied in the form of applied stress or displacement. In [P2], [P3] and [P4], loading in the
form of an applied displacement u is used. When using an applied displacement field, the
stress can be calculated based on the reaction forces in the corresponding nodes.
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Figure. 2.6 Visualisation of the boundary conditions used for the FE kink band model. The BCs on
the right does only apply for the 3D models.

In the simulations where a unit cell model is used (as in [P2], [P3] and [P4]), periodic
boundary conditions are used between the top and bottom boundary. The PBCs are applied
such that a single unit cell model represents an infinite array of fibres. The PBCs are enforced
using constraint equations in the form

u(A)i −u(B)i = 0 (2.7)

where (•)(A) and (•)(B) correspond to nodes on the top and bottom boundaries. An example
of the coupling between two nodes is presented in Fig. 2.7. When using PBCs, it is common
to use nodes that share some coordinates, e.g. X (A)

1 = X (B)
1 and X (A)

3 = X (B)
3 , as in the model

used in [P2]. An alternative node coupling is introduced in [P3] to account for the band
inclination. In [P3] the coupled nodes are oriented with an angle β prior to deformation. This
forces the band to initiate and to propagate in a specified angle β .

2.4 Discretisation

In the FE-model presented in [P3], the influence of the number of elements per constituent
layer was investigated. It was concluded that a single element in the height per layer is
sufficient. The material behaviour of the constituents, presented in [P1]-[P4], is taken
from Kyriakides et al. (1995). The constituents in the latter study were AS4-carbon fibres
embedded in a PEEK matrix. In this composite, Young’s modulus of the fibres is 35 times
the modulus of the matrix. In a kink band simulation using the latter constituents, the fibres
will take most of the bending and the matrix will almost be in a state of pure shear.
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Figure. 2.7 Illustration of the discretisation of the kink band geometry into separate elements. In the
top geometry, the node couplings are presented when using periodic boundary conditions. Furthermore,
the combination of elements are illustrated.

In the two-dimensional models plane-strain, 8-node biquadratic elements (Q8) with
full integration were used for the fibres. Biquadratic elements were chosen for the fibre
geometry instead of bilinear elements since Q8 elements give a more realistic response
during bending. The influence of using either 8-node biquadratic elements or 4-node bilinear
elements (Q4) with full integration for the matrix constituent was investigated in [P3]. The
idea of combining two incompatible elements (biquadratic and bilinear) was inspired by the
micro-mechanical model used by Sutcliffe and Fleck (1997). The discretisation scenarios
are presented graphically for a unit cell model in Fig. 2.7. No observable differences were
seen in the applied stress versus end-displacement curve when converting the elements from
biquadratic to bilinear. One of the primary benefits of using bilinear elements for the matrix
layer is a lower computational time; however more importantly, it was possible to obtain
a larger part of the post-bifurcation response. In [P3] and [P4] the propagating instability
known as kink band broadening was investigated and here the late post-buckling response is
of high importance.

In the three-dimensional unit cell model from [P2], a combination of 20-node quadratic
bricks and 15-node triangular prism elements with full integration was used for the fibre
constituents, while 20-node quadratic bricks with full integration were used for the matrix.
Again, the influence of mesh refinement was investigated for the three-dimensional model
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Figure. 2.8 Illustration of the cross-section of the three-dimensional unit cell model showing the
different mesh refinements used.

x2

x3

F1

F2

F3M

Interaction

Interaction

Interaction

Figure. 2.9 The cross-section of the three-dimensional unit cell model (left) and an exploded view
(right) of the same section. The surfaces are designated where fibre-to-matrix interaction can occur.

and three examples of refinement of the cross-section are shown in Fig. 2.8. Visualisations
of the nodes is omitted for clarity. The coarsest mesh presented in Fig. 2.8 was used due to
negligible differences in the critical compressive stress and due to the lower computational
time.

2.5 Interaction

In [P2], the influence of fibre-to-matrix bonding upon the critical compressive strength was
investigated. A normal and an exploded view of the cross-section of the unit cell model are
presented in Fig. 2.9. The unit cell was composed of four parts: three fibre parts and one
matrix part. In the FE-model, the four parts were formulated as four different parts with
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the possibility of exploiting the fibre-to-matrix interaction by using e.g. contact friction
or cohesive elements. The FE-model in [P2] was compared with a constitutive model that
will be presented in Chapter 3. For simplicity’s sake, two simple interaction scenarios were
used: a tie constraint and a frictionless hard contact interaction. Based on the two interaction
possibilities, three bonding scenarios were created: a case of perfect bonding; a case of no
bonding; and a case of intermediate bonding. In the case of perfect bonding, tie constraints
were applied between the relevant parts and in the case of no bonding, the frictionless contacts
were used. In the case of intermediate bonding, tie constraints were used for half of the
surfaces (dashed lines in Fig. 2.9), while for the remaining surfaces, frictionless contacts
were used.



Chapter 3

Semi-analytical kink band model

This chapter will describe an idealised kink band model, which will be referred to as the semi-
analytical model. The kink band is idealised to consist of two material states: a state inside the
kink band and a state outside. However, in contrast to the FE-model, the current model does
not consider the transition from unkinked to the kinked configuration. The kink band model
that will be presented in the current chapter was developed by Jensen and Christoffersen
(1997) using a homogenised constitutive formulation introduced in Christoffersen and Jensen
(1996). The model requires continuity of displacements and traction equilibrium between
the base and kinked material and is solved incrementally. Full elastic-plastic constitutive
formulations can be used with the model without initial requirements of e.g. rigid fibres or
incompressibility.

The constitutive model is used in several of the publications [P1-P4] and variations of the
model so a substantial amount of time was needed during the project to understand, modify
and develop the models. Therefore, the assumptions and theories behind the models will
be described in detail in the current chapter. It is assumed that the reader has knowledge
about index notation and fundamental continuum mechanics (such as the equilibrium- and
compatibility equations).

3.1 General relations

In the current section, the continuum mechanics foundation is presented. Throughout the
chapter, the index notation and the summation convention are adopted. Latin indices i.e.
i, j,k take values 1,2,3 and Greek indices α,β ,γ take values 1,2. In general, the Latin and
Greek indices are used with three- and two-dimensional problems, respectively. A comma
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Figure. 3.1 Illustration of an arbitrary continuum body at three instants of time. The illustration shows
the important vectors founding the basis of the kinematics.

(•),i denotes a partial derivative with respect to the xi coordinate. A general continuum body
is illustrated in Fig. 3.1 in a three-dimensional Euclidean space with a Cartesian coordinate
system containing the three orthonormal directions x1,x2 and x3. The initial state of the
body at time t = 0 is described by the coordinates Xi with capital letters. The body may
include residual stresses σi j prior to deformation. The body in the current or deformed
configuration at time t is described by the coordinates xi. The displacement vector ui(Xi)

describes the displacements of every point going from the initial to the current configuration.
The configuration subsequent to a small time increment t = t +dt is illustrated as well. In
both time-dependent and -independent continuum mechanics the velocity vector vi = ẋi is
used, where the dot ˙(•) refers to the material time derivative. In the current study, time-
independent constitutive formulations are used and here vi are regarded as infinitesimal
displacement increments taking place during a pseudo-time increment dt. In the proceeding
derivations, deformation gradients are used. The deformation gradients relate infinitesimal
vector elements in the initial to the current configuration

dxi = Fi j dX j (3.1)
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Figure. 3.2 Five configurations for a square are shown: one initial state to the left and four deformed
configurations.

where the definition of the deformation gradients is

Fi j =
∂xi

∂X j
(3.2)

Furthermore, the velocity gradients vi, j are used in the constitutive model. The velocity
gradients give information about how the velocities change in the vicinity of a point in
the direction of the basis xi. Simple illustrations of squares undergoing homogeneous
deformations are shown in Fig. 3.2 with the relevant velocity gradients marked on the figure
above the deformations. The deformed configuration (dark area) is superimposed upon the
initial configuration (light area). The strain increment tensor ε̇i j and the spin tensor ωi j

are used in the model and are the symmetric and the anti-symmetric parts of the velocity
gradients

ε̇i j =
1
2
(vi, j + v j,i) ωi j =

1
2
(vi, j − v j,i) (3.3)

Here ε̇i j give the pure deformation increments and can be used with physical constitutive
formulations and ωi j gives the local rotation or spin of the points.

When setting up constitutive formulations of continuum bodies that include residual
stresses, it is important to distinguish between stress increments that arise from deformations
and those that arrive from the rotations of the local basis. The Cauchy stress tensor σi j is
used and gives the force per unit surface area in a given configuration. Furthermore, the
Kirchhoff stress tensor τi j is used and is related to the Cauchy stresses by

τi j = J σi j (3.4)
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where J is the Jacobian, giving the volume ratio J =V/V0 or density ratio J = ρ0/ρ between
the current and initial configuration. The models assume that the relation between the rate of
Kirchhoff stresses and strain increments is described by

τ̊i j = Li jkl ε̇kl (3.5)

where Li jkl are components of the elastic-plastic tangent moduli and τ̊i j are the Jaumann rate
of Kirchhoff stresses and are the work-conjugate of the strain rate tensor ε̇kl as confirmed by
Ji et al. (2013). The moduli Li jkl must satisfy the symmetries

Li jkl = L jikl = Li jlk (3.6)

due to the symmetries of the Kirchhoff stress (τ̊i j = τ̊ ji) and strain increment tensor (ε̇kl = ε̇lk).
The only restriction to the constitutive formulations giving the moduli Li jkl is that time-
independent material behaviour is used, whether the formulations are elastic or elastic-plastic
e.g. J2-deformation theories or J2-flow theories. For incompressible materials τ̊i j = σ̊i j

where σ̊i j is the Jaumann rate of Cauchy stresses. Both σ̊i j and τ̊i j are objective stress rates
that are independent of the local material rotation. As mentioned earlier, it is important
to distinguish between stress increments that have geometrical or physical origins. The
stresses after deformation in a coordinate system that stays stationary during an increment
are σi j(t +dt) = σi j(t)+ σ̇i j. The relation between the Cauchy stress increments σ̇i j and σ̊i j

is
σ̇i j = σ̊i j︸︷︷︸

Physical origin

+ ω jk σik +ωikσk j︸ ︷︷ ︸
Geometrical origin

(3.7)

The Jaumann rate of Cauchy stresses σ̊i j describes the stress increments in a coordinate
system that rotates with the deformation; for a more comprehensive explanation see Appendix
A. In the same manner the Jaumann rate of Kirchhoff stresses is given by

τ̇i j = τ̊i j︸︷︷︸
Physical origin

+ ω jk τik +ωikτk j︸ ︷︷ ︸
Geometrical origin

(3.8)

Alternative stress quantities (nominal stresses or Second Piola-Kirchhoff stresses) oc-
cur when considering finite deformations. They are frequently used in connection with
total Lagrangian formulations where the state of strain is described based on the initial
configuration. The alternative stresses arrive as the work-conjugate of the choice of finite
strain measurements. The nominal stress tensor ti j is used to set up the constitutive models
presented in this chapter even though the models are formulated with an updated Lagrangian
approach. In Fig. 3.3 the concept of the nominal stress tensor ti j vs Cauchy stress σi j is
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illustrated using a simple example. In Fig 3.3a a dog bone specimen is displayed in its initial
and deformed states. In this example, it is assumed that no residual stresses are present. The
surface area of the cross-sections before and after deformation is designated on the figure.
In Fig. 3.3b, two cuboids are presented, where the one to the left is a unit cube. The force
acting per unit surface area in the deformed configuration is given by σ11 = F1/s1, which is
the Cauchy stress or true stress. The nominal stress is the force per initial unit surface area
t11 = F1/S1. The nominal stresses can be seen as the forces acting on a cuboid’s faces (or in
the general case, a parallelepiped) that was initially a unit cube in the reference state.

x1

x2

F1 F1

S1

s1

(a) Uniaxial test

x1

x2

x3

σ11

σ11

t11

t11

σ11 = F1/s1 t11 = F1/S1

(b) Cauchy and nominal stress

Figure. 3.3 Illustration that shows the difference between Cauchy stresses σi j and nominal stresses ti j
from a simple uniaxial loading example.

A more general case is illustrated in Fig. 3.4. In the figure, an initial and a deformed
configuration are displayed. From the deformed configuration, an infinitesimal cube and an
infinitesimal parallelogram are drawn from the same point. The cube represents the forces
acting per unit area. The parallelogram represents an infinitesimal piece that was initially a
unit cube in the reference configuration. The relation between nominal stresses and Cauchy
stresses is

ti j = J
∂Xi

∂xk
σk j = J F−1

ik σk j (3.9)

The relation between the Cauchy stresses and nominal stresses can be obtained by considering
an infinitesimal force vector acting on an area in the current and reference configurations with
the equality d fi = ti ds = Ti dS, where ti and ds are a traction and an infinitesimal area around
a point in the current configuration. Furthermore Ti and dS are the corresponding nominal
traction vector and infinitesimal area in the reference configuration. Cauchy’s stress theorem
states that the tractions can be determined based on ti = σ ji n j and Ti = t ji N j. Nanson’s
formula dsi = J F−1

i j dS j relates surface areas in the deformed configuration to those in the
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Figure. 3.4 An initial and a deformed configuration. A single point showing the Cauchy- and nominal
stress tensor on an infinitesimal piece.
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reference configuration. The relation given by Eq. (3.9) can be derived by combining the
latter equalities. For a more comprehensive derivation see Appendix B. In addition, the
nominal stresses can be expressed with respect to Kirchhoff stresses:

ti j =
∂Xi

∂xk
τk j = F−1

ik τk j (3.10)

As mentioned earlier, the kink band model is formulated with an updated Lagrangian
formulation. The rate of nominal stresses ṫi j are used in the models. Taking the material time
derivative d/dt(•) of Eq. (3.10) yields the rate of nominal stresses as a function of the rate of
Kirchhoff stresses:

ṫi j = τ̇i j − τ jk vi,k (3.11)

where τ̇i j are the rates of Kirchhoff stresses when following a point seen from a coordinate
system that does not rotate. The rate of Kirchhoff stresses can be written as a function
of the Jaumann rate of Kirchhoff stresses using Eq. (3.8), which is needed in constitutive
formulations.

ṫi j = τ̊i j +ω jk τik +ωik τk j − τ jk vi,k (3.12)

Expanding the spin tensor using Eqs. (3.3) and (3.5), the velocity gradients can be isolated in
the latter equation:

ṫi j =

(
Li jkl −

1
2

δil τk j −
1
2

δik τl j −
1
2

τil δk j +
1
2

τikδl j

)
︸ ︷︷ ︸

Ci jkl

vl,k (3.13)

where δi j is Kronecker delta and Ci jkl are components of the tensor of nominal moduli relating
nominal stress increments to velocity gradients through the Kirchhoff stress tensor. Details
behind the derivations resulting in Eq. (3.13) can be studied in Appendix B. The moduli Ci jkl

are used in the model set-up since they account for the deformations and tractions in the
updated deformed configuration. The following form will be used to set up the constitutive
models:

ṫi j =Ci jkl vl,k (3.14)

3.2 Homogenisation of constituents

In the current section, three models for homogenising the properties of fibre-reinforced
composites and layered materials will be described. First, a two-dimensional homogenised
model developed by Christoffersen and Jensen (1996) is described, followed by a three-
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dimensional version developed in [P1]. Lastly, a model taking account of imperfect bonding
between fibres and the surrounding matrix is presented and developed in [P2]. The models
result in constitutive formulations in the form given by Eq. (3.14). In the current dissertation,
the focus is on kink band formation; however, the constitutive formulations can be used in
general for e.g. FE-analyses where there is a need for elastic-plastic composite behaviour.
The common factor and the unique point of the three formulations are that independent
constitutive equations are given to the constituents. This differs from regular constitutive
formulations used for composites, where the composite behaviour is determined based on the
overall response.

3.2.1 2D model

In Fig. 3.5, a general piece of a fibre-reinforced or layered composite is shown to the left.
When setting up the constitutive behaviour, a representative volume element (RVE) is needed,
as depicted on the right-hand side of the figure. The size of the RVE is determined based on
the phenomenon requiring attention. In kink band formation the localisation of deformation
needs information on the size of the fibres. In the two-dimensional model developed by
Christoffersen and Jensen (1996), volume fractions of the two constituents are needed.
The current formulation does not include a length scale which requires strain gradients
(higher order strains) as in the formulation developed by Poulios and Niordson (2016). The
two-dimensional formulation can be used for fibre-reinforced composites and assumes that
the composite behaviour can be adequately described with a layered material as indicated
in Fig. 3.5. The homogenisation assumes that the wavelengths λ of the fibre waviness
are much larger than the amplitudes λ ≫ a. Unit-thickness of the composite is assumed,
meaning the volume V and area A of the composite are equal: V = A. Two constituents
are introduced, indicated with superscripts (•) f and (•)m, indicating a fibre and matrix
constituent, respectively. Omission of superscripts refers to overall composite properties.
The volume fraction of fibres is c f =V f /V where V f is the fibre volume of the RVE. With
regard to two-dimensional models, the fibre volume fraction is given by c f = A f /A where
A f is the area of fibres as indicated in Fig. 3.5. The relation

c f + cm = 1 (3.15)

is required for the fibre and matrix volume fractions.



3.2 Homogenisation of constituents 32

λ

a
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A f
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Figure. 3.5 A general piece from a two-dimensional layered composite (left) and a representative
volume element from the composite (right).

x1

x2

v1,1 > 0 v2,2 > 0 v2,1 > 0 v1,2 > 0

Figure. 3.6 A representative volume element of a layered composite in one undeformed and four
deformed configurations. The figure clarifies the kinematic equalities used in the homogenisation
formulation.

The constitutive formulation requires that the fibres of the RVE are aligned with the x1

axis prior to deformation. The homogenisation of the constituents is based on the assumptions
1. Material lines parallel with the fibres are subject to a common stretching and rotation.

2. Planes parallel with the fibres transmit identical tractions.

3. The material behaviour of the constituents is time-independent.
Five configurations of an RVE are presented in Fig. 3.6: one undeformed and four deformed
configurations. The first requirement, that lines parallel with the fibres are subject to a
common stretching and rotation, is illustrated through the second and fourth configurations.
The kinematic requirements are presented mathematically through the velocity gradients
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v1,1 = v f
1,1 = vm

1,1

v2,1 = v f
2,1 = vm

2,1

(3.16)

which can be written with a compact notation using the index notation

vα,1 = v f
α,1 = vm

α,1 (3.17)

Here, Greek indices are used since the indices take values 1 and 2. Furthermore, the two
kinematic requirements

v1,2 = c f v f
1,2 + cm vm

1,2

v2,2 = c f v f
2,2 + cm vm

2,2

(3.18)

are required for overall compatibility. The equalities simply state that the overall deformations
v1,2 and v2,2 are average strains of the constituent deformations. The latter requirement can
be presented using index notation:

vα,2 = c f v f
α,2 + cm vm

α,2 (3.19)

The second requirement states that planes parallel with the fibres transmit identical tractions.
The requirement sets a restriction upon the stresses prior to deformation

σ12 = σ
f

12 = σ
m
12

σ22 = σ
f

22 = σ
m
22

(3.20)

as indicated in Fig. 3.7 to the left. The rate of nominal stresses can be used to enforce the
required equilibrium during the increments through

ṫ21 = ṫ f
21 = ṫm

21

ṫ22 = ṫ f
22 = ṫm

22

(3.21)

which states that the traction increments, on the plane with outward normal parallel to the
x2-axis, are identical for the overall composite and for the constituents (Fig. 3.7 on the right).
The requirements presented with indices

ṫ2α = ṫ f
2α

= ṫm
2α (3.22)
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Figure. 3.7 An initial state with stress equilibrium of a representative volume element is shown (left)
and a (exaggerated) deformed configuration after an increment with equilibrium of tractions is shown
(right).
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Overall equilibrium of stresses prior to deformation requires

σ11 = c f
σ

f
11 + cm

σ
m
11 (3.23)

The requirements of the traction increments are

ṫ11 = c f ṫ f
11 + cm ṫm

11

ṫ12 = c f ṫ f
12 + cm ṫm

12

(3.24)

and presented with indices
ṫ1α = c f ṫ f

1α
+ cm ṫm

1α (3.25)

Based on the latter equalities a constitutive equation in the form

ṫαβ =Cαβγδ vδ ,γ (3.26)

can be derived, where the homogenised moduli Cαβγδ are functions of the constituent moduli
Cc

αβγδ
and the volume fractions. Using Eqs. (3.17), (3.19), (3.22) and (3.25), Christoffersen

and Jensen (1996) identified that the moduli can be calculated using

Cαβγδ = c f C f
αβγδ

+ cm Cm
αβγδ

− c f cm
(

C f
αβ2ε

−Cm
αβ2ε

)
Hεζ

(
C f

2ζ γδ
−Cm

2ζ γδ

)
Mαβ = cm C f

2α2β
+ c f Cm

2α2β

(3.27)

where Hαβ is the inverse of Mαβ , complying to

Hαγ Mγβ = δαβ (3.28)

where δαβ is the Kronecker delta. The moduli Cc
αβγδ

for the constituents are calculated
using Eq. (3.13). The velocity gradients vc

α,2 for the constituents can be calculated using the
velocity gradients vα,β for the composite

v f
ε,2 =−cm Hεζ

(
C f

2ζ 1δ
−Cm

2ζ 1δ

)
vδ ,1 +Hεζ Cm

2ζ 2δ
vδ ,2

vm
ε,2 = c f Hεζ

(
C f

2ζ 1δ
−Cm

2ζ 1δ

)
vδ ,1 +Hεζ C f

2ζ 2δ
vδ ,2 (3.29)

Due to differences in bulk moduli between the fibre and matrix constituent, the volume
fractions will change during deformation. The change in fibre volume fraction can be
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calculated using the velocity gradients

ċ f = c f cm
(

v f
2,2 − vm

2,2

)
(3.30)

The derivations of Eqs. (3.27) and (3.30) are demonstrated in Appendix C using a vector
notation. The constitutive formulation presented in Eq. (3.27) was used in Christoffersen
and Jensen (1996) to study kink band formation at bifurcation. Furthermore, the relation
was used in Jensen and Christoffersen (1997) to study kink band formation with initial fibre
imperfections in the form of fibre misalignments. The kink band model is presented in
Section 3.4.

3.2.2 3D model

A three-dimensional version of the model was developed in [P1]. The assumptions behind the
model are described briefly; the article can be read for an extended explanation. In the article,
the emphasis is on fibre-reinforced composites, where fibres are surrounded by or embedded
in a resin material. Instead of simplifying an RVE into a two-dimensional domain with two
constituents, a three-dimensional cube with three constituents is introduced. An example of
one of the RVEs introduced in the article, is displayed in Fig. 3.8. Two matrices and one fibre
constituent were used. A methodology was developed to homogenise the properties between
two arbitrary constituents (•)a and (•)b with a shared plane that was parallel with either
the x1-x2 or the x1-x3 plane. The homogenisation of the fibre-matrix model was obtained
through two homogenisation steps as indicated in Fig. 3.8. Three assumptions are used for
the homogenisation between two arbitrary materials in 3D:

1. Material lines lying on the common plane between two materials are subjected to a
common stretching and rotation.

2. Planes on the intersection between two materials transmit identical tractions.

3. The material of the constituents is elastic or elastic-plastic.
When the shared plane between the constituents lies in the x1-x3 plane, the first assumption
leads to the restriction of the velocity gradients

vi,1 = va
i,1 = vb

i,1

vi,3 = va
i,3 = vb

i,3

(3.31)

where the Latin indices (•)i are used, indicating that they take values 1, 2 or 3. To have
overall compatibility, the average of the strains in the x2 direction requires

vi,2 = ca va
i,2 + cb vb

i,2 (3.32)
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x1

x2
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= +

Figure. 3.8 A representative volume element of a three-dimensional cube consisting of two homogeni-
sations.

The second assumption leads to the stress equilibrium

σ12 = σ
a
12 = σ

b
12

σ22 = σ
a
22 = σ

b
22

σ23 = σ
a
23 = σ

b
23

(3.33)

prior to a deformation increment and the equilibrium of tractions on the shared plane requires

ṫ2i = ṫa
2i = ṫb

2i (3.34)

Overall equilibrium on the two other planes prior to deformation requires

σ11 = ca
σ

a
11 + cb

σ
b
11

σ33 = ca
σ

a
33 + cb

σ
b
33

σ13 = ca
σ

a
13 + cb

σ
b
13

(3.35)

and during an increment, the rate of nominal stresses

ṫ1i = ca ṫa
1i + cb ṫb

1i

ṫ3i = ca ṫa
3i + cb ṫb

3i

(3.36)
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is required. Using the latter equalities, [P1] demonstrates that the rate of nominal moduli can
be written in a form similar to

Ci jkl = ca Ca
i jkl + cb Cb

i jkl − ca cb
(

Ca
i j2m −Cb

i j2m

)
Hmn

(
Ca

2nkl −Cb
2nkl

)
Mi j = ca Cb

2i2 j + cb Ca
2i2 j

(3.37)

where Hi j is the inverse of Mi j complying to the equality:

Hik Mk j = δi j (3.38)

In [P1], the equations were presented using a matrix format similar to the one used in
Christoffersen and Jensen (1996) to simplify the derivations. The moduli given by Eq. (3.37)
give the homogenised properties between two materials that share a common plane with
outward normals parallel with the x2 axis. Similarly, the homogenised moduli can be
formulated for two arbitrary materials that share planes with outward normals parallel with
the x3 axis. In this case the moduli are given by

Ci jkl = ca Ca
i jkl + cb Cb

i jkl − ca cb
(

Ca
i j3m −Cb

i j3m

)
Hmn

(
Ca

3nkl −Cb
3nkl

)
Mi j = ca Cb

3i3 j + cb Ca
3i3 j

(3.39)

By using a combination of the homogenisation equations Eqs. (3.37) and (3.39), the
overall homogenised properties of a fibre-reinforced composite can be obtained as presented
in [P1]. It is emphasised that general time-independent elastic-plastic material behaviour can
be given to the constituents using the current three-dimensional constitutive formulations. The
models are formulated in a rate form and can be used in formulations with large deformations
and rotations.

3.2.3 Imperfect bonding

The article [P2] presents the development of a two-dimensional constitutive formulation
accounting for imperfect bonding between fibre and matrix. The formulation is inspired by the
two-dimensional model by Christoffersen and Jensen (1996) assuming perfect bonding, and
the version introduced in Jensen (1999b) assuming complete decohesion. In the constitutive
formulation presented in [P2] a variable µ is introduced to control the amount of bonding
where µ = 1 is a case of perfect bonding and µ = 0 is a completely debonded case.
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v1,1 > 0 v2,2 > 0 v2,1 > 0 v1,2 > 0

Figure. 3.9 A representative volume element of a layered composite with imperfect bonding in one
undeformed and four deformed configurations. The figure clarifies the kinematic assumptions used in
the formulation.

In Fig. 3.9 an initial undeformed configuration together with four deformed configurations
of an RVE are displayed. The figure is presented in [P2] to show how the deformations vary
between the matrix and fibre constituent in composites with poor bonding.

Once again, the constitutive formulation assumes that material lines parallel with the
fibres are subject to a common stretching and rotation. In contrast, the strains in the x2

direction are not simply averages of the strains as in the formulation by Christoffersen and
Jensen (1996). In the extreme case of complete debonding, the shear strains in the matrix are
equal to the overall shear strains and no shear strains are transmitted to the fibres. Similarly,
the shear tractions are not transmitted to the fibres in the case of complete debonding. In [P2]
it is shown that the constitutive formulation given by

Cαβγδ =c f C f
αβγδ

+ cm Cm
αβγδ

− c f cm
(

κ C f
αβ2ε

−µ Cm
αβ2ε

)
Hεζ

(
κ C f

2ζ γδ
−µ Cm

2ζ γδ

)
Mαβ =cm

κ
2 C f

2α2β
+ c f

µ
2 Cm

2α2β

(3.40)

gives the relation for an imperfect composite, where the variables µ and κ are introduced to
control the amount of bonding. The variable κ is dependent on µ according to

κ(µ) =

(
1− 1

cm

)
µ +

1
cm (3.41)

In the case of perfect bonding µ = 1, the constitutive formulation, Eq. (3.40), equals the
two-dimensional version from Christoffersen and Jensen (1996), Eq. (3.27). In the case of
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complete debonding µ = 0, the formulation simplifies to

µ = 0 →

Cαβγδ = c f C f
αβγδ

+ cm Cm
αβγδ

− c fC f
αβ2ε

Hεζ C f
2ζ γδ

Mαβ =C f
2α2β

(3.42)

The latter form of the constitutive formulation was proposed by Jensen (1999b). Details
behind the derivations and the use of the constitutive formulation can be explored in [P2].
The use of the constitutive formulation is explored in [P2] using a kink band model. The
model predictions are compared with a three-dimensional unit-cell model with different
amounts of bonding as presented in Section 2.5.

3.3 Kink band bifurcation

The constitutive formulations presented for fibre-reinforced and layered composites are used
studying kink band formation. Initially, a methodology is introduced to investigate kink
band formation at bifurcation, i.e. no initial fibre misalignment. In Section 3.4, a numerical
formulation is introduced to enable the study of post-bifurcation behaviour, e.g. initial fibre
imperfections.

Kink band formation in the absence of fibre misalignments can be predicted as localisation
of deformation at bifurcation where ellipticity of the incremental equilibrium equations is
lost as explained in Jensen and Christoffersen (1997). A similar approach was used by
Hutchinson and Neale (1978) to study the localisation phenomenon known as sheet necking
that can form under tensile loading. They were inspired by the fundamental work by Rice
(1976) regarding localisation of plastic deformation. The current bifurcation formulation
within kink band formation was initially used by Christoffersen and Jensen (1996) together
with the two-dimensional constitutive formulation. The methodology is used in [P2] to study
fibre kinking in imperfect composites.

Fig. 3.10 depicts a perfect composite. The fibres are aligned in the x1-direction. A general
stress field σαβ can be present prior to localisation. An alternative velocity field is searched
for where the fibres localise in a band according to

vα = fα(n1 x1 +n2 x2) = fα(nβ xβ ) (3.43)

where vα are the velocity components and fα are functions describing the velocity field and
are dependent on the normal nβ to an assumed band and the coordinates xβ . In this way
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Figure. 3.10 Kink band geometry before localisation. The angle β is the orientation of the localisation
band searched for in the bifurcation analysis.

the velocity fields are constrained to vary across the band. The state at bifurcation requires
equilibrium of the nominal stress rates

ṫαβ ,α = 0 (3.44)

Replacing the rate of nominal stresses ṫi j with the form given by Eq. (3.14) yields

Cαβγδ vδ ,γα = 0 (3.45)

and when using the assumed velocity field, Eq. (3.43), the equilibrium equation can be
rewritten using the product rule of differentiation

Cαβγδ nα nγ

∂ 2 fδ (nε xε)

∂ (nζ xζ )
2 = 0 (3.46)

The equation above gives two equations since β is the only free index. Thus, bifurcation is
possible when a non-trivial solution to the latter equation exists (where the equation loses
ellipticity), i.e. when the determinant of the coefficient matrix of the function fδ vanishes.

det(Cαβγδ nα nγ) = 0 (3.47)
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No assumptions were made regarding the constitutive behaviour of the solid. By using the
two-dimensional constitutive equation Eq. (3.27), and by assuming rigid fibres, Christoffersen
and Jensen (1996) showed that the state at kink band bifurcation is

0 =σ11 −σ22 +
1

cm Cm
2121 +

2
cm

(
Lm

1222 − c f
σ12
)

tanβ +
1

cm Cm
2222 tan2

β (3.48)

As [P2] shows, the localisation of fibres at bifurcation for an imperfect composite with rigid
fibres is

0 = σ11 −σ22 +
1

cm κ2

(
Lm

1212 −
σm

11 −κ σ22

2

)
+

2
cm κ2

(
Lm

1222 − c f
κ µ σ12

)
tanβ

+
1

cm κ2 (L
m
2222 −κ σ22) tan2

β (3.49)

Furthermore, [P2] shows that the latter equation is identical to Eq. (3.48) with µ = 1. In
contrast to the results in the proceeding sections, the current formulation can result in a closed
form solution. The solutions give valuable information regarding the effect of the stress field,
constituent volume fractions and kink angle β upon the critical stress σ cr

11 at bifurcation.

3.4 Kink band model and numerical scheme

The constitutive formulations introduced in Section 3.2 can be used in a numerical scheme to
study kink band formation. This scheme is presented in the current section. The numerical
formulation is developed by Jensen and Christoffersen (1997) (two-dimensional) and is used
in [P2], [P3] and [P4]. The formulation is extended to a three-dimensional version in [P1]
and is used to validate the constitutive formulation presented in Section 3.2.

Common to both the two- and three-dimensional numerical formulations is that a kink
band forms either by bifurcation or due to the presence of an initial imperfection φ0. The kink
band develops by prescribing a rotation increment φ̇ to the fibres within the kink band. Two
material states are present: a state inside the kink band (band material) and a state outside
the kink band (base material). Equilibrium of stresses prior to deformation together with
equilibrium of traction increments is required on the band boundary between the base and
kinked material. Furthermore, displacement continuities are required across the band during
deformation.
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Figure. 3.11 Kink band geometry showing the two material states with two coordinate system (top).
Two small pieces of the material states together with the stresses on the band (bottom).
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3.4.1 2D model

An illustration of a two-dimensional kink band is presented in Fig. 3.11. Two material
states are shown. The superscripts (•)o and (•)i are associated with the outer base and inner
kink band material, respectively. Furthermore, a superscript (•)c is introduced which in
this section refers to the common system located at the band. The stress states in the three
systems can be observed in the bottom part of Fig. 3.11.

A rotation increment φ̇ is prescribed to the kink material system. The constitutive
formulations require that the x1-axis of the coordinate systems are aligned with the fibres
prior to the deformation increment. Rotation of the coordinate systems is therefore required
during deformation. There are two ways of implementing the rotation: the coordinate systems
stay stationary during the rotation increment; the coordinate systems follow the rotation.
Both implementations are explored by Jensen and Christoffersen (1997) and give identical
results. The implementation where the coordinate systems follow the rotation is used in [P1 -
P4]. Using this approach, rotation of the stresses and instantaneous moduli is avoided. When
the coordinate systems follow the rotation of the fibres, then

vo
2,1 = 0 vi

2,1 = 0 (3.50)

are the consequences upon the velocity gradients. The velocity gradients wi
i, j observed in a

system that stays stationary during a rotation increment are

wi
i, j = vi

i, j +ωi j (3.51)

where ωi j is the relative spin tensor with the components

ω21 =−ω12 = φ̇ ω11 = ω22 = 0 (3.52)

In the latter equation, the prescribed spin increment φ̇ is introduced. Two tensors Ri
i j and Ro

i j

that contain the directional cosines are introduced

Ri
i j = cos

(
∡(Oxc

i ,Oxi
j)
)

Ro
i j = cos

(
∡(Oxc

i ,Oxo
j)
)

(3.53)

where Ri
i j and Ro

i j give the directional cosines between the inner kink band system xi
i or outer

system xo
i to the common system xc

i . Continuity of velocities across the band requires that a
line element lying on the band is stretched vc

2,2 and rotated vc
2,1 equally, when it is calculated

from the two systems. The directional cosines can be used to evaluate the velocity gradients
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in another system. Continuity of velocities requires

wi
i, j Ri

2i Ri
2 j = vo

i, j Ro
2i Ro

2 j wi
i, j Ri

1i Ri
2 j = vo

i, j Ro
1i Ro

2 j (3.54)

In addition, the equalities can be expressed using the normal and tangent to the band

wi
i, j t i

i t i
j = vo

i, j to
i to

j wi
i, j ni

i t
i
j = vo

i, j no
i to

j (3.55)

where no
i and to

i are the unit normal and tangent expressed in the outer base material system.
Equilibrium of traction increments require the tractions ṫc

11 and ṫc
12, expressed in the two

systems to be equal

t i
i j Ri

1i Ri
1 j = to

i j Ro
1i Ro

1 j t i
i j Ri

1i Ri
2 j = to

i j Ro
1i Ro

2 j (3.56)

which can be expressed with velocity gradients using Eq. (3.14)

Ci
i jkl wi

l,k Ri
1i Ri

1 j =Co
i jkl vo

l,k Ro
1i Ro

1 j Ci
i jkl wi

l,k Ri
1i Ri

2 j =Co
i jkl vo

l,k Ro
1i Ro

2 j (3.57)

When shear strains or stresses are present in the base material, the band will rotate. The band
rotation increments are

β̇
o =−vo

i, j Ro
1i Ro

2 j β̇
i =−vi

i, j Ri
1i Ri

2 j (3.58)

The necessary constraints are given by Eqs. (3.50), (3.54) and (3.57), which gives six
equations. The velocity gradients of the inner and outer material contain eight components
in total that need to be specified in every increment. Furthermore, two boundary conditions
are required. In the majority of the simulations presented in [P1 - P4], the following two
boundary conditions are used: no shear and transverse stresses are present in the base material

σ̇
o
22 = 0 σ̇

o
12 = 0 (3.59)

The Cauchy stress increments σ̇αβ are calculated based on

σ̇αβ =Cαβγδ vδ ,γ −σαβ vγ,γ + vα,γ σγβ (3.60)

Using the model, σo
11 in the outer base material can be determined in every increment. The

maximum value obtained for σo
11 during the fibre increments φ̇ is the critical compressive

stress σ cr
11.
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3.4.2 3D model

A three-dimensional numerical formulation is developed in [P1] to study kink band formation
and to validate the developed three-dimensional homogenised constitutive equation. The nu-
merical scheme is inspired by the two-dimensional version and is generalised. An illustration
of a developed three-dimensional kink band is presented in Fig. 3.12. Again, two material
states are present and a common system lies on the band. The stresses in the systems are
illustrated at the bottom of the figure.

The velocity gradients vi, j in 3D contain nine components. Since two material states are
present, 18 components need to be determined in every increment and therefore 18 equations
are required. For simplicity and for the comparison with the two-dimensional formulation, in
[P1] we chose to let the kink band develop in the x1-x2 plane. Furthermore, the xo

3 and xi
3

bases coincide before and during deformation. A formulation where the coordinate systems
follow the rotation is once again chosen:

vo
2,1 = 0 vi

2,1 = 0 (3.61)

Continuity of velocities across the band require six equations in 3D and again, the directional
cosines are used to relate the velocity gradients to the common system
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i
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i, jR
i
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i, j Ro

1i Ro
3 j
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i, jR

i
3i Ri

2 j = vo
i, j Ro
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2 j wi

i, jR
i
2i Ri

3 j = vo
i, j Ro

2i Ro
3 j

(3.62)

The first two equations ensure stretching continuity on the band. The third and fourth
equations ensure continuity of out-of-plane rotations of the kink band plane. The fifth and
sixth equations ensure continuity of shear straining and rotation of the kink band plane.
Continuity of traction increments requires three equations:

Ci
i jkl wi

l,k Ri
1i Ri

1 j =Co
i jkl vo

l,k Ro
1i Ro

1 j
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i jkl wi

l,k Ri
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2 j =Co
i jkl vo

l,k Ro
1i Ro

2 j

Ci
i jkl wi

l,k Ri
1i Ri

3 j =Co
i jkl vo

l,k Ro
1i Ro

3 j

(3.63)

The equalities given by Eqs. (3.61), (3.62) and (3.63) are necessary and give eleven equations.
The last seven equations set the boundary conditions. Five boundary conditions are used in
[P1] to enforce plane strain conditions
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Figure. 3.12 Kink band geometry showing the two material states with two coordinate systems in a
three-dimensional case (top). Two small pieces of the material states together with the stresses on the
common plane (bottom).
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vo
3,1 = 0 vo

3,2 = 0 vo
1,3 = 0

vo
2,3 = 0 vo

3,3 = 0
(3.64)

In [P1], the influence of multi-axial loading is explored. Two variables ρ and ψ are introduced,
to control the proportional amount of multi-axial loading.

ρ =
σ̇o

22
σ̇o

11
ψ =

σ̇o
12

σ̇o
11

(3.65)

The last two boundary conditions for the three-dimensional scheme are

σ̇
o
22 −ρ σ̇

o
11 = 0 σ̇

o
12 −ψ σ̇

o
11 = 0 (3.66)

The Cauchy stress increments σ̇i j are calculated based on

σ̇i j =Ci jkl vl,k −σi j vk,k + vi,k σk j (3.67)

With the introduced formulation, it is possible to compare the two- and three-dimensional
kink band models using the homogenised constitutive formulations.

3.4.3 Numerical scheme

Many equations were presented and to enhance the transparency of the implementations,
the steps within the numerical scheme are outlined here. The relative spin increment φ̇ is
prescribed. The simulations progress from an initial fibre imperfection φ0 to an end rotation
φ decided by the user. The following steps are required for every increment:

1. Update instantaneous moduli for the constituents Lc
i jkl using an elastic or elastic-plastic

time-independent material law.

2. Calculate the nominal moduli for the constituents Cc
i jkl using Eq. (3.13).

3. Calculate the nominal moduli for the composite Cαβγδ or Ci jkl based on Eq. (3.27),
Eq. (3.40) or Eq. (3.39).

4. A linear system in the form [A]V = R is created, where V is a vector containing the
unknown velocity gradients for the band and base material vi

i, j, vo
i, j and [A] is a matrix

containing the coefficients. The linear system is solved with respect to the unknown
vector V. The linear system is based on

(a) In 2D – 8 equations given by Eqs. (3.50), (3.54), (3.57) and (3.59) using
Eq. (3.60).
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(b) In 3D – 18 equations given by Eqs. (3.61), (3.62), (3.63), (3.64) and (3.66) using
Eq. (3.67).

5. Calculate the velocity gradients for the constituents vc
i, j within the band and base

material based on the overall velocity gradients vi, j using Eq. (3.29) in 2D. The
velocity gradients in the 3D case are presented in [P1].

6. Update the stresses σi j = σi j + σ̇i j where the stress increments σ̇i j are calculated using
Eq. (3.60) or (3.67).

7. Update the geometric quantities β , φ and c f using Eq. (3.58) and Eq. (3.30).

3.5 Kink band broadening

The propagating instability known as kink band broadening or steady-state kink band prop-
agation is investigated in [P3] and [P4]. In the publications, the semi-analytical model
presented in this chapter is used. Propagating instabilities initiate from local imperfections
and propagate under a constant applied load, that can be several magnitudes lower than
the load required to initiate the instability as explained by Kyriakides (1993). Within the
framework of fibre-kinking, a kink band will initiate and rotate until a steady-state is reached
where the fibres stop rotating and broadening of the kink band is energetically preferable.

In the current section, a method is introduced to study kink band broadening using the
semi-analytical model that is developed by Jensen (1999a). The methodology is based on a
Maxwell construction of work equilibrium. Chater and Hutchinson (1984) proposed a similar
methodology to study steady-state propagation in structural applications. The internal work
W I and external work W E per unit volume are calculated in every increment and when the
equilibrium W I =W E is obtained, the steady-state is obtained. The external work per unit
volume is calculated according to

W E = So
αβ

∆Eo
αβ

(3.68)

where ∆Eo
αβ

are the differences in Lagrangian strains inside and outside the kink band
evaluated in the base material system. So

αβ
are stress components of the work-conjugate of

the Lagrangian strain i.e. Second Piola Kirchhoff stresses. The internal work per unit volume
is calculated based on the integral

W I =
∫

ε i

εo
σαβ dεαβ (3.69)
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where εo and ε i are strain states in the base and kink band material. The simulations
initiate from a small fibre imperfection φ0 ≈ 0 and progress with fibre rotation increments
φ̇ . The simulations run until the work equilibrium W I =W E is reached. Further details and
illustrations are presented in [P3] and [P4].



Chapter 4

Analytical kink band model

The phenomenon known as kink band broadening was briefly introduced in the previous
chapter. The concept will be further discussed in the current chapter using an analytical
model developed in [P3] and is used in a similar form in [P4]. Regarding an idealised
kink band, the analytical model assumes stress equilibrium on the band and displacement
continuity across the band. In the current chapter, it is formulated using the total stress
and strain states instead of a rate formulation. Similarly, a Maxwell construction of work
equilibrium is assumed, resulting in one transcendental equation with the fibre rotation φ

being the unknown variable. Moran et al. (1995) derived a similar analytical expression of
kink band broadening where they used the experimentally observed relation φ = 2β from
Evans and Adler (1978). Furthermore, Moran et al. (1995) assumed incompressibility of the
composite. In contrast, the analytical model developed in [P3] does not assume φ = 2β but
does account for compressibility. In the current formulation the kink band inclination β is
seen as a free parameter. The final value of β during kink band broadening is discussed in
[P4] with the hypothesis that β is influenced by the boundary conditions. In contrast to the
semi-analytical model (Chapter 3), the analytical model makes several prior assumptions
regarding e.g. the fibre and matrix material behaviour and the overall stress state in the base
material.

4.1 Stresses and equilibrium

Two material states are considered: an outer base material and an inner kink band material.
This is equivalent to the assumptions introduced for the semi-analytical model. Equilibrium
of stresses is required on the band between the base and band material, which gives a statically
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admissible stress field. To have equilibrium of stresses, both stress states are evaluated in the
same coordinate system as shown in Fig. 3.11. The directional cosines are used once again:

σ
i
i j Ri

1i Ri
1 j = σ

o
i j Ro

1i Ro
1 j σ

i
i j Ri

1i Ri
2 j = σ

o
i j Ro

1i Ro
2 j (4.1)

where the first equation gives the stress σ c
11, expressed through the stress field from the band

material (left of equality) and the outer material (right of equality). Similarly, the second
equation equals the shear stress σ c

12 in the common system. In the analytical model, it is
assumed that only σo

11 is present (stress along the fibres) in the base material. In [P3] it is
demonstrated that the stress σo

11 can be expressed as a function of the inner stresses σ i
12 and

σ i
22 according to

σ
o
11 =−σ

i
12 [cotφ + tanβ ]−σ

i
22 [cotφ tanβ −1] (4.2)

where the band inclination β is regarded as a free parameter that needs to be specified. In
[P3], simple assumptions are made regarding the constitutive behaviour and are inspired
by the stress-strain response in the semi-analytical model. It is assumed that the stress σ22

can be determined from the total strain ε22 alone and that the response is linear-elastic. The
expression

σ22 =
E (1−ν)

(1+ν)(1−2ν)
ε22 (4.3)

is used with the assumption of plane strain conditions, where E is the transverse composite
Young’s modulus and ν is the Poisson’s ratio. A simple bilinear relation is assumed for the
shear stress-strain behaviour:

σ12 =


2G1 ε12 for ε12 < ε

y
12

σ12 = 2G2 ε12 +σ
y
12

(
1− G2

G1

)
otherwise

(4.4)

where G1 is the initial shear modulus prior to yielding and G2 is the shear modulus beyond
yielding. σ

y
12 and ε

y
12 are the shear yield stress and shear yield strain.

4.2 Strains and continuity

In the current section, the strain state εi j in the base and band material is determined as a
function of fibre rotation φ . Fig. 4.1 will be used to illustrate the kinematic requirements
on the kink band boundary. Initially, the focus is given to the two points lying on the band
boundary (black circles in Fig. 4.1). It is assumed that there is a compatible strain field prior
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Figure. 4.1 Two points on kink band boundary seen from the two material states (top). Initial (black)
and deformed configuration (grey) of the two points on the band boundary seen from the two states
(bottom).

to deformation i.e. material lines lying on the band boundary have stretched and rotated the
same amount when expressed through the inner and outer strains. To have compatibility
during a deformation increment, material lines on the band boundary need to have the same
stretch and rotation increment when expressed through the strains in the two systems. This
requirement is illustrated in Fig. 4.1, where the grey circles represent a material piece lying
on the boundary after a deformation increment.

The velocity gradient vo,c
1,2 represents a velocity gradient in the common system (xc)

and is calculated based on the velocity gradients vo
i, j in the outer material system. In the

analytical model, the fibres are assumed to be inextensible and when the fibres are aligned
with the x1-axis during deformation, this entails vo

1,1 = vi
1,1 = 0. Furthermore, only σ11 stress

is applied along the fibres in the base material, which implicitly yields no transverse and
shear straining vo

i, j = 0 in the base material. Continuity of displacements across the band is
formulated using velocity gradients

wi
i, j Ri

2i Ri
2 j = 0 wi

i, j Ri
1i Ri

2 j = 0 (4.5)
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Figure. 4.2 Strain state in outer material 1 and inside kink band 2 (left). The strain state inside the
kink band is rotated 60◦ to show the total strains (right).

where the velocity gradients wi
i, j are given by Eq. (3.51). In [P3] it is demonstrated that the

finite strains in the band material can be derived based on the latter equations, and are equal
to

ε
i
12 =

φ

2
ε

i
22 = ln

(
cos(β −φ)

cosβ

)
(4.6)

The same expressions of the strains were obtained by Budiansky and Fleck (1993). To
enhance understanding of the final strain states, Fig. 4.2 is introduced in [P3]. A material
piece of the base material is designated as 1 and a piece in the band material is designated
as 2 . In the initial configuration, the material piece 2 is equal to 1 . To illustrate the total
deformation going from 1 to 2 , the piece 2 is rotated an amount of φ in the right-hand
illustration in Fig. 4.2. By inserting the kinematic relation φ = 2β into Eq. (4.6) for ε i

22, zero
transverse straining ε i

22 = 0 is obtained.

4.3 Kink band broadening

An illustration of a kink band that has undergone broadening is displayed in Fig. 4.3. It is
assumed that a steady-state is obtained when the work done by external forces equals the
work required to deform an infinitesimal piece into the band. The externally applied stress
σ11 works on an area A. The specimen boundary displaces at the uniform rate −u. Positive
values work in the direction of the basis. The work done by the external force is

W E =−uAσ11 (4.7)
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Figure. 4.3 Illustration of the model of kink band broadening. A propagated configuration is illustrated
with dashed lines.

Using the geometric relation u = l (1− cosφ), see Fig. 4.3, the relation can be written in the
form:

W E =−l Aσ11 (1− cosφ) (4.8)

During the uniform rate −u, a material volume of l A undergoes internal work equal to

W I = l A
∫

ε i

εo
σαβ dεαβ (4.9)

When comparing the internal and external work, the volume l A is present in both equations.
The stresses and strains within the equations of work can be substituted by the expressions
presented in the two previous sections. [P3] demonstrates that the internal and external work
per unit volume can be expressed by

W E = (2C2 φ +C3) [cotφ + tanβ ] (1− cosφ)

+2C4 ln
(

cos(β −φ)

cosβ

)
[cotφ tanβ −1] (1− cosφ)

(4.10)

W I =C1 (φ
y)2 +C2

(
φ

2 − (φ y)2
)
+C3 (φ −φ

y)+C4 ln
(

cos(β −φ)

cosβ

)2
(4.11)
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where constants are introduced as follows:

C1 =
G1

2
C2 =

G2

2
C3 = σ

y
12

(
1− G2

G1

)
C4 =

E (1−ν)

2 (1+ν)(1−2ν)
(4.12)

The latter constants are based on material properties of the composite and as mentioned,
the band inclination β is a free parameter. The only unknown variable upon evaluating the
work balance W E =W I is the fibre angle φ . The work balance during steady-state kink band
broadening is determined numerically.



Chapter 5

Summary and outlook

The dissertation is chiefly concerned with the study of kink band formation, which is the
dominant compressive failure mechanism for many fibre-reinforced composites loaded in the
direction of the fibres. The study covers both numerical and analytical approaches. Several
numerical models and constitutive relations were developed during the project.

Secondly, contributions to the field of joint mechanics within composites were made and
were carried out at the Department of Engineering at the University of Cambridge.

The contributions to the field are elaborated in the following section.

5.1 Contributions

Regarding the failure mechanism, kink band formation, this project has contributed with:
• An exploration of kink bands using an idealised three-dimensional, semi-analytical,

kink band model.

• Investigations of the effect of multi-axial loading upon the critical peak strength for a
case study involving a carbon fibre-reinforced composite.

• An investigation of the influence of fibre-to-matrix bonding quality upon the critical
peak strength at kink band formation.

• A developed understanding of the propagating instability known as kink band broad-
ening, including the influence of relevant material parameters upon the lock-up angle
and propagating stress.

• An investigation of size effects upon kink band broadening using an FE-model.
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• An investigation of kink band formation in open-hole fibre-composites, including the
sensitivity of loading direction upon compressive strength.

As part of the project, the following models were developed:
• A three-dimensional constitutive model that can be used to explore plastic deformation

with large rotations and deformations for fibre-reinforced composites. The model is
based on two independently described constitutive formulations for the constituents.

• A two-dimensional constitutive model that includes information about fibre-to-matrix
bonding. Once again, this model is based on two independently described constitutive
relations of the constituents.

• A three-dimensional, unit-cell finite element model where the fibre and matrix con-
stituents are modelled explicitly. The model makes it possible to investigate the effect
of the fibre-to-matrix interaction upon kink band formation.

• A two-dimensional finite element model with periodic boundary conditions on a
skewed mesh, used to study kink band broadening.

• An analytical model for the estimation of kink band broadening. The model was based
on a Maxwell condition for the steady-state.

As part of the visit to the Department of Engineering at the University of Cambridge, the
following contributions were made regarding the investigation of the load transfer mechanism
in a Dyneema composite:

• Construction of an experimental set-up to study the load transfer mechanism.

• Identification of the dominant failure mechanism through X-ray tomography and
optical images. It was found that the failure was dominated by inter-laminar shearing
between the 0◦ and 90◦ fibre layers.

• Development of a simple analytical model of the dominant failure.

• Construction of a failure mechanism map with the specimen geometries as the inde-
pendent variables.

5.2 Perspective

In the previous section, all the contributions were stated as bullet points and in the following,
the contributions are put into perspective for real applications.

The development of the three-dimensional constitutive model makes it possible to simu-
late the failure of real three-dimensional structures made from composite materials. Previous
3D models were based on the measured homogenised response of the overall composite. The
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current model takes two independently described materials and homogenises the properties
instead of taking the overall measured properties. Furthermore, no information is lost with
respect to the stress and strain states of the individual constituents during deformation.

The results obtained using the two-dimensional constitutive model taking imperfect
bonding into account can be used to give an upper and lower bound for the actual compressive
strength of fibre composites. The actual strength lies between the two boundaries of perfect
and no bonding. The latter model can be implemented as a user subroutine in Abaqus/CAE.
This gives the possibility of having areas of imperfect bonding as e.g. around drilled open-
holes in composite laminates where the composite will be damaged in the vicinity of the hole
due to the machining process.

A laminated composite structure will, in general, be exposed to different multi-axial
stress states throughout the material. Previous studies have mainly focused on idealised cases
with only stresses acting in the direction of the fibres. The results obtained with respect to
multi-axial loading can be used to estimate the actual compressive strength of a composite
with a realistic stress state.

As mentioned previously, the stress at steady-state kink band broadening can be seen
as the lower bound of the compressive strength. In structures where the design needs to be
insensitive to fibre-imperfections, parametric studies with respect to kink band broadening
can be used to develop new composite materials with improved properties with compressive
failure in mind.

5.3 Recommendations for further work

The three-dimensional constitutive model developed in [P1] was used to study kink band
formation using an idealised model. The constitutive relation is formulated in a general
framework and can be implemented as a user subroutine in a finite element software as e.g. a
UMAT into Abaqus/CAE. This enables the study of failures of complex structures and fibre
layouts where plasticity plays a crucial role.

The constitutive formulation developed in [P2] uses a phenomenological parameter µ

going from zero to unity to specify the quality of fibre-to-matrix bonding. A connection is
missing between the phenomenological parameter µ and the measured fracture toughness
obtained from single-fibre push-out experiments e.g. Jäger et al. (2015).

Hybrid composites are currently being developed i.e. composites with more than two
constituents; for example, glass and carbon fibres embedded in a resin material. The company
Owens Corning has produced glass fibre laminates since 1944 and has recently started
producing hybrid laminate composites composed of glass and carbon fibres. Limited work
has been done within the field of compressive failure of hybrid composites.



Chapter 6

P1
Three-dimensional constitutive model for elastic-plastic
behaviour of fibre-reinforced composites

6.1 Motivation

As described in the Introduction, the estimation of the behaviour of fibre composites under
large deformations, including plasticity, can be challenging due to the heterogeneous structure
of the composites. Both discrete and homogeneous finite element models can be used to study
the deformation as explained in Chapter 2. The use of discrete models, where the fibre and
matrix constituents are modelled explicitly, is limited to simple and small geometries. When
the fibre layout becomes complex, the use of homogeneous models become advantageously.
Previous developed homogeneous, elastic-plastic, formulations have mainly been based on
the composite response instead of the constitutive response of the constituents.

The current publication regards the development of a three-dimensional constitutive
formulation for fibre-reinforced composites. The formulation takes as input, two constitutive
relations of two constituents and the volume fractions of the constituents. The formulation
can be used in a general elastic-plastic framework with large displacements and rotations.
The formulation is inspired by the two-dimensional constitutive model developed by Christof-
fersen and Jensen (1996). The original source of the publication is: (Skovsgaard and Jensen,
2018b).
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6.2 Method

The homogenization of the constituents is based on three assumptions
• Material lines on the common plane between two materials are subjected to common

stretching and rotation.

• Planes on the intersection between two materials transmit identical tractions.

• The material of the constituents is elastic of elastic-plastic.
The thoughts and theory behind the formulation were described in Chapter 3 and the

essence is repeated here for completeness. The model is formulated in an updated Lagrangian
framework using velocity gradients and rates of nominal stresses. The final three-dimensional
constitutive relation is based on two homogenisations to obtain a fibre that is embedded in
a matrix. The relation is implemented and used in a semi-analytical kink band simulation
using Fortran 77 programming. The model implementation is described in Section 3.4.

6.3 Contribution

The contributions to the publication comprise: the development of a novel constitutive for-
mulation; expansion of a two-dimensional kink band model to a three-dimensional version;
conducting kink band simulations with and without multi-axial loading and writing the paper.

6.4 Main findings

One of the main findings is the development of the constitutive formulation itself. Several
different versions of the three-dimensional relations are proposed and results from a kink
band simulations using the models are compared with the results from a two-dimensional
model introduced by Jensen and Christoffersen (1997). The influence of initial fibre im-
perfection upon the critical compressive strength is investigated using the different models.
Furthermore, the influence of transverse and shear loading upon the critical compressive
stress is investigated using the two- and three-dimensional relations.

The developed constitutive formulation is used in a kink band study using a semi-
analytical approach, but is far from limited to this application. The formulation can e.g. be
implemented as a user subroutines into Abaqus/CAE and be used to study the response and
failure of complex fibre domains.
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© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The increased use of fibre composites has given rise to a thor- 

ough investigation of the behaviour and failure of composites 

based on several load types. Especially the compressive failure has 

received attention due to its sudden instability which can cause 

a catastrophic failure. Compressive failure of fibre composites is 

caused by several competing failure mechanism. Several experi- 

ments show that a frequently observed failure is due to plastic 

micro-buckling which leads to the development of kink bands. 

Wadee et al. (2004) observed plastic micro-buckling in a compres- 

sion experiment and compared the results with a simple mechan- 

ical model. Liu et al. (2014) investigated the collapse of composite 

beams made from ultra-high molecular polyethylene fibres where 

they observed kink band formation. Zhou et al. (2013) investigated 

the compressive response of unidirectional fibres under axial and 

off-axis compressive loading and kink band formation dominated 

the failure for small off-axis angles. Nizolek et al. (2017) investi- 

gated stable kink band propagation in Cu-Nb nanolaminates. They 

observed that kink bands were initiated and propagated from local 

imperfections. 

In the early work of micro-buckling ( Rosen, 1965 ) investi- 

gated the compressive strength of a polymer matrix composite 

where the fibres were treated as beams on an elastic foundation. 

Budiansky (1983) introduced a composite with elastic ideally plas- 

∗ Corresponding author. 

E-mail addresses: sphs@eng.au.dk (S.P.H. Skovsgaard), hmj@eng.au.dk (H.M. 

Jensen). 

tic matrix material. The failure was caused by kink band forma- 

tion in a geometry with an initial fibre imperfection. As a contin- 

uation, Budiansky and Fleck (1993) included the effects of finite 

fibre stiffness. They concluded that the assumption of rigid fibres 

could be justified for many kinking problems. It is now commonly 

accepted that the micro-buckling compression failure is primarily 

dominated by fibre imperfections and the elastic-plastic shear be- 

haviour of the composite. 

Numerical investigations of the failure of long fibre-reinforced 

composites can roughly be divided into two categories. The first 

approach is by creating a finite element analysis where fibre and 

matrix are treated individually. This approach is commonly known 

as discretized models or individual fibre models. The approach 

was initially used by Guynn et al. (1992) and several authors 

have used a similar approach, including: Vogler et al. (2001a) who 

investigated the compressive response due to local imperfec- 

tion near a free edge and was compared with own experiments 

presented in Vogler et al. (2001b) . Romanowicz (2013) inves- 

tigated both uniform and non-uniform sinusoidal imperfections. 

Wind et al. (2014) compared a discretized and homogenized model 

in a kink band study. Hsu et al. (1999a) conducted an experi- 

ment where they investigated steady-state axial propagation of 

kink bands and compared their findings with a three-dimensional 

discretized finite element model presented in Hsu et al. (1999b) . 

Recent investigations using the current approach with random fi- 

bre distribution were performed by Zhang et al. (2016) . More com- 

prehensive methods including damage and cohesive friction ele- 

ments were studied by Naya et al. (2017) . The use of discretized 

finite element models can be challenging and time consuming 

when concerning large or complex geometries. Especially the deci- 

https://doi.org/10.1016/j.ijsolstr.2018.01.032 

0020-7683/© 2018 Elsevier Ltd. All rights reserved. 

6.5 Article P1 62



S.P.H. Skovsgaard, H.M. Jensen / International Journal of Solids and Structures 139–140 (2018) 150–162 151 

Fig. 1. Geometries for the constitutive formulations. 

sions on how the direction should be varied for every single fibre 

are complicated when the geometry becomes comprehensive. The 

method, where the fibres are discretized and are embedded in a 

matrix material, is limited to simple geometries. 

A second approach is by homogenizing or smear out the 

properties of the fibre and matrix constituents. Early formu- 

lations of two-dimensional constitutive models were presented 

by Fleck and Shu (1995) and Christoffersen and Jensen (1996) . 

Fleck and Shu (1995) formulated their constitutive model using 

Cosserat couple stress theory, where they were able to include fi- 

bre bending effects. Christoffersen and Jensen (1996) formulated a 

general rate constitutive equation where the homogenized prop- 

erties were based on independent constitutive laws for both con- 

stituents (matrix and fibre). Poulios and Niordson (2016) combined 

the qualities of the two latter models. They developed a two- 

dimensional constitutive model which is described by two inde- 

pendent constitutive laws for the constituents and is able to in- 

clude intrinsic size effects using higher order strain gradients. 

The present paper introduces a general three-dimensional con- 

stitutive model which is largely inspired by the formulation done 

by Christoffersen and Jensen (1996) . Only few attempts have 

been done to introduce three-dimensional effects into a gen- 

eral framework to simulate the compressive failure of compos- 

ites. Grandidier et al. (1992) introduced three-dimensional ef- 

fects to investigate elastic micro-buckling by introducing a non- 

uniform distribution of the displacements through the thickness. 

Gutkin et al. (2016) investigated kink bands under 3D stress states 

using a damage model created in Gutkin and Pinho (2015) . 

Three-dimensional constitutive models including plasticity is 

needed to investigate the failure of more complex geometries and 

fibre layouts created by fibre-reinforced composites. The current 

paper introduces a three-dimensional homogenized constitutive 

model which is based on independent constitutive laws for the 

constituents. The model is created in a rate form using nominal 

stresses. The model is based on kinematic and static continuities 

and are averaged over a representative volume element. Lastly, the 

constitutive model is investigated using an infinite kink band anal- 

ysis and is compared with results obtained by Jensen and Christof- 

fersen (1997) and Jensen (1999) . 

The paper is organized in nine sections. Initially in Section 2 , 

an overview of the representative volume elements is presented 

which the constitutive model is based on. The general relations 

are introduced in Section 3 . Section 4 together with Section 5 de- 

rives the constitutive model. Section 6 presents the formulation of 

the infinite kink band simulation. In Section 7 , the constitutive law 

used for the constituents is presented. Section 8 gives an overview 

of the steps required in the numerical simulation. Section 9 shows 

results for kink band formation where different constitutive mod- 

els are compared. Section 10 concludes the paper. 

2. Geometrical representation of constitutive model 

In this section, a geometric representation of the representative 

volume elements is shown and described. The constitutive model 

is based on similar assumptions used to derive the model used 

in Christoffersen and Jensen (1996) . Their constitutive model was 

based on a two-dimensional domain of fibres and matrix and was 

formulated based on three assumptions outlined here for com- 

pleteness 

1. Material lines parallel with the fibres are subject to a common 

stretching and rotation. 

2. Planes parallel with the fibres transmit identical tractions. 

3. The material of the constituents is elastic or elastic-plastic. 

The first assumption correspond to a Voigt estimate in the fibre 

direction and is commonly accepted for fibre-reinforced compos- 

ites. The second assumption implies that the shared plane between 

the fibre and matrix transmit the same traction and thereby is in 

equilibrium across the boundaries. The third assumption is a spec- 

ification of the time-independent materials for the constituents. 

The current model uses both the first and third assumption di- 

rectly and partially the second assumption which will be outlined 

later. An illustration of the representative volume elements (RVE) 

is shown in Fig. 1 . Two different geometries are shown which the 

derivations are based on. Common for both geometries is a fibre 

constituent f and two matrix constituents m 1 and m 2 , representing 

a fibre surrounded by a resin material. Two length scales are in- 

troduced w f and h f which is the width and height of the simplified 

fibre geometry. In the case of a uniform distribution of fibre and 

matrix, the length scales can be calculated based on 

w 
f = h f = 

√ 

c f (1) 

where c f is the volume fraction of fibres. The fibre and matrix vol- 

ume fraction c f and c m comply to the identities 

c f = w 
f h f 

c m = (1 − w 
f ) h f + (1 − h f ) = (1 − w 

f ) + (1 − h f ) w 
f (2) 

1 = c f + c m 

The only difference between the two geometries shown in 

Fig. 1 is the volume fractions of m 1 and m 2 . When the mod- 

els are derived, they behave orthotropically. Unidirectional fibre 

composites with fibres aligned in the x 1 direction are usually as- 

sumed to have transverse isotropic behaviour. To obtain a trans- 

verse isotropic behaviour of the constitutive model, a combination 

of the properties between the two geometries, illustratively shown 

in Fig. 2 , is used. 

The constitutive models are constructed based on a homoge- 

nization in two steps. For the first geometry shown in Fig. 1 (a), the 
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Fig. 2. Geometric interpretation of the average constitutive properties. 

initial homogenization is done between f and m 1 . After the homog- 

enization, the lower part of the geometry is treated as a homo- 

geneous constituent which is illustrated in Fig. 3 (a). In the same 

manner, the second geometry is initially homogenized between f 

and m 2 as shown in Fig. 3 (b). 

3. General relations 

The constitutive model is based on a rate form of the constitu- 

tive behaviour of the three constituents. A formulation in the fol- 

lowing form is pursued 

˙ t i j = C i jkl v l,k i, j, k, l = { 1 , 2 , 3 } (3) 

where ˙ t i j are components of the rate of nominal stresses, v l, k 
are components of the velocity gradients and C ijkl are components 

of the tensor of nominal moduli. The summation convention is 

adopted for repeated index. Knowing the constitutive relations and 

the velocity gradients for the individual constituents, similar rela- 

tions can be set up 

˙ t c i j = C c i jkl v 
c 
l,k i, j, k, l = { 1 , 2 , 3 } (4) 

here ( • ) c represent either ( • ) f , ( • ) m 1 or ( • ) m 2 . The relation between 

the nominal stress rate and the Cauchy stress rate is given by 

˙ t c i j = ˙ σ c 
i j + σ c 

i j v 
c 
k,k − σ c 

jk v 
c 
i,k (5) 

It is assumed that the elastic-plastic relation between the rate of 

Cauchy stress and strain rate are given in the form 

σ̊ c 
i j = L c i jkl ˙ ε 

c 
kl (6) 

here σ̊ c 
i j 
are components of the Jaumann rate of Cauchy stresses 

which follows the local rotated coordinate system during defor- 

mation. L c 
i jkl 

are components of the elastic-plastic tangent moduli 

which satisfies the symmetries 

L c i jkl = L c i jlk = L c jikl (7) 

which is required by objectivity. The strain rates can be calculated 

using the velocity gradients 

˙ ε c i j = 
1 

2 

(

v 
c 
i, j + v 

c 
j,i 

)

(8) 

Eq. (6) can be rewritten using the symmetries of L c 
i jkl 

combined 

with the latter equation 

σ̊ c 
i j = L c i jkl v 

c 
l,k (9) 

The relation between the Jaumann rate of Cauchy stress and the 

Cauchy stress rate seen from a stationary coordinate system is 

given by 

˙ σ c 
i j = σ̊ c 

i j + ω 
c 
jk σ

c 
ik + ω 

c 
ik σ

c 
k j (10) 

where ω c 
i j 
is the spin tensor given by 

ω 
c 
i j = 

1 

2 

(

v 
c 
i, j − v 

c 
j,i 

)

(11) 

Combining Eq. (5) and Eqs. (9) –(11) yields the relation between 

nominal stress rate and velocity gradients 

˙ t c i j = 

(

L c i jkl + 
1 

2 
σ c 
ik δ jl −

1 

2 
σ c 
il δ jk −

1 

2 
σ c 
k j δil −

1 

2 
σ c 
l j δik + σ c 

i j δlk 

)

v 
c 
l,k 

(12) 

where δij is Kronecker’s delta. Comparing the latter equation with 
Eq. (4) results in the desired moduli 

C c i jkl = L c i jkl + 
1 

2 
σ c 
ik δ jl −

1 

2 
σ c 
il δ jk −

1 

2 
σ c 
k j δil −

1 

2 
σ c 
l j δik + σ c 

i j δlk (13) 

Using the nominal moduli C c 
i jkl 

gives the opportunity to include 

residual stresses which were investigated in a two-dimensional 

kink band study by Jensen (2002) . In the derivations below, it is 

convenient to represent the stress rates and velocities in vectors. 

The nine components of the nominal stress rates are represented 

in the three vectors 

˙ t 1 = 

( 
˙ t 11 
˙ t 12 
˙ t 13 

) 

˙ t 2 = 

( 
˙ t 21 
˙ t 22 
˙ t 23 

) 

˙ t 3 = 

( 
˙ t 31 
˙ t 32 
˙ t 33 

) 

(14) 

Each of the stress vectors represents the traction increment acting 

on the deformed configuration which initially was a unit cube. The 

vector v will denote the velocity vector 

v = 

( 
v 1 

v 2 

v 3 

) 

(15) 

Using the vectors above, the constitutive relation Eq. (4) for the 

composite and the constituents may be written as 

˙ t i = C i j v , j i, j = { 1 , 2 , 3 } 
˙ t c 
i = C c 

i j v 
c 
, j i, j = { 1 , 2 , 3 } 

(16) 

Where C ij and C 
c 
i j 
represents matrices of the size 3x3. The matrices 

includes the constitutive moduli C ijkl and C 
c 
i jkl 

. 

4. Homogenization between arbitrary materials 

The homogenization between two material planes are based on 

the assumptions: 

1. Material lines lying on the common plane between two mate- 

rials are subjected to a common stretching and rotation. 

2. Planes on the intersection between two materials transmit 

identical tractions. 

3. The material of the constituents is elastic or elastic-plastic. 

The first assumption results in 3 stretching continuities and 3 

rotation continuities. The second assumption expresses local equi- 

librium. 

To obtain the homogenized models presented in Section 2 , two 

homogenization operations are performed. The homogenization is 

done for two materials who share a plane parallel with the x 1 − x 2 
plane and another situation where they share a plane parallel with 

the x 1 − x 3 plane. 

On Fig. 4 two materials a and b are shown who share a plane 

parallel with the x 1 − x 3 plane. As a consequence of the first as- 

sumption, the velocity gradients v c 
, 1 and v 

c 
, 3 are common for both 

constituents based on the geometry shown in Fig. 4 

v a 
, 1 = v b 

, 1 = v , 1 
v a 

, 3 = v b 
, 3 = v , 3 

(17) 

where superscripts ( • ) a and ( • ) b represents the two arbitrary mate- 

rials, and velocity gradients with no superscript are overall quanti- 

ties. For overall compatibility of the representative volume element 

c a v a , 2 + c b v b , 2 = v , 2 (18) 
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Fig. 3. Geometries after first homogenization. 

Fig. 4. Representative volume element, where two arbitrary materials share a com- 

mon plane with outward normals which are parallel with the x 2 -axis. 

where c a and c b are the length scales presented in Fig. 4 which 

also are the volume fractions of the two materials. 

The second assumption leads to the equality 

˙ t a 2 = ˙ t b 2 = ˙ t 2 (19) 

Overall equilibrium of the RVE entails 

c a ˙ t a 1 + c b ˙ t b 1 = ˙ t 1 
c a ˙ t a 3 + c b ˙ t b 3 = ˙ t 3 

(20) 

Based on Eqs. (17) –(20) the representative volume element will 
comply to equilibrium and compatibility. Combining Eqs. (17) –(20) 
together with Eq. (16) , as detailed in Appendix A , yields the fol- 
lowing expressions for v c 

2 

v a , 2 = −c b C ∗−1 
22 

(

(

C a 21 − C b 21 
)

v , 1 + 

(

C a 22 − C b 22 −
1 

c b 
C ∗22 

)

v , 2 + 
(

C a 23 − C b 23 
)

v , 3 

)

v b , 2 = c a C ∗−1 
22 

(

(

C a 21 − C b 21 
)

v , 1 + 

(

C a 22 − C b 22 + 
1 

c a 
C ∗22 

)

v , 2 + 
(

C a 23 − C b 23 
)

v , 3 

)

(21) 

Using Eq. (16) the traction forces for the constituents can be deter- 

mined based on the velocity gradients. Initially, the focus is on the 

tractions ˙ t c 
1 

˙ t a 1 = C a 11 v , 1 + C a 12 v 
a 
, 2 + C a 13 v , 3 

˙ t b 1 = C b 11 v , 1 + C b 12 v 
b 
, 2 + C b 13 v , 3 

(22) 

Inserting the results for v a 
, 2 and v 

b 
, 2 yields 

˙ t a 1 = 
(

C a 11 − c b C a 12 C 
∗−1 
22 

(

C a 21 − C b 21 

))

v , 1 

+ 
(

C a 12 − c b C a 12 C 
∗−1 
22 

(

C a 22 − C b 22 

))

v , 2 

+ 
(

C a 13 − c b C a 12 C 
∗−1 
22 

(

C a 23 − C b 23 

))

v , 3 

˙ t b 1 = 
(

C b 11 + c a C b 12 C 
∗−1 
22 

(

C a 21 − C b 21 

))

v , 1 

+ 
(

C b 12 + c a C b 12 C 
∗−1 
22 

(

C a 22 − C b 22 

))

v , 2 

+ 
(

C b 13 + c a C b 12 C 
∗−1 
22 

(

C a 23 − C b 23 

))

v , 3 

(23) 

Combining the latter equation with the first part of Eq. (20) 

˙ t 1 = 
(

c a C a 11 + c b C b 11 − c a c b 
(

C a 12 − C b 12 

)

C ∗−1 
22 

(

C a 21 − C b 21 

))

v , 1 

+ 
(

c a C a 12 + c b C b 12 − c a c b 
(

C a 12 − C b 12 

)

C ∗−1 
22 

(

C a 22 − C b 22 

))

v , 2 

+ 
(

c a C a 13 + c b C b 13 − c a c b 
(

C a 12 − C b 12 

)

C ∗−1 
22 

(

C a 23 − C b 23 

))

v , 3 

(24) 

Using the same arguments for the tractions ˙ t c 
3 using the second 

part of Eq. (20) yields 

˙ t 3 = 
(

c a C a 31 + c b C b 31 − c a c b 
(

C a 32 − C b 32 

)

C ∗−1 
22 

(

C a 21 − C b 21 

))

v , 1 

+ 
(

c a C a 32 + c b C b 32 − c a c b 
(

C a 32 − C b 32 

)

C ∗−1 
22 

(

C a 22 − C b 22 

))

v , 2 

+ 
(

c a C a 33 + c b C b 33 − c a c b 
(

C a 32 − C b 32 

)

C ∗−1 
22 

(

C a 23 − C b 23 

))

v , 3 

(25) 

By inserting the velocity gradients given by Eq. (21) into 

Eq. (19) results in two expressions for the traction ˙ t 2 

˙ t 2 = 
(

C a 21 − c b C a 22 C 
∗−1 
22 

(

C a 21 − C b 21 

))

v , 1 

+ 
(

C a 22 − c b C a 22 C 
∗−1 
22 

(

C a 22 − C b 22 

))

v , 2 

+ 
(

C a 23 − c b C a 22 C 
∗−1 
22 

(

C a 23 − C b 23 

))

v , 3 

˙ t 2 = 
(

C b 21 + c a C b 22 C 
∗−1 
22 

(

C a 21 − C b 21 

))

v , 1 

+ 
(

C b 22 + c a C b 22 C 
∗−1 
22 

(

C a 22 − C b 22 

))

v , 2 

+ 
(

C b 23 + c a C b 22 C 
∗−1 
22 

(

C a 23 − C b 23 

))

v , 3 

(26) 

Since the two previous solutions for ˙ t 2 yield identical results, a 

combination of the two, multiplied by c a and c b will also give an 

identical solution 

˙ t 2 = c a ˙ t 2 + c b ˙ t 2 (27) 

Using the latter property, the tractions ˙ t 2 can be written as 

˙ t 2 = 
(

c a C a 21 + c b C b 21 − c a c b 
(

C a 22 − C b 22 

)

C ∗−1 
22 

(

C a 21 − C b 21 

))

v , 1 

+ 
(

c a C a 22 + c b C b 22 − c a c b 
(

C a 22 − C b 22 

)

C ∗−1 
22 

(

C a 22 − C b 22 

))

v , 2 

+ 
(

c a C a 23 + c b C b 23 − c a c b 
(

C a 22 − C b 22 

)

C ∗−1 
22 

(

C a 23 − C b 23 

))

v , 3 

(28) 

Comparing the coefficients from Eqs. (24) , (25) to (28) with the 

desired relation given by Eq. (16) , the matrices may be written in 

the form 

C i j = c a C a i j + c b C b i j − c a c b 
(

C a i 2 − C b i 2 
)

C ∗−1 
22 

(

C a 2 j − C b 2 j 
)

i, j = { 1 , 2 , 3 } 

(29) 

The constitutive equation gives the homogenized properties of the 

overall nominal tractions and overall velocity gradients. In an in- 

cremental scheme, the velocity gradients for the constituents can 

be obtained based on Eqs. (17) and (21) . The previous derivations 
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Fig. 5. Representative volume element, where two arbitrary materials shares a 

common plane with outward normals which are parallel with the x 3 -axis. 

were based on a representative volume with two arbitrary mate- 

rials sharing a plane with an outward normal parallel to the x 2 - 

axis. In Fig. 5 , two materials share a common plane with outward 

normal parallel to the x 3 -axis. The derivation of the homogenized 

properties of such a geometry is similar to the previous and there- 

fore details are omitted. 

In this case the velocity gradients v c 
, 1 and v 

c 
, 2 are common for 

both constituents 

v a 
, 1 = v b 

, 1 = v , 1 
v a 

, 2 = v b 
, 2 = v , 2 

(30) 

For overall compatibility of the representative volume element 

c a v a , 3 + c b v b , 3 = v , 3 (31) 

The second assumption leads to the equality 

˙ t a 3 = ˙ t b 3 = ˙ t 3 (32) 

By overall equilibrium 

c a ˙ t a 1 + c b ˙ t b 1 = ˙ t 1 

c a ˙ t a 2 + c b ˙ t b 2 = ˙ t 2 
(33) 

Based on the assumptions and the equalities for the current ge- 

ometry, the constitutive relations between nominal tractions and 

velocity gradients is given by 

C i j = c a C a i j + c b C b i j − c a c b 
(

C a i 3 − C b i 3 
)

C ∗−1 
33 

(

C a 3 j − C b 3 j 
)

i, j = { 1 , 2 , 3 } 

(34) 

The only difference between the latter constitutive equation and 

Eq. (29) is the last part which is a consequence of the direction of 

the outward normal of the shared plane between the constituents. 

The velocity gradients v c 3 can be calculated based on the overall 

velocity gradients 

v a , 3 = −c b C ∗−1 
33 

((

C a 31 − C b 31 
)

v , 1 + 
(

C a 32 − C b 32 
)

v , 2 

+ 

(

C a 33 − C b 33 −
1 

c b 
C ∗33 

)

v , 3 

)

v b , 3 = c a C ∗−1 
33 

((

C a 31 − C b 31 
)

v , 1 + 
(

C a 32 − C b 32 
)

v , 2 

+ 

(

C a 33 − C b 33 + 
1 

c a 
C ∗33 

)

v , 3 

)

(35) 

5. Constitutive models 

To derive the constitutive properties of the geometries shown in 

Fig. 1 , a combination of the constitutive formulations Eqs. (29) and 

(34) is to be used. Initially, the focus is on the first geometry 

shown in Fig. 1 (a). 

5.1. Constitutive model 1 

An initial homogenization is performed between f and m 1 as 

shown in Fig. 3 (a), where the symbol ( ̃ •) is used. The materials 

share a common plane with outward normal parallel with the x 3 - 

axis and for this reason Eq. (34) is used 

˜ C i j = w f C f 
i j 
+ (1 − w f ) C m 1 

i j −w f (1 − w f )(C f 
i 3 
−C m 1 

i 3 ) C 
∗−1 
33 (C f 

3 j 
−C m 1 

3 j ) 

i, j = { 1 , 2 , 3 } 

(36) 

where C ∗33 is given by 

C ∗33 = w 
f C m 1 

33 + (1 − w 
f ) C f 33 (37) 

Based on the homogenized velocity gradients ˜ v , j for the initial ho- 

mogenization the velocity gradients for the constituents can be cal- 

culated as 

v f 
, 1 = v m 1 

, 1 = ˜ v , 1 

v f 
, 2 = v m 1 

, 2 = ˜ v , 2 

v f 
, 3 = −(1 − w 

f ) C ∗−1 
33 

(

(

C f 
31 − C m 1 

31 

)

˜ v , 1 + 
(

C f 
32 − C m 1 

32 

)

˜ v , 2 

+ 

(

C f 
33 − C m 1 

33 −
1 

1 − w f 
C ∗33 

)

˜ v , 3 

)

v m 1 

, 3 = w 
f C ∗−1 

33 

(

(

C f 
31 − C m 1 

31 

)

˜ v , 1 + 
(

C f 
32 − C m 1 

32 

)

˜ v , 2 

+ 

(

C f 
33 − C m 1 

33 + 
1 

w f 
C ∗33 

)

˜ v , 3 

)

(38) 

The last homogenization is between ( ̃ •) and m 2 . The current con- 

stituents share a common plane with an outward normal parallel 

with the x 2 -axis and therefore Eq. (29) is used 

C 1 
i j = h f ˜ C i j + (1 − h f ) C m 2 

i j −h f (1 − h f ) 
(

˜ C i 2 −C m 2 

i 2 

)

˜ C ∗−1 
22 

(

˜ C 2 j −C m 2 

2 j 

)

i, j = { 1 , 2 , 3 } 

(39) 

where ˜ C ∗22 is 

˜ C ∗22 = h f C m 2 

22 + (1 − h f ) ̃  C 22 (40) 

Based on the overall velocity gradients v , j the velocity gradients 

for the constituents can be calculated. 

˜ v , 1 = v m 2 

, 1 = v , 1 

˜ v , 3 = v m 2 

, 3 = v , 3 

˜ v , 2 = −(1 − h f ) C ∗−1 
22 

(

(

˜ C 21 −C m 2 

21 

)

v , 1 + 

(

˜ C 22 −C m 2 

22 −
1 

1 − h f 
C ∗22 

)

v , 2 

+ 
(

˜ C 23 − C m 2 

23 

)

v , 3 

)

v m 2 

, 2 = h f C ∗−1 
22 

(

(

˜ C 21 − C m 2 

21 

)

v , 1 + 

(

˜ C 22 − C m 2 

22 + 
1 

h f 
C ∗22 

)

v , 2 

+ 
(

˜ C 23 − C m 2 

23 

)

v , 3 

)

(41) 

Combining the latter expression for the velocity gradients with 

Eq. (38) , the velocity gradients for the constituents can be ob- 

tained. 

v f 
, 1 = v , 1 

v f 
, 2 = −(1 − h f ) C ∗−1 

22 

(

(

˜ C 21 − C m 2 

21 

)

v , 1 + 

(

˜ C 22 − C m 2 

22 −
1 

1 − h f 
C ∗22 

)

v , 2 

+ 
(

˜ C 23 − C m 2 

23 

)

v , 3 

)

v f 
, 3 = −(1 − w 

f ) C ∗−1 
33 

(

(

C f 
31 − C m 1 

31 

)

v , 1 − (1 − h f ) 
(

C f 
32 − C m 1 

32 

)

C ∗−1 
22 

(

(

˜ C 21 − C m 2 

21 

)

v , 1 + 

(

˜ C 22 − C m 2 

22 −
1 

1 − h f 
C ∗22 

)

v , 2 
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+ 
(

˜ C 23 − C m 2 

23 

)

v , 3 
)

+ 

(

C f 33 − C m 1 

33 −
1 

1 − w f 
C ∗33 

)

v , 3 

)

(42) 

v m 1 

, 1 = v , 1 

v m 1 

, 2 = −(1 − h f ) C ∗−1 
22 

(

(

˜ C 21 −C m 2 

21 

)

v , 1 + 

(

˜ C 22 −C m 2 

22 −
1 

1 − h f 
C ∗22 

)

v , 2 

+ 
(

˜ C 23 − C m 2 

23 

)

v , 3 

)

v m 1 

, 3 = w 
f C ∗−1 

33 

(

(

C f 
31 − C m 1 

31 

)

v , 1 − (1 − h f ) 
(

C f 
32 − C m 1 

32 

)

C ∗−1 
22 

(

(

˜ C 21 − C m 2 

21 

)

v , 1 + 

(

˜ C 22 − C m 2 

22 −
1 

1 − h f 
C ∗22 

)

v , 2 

+ 
(

˜ C 23 − C m 2 

23 

)

v , 3 
)

+ 

(

C f 
33 − C m 1 

33 −
1 

1 − w f 
C ∗33 

)

v , 3 

)

(43) 

v m 2 

, 1 = v , 1 

v m 2 

, 2 = h f C ∗−1 
22 

(

(

˜ C 21 − C m 2 

21 

)

v , 1 + 

(

˜ C 22 − C m 2 

22 + 
1 

h f 
C ∗22 

)

v , 2 

+ 
(

˜ C 23 − C m 2 

23 

)

v , 3 
)

v m 2 

, 3 = v , 3 (44) 

5.2. Constitutive model 2 

The second constitutive model shown in Fig. 1 (b) is derived in a 

similar manner, where the first plane for performing homogeniza- 

tion is shifted. The initial homogenization is done between f and 

m 2 as shown in Fig. 3 (b), where the symbol ( ̂ •) is used. The mate- 

rials share a common plane with outward normal parallel with the 

x 2 -axis and for this reason Eq. (29) is used 

ˆ C i j = h f C f 
i j 

+ (1 − h f ) C m 2 

i j − h f (1 − h f ) 
(

C f 
i 2 

− C m 2 

i 2 

)

C ∗−1 
22 

(

C f 
2 j 

− C m 2 

2 j 

)

i, j = { 1 , 2 , 3 } 

(45) 

where C ∗22 is given by 

C ∗22 = h f C m 2 

22 + (1 − h f ) C f 
22 (46) 

Based on the homogenized velocity gradients ˆ v , j for the initial ho- 

mogenization, the velocity gradients for the constituents can be 

obtained as 

v f 
, 1 = v m 2 

, 1 = ˆ v , 1 

v f 
, 3 = v m 2 

, 3 = ˆ v , 3 

v f 
, 2 = −(1 −h f ) C ∗−1 

22 

(

(

C f 
21 −C m 2 

21 

)

ˆ v , 1 + 

(

C f 
22 − C m 2 

22 −
1 

1− h f 
C ∗22 

)

ˆ v , 2 

+ 
(

C f 
23 − C m 2 

23 

)

ˆ v , 3 

)

v m 2 

, 2 = h f C ∗−1 
22 

(

(

C f 
21 − C m 2 

21 

)

ˆ v , 1 + 

(

C f 
22 − C m 2 

22 + 
1 

h f 
C ∗22 

)

ˆ v , 2 

+ 
(

C f 
23 − C m 2 

23 

)

ˆ v , 3 

)

(47) 

The last homogenization for the model is done between ( ̂ •) and 

m 1 . The current constituents share a common plane with an out- 

ward normal parallel with the x 3 -axis and therefore Eq. (34) is 

used 

C 2 
i j = w f ̂  C i j + (1 − w f ) C m 1 

i j −w f (1 − w f ) 
(

ˆ C i 3 −C m 1 

i 3 

)

ˆ C ∗−1 
33 

(

ˆ C 3 j −C m 1 

3 j 

)

i, j = { 1 , 2 , 3 } 

(48) 

where ˆ C ∗33 is given as 

ˆ C ∗33 = w 
f C m 1 

33 + (1 − w 
f ) ̂  C 33 (49) 

Based on the overall velocity gradients v , j , the velocity gradients 

for the constituents can be obtained 

ˆ v , 1 = v m 1 

, 1 = v , 1 

ˆ v , 2 = v m 1 

, 2 = v , 2 

ˆ v , 3 = −(1 − w 
f ) ̂  C ∗−1 

33 

(

(

ˆ C 31 − C m 1 

31 

)

v , 1 + 
(

ˆ C 32 − C m 1 

32 

)

v , 2 

+ 

(

ˆ C 33 − C m 1 

33 −
1 

1 − w f 
ˆ C ∗33 

)

v , 3 

)

v m 1 

, 3 = w 
f ˆ C ∗−1 

33 

((

ˆ C 31 − C m 1 

31 

)

v , 1 + 
(

ˆ C 32 − C m 1 

32 

)

v , 2 

+ 

(

ˆ C 33 − C m 1 

33 + 
1 

w f 
ˆ C ∗33 

)

v , 3 

)

(50) 

Combining the latter expression with Eq. (47) , the velocity gradi- 

ents for the constituents can be determined. 

v f 
, 1 = v , 1 

v f 
, 2 = −(1 − h f ) C ∗−1 

22 

(

(

C f 
21 − C m 2 

21 

)

v , 1 

+ 

(

C f 
22 − C m 2 

22 −
1 

1 − h f 
C ∗22 

)

v , 2 − (1 − w 
f ) 

(

C f 
23 − C m 2 

23 

)

ˆ C ∗−1 
33 

(

(

ˆ C 31 −C m 1 

31 

)

v , 1 + 
(

ˆ C 32 −C m 1 

32 

)

v , 2 + 

(

ˆ C 33 −C m 1 

33 −
1 

1 −w f 
ˆ C ∗33 

)

v , 3 

))

v f 
, 3 = −(1 − w 

f ) ̂  C ∗−1 
33 

(

(

ˆ C 31 − C m 1 

31 

)

v , 1 + 
(

ˆ C 32 − C m 1 

32 

)

v , 2 

+ 

(

ˆ C 33 − C m 1 

33 −
1 

1 − w f 
ˆ C ∗33 

)

v , 3 

)

(51) 

v m 1 

, 1 = v , 1 

v m 1 

, 2 = v , 2 

v m 1 

, 3 = w 
f ˆ C ∗−1 

33 

((

ˆ C 31 − C m 1 

31 

)

v , 1 + 
(

ˆ C 32 − C m 1 

32 

)

v , 2 

+ 

(

ˆ C 33 − C m 1 

33 + 
1 

w f 
ˆ C ∗33 

)

v , 3 

)

(52) 

v m 2 

, 1 = v , 1 

v m 2 

, 2 = h f C ∗−1 
22 

(

(

C f 
21 − C m 2 

21 

)

v , 1 

+ 

(

C f 
22 − C m 2 

22 + 
1 

h f 
C ∗22 

)

v , 2 − (1 − w 
f ) 

(

C f 
23 − C m 2 

23 

)

ˆ C ∗−1 
33 

((

ˆ C 31 − C m 1 

31 

)

v , 1 + 
(

ˆ C 32 − C m 1 

32 

)

v , 2 

+ 

(

ˆ C 33 − C m 1 

33 −
1 

1 − w f 
ˆ C ∗33 

)

v , 3 

))

v m 2 

, 3 = −(1 − w 
f ) ̂  C ∗−1 

33 

(

(

ˆ C 31 − C m 1 

31 

)

v , 1 + 
(

ˆ C 32 − C m 1 

32 

)

v , 2 

+ 

(

ˆ C 33 − C m 1 

33 −
1 

1 − w f 
ˆ C ∗33 

)

v , 3 

)

(53) 

5.3. Average constitutive model 

By examination of the entries in the matrices given by 

Eqs. (39) and (48) it was observed that the models did not result 

6.5 Article P1 67



156 S.P.H. Skovsgaard, H.M. Jensen / International Journal of Solids and Structures 139–140 (2018) 150–162 

Fig. 6. Geometric representation of kink band formation. 

in transverse isotropic moduli. An average of the two models was 

observed to give the wanted transverse isotropic properties 

C i j = 
1 

2 

(

C 1 i j + C 2 i j 
)

(54) 

The constitutive expression shown above is the key expression pro- 

posed for three-dimensional simulations. In addition, the veloc- 

ity gradients for the constituents should be the average quantities 

based on Eqs. (42) –(44) and (51) –(53) 

v c 
, j = 

1 

2 

(

v c(1) 
, j 

+ v c(2) 
, j 

)

(55) 

If the length scale w f is set to unity in the first, second and average 

constitutive equation, given by Eqs. (39) , (48) and (54) , then the 

constitutive equations simplifies to 

C i j = c f C f 
i j 

+ c m C m 2 

i j − c f c m 
(

C f 
i 2 

− C m 2 

i 2 

)

C ∗−1 
22 

(

C f 
2 j 

− C m 2 

2 j 

)

i, j = { 1 , 2 , 3 } 
(56) 

where the equality given by Eq. (2) is used. The matrix C ∗22 is given 

by Eq. (46) . The latter constitutive equation has similarities with 

the formulation derived by Christoffersen and Jensen (1996) , where 

in their formulation the free index i, j varies between the integers 

1 and 2 and their matrices C c 
i j 
have dimensions 2 ×2 and not 3 ×3 

as in the present study. 

6. Localization of deformation 

To validate the constitutive equation given by Eq. (54) , a kink 

band simulation is set-up. The analysis is created as a numeri- 

cal simulation similar to the one done by Jensen and Christof- 

fersen (1997) with some changes in the formulation to account for 

the three-dimensional boundary conditions. 

In the analysis, two composite states are introduced: A material 

inside the kink band and a surrounding base material as illustrated 

in Fig. 6 . In the figure ( • ) o represents quantities associated with the 

outer base material and ( • ) i is associated with the material inside 

the kink band. The relative rotation of the fibres within the kink 

band is given by the angle φ. The rotated fibres are located in a 
localized band with an outward normal n . The angle between the 

first axis x o 
1 of the base material and the outward normal n is given 

by βo and the angle β i is the angle from the first axis of the inner 

material x i 
1 to the normal. 

To compare the analysis with the two-dimensional simulation 

done by Jensen and Christoffersen (1997) the third axis x o 
3 and x 

i 
3 

coincide initially and during the simulation. This is done for the 

purpose of illustration, and is not a restriction in general. The out- 

ward normal n lies in the x o 
1 − x o 

2 plane which entails that it also 

lies in the x i 
1 − x i 

2 plane. The angle φ is formed during the simu- 

lation either by bifurcation (for φ0 = 0 ) or as a consequence of an 

initial imperfection φ0 . The simulation is performed by prescribing 

either a stress- or velocity gradient increment and the rest of the 

unknown quantities can be calculated based on equilibrium and 

displacement continuities across the localized band. The velocity 

gradients v o 
i, j 

and v i 
i, j 

need to be fully determined for every incre- 

ment, this is a total of 18 velocity gradients, therefore 18 equations 

are to be determined. 

In Jensen and Christoffersen (1997) two different formulations 

for the simulation were introduced. One where the coordinate sys- 

tems followed the rotation of the fibres during an increment, and a 

second where the coordinate system inside the kink band was sta- 

tionary during the increment. The two formulations were shown to 

give identical results. In the current simulation, the first approach 

is adapted due to its convenience when implemented in a numer- 

ical scheme. When the coordinate systems rotate, with the fibres, 

this entails 

v 
o 
2 , 1 = v 

i 
2 , 1 = 0 (57) 

the velocity gradient v 2, 1 represents the rotation of the fibres and 

since the coordinate systems rotates with the fibres no relative ro- 

tation is seen. In a coordinate system that initially coincides with 

the band coordinate system but stays stationary during an incre- 

ment, seen from the outer coordinate system, has the velocity gra- 

dients v i 
i, j 

+ Äi j . Here, Äij is the relative spin tensor between the 

band and base material, where 

Ä21 = −Ä12 = ˙ φ (58) 

and all other components of Äij are zero. The quantity ˙ φ is the 

relative spin increment. In the simulation, ˙ φ will be a prescribed 

quantity and based on this increment, the velocity gradients and 

stresses are to be determined. To ensure continuity across the 

band, the second-order tensors (tractions and velocity gradients) 

need to be rotated into a common coordinate system. The tensors 

R o 
i j 
and R i 

i j 
are introduced which gives the directional cosines into 

a common coordinate system where their first axis will coincide 

with the outward normal n . The components of the rotation ten- 

sor R o 
i j 
can be illustrated in a matrix format 

( 
R o 11 R o 12 R o 13 
R o 21 R o 22 R o 23 
R o 31 R o 32 R o 33 

) 

= 

( 
cos (βo ) sin (βo ) 0 
−sin (βo ) cos (βo ) 0 

0 0 1 

) 

(59) 

where the orientation βo is shown in Fig. 6 . The calculation of 

R i 
i j 
is equivalent using the orientation β i . Displacement continuity 

across the band entails six equations 

(

v i 
i, j + Äi j 

)

R i 
2 i R 

i 
2 j = v o 

i, j R 
o 
2 i R 

o 
2 j 

(

v i 
i, j + Äi j 

)

R i 
3 i R 

i 
3 j = v o 

i, j R 
o 
3 i R 

o 
3 j 

(

v i 
i, j + Äi j 

)

R i 
1 i R 

i 
2 j = v o 

i, j R 
o 
1 i R 

o 
2 j 

(

v i 
i, j + Äi j 

)

R i 
1 i R 

i 
3 j = v o 

i, j R 
o 
1 i R 

o 
3 j 

(

v i 
i, j + Äi j 

)

R i 
3 i R 

i 
2 j = v o 

i, j R 
o 
3 i R 

o 
2 j 

(

v i 
i, j + Äi j 

)

R i 
2 i R 

i 
3 j = v o 

i, j R 
o 
2 i R 

o 
3 j 

(60) 

The first two equations are stretching continuities of the material 

on the kink band plane. The third and fourth equation are continu- 

ities of the band plane rotation. The last two equation describe the 

shear strain and rotation of the material on the kink band plane. 

Continuity of tractions entails three equations 

C i 
i jkl 

(

v i 
l,k 

+ Älk 

)

R i 
1 i R 

i 
1 j = C o 

i jkl 
v o 
l,k 

R o 
1 i R 

o 
1 j 

C i 
i jkl 

(

v i 
l,k 

+ Älk 

)

R i 
1 i R 

i 
2 j = C o 

i jkl 
v o 
l,k 

R o 
1 i R 

o 
2 j 

C i 
i jkl 

(

v i 
l,k 

+ Älk 

)

R i 
1 i R 

i 
3 j = C o 

i jkl 
v o 
l,k 

R o 
1 i R 

o 
3 j 

(61) 

Where the first equation is the force normal to the band plane and 

the last two equations are shear stresses. In the simulations done 

by Jensen and Christoffersen (1997) , different boundary conditions 

were investigated including plane stress, plane strain, no ˙ σ22 incre- 
ments and no v o 

2 , 2 velocity gradient. The simulations are performed 
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with plane strain condition and unless stated otherwise, σ o 
22 = 0 , 

which entails the boundary condition 

˙ σ o 
22 = 0 (62) 

Some simulations are performed with biaxial loading e.g. com- 

bined σ 11 and σ 22 stresses. In those simulations the biaxial load- 

ing ratio, ρ , is introduced 

ρ = 
˙ σ o 
22 

˙ σ o 
11 

(63) 

In the simulations with biaxial loading the boundary condition 

˙ σ o 
22 − ρ ˙ σ o 

11 = 0 (64) 

is used. Furthermore, simulations with combined compression and 

shear stresses in the base material are performed, where the load- 

ing ratio, ψ , is introduced 

ψ = 
˙ σ o 
12 

˙ σ o 
11 

(65) 

together with the boundary condition 

˙ σ o 
12 − ψ ˙ σ o 

11 = 0 (66) 

The rate of Cauchy stress for the composite can be calculated based 

on the nominal stress rates and the velocity gradients using 

˙ σi j = C i jkl v l,k − σi j v k,k + v i,k σk j (67) 

Furthermore, five boundary conditions are applied to the base ma- 

terial to obtain plan strain conditions 

v o 3 , 1 = 0 , v o 3 , 2 = 0 , v o 1 , 3 = 0 

v o 2 , 3 = 0 , v o 3 , 3 = 0 
(68) 

Using the continuity- and boundary conditions presented, the 

velocity gradients and stresses can be calculated for the base and 

band material numerically. The relative rotation of the kink band 

is updated according to 

˙ βo = −v 
o 
i, j R 

o 
1 i R 

o 
2 j 

˙ β i = −v 
i 
i, j R 

i 
1 i R 

i 
2 j (69) 

In line with the formulation done by Jensen and Christof- 

fersen (1997) , the fibre volume fraction c f inside and outside the 

kink band is different. The number of fibres penetrating a unit area 

A = A f /c f of an arbitrary section with the unit normal n i is 

N = n i e i 
c f 

A f 
(70) 

where e i is a unit vector parallel with the fibres, A 
f is the area of 

a single fibre. In any region not containing fibre ends the latter 

equation entails 

n o i e 
o 
i 

c f o 

A f o 
= n i i e 

i 
i 

c f i 

A f i 
(71) 

Based on the latter equation the volume fraction inside the band 

can be determined based on the volume fraction in the base ma- 

terial. The length scales w f and h f are updated according to 

˙ h f = h f (1 − h f ) (v f 
2 , 2 − v m 2 

2 , 2 ) 

˙ w f = w f (1 − w f ) (v f 
3 , 3 − v m 1 

3 , 3 ) 
(72) 

Jensen and Christoffersen (1997) used a similar formulation with 

the main difference that two length scales w f and h f are needed in 

the current formulation. 

7. Elastic-plastic behaviour of the constituents 

In Jensen (1999) three constitutive formulations for the incre- 

mental stiffness tensor L c 
i jkl 

for the constituents were compared. 

Only small differences were seen in the post-buckling regime be- 

tween the formulations. The Stören and Rice (1975) version of J 2 - 

deformation theory is presently adapted for all constituents. The 

formulation is outlined here for completeness. The components of 

the tensor of instantaneous moduli are given by 

L i jkl = G s 

(

δik δ jl + δil δ jk 

)

+ 

(

K −
2 

3 
G s 

)

δi j δkl −
4 

3 
( G s − G t ) m i j m kl 

(73) 

m ij is given in terms of Cauchy stresses 

m i j = 
1 

2 σeq 

(

σi j −
1 

3 
δi j σkk 

)

(74) 

where σ eq is the equivalent von Mises stress 

σeq = 

√ 

3 

2 
σi j σi j −

1 

2 
σii σ j j (75) 

The remaining terms introduced in Eq. (73) is the bulk modulus, K , 

the secant shear modulus, G s , and the tangent shear modulus, G t . 

The two latter moduli can be calculated based on the secant and 

tangent moduli E s and E t 

1 

G s 
= 

3 

E s 
−
1 − 2 ν

E 

1 

G t 
= 

1 

E t 
−
1 − 2 ν

E 
K = 

E 

3(1 − 2 ν) 

(76) 

where ν is Poisson’s ratio and E is Young’s modulus. The nonlinear 

relationship between the equivalent uniaxial logarithmic strain εeq 

and equivalent uniaxial stress σ eq is given by a Ramberg–Osgood 

relation 

ε eq = 
σeq 

E 
+ 
3 σy 

7 E 

(

σeq 

σy 

)n 

(77) 

where σ y is a reference yield stress and n is a hardening exponent. 

Both the secant modulus E s and tangent modulus E t can be deter- 

mined based on the Ramberg–Osgood curve using the relations 

1 

E s 
= 

ε eq 
σeq 

1 

E t 
= 

∂ε eq 
∂σeq 

(78) 

8. Numerical scheme 

The steps required in the numerical scheme are presented in 

this section. The relative spin increment ˙ φ is prescribed. The simu- 

lation goes from an initial fibre imperfection φ0 to an end rotation 

φ decided by the user. The following steps are required in every 

increment: 

1. Update instantaneous moduli for the constituents L c 
i jkl 

using 

Eq. (73) . 

2. Calculate nominal moduli for the constituents C c 
i jkl 

using 

Eq. (13) . 

3. Form the matrices C c 
i j 
for the constituents based on C c 

i jkl 
so they 

fulfil the form t c 
i 

= C c 
i j 
v c 

, j 
given by Eq. (16) . 

4. Calculate the nominal moduli for the composite C ij based on 

Eq. (54) using Eqs. (39) and (48) . 

5. Set-up a linear system of equations based on the 18 equations 

given by Eq. (57) , (60), (61), (64), (66) and (68) . A linear system 

in the form [ A ] V = R can be set up where V is a vector con- 

taining the unknown velocity gradients for the band and base 

material v i 
i, j 

, v o 
i, j 
. The linear system is solved with respect to 

the unknown vector V . 

6. Calculate the velocity gradients for the band and base con- 

stituents v c 
i, j 

based on the overall velocity gradients v i, j using 

Eqs. (42) –(44), (51) –(53) and (55) . 
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Fig. 7. Applied stress −σ o 
11 in base material normalised with the elastic shear modulus G , as a function of fibre rotation φ, shown for four different homogenized formulations. 

Initial imperfection φ0 ≈0 ° and initial orientation β0 = 10 ◦ . 

Table 1 

Material parameters. 

νm 0.356 

σm 
y /E 

m 0.013 

n m 4 

E f / E m 35 

ν f 0.263 

σ f 
y /E 

f 0.019 

n f 1.9 

c f 0.6 

7. Update the stresses σi j = σi j + ˙ σi j where the stress increments 

˙ σi j is calculated using Eq. (67) . 

8. Update the geometric quantities β , φ, h f and w f using 

Eqs. (69) and (72) . 

9. Results 

The material parameters used in the present study and also 

used in Jensen (1999) , are taken based on experimental results on 

APC-2/AS4 carbon fibre composite from Kyriakides et al. (1995) . 

The parameters are summarized in Table 1 . Aligned with stud- 

ies done by previous authors, then the composite behaviour 

is described through a rate independent J 2 -deformation theory, 

even though the matrix constituent is a polymer. Authors who 

have investigated the influence of the rate and pressure de- 

pendency in fibre-reinforced polymers include: Vogler and Kyri- 

akides (1999a) experimentally investigated the nonlinear behaviour 

of AS4/PEEK under combined transverse compression and shear 

and they compared it with simulations with different constitutive 

models in Vogler and Kyriakides (1999b) . 

The results presented are used to investigate the performance 

of the present three-dimensional constitutive model. 

In Figs. 7 and 8 , results are shown for simulations with an ini- 

tial imperfection of φ0 ≈0 ° and φ0 = 3 ◦, respectively. For both sim- 

ulations, the initial kink band angle is set to β0 = 10 ◦. In the fig- 

ures, four different results are presented. The first result, which 

is presented as a solid line, is a simplified version of the three- 

dimensional constitutive model, where w f = 1 . In the case where 

the length scale w f = 1 , the three-dimensional formulation con- 

verses towards Eq. (56) . This model will be denoted the Simple 3D 

model . The results obtained by Jensen (1999) is presented as circles 

and will be referred to as the 2D model . The results obtained us- 

ing the Simple 3D model and the 2D model show results that coin- 

cides. The reason for the coinciding results can be explained by the 

simplified constitutive equation given by Eq. (56) and the similari- 

ties to the constitutive equation developed by Christoffersen and 

Jensen (1996) . The main difference between the two mentioned 

constitutive equation is the size of the matrices, which is 3 ×3 

in the present study and not 2 ×2 as in the equation derived by 

Christoffersen and Jensen. 

The results obtained using the three-dimensional model given 

by Eq. (54) will be denoted the 3D model which is illus- 

trated as a dashed line. The 3D model shows the same char- 

acteristics during deformation based on the results shown in 

Figs. 7 and 8 . The 3D model gives slightly higher bifurca- 

tion stress and higher stresses during deformation. The higher 

stresses can be explained by the slightly stiffer shear response 

observed in the current three-dimensional model. Several au- 

thors including Budiansky (1983) , Budiansky and Fleck (1993) and 

Christoffersen and Jensen (1996) have shown that kink band for- 

mation is dominated by the shear response of the composite inter- 

acting with fibre misalignments. Skovsgaard and Jensen (2017) in- 

vestigated the kink band response for a three-dimensional dis- 

cretized finite element model and a constitutive model. In that 

study a comparison between the shear response was conducted 

initially. The matrix material was softened in the finite element 

model so the shear response between the models was similar. The 

material characteristics of the matrix material (AS4-PEEK) change 

during the curing process, due to this fact the matrix characteris- 

tics are in several cases predicted based on the composite response 

( Hsu et al., 1998; Ng et al., 2010 ). Since the shear response of the 

3D model and 2D model differs, a new calibration of the material 

parameters of the matrix material is proposed. A fourth model is 

illustrated in the figures and will be referred to as the 3D model 

with matrix correction . This is a model where the elastic modulus 

of the matrix material E m is changed. The modulus E m is calcu- 

lated so the elastic shear response of the composite is identical to 

the elastic shear response of the 2D model . 

The 3D model with matrix correction is illustrated as a dashed- 

dotted line. The simulations with an initial imperfection of φ0 = 

3 ◦ show that the present model, where the shear response is 

aligned, yield results closer to the response obtained by the two- 
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Fig. 8. Applied stress −σ o 
11 in base material normalised with the elastic shear modulus G , as a function of fibre rotation φ, shown for four different homogenized formula- 

tions. Initial imperfection φ0 = 3 ◦ and initial orientation β0 = 10 ◦ . 

Fig. 9. Critical kink band stress −σ c 
11 in base material normalised with the elastic shear modulus G , versus initial imperfection φ0 , shown for four different homogenized 

formulations. The critical stress is presented for the most critical initial kink band orientation β0 . 

dimensional model. Hsu et al. (1998) made a comparison between 

a two- and three-dimensional micro-mechanical kink band model 

where they simulated the buckling response using a finite ele- 

ment model in ABAQUS. They arrived at the same conclusion that 

the three-dimensional model showed similar response as the two- 

dimensional model. Equivalently, they also used different elastic- 

plastic parameters for the two-dimensional and tree-dimensional 

model. 

In Fig. 9 , the critical stress is shown as function of the initial 

fibre imperfection φ0 . In line with the simulations performed by 

Jensen and Christoffersen (1997) , the critical stress is illustrated 

for the most critical initial kink band orientation β0 . The Simple 

3D model , the 3D model with matrix correction and the 2D model 

show similar results. The 3D model , with the same material param- 

eters as used for the two-dimensional model, shows higher critical 

stresses for all initial imperfections. As mentioned earlier, the in- 

situ material parameters of the matrix material are in several cases 

fitted so the overall shear response of the composite match exper- 

imental data. In the current results, a simulation was created with 

the enhanced elastic response of the matrix material. Since kink 

band formation is highly sensitive to the plastic shear response 

( Budiansky, 1983 ), the elastic and plastic parameters should be cal- 

ibrated to match the composite shear response for strains relevant 

for the simulation. In the current simulation, only the elastic pa- 

rameter E m was changed in the 3D model with matrix correction . 

Furthermore, different simulation cases have been conducted 

with biaxial loading (combined compression and tension and com- 

bined compression and compression) and cases of combined com- 

pression and shear with different sign of shear. In the simulations 

to come both the 2D model and the 3D model with matrix correction 

have been used. In Figs. 10 and 11 the normalized critical stress 

−σ c 
11 /G is shown as function of initial fibre imperfection, φ0 , for 

different biaxial loading ratios. Fig. 10 gives the results from the 

2D model and Fig. 10 are results from the 3D model with matrix 

correction . 

6.5 Article P1 71



160 S.P.H. Skovsgaard, H.M. Jensen / International Journal of Solids and Structures 139–140 (2018) 150–162 

Fig. 10. Normalized critical kink band stress −σ c 
11 /G versus initial imperfection φ0 for different ratios of biaxial loading. The critical stress is presented for the most critical 

initial kink band orientation β0 . The results are generated based on the 2D-model . 

Fig. 11. Normalized critical kink band stress −σ c 
11 /G versus initial imperfection φ0 for different ratios of biaxial loading. The critical stress is presented for the most critical 

initial kink band orientation β0 . The results are generated based on the 3D-model with matrix correction. 

Positive values of the biaxial loading ratio, σ o 
22 /σ

o 
11 > 0 , rep- 

resents a case of combined compression and compression. With 

the current material parameters, then the loading ratio σ o 
22 /σ

o 
11 = 

0 . 1 leads to an increase in the critical stress for all imperfec- 

tion angles compared to the case of σ22 = 0 . The loading ratio 

σ o 
22 /σ

o 
11 = 0 . 2 leads to a reduction in the critical stress for imper- 

fection angles φ0 < 1 °, which is due to matrix yielding due to the 

increased stress level. In all cases of combined compression and 

tension, e.g. σ 11 < 0 and σ 22 > 0, a decrease in the critical stress 

is obtained. The current findings are in line with the analytical 

expression for kink band bifurcation found by Christoffersen and 

Jensen (1996) and Slaughter et al. (1993) . By comparing the results 

obtained using the two-dimensional and three-dimensional consti- 

tutive model then good correlation is seen. 

The critical stress as function of initial fibre imperfection in the 

case of combined compression and shear is shown in Figs. 12 and 

13 . Fig. 11 shows the results from the 2D model and Fig. 13 gives 

the results obtained from the 3D model with matrix correction . The 

boundary condition ˙ σ o 
22 = 0 is used in the simulations including 

shear stresses in the base material. 

For fibre imperfections φ0 > 1 ° a clear tendency is seen be- 

tween the critical stresses and the compression-shear ratio. Posi- 

tive ratios σ o 
12 /σ

o 
11 > 0 lead to an increase in the critical compres- 

sive stress, e.g. negative shear stresses σ o 
12 < 0 . The result that neg- 

ative shear stresses increase the compressive strength is in line 

with the expression derived in Christoffersen and Jensen (1996) . 

For small fibre imperfections a cross-over is seen between the re- 

sults with positive ratios σ o 
12 /σ

o 
11 > 0 e.g. the bifurcation stress for 

σ o 
12 /σ

o 
11 = 0 . 02 is smaller than in the case of pure compression. The 

yield surface is based on a von Mises yield criterion and the equiv- 

alent von Mises stress is higher in the case combined compression 

and shear. It has been observed that very small positive ratios (e.g. 

σ o 
12 /σ

o 
11 = 0 . 001 ) will lead to an infinitesimal increase in bifurca- 

tion stress, but this is not shown in the figure. 
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Fig. 12. Normalized critical kink band stress −σ c 
11 /G versus initial imperfection φ0 for different ratios of combined compression and shear. The critical stress is presented 

for the most critical initial kink band orientation β0 . The results are generated based on the 2D-model. 

Fig. 13. Normalized critical kink band stress −σ c 
11 /G versus initial imperfection φ0 for different ratios of combined compression and shear. The critical stress is presented 

for the most critical initial kink band orientation β0 . The results are generated based on the 3D-model with matrix correction. 

By comparing Figs. 10 and 11 for biaxial loading and by com- 

paring Figs. 12 and 13 for combined compression and shear, these 

results further validates the present three-dimensional constitutive 

model. 

10. Conclusion 

A three-dimensional constitutive model has been proposed 

which give the material response of a fibre-reinforced composite 

in a general framework. The model is based on independent con- 

stitutive relations for the constituents where the constituents can 

behave either elastic or elastic-plastic. The model is formulated in 

a rate form using nominal stress rates and velocity gradients which 

gives the model opportunity to be used in the finite strain regime 

with large deformations and rotations. The present paper empha- 

sises the derivations behind the model, where homogenizations 

are based on continuum mechanical continuities and averages. The 

constitutive model is built up using three material blocks: one fi- 

bre and two matrix. 

The current constitutive model can be used to predict strain 

localization of fibre composites including the localization phe- 

nomenon known as kink band formation. The constitutive model is 

used in a simple kink band simulation where the response is com- 

pared with results obtained by previous authors. Similar results 

for plane strain are observed in the post-buckling regime when 

comparing the constitutive models. The critical stress is seen to 

be sensitive to fibre imperfections and to the shear response of 

the composite which is consistent with previously published re- 

sults. The same elastic-plastic parameters are used for the present 

three-dimensional model and higher stresses are observed in gen- 

eral. The higher stresses observed, can be explained by the stiffer 

shear response in the present model. The three-dimensional ef- 

fects from the constitutive model due not alter the critical values 

predicted by previous two-dimensional models when the shear re- 

sponses for the two models are aligned with the present bound- 
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ary conditions. This is consistent with conclusions done by other 

authors ( Hsu et al., 1998 ), who have compared three-dimensional 

and two-dimensional models. To fit the full elastic-plastic shear re- 

sponse of the proposed constitutive model to experimental data 

has not been in the scope of the current research. Instead, focus is 

given to the overall tendencies and performance of a new three- 

dimensional constitutive model. 

The simulations performed verifies the derived three- 

dimensional constitutive model. The current infinite kink band 

simulation only includes plane strain conditions and in-plane 

rotations. Future simulations can include three-dimensional effects 

e.g. deformation out-of-plane and inclined kink bands through 

thickness in a similar set-up. 
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Appendix A. Velocity gradients v c 
, 2 

Noting Eqs. (16) and (17) together with Eq. (19) yields 

C a 21 v , 1 + C a 22 v 
a 
, 2 + C a 23 v , 3 = C b 21 v , 1 + C b 22 v 

b 
, 2 + C b 23 v , 3 (A.1) 

Isolating the term related v b 
, 2 

C b 22 v 
b 
, 2 = 

(

C a 21 − C b 21 
)

v , 1 + C a 22 v 
a 
, 2 + 

(

C a 23 − C b 23 
)

v , 3 (A.2) 

Using the equality given by Eq. (18) and isolating the term related 

to v b 
, 2 yields 

c b v b , 2 = v , 2 − c a v a , 2 (A.3) 

Multiplying the latter equation with C b 
22 yields 

c b C b 22 v 
b 
, 2 = C b 22 v , 2 − c a C b 22 v 

a 
, 2 (A.4) 

Comparing the equation with Eq. (A.2) yields 

c b 
(

C a 21 − C b 21 
)

v , 1 + c b C a 22 v 
a 
, 2 + c b 

(

C a 23 − C b 23 
)

v , 3 

= C b 22 v , 2 − c a C b 22 v 
a 
, 2 (A.5) 

Isolating the term v a 
, 2 yields 

(

c a C b 22 + c b C a 22 
)

v a , 2 

= −c b 
(

C a 21 − C b 21 
)

v , 1 + C b 22 v , 2 − c b 
(

C a 23 − C b 23 
)

v , 3 (A.6) 

Introducing the matrix C ∗22 

C ∗22 = c a C b 22 + c b C a 22 (A.7) 

The velocity gradients v a 
, 2 can be calculated as 

v a , 2 = −c b C ∗−1 
22 

(

(

C a 21 − C b 21 
)

v , 1 −
1 

c b 
C b 22 v , 2 + 

(

C a 23 − C b 23 
)

v , 3 

)

(A.8) 

In a similar manner the velocity gradients v b 
, 2 can be determined 

as 

v b , 2 = c a C ∗−1 
22 

(

(

C a 21 − C b 21 
)

v , 1 + 
1 

c a 
C a 22 v , 2 + 

(

C a 23 − C b 23 
)

v , 3 

)

(A.9) 

It is convenient to rewrite the velocity gradients to the form pre- 

sented in Eq. (21). 
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Chapter 7

P2
Constitutive model for imperfectly bonded fibre-reinforced
composites

7.1 Motivation

The behaviour and failure of fibre composites are influenced by the fibre-to-matrix interfacial
bonding. Imperfect fibre/matrix bonding will inevitably be present and can be influenced by
the fibre treatment when producing the fibres (different sizing). One way of including the
behaviour of the interface properties, when doing simulations, is by using a three-dimensional
discrete FE-model including interfacial behaviour through e.g. cohesive elements and contact
constraints as explained in Section 2.5. The use of micro-mechanical models (discrete
models) become inexpedient compared to homogenised constitutive models when advanced
fibre layups or complex geometries are considered.

The present publication introduces a novel two-dimensional constitutive formulation that
includes information about imperfect fibre-to-matrix bonding, that can be used in a general
elastic-plastic framework. The constitutive model is used to study kink band formation that
is formed by bifurcation or due to the presence of initial geometric fibre imperfections. The
original source of the publication is: (Skovsgaard and Jensen, 2018a).
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7.2 Method

The thoughts and theory behind the formulation are described in Chapter 3 and the essence is
repeated here for completeness. In the case of perfect bonding, the homogenised properties
are based on the assumptions that

• Material lines parallel with the fibres are subject to a common stretching and rotation.

• Planes parallel with the fibres transmit identical tractions.

• The material of the constituents is elastic or elastic plastic.
In the other extreme case of complete debonding, the model assumes that the transverse and
shear behaviour is dominated by the matrix properties as if the fibres were not present. The
formulation includes a parameter µ taking values between zero and one. Where a value µ = 1
is perfect bonding and µ = 0 is no bonding. The developed constitutive formulation is used
together with a semi-analytical kink band model described in Section 3.4, and was solved
using Fortran 77. Furthermore, a three-dimensional finite element model was developed
that includes different amounts of fibre-to-matrix bonding. The FE-model was developed to
investigate the influence of fibre/matrix bonding and to validate the homogenised constitutive
formulation.

7.3 Contribution

The contributions to the publication comprise: the development of a novel constitutive formu-
lation including information about fibre/matrix bonding; development of a three-dimensional
unit cell finite element model; conducting kink band simulations using the different models
and writing the paper.

7.4 Main findings

One of the main findings is the development of the constitutive formulations itself. In the
publication, the homogenised constitutive model is compared with the FE-model through
a kink band study, and good agreement between the models was observed despite the
remarkable difference in the model set-up. The constitutive model was used to investigate
the influence of both geometrical fibre imperfections and fibre-to-matrix imperfections upon
the critical compressive strength of unidirectional fibre composites and layered materials.

The formulation can furthermore be implemented as a user subroutines into Abaqus/CAE
and thereby be used to study the response and failure of complex fibre domains e.g. investigate
the influence of open-holes as done in [C1].
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A B S T R A C T

A constitutive model for fibre-reinforced composites has been developed that takes imperfect fibre/matrix in-

terfacial bonding into account. The model can predict the nonlinear material response of a composite in the large

strain regime. Independent constitutive laws can be used for the constituents behaving elastic or elastic-plastic. A

constitutive equation is derived for the composite moduli relating stresses to strains. The model is used to predict

the development of the compressive failure; fibre kinking that is either formed by bifurcation or due to an initial

fibre imperfection. A three-dimensional finite element model for kink band formation is used to validate the

results obtained using the constitutive model with varying levels of interfacial bonding.

1. Introduction

Fibre-reinforced composites (FRC) are used in many applications

where high stiffness and low weight is desirable. These materials are

composed of fibres bonded together using a resin material also known

as the matrix material. In many of the frequently used FRCs as for ex-

ample glass- and carbon fibre-reinforced composites, the fibres have

high stiffness and strength and the matrix is more ductile and has high

toughness but with a lower stiffness. These fibre composites have high

strength in the direction of the fibres but when loaded in compression

the critical stress can be considerable lower due to instabilities caused

by imperfections coupled with matrix yielding. The compressive failure

of multidirectional laminates is composed of several competing failure

mechanisms including: fibre kinking, fibre splitting, matrix cracking,

delamination, fibre/matrix interfacial debonding. In an experimental

study conducted by Bishara et al. (2017) [1], together with finite ele-

ment analyses, they showed that the compressive failure of a laminate

with 16 layers initiated due to kink band formation in the °0 ply near an

imperfection. The fibre kinking was triggered by matrix yielding. Sev-

eral of the other mentioned failure mechanisms was seen to occur close

to the kink band after the initiation.

The kink band failure has been observed experimentally by several

authors including: Kyriakides et al. (1995) [2] who made a thorough

investigation of the compressive failure of unidirectional AS4/PEEK

composites. Kink band formation were seen both experimentally and in

their two-dimensional micromechanical finite element model (FEM).

Wadee et al. (2004) [3] conducted a compression test on a FRC and

fibre kinking was observed and compared with a simple mechanical

model taking bending, friction, membrane and foundation energy into

account. Zhou et al. (2013) [4] investigated the compressive strength of

unidirectional glass fibre reinforced-polymers (GFRP) from different

angles and fibre kinking was the dominant failure for small angles.

Nizolek et al. (2017) [5] observed kink band initiation and stable band

broadening in a Cu-Nb nanolaminate exposed to compressive loading. It

was observed by Nair et al. (2017) [6] that a 75 % reduction in com-

pressive strength could be achieved by introducing a severe fibre wa-

viness into the unidirectional GFRP and failed by kink band formation.

Several attempts have been done towards developing analytical

expressions predicting the kink band initiation. In the early work of

Rosen (1965) [7] an analytical expression was derived based on the

compressive bifurcation load of beams surrounded by an elastic matrix.

Argon (1972) [8] treated the kink band failure as a plastic event, with a

composite behaving rigid perfectly plastic with an initial imperfection.

Budiansky (1983) [9] extended the expression by assuming rigid fibres

and elastic perfectly plastic shear response of the composite. Fleck and

Budiansky (1991) [10] included shear stresses and later Slaughter et al.

(1993) [11] introduced transverse stresses in an analytical expression.

Christoffersen and Jensen (1996) [12] developed a method to find the

kink band bifurcation load for a composite including fibre and matrix

material nonlinearities and with multiaxial loading. In the case of rigid

fibres an analytical equation was developed where the effect of residual

stresses could be included. Later Jensen (1999) [13] developed an

analytical expression for the kink band bifurcation in the extreme case

of no bonding between fibre and matrix. The expression developed in

Christoffersen and Jensen (1996) [12] assumed perfect bonding.

The kink band initiation can be investigated numerically either by

setting up a simplified kink band analysis as done by Jensen and

Christoffersen (1997) [14] and Wadee et al. (2004) [3] or by creating a
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finite element model. The FEMs used to study kink bands can roughly

be divided into two categories: discretized FEMs also known as mi-

cromechanical models or FEMs using homogenised constitutive models.

The fibre and matrix constituents are modelled discretely in the mi-

cromechanical models. Examples of authors who have used this ap-

proach are Hsu et al. (1999) [15] who used a three-dimensional FEM

with a hexagonal fibre distribution, and Wind et al. (2014) [16] who

compared results obtained using a discretized model and a constitutive

model. When advanced fibre layups or complex geometries are con-

sidered then discretized models become inexpedient compared to

homogenized constitutive models. Fleck and Shu (1995) [17] devel-

oped a constitutive model using finite strain continuum theory com-

bined with Cosserat couple theory. The constitutive model gives the

smeared out properties of a composite including fibre bending effects.

The constitutive model developed by Christoffersen and Jensen (1996)

[12] is based on independent constitutive equations for the constituents

instead of smeared out properties of the composite. Poulios and

Niordson (2016) [18] developed a two-dimensional constitutive model

based on independent constituent behaviour and included intrinsic size

effects using higher order strain gradients. Skovsgaard and Jensen

(2018) [19] developed a three-dimensional constitutive model for a

FRC with independent elastic-plastic behaviour of the constituents si-

milar to the two-dimensional model developed in Christoffersen and

Jensen (1996) [12].

Dève (1997) [20] observed in a compression experiment on an

aluminium matrix composite reinforced by Al2O3 fibres that the inter-

facial bonding between matrix and fibre has a severe influence on the

compressive strength. In the experiment the fibres were coated so the

interface was ”weak” and lower critical stresses were observed. To the

authors’ knowledge, this is the only compression experiment of kink

band formation done where composites with strong and weak bonding

are compared. The longitudinal and transverse response of an alumi-

nium composite was investigated by Zhang et al. (2008) [21] and they

concluded that the transverse properties depends strongly on interfacial

bonding between matrix and fibre. It is commonly accepted that the

kink band instability is sensitive to the composite shear response, and

since the shear response is altered by the interfacial bonding then so are

the critical kink band stress. Jiang et al. (2014) [22] investigated the

composite properties using a finite element representative volume

element with different levels of bonding between matrix and fibre and

made the same conclusions as Zhang et al. (2008) [21]. The interface

was modelled with cohesive contact surfaces. A comprehensive mi-

cromechanical kink band analysis with cohesive-frictional interfaces

were conducted by Naya et al. (2017) [23].

The interface bonding between fibre and matrix has a severe in-

fluence on the critical compressive stress, and the need to have con-

stitutive models to investigate complex geometries and fibre layouts

leads to the main focus of this paper. The current paper focuses on the

development of a novel constitutive model for imperfectly bonded

fibre-reinforced composites. The constitutive model is validated using a

kink band analysis and is compared with results obtained using a three-

dimensional FE micromechanical kink band model. The paper is orga-

nised in 7 sections. The constitutive model and a novel analytical kink

band expression is derived in Section 2. A semi-analytical kink band

analysis with the constitutive model implemented is introduced in

Section 3. The constituent behaviour used in the FE and semi-analytical

analysis is presented in Section 4. The FEM together with the boundary

conditions are shown in Section 5. Finally the results from the analyses

are shown, compared and discussed in Section 6 and Section 7 con-

cludes the paper.

2. Constitutive model

In the following section a constitutive model is derived that can take

imperfect cohesion between fibre and matrix into account. The model is

inspired by the two constitutive models derived by Christoffersen and

Jensen (1996) [12] and Jensen (1999) [13]. The latter constitutive

models are extrema where the model derived in Christoffersen and

Jensen (1996) [12] assumes perfect bonding between the constituents

and the model in Jensen (1999) [13] assumes complete decohesion. The

present constitutive model can display the transition between the two

previous mentioned extrema using a factor µ going from zero to unity.

The constitutive model is implemented in a kink band analysis and is

compared with a three-dimensional micromechanical finite element

model for verification.

Simple representations of perfect and imperfect bonding are illu-

strated in Figs. 1 and 2 to enhance the understanding behind the as-

sumptions used in the constitutive models. The model with perfect

bonding is based on the assumptions.

1. Material lines parallel with the fibres are subject to a common

stretching and rotation.

2. Planes parallel with the fibres transmit identical tractions.

3. The material of the constituents is elastic or elastic–plastic.

As outlined in Christoffersen and Jensen (1996) these assumptions

leads to the restriction on the velocity gradients= = = =+ = + =v v v v v v
c v c v v c v c v v

, ,
, ,

m f m f

f f m m f f m m
1,1 1,1 1,1 2,1 2,1 2,1

1,2 1,2 1,2 2,2 2,2 2,2 (1)

where cm and c f are volume fractions of matrix and fibre fulfilling+ =c c 1f m . A comma (•), denotes partial derivative. Superscripts (•)m
and (•) f will refer to quantities associated with the matrix and fibre

constituent and omission of superscript refers to overall composite

properties. This convention will be adopted in the current article. The

second assumption together with overall equilibrium entails= = = =+ = + =t t t t t t
c t c t t c t c t t

̇ ̇ ̇ , ̇ ̇ ̇ ,
̇ ̇ ̇ , ̇ ̇ ̇ ,

m f m f

f f m m f f m m
21 21 21 22 22 22

11 11 11 12 12 12 (2)

where ti̇j is the nominal stress rates.

In Fig. 2 shear and transverse deformation of a fibre composite with

imperfect bonding is shown. The constitutive model suggested by

Jensen (1999) [13] also assumes that material lines parallel with the

fibres are subject to a common stretching and rotation. Furthermore it

is assumed that the matrix as a whole is subject to the overall strains= = = == =v v v v v v
v v v v

, ,
.

m f m f

m m
1,1 1,1 1,1 2,1 2,1 2,1

1,2 1,2 2,2 2,2 (3)

Further, the rate of nominal stress was given by+ = + == = = =c t c t t c t c t t
c t t t c t t t

̇ ̇ ̇ , ̇ ̇ ̇ ,
̇ ̇ , ̇ 0, ̇ ̇ , ̇ 0.

f f m m f f m m

m m f m m f
11 11 11 12 12 12

21 21 21 22 22 22 (4)

The suggestion = +t c t c ṫ ̇ ̇α
f

α
f m

α
m

1 1 1 is an average of the tractions

where both the fibre and matrix transmit traction. The assumption=c t ṫ ̇m
α
m

α2 2 is an average where only the matrix constituent contributes.

2.1. General relations

The index notation and the summation convention is adopted. Latin

indices i.e. i j k, , take values 1,2,3, and Greek indices i.e. α β γ, , take values

1,2. The relation between nominal stress rates and velocity gradients is

given by=t C v̇ ,ij ijkl l k, (5)

where ti̇jare components of the nominal stress rate, vl k, are the velocity

gradients and Cijkl are components of nominal moduli. The moduli Cijkl
can be calculated using= − − − +C L τ δ τ δ τ δ τ δ1

2
1
2

1
2

1
2

,ijkl ijkl kj il lj ik il kj ik lj (6)
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where Lijkl are components of a tensor of elastic–plastic tangent moduli

relating the Jaumann rates of Kirchoff stresses to strain rates=τ L ε˚ij ijkl kl. δij is Kronecker’s delta and τij are Kirchoff stresses. Lijkl
must satisfy the minor and major symmetries= = =L L L L L, .ijkl jikl ijlk ijkl klij (7)

When the tangent moduli are used in two dimensions then Latin

indices are replaced by Greek indices Lαβγδ and so are the moduli Cαβγδ.

Plane strain conditions is used for the moduli Lαβγδ. The relation be-

tween Kirchhoff stresses and Cauchy stresses is given by=τ J σ ,ij ij (8)

where σij are components of the Cauchy stresses and J is the Jacobian

giving the volume ratio =J V V/ 0.

Fig. 2. Imperfect bonding between constituents. Three-dimensional (a–c) and two-dimensional (d–f) illustrations of the initial state, shear- and transverse deformation are shown.

Fig. 1. Perfect bonding between constituents. Three-dimensional (a–c) and two-dimensional (d–f) illustrations of the initial state, shear- and transverse deformation are shown.
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2.2. Constitutive model with imperfect bonding

Inspired by the assumptions from the latter constitutive models with

perfect and imperfect bonding, a transition between the two models is

suggested. Introducing the factors µ and κ, where µ takes values be-

tween 0 and 1 and κ is calculated based on µ according to= ⎛⎝ − ⎞⎠ +κ µ
c

µ
c

( ) 1 1 1 ,m m (9)

which is a linear relation going from = =κ µ c( 0) 1/ m to = =κ µ( 1) 1.
The present constitutive model also assumes that material lines parallel

with the fibres are subjected to a common stretching and rotation.

Further the fibres is aligned with the x1-axis prior to deformation this

entails= =v v v ,α
f

α
m

α,1 ,1 ,1 (10)

where the index (•)α takes values 1 and 2. Inspired by the assumptions

from Eq. (1) and (3) and using the introduced factors µ and κ suggest= +v c µ v c κ v .α
f

α
f m

α
m

,2 ,2 ,2 (11)

Using the proposed equation yields the case of perfect bonding

when =µ 1 and imperfect bonding for =µ 0. Tractions on planes

parallel with the fibres can be calculated according to=== +
t µ t
t κ t
t c t c t

̇ ̇ ,
̇ ̇ ,
̇ ̇ ̇ .

α
f

α

α
m

α

α
f

α
f m

α
m

2 2

2 2

2 2 2 (12)

To have overall equilibrium= +t c t c ṫ ̇ ̇ .α
f

α
f m

α
m

1 1 1 (13)

Using the relation between the Jaumann rate of Cauchy stresses and

nominal stress rates= − − − +σ t ω σ ω σ σ v σ v˚ ̇ ,ij ij jk ik ik kj ij k k jk i k, , (14)

where σ ˚ij are components of the Jaumann rate of Cauchy stresses and

ωij is the spin tensor, then it can be proven that the components of the

Cauchy stresses are= += == =
σ c σ c σ
σ µ σ σ κ σ
σ µ σ σ κ σ

,
, ,
, ,

f f m m

f m

f m

11 11 11

12 12 12 12

22 22 22 22 (15)

where moment equilibrium =σ σij ji is satisfied. The relation between

rates of nominal stresses and velocity gradients given by Eq. (5) can

equivalently be used for the two constituents. The relation given by Eq.

(5) together with Eq. (10) can be written as= +t C v C v̇ ,αβ
c

αβ δ
c

δ αβ δ
c

δ
c

1 ,1 2 ,2 (16)

where the superscript (•)c indicates one of the constituents. As derived

in Appendix A, the velocity gradients vεf,2 and vεm,2 can be expressed

through overall composite velocity gradients= − − += − +v c κ H κ C µC v µH C v

v c µH κ C µC v κ H C v

( ) ,

( ) ,
ε
f m

εζ ζ δ
f

ζ δ
m

δ εζ ζ δ
m

δ

ε
m f

εζ ζ δ
f

ζ δ
m

δ εζ ζ δ
f

δ

,2 2 1 2 1 ,1 2 2 ,2

,2 2 1 2 1 ,1 2 2 ,2 (17)

where Hαβ denotes= −H
M

δ δ δ δ M1
det( )

( ) ,αβ αβ γδ αδ βγ δγ
(18)

which is the inverse of Mαβ given by= +M c κ C c µ C ,αβ
m

α β
f f

α β
m2

2 2
2

2 2 (19)

and det M( ) denotes the determinant calculated according to

= −M δ δ δ δ M Mdet( ) 1
2
( ) .αγ βδ αδ βγ γα δβ (20)

It is convenient to rewrite the velocity gradients ∊v f,2 and ∊vm,2 in the

equivalent forms= − − − − += − + − +v c κ H κ C µC v c κ H κ C µC v v

v c µH κ C µC v c µH κ C µC v v

( ) ( ) ,

( ) ( ) .
ε
f m

εζ ζ δ
f

ζ δ
m

δ
m

εζ ζ δ
f

ζ δ
m

δ ε

ε
m f

εζ ζ δ
f

ζ δ
m

δ
f

εζ ζ δ
f

ζ δ
m

δ ε

,2 2 1 2 1 ,1 2 2 2 2 ,2 ,2

,2 2 1 2 1 ,1 2 2 2 2 ,2 ,2

(21)

Using Eq. (13) and (16) the overall nominal stress rates t ̇α1 can be

determined= + + +t c C v c C v c C v c C v̇ .β
f

β δ
f

δ
f

β δ
f

δ
f m

β δ
m

δ
m

β δ
m

δ
m

1 1 1 ,1 1 2 ,2 1 1 ,1 1 2 ,2 (22)

Replacing vδ
f
,2 and vδm,2 using Eq. (21) and collecting terms related to

vα β, yields= + − − −+ + − −−
t c C c C c c κ C µC H κ C µC v

c C c C c c κ C µC H κ C

µC v

̇ [ ( ) ( )]

[ ( ) (

)] .

β
f

β δ
f m

β δ
m f m

β ε
f

β ε
m

εζ ζ δ
f

ζ δ
m

δ

f
β δ
f m

β δ
m f m

β ε
f

β ε
m

εζ ζ δ
f

ζ δ
m

δ

1 1 1 1 1 1 2 1 2 2 1 2 1 ,1

1 2 1 2 1 2 1 2 2 2

2 2 ,2 (23)

Using the last part of Eq. (12) then t ̇α2 can be determined as= + − − −+ + − −−
t c C c C c c κ C µC H κ C µC v

c C c C c c κ C µC H κ C

µC v

̇ [ ( ) ( )]

[ ( ) (

)] .

β
f

β δ
f m

β δ
m f m

β ε
f

β ε
m

εζ ζ δ
f

ζ δ
m

δ

f
β δ
f m

β δ
m f m

β ε
f

β ε
m

εζ ζ δ
f

ζ δ
m

δ

2 2 1 2 1 2 2 2 2 2 1 2 1 ,1

2 2 2 2 2 2 2 2 2 2

2 2 ,2 (24)

The latter two equations may be written in a similar form as Eq. (5)

with = + − − −C c C c C c c κ C µC H κ C µC( ) ( ).αβγδ
f

αβγδ
f m

αβγδ
m f m

αβ ε
f

αβ ε
m

εζ ζγδ
f

ζγδ
m

2 2 2 2

(25)

This is the final equation for the constitutive model relating the

overall nominal stress rates to velocity gradients. Using the constitutive

equation, the overall response of a composite can be determined with

information about imperfect bonding based on µ. When the overall

deformations are determined in an incremental scheme then the velo-

city gradients for the constituents can be retrieved using Eqs. (10) and

(21). In the case of perfect bonding = =µ κ1, 1 Eq. (25) simplifies to= →= + − − −= +
µ

C c C c C c c C C H C C

M c C c C

1
( ) ( ),

,
αβγδ

f
αβγδ
f m

αβγδ
m f m

αβ ε
f

αβ ε
m

εζ ζγδ
f

ζγδ
m

αβ
m

α β
f f

α β
m

2 2 2 2

2 2 2 2 (26)

which is identical to the expression derived by Christoffersen and

Jensen (1996) [12]. In the other extremum of decohesion= =µ κ c0, 1/ m the constitutive equation simplifies to= →= + −=
µ

C c C c C c C H C

M C

0
,

,
αβγδ

f
αβγδ
f m

αβγδ
m f

αβ ε
f

εζ ζγδ
f

αβ α β
f

2 2

2 2 (27)

which is identical to the suggested expression presented in Jensen

(1999) [13]. In both of the simplified expressions, the inverse Hαβ can

be calculated using Eq. (18). The elastic-plastic tangent moduli can be

determined using Eq. (6) to be= + + + −L C τ δ τ δ τ δ τ δ1
2

1
2

1
2

1
2

.αβγδ αβγδ γβ αδ δβ αγ αδ γβ αγ δβ (28)

Combining this with the derived constitutive equation (Eq. (25))

and utilizing the properties from Eq. (15) yields the tangent moduli for

the composite= + − − −L c L c L c c κ C µC H κ C µC( ) ( ).αβγδ
f

αβγδ
f m

αβγδ
m f m

αβ ε
f

αβ ε
m

εζ ζγδ
f

ζγδ
m

2 2 2 2

(29)

The tangent moduli for the composite satisfy the minor and major
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symmetries given by Eq. (7).

2.3. Kink band bifurcation

The constitutive equation is now applied in a kink band study,

where no initial fibre waviness is present and thereby kink band for-

mation at a bifurcation point is searched for. The applied method for

finding the bifurcation load associated with strain localisation was

formulated by Rice (1976) [24] and was used in a kink band analysis in

Christoffersen and Jensen (1996) [12]. The equilibrium equation can be

written in terms of the rate of nominal stresses=t ̇ 0.αβ α, (30)

Combining this with Eq. (5) yields=C v 0.αβγδ δ γα, (31)

In the bifurcation analysis a nonhomogeneous and sufficiently

smooth velocity field is searched for where the fibres starts to rotate and

overall strains localize into a band with orientation β as shown in Fig. 3.

The velocity field searched for takes the form=v f n x( ),α α β β (32)

where =n β β(cos( ), sin( ))α is the unit normal to the localization band.

Using the introduced velocity field in the equilibrium equation yield

=C n n
d f n x
d n x

( )
( )

0.αβγδ α γ
δ ε ε

ζ ζ

2

2
(33)

The bifurcation point is when the determinant of the latter equation

vanishes =C n ndet( ) 0.αβγδ α γ (34)

Until this point, no assumptions have been made regarding the

elastic–plastic behaviour of the constituents. When concerning the

idealized situation of infinitely rigid fibres then a closed form solution

for the bifurcation point is obtainable. The method to obtain the solu-

tion follows the method introduced in Jensen (1999) [13]. The com-

ponents of the tangent moduli for the fibre constituent are written in

the form= ∼L E L ,αβγδ
f f

αβγδ (35)

where the moduli are proportional to the stiffness modulus E f . Multi-

plying Eq. (25) with the determinant det M( ) given by Eq. (20) will not

change the bifurcation point. By doing so, the constitutive equation can

be written as polynomials of E f= + + +M C E C E C E C Cdet( ) ( ) ( ) ,αβγδ
f

αβγδ
f

αβγδ
f

αβγδ αβγδ
3 (3) 2 (2) (1) (0)

(36)

where the superscriptsCαβγδ(3) means the moduli associated with the given

polynomial order of E f . The condition for bifurcation Eq. (34) can be

rewritten =M C n ndet(det( ) ) 0.αβγδ α γ (37)

When calculating the determinant in Eq. (37) a polynomial form is

thus obtained= + +E d E d O E0 ( ) ( ) ( ) .f f f5
5

4
4

3 (38)

The term d5 will dominate the solution for high fibre stiffness E f .

The solution to =d 05 gives the closed form solution

⎜ ⎟= − + ⎛⎝ − − ⎞⎠ + −
+ −
σ σ

c κ
L σ κ σ

c κ
L c κ µ σ β

c κ
L κ σ β

0 1
2

2 ( )tan

1 ( )tan ,

m
m

m

m
m f

m
m

11 22 2 1212
11 22

2 1222 12

2 2222 22
2

(39)

which can be compared to the expressions obtained by Christoffersen

and Jensen (1996) [12] and Slaughter et al. (1993) [11] with no initial

fibre imperfection. Evaluating Eq. (39) for perfect bonding and using

Eq. (6) leads to= →= − + + − +µ
σ σ C L c σ β C β
1

0 ( )tan tan ,c
m

c
m f

c
m

11 22
1

2121
2

1222 12
1

2222
2

m m m (40)

which is identical to the expression derived by Christoffersen and

Jensen (1996) [12] where the symmetry =L Lm m
1222 2212 has been utilized.

In the case of imperfect bonding Eq. (39) yields= →= − + + +µ
σ σ c C c L β c C β
0

0 2 tan tan ,m m m m m m
11 22 2121 1222 2222

2 (41)

which is nearly identical to the expression derived in Jensen (1999)

[13] with the only difference that in the current expression no terms are

present in front of σ22. This is due to the assumptions of the stress

equality given by Eq. (15). In the current case of imperfect bonding, it is

assumed that no shear- and transverse stresses are transmitted to the

fibres. The same conclusion can be made as done by Jensen (1999) [13]

that the two expressions Eq. (40) and (41) corresponding to the two

extreme cases; perfect bonding and no bonding essentially differs by a

factor of c( )m 2. In the experiments conducted by Dève (1997) [20] the

compressive strength of coated and uncoated fibres were compared.

The uncoated fibres had good interfacial bonding and a mean com-

pressive strength of ≈ −σ 4000cr
11 [MPa] was obtained. Only one ex-

periment with coated fibres (weakly bonded) was conducted where a

compressive strength of = −σ 2600cr
11 [MPa] was obtained. Assuming

that the uncoated fibres were perfectly bonded =µ 1, a matrix volume

fraction of =c 0.5m and only σ11 stresses were present then this corre-

sponds to an interfacial bonding =µ 0.76 using Eq. (39).

3. Kink band formation with the constitutive model

The developed constitutive model is implemented in a semi-analy-

tical kink band analysis with an initial fibre imperfection. The method

was introduced in Jensen and Christoffersen (1997) [14]. Since the

implementation is similar to the previous some of the details are

skipped. Two material states are introduced, one inside the kink band

(band system) and one outside (base system) as illustrated in Fig. 4. The

fibres are localized in a band with an inclination βo and βi when re-

presented in the base- and band system respectively. The fibres are

aligned with the x1-axis prior to the deformation increment. A small

fibre rotation ϕ0 is introduced initially as an imperfection. The dis-

placement gradients for the composite is updated numerically due to a

prescribed rotation increment of the fibres in the band ϕ.̇ The governing
equation for the material states is− + =C v σ v v σ σ ̇ .αβγδ δ γ αβ γ γ α γ γ β αβ, , , , (42)

Two different numerical implementations in the incremental

loading procedure leading to identical predictions were presented by

Jensen and Christoffersen (1997) [14]. The first version is utilized here

Fig. 3. Geometry of composite model with fibres oriented in the x1 direction. The angle β
is the orientation of the localization band searched for in the bifurcation analysis.
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where the basis rotates with the fibres, leading to= =v v0, 0,o i
2,1 2,1 (43)

where superscripts (•)o and (•)i refer to quantities described in the base

and band system, respectively. A spin tensor is introduced Ωαβ with the

components= − = = =ϕΩ Ω ,̇ Ω Ω 0.21 12 11 22 (44)

Using the spin tensor then the components of the velocity gradients,

seen from a basis in the band system that stays stationary during de-

formation, are +v Ωα β
i

αβ, . The unit normal nα and unit tangent tα to the

band for the two systems are calculated using= = −= = −n n β β t t β β
n n β β t t β β
( , ) (cos ,sin ), ( , ) ( sin ,cos ),
( , ) (cos ,sin ), ( , ) ( sin ,cos ).

o o o o o o o o

i i i i i i i i
1 2 1 2

1 2 1 2 (45)

Continuity of velocities along the boundary of the band requires

that+ = + =v t t v t t v n t v n t( Ω ) , ( Ω ) .α β
i

αβ α
i
β
i

α β
o

α
o

β
o

α β
i

αβ α
i
β
i

α β
o

α
o

β
o

, , , , (46)

Continuity of tractions across the boundary requires that+ =+ =C v n n C v n n
C v n t C v n t

( Ω ) ,
( Ω ) .

αβγδ
i

δ γ
i

δγ α
i

β
i

αβγδ
o

δ γ
o

α
o

β
o

αβγδ
i

δ γ
i

δγ α
i
β
i

αβγδ
o

δ γ
o

α
o

β
o

, ,

, , (47)

The relative rotation increment of the band seen from the two bases

are calculated according to= − = −β v n t β v n ṫ , ̇ .o
α β
o

α
o

β
o i

α β
i

α
i
β
i

, , (48)

The volume fraction of fibres inside and outside the band change

due to transverse deformation according to= −c c c v v̇ ( ).f f m f m
2,2 2,2 (49)

Plane strain conditions and the boundary condition =v 0o
1,2 is used,

furthermore =σ 022 together with Eq. (46) and (47) give five boundary

conditions for the last five unknown velocity gradients.

4. Constituent behaviour

The Stören and Rice (1975) [25] version of J2-deformation theory is

chosen as the elastic-plastic tangent moduli relating the Jaumann rate

of Kirchoff stresses to strain rates =τ L ε˚ ̇ij ijkl kl. The formulation is out-

lined here for completeness. The components of the tensor of in-

stantaneous moduli are given by= + + ⎛⎝ − ⎞⎠ − −L G δ δ δ δ K G δ δ G G m m( ) 2
3

4
3
( ) ,ijkl s ik jl il jk s ij kl s t ij kl

(50)

where mij is given in terms of Cauchy stresses= ⎛⎝ − ⎞⎠m
σ

σ δ σ1
2

1
3

,ij
eq

ij ij kk
(51)

where σeq is the equivalent von Mises stress

= −σ σ σ σ σ3
2

1
2

.eq ij ij ii jj
(52)

The remaining terms introduced in Eq. (50) is the bulk modulus, K,

the secant shear modulus, Gs, and the tangent shear modulus, Gt . The

two latter moduli can be calculated based on the secant and tangent

moduli Es and Et= − − = − − = −G E
ν

E G E
ν

E
K E

ν
1 3 1 2 , 1 3 1 2 ,

3(1 2 )
,

s s t t (53)

where ν is Poisson’s ratio and E is Young’s modulus. The nonlinear

relationship between logarithmic strain εeq and the stress σeq is given by

the Ramberg-Osgood relation

⎜ ⎟= + ⎛⎝ ⎞⎠ε
σ
E

σ
E

σ
σ

3
7

,eq
eq y eq

y

n

(54)

where σy is a reference yield stress and n is a hardening exponent. Both

the secant modulus Es and tangent modulus Et can be determined based

on the Ramberg-Osgood relation. The J2-deformation theory is used for

the constitutive model and is also implemented as a UMAT in Abaqus

for the finite element model presented in Section 5.

The material parameters used for the constitutive model and par-

tially the FEM are normalised quantities of the parameters obtained by

Kyriakides et al. (1995) [2] and are given by= = == = =c E E ν
v σ E n

0.6, / 35, 0.263,
0.356, / 0.013, 4.
f f m f

m y m m m, (55)

The fibres are assumed to behave linear elastic although Kyriakides

et al. (1995) [2] observed nonlinear behaviour of the fibres. The fibre

nonlinearity have a minor effect on the kink band instability. Kyriakides

et al. (1995) [2] used an initial imperfection of ≈ °ϕ 1.50 and compared

results obtained using linear and nonlinear fibres. The tendencies were

not influenced significantly based on their results. Jensen and Chris-

toffersen (1997) [14] concluded that nonlinear fibres have a significant

influence on the bifurcation stress but goes asymptotically towards the

same stress for increasing imperfections ϕ0.

5. Finite element model

To validate the usability of the constitutive model developed in

Section 2, then a three-dimensional finite element model is created. In

the FEM the fibre and matrix constituents are discretized and are as-

sumed to be hexagonally distributed comparable to the set-up in-

troduced by Hsu et al. (1998) [26]. Utilizing the symmetries of the

assumed fibre distribution, the cross section used in the simulation can

be seen in the unit cell shown in Fig. 5. The diameter of the fibres

entering the simulation is

=d w c
π
6

3
,

f
0

(56)

where w0 is the width of the cross section, and the thickness is related to

the width =t w3/20 0. ABAQUS 6.14 is chosen to solve the finite

element problem. 20-node quadratic brick- and 15-node quadratic tri-

angular prism elements are chosen with full integration. Different mesh

configurations are investigated for the cross section as seen in Fig. 6.

Based on a convergence analysis, it is chosen to use the first mesh

presented in Fig. 6a. The starting point for the material parameters was

presented in Section 4. The kink band instability is sensitive to the

elastic–plastic shear response of the composite as confirmed by Argon

(1972) [8], Budiansky (1983) [9], Slaughter et al. (1993) [11] and

several others since then. In the FEM created by Hsu et al. (1998) [26]

they experienced that the material parameters for the matrix con-

stituent needed to be changed going from a two-dimensional to a three-

dimensional FEM based on the overall shear response of the composite.

A similar investigation of the pure shear response is investigated here

Fig. 4. Kink band geometry.
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where a two-dimensional and three-dimensional model is compared.

The unit cell for the three-dimensional model is shown in Fig. 5. The

boundary conditions for the two models are shown in Fig. 7. The ab-

breviation (PBC) stands for periodic boundary conditions. The shear

stress vs shear strain response is shown in Fig. 8. Three different curves

are presented. The first and second curve show the shear response of the

two- and three-dimensional model where the same material parameters

are chosen for the constituents from Section 4. The third curve show the

response of the three-dimensional FEM with a Young’s modulus=E E/ 0.5m D m(3 ) which is normalised with the two-dimensional mod-

ulus. The shear response for the first and third curve nearly coincide.

Based on the current simulation a modified modulus =E E/ 0.5m D m(3 ) is

chosen for the three-dimensional finite element model. The boundary

conditions for the FEM for kink band formation is shown in Figs. 9 and

10. Focusing on Fig. 9, the left surface is simple supported and a dis-

placement is applied to the right surface. Periodic boundary conditions

between the lower and upper part are utilized to imitate an infinite

band and to avoid an extensive amount of degrees of freedom. Out of

plane deformation is constrained as shown in Fig. 10. An imperfection

is introduced as a fibre waviness where the deformed coordinates are

calculated based on

= − <= ⎡⎣ + + ⎤⎦ <<= − <

−( )

( )

( )
x ϕ X β X X

x ϕ X X β X X X

X

x ϕ X β X X

tan for ,

sin ( tan ) for

,

tan for ,

b
β min

b
π β

π β
b min

max

b
β max

2
1
2 0 2cos 2 1 1,

2
1
2 0 2 cos

2 cos
1 2 1 1, 1

1,

2
1
2 0 2cos 2 1, 1

(57)

where small letters xα refer to deformed coordinates and capital letters

Xα are the undeformed coordinates with a reference coordinate system

placed in the centre of the geometry. b is the width of the imperfection,

β is the band inclination and ϕ0 is the largest imperfection angle and is

located in the geometry centre. The imperfection is an modified version

of the one introduced by Srensen et al. (2008) [27]. The quantities

X min1, and X max1, are calculated using= − − = −X b
β

X β X b
β

X β
2cos

tan ,
2cos

tan .min max1, 2 1, 2
(58)

The geometrical parameters used in the simulations are= = = =L w b β1, 0.01, 1, 0.0 0 (59)

The band inclination is set to =β 0 in the simulations which is

compatible with the current implementation of the periodic boundary

conditions. The width =w 0.010 is chosen based on a convergence study

where the ratio L w/0 0 was increased until the fibre bending effects were

negligible.

The FEM is composed of four parts: three fibre parts and one matrix

part. Two different constraints are used between the parts. In the case of

perfect bonding ( =µ 1) all the parts are tied together using a surface-

based tie constraint. In the case of no bonding ( =µ 0) a hard-contact

constraint is set-up between the surface normals and a tangential fric-

tionless behaviour is chosen. In the case of an intermediate bonding

state ( =µ 0.5) half of the fibre surface area is not bonded but is allowed

to slide frictionless and the rest is perfectly bonded to the matrix. A time

independent kink band analysis is performed using Abaqus Standard. A

nonlinear arc-length method (Static, Riks) is used to solve the problem

due to snap-back and snap-through behaviour in the equilibrium path.

6. Results

The results presented are a combination of results obtained by the

semi-analytical kink band model and the finite element model. The

constitutive formulation presented in Section 2 is implemented in the

semi-analytical numerical scheme presented in Section 3. The boundary

conditions and the assumptions behind the finite element model was

presented in Section 5. The behaviour and material parameters of the

constituents used in the two models was presented in Section 4. The

only deviation between the material parameters is the elastic modulus

of the matrix constituent. As explained in Section 5 the Young’s mod-

ulus for the matrix constituent in the semi-analytical model is nor-

malized by itself and in the FEM it is set to =E E/ 0.5m D m(3 ) . In the semi-

analytical model, fibre rotation increments ϕ ̇ are specified in the loca-

lized band. In the FEM displacement increments is specified on the right

side of the structure, Fig. 9 and a solution for the equilibrium path is

searched for. Based on the deformed geometry it was possible to cal-

culate the fibre rotation ϕ for a given increment, which was the max-

imum rotation of the fibres with respect to the x1-axis.

Fig. 5. Unit cell of the 3D finite element model with fibres oriented in the x1 direction.

Fig. 6. Illustration of different mesh configurations for the cross section. The meshes are composed of 20-node quadratic brick- and 15-node quadratic triangular prism elements.
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In Figs. 11 and 12 the normalised stress versus fibre rotation is

shown for different cohesion levels µ and initial fibre imperfections ϕ0.
The stress σ11 is normalised with the elastic composite shear modulus G

calculated according to

= +
G

c
G

c
G

1 f

f

m

m (60)

where G f and Gm are the elastic shear moduli of the fibres and matrix,

respectively. The shear modulus of the matrix material= +G ν1/2/(1 )m is also normalized by the elastic modulus Em. The

same shear modulus is used for the results from the semi-analytical

model as well as the FEM. Results obtained from the analyses with an

initial imperfection of = °ϕ 0.50 are presented in Fig. 11. The results

from the FEM are presented in Fig. 11a and from the semi-analytical

model in Fig. 11b. Three curves are presented in the figures based on

three different cohesion levels µ. The critical stresses obtained for =µ 1
(perfect bonding) and =µ 0.5 (partially bonded) are nearly identical

between the two models. For =µ 0 the FEM predicts slightly lower

stresses and no stability point is seen on the figure. However, quite good

quantitative agreement is seen between the models. In the case of =µ 0
the response of the composite is similar to a model with only matrix and

voids. This explains the lower stresses predicted by the FEM where the

modulus =E E/ 0.5m D m(3 ) is used compared to the modulus used for the

semi-analytical model which is unity due to the normalisation with Em.

In Fig. 12 the normalised stress versus fibre rotation is shown for an

initial imperfection = °ϕ 3 . The same conclusions can be made for the

tendencies between the models as for the imperfection = °ϕ 0.5 . There

is a good agreement between the FEM and the semi-analytical model for=µ 1 and =µ 0.5. The shear response between the models was aligned

in Section 5 for the case of perfect bonding =µ 1. Since the critical kink
band stress correlates well between the models it is verified again that

the kink band stress depends on the shear response of the composite.

Similar tendencies for different cohesion levels are seen between the

FEM and semi-analytical model despite the substantial differences in

the numerical set-up.

Fig. 7. Boundary conditions for the two-dimensional and three-dimensional FEM used to evaluate the pure shear response.

Fig. 8. Shear stress vs shear strain for unit cells exposed to pure shear deformation.
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In Section 2 results obtained by Dève (1997) [20] were presented.

Based on the results, an interfacial bonding factor of =µ 0.76 was

computed using Eq. (39). The result can be interpreted as that 76% of

the fibre surface area was perfectly bonded in the experiment with

weakly bonded fibres. The interpretation can be made due to the strong

correlation between the FEM and semi-analytical model for values be-

tween =µ 1 and =µ 0.5.
In Fig. 13 the critical stress −σ G/cr

11 versus initial fibre imperfection

ϕ0 is shown for different cohesion levels µ. The semi-analytical kink

band model is used to generate the results shown. The FEM has not

been used to generate comparable results due to the substantial time

required per simulation. The critical stresses presented in Fig. 13 are

evaluated for the most critical kink band angle β0 which is found by

executing 11 simulations for every imperfection ϕ0 with different β0
angles varying from = °β 00 to = °β 100 . The critical band inclination

varies from = °β 00 for ≈ °ϕ 00 to = °β 70 for = °ϕ 50 in the case of

perfect bonding =µ 1. The constitutive model predicts that nearly the

same inclinations β0 is critical for other cohesion levels with the current

material parameters. Based on Fig. 13 it can be concluded that the

critical stress in the case of imperfect cohesion is also sensitive to fibre

imperfections. For all values of µ a steep descent is seen in the begin-

ning going from zero imperfection to increasing initial imperfections.

For descending values of µ the curves stabilize around a lower critical

value more rapidly.

The time used to solve the semi-analytical- and the finite element

simulation is noticeable different. To compare the simulation time then

the simulations are run on the same computer: A Lenovo T550 with a

i7-5600 Processor (2.6 GHz) with 16 GB of memory (RAM). A typical

simulation using the semi-analytical model takes approximately 20 s

Fig. 9. Three-dimensional visualization of the boundary condition for the finite element

kink band model.

Fig. 10. Boundary condition on the cross section −x x2 3 plane for the kink band model.

Fig. 11. Non-dimensional stress versus fibre rotation ϕ, for an initial fibre imperfection of = °ϕ 0.50 with different bonding parameters µ.

Fig. 12. Non-dimensional stress versus fibre rotation ϕ, for an initial fibre imperfection of = °ϕ 30 with different bonding parameters µ.
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including post processing for a simulation with 400.000 increments. A

typical simulation with the FEM takes about 6 h for a simulation with

400 pseudo time increments. The 6 h of simulation was with the mesh

presented in Fig. 6a and as mentioned earlier, periodic boundary con-

ditions were utilized to save computation time.

7. Conclusions

A constitutive model for imperfectly bonded fibre-reinforced com-

posites has been developed. Independent constitutive laws can be used

for the constituents behaving either elastic or elastic-plastic. A con-

stitutive equation is developed relating stress rates to strain rates in a

general framework and the laws set by objectivity are fulfilled. The

fibre and matrix bonding is controlled using a factor µ going from zero

to unity. In the two extreme cases of perfect bonding and no bonding, it

was proven that the developed constitutive equation leads to identical

equations as earlier developed expressions. A new analytical expression

is derived giving the bifurcation point of kink band formation in the

case of high fibre stiffness considering imperfect bonding.

A semi-analytical kink band analysis, with the constitutive equation

implemented, is compared with a three-dimensional micromechanical

kink band finite element model. Results obtained based on different

initial fibre imperfection is compared and the results correlates very

well despite the substantial differences between the models. The in-

fluence of the fibre/matrix bonding upon the critical stress versus initial

fibre imperfection was investigated. A notable decrease in critical kink

band stress is seen when imperfect bonding is taking into account. For

all levels of bonding, it is seen that a steep descent in the critical stress is

seen going from no imperfection to increasing imperfections.

The comparison between the FEM and the semi-analytical model

verifies the derived constitutive model for imperfectly bonded fibre-

reinforced composites. The constitutive model makes it possible to in-

vestigate complex geometries and fibre layouts with information about

imperfect bonding including geometric and material nonlinearities.
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Appendix A. Velocity gradients v ε
c
,2

Using Eq. (12) ( =κ t µ tα
f

α
m

2 2 ) together with Eq. (16) yields+ = +κ C v κ C v µC v µC v ,ζ δ
f

δ ζ δ
f

δ
f

ζ δ
m

δ ζ δ
m

δ
m

2 1 ,1 2 2 ,2 2 1 ,1 2 2 ,2 (A.1)

where the Greek letter ζ is used as the free index for t ζ
c
2 . Rearranging the latter equation and multiplying with c κm yields− + =c κ κ C µC v c κ C v c κ µC v( ) .m
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Rearranging Eq. (11) and multiplying with µC ζ δ
m
2 2 yields= +c κ µ C v µC v c µ C v .m

ζ δ
m
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m

ζ δ
m

δ
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ζ δ
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δ
f

2 2 ,2 2 2 ,2
2

2 2 ,2 (A.3)

The right side of Eq. (A.2) and the left side of Eq. (A.3) is identical. By combining the equations and isolating terms related to vδ
f
,2 leads to= − − +M v c κ κ C µC v µC v( ) ,ζδ δ

f m
ζ δ
f

ζ δ
m

δ ζ δ
m

δ,2 2 1 2 1 ,1 2 2 ,2 (A.4)

where Mαβ is given by Eq. (19). The inverse Hαβ is given by Eq. (18). The terms Mαβ and the inverse Hαβ comply to=H M δ .αβ βγ αγ (A.5)

Using the latter identity together with Eq. (A.4) yields the velocity gradients ∊v f,2 expressed through overall homogenized velocity gradients= − − +v c κ H κ C µC v µH C v( ) .ε
f m

εζ ζ δ
f

ζ δ
m

δ εζ ζ δ
m

δ,2 2 1 2 1 ,1 2 2 ,2 (A.6)

Similarly the velocity gradients ∊vm,2 can be determined= − +v c µH κ C µC v κ H C v( ) .ε
m f

εζ ζ δ
f

ζ δ
m

δ εζ ζ δ
f

δ,2 2 1 2 1 ,1 2 2 ,2 (A.7)

References

[1] Bishara M, Vogler M, Rolfes R. Revealing complex aspects of compressive failure of

polymer composites Part II: Failure interactions in multidirectional laminates and

validation. Compos Struct 2017;169:116–28. http://dx.doi.org/10.1016/j.

compstruct.2016.10.091.

[2] Kyriakides S, Arseculeratne R, Perry EJ, Liechti KM. On the compressive failure of

fiber reinforced composites. Int J Solids Struct 1995;32(6–7):689–738. http://dx.

doi.org/10.1016/0020-7683(94)00157-R.

[3] Wadee MA, Hunt GW, Peletier MA. Kink band instability in layered structures. J

Mech Phys Solids 2004;52(5):1071–91. http://dx.doi.org/10.1016/j.jmps.2003.09.

026.

[4] Zhou HW, Yi HY, Gui LL, Dai GM, Peng RD, Wang HW, Mishnaevsky L. Compressive

damage mechanism of GFRP composites under off-axis loading: experimental and

numerical investigations. Compos Part B: Eng 2013;55:119–27. http://dx.doi.org/

10.1016/j.compositesb.2013.06.007.

[5] Nizolek T, Begley M, McCabe R, Avallone J, Mara N, Beyerlein I, Pollock T. Strain

fields induced by kink band propagation in Cu-Nb nanolaminate composites. Acta

Mater 2017;133:303–15. http://dx.doi.org/10.1016/j.actamat.2017.04.050.

URLhttp://www.sciencedirect.com/science/article/pii/S1359645417303427.

[6] Nair SN, Dasari A, Yue CY, Narasimalu S. Failure behavior of unidirectional com-

posites under compression loading: Effect of fiber waviness, Materials 10 (8).http://

dx.doi.org/10.3390/ma10080909.

[7] Rosen BW. Mechanics of composite strengthening. In: Fiber Composite Materials,

American Society for Metals, Metals Park, OH (1965) 37–75.

Fig. 13. Normalised critical kink band stress −σ G/cr
11 versus initial fibre imperfection ϕ0

for different bonding parameters µ. The critical stresses are shown for the most critical

band inclination β0.

S.P.H. Skovsgaard, H.M. Jensen

7.5 Article P2 86



[8] Argon AS. Fracture of composites. Treatise Mater Sci Technol 1972:79–114.

[9] Budiansky B. Micromechanics. Comput Struct 1983;16(1–4):3–12. http://dx.doi.

org/10.1016/0045-7949(83)90141-4.

[10] Fleck NA, Budiansky B. Compressive failure of fibre composites due to micro-

buckling. In: Proc. 3rd Symp. on Inelastic Deformation of Composite Materials;

1991. p. 235–73.

[11] Slaughter WS, Fleck NA, Budiansky B. Compressive failure of fibre composites: the

roles of multi-axial loading and creep. J Eng Mater Technol 1993;115(3):308–13.

URLhttp://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA266398#page=265.

[12] Christoffersen J, Jensen HM. Kink band analysis accounting for the microstructure

of fiber reinforced materials. Mech Mater 1996;24(4):305–15. http://dx.doi.org/

10.1016/S0167-6636(96)00052-X.

[13] Jensen HM. Models of failure in compression of layered materials. Mech Mater

1999;31:553–64.

[14] Jensen HM, Christoffersen J. Kink band formation in fiber reinforced materials. J

Mech Phys Solids 1997;45(7):1121–36. http://dx.doi.org/10.1016/S0022-

5096(96)00126-3.

[15] Hsu S-Y, Vogler T, Kyriakides S. On the axial propagation of kink bands in fiber

composites: Part II analysis. Int J Solids Struct 1999;36:575–95. http://dx.doi.org/

10.1016/S0020-7683(98)00030-4.

[16] Wind JL, Steffensen S, Jensen HM. Comparison of a composite model and an in-

dividually fiber and matrix discretized model for kink band formation. Int J Non-

Linear Mech 2014;67:319–25. http://dx.doi.org/10.1016/j.ijnonlinmec.2014.10.

005.

[17] Fleck NA, Shu JY. Microbuckle initiation in fibre composites: a finite element study.

J Mech Phys Solids 1995;43(12):1887–918. http://dx.doi.org/10.1016/0022-

5096(95)00057-P.

[18] Poulios K, Niordson CF. Homogenization of long fiber reinforced composites

including fiber bending effects. J Mech Phys Solids 2016;94:433–52. http://dx.doi.

org/10.1016/j.jmps.2016.04.010.

[19] Skovsgaard SPH, Jensen HM. Three-dimensional constitutive model for elastic-

plastic behaviour of fibre-reinforced composites. Int J Solids Struct 2018:1–13.

http://dx.doi.org/10.1016/j.ijsolstr.2018.01.032.

[20] Dève HE. Compressive strength of continuous fiber reinforced aluminum matrix

composites. Acta Mater 1997;45(12):5041–6. http://dx.doi.org/10.1016/S1359-

6454(97)00174-2.

[21] Zhang W, Zhang M, Ochiai S, Gu M. Experimental and simulation investigations of

tensile response of (Al2O3f/Al)w/2024Al composite. Mater Sci Eng, A

2008;497(1–2):44–50. http://dx.doi.org/10.1016/j.msea.2008.07.048.

[22] Jiang WG, Zhong RZ, Qin QH, Tong YG. Homogenized finite element analysis on

effective elastoplastic mechanical behaviors of composite with imperfect interfaces.

Int J Mol Sci 2014;15(12):23389–407. http://dx.doi.org/10.3390/ijms151223389.

[23] Naya F, Herraez M, Gonzalez C, Lopes C, der Veen SV, Pons F. Computational

micromechanics of fiber kinking in unidirectional FRP under different environ-

mental conditions. Compos Sci Technol 2017;144:26–35. http://dx.doi.org/10.

1016/j.compscitech.2017.03.014.

[24] Rice JR. The Localization of plastic deformation. Theoret Appl Mech 1976:207–20.

[25] Stören S, Rice JR. Localized necking in thin sheets. J Mech Phys Solids

1975;23(6):421–41. http://dx.doi.org/10.1016/0022-5096(75)90004-6.

[26] Hsu S-Y, Vogler TJ, Kyriakides S. Compressive strength predictions for fiber com-

posites. J Appl Mech 1998;65(1):7. http://dx.doi.org/10.1115/1.2789050.

URLhttp://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?

articleid=1413036.

[27] Sørensen KD, Mikkelsen LP, Jensen HM. User subroutine for compressive failure of

composites. 2009 Simulia Customer Conference (1965); 2009. p. 618–32.

S.P.H. Skovsgaard, H.M. Jensen

7.5 Article P2 87



Chapter 8

P3
Steady-state kink band propagation in layered materials

8.1 Motivation

Kink band formation is the dominant compressive failure mechanism for many fibre-
reinforced plastics. As explained in the Introduction, the fibre kinking strength (peak stress)
is dominated by the shear yield strength of the composite and fibre misalignments. The forma-
tion of a kink band can be divided into different stages; the linear response, incipient kinking,
peak stress, transient kinking and steady-state kink band broadening. The fibre misalignments
are difficult to estimate for a composite, thereby the exact compressive strength is unknown.
As the fibre misalignments increase in a composite, the peak strength decrease and approach
the propagation stress at kink band broadening. The stress at steady-state broadening can
thereby be seen as a lower bound for the critical compressive stress in composites.

The current publication deals with the investigation of the propagating instability known
as kink band broadening using three different methods. A case study is conducted with
material parameters from Kyriakides et al. (1995). The original source of the publication is:
(Skovsgaard and Jensen, 2018c).

8.2 Method

The phenomenon is investigated using three substantially different methods. A finite element
model (Chapter 2), a semi-analytical (Chapter 3) and an analytical model (Chapter 4) are
used.
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The FE-model consists of three layers; one matrix and two half fibre layers. Periodic
boundary conditions are applied on a skewed mesh to get a band inclination β . An arc-
length solver in Abaqus/CAE is used to solve the non-linear problem. The semi-analytical
approach is based on a kink band model developed by Jensen and Christoffersen (1997)
with a homogenised constitutive formulation from Christoffersen and Jensen (1996). The
analytical model, as described in Chapter 4, results in one transcendental equation for the
steady-state propagation state and is derived by evaluating the internal and external work at
the steady-state.

8.3 Contribution

The contributions to the publication comprise: the development of a finite element model
with periodic boundary conditions on a skewed mesh; the development of an analytical model
for kink band broadening; conducting the simulations and writing the paper.

8.4 Main findings

Initially, two main findings are the analytical model and the FE-model. The three models are
in mutually agreement. The models predict that for small band inclinations β , the predictions
for the fibre rotation φ exceeds the usual assumed linear relation at fibre lock-up φ = 2β .
Furthermore, it was found that the stress at kink band broadening is largely influenced by the
matrix Poisson’s ratio and the uni-axial tangent modulus at large strains.



Simon P. H. Skovsgaard
Department of Engineering,

Aarhus University,

Inge Lehmanns Gade 10,

Aarhus C 8000, Denmark

e-mail: sphs@eng.au.dk

Henrik Myhre Jensen
Professor

Department of Engineering,

Aarhus University,

Inge Lehmanns Gade 10,

Aarhus C 8000, Denmark

e-mail: hmj@eng.au.dk

Steady-State Kink Band
Propagation in Layered Materials
Failure by steady-state kink band propagation in layered materials is analyzed using
three substantially different models. A finite element model and an analytical model are
developed and used together with a previously introduced constitutive model. A novel
methodology for simulating an infinite kink band is used for the finite element model
using periodic boundary conditions on a skewed mesh. The developed analytical model
results in a transcendental equation for the steady-state kink band propagation state. The
three models are mutually in good agreement and results obtained using the models
correlate well with the previous experimental findings. [DOI: 10.1115/1.4039573]

1 Introduction

It is well known that fiber-reinforced composites can have a
considerably lower compressive strength compared to the strength
in tension. Fleck [1] made a review of different failure modes
and stated that the compressive strength of carbon fiber-epoxy
laminates are often less than 60% of their tensile strength. Long
fiber-reinforced composites with a ductile and tough resin material
are prone to fail by plastic microbuckling which leads to the for-
mation of one or several kink bands. A recent investigation of the
compressive failure of fiber composites was conducted by Bishara
et al. [2]. They investigated the compressive failure of a multidir-
ectional fiber composite experimentally and numerically. They
concluded that the failure initiated from the 0deg ply is due to the
formation of a kink band. The failure was followed by delamina-
tion, fiber-matrix debonding, and fiber cracking and was initiated
in the vicinity of the kink band.

The critical compressive strength of fiber composites is sensi-
tive to initial fiber misalignments which is concluded by several
authors, e.g., Budiansky [3] and Jensen and Christoffersen [4]. In
an experimental kink band study conducted by Vogler and Kyria-
kides [5] on a AS4/PEEK composite, they showed that a kink
band was formed under compressive loading in the direction
of the fibers. A kink band was formed with a band orientation of
b ¼ 15deg and an initial band width of 250 fibers (�2mm). This
initial state was followed by a state, where the band inclination
remained constant and the width of the band was broadened under a
constant applied stress. This is referred to as the steady-state kink
band broadening stress or propagation stress. After the critical stress
is reached, an unstable rotation of the fibers within a localized band
will begin. Due to the kinematics of the developing kink band, a
multi-axial strain state increases with increasing rotation. This unsta-
ble rotation stops when it is energetically preferable to increase the
bandwidth instead of an increased rotation due to strain hardening.

With increasing fiber imperfections, the compressive strength
of composites will tend toward the stress at steady-state kink band
broadening. The stress at steady-state is insensitive to fiber imper-
fections and does only depend on the constitutive behavior of the
composite. The steady-state broadening stress can thereby be seen
as a lower bound for the critical compressive stress in composites
with moderately large or unknown fiber imperfections. This lower
bound of critical stress can be used to create fail safe structures and
it is thereby valuable to predict the propagation state accurately.

A study of the kink band instability in a carbon fiber composite
was conducted by Evans and Adler [6]. They analyzed different
steps in the formation of kink bands including the steady-state
propagation phenomenon. They observed the relation / � 2 b,
where / is the relative rotation of the fibers within the kink band
and b is the kink boundary orientation. The relation / ¼ 2 b was
later used by Moran et al. [7] to predict the kink band broadening
strength of a carbon fiber-reinforced composite. Furthermore, they
assumed inextensible fibers and incompressibility of the compos-
ite. Hsu et al. [8] investigated the propagation of kink bands
experimentally and these findings were compared with a micro-
mechanical finite element model (FE-model) in Hsu et al. [9] and
reasonable correlation was seen between the studies as concluded
by the authors. Kink band broadening has also been observed in
materials other than glass- and carbon fiber-reinforced compo-
sites, e.g., Attwood et al. [10] observed broadening in a composite
made of ultrahigh molecular weight polyethylene. Poulsen et al.
conducted a compression experiment on clear wood and observed
kink band broadening. Later, Byskov et al. [11] introduced a
semi-analytical and a finite element model to investigate kink
band propagation and the emphasis was given to wood and fiber
composites. A recent experimental investigation of the propaga-
tion state was conducted by Nizolek et al. [12] on a Cu–Nb com-
posite and they also observed the relation / � 2 b.

An investigation of steady-state kink band propagation is
conducted in the present paper using three different models with
substantial difference in model configuration. A finite element
model and an analytical kink band model are proposed in the
present study and are compared with a previously developed
semi-analytical kink band model [13]. In contrast to the previous
investigations, the relation / ¼ 2 b is not used to obtain the
steady-state quantities. Instead, an approach of work balance is
utilized for the semi-analytical and the analytical kink band
model. Furthermore, the composites are assumed compressible
which yields a more realistic estimate of the steady-state quanti-
ties. In contrast to the FE-model and semi-analytical model, inex-
tensible fibers are assumed for the analytical model. In the present
study, it is assumed that the matrix constituent deforms elastic/
plastic in the whole regime, which can be unrealistic for some
matrix materials due to the shear strains required for band broad-
ening. Information about imperfect bonding and splitting between
the fiber/matrix interface can be included as in the studies con-
ducted by Prabhakar and Waas [14] and Skovsgaard and Jensen
[15]. Information about splitting and imperfect bonding has not
been included in the current study, but good correlation is still
seen between experiments and the results obtained as seen in
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Sec. 5. A case study is conducted with material parameters
obtained by Kyriakides et al. [16] for a AS4/PEEK composite.

The paper is organized in six sections. The boundary conditions
and material parameters for the proposed FE-model are presented
in Sec. 2. Furthermore, a brief introduction into different steps in
the formation of kink bands is included in Sec. 2. A constitutive
model developed by Christoffersen and Jensen [17] was used to
study kink band broadening in Jensen [13]. The latter model will
be known as the semi-analytical model and is introduced in Sec.
3. An analytical model is introduced in Sec. 4 with the assumption
of inextensible fibers together with simple assumptions for the
stress–strain relations. Results generated by the three models are
presented in Sec. 5 and Sec. 6 concludes the paper.

2 Finite Element Model

A micromechanical FE-model is developed that can predict the
steady-state kink band propagation state for a layered material or
fiber-reinforced composite. The FE-model can in general be used
to investigate both the critical stress and the kink band propaga-
tion stress for arbitrary compositions of two constituents. In the
current paper, emphasis will be given to composites with rela-
tively stiff fibers embedded in a ductile resin material with a lower
stiffness and yield strength as in the case of glass- and carbon
fiber-reinforced polymers.

In Fig. 1, an overview of the geometry and boundary conditions
for the developed FE-model is shown. The commercial finite ele-
ment software ABAQUS 6.14 is used for the simulations. ABAQUS/
STANDARD is used, which is an implicit general-purpose finite ele-
ment program that tracks the equilibrium path during deformation.
A nonlinear arc-length method (Static, Riks) is used to solve the
problem due to snap-back and snap-through behavior in the equi-
librium path. As seen in Fig. 1(a), the model consists of three
layers: one matrix or resin layer and two half fiber layers. Periodic
boundary conditions are utilized between the upper and the lower
part of the geometry to simulate an infinite kink band as illustrated
in Fig. 1(b). Inclined periodic boundary conditions are applied
using a skewed mesh as shown in Fig. 2. The geometry ends are
vertical to accomplish a simple state of uniaxial loading. The

vertical ends are far away from the deformation of interest, which
is why the periodicity can be interpreted as shown in Fig. 1(b).
The study of an infinite kink band is in line with the classical
methodology done by previous authors (Budiansky [3], Moran
et al. [7] and Jensen [13]). The fixed geometries used in the simu-
lations are

L0 ¼ 1; w0 ¼ 0:01; b0 ¼ 0:5; /0 ¼ 2 deg (1)

where L0 and w0 are the initial length and width of the geometry,
respectively. The width w0 ¼ 0:01 was chosen based on a conver-
gence study, where the width was decreased until the fiber bend-
ing stiffness became insignificant. The length b0 controls the
extent of the imperfection. Small values of b0 lead to a localiza-
tion of the imperfection toward the geometry center and /0 is the
largest misalignment angle in the imperfection. The geometries
b0, /0, and b are used to introduce an initial fiber imperfection
according to

x2 ¼
1

2
/0

ÿb0

2 cos b
ÿ X2 tan b

� �

for X1 < X1;min;

x2 ¼
1

2
/0

b0

2 p cos b
sin

2 p cos b

b0
X1 þ X2 tan bð Þ

� �

þ X1

� �

for X1;min < X1 < X1;max;

x2 ¼
1

2
/0

b0

2 cos b
ÿ X2 tan b

� �

for X1 > X1;max (2)

where xi are deformed coordinates and Xi are undeformed coordi-
nates described in a coordinate system placed in the geometry
center. The imperfection is a modified version of the one intro-
duced by Sørensen et al. [18]. The quantities X1;min and X1;max are
the X1-coordinates where the imperfections begin and end. Since
an inclination b is introduced, X1;min and X1;max are functions of
the X2-coordinate and are calculated according to

X1;min ¼
ÿb0

2 cos b
ÿ X2 tan b; X1;max ¼

b0

2 cos b
ÿ X2 tanb (3)

Fig. 1 (a) Geometry of the micromechanical finite element model. The darker regions represent the fiber constituent. (b)
Sketch of overall deformation.

Fig. 2 Illustration of mesh used in the finite element simulations. The coupling of the nodes locks
the deformation in an orientation b.

061005-2 / Vol. 85, JUNE 2018 Transactions of the ASME

8.5 Article P3 91



The fiber imperfection is introduced as a waviness using trigono-
metric functions, Eq. (2), where /0 is the largest angle with
respect to the X1-axis. Simpler initial imperfections have been
introduced earlier with promising results, e.g., Prabhakar and
Waas [14] and Davidson and Waas [19]. Simple imperfections as
the latter are not feasible in the current study. Both the band incli-
nation, b, and the geometry ends outside X1;min and X1;max, where
the fibers are aligned with the X1-axis, are of great importance to
obtain the steady-state stress using the current model.

The critical stress is highly sensitive to the initial imperfection
(e.g., Wind et al. [20] and Fleck and Budiansky [21]), but the
steady-state broadening stress is independent of this imperfection,
and therefore, /0 and b0 can be chosen arbitrarily. The geometric
parameter b is the inclination of the infinite band with respect to
the X2-axis.

To account for an inclination b of the infinite band at the
steady-state, the coupling of the nodes is chosen as seen in Fig. 2.
Toward the ends of the geometry, the nodes are aligned with the
X2-axis, and from here, the mesh gradually becomes more skewed
until the coupled nodes are orientated with an angle of b with
respect to the X2-axis. The displacement degrees-of-freedom are
coupled in pairs between the upper and the lower part using the
Lagrange multiplier method in ABAQUS. This leads to identical dis-
placements of coupled nodes during deformation. Even though
that the band orientation, b, at initiation and at steady-state is in
general different, this will not influence the results at kink band
propagation when using a deformation theory for the constituent
behavior.

The material parameters used in the simulations are normalized
values of the one obtained by Kyriakides et al. [16] and are given
by

cf ¼ 0:6; Ef =Em ¼ 35; �f ¼ 0:263;

vm ¼ 0:356; ry;m=Em ¼ 0:013; nm ¼ 4
(4)

where cf is the volume fraction of fibers. Superscripts ð•Þm and

ð•Þf correspond to values associated with the matrix and fiber con-
stituents. Em and Ef are the matrix and fiber Young’s moduli,
respectively. �m and �f are Poisson’s ratios for the two constitu-
ents. The parameters ry;m and nm are the reference yield stress and
hardening exponent for the matrix constituent, respectively. The
nonlinear response of the matrix is described using a rate-
independent J2-deformation theory, where the uni-axial response
is described using a Ramberg–Osgood relation according to

e ¼ r

E
þ 3 ry

7E

r

ry

� �n

(5)

where e and r are the uni-axial strain and stress, respectively, ry is
a reference yield stress, and n is a hardening exponent.

Young’s modulus of the fibers is 35 times the one for the
matrix. Due to this ratio, most of the bending will be carried out
by the fibers and the matrix will obtain high shear straining.
Eight-noded biquadratic elements are used for the fibers with full
integration, and four-noded bilinear elements with full integration
are used for the matrix. Even though the elements are incompati-
ble, the errors will be small. The use of both eight- and four-
noded elements for the matrix has been compared and showed
identical results. It has been possible to obtain a larger part of
the post-buckling response using four-noded elements and are
therefore chosen.

Five typical deformation stages are shown in Fig. 3, where the
darker regions correspond to high shear straining of the matrix.
The five stages are designated in Fig. 4, where the stress ÿr11 nor-
malized by the elastic shear modulus for the composite G is
shown as a function of the normalized end shortening u=L0. Both
r11 and u are illustrated in Fig. 1(a). The response is initially lin-
ear until the critical stress, rcr11, is reached at stage (2). The snap-

back behavior is clearly seen from stages (2) to (3), where both
the stress and the end displacement decrease. A large rotation of
the fibers is also observed between stages (2) and (3). The fibers
rotate further and lock-up at stage (4). From stage (4) to (5), the
end shortening keeps increasing under steady-state conditions, at
constant loading and the fibers maintain the same steady-state
rotation /ss.

The same five stages are shown in Fig. 5, where the normalized
stress ÿr11=G is shown as a function of fiber rotation /. In the
current figure, the band orientation is set to b ¼ 10 deg and the
fibers lock-up in an angle approximately /ss � 25 deg. The influ-
ence of multiple element layers within the matrix layer has been
investigated and is shown in Fig. 6 for two simulations with 1
and 4 element layers, respectively. The results are almost indistin-
guishable due to an identical initial response. Only a small part of
the post-buckling regime was obtainable with the FE-model with
multiple element layers due to lack of numerical convergence.
Apparently, the simulations tend toward the same steady-state
response. One element layer is considered sufficient to obtain the
steady-state results presented in Sec. 5.

3 Semi-Analytical Model

Jensen [13] investigated kink band broadening using a constitu-
tive model developed in Christoffersen and Jensen [17]. The
model is reused in this paper for comparison with the other mod-
els. The current model will be known as the semi-analytical
model. The theory behind this approach will be outlined here.

Fig. 3 Shear strain in matrix constituent, e12, for five deformation stages during simulation for a
geometry with an initial imperfection /0 5 2deg and a band orientation b5 10deg for a single strip
as shown in Fig. 1(a)

Journal of Applied Mechanics JUNE 2018, Vol. 85 / 061005-3

8.5 Article P3 92



3.1 General Relations. The index notation is adopted, where
Latin indices, i.e., i, j, k, take values 1, 2, 3, and Greek indices,
i.e., a, b, c, take values 1, 2. The constitutive model is described
using a time-independent constitutive law, where the constituents
can be described independently. The strain rate and the spin are
given by

_eij ¼
1

2
vi;j þ vj;ið Þ; xij ¼

1

2
vi;j ÿ vj;ið Þ (6)

where vi;j are the velocity gradients. The rate of nominal stresses,
_t ij, is

_t ij ¼ s
�
ij þ xjksik þ xikskj ÿ sjk vi;k (7)

where sij are Kirchhoff stresses and s
�
ij are components of the

Jaumann rate of Kirchhoff stresses determined by s
�
ij ¼ Lijkl _ekl.

Combining the latter two equations, the relation between the rate
of nominal stresses and velocity gradients is

_tij ¼ Cijkl vl;k (8)

where Cijkl are components of nominal moduli

Cijkl ¼ Lijkl ÿ
1

2
skj dil ÿ

1

2
slj dik ÿ

1

2
sil dkj þ

1

2
sik dlj (9)

and dij denotes Kronecker delta. The moduli Lijkl are to be
described using a time-independent constitutive law, e.g., J2-

Fig. 4 Applied normalized stress 2r11/G as a function of normalized end shortening
u/L0 for simulation with a band orientation b5 10deg. The five deformation stages in
Fig. 3 are designated.

Fig. 5 Applied normalized stress 2r11/G as a function of fiber rotation / for simula-
tion with a band orientation b510deg. The five deformation stages in Fig. 3 are
designated.
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deformation and J2-flow theory. The moduli are to comply to the
symmetries

Lijkl ¼ Ljikl ¼ Lijlk (10)

as required by moment equilibrium sij ¼ sji and symmetry of the
strain rates _eij ¼ _eji. The relation between Kirchhoff stresses sij
and Cauchy stresses rij is

sij ¼ J rij (11)

where J is the Jacobian giving the volume ratio J ¼ V=V0. The
relation between the rate of Cauchy stresses and the rate of nomi-
nal stresses is

_rij ¼ _tij ÿ rij vk;k þ vi;k rkj (12)

3.2 Constitutive Model by Christoffersen and Jensen. The
constitutive model is based on the assumption that material lines
parallel with the fibers are subjected to a common stretching and
rotation as shown in the first two geometries in Fig. 7. In addition,
the strains in the normal direction are averages of the constituent
strains which can be written using velocity gradients

v1;1 ¼ v
f
1;1 ¼ vm1;1; v2;1 ¼ v

f
2;1 ¼ vm2;1;

v1;2 ¼ cf v
f
1;2 þ cm vm1;2; v2;2 ¼ cf v

f
2;2 þ cm vm2;2

(13)

where cf and cm are, respectively, volume fractions of fiber and
matrix complying to cf þ cm ¼ 1. A lack of superscript refers to
overall composite quantities. It is required that the fibers are
aligned with the x1-axis prior to deformation. Additionally, the
constitutive model is based on that the constituents transmit iden-
tical traction normal to the fibers and together with overall equi-
librium leads to

_t21 ¼ _t
f

21 ¼ _t
m

21; _t22 ¼ _t
f

22 ¼ _t
m

22

_t11 ¼ cf _t
f

11 þ cm _t
m

11; _t12 ¼ cf _t
f

12 þ cm tm12

(14)

By assuming a relationship between the rate of nominal stresses
and velocity gradients in the form of Eq. (8) for both the constitu-
ents and composite, Christoffersen and Jensen [17] showed that
the composite behavior could be described according to

Cabcd ¼ cf C
f

abcd þ cm Cm
abcd

ÿ cf cmðCf

ab2e ÿ Cm
ab2eÞHefðCf

2fcd ÿ Cm
2fcdÞ

Mab ¼ cm C
f

2a2b þ cf Cm
2a2b

(15)

where Hab is the inverse ofMab complying to

Hac Mcb ¼ dab (16)

The velocity gradients vci;2 for the constituents can be calculated
using the velocity gradients vi;j for the composite

v
f
e;2 ¼ ÿcm HefðCf

2f1d ÿ Cm
2f1dÞ vd;1 þ Hef C

m
2f2d vd;2

vme;2 ¼ cf HefðCf

2f1d ÿ Cm
2f1dÞ vd;1 þ Hef C

f

2f2d vd;2
(17)

Equation (14) further entails the equalities

cfr
f
11 þ cmrm11 ¼ r11; r

f
12 ¼ rm12 ¼ r12; r

f
22 ¼ rm22 ¼ r22

(18)

3.3 Constituent Behavior. The behavior of the matrix con-
stituent is described using a J2-deformation theory introduced by
St€oren and Rice [22]. The tensor of instantaneous moduli, Lijkl, is
given by

Fig. 6 Nondimensional stress versus normalized end displacement u/L0 and fiber rotation / for two simulations with 1
and 4 matrix element layers: (a) stress versus displacement and (b) stress versus fiber rotation

Fig. 7 Assumed deformation of the constituents based on overall deformations of the
composite. For illustrative purpose, the gray constituent reacts stiffer, as in the case of a
fiber embedded in a polymer matrix.
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Lijkl ¼ Gs dik djl þ dil djk
ÿ �

þ K ÿ 2

3
Gs

� �

dijdkl

ÿ 4

3
Gs ÿ Gtð Þmij mkl (19)

where mij are

mij ¼
1

2 req
sij (20)

Here, req is the equivalent von Mises stress and sij are components
of the deviatoric stress tensor

req ¼
ffiffiffiffiffiffiffiffi

3 J2
p

; J2 ¼
1

2
sij sij; sij ¼ rij ÿ dij

rkk

3
(21)

The bulk modulus K, the shear secant modulus Gs, and the tangent
shear modulus Gt presented in Eq. (19) are calculated based on

Gs ¼
3

Es

ÿ 1ÿ 2�

E

� �ÿ1

Gt ¼
3

Et

ÿ 1ÿ 2�

E

� �ÿ1

K ¼ E

3 1ÿ 2�ð Þ

(22)

where � is Poisson’s ratio and E is Young’s modulus. The tangent
modulus Et and the secant modulus Es are calculated using the
Ramberg–Osgood relation

Et ¼ E 1þ 3n

7

req

ry

� �nÿ1
 !ÿ1

Es ¼ E 1þ 3

7

req

ry

� �nÿ1
 !ÿ1 (23)

where ry is a reference yield stress. The material parameters used for
the matrix constituent in the constitutive model are identical with
parameters used in the FE-model. Additionally, a restriction is set on
the Ramberg–Osgood curve, so the tangent modulus does not
become smaller than a specified value Et;min. The limit stress, rL,
and strain, eL, where the minimum tangent modulus is reached, are

eL ¼ rL

E
þ 3 ry

7E

rL

ry

� �n

rL ¼ ry
E

Et;min

ÿ 1

� �

7

3 n

� � 1
nÿ1

(24)

For an equivalent uni-axial stress req < rL, the moduli given by
Eq. (23) are to be used and

Et ¼ Et;min;

Es ¼
req

eeq
;

eeq ¼
req ÿ rL

Et;min

þ eL

(25)

are to be used for req > rL. The fiber constituent is assumed to
behave linear elastic and can therefore be described using the gen-
eralized Hooke’s law

Lijkl ¼
E

1þ �

1

2
dikdjl þ dildjk
ÿ �

þ �

1ÿ 2�
dijdkl

� �

(26)

3.4 Kink Band Propagation. In Jensen and Christoffersen
[4], the authors created a semi-analytical kink band model to
investigate the critical compressive stress of fiber-reinforced

composite using the constitutive model from Christoffersen and
Jensen [17]. The semi-analytical kink band model was further
developed in Jensen [23] to investigate steady-state kink band
broadening. The formulation of the kink band model will be
repeated here for completeness.

It is assumed that a kink band has formed where the fibers
inside the band have rotated relative to the fibers outside the band.
The material inside and outside the kink band is represented with

two different coordinate systems as shown in Fig. 8, where ð•Þi
and ð•Þo represent quantities associated with the material inside
and outside the band, respectively. The stress state outside and
inside the band is updated according to

_rab ¼ Cabcd vd;c ÿ rab vc;c þ va;c rcb (27)

which corresponds to Eq. (12). Here, _rij or vi;j or a combination of
these can be given by external loading. The band orientation is
updated according to

_b ¼ ÿva;b na tb (28)

Here, na and ta are the unit normal and unit tangent to the band,
respectively,

½no1; no2� ¼ ½cosðboÞ; sinðboÞ�; ½to1; to2� ¼ ½ÿsinðboÞ; cosðboÞ�;
½ni1; ni2� ¼ ½cosðbiÞ; sinðbiÞ�; ½ti1; ti2� ¼ ½ÿsinðbiÞ; cosðbiÞ�

(29)

The band orientations bo and bi are displayed in Fig. 8. The band

orientation inside the band can also be written as bi ¼ bo ÿ /.
The fiber volume fractions are updated according to

_cf ;o ¼ cf ;o cm;o v
f ;o
2;2 ÿ v

m;o
2;2

� �

; nia e
i
a

cf ;i

Af ;i
¼ noa e

o
a

cf ;o

Af ;o
; (30)

where ea are components of an unit vector parallel with the fibers.

Af ;i and Af ;o are areas of fibers inside and outside the band,
respectively.

In the current simulation, the fiber rotation increment, _/, is a
prescribed quantity. Continuity of tractions and displacements is

required during the increment _/. The fibers are aligned with the
x1-axis initially and during rotation which leads to

vo2;1 ¼ 0; vi2;1 ¼ 0 (31)

Continuity of displacements across the boundary requires

wi
a;b t

i
a t

i
b ¼ voa;b t

o
a t

o
b; wi

a;b n
i
a t

i
b ¼ voa;b n

o
a t

o
b (32)

where wi
a;b is the velocity gradients seen from a system that stays

stationary during deformation

Fig. 8 Kink band geometry with two coordinate systems, one
inside the band and one outside represented with (•)i and (•)o

respectively
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wi
a;b ¼ via;b þ Xab; X21 ¼ ÿX12 ¼ _/; X11 ¼ X22 ¼ 0 (33)

Continuity of traction rates across the kink band boundary
requires that

Ci
abcd w

i
d;c n

i
a n

i
b ¼ Co

abcd v
o
d;c n

o
a n

o
b;

Ci
abcd w

i
d;c n

i
a t

i
b ¼ Co

abcd v
o
d;c n

o
a t

o
b

(34)

Equations (31) and (32) together with the latter equation yield six
boundary conditions. The last two boundary conditions used in
the simulation are

vo1;2 ¼ 0; _ro
22 ¼ 0 (35)

which implicitly lead to the boundary condition _ro
12 ¼ 0.

After the initiation of the kink band, the fibers locks-up in a
given angle and the easiest way of further deformation is by
steady-state broadening of the developed kink band, which is seen
in Fig. 3, stages (4) and (5). When the kink band broadens,
the end shortening is increased as well. The work done per unit
volume by external forces during propagation is

WE ¼ Soab DE
�
ab (36)

where DE�
ab denotes the difference in Lagrangian strain inside and

outside the kink band evaluated in the base material. The stresses
Soab are the work conjugate of the evaluated strains. It is assumed

that the problem is primarily mechanical and thereby the steady-
state can be found by a balance of mechanical work. In addition,
it is assumed that the final stress state can be described using a
deformation theory. Based on the assumptions, the work done per
unit volume in the kink band is

WI ¼
ðei

eo
rab deab (37)

where eo and ei are strain states outside and inside the kink band,
respectively. The external work given by Eq. (36) and the internal

work by Eq. (37) are evaluated for every increment _/ and when
the equality

WE ¼ WI (38)

is satisfied, the propagation state is obtained. The evaluation of
the internal and external work is shown in Fig. 9 as a function of
fiber rotation, /. In the example shown, the band orientation
is fixed in an angle bo ¼ 20 deg. A steady-state lock-up angle
/ss ¼ 41 deg is achieved. The current formulation includes finite
extension of the fibers and volumetric changes of the composite,
which are in contrast with many of the previous studies of kink
band propagation. No prior restrictions are set regarding, e.g., the
relation between the fiber rotation, /, and the band orientation, b.

4 Analytical Model

An analytical model is proposed to estimate the steady-state
propagation parameters. The model is based on some of the same
assumptions made for the model presented in Sec. 3. In the current
section, the fibers are assumed to be inextensible and incompressi-
ble, which are distinct from the assumptions for the two previous
models. In Fig. 10, an illustration of a kink band that broadens
with rigid fibers is shown. During a broadening increment, a mate-
rial piece with length, l, rotates around a point, A. This leads to an
end shortening of u ¼ lð1ÿ cos/Þ. The work done per unit vol-
ume by the external forces is

WE ¼ ÿro11ð1ÿ cos/Þ (39)

Continuity of stresses across the band requires that

riab n
i
a n

i
b ¼ roab n

o
a n

o
b; riab n

i
a t

i
b ¼ roab n

o
a t

o
b (40)

Assuming that only ro11 is present in the base material, the latter
equations can be written explicitly as

ri11 cos ðboÿ/Þ2þ 2ri12 cosðboÿ/Þsinðboÿ/Þ

þri22 sinðboÿ/Þ2 ¼ ro11 cos ðboÞ
2

ÿri11 cosðboÿ/Þsinðboÿ/Þþri12ðcos ðboÿ/Þ2ÿ sinðboÿ/Þ2Þ

þri22 cosðboÿ/Þsinðboÿ/Þ ¼ÿro11 cosðboÞsinðboÞ (41)

Using the latter equations, the stresses ri11 and ro11 can be written
in terms of the other quantities

ri11 ¼ ÿri12½cot/þ tanðbo ÿ /Þ� ÿ ri22cot/ tanðbo ÿ /Þ;
ro11 ¼ ÿri12½cot/þ tan bo� ÿ ri22½cot/ tan bo ÿ 1�

(42)

The work per unit volume done by external forces can thereby be
written in terms of ri12 and r

i
22 as

Fig. 9 External WE and internal work WI per unit volume as a
function of fiber rotation / for the semi-analytical model. The
band orientation is set to b5 20deg in the current simulation.
The lock-up condition,W I

5WE , is marked in the figure.

Fig. 10 Illustration of steady-state kink band propagation in
the case of inextensible fibers. The geometry with dashed lines
represents a propagated configuration.
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WE ¼ ri12½cot/þ tanbo�ð1ÿ cos/Þ
þ ri22½cot/ tan bo ÿ 1�ð1ÿ cos/Þ (43)

The work per unit volume done by the stresses in the kink band
is in the general case given by Eq. (37). It is assumed that only
ro11 is present in the base material, and when the fibers are rigid,
no straining and thereby no work is done by the base material.
This leads to the simplification

WI ¼
ðei

0

rab deab (44)

Further, the fibers are assumed rigid within the kink band and
does no work. The inextensible fibers lead to v

f
1;1 ¼ vm1;1 ¼ 0. The

internal work can be simplified to

WI ¼ 2cm
ðe

0

rm12 de
m
12 þ cm

ðe

0

rm22 de
m
22 (45)

Here, the superscript ð•Þi is omitted since only stresses and strains
inside the band are included in the equation. When regarding rigid
fibers, continuity of displacements given by Eq. (32) can be sim-
plified to

wi
a;b t

i
a t

i
b ¼ 0; wi

a;b n
i
a t

i
b ¼ 0 (46)

Expanding the repeated indices and utilizing vi2;1 ¼ 0 and vi1;1 ¼ 0
leads to

vi1;2 sinðbo ÿ /Þcosðbo ÿ /Þ þ vi2;2 cos ðbo ÿ /Þ2 ¼ 0;

vi1;2 cos ðbo ÿ /Þ2 þ vi2;2 cosðbo ÿ /Þsinðbo ÿ /Þ ¼ _/
(47)

and solving for vi1;2 and vi2;2 yields

vi1;2 ¼ _/; vi2;2 ¼ _/ tanðbo ÿ /Þ (48)

The same kinematics was obtained by Budiansky and Fleck [24]
when the shear strain rate in the base material is zero. The strain
rates are then

_ei12 ¼
_/

2
; _ei22 ¼ _/ tan bo ÿ /ð Þ (49)

Integrating the latter equation with respect to /, and assuming a
fixed band orientation bo, yields the total logarithmic strain in the
kink band

ei12 ¼
/

2
; ei22 ¼ ln

cos bo ÿ /ð Þ
cos bo

� �

(50)

Figure 11 gives an illustrative example of a material point that
propagates from a stage outside the band and into the band. On
the configuration to the right, the stage inside the band is rotated
to an amount of / to show the total deformation. In the illustra-
tion, where / ¼ 60 deg and b ¼ 20 deg, the composite will be
compressed going from stage (1) to (2). When / ¼ 2b, no volu-
metric straining will be present. / ¼ 2b is the lock-up condition
used in many of the previous studies of kink-band propagation,
while the present study usesWI ¼ WE.

The transverse strain and the shear strain of the composite are
assumed to be an average of the constituents

e12 ¼ cmem12 þ cf e
f
12; e22 ¼ cmem22 þ cf e

f
22 (51)

Based on the assumption of rigid fibers (i.e., e
f
12 ¼ e

f
22 ¼ 0), the

matrix strain can be determined based on the overall strain accord-
ing to

em12 ¼
e12

cm
em22 ¼

e22

cm
(52)

In the general case, the determination of the stress state depends
on the total strain field and the strain history. For simplicity, it is
assumed that the shear stress only depends on the shear strain
rm12ðem12Þ and the transverse stress only depends on the transverse

strain rm22ðem22Þ, which is motivated by the findings from the FE-

model. This is in general not true, but as shown in Sec. 5, this
assumption leads to promising results. It is assumed that the trans-
verse response is linear elastic, then the stress rm22 can be obtained

using Eq. (26)

rm22 ¼
Em 1ÿ �mð Þ

1þ �mð Þ 1ÿ 2�mð Þ e
m
22 (53)

Plane strain conditions, em33 ¼ 0, and inextensible fibers, em11 ¼ 0,
are assumed in the calculations. The shear stress, rm12, is assumed
to follow a bilinear curve according to

rm12 ¼ 2G1 e
m
12 for em12 < e

m;y
12

rm12 ¼ 2G2 e
m
12 þ r

m;y
12 1ÿ G2

G1

� �

for e
m;y
12 < em12

(54)

where G1 and G2 are the shear moduli before and after yielding,
respectively, G ¼ E=ð2ð1þ �ÞÞ. The relation between the shear
yield stress, r

m;y
12 , and the uni-axial yield stress ry;m is

r
m;y
12 ¼

ffiffiffi

1

3

r

ry;m (55)

where a von Mises yield criterion is assumed. The uni-axial
stress–strain relationship for the matrix material in the FE-model
and the semi-analytical model follow a Ramberg–Osgood relation.
For comparison with the other models, the first modulus is set to
E1 ¼ Em and the second modulus is E2 ¼ Em

t;min. The yield stress
used in the analytical model is based on

ry;m ¼ E1

rL ÿ E2 eL

E1 ÿ E2

(56)

Here, rL and eL are calculated using Eq. (24). The quantities are
displayed in Fig. 12.

The traction continuity required in the constitutive model
entailed Eq. (18). In line with the constitutive model, rm22 ¼ r22
and rm12 ¼ r12 are viable assumptions. Equations (53) and (54)
together with Eq. (43) yield

WE ¼ 2C2 /þ C3ð Þ cot/þ tan bo½ � 1ÿ cos/ð Þ

þ 2C4 ln
cos bo ÿ /ð Þ

cos b

� �

cot/ tanbo ÿ 1½ � 1ÿ cos/ð Þ

(57)

Fig. 11 Strain state outside (state 1) and inside the kink band
(state 2). The strain state inside the kink band is rotated 60deg
on the configuration to the right.
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where the constants are introduced

C2 ¼
G2

2 cm
; C3 ¼ r

m;y
12 1ÿ G2

G1

� �

;

C4 ¼
Em 1ÿ �mð Þ

2 cm 1þ �mð Þ 1ÿ 2�mð Þ

(58)

The work done per unit volume by internal forces can be rewritten
using the stresses rm12 and rm22 given by Eqs. (53) and (54) together

with the strain increments dem12 and de
m
22 given by Eq. (49)

WI ¼
ð/y

0

G1

cm
/d/þ

ð/

/y

G2

cm
/þ r

y;m
12 1ÿG2

G1

� �

d/

þ
ð/

0

Em 1ÿ �mð Þ
cm 1þ �mð Þ 1ÿ 2�mð Þ ln

cos bo ÿ /ð Þ
cosb

� �

tan bo ÿ /ð Þ d/

(59)

where /y is the fiber angle when matrix yielding happens and is
given by

/y ¼ 2 cm ry;m 1þ �mð Þ
Em

ffiffiffi

3
p (60)

Solving the integrals in Eq. (59) yields

WI ¼ C1 /yð Þ2 þ C2 /2 ÿ /yð Þ2
� �

þ C3 /ÿ /yð Þ

þ C4ln
cos bo ÿ /ð Þ

cos b

� �2

(61)

where the constant has been introduced

C1 ¼
G1

2 cm
(62)

The two equations derived for the external and internal work per
unit volume,WE andWI, given by Eqs. (57) and (61) are analytical
expressions, where the only variable is the fiber rotation /. An
evaluation of equations is shown in Fig. 13, where a fixed band
orientation bo ¼ 20 deg is chosen. By comparing Figs. 9 and 13,
good agreement is seen in the approximation of the external work,
the internal work, and the intersection point between the curves. It
does not seem possible to solve the transcendental equation

WIð/Þ ¼ WEð/Þ for the steady-state lock-up angle /ss analyti-
cally based on the current formulation. The steady-state fiber
angle /ss can be found either by using a nonlinear solver or by

increasing / and evaluating WIð/Þ ÿWEð/Þ a sufficient number

of times untilWIð/Þ ÿWEð/Þ � 0.

5 Results

The three models presented in Secs. 2–4 will be used to esti-
mate the steady-state kink band propagation stress rss11 and lock-
up angle /ss. The band orientation b is regarded as a fixed value
in all of the three models. In several of the previous studies, the
lock-up criteria / ¼ 2 b were used in the calculations of the
steady-state stress based on experimental observations of / � 2 b.
Vogler and Kyriakides [5] observed fiber rotations of / > 2 b
under stress, and when the stress was removed, the fibers relaxed
to / � 2 b. Also, early experimental studies of kink band broad-
ening conducted by Evans and Adler showed / > 2 b. In Fig. 14
is the lock-up angle /ss shown as a function of the band orienta-
tion b0.

Results obtained using the three models are displayed in the fig-
ure, and all of the models predict a larger fiber rotation than 2b.
The conventional lock-up angle / ¼ 2 b is also displayed in the
figure for comparison. The predictions of the fiber angles go
asymptotically toward the conventional lock-up angle for large
band orientations b. The steady-state broadening stress, ÿrss11=G,
as a function of band orientation, b, shown in Fig. 15, predicts
that the propagation stress lowers with increasing band orienta-
tions. Jensen [13] showed that the propagation stress rss11 is
sensitive to the minimum tangent modulus Em

t;min, which was intro-
duced in Sec. 3.3. The modulus Em

t;min=E
m ¼ 1=100 is used for the

Fig. 12 Stress–strain relation for the semi-analytical and ana-
lytical models. The bilinear curve represents the response used
for the analytical model.

Fig. 13 External, WE, and internal work WI done per unit
volume as a function of the fiber rotation / for the analytical
model. The band orientation is set to b5 20deg. The lock-up
condition,W I

5WE , is marked in the figure.

Fig. 14 Steady-state lock-up angle /ss as a function of initial
kink band orientation b0. Results are shown for the three mod-
els presented. Additionally, the conventional assumption of
fiber lock-up /52b is included for comparison.
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semi-analytical and analytical models. Beyond that, the material
parameters given by Eq. (4) are used.

High correlation is seen between the three models despite
the significant difference in model setup. The relatively high fiber
stiffness Ef =Em ¼ 35 is used for the FE-model, and semi-
analytical model and inextensible fibers are assumed for the ana-
lytical model. This is one of the explanations for the deviations
seen in Fig. 15 between the models for small band orientations.
It was only possible to obtain steady-state results between b0 ¼
0 degÿ 15 deg using the FE-model due to convergence problems
at higher kink band orientations.

Figure 16 indicates that the lock-up angle /ss is sensitive to
Poisson’s ratio of the matrix material �m. The figure shows
the results obtained for b0 ¼ 10 deg varying from �m ¼ 0 to
�m ¼ 0:5. In the limit of �m ¼ 0:5, the matrix constituent becomes
incompressible. All the models tend toward / ¼ 2 b when the
matrix constituent becomes incompressible, which agrees with
assumptions made by previous authors.

Figure 17 argues that also the propagation stress rss11 is sensitive
to Poisson’s ratio of the matrix. The highest stress is obtained for
a nearly incompressible matrix. Previous authors have used the
assumption of an incompressible composite (i.e., �m ¼ 0:5).
Based on the current results, the propagation stresses predicted by
previous authors are nonconservative for �m < 0:5. The broaden-
ing stress ÿrss11=G ¼ 0:1 for �m ¼ 0:35 is predicted using the FE-

model, which is 80% of the stress predicted using �m � 0:5.

Finally, the propagation stress as a function of the minimum
tangent modulus Em

t;min=E
m is illustrated in Fig. 18 for the most

critical band orientation, b0. When the kink band is fully formed
and locked-up, the shear strain within the matrix is in the order
em12 ¼ 20%ÿ 110% depending on the initial band orientation

b0. For such high strains, the Ramberg–Osgood curve predicts
unrealistic low tangent moduli. The tangent modulus is restricted
with the results shown in Fig. 18 following the method introduced
in Sec. 3.3. The Ramberg–Osgood curves obtained using Em

t;min ¼
0:02ÿ 0:1 all agree with the measurements of Kyriakides et al.
[16] for small strains. The broadening stress is seen to be sensitive
to the minimum tangent modulus, which is in line with the results
shown in Jensen [13]. It was not possible to make a restriction on
the minimum tangent modulus using the build in J2-deformation
theory in ABAQUS, and results from the FE-model are, therefore,
not shown in Fig. 18. A user material could have been used
together with ABAQUS to restrict the tangent modulus Em

t , but this

has not been in the scope. The analytical model predicts critical
band orientations in the range b0 ¼ 28 degÿ 32 deg, where the
semi-analytical model predicts orientations in the range
b0 ¼ 20 degÿ 26 deg. The higher band orientations, b0, predicted
by the analytical model result in lower steady-state stresses which
is in line with the results shown in Fig. 15.

Evans and Adler [6] observed several kink bands with orienta-
tions in the range b ¼ 20 degÿ 25 deg and fiber rotation between
/ ¼ 45 deg and 60 deg for a carbon/carbon composite, which is in

Fig. 15 Normalized steady-state kink band propagation stress
2rss11 /G as a function of initial kink band orientation b0. Results
are shown for the three models presented.

Fig. 16 Steady-state lock-up angle /ss as a function of Pois-
son’s ratio for the matrix constituent mm. The initial band orien-
tation is b0 5 10deg. Results are shown for the three models
presented.

Fig. 17 Normalized steady-state kink band propagation stress
2rss11 /G as a function of Poisson’s ratio for the matrix constitu-
ent mm. The initial band orientation is b0 510deg. Results are
shown for the three models presented.

Fig. 18 Normalized steady-state kink band propagation stress
2rss11 /G as a function of normalized minimum tangent modulus
for the matrix constituent Em

t ;min/E
m. Results are shown for the

semi-analytical and analytical models.
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the range predicted by the three models. Moran et al. [7] observed
b ¼ 20 degÿ 25 deg and / ¼ 40 degÿ 45 deg for a IM7/PEEK
composite. They observed a propagation stress in the range
ÿrss11=G ¼ 0:052ÿ 0:086 which corresponds to a band inclination
b ¼ 20 degÿ 30 deg according to the predictions in Fig. 15 using
the proposed models. A recent experimental study of kink band
propagation was conducted by Nizolek et al. [12] using a Cu/Nb
nanolaminate composite with a band orientation b � 27 deg and a
fiber rotation of / � 60 deg. The relation of / > 2b predicted by
the three models correlates with their findings. It has not been pos-
sible to compare the steady-state propagation stress with the study
done by Nizolek et al. [12] since the necessary material data for
the current models were not present in the paper.

6 Conclusions

Steady-state kink band propagation in layered materials or
fiber-reinforced composites has been analyzed. Three substan-
tially different models have been used to investigate the phenom-
enon and two of the models have been developed during this
study. A two-dimensional finite element model has been devel-
oped that includes inclined periodic boundary conditions to inves-
tigate a propagating infinite kink band. Steady-state was obtained
using the FE-model, when the fiber rotation inside the kink band
stopped rotating and overall band broadening was observed
instead. An analytical model resulting in one transcendental equa-
tion for the propagation state has been proposed. The analytical
model is based on the assumptions of inextensible fibers and a
simple stress–strain relation inspired by observations from the FE-
model. In contrast to models proposed by several previous
authors, no assumptions regarding the fiber lock-up kinematics
have been utilized. The condition for fiber lock-up is based on a
balance of external and internal work in line with the methodol-
ogy proposed by Jensen [13]. The two introduced models are used
together with the constitutive model introduced by Jensen [13].

The three models have been used to investigate the steady-state
lock-up angle and the propagation stress based on different param-
eters. Initially, the influence of the band orientation, b0, has been
investigated, which is a prescribed quantity using the proposed
models. The rotation of the fibers at lock-up exceeds the linear
relation assumed by previous authors and the current findings cor-
relate with experimental observations. It can be concluded that
including compressibility of the matrix constituent has a large
influence on the lock-up angle and the propagation stress. In line
with the findings by Jensen [13], the matrix properties at large
strains have a large influence of the propagation stress especially
the tangents modulus and Poisson’s ratio.
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Chapter 9

P4
A general approach for the study of kink band broadening in
fibre composites and layered materials

9.1 Motivation

Kink band formation is the dominant compressive failure mechanism for many fibre-
reinforced plastics. The stress at steady-state kink band broadening can be seen as a lower
bound for the compressive strength in composites. Three substantially different models
were developed in Skovsgaard and Jensen (2018c) to study kink band broadening. In the
latter article, the emphasis was given to a carbon fibre-reinforced thermoplastic. Kink band
broadening is observed in different composites at different length scales e.g. Nizolek et al.
(2017) observed broadening in a Cu/Nb nanolaminate and Attwood et al. (2015) observed
kink band broadening, that was developed between plies within a composite made from
ultra-high molecular weight polyethylene.

In the current publication, the three models developed in [P3] are used within two
case studies with different composite material behaviour to study steady-state kink band
broadening and to compare with experimental results. The original source of the publication
is: (Skovsgaard and Jensen, 2019).

9.2 Method

The unit cell finite element model, the semi-analytical model and the analytical model are
used, that are described in Chapter 2, 3 and 4, respectively.



9.3 Contribution 102

The finite element model consists of three layers: one matrix layer and two half fibre
layers; or one elastic-plastic layer and two half elastic layers. Periodic boundary conditions
are applied on a skewed mesh to get a band inclination β . An arc-length solver is used to
solve the non-linear problem. The semi-analytical model is based on a kink band model
developed by Jensen and Christoffersen (1997) with a homogenised constitutive formulation
from Christoffersen and Jensen (1996). The analytical model, as described in Chapter 4,
results in one transcendental equation for the steady-state propagation state and is derived by
evaluating the internal and external work at the steady-state.

9.3 Contribution

The contributions to the publication comprise: the use of the three models in two case studies;
changing the constitutive relations for the semi-analytical model to be used on the ply-level;
conducting the simulations and writing the paper.

9.4 Main findings

The three models, initially introduced in [P3], were in the current publication reformulated
and presented in a format that emphasises that the models can, equivalently, be used for
layered materials and for fibre composites. Furthermore, the results indicate that the models
can be used across different length scales to study kink band broadening.

In the first case study, a carbon fibre-reinforced PEEK composite is used to study the effect
of fibre diameters upon kink band broadening using the unit cell FE-model. The predictions
for the steady-state propagation stress, using the FE-model, approach the prediction by the
semi-analytical model with decreasing fibre diameters. The semi-analytical model does not
include intrinsic size effects.

In the second case study, the semi-analytical model and the analytical model are used
to study kink band broadening for a composite made from ultra-high molecular weight
polyethylene. The two models predict steady-state quantities that are in good agreement with
the experimental observations done by Attwood et al. (2015) and Liu et al. (2014).
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The progressive non-linear mode of deformation known as steady-state kink band broadening is analysed for
fibre composites and layered materials. The mode of deformation is investigated using an analytical, a semi-
analytical model and a finite-element model. The semi-analytical model is based on a constitutive model, where
independent material behaviour can be given for two constituents. The analytical model assumes rigid fibres and
results in a transcendental equation for the kink band broadening state. Both the analytical and semi-analytical
model use a Maxwell construction to determine the steady-state, which is done by equating the internal and
external work. The influence of size-effects are explored and two case studies are performed; in the first case
study the finite element model and semi-analytical model are used upon a carbon fibre-reinforced PEEK com-
posite. The second case study is on a layered composite made from ultra high molecular-weight polyethylene
fibres with a kink band developing on ply level.

1. Introduction

Laminates built from unidirectional fibre-reinforced composites will
have an anisotropic material behaviour, where the amount of aniso-
tropy mainly depends on the difference in fibre/matrix material prop-
erties and the fibre to matrix bonding. There can be a large difference in
the tension, shear and transverse moduli in fibre-reinforced composites
and together with the heterogeneities, this creates many possible ma-
terial failures. Fibre-reinforced composites have high stiffness and
strength in tension but can become unstable in compression and the
compressive strength is often only 50–60% of their tensile strength. A
frequently observed failure is kink band formation, where a band of
material has rotated relative to the surrounding base material. The
formation of kink bands has been observed in several experiments with
compressive loading in the direction of the fibres including Kyriakides
et al. (1995) and Piggott and Harris (1980) and others.

As described by Liu et al. (1996), the formation of a kink band can
be divided into different stages; the linear response, incipient kinking,
peak stress, transient kinking and steady-state kink band broadening. So
far, the main focus has been to estimate the peak compressive stress for
design purposes either by the use of experimental, numerical or ana-
lytical approaches. The compressive strength in unidirectional fibre
composites is largely influenced by imperfections in the form of fibre

misalignments interacting with matrix plasticity as described in Fleck
and Budiansky (1991) and Fleck et al. (1995).

Steady-state kink band broadening is a propagating instability on
the material scale and can be put into the same category as neck pro-
pagation in polymers during stretching e.g. (1983) G'Sell (1983) and
channelling cracks in layered materials e.g. Beuth (1992). The stress at
band broadening can be seen as the lower bound of the compressive
strength in fibre composites and is independent of fibre misalignments.
The broadening stress can thus be used as a fail-safe compressive
strength for structural applications and it does only depend on the
material behaviour. Kink band broadening has been observed in dif-
ferent composites. In the early work of Evans and Adler (1978), they
observed band broadening in a carbon fibre composite. Liu et al. (1996)
observed band broadening in a IM7/PEEK carbon fibre composites,
where the fibres stayed intact during broadening. Kink band broad-
ening and transverse kink propagation was studied by Budiansky et al.
(1998). Later, Byskov et al., (2002) performed a compressive study on
wood (Norway Spruce) where kink band broadening was observed.
Kink band broadening was observed to propagate on ply level in a
composite made of ultra-high molecular-weight polyethylene
(UHMWPE) fibres by Attwood et al. (2015). In a recent study conducted
by Nizolek et al. (2017) they observed band broadening in a CueNb
nanolaminate composite.
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In the current study, three different models are used to investigate
kink band broadening in a general framework, including a finite ele-
ment model, a semi-analytical model and an analytical model. Two case
studies with two different material compositions are presented. In the
first case study, the size effects upon kink band broadening are in-
vestigated using the finite element model and the semi-analytical
model. The analytical and semi-analytical models are used in a second
case study using material parameters of an ultra high molecular-weight
polyethylene fibre composite to predict some kink band broadening
parameters. The theoretical predictions are compared with experiments
performed by Attwood et al. (2015) on a composite made from
UHMWPE fibres. This article is contributing to the further under-
standing of the compressive mechanics of fibre composites and layered
materials. The analytical and semi-analytical model developed in
Jensen (1999) and Skovsgaard and Jensen (2018c) are modified to
predict the propagation stress and fibre lock-up angle for a composite
made from UHMWPE fibres. The modifications lies in the im-
plementation of the constitutive behaviour of the UHMWPE fibres.
Furthermore, the fact that band broadening was observed to develop on
ply level is taken into account. In this article it is further emphasized
that the models developed in Jensen (1999) and Skovsgaard and Jensen
(2018c) can be used for both layered materials and fibre reinforced
composites with arbitrary material constituents.

2. Semi-analytical model for kink band initiation and broadening

The methodology introduced in Jensen (1999) is used to investigate
kink band broadening using the homogenisation methodology devel-
oped in Christoffersen and Jensen (1996). Originally, the model was
used to study a fibre reinforced composite with two constituents, a
matrix and fibre composition. The latter model will be known as the
semi-analytical model and is presented with two arbitrary constituents
with the superscripts (•)a and (•)b. The theory behind the approach will
be outlined here.

2.1. General relations

The strain rate and spin are given by

= + =v v v v1
2

( ) 1
2

( )ij i j j i ij i j j i, , , , (1)

where vi j, are the velocity gradients. Latin indices i.e. i j k, , take values
1,2,3, and Greek indices i.e. , , take values 1,2. A comma denotes
partial derivative. The relation between the rate of nominal stresses tij
and velocity gradients are

=t C vij ijkl l k, (2)

where Cijkl are components of nominal moduli

= +C L 1
2

1
2

1
2

1
2ijkl ijkl kj il lj ik il kj ik lj (3)

and ij denote Kronecker delta and ij are the current Kirchhoff stresses.
The moduli Lijkl describe the relation between the Jaumann rate of
Kirchhoff stresses and strain rates = Lij ijkl kl and are to be described
using a time-independent constitutive law e.g. J2-deformation and J2-
flow theory. Moment equilibrium =ij ji and strain symmetry =ij ji
require the symmetries

= =L L Lijkl jikl ijlk (4)

The relation between Cauchy stresses and Kirchhoff stresses are

= Jij ij (5)

where J is the Jacobian giving the volume ratio =J V V/ 0. The relation
between the rate of Cauchy stresses and the rate of nominal stresses is

= +t v vij ij ij k k i k kj, , (6)

2.2. Constitutive model

The constitutive model introduced in Christoffersen and Jensen
(1996) homogenises the material properties of two individually de-
scribed constituents. The model is based on the kinematic assumption
that material lines parallel with the x1 -direction are subjected to a
common stretching and rotation. The strains in the x2 -direction are
averages of the two constituent strains. The kinematics can be described
using velocity gradients

= = = +v v v v c v c va b a a b b
,1 ,1 ,1 ,2 ,2 ,2 (7)

where ca and =c c1b a are volume fractions of the constituents in the
layered material or fibre composite. Superscripts (•)a and (•)b corre-
sponds to values associated with the two arbitrary constituents. A lack
of superscript refers to overall composite quantities. Additionally, the
model is based on the assumption that planes with outward normal
parallel with the x2 -axis transmit identical tractions. This assumption
together with overall equilibrium entails

= = = +t t t t c t c ta b a a b b
2 2 2 1 1 1 (8)

Christoffersen and Jensen (1996) introduced a matrix format to
describe the relations for convenience. This matrix format is not re-
peated in the current article, instead the usual index notation is kept.
Using the latter relations and under the assumption of plane strain,
Christoffersen and Jensen (1996) showed that the composite behaviour
could be described according to

= +C c C c C c c C C H C C( ) ( )a a b b a b a b a b
2 2 2 2 (9)

where,

=
= +

H M
M c C c Cb a a b

2 2 2 2 (10)

The moduli M are initially calculated and then the inverse H is
determined so the equality =H M is satisfied. The moduli Cc

for the constituents are initially calculated using Eq. (3) using the
tangent moduli L c . The homogenisation methodology with two
constituents was later extended to include information about imperfect
bonding for a fibre composite in Skovsgaard and Jensen (2018b) and
was extended to a three-dimensional version in Skovsgaard and Jensen
(2018a). The constitutive model introduced by Jensen (1999), as-
suming plane strain conditions, was used in Tojaga et al. (2018) as a
user subroutine UMAT in Abaqus to investigate the development of
kink bands in open-hole fibre composites. The deformations for the
individual constituents vc

, are calculated based on the overall velocity
gradients v , in every increment. Furthermore, the stresses for the
constituents are updated in every increment. Thereby, individual and
independent constitutive relations can be used for the constituents
through the moduli L c with arbitrary elastic-plastic constitutive be-
haviour.

2.3. Kink band propagation

A semi-analytical kink band model was created in Jensen and
Christoffersen (1997) using the constitutive formulation. The kink band
model assumes that the kink band formation and propagation can be
simplified into two material states; one inside the localised band and
one outside the band (base material) see Fig. 1. It has previously been
shown that the assumptions lead to good agreement with experimental
results (Jensen and Christoffersen 1997 and Skovsgaard and Jensen
(2018a)). The key equations and assumptions are introduced and for
further details see Christoffersen and Jensen (1996) and Jensen (1999).
Fig. 1 shows the kink band geometry and the local coordinates for the
material states. Superscripts (•)o and (•)i refer to quantities associated
with the outer base material and the inner band material, respectively.
The angle ϕ gives the relative angle between the orientation of fibres
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inside and outside the band. The angles o and i are the relative band
orientations seen from the two systems. The outward normal n and
tangent t are shown on the band boundary.

The x1 -coordinate is aligned with the fibres, or layers in the case of a
layered material, prior to deformation. This applies both for the state
inside and outside the band. A Jaumann frame of reference is used, so
the coordinate systems rotate with the deformation during an incre-
ment. The stresses in the two material states, inside and outside the kink
band, are updated according to

= +C v v v, , , (11)

The relative band orientations are updated using

= v n t, (12)

In the case of a material composition with different bulk moduli,
then the volume fraction of the constituents are updated according to

=c c c v v( )a a b a b
2,2 2,2 (13)

Due to the choice of a Jaumann frame of reference, then the co-
ordinate systems rotate with the fibres, leading to

= =v v0 0o i
2,1 2,1 (14)

To ensure continuity of tractions and displacements the normal and
tangent to the band are needed and are formulated relative to the in-
dividual frames

= =
= =

n n t t
t t

[ , ] [cos( ), sin( )] [ , ] [ sin( ), cos( )]
[cos( ), sin( )] [ , ] [ sin( ), cos( )]

o o o o o o o o

i i i i i i
1 2 1 2

1 2 (15)

Continuity of displacements across the band boundary entails the
two equations

= =w t t v t t w n t v n ti i i o o o i i i o o o
, , , , (16)

where,

= + = = = =w v 0i i
, , 21 12 11 22 (17)

The components wi
, are the velocity gradients seen from a system

that stays stationary during deformation i.e. does not follow the fibres
during deformation. The relative spin is included in the spin tensor

ij. Equilibrium of tractions across the band entails

= =C w n n C v n n C w n t C v n ti i i i o o o o i i i i o o o o
, , , , (18)

The kink band model is a two dimensional model with plain strain
condition. The deformations in every material state are fully defined by
the use of the four components of the velocity gradients. Since the kink
band model only includes two material states, eight components of the
velocity gradients are to be determined in every increment. Continuity

of velocities Eq. (16) and equilibrium of tractions Eq. (18) give the first
four equations. The requirement of Eq. (14) gives further two equa-
tions. The last two boundary conditions used in the simulations are

= =v 0 0o o
1,2 22 (19)

which entails no shear straining and transverse stress in the base ma-
terial. The kink band model was used to study the effect of varying
initial imperfections 0 on the critical compressive strength cr

11 in
Jensen and Christoffersen (1997). The model can be used to study kink
band broadening in composites as well using a Maxwell condition. In
the case of steady-state broadening, it is assumed that a kink band has
formed and locked up in a given orientation ss and with a fibre rotation

ss, where the superscript (•)ss refers to a steady-state quantity. From
this point, the easiest way of further deformation is to broaden the al-
ready developed band. In this state the band will broaden (or propa-
gate) under a constant applied stress i.e. the work done by the external
stresses and strains on an unit volume equals the work done by an unit
volume transitioning from the base state to the band state =W WE I .
The external work per unit volume is

=W S E ,E o o (20)

where Eo is the difference in Green-Lagrangian strain inside and
outside the band expressed in the base material and So denotes the
work conjugate Second Piola-Kirchhoff stress in the base material. The
work done per unit volume in the band material is

=W d ,I
o

i

(21)

where o and i are strain states outside and inside the band, re-
spectivily. The inner and outer work are evaluated in every increment
i.e. for every fibre rotation . In the simulations, the band orientation β
is seen as a fixed value and the fibre lock-up angle is search for where
the Maxwell condition =W WE I is satisfied. This methodology is in
contrast to the approach done by several previous authors, where the
kinematic relation = 2 is used, which have been observed in ex-
periments.

3. Analytical model for kink band broadening

In Skovsgaard and Jensen (2018c) an analytical model was devel-
oped to evaluate the external and internal work per unit volume during
kink band formation. This resulted in a transcendental equation in the
form =W W( ) ( )E I , with fibre rotation ϕ being the only unknown.
The model is inspired by the semi-analytical model regarding the two
material states and the continuity requirements. The semi-analytical
model is formulated in a general framework with arbitrary behaviour of
the constituents. In contrast, the analytical model makes several prior

Fig. 1. Kink band geometry with two coordinate systems, one inside the band and one outside represented with (•)i and (•)o respectively.
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assumption to the material behaviour e.g. large difference in elastic
moduli between the constituents, which is the case for many fibre re-
inforced composites.

The model assumes that one of the constituents can be regarded as
being rigid and incompressible, which is a valid assumption for many
composites when evaluating the work e.g. carbon and glass fibre
composites. A case study is presented later using an ultra high mole-
cular-weight polyethylene fibre composite. It has been observed ex-
perimentally that these UHMWPE fibre composites have a three order
of magnitude difference in moduli in compression and shear (Liu et al.
(2014)). This make them ideal for this analytical model assuming rigid
fibres. The kinematic constraint = 2 has not been used in the cur-
rent study as in many of the previous studies. Some interesting results
can be seen when this unnecessary kinematic constraint is relieved.

In Fig. 2 the geometry is seen that describes the analytical kink band
broadening model. At a certain point during localisation the easiest way
of further deformation is through kink band broadening. Assuming rigid
fibres and a locked up geometry as seen in the figure, an infinitesimal
fibre piece of length l will rotate into the localised band. This will result
in an end shortening of = l (1 cos ). Since mechanical work is force
times displacement, the external work per unit volume is

=W (1 cos )E o
11 (22)

where o
11 is the external applied stress. Moran et al. (1995) came to the

same result for the external work and was presented in a similar
manner. No straining and thereby no work is done by the base material,
due to the assumption of rigid fibres. Furthermore, no shear and
transverse stresses are applied to the base material in the current ana-
lytical model. The work done per unit volume by the stresses in the kink
band is

= +W d d2I
0 12 12 0 22 22

i i

(23)

Stress equilibrium across the band requires

= =n n n n n t n ti i i o o o i i i o o o (24)

where again n and t are the unit normal and tangent to the band plane
expressed in either the inner or outer material system. Using the latter
equation together with Eq. (15) yields

= +
= +

[cot tan( )] cot tan( )
[cot tan ] [cot tan 1]

i i o i o

o i o i o
11 12 22

11 12 22 (25)

which express the stresses i
11 and o

11 in terms of the inner stresses i
12

and i
22. Continuity of velocities in the case of rigid fibres and no shear

and transverse straining in the base material require that

= =w t t w n t0 0i i i i i i
, , (26)

where wi
, is given by Eq. (17). The velocity gradients integrates into

the finite logarithmic strains

= =
2

ln cos( )
cos

i i
o

12 22
(27)

which was shown by Skovsgaard and Jensen (2018c). The same kine-
matics were obtained by Budiansky and Fleck (1993). It is assumed that
the transverse stresses can be expressed through transverse strains only,
which is a simplification compared to a general elastic-plastic con-
stitutive law. It is assumed that the transverse behaviour is purely
elastic and plane strain conditions prevail, which yields the relation

=
+
E (1 )

(1 )(1 2 )22 22 (28)

The shear stresses are assumed to dependent only on the shear
strains, and follow a bilinear elastic-plastic relation

= <

= + <( )
G

G

2 for

2 1 for

y

y G
G

y

12 1 12 12 12

12 2 12 12 12 12
2
1 (29)

where G1 is the shear modulus prior to yielding and G2 is the shear
modulus beyond yielding, the quantity y

12 is the shear strain where
yielding takes place.

By introducing the constants

= = = =
+

C G C G C G
G

C E
2 2

1 (1 )
2 (1 )(1 2 )

y
1

1
2

2
3 12

2

1
4

(30)

then it was shown by Skovsgaard and Jensen (2018c) that the external
and internal work done per unit volume can be expressed explicitly as

= + +

+ ( )
W C C

C

(2 )[cot tan ](1 cos )

2 ln [cot tan 1](1 cos )

E o

o

2 3

4
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(31)
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2
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2

(32)

where the yield rotation,

=
G

y
y

12

1 (33)

is introduced. The condition for steady-state broadening requires the
work balance condition =W WE I to be satisfied. The two equations, Eq.
(31) and Eq. (32), giving the external and internal work do only depend
on the rotation ϕ. It does not seem possible to solve the balance

=W WE I analytically with respect to ϕ and thereby gives a transcen-
dental equation for the Maxwell condition of the steady-state kink band
broadening.

4. Size effects upon kink band broadening

4.1. Finite element model

The influence of size effects upon kink band broadening will be
investigated using a finite element model and will be compared with
the results obtained using the semi-analytical kink band model. A case
study is created for a fibre reinforced PEEK composite. The full elastic-
plastic behaviour of the constituents for the later composite was thor-
oughly investigated in Kyriakides et al. (1995) and is thereby chosen for
the current investigation. The finite element model was initially pre-
sented in Skovsgaard and Jensen (2018c). An illustration of the model

Fig. 2. Illustration of steady-state kink band propagation in the case of in-
extensible fibres. The geometry with dashed lines shows a propagated config-
uration.
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geometry and boundary conditions are shown in Fig. 3. The FE-model is
a micromechanical model where the fibre and matrix constituents are
modelled individually. The initial length of the geometry is L0. To si-
mulate an infinite extent of the kink band, periodic boundary condi-
tions (PBC) are utilized on the top and bottom of the geometry. The
PBCs make it possible to model only one full layer of a constituent and
two half layers. The middle layer will in the current model represent the
PEEK constituent and the two half layers are fibres. The commercial
software Abaqus 6.14 was used for the simulations. An implicit finite
element solver was chosen together with an arc-length solver since the
equilibrium path is non-linear. A special methodology for applying the
periodic boundary conditions is introduced as can be seen in Fig. 4. In
the middle of the geometry the elements are skewed and together with
the chose of node coupling, this locks the formation and the kink band
broadening at a given angle β. The mentioned periodic boundary con-
ditions, where the band is locked during deformation, resemble the
boundary conditions introduced for the analytical and semi-analytical
model.

An imperfection in the form of a waviness was introduced in the
geometry initially where the deformed coordinates are given by

= <

= + + <

<

= >

( )

( )

x X X X

x X X X X X

X

x X X X

tan for

sin ( tan ) for

tan for

b
min

b
b min
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b
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2
1
2 0 2 cos 2 1 1,

2
1
2 0 2 cos

2 cos
1 2 1 1, 1

1,

2
1
2 0 2 cos 2 1 1,

0

0
0

0

(34)

where xi are deformed coordinates and Xi are initial coordinates ex-
pressed in a coordinate system placed in the geometry centre. The angle

0 is the angle of the largest fibre misalignment, which is in the centre
of the geometry. The parameter b0 is the extent of the imperfection in
the x1-direction. Furthermore the parameters

= =X b X X b X
2 cos

tan
2 cos

tanmin max1,
0

2 1,
0

2 (35)

are introduced which give the start and end coordinate for the im-
perfection. Simplified imperfections can also be implemented but the
imperfection used has shown to give consistent and stable results. The

fibre constituent is assumed to have an linear-elastic response. The
PEEK constituent behaves elastic-plastic and is fitted to a Ramberg-
Osgood relationship. The built-in plastic flow rule was chosen in
Abaqus with isotropic hardening with a von-Mises yield criterion. The
material parameters are normalized quantities of the one presented in
Kyriakides et al. (1995). The material parameters and geometries used
in the models are

= = =
= = =
= = = =

c E E
E n

L b

0.6 / 35 0.263
0.356 / 0.013 4
1 0.5 1 15

f f m f

m y m m m,

0 0 0 (36)

where c f is the fibre volume fraction, Ec and c are the elastic para-
meters Young's modulus and Poisson's ratio. The plastic parameters y m,

and nm are the reference yield stress and the hardening exponent used
in the Ramberg-Osgood relationship for the PEEK constituent.

The finite element model is substantially different from both the
semi-analytical model and the analytical model. Although the differ-
ences in formation, the models give remarkable similar results as con-
firmed in Skovsgaard and Jensen (2018c). There are many differences
in the numerical foundation. One of the more profound differences is
that a fibre rotation increment is applied in the semi-analytical model
and a compressive displacement u is applied in the FE-model.

4.2. Size effects and validation

The normalized fibre diameter d L/f
0 is changed in the current study

using the FE-model. Results showing the normalized compressive stress
G/11 as a function of normalized end-displacement u L/ 0 are pre-

sented in Fig. 5. Furthermore, deformed geometries at a normalized
end-displacement =u L/ 0.040 are shown in Fig. 6. Results from six si-
mulations are presented in the figures with different normalized fibre
diameters. In the two simulations with large fibre diameters
(0.1 0.05), here the boundary condition in the left and right together
with a large bending stiffness prevents the geometries from reaching a
steady-state. As the fibre diameter decreases the end effects decrease as
well. As the fibre diameter decrease the compressive stress at steady-
state ss converges towards the same value for the simulations. Fur-
thermore, the transition in the geometry going from the base material
to the kinked area sharpens with decreasing fibre diameters. A sharp
transition between the base and kink band material is consistent with
the assumptions used in the analytical and semi-analytical model. The
result from a simulation generated with the semi-analytical model (SA -
model) is shown as a dashed line in Fig. 5. The result is presented as a
horizontal line, since it is not possible to extract the compressive stress
as a function of end-displacement from the semi-analatical model. The
same material behaviour is chosen for the constituents in both the FE-
model and the semi-analytical model.

5. Case study: kink band broadening in UHMWPE fibre composites

A case study is created using the analytical and semi-analytical
model to show the usability of the models on a layered material. The
compressive response of a composite made from ultra high molecular
weight polyethylene fibres was investigated by Attwood et al. (2015).
The composite was composed of plies with alternating 0 and 90 fibre
orientation. A kink band was observed to develop during compression.
Due to a notch initially present in the geometry, the transition to a kink
band happened gradually and the deformation ended in a state with
kink band broadening. Kink bands have frequently been observed to
develop in a single ply on a fibre-matrix level. In the current case the
kink band developed on a ply level between the 0 - 90 layers. Pre-
viously, the models have been used to investigate kink band formation
in composites on the fibre-matrix scale, but the models will in the
current case study be modified to develop on ply-level. In the case
study, material parameters obtained for UHMWPE fibre composites will

Fig. 3. Geometry of the micromechanical finite element model with two con-
stituents. The darker regions represents the fibre constituent in the current case
study.

Fig. 4. Illustration of mesh used in the finite element simulations. The coupling
of the nodes locks the deformation in an orientation β.
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be used. The material behaviour of the constituents for the semi-ana-
lytical and analytical model will be explained in the following.

5.1. Behaviour of plies for semi-analytical model

Different material behaviours are given to the 0 and 90 plies. The
behaviour of the 90 plies are described using a J2-deformation theory
introduced by Stören and Rice (1975). The tensor of instantaneous
moduli Lijkl are given by

= + +L G K G G G m m( ) 2
3

4
3

( ) ,ijkl s ik jl il jk s ij kl s t ij kl (37)

where,

=m s1
2

.ij
eq

ij
(38)

The stress eq is the equivalent Von Mises stress and sij are compo-
nents of the deviatoric stress tensor

= = =J J s s s3 , 1
2

,
3

.eq ij ij ij ij ij
kk

2 2 (39)

The bulk modulus K, the shear secant modulus Gs and the tangent
shear modulus Gt introduced in the instantaneous moduli (Eq. (37)) are
calculated based on

= = =G
E E

G
E E

K E3 1 2 3 1 2
3(1 2 )s

s
t

t

1 1

(40)

where ν denotes Poisson's ratio and E is Young's modulus. The tangent
modulus Et and secant modulus Es are calculated using the Ramberg-
Osgood relation
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1
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3
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3
7
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eq
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where y is a reference yield stress. The material parameters for the 90
plies are taken from Liu et al. (2014) and are given by

= = =
= =

E
n E E

150 [MPa] 0.3 3.12 [MPa]
10 /1000

y

t min

90 90 ,90

90
,
90 90 (42)

Superscripts (•)90 corresponds to values associated with the 90 plies.
The parameters y,90 and n90 are the reference yield stress and hard-
ening exponent for the constituent. The reference yield stress is chosen
based on the shear yield stress = 1.8y [MPa] measured in the ex-
periments by Russel et al. (2013) and assuming a von Mises yield cri-
terion entails the yield stress = 3y y. The uni-axial response is de-
scribed using a Ramberg-Osgood relation according to

= +
E E

3
7

y

y

n

(43)

where σ and ε are the uni-axial stress and strain. Furthermore, a re-
striction is set on the Ramberg-Osgood curve, so the tangent modulus
does not become smaller than a specified value Et min, . The limit stress L
and strain L where the minimum tangent modulus is reached are

= +

= ( )
( )
1

L E E
n

L
y E

E n
n

3
7

7
3

1
1

L y L
y

t min, (44)

These values are illustrated on Fig. 7. For an equivalent uni-axial
stress <eq L then the moduli given by Eq. (41) are to be used and

Fig. 5. Normalized compressive stress G/11 as a function of normalized end-displacement u L/ 0 for different normalized fibre diameters.d L/f
0

Fig. 6. Illustration of deformed geometries from the finite element simulations
with different normalized fibre diameters d L/f

0 .The band orientation is chosen
arbitrarily to be = 15 . The darker zones are areas of high shear straining.
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=
=
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E E
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are to be used for >eq L.
The 0 plies are assumed to behave orthotropic and linear elastic and

can thereby be described using Hooke's Law for an orthotropic material.
The relation between stresses and strains presented in a matrix format is
given by

=

+ +

+ +
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(46)

where,

=
E E E

1 212 21 23 32 31 13 12 23 31

1 2 3 (47)

The moduli of the orthotropic constitutive relation comply to the
symmetries =L Lijkl klij, this entails the relations
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E
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The material parameters for the 0 plies are again taken from Liu
et al. (2014) and Russel et al. (2013) and are given by

= = =
= = = +

E E E
G G G E
68 [GPa] 150 [MPa] 150 [MPa]

60 [MPa] /(1 ),
0 0 0.5

1 2 3

12 13 23 2 23

12 13 23 (49)

The material behaviour is highly anisotropic, which can be seen in
the three order of magnitude difference between the moduli in tension
E1 and shear G12.

5.2. Behaviour of plies for the analytical model

The original analytical model was created for kink band broadening
on the fibre/matrix scale. In the case of UHMWPE fibres, kink bands are
seen to develop on ply level. In the model presented in Skovsgaard and
Jensen (2018c) a matrix volume fraction cm was used due to the large
difference in transverse and shear properties of the constituents. In the
case of UHMWPE fibres it is assumed that the shear and transverse
properties for the two constituents (0 and 90 plies) are the same.

To make a better comparison with the semi-analytical model, then
the yield stress used is

= G
G

G G
y L L
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1 2 (50)

where,
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where L and L is the shear stress and strain where the tangent is equal
to G2 for a curve following a Ramberg-Osgood relation. The quantities
are shown in Fig. 7. The material parameters used for the analytical
kink band model are

= = =
= = =

E G G G
n

150 [MPa] 60 [MPa] /1000
0.3 10 1.8 [MPa]y

1 2 1

(52)

5.3. Results

Two different models that can predict the steady-state broadening
state are used to estimate the response of a composite made from ultra-
high molecular-weight polyethylene fibres. The two models, a semi-
analytical and an analytical model, were initially presented in Jensen
(1999) and Skovsgaard and Jensen (2018c) with normalized material
values. The influence of the band orientation β upon the steady-state
stress ss and fibre rotation ss are investigated for UHMWPE fibres in
the present case study. The results are compared and discussed with
respect to previously conducted experiments.

The lock-up angle ss of the plies within the kink band at steady-
state as function of initial kink band orientation β is presented in Fig. 8.
The conventionally assumed relationship between the lock-up angle
and the band orientation = 2 is also illustrated in the figure. Dif-
ferent arguments are given in the literature on how to determine the
band orientation β at steady-state for a given composite. Moran et al.
(1995) argue that the energetically favourable mode sets the band or-
ientation i.e. the band orientations that will result in the lowest
broadening stress ss. The two models used predict that the lock-up
angle asymptotically approaches the linear relationship = 2 as the
angle β increases. For small values of β the two models deviate from the
linear relation. Similar deviation was seen by Hsu et al. (1999) for a
carbon fibre composite where they used a micro-mechanical finite
element model with fixed band orientations. In the experiments con-
ducted by Attwood et al. (2015), they investigated the compressive
response of UHMWPE fibres. In the experiments a kink angle 36
and a lock up angle of 60ss was observed. The experimental ob-
servation, that < 2 , disagrees with the predictions from the two
models, which can be due to the fact, that the models do not take de-
cohesion into account. Furthermore, it is unclear if the angles were
measured upon loaded or unloaded specimens. There will be a change
of geometry going from a loaded to an unloaded specimens due to

Fig. 7. Shear stress-strain relation for the semi-analytical and analytical model.
The bi-linear curve represents the response used for the analytical model.

Fig. 8. Steady-state lock-up angle ss as a function of initial kink band or-
ientation β. Results are shown for the two models. Additionally, the conven-
tional assumption of fibre lock-up = 2 is included for comparison.
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elasticity and relaxation/creep.
In the experiments performed by Liu et al. (2014) they investigated

the collapse of a composite beam made from UHMWPE fibres. A tran-
sition from a shear dominated failure to a plastic hinge failure was
observed, going from short to long beams. In the short shear dominated
beams, the failure was similar to the formation of a kink band. Even
though the kink failure investigated in the present study is based on
pure compressive loading 11 in the direction if 0 plies, then interesting
similarities can be drawn. The band orientation in the shear dominated
failure was in the range = 0 5 and the fibre rotation was ap-
proximately 20 . These angles are determined based on the figures
presented in Liu et al. (2014). The angles are in good agreement with
the predictions from the two models presented in Fig. 8. These simi-
larities argue that the kink band angle ss at steady-state broadening
can be influenced by the boundary conditions.

The steady-state stress ss
11 applied to the base material as a function

of initial band orientation β is presented in Fig. 9. The results in the
figure argue that the broadening stress lowers with increasing band
orientation. In the study conducted by Jensen (1999) similar results
were predicted using material data for a carbon fibre-reinforced PEEK
composite. The results from the two models presented in Fig. 9 predict a
steady-state stress of 511 - 6 [MPa] for a kink band orientation

= 30 35 . This is in very good agreement with the experimental
results presented in Fig. 10(a) in Attwood et al. (2015). The results from
the analytical and semi-analytical model deviate for small band or-
ientations, which also was observed in Skovsgaard and Jensen (2018c)
for a carbon fibre-reinforced polymer composite.

6. Conclusions

Steady-state kink band broadening has been investigated for fibre
reinforced composites and layered materials. The emphasize was given
to the explanation of a semi-analytical and analytical approach to study
the propagation instability. The models are formulated in a general
framework and the constitutive behaviour for the constituents are
needed as input. Two different composites are used in two case studies.
The case studies both validate and show the usability of the used
models.

In the first case study a carbon fibre-reinforced PEEK composite is
investigated due to its well known constitutive behaviour of the con-
stituents. The effect of the fibre diameter was investigated upon kink
band broadening using a micromechanical finite element model. As the
fibre diameter decreases the bending stiffness reduces, which leads to a
sharp transition from kinked to unkinked area. This sharp transition is
consistent with the assumptions made for the two simplified models.
The results obtained using the FE-model approach the result obtained

using the semi-analytical model with decreasing fibre diameters.
In the second case study the analytical and semi-analytical approach

were used to study kink band broadening in a composite made from
ultra high molecular-weight polyethylene fibres. The study was made
for UHMWPE fibre composites with a 0/90 ply lay-up. Kink band for-
mation and broadening have been observed to develop due to shearing
between different plies instead of shearing between fibres and the
surrounding matrix material. The 0 - and the 90 plies were treated as
two different constituents. The 0 plies were modelled as been linear
elastic and orthotropic in the semi-anlytical model. Furthermore, the
90 plies were given an elastic-plastic behaviour and were assumed to
behave isotropic. The analytical model assumed rigid fibres, which for
the UHMWPE fibres are a valid assumption due to the three order of
magnitude difference in the tension and shear moduli. A simple stress-
strain relationship was used in the analytical model, which results in a
transcendental equation to extract the stress and fibre lock-up angle at
steady-state kink band broadening. The influence of the band orienta-
tion, β on the steady-state stress and lock-up angle was investigated in
the case study. The two models predict steady-state quantities that are
in good agreement with the experimental observations done by
Attwood et al. (2015) and Liu et al. (2014). The results presented and
experimental observations argue that the kink band orientation at
steady-state broadening can be influenced by the boundary conditions.
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Chapter 10

P5
Load transfer at a bolted joint in a laminate made from
ultra-high molecular weight polyethylene fibres

10.1 Motivation

Composites are used in several applications for different purposes. Carbon- and glass fibre-
reinforced composites are often used to achieve structures with high strength and low weight.
Composite plates made from ultra-high molecular weight polyethylene (UHMWPE) fibres
are used in the industries of personnel and vehicle armour (See e.g. the bulletproof west
in Fig. 1.1b). UHMWPE was initially commercialised by the company DSM in the 1970s
under the trade name Dyneema®. Fibres made from UHMWPE possess an incredible
strength up to 3 GPa due to a gel-spinning/hot drawing process. Composite plates made
from UHMWPE fibre laminates are in most cases composed of an equal amount of 0◦ and
90◦ plies. Even though the fibres possess high strength, the composite shear strength is of
the order of 2 MPa i.e. three orders of magnitude difference from the fibre strength. This
mismatch in composite shear and fibre strength and stiffness make the composite plates ideal
for applications where ballistic energy absorption is important. It is challenging to measure
the mechanical properties of laminates made from UHMWPE due to this stiffness mismatch.
Furthermore, it is difficult to transfer load into the composite plates which give rise to special
geometries in experimental set-ups.

The current article regards the transfer of loading at a bolted joint in a laminate made from
UHMWPE fibres. The article is based on the work performed at the Engineering Department



10.2 Method 113

at the University of Cambridge, which is the reason for the sudden change in research field
from kink band formation to the one described in the following article.

10.2 Method

The article is mainly based on experimental work on the load transfer into plates made from
UHMWPE. Specimens including holes were machined. The specimens were clamped in the
bottom and a high steel bolt was placed through the top hole and displaced to measure and
observe the pull-through behaviour.

A displacement controlled screw-driven test machine was used. The displacement was
measured using a laser extensometer, the reaction force was measured by the load cell of
the test machine. Furthermore, the influence of pre-clamping was investigated. The amount
of transverse pre-clamping and the development of the loading was measured through an
in-house made load cell composed of two strain gauges mounted on an aluminium tube. In
the experiments, the specimen dimensions and the initial pre-clamping were varied.

Based on the experimental observations, a simple analytical model based on line-field
theory was developed that adequately catches the main mechanism of load transfer. The
analytical model gives an upper bound solution to the load transfer strength.

10.3 Contribution

The contributions to the article comprise: the development of the experimental set-up; per-
forming the experiments; creating an analytical model; creating a failure map and writing the
article.

10.4 Main findings

One of the main contributions to the field is the development of a failure map for the load
transfer mechanism that distinguish between three failure mechanisms based on the specimen
geometry. The mechanism of load transfer is determined based on the deformation pattern
of the 0◦ and 90◦ plies obtained through a combination of X-ray tomography and optical
images. It can be concluded, that the load transfer strength in UHMWPE composite plates is
dominated by the inter-laminar shear yield strength between the 0◦ and 90◦ plies. Through
the experiments and the analytical model, it can be confirmed that the inter-laminar shear
yield strength depends linearly upon the out-of-plane pressure, similarly to Coulomb’s law of
friction.
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a b s t r a c t 

The mechanism of load transfer within the bolted joint of a laminate sheet made from ultra-high molecu- 

lar weight polyethylene (UHMWPE) plies is investigated both experimentally and by an analytical model. 

The nature of load transfer and the active failure mechanisms are obtained as a function of joint ge- 

ometry and of the lateral clamping force on the faces of the laminate (by pre-tensioning of the bolt). A 

combination of X-ray tomography and optical microscopy reveal that the dominant failure mechanism in 

the clamped joint is shear failure involving splits of the 0 ° plies and sliding at the interface between the 

0 ° and 90 ° plies. A simple analytical model is developed for this shear failure mechanism and, upon not- 

ing the competing failure mechanisms of bearing failure, bolt shear and of tensile failure of the 0 ° plies, 

a failure mechanism map is constructed in terms of the geometry of the bolted joint, for the case of 

no pre-tension of the bolt. The analytical model for shear failure suggests that the enhancement in joint 

strength with increased pre-tensioning of bolt is due to the fact that the shear strength of the UHMWPE 

increases with increasing hydrostatic pressure. 

© 2019 Published by Elsevier Ltd. 

1. Introduction 

Ultra-high molecular weight polyethylene (UHMWPE) fibres 

embedded in a polyurethane matrix have a high specific modu- 

lus and a high specific strength, and are commonly used for per- 

sonnel and vehicle armour. Additionally, UHMWPE fibres are used 

for ropes, nets, footwear, cut resistant gloves and for air cargo 

containers. The company DSM 

1 commercialized fibres made from 

UHMWPE in the late 1970s under the trade name Dyneema®. 

UHMWPE has extremely long molecular chains and, when fibres 

are produced using a gel-spinning/hot drawing process, the fibres 

possess a high strength on the order of 3 GPa, ( Russell et al. 2013) . 

The fibres are coated in a polyurethane (PU) resin solution and 

are then formed into [0/90/0/90] stacks. The PU solvent is re- 

moved during a drying process and the stacks are then hot 

pressed. 

Several studies have been performed to determine the mechan- 

ical properties of UHMWPE fibres and composite plates. In the 

early work of Wilding and Ward (1978) , the creep and recov- 

ery of ultra-high modulus polyethylene fibres were determined. 

Smith and Lemstra (1980) conducted one of the early studies 
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1 DSM, Het Overloon 1, 6411 TE Heerlen, The Netherlands. 

that lead to the choice of fibres used in Dyneema®. They mea- 

sured the effect of draw ratio upon the tensile modulus and 

strength, and concluded that an extension ratio of λ= 32 by hot 

drawing led to a fibre strength of 3.0 GPa and a Young’s mod- 

ulus of 90 GPa. More recently, Govaert and Lemstra (1992) and 

Govaert and Peijs (1995) explored the sensitivity of the tensile re- 

sponse of UHMWPE fibres to temperature and to strain-rate. 

Over the past decade, several authors have developed models 

to predict the ballistic performance of UHMWPE composite plates; 

for example, Grujicic et al. (2009) have developed a continuum- 

damage based constitutive model and implemented it within a 

finite element (FE) code. Iannucci and Pope (2011) have devel- 

oped a model for the impact response of sheets made from high 

performance polymer fibres. Koh et al. (2010) investigated the 

behaviour of UHMWPE yarns by both quasi-static and dynamic 

tests. Additionally, Karthikeyan et al. (2013) performed quasi-static 

and dynamic impact tests on composite plates made from ei- 

ther UHMWPE fibres or carbon fibre-reinforced polymers. They ob- 

served that composites of high indentation strength in the quasi- 

static tests also had a high failure impulse. Russell et al. (2013) 

created a series of test methods for the mechanical performance 

of fibres, yarns and laminates made from UHMWPE. They high- 

lighted the need to develop new geometries for tensile testing 

due to the difficulties in transferring load into laminates made 

from UHMWPE. A practical means of exploring load transfer in the 

https://doi.org/10.1016/j.ijsolstr.2019.08.014 

0020-7683/© 2019 Published by Elsevier Ltd. 

Please cite this article as: S.P.H. Skovsgaard, H.M. Jensen and N.A. Fleck, Load transfer within the bolted joint of a laminate made from 

ultra-high molecular weight polyethylene fibres, International Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2019.08. 

014 

10.5 Article P5 114



2 S.P.H. Skovsgaard, H.M. Jensen and N.A. Fleck / International Journal of Solids and Structures xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: SAS [m5G; August 29, 2019;10:6 ] 

(a) (b)

Fig. 1. (a). Specimen geometry. All dimensions are in mm. (b). Experimental set-up. A three-dimensional view is shown on the left. A sectional view of the top part is shown 

on the right. All dimensions are in mm. 

presence of confinement is to transfer load via bolted joints: this 

motivates the current study. 

We emphasise that it is difficult to measure the mechanical 

properties of laminates made from UHMWPE using conventional 

test methods due to the very low shear strength of both fibres 

and matrix. Consequently, indirect test methods have been de- 

veloped. For example, Attwood et al. (2014) developed an out- 

of-plane compression test to determine the pressure sensitiv- 

ity of UHWMPE laminates. The inter-layer strength was mea- 

sured by Liu et al. (2014) via tests on an end-loaded cantilever 

beam. They extracted the elastic and plastic properties by vary- 

ing the load level and by suitable positioning of the loading 

pin; a FE-model was used to aid interpretation of their results. 

The compressive response of UHWMPE fibres, and composite 

plates made from UHMWPE, was determined experimentally by 

Attwood et al. (2015) and was compared with fibre-kinking the- 

ory. In a recent study, Liu et al. (2018) determined the Mode I and 

II fracture toughness of a UHMWPE laminate. They performed a 

penetration experiment with a sharp-tipped punch and compared 

the measurements with a FE-model based upon a crystal plas- 

ticity model for the ply behaviour. Karthikeyan et al. (2013) per- 

formed both quasi-static loading and dynamic impact tests on end- 

clamped UHMWPE beams. They found that the method of confine- 

ment had a large influence on both the quasi-static and dynamic 

behaviours. 

Several investigations have been performed on the mechan- 

ics of mechanically fastened joints in fibre-reinforced polymers. A 

failure mechanism map for single-lap bolted joints in CFRP lami- 

nates was constructed by Smith et al. (1986) on the basis of a set 

of tests on multidirectional CFRP laminates. Failure was by net- 

section tension, bearing or by shear-out along splits within the 

0 ° plies. A similar methodology is followed in the present study. 

Camanho and Matthews (1997) distinguished five failure modes 

of composite joints: tension, shear, cleavage, bearing and a pull- 

through failure mode. A decade later, Thoppul et al. (2009) made a 

thorough review of the state-of-the-art methods to study the fail- 

ure of composite joints. The focus in these previous studies was on 

glass and carbon fibre-reinforced polymers. In the present study, 

we shall explore the extent to which these failure mechanisms per- 

sist in UHMWPE laminates of high in-plane strength but of very 

low shear strength. 

2. Test method 

We investigated the mechanism of load transfer into a bolted 

joint comprising HB26 Dyneema® [0 °/90 °] plates with and without 

transverse clamping. The plates had equal volume fractions of 0 °
and 90 ° plies and a ply thickness of h = 60 μm. Specimens of over- 

all thickness t = 6.5 mm and ply layup (0 °, 90 °) 54 were machined to 

the geometry as depicted in Fig. 1 (a), with bolt diameter d = 8 mm, 

ligament width w = 6 mm and ligament height b = 2, 4, 6 or 8 mm. 

The lower part of each specimen was clamped between two hard- 

ened steel plates using eleven M4 (Grade 12.9 2 ) steel bolts. The 

need for a large number of small bolts to introduce load into the 

specimen without local joint failure at each of the small bolts 

is traced to the fact that UHMWPE laminates have a high ten- 

sile strength but a low shear strength. Special measures must be 

taken to ensure load introduction into the specimen, as discussed 

by Russell et al. (2013) . The variables b and w for the ligament 

dimensions are used in the present study in order to emphasise 

their role. They are closely related to the overall width of the joint 

W = 2 w + d and to the end-distance from the centre of the bolt to 

the free edge of the plate e = b + d /2. 

An in-plane bearing load F was imposed on each specimen via 

a steel bolt (Grade2 12.9) of diameter d and thick washers (that 

is, clamping rings) of diameter d w 

= 25 mm; this was achieved by 

the loading arrangement of Fig. 1 (b). In addition, the effect of the 

clamping pre-load T 0 in the bolt upon the shear response was in- 

vestigated by suitable torqueing of the bolt. The bolt was displaced 

in the x 1 direction relative to the composite panel using a screw- 

driven test machine with a displacement rate of 1 mm/min. The 

bolt displacement u was measured by a laser extensometer and 

the reaction force F was determined by the load cell of the test 

2 ASTM F568M 
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Fig. 2. Failure map for the choice T 0 = 0. Laminate thickness t / d = 0.8 and ply thick- 

ness h / d = 0.0075. 

machine. The transverse clamping force T was measured via an in- 

house load cell consisting of two 120 Ω strain gauges mounted on 

the opposing walls of an aluminium alloy tube. The strain gauges 

were of dimension 3 mm x 1 mm and of gauge factor 2.15, and a 

Wheatstone quarter bridge circuit was used for strain measure- 

ment. The load cell was of length 20 mm, outer diameter 17 mm 

and wall thickness 1.3 mm. The degree of bending of the load 

cell was determined by the difference in axial strain between the 

gauges and was found to be less than 20% of the mean value 

throughout each test. We conclude that bending of the load cell 

was negligible. The mean response of the gauges was used to cal- 

culate the transverse clamping force T of the specimens, and this 

transverse force was recorded by a data-logger. The clamping pre- 

load T 0 and the evolution of the load T during the test were mea- 

sured and are reported below. 

3. Observed failure modes 

We begin by summarising the observed failure modes. The ac- 

tive failure mode of the bolted joint as a function of joint geom- 

etry and of clamping pre-load was determined by a combination 

of visual observation and X-ray CT microscopy. 3 A failure map was 

created for a bolted joint with zero clamping pre-load, T 0 = 0, as 

shown in Fig. 2 ; the location of the boundaries between failure 

mechanisms are derived in a subsequent section. The competing 

failure mechanisms for T 0 = 0 are shear of the bolt, tensile failure 

of the 0 ° plies at the sides of the hole and shear failure of the 

laminate; these are sketched in the inserts of Fig. 2 . For the case 

of pin loading with clamping washers absent, the shear mode of 

failure was replaced by a bearing mode of failure. Fig. 2 is valid 

for clamped specimens of low d/t ratio. The failure map was con- 

structed for the choice d = 8 mm and t = 6.5 mm. Further work is 

needed in order to determine the failure map for the clamped 

specimen at large d/t to determine whether bearing failure inter- 

venes. This is beyond the scope of the present study. The failure 

map in Fig. 2 is consistent with that of Smith et al. (1986) for 0/90 

3 Nikon X-Tek XT H 225ST, at an operating voltage of 50kV 

Table 1 

Dimensions, confinement and observed failure modes. 

t, mm d, mm b, mm w, mm Bolt pre-load T 0 , kN Failure mode 

12 6 15 7 free Bolt shear 

6.5 6 40 3 0 Tension 

6.5 6 4 25 0 Buckling 

12 8 4 6 0 Shear 

12 8 4 6 free Shear 

6.5 8 4 6 0 Shear 

6.5 8 4 6 0.84 Shear 

6.5 8 4 6 2.89 Shear 

6.5 8 4 6 3.67 Shear 

6.5 8 4 6 4.75 Shear 

6.5 8 4 6 6.59 Shear 

6.5 8 4 6 7.67 Shear 

6.5 8 4 6 8.92 Shear 

6.5 8 2 6 free Shear 

6.5 8 4 6 free Shear 

6.5 8 6 6 free Shear 

6.5 8 8 6 free Shear 

6.5 8 2 6 0 Shear 

6.5 8 4 6 0 Shear 

6.5 8 6 6 0 Shear 

6.5 8 8 6 0 Shear 

6.5 8 2 6 8.92 Shear 

6.5 8 4 6 8.92 Shear 

6.5 8 6 6 8.92 Shear 

6.5 8 8 6 8.92 Shear 

(a)

(b)

Fig. 3. The load transfer mechanism for shear failure of the bolted joint, with T 0 ≥
0. D denotes delamination between the [0 °/90 °] plies. 

CFRP laminates: they also found that shear failure dominates the 

map for low values of w/d and b/d . 

An additional failure mechanism was observed in the present 

study, that of a transverse plate-buckling mode for plates of large 

ligament width w , and this is detailed below. Table 1 gives an 

overview of the dimensions, confinement and the corresponding 

failure modes observed in the experiments. 

3.1. Shear failure 

The shear mode of failure occurs for the clamped case, T 0 ≥
0, in specimens of small ligament width and height. Interrupted 

tests and X-ray CT observations were performed in order to reveal 

the deformation within the 0 ° plies, 90 o plies and the delamina- 

tion between plies. An idealised view of this deformation mode is 

sketched in Fig. 3 ; the accompanying interrupted test (and CT im- 

ages) are reported in Fig. 4 for the clamped case with T 0 = 0, and 
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(c)

(a)

(b)

Fig. 4. (a). Axial force F versus axial displacement u for the choice T 0 = 0 and the unconstrained case (Free). For both tests, b = 4 mm, w = 6 mm and t = 12 mm. (b). CT 

images of selected 90 ° or 0 ° plies near the mid-plane of the specimen, for the choice T 0 = 0. Plan view along the x 3 direction of Fig. 1 . (c). Transverse views of the shear 

failure of the plies above the pin for the clamped case with T 0 = 0, and for the pin-loaded case, labelled free. 

Please cite this article as: S.P.H. Skovsgaard, H.M. Jensen and N.A. Fleck, Load transfer within the bolted joint of a laminate made from 

ultra-high molecular weight polyethylene fibres, International Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2019.08. 

014 

10.5 Article P5 117



S.P.H. Skovsgaard, H.M. Jensen and N.A. Fleck / International Journal of Solids and Structures xxx (xxxx) xxx 5 

ARTICLE IN PRESS 

JID: SAS [m5G; August 29, 2019;10:6 ] 

of geometry b = 4 mm, w = 6 mm and t = 12 mm. The initial unde- 

formed state of a representative 0 ° ply and 90 ° ply is sketched in 

Fig. 3 (a) and is labelled as (1) in the CT images of Fig 4 (b) and also 

in the CT image of Fig. 4 (c). The specimen was loaded to peak load 

and then fully unloaded, to obtain the point (2) on the force F ver- 

sus displacement u curve of the joint in Fig. 4 (a); CT scans of rep- 

resentative 0 ° plies and 90 o plies are given in Fig. 4 (b) (again la- 

belled (2) ). Reloading and subsequent unloading brought the spec- 

imen to state (3) as marked in Fig. 3 , with the observed deforma- 

tion state given in Fig. 4 . The bolt washers prevent thickening of 

the specimen adjacent to the bolt, and shear failure of the 0 ° plies 

occurs. This is clear from the transverse section of the specimen in 

Fig. 4 (c). 

A simple kinematic representation of this failure mode is given 

in Fig. 3 (b), and is described as follows. A portion B of 0 ° ply ma- 

terial translates by the same displacement u as that of the loading 

bolt. The remainder of the ply (labelled portion A ) remains station- 

ary, and so the collapse mechanism of the 0 ° ply comprises slid- 

ing by a displacement u along two splits (located at the boundary 

between portions A and B ). The deformation state of the 90 ° ply 

is slightly more complex. A portion C is undeformed, whereas the 

portion E of the 90 ° ply remains bonded to the adjacent portion B 

in the 0 ° ply, and is thereby displaced by the displacement u . The 

portion F of the 90 ° ply contains the same fibres as portion E , and 

undergoes in-plane shear as sketched, and as shown in Fig. 4 (b). 

The portion F delaminates and slides with respect to the adjacent 

portion A of the 0 ° ply, thereby creating a delamination patch D . 

Now consider the case of pin loading with the clamping wash- 

ers absent, for the same geometry of b = 4 mm, w = 6 mm and 

t = 12 mm. The force F versus displacement u curve of the joint 

is included in Fig. 4 (a), and labelled ‘ free’ . A bearing failure occurs 

for this case of unconstrained out-of-plane expansion of the lam- 

inate, see the cross-section of state (3) in Fig. 4 (c). The portion B 

of 0 ° plies and portion E of 90 ° plies (as defined in Fig. 3 ) un- 

dergo out-of-plane microbuckling with intermittent delamination, 

see Fig. 4 (c). 

3.2. Competing collapse modes for the clamped case, T 0 ≥ 0 

An alternative failure mode is tensile failure of the 0 ° plies ad- 

jacent to the loaded bolt. This has been reported previously by 

Attwood et al. (2014) . Bolt shear intervenes for a joint of high as- 

pect ratio b / d and w / d . A more surprising mode that is observed 

in the present study is out-of-plane plate-buckling for large w / d , 

as shown in Fig. 5 . The buckling failure mode dictates the peak 

load and occurs shortly before the load maximum, see the dashed 

line in Fig. 7 (b). It is conjectured that this is due to the build-up 

of a large tensile stress in the 90 ° plies above the hole leading to 

Fig. 5. Optical image of specimen of width w = 25 mm, b = 4 mm, t = 6.5 mm, show- 

ing failure by buckling of plate beneath the pin. 

compression stress beneath the hole during the later stages of bolt 

pull-out in the shear failure mode. 

4. Sensitivity of joint strength to geometry and clamping 

4.1. Effect of initial clamping 

The effect of initial clamping pre-load T 0 upon the axial force 

F versus bolt displacement u is given in Fig. 6 (a) for the choice 

b = 4 mm, w = 6 mm and t = 6.5 mm. This choice of geometry en- 

sures that the shear mode of failure is active. The evolution of 

transverse clamping force T in each test is summarised in Fig. 6 (b). 

The main features are as follows. Delamination between the 0 ° and 

90 ° plies, as labelled zone D of Fig. 3 (b), occurs at a very low load 

of below 2 kN, and the subsequent response is linear up to the 

peak load, labelled F m 

. The magnitude F m 

increases (linearly) with 

the pre-load T 0 as shown in Fig. 6 (c). This is explained by the pres- 

sure dependence of UHMWPE fibre composites, as discussed by 

Attwood et al. (2014) . The clamping force T also increases to a peak 

value of T m 

with increasing bolt displacement u . The clamping 

force resists out-of-plane swelling of the laminate, and for com- 

pleteness Fig. 6 (c) contains a plot of F m 

versus T m 

: again the rela- 

tionship is linear. We note in passing that the peak load F m 

occurs 

at the same value of bolt displacement, and the shift in clamp- 

ing force ( T m 

- T 0 ) is constant for all specimens of a given geometry. 

This is consistent with the notion that the kinematics of the shear 

failure is insensitive to the level of clamping force. 

4.2. Effect of ligament height 

The effect of ligament height b upon the bolt force F versus bolt 

displacement u characteristic is summarised in Fig. 7 (a) for 4 val- 

ues of b = 2, 4, 6 and 8 mm, w = 6 mm, t = 6.5 mm and T 0 = 0. In all 

cases, shear failure occurred. The associated evolution of clamping 

force T during each test is given in Fig. 7 (b). Out-of-plane swelling 

of the laminate leads to an increase in clamping force with increas- 

ing bolt displacement u , and a peak in the clamping force is at- 

tained at the same instant that F attains its peak value of F m 

. The 

peak load F m 

increases with increasing b , as emphasised by the 

plot of F m 

versus b in Fig. 7 (c). For completeness, this figure also 

contains the sensitivity of F m 

to b for T 0 = 8.9 kN, for the case of 

a freely supported bolt (absent clamping) for which bearing fail- 

ure occurs; it is clear that F m 

also increases with the degree of 

clamping. Likewise, the peak value T m 

increases with increasing 

degree of clamping, and increases in an almost linear manner with 

increasing b , see Fig. 7 (d). 

5. Analytical model for shear failure 

An analytical model is now proposed for the observed shear 

failure of the bolted joint. The model assumes a collapse mecha- 

nism and thereby gives an upper bound solution for the shear fail- 

ure force. First, a relation between the axial force as function of 

axial bolt displacement is derived for the case of relative sliding of 

the interface between the 0 ° and 90 ° plies. Second, the additional 

force due to in-plane shearing is derived, and it is shown that this 

dissipation is sufficiently small for the increase in shear force to be 

negligible. 

5.1. Plastic dissipation by inter-laminar shearing 

The portion F delaminates and slides with respect to the por- 

tion A of the 0 ° ply, thereby creating a delamination patch D, see 

Fig. 3 (b). The delamination patch D is divided into two zones D1 

and D2, see Fig. 8 . The axial bolt displacement u is related to the 
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Fig. 6. (a). Axial force F versus axial displacement u . (b). Transverse force T versus axial displacement u . (c). Maximum axial force F m versus initial transverse force T 0 and 

maximum value T m . Dashed lines are best fits to the data. Throughout, specimen ligament height b = 4 mm, width w = 6 mm and laminate thickness t = 6.5 mm. 

rotation φ of the 90 ° plies by 

u = w sin φ (1) 

and the fibres are taken to be inextensible. The delamination 

patches D1 and D2 are of area A 1 and A 2 , respectively, where 

A 1 = w cos φ

(
b + 

d 

2 

− u 

)

A 2 = 

1 

2 

w cos φ u 

(2) 

The total number of ply interfaces n I , over which inter-laminar 

sliding occurs, is 

n I = 

t 

h 

− 1 (3) 

where t is the specimen thickness and h is the ply thickness. Now, 

the principle of virtual work requires that 

F δu = 2 n I τy 

(
A 1 

δu 

2 

+ A 2 
δu 

3 

)
(4) 

where δu is a virtual displacement. Here, a simple rigid-plastic 

constitutive relation is assumed such that τ y is the inter-laminar 

shear yield strength. The factors of 1/2 and 1/3 arise from the fact 

that the assumed displacement field varies across the width of the 

delamination patch. Upon making use of Eqs. (1) and (2) , the vir- 

tual work statement (4) reduces to 

F = n I τy w cos φ

(
b + 

d 

2 

− 2 

3 

w sin φ

)
(5) 
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Fig. 7. (a). Axial force F versus axial displacement u for the choice T 0 = 0. (b). Transverse force T versus axial displacement u for the choice T 0 = 0. (c). Maximum axial force 

F m / w versus ligament height b . Solid lines show predictions by the analytical model. (d). Maximum transverse force T m / w versus ligament height b . Dashed lines show best 

fit to the data. Throughout, specimen w = 6 mm, thickness t = 6.5 mm besides an experiment showing buckling with w = 25 mm (dashed line). 

Fig. 8. Sketch of the geometry for analytical model. 

with peak value F pc for the plastic collapse mode achieved at φ = 

0 , such that 

F pc = n I τy w 

(
b + 

d 

2 

)
(6) 

5.2. Additional plastic dissipation due to in-plane shearing 

The additional force �F due to in-plane shearing is now de- 

duced. The portion F in Fig. 3 undergoes in-plane shearing. The 

portion F has an in-plane area of 

A F = 2 

(
b + 

d 

2 

)
w cos φ (7) 

The virtual displacement δu is related to the virtual rotation δφ
by 

δu = w cos φ δφ (8) 

Using the displacement-rotation relation, Eq. (1) . During a vir- 

tual displacement, the area A F shears an amount δφ. Then, the 
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additional term in the principle of virtual work for in-plane shear- 

ing is of the form 

�F δu = A F h δφ τy n 90 (9) 

where n 90 is the number of 90 ° plies. Again, a simple rigid- 

plastic constitutive relation is used, where the in-plane shear yield 

strength τ y is identical to the inter-laminar yield strength. The 

relation (9) is simplified via Eqs. (7) and (8) to read 

�F = 2 

(
b + 

d 

2 

)
τy n 90 h (10) 

Upon normalising the additional axial force �F due to in-plane 

shearing by the peak load Eq. (6) due to inter-laminar shearing we 

obtain 

�F 

F pc 
= 

2 

(
b + 

d 
2 

)
(

b + 

d 
2 

) n 90 

n I 

h 

w 

(11) 

Now, the number of interfaces n I is twice the number of 90 °
plies n 90 . Consequently, the additional force arriving from in-plane 

shearing scales as 

�F 

F pc 
= 

h 

w 

(12) 

Recall that the ply thickness h equals 60 μm and the ligament 

width w equals 6 mm for the majority of the test specimens. Thus, 

in-plane shearing will increase the axial force by only 1% and this 

is deemed negligible. 

6. Comparison of shear failure prediction with observation 

The analytical model of shear failure is now compared with 

the experimental results by treating the inter-laminar shear 

strength τ y as a free parameter that depends upon the degree 

of clamping. The predictions of Eq. (6) are compared with the 

measured values of maximum force F m 

in Fig. 7 (c), assuming 

that τ y = 0.95 MPa for clamping-free, τ y = 2.2 MPa for T 0 = 0 and 

τ y = 2.5 MPa for T 0 = 8.9 kN. Recall that the measured inter-laminar 

shear strength is τ y = 2 MPa as obtained by Liu et al. (2014) and 

Attwood et al. (2014) ; they used a double-notch shear test. The 

agreement is satisfactory. 

The out-of-plane clamping pressure increases the inter-laminar 

yield strength as follows. Attwood et al. (2014) studied the out-of- 

plane compressive response of UHMWPE laminates. They observed 

a pressure sensitivity of the form 

τy = τ0 + μp (13) 

where τ y is the shear yield strength, τ 0 is the strength in the 

absence of pressure, p is the pressure and μ is a non-negative 

pressure sensitivity coefficient. Attwood et al. (2014) found that 

a coefficient μ= 0.05 gave good agreement with experimental 

results. The increased inter-laminar yield strength as observed 

in the current study can be explained by the pressure sensitiv- 

ity of UHMWPE. To illustrate this, consider a specimen of liga- 

ment width w = 6 mm, ligament height b = 8 mm and bolt diame- 

ter d = 8 mm. An initial pre-load of T 0 = 8.9 kN results in an average 

pressure p = 43 MPa beneath the clamping ring. Upon substituting 

an initial yield strength, τ 0 = 0.95 MPa, a pressure sensitivity coef- 

ficient μ= 0.05 and p = 43 MPa into Eq. (13) the predicted yield 

strength is τ y = 3.1 MPa. This is in reasonable agreement with the 

inferred value of τ y = 2.5 MPa. 

7. Failure mechanism map 

The background to the construction of the failure map of 

Fig. 2 is now given. We consider each mechanism in turn. Intro- 

duce the non-dimensional geometric parameters 

t̄ = 

t 

d 
b̄ = 

b 

d 
w̄ = 

w 

d 
(14) 

along with the non-dimensional force on the bolt 

F̄ = 

F 

d t τy 
(15) 

where d is the bolt diameter, t the plate thickness and τ y is the 

inter-laminar shear yield strength. 

7.1. Shear failure 

The load maximum for the shear failure is given by Eq. (6) us- 

ing the simple analytical model. The non-dimensional force at 

shear failure (plastic collapse) is 

F̄ pc = 

F pc 

d t τy 
= n I w̄ 

(
b̄ + 

1 

2 

)
1 

t̄ 
(16) 

7.2. Bolt shear 

The bolt carries a transverse shear force V = F /2 at two loca- 

tions. Assume that the bolt shears plastically when the shear stress 

on the section attains the shear strength τ bf . High strength bolts 

are almost elastic, ideally plastic in their response, with a tensile 

strength of σ bf = 1200 MPa, and a shear strength τ bf = 1200/ 
√ 

3 

MPa = 693 MPa by the von Mises yield criterion. Consequently, bolt 

shear occurs at a load 

F b f = 

π

2 

d 2 τb f (17) 

and, upon introducing the non-dimensionalisation we obtain 

F̄ b f = 

F b f 

d t τy 
= 

π

2 

τb f 

τy 

1 

t̄ 
(18) 

7.3. Tensile failure of the laminate 

Tensile failure of the fibres within the 0 ° plies occurs at an axial 

stress of σ f = 30 0 0 MPa within the fibres. Recall that the strength 

of the composite normal to the fibre direction is three orders of 

magnitude lower than in the direction of the fibres and is thereby 

negligible. The strength of the composite in tension is 

σt = 

1 

2 

σ f c f (19) 

where c f = 0.83 is the volume fraction of fibres ( Liu et al. (2014) ). 

A factor of 1/2 is introduced due to the equal volume fraction of 

0 ° and 90 ° plies, and the fact that the 90 ° plies provide a negligi- 

ble contribution to the strength. The smallest cross sectional area 

normal to the force F is 2 w t , see Fig. 1 . Consequently, the force at 

tensile failure is 

F t = 2 w t σt (20) 

and so the non-dimensional force F̄ 0 at tension failure is 

F̄ t = 

F t 

d t τy 
= 2 

σt 

τy 
w̄ (21) 
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7.4. Construction of failure map 

A failure map for T 0 = 0 is constructed with geometric axes b / d 

and w / d in order to identify regimes of dominance of the compet- 

ing failure modes, see Fig. 2 . The active mode has the lowest fail- 

ure load from the relations Eqs. (16) , (18) and (21) . The boundaries 

are located by equating the failure load of competing mechanisms. 

The precise boundary between shear failure and out-of-plane plate 

buckling is unknown; consequently, the boundary is not drawn in 

the failure map. 

8. Concluding remarks 

The present study highlights the dominance of the shear mode 

of joint failure in a bolted joint made from a UHMWPE laminate, 

and subjected to out-of-plane clamping by the bolt. The 0 ° plies 

split such that the central portion of 0 ° plies (adjacent to the bolt) 

is sheared-out from the joint by movement of the bolt. The 90 °
plies that are stacked with the central portion of 0 ° plies are also 

dragged-out of the joint by the bolt displacement. This leads to 

tensile pull-through of the 90 ° plies and to delamination of the 0 °
plies. 

The strength at shear failure is increased substantially by in- 

creasing clamping force, and this is explained in terms of the pres- 

sure sensitivity of the shear strength of the UHMWPE compos- 

ite. A simple analytical model highlights the importance of slip 

between the plies in providing the resistance to a shear failure. 

Also, a failure map is constructed and provides useful guidelines 

for joint strength as a function of geometry. In order to predict 

the plate buckling mode at large ligament width w , a 3D finite el- 

ement model would be required and this is beyond the scope of 

the present study. 
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Chapter 11

C1
Micromechanics of kink band formation in open-hole fibre
composites under compressive loading

11.1 Motivation

One of the main methodologies to transfer load between two structures is through bolted
joints. Structural applications made in fibre-reinforced composites may include open-holes
for different reasons. Experiments suggest that kink band formation is the dominant failure
mechanism for open hole fibre composites with a soft and ductile resin material. It has been
observed that fibre kinking is initiated from the hole edge and is followed by other failure
mechanisms e.g. delamination and fibre breakage.

The current publication deals with the investigation of compressive failure of open-hole
fibre composites by kink band formation. Despite the many contributions to the problem,
different aspects of the phenomenon still remain unknown. The original source of the
publication is: (Tojaga et al., 2018).

11.2 Method

The investigation of kink band formation is challenging since the simulations must include
large deformations and rotations together with non-linear elastic-plastic material behaviour.
Furthermore, often arc-length solvers are required since the equilibrium path includes snap-
back and snap-through behaviour.



11.3 Contribution 124

The finite element software Abaqus/CAE 6.14 together with a user subroutine (UMAT)
written in Fortran 77 are used to solve the problem. The constitutive model by Christoffersen
and Jensen (1996) is implemented in the UMAT. The model by Christoffersen and Jensen
(1996) is described in Section 3.2. Two versions of the constitutive model are implemented:
a version with perfect bonding and one with no bonding between the fibre and matrix con-
stituent. Material parameters from Kyriakides et al. (1995) are used in the study.

11.3 Contribution

The contributions to the publication comprise: changes made on a user subroutine initially
created by Sørensen et al. (2009) to have better convergence. Further contributions include
participations in supervision of Vedad Tojaga, discussion of the article content and proofread-
ing.

11.4 Main findings

Illustrations of the different fields (e.g. stress and strain fields) prior to the peak stress are
presented. These graphical illustrations give valuable inside to the initiation of kink bands.
The influence of fibre orientations relative to the loading direction is investigated for an
open-hole unidirectional fibre composite. Furthermore, the influence of perfect fibre/matrix
bonding and no bonding are investigated where the realistic compressive strength lies between
the two boundaries.

One of the main strengths behind the current publication, compared to previous studies on
open-hole compression of composites, is the constitutive relation that includes information
about the current stress and strain state for the constituents during loading.



Contents lists available at ScienceDirect

Composites Part B

journal homepage: www.elsevier.com/locate/compositesb

Micromechanics of kink band formation in open-hole fibre composites under
compressive loading

Vedad Tojaga∗, Simon P.H. Skovsgaard, Henrik Myhre Jensen
Department of Engineering, Aarhus University, Inge Lehmanns Gade 10, 8000 Aarhus C, Denmark

A R T I C L E I N F O

Keywords:
Laminates
Microstructures
Plastic deformation
Micro-mechanics

A B S T R A C T

The micromechanics of kink band formation in open-hole fibre composites under compressive loading is de-
scribed. The objective being the development of a methodology for designing of structural components with
open-holes. Our results explain why failure by kink band formation propagates from the edges of an open-hole in
a direction almost perpendicular to the loading direction and why the 0 plies govern the compressive failure of
an open-hole laminate. The proposed design methodology accounts for the microstructure, including the fibre/
matrix bonding, and the nonlinear behaviour of the constituents, enabling it to prevent local failure at the hole
edges, or global failure, by kink banding of a laminate containing stress concentrations.

1. Introduction

The compressive strength of a unidirectional fibre composite is often
less than 60 % of its tensile strength; hence, in many cases, the com-
pressive strength dictates the design. An important mechanism of
compressive failure in fibre composites is a localized imperfection-
sensitive material instability known as plastic microbuckling, leading to
the formation of one or more kink bands by localization of plastic de-
formation. Both terminologies, i.e. plastic microbuckling and kink band
formation, are adopted in this paper. Manufacturing and curing of a
composite inevitably introduce fibre misalignments. The matrix pro-
vides lateral stability to the fibres and prevents, or postpones, the oc-
currence of plastic microbuckling, inducing a complex strain field in the
matrix. After a small amount of fibre rotation under a remote com-
pressive stress, geometric softening associated with the fibre rotation
outweighs the plastic strain hardening of the matrix, and a microbuckle
nucleates and then propagates through the composite. The remote
compressive stress, at which the composite fails by the formation of
kink bands, i.e. the critical stress, is sensitive to fibre misalignments
since the load carrying capacity of the material is lost locally. The latter
description emphasizes the importance of accounting for the nonlinear
behaviour of the constituents and the microstructure of a composite
when investigating plastic microbuckling. In the early work on kink
band formation, Argon [1] and Budiansky [2] identified that fibre
misalignments and plastic shear deformation in the matrix govern the
critical stress. Christoffersen and Jensen [3] developed a homogenized
constitutive model accounting for the microstructure of a unidirectional
fibre composite and allowing all cases of time-independent elastic-

plastic behaviour of the constituents, making it suitable for analysing
plastic microbuckling. Sørensen et al. [4] implemented the model [3] as
a user subroutine (UMAT) into the finite element program ABAQUS.
Jensen [5] extended the latter formulation to account for full decohe-
sion between the matrix and the fibres. The models in Refs. [3] and [5]
do not take the fibre bending rigidity into account; however, the fibre
bending rigidity decreases with the fibre diameter and in most real-life
applications, fibre composites contain many thin fibres embedded in a
matrix. A constitutive model for imperfectly bonded fibre-reinforced
polymer composites by Skovsgaard and Jensen [6] describes the tran-
sition between these two models. Recently, Skovsgaard and Jensen [7]
developed a three-dimensional constitutive model for elastic-plastic
behaviour of fibre-reinforced composites inspired by the two-dimen-
sional model [3]. Depending on the given structural component and
how well controlled the fibre misalignments are, due to manufacturing,
the critical stress may not be suitable for engineering applications.
Beyond the critical stress, in the post-critical region, the kink band may
propagate (under steady-state conditions) through the material at a
constant stress known as the steady-state kinking stress. At steady-state,
the fibres in the kink band stop rotating, i.e. lock-up, forcing the kink
band to spread into the base material. A semi-analytical model by
Jensen [8] predicts the steady-state kinking stress. Recently, Skovs-
gaard and Jensen [9] developed an analytical model for steady-state
kinking. Liu et al. [10] suggest that, for unidirectional fibre composites
containing stress concentrations, e.g. holes and notches, a lower bound
for the critical stress can be estimated by the steady-state kinking stress.
Structural applications of fibre composites may include components
with open-holes. The ability to predict compressive failure of open-hole
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fibre composites is a problem of considerable importance to the Aero-
space Engineering community. It provides useful information about
how a composite performs in an open-hole application and how re-
sistant it is to defects from fabrication or in-service. Open-hole com-
pression tests on fibre composites suggest that the dominant mechanism
of compressive failure is plastic microbuckling [11–20], provided that
the matrix displays ductile material behaviour. Plastic microbuckling
starts progressively from the edges of a hole and propagates in a di-
rection normal to the loading direction. Modelling of compressive
failure interactions in an open-hole T300/914 laminate using a homo-
genized description of the material separated by interfaces reveals, in
accordance with the latter experimental observations, that plastic mi-
crobuckling starts progressively from the edges of a hole [22]. Experi-
mental studies by Soutis and Fleck [13], Soutis et al. [14–16] and Ahn
and Waas [28] suggest that plastic microbuckling, in the 0° plies,
governs the compressive failure of anopen-hole carbon/epoxy laminate.

Whitney and Nuismer [23] developed an average stress and a point
stress failure criterion for notched laminates. The point stress failure
criterion predicts failure when the stress at a distance d0 away from the
hole reaches the unnotched strength. The average stress failure cri-
terion predicts failure when the average stress over a distance a0
reaches the unnotched strength. The distance parameters a0 and d0 vary
with hole size and stacking sequence among other factors [24]. After
observing that plastic microbuckling, in the 0° plies, governs the com-
pressive failure of an open-hole laminate, Soutis et al. [15] developed a
cohesive zone model for predicting the open-hole compression strength.
In the cohesive zone model, plastic microbuckling initiates when a re-
mote compressive stress multiplied by a stress concentration factor
reaches the unnotched strength. A crack replaces the microbuckled
zone and when the crack obtains a critical length such that the remote
compressive stress attains a maximum value, catastrophic failure takes
place. For the simplicity of application, many textbooks adopt the latter
failure criteria; however, these criteria depend on an accurate mea-
surement of unnotched strength and compressive fracture toughness,
which highly depend on the microstructure. Ahn and Waas [17] defined
a global-local approach in which a micro-region around a hole is ana-
lysed. Boundary conditions to be applied on the micro-region are ob-
tained from a global homogenous model. Extensions of this method are
validated and used by airframe manufacturers to predict the open-hole
compression strength of laminates [25-26]. These studies can capture
kink band formation, which is the dominant failure mechanism in
compression, and damage in the off-axis plies within a laminate.

Despite the many contributions, the micromechanics associated
with kink band formation in open-hole fibre composites under com-
pressive loading remains less understood. This paper aims to describe
the micromechanics with the objective of developing a design metho-
dology, accounting for the nonlinear behaviour of the constituents and
the microstructure of the composite, for designing of structural com-
ponents with open-holes. It is inspired by [27]. To accomplish the latter
objective, the constitutive models in Refs. [3] and [5] are applied using
finite element analysis. The semi-analytical model in Ref. [8] enables a
verification of the findings in Ref. [10].

2. Constitutive relations

The constitutive relation

=t C v˙ij ijkl l k, (1)

relates the nominal stress rates ṫij to the velocity gradients vi j, through
the nominal moduli Cijkl. This paper adopts the index notation, the
summation convention and Cartesian coordinates. Latin indices, e.g.
i j k l, , , , take values 1,2,3 and Greek indices, e.g. α β η γ, , , , take values
1,2. Neglecting the incremental volume change of a material, i.e.=v 0k k, , the relation between the nominal moduli Cijkl and the in-
stantaneous moduli Lijkl is= + − − −C L σ δ σ δ σ δ σ δijkl ijkl ik jl il jk lj ik kj il

1
2

1
2

1
2

1
2 (2)

where the instantaneous moduli Lijkl relate the Jaumann rate of the
Cauchy stresses σ̂ij to the strain rates ε̇ij, i.e.= = +σ L ε ε v vˆ ˙ , ˙ ( )ij ijkl kl ij i j j i

1
2 , , (3)

and consequently, they satisfy the minor symmetries, i.e.= =L L Lijkl ijlk jikl (4)

The relation between the Jaumann rate of the Cauchy stresses σ̂ij
and the nominal stress rates ṫij is= − − − + = −σ t ω σ ω σ σ v σ v ω v vˆ ˙ , ( )ij ij jk ik ik kj ij k k jk i k ij i j j i, ,

1
2 , , (5)

where ωij denote the spin.

3. Constitutive models

For convenience, the notation in Section 2 is adopted in the matrix
form=t C v˙αc αβ

c
β
c
, (6)

equivalent to Eq. (1), where

= ⎡⎣⎢ ⎤⎦⎥ = ⎡⎣⎢ ⎤⎦⎥ = ⎡⎣⎢ ⎤⎦⎥v t tv
v

t
t

t
t

, ˙
˙
˙ , ˙

˙
˙

c
c

c
c

c

c
c

c

c
1

2
1

11

12
2

21

22 (7)

from which it follows that

= ⎡⎣⎢ ⎤⎦⎥ = ⎡⎣⎢ ⎤⎦⎥= ⎡⎣⎢ ⎤⎦⎥ = ⎡⎣⎢ ⎤⎦⎥
C C

C C

C C
C C

C C
C C

C C
C C

C C
C C

, ,

,

c
c c

c c
c

c c

c c

c
c c

c c
c

c c

c c

11
1111 1112

1211 1212
12

1121 1122

1221 1222

21
2111 2112

2211 2212
22

2121 2122

2221 2222 (8)

Superscript c refers to one of the constituents, i.e. fibre f or matrix
m. The x1- and x2- axes are assumed to be parallel with and normal to
the fibres prior to deformation, respectively. This section presents the
constitutive models by Christoffersen and Jensen [3] and Jensen [5],
assuming perfect fibre/matrix bonding and no fibre/matrix bonding,
respectively, in the form=t C v˙α αβ β, (9)

equivalent to Eq. (6). When superscripts are omitted, the quantities
refer to the composite.

Fig. 1. Incremental deformation in a RVE of a uni-
directional fibre composite with perfect fibre/matrix
bonding.
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3.1. Constitutive model with perfect fibre/matrix bonding

Assuming displacement continuity in a representative volume ele-
ment (RVE) of a unidirectional fibre composite (Fig. 1), i.e.= =v v vf m

,1 ,1 ,1 (10)+ =v v vc cf f m m
,2 ,2 ,2 (11)

where the sum of the fibre and matrix volume fractions is unity, i.e.+ =c c 1f m , and overall equilibrium, i.e.+ =t t tc c˙ ˙ ˙f f m m
1 1 1 (12)= =t t t˙ ˙ ˙f m

2 2 2 (13)

By combination of Eqs. (6), (10)–(13), one obtains= + − +−v C C C C v C vc c c( ) ( ( ) )f m f f m m m f m
,2 22 22

1
21 21 ,1 22 ,2 (14)= + − +−v C C C C v C vc c c( ) ( ( ) )m m f f m f f m f

,2 22 22
1

21 21 ,1 22 ,2 (15)

and the composite moduli= + − − + −−C C C C C C C C Cc c c c c c( )( ) ( )αβ
f

αβ
f m

αβ
m f m

α
f

αβ
m m f f m

β
f

β
m

2 22 22
1

2 2

(16)

3.2. Constitutive model with no fibre/matrix bonding

In addition to Eqs. (10) and (12), assuming displacement continuity
between the matrix and the composite (Fig. 2), i.e.=v vm

,2 ,2 (17)

and that the tractions normal to the fibres are not transmitted to the
fibres, i.e.=ṫ 0f

2 (18)

such that the overall tractions ṫ2, acting on the composite, are an
average of the local tractions in the matrix ṫ m

2 , i.e.=t tc˙ ˙m m
2 2 (19)

we obtain= − −v C C v( )f f f
,2 22

1
21 ,1 (20)

and the composite moduli= + − −C C C C C Cc c c ( )αβ
f

αβ
f m

αβ
m f

α
f f

β
f

2 22
1

2 (21)

4. Implementation

Sørensen et al. [4] implemented the constitutive model in
Subsection 3.1 as a user subroutine (UMAT) into ABAQUS. The current
implementation of the constitutive models in Section 3, in which a
superscript refers to the constituents and no superscript refers to the
composite, contains the following steps:

1) Load C Cc σ L σ, , , , ,f
ij
c

ijkl
c

αβ
c

αβ αβ from previous time step
2) Calculate vα β, from= − −v c c F F F( ˙ ˙ )α β αγ ζη γη αζ ζβ,

1 0 0 1
(22)

where Fαβ
1 and Fαβ

0 denote the deformation gradients at the end and in
the beginning of the increment, respectively, and ċαβ denotes the in-
cremental directional cosines. A rigid body rotation contributes to the

Fig. 2. Incremental deformation in a RVE of a uni-
directional fibre composite with no fibre/matrix
bonding.

Fig. 3. Finite element mesh, with 1600 fully integrated biquadratic elements in
plane strain and ratio =R W/ 0,1.

Fig. 4. Initial fibre orientation α.

Table 1
AS4/PEEK material parameters.

σ MPa[ ]y
f E MPa[ ]f ν f n f c f σ MPa[ ]y

m E MPa[ ]m νm nm

4.140 214.000 0,263 1,9 0,6 82,1 6.140 0,356 4

Fig. 5. Kink band geometry, with an inclination angle β. The fibres in the kink
band are rotated at an angle ϕ.
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components of the velocity gradient v1,1 and v2,2 unless Fαβ
1 and Fαβ

0 refer
to the same frame of reference; hence, the first expression in the par-
enthesis refers to the frame of reference in the beginning of the incre-
ment.

3) Calculate vα β
c
, from Eqs. (10), (14) and (15) or (10), (17), (20)

4) Update σαβ from Eq. (5)
5) Update σij

c from Eq. (3)
6) Update c f from Ref. [8]= −c c c v v˙ ( )f f m f m

2,2 2,2 (23)

7) Update Lijkl
c from the J2 flow theory of plasticity with isotropic

hardening, i.e.

= ⎡⎣ + + − ⎤⎦+ − −− −L δ δ δ δ δ δ β( )ijkl
c E

ν ik jl il jk
ν

ν ij kl
c E E

E E ν

s s

σ1
1
2 1 2

3
2

/ 1
/ (1 2 ) / 3 ( )

c
c

c
c

c tc
c tc c

ij
c

kl
c

ec
2

(24)

where Ec denotes the Young's modulus, νc denotes the Poisson's ratio,
Et

c denotes the tangent modulus, sij
c denotes the deviatoric part of the

Cauchy stress σij
c, σe

c denotes the effective von Mises stress, i.e.

=σ s se
c

ij
c

ij
c3

2 (25)

δij denotes the Kronecker delta and βc contains the conditions for plastic
flow

= ⎧⎨⎩ = ≥< <β
for σ σ and σ
for σ σ or σ

1 ( ) ˙ 0
0 ( ) ˙ 0

c e
c

e
c

e
c

e
c

e
c

e
c

max

max (26)

The Ramberg-Osgood relation yields the tangent modulus=
⎜ ⎟⎛⎝ ⎞⎠ +−Et

c E

n 1

c

c σec

σyc

nc
3
7

1

(27)

where σy
c and nc denote the yield stress and the hardening index, re-

spectively.

8) Update Cαβ
c from Eq. (2) followed by (8)

9) Update Cαβ from Eq. (16) or (21)
10) Update Lαβηγ from Eq. (8) followed by (2)
11) Return Lαβηγ, σαβ and the state variables in step 1 to ABAQUS

The implementation of the constitutive model in Subsection 3.2 and
steps 2, −6 10 are new or modified compared to Sørensen et al. [4].

5. Finite element analysis

The finite element model (Fig. 3) of an open-hole plate, which is
simply supported along its left edge and subjected to a compressive
displacement d, incrementally, along its right edge, is implemented into
ABAQUS. α (Fig. 4) denotes the initial fibre orientation. Plane strain
conditions apply; hence (Fig. 3), resembles a ply of an open-hole la-
minate under compressive loading. The user subroutine (UMAT) loads
the AS4/PEEK material parameters (Table 1) from Kyriakides et al.
[28].

6. Localization of deformation

The semi-analytical model by Jensen [8] considers the kink band
geometry (Fig. 5), with an initial band inclination β0 and an initial fibre
rotation = ∘ϕ 00 . In the procedure, we then prescribe a fibre rotation
increment ϕ̇ such that the fibres in the kink band rotate relative to the
fibres in the base material, i.e.= ′ =v v ϕ0 , ˙2,1 2,1 (28)

where superscript ′ refers to kink band coordinates.
Continuity of velocities across the boundary between the base ma-

terial and the kink band requires that′ ′ ′ = ′ ′ ′ =v q q v q q v q n v q n,α β β α α β β α α β β α α β β α, , , , (29)

where nα and qα denote the unit normal and the unit tangent to the
band boundary in the base material coordinates, respectively, and ′nα
and ′qα in the kink band coordinates, i.e.= = −′ ′ = ′ ′ ′ ′ = − ′ ′n n β β q q β β

n n β β q q β β
( , ) (cos , sin ) , ( , ) ( sin , cos ),
( , ) (cos , sin ) , ( , ) ( sin , cos )

1 2 1 2

1 2 1 2 (30)

where β and ′β denote the inclination angle of the kink band relative to
the base material and the kink band, respectively, from which it follows
that the band inclination is updated according to= − ′ = − ′ ′ ′β v q n β v q n˙ , ˙α β β α α β β α, , (31)

Continuity of traction rates across the boundary between the base
material and the kink band requires that′ ′ ′ ′ = ′ ′ ′ ′ =n C v n n C v n n C v q n C v q,α αβγη η γ β α αβγη η γ β α αβγη η γ β α αβγη η γ β, , , , (32)

Continuity of unit area =A A c/f f across the boundary between the
two regions requires that= ′ ′ ′′n e n eα α

c
A α α

c
A

f
f

f

f (33)

Fig. 6. (a) Matrix shear stress σm
12 . (b) Local fibre orientations. For comparison, the initial fibre orientation α is 0°.
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where eα and ′eα denote a unit vector parallel with the fibres in the base
material and the kink band, respectively. c f is the fibre volume fraction
in the base material from Eq. (23). Due to different stress states inside
and outside the kink band, Eq. (33) yields the fibre volume fraction in
the kink band, denoted

′c f . At steady-state, many previous studies use
the lock-up condition =ϕ β2 0, neglecting the volumetric straining of
the matrix between rigid fibres. Experimental studies by Poulsen et al.
[29] and Vogler and Kyriakides [30] suggest that this lock-up condition

underestimates the fibre rotation ϕ. In the present study, at steady-state,
the work done per unit volume by the stresses in the kink band WI
equals the work done per unit volume by the external loads WE, i.e.=W WI E (34)

where

Fig. 7. (a) Matrix shear stress σm
12 . (b) Effective matrix von Mises stress σe

m. For comparison, the matrix yield stress σy
m is MPa82,1 . (c) Tangent matrix modulus Et

m. For
comparison, the Young's modulus Em is MPa6.140 . (d) Local fibre orientations. For comparison, the initial fibre orientation α is 5°. (e) Longitudinal fibre stress σ f

11.
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∫= ′ ′ =′
W σ dε W S ΔE,I

ε

ε

αβ αβ E αβ αβ
(35)′ε and ε denote the strain states inside and outside the kink band, re-

spectively, EΔ αβ denote the difference in Lagrangian strains inside and
outside the kink band expressed in the base material and Sαβ denote the
work conjugated second Piola-Kirchhoff stresses. At steady-state, i.e.
when =W WI E, the applied stress, denoted − σ (Fig. 5), is the steady-
state kinking stress, denoted − σs. Equations (28)–(35), together with
the constitutive model in Subsection 3.1 and the constitutive relations
in Sections 2 and 4, comprise an incremental procedure for determining
the steady-state kinking stress of the AS4/PEEK composite (Table 1).

7. Results and discussion

Fibre misalignments together with plastic shear deformation in the
matrix govern the critical stress of a unidirectional fibre composite;
consequently, in Subsection 7.1, these factors are subsequently ana-
lysed at the critical stress. In Subsection 7.2, a suitable design metho-
dology of structural components with open-holes is investigated. Unless
otherwise stated, the constitutive model in Subsection 3.1 applies.

7.1. Micromechanics

For =α 0°, the matrix shear stress σm
12 (Fig. 6a) and the local fibre

orientations (Fig. 6b) resemble the numerical results by Fleck et al.
[20], where they used a constitutive model taking the fibre bending
rigidity into account. In the present case, the fibre bending rigidity is
negligible if the fibre diameter is much smaller than the size of the hole.
The carbon fibres used in Ref. [28] were 7 micrometres in diameter. For
comparison, a typical clearance hole for a M10 bolt is 11 millimetres in
diameter.

For α = 5°, the matrix shear stress σm
12 (Fig. 7a) is no longer sym-

metrical around the hole. The effective matrix von Mises stress σe
m

(Fig. 7b) indicates that the matrix yields at the locations where the
matrix shear stress σm

12 is highest (Fig. 7a). Since the uniaxial stress-
strain relation follows the Ramberg-Osgood relation, i.e. Eq. (27), a
significant reduction in the tangent matrix modulus Et

m (Fig. 7c) is seen
at the locations where the effective matrix von Mises stress σe

m is highest
(Fig. 7b). The local fibre orientations (Fig. 7d) show the formation of a
kink band due to an increase in matrix flexibility (Fig. 7c), suggesting
that plastic microbuckling propagates in a direction almost normal to
the loading direction corresponding to the experimental observations
[11–21]. In addition (Fig. 7d), shows elastic microbuckling in the re-
gions near the hole where the matrix does not yield (Fig. 7c). Wind
et al. [31] showed that the fibres do not rotate significantly from the
initial to the critical stress when considering a unidirectional fibre
composite with fibre misalignments. This finding leads to the conclu-
sion that the deformation of the open-hole causes the fibres to rotate
severely near the hole and in the regions where they are less supported
by the matrix, making the open-hole a severe imperfection. The long-
itudinal fibre stress σ f

11 (Fig. 7e) indicates that the highest compressive
stresses are at the top and bottom edges of the hole where the fibres
rotate the most (Fig. 7d), suggesting that plastic microbuckling propa-
gates from the top and bottom edges of the hole corresponding to the
experimental observations [11–21].

In a laminate under compressive loading, the 0° plies are stiffer than
the off-axis plies and carry most of the load. Due to the stiffness pro-
vided by the fibres, no severe deformation of these plies takes place
prior to failure, as (Fig. 8), showing the applied stress − σ as a function
of the applied displacement d for various values of α, indicates. In the
off-axis plies, the fibres are more prone to rotate, causing the matrix to
shear in between the fibres, which (Fig. 8) also indicates. (Fig. 8)
suggests, in accordance with the experimental observations by Soutis
et al. [13–17], that plastic microbuckling, in the 0° plies, governs the
compressive failure. This observation leads to the conclusion that one

Fig. 8. Normalized applied stress − σ G/ as a function of normalized applied
displacement d W/ from initial to critical stress for α = 5°, 10°, 20°, 40°. The
elastic shear modulus of the composite G normalizes the applied stress − σ and
the initial width of the plate W normalizes the applied displacement d.

Fig. 9. Normalized (converged) critical stress − σ G/c as a function of normal-
ized hole radius R W/ associated with perfect fibre/matrix bonding and full
decohesion for α= 5°. The elastic shear modulus of the composite G normalizes
the critical stress − σc and the initial width of the plate W normalizes the hole
radius R.

Fig. 10. Fibre rotation ϕ, at steady-state, as a function of initial band inclination
β0.

Fig. 11. Normalized steady-state kinking stress − σ G/s as a function of initial
band inclination β0. The elastic shear modulus of the composite G normalizes
the steady-state kinking stress − σs.
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should monitor the applied stresses acting on these plies to prevent
laminate failure, provided that the number of 0° plies is high in com-
parison with the number of off-axis plies.

The constitutive model in Subsection 3.2 verifies these findings;
however, the fibres are not supported laterally by the matrix in this
model; hence, it provides a lower bound for the critical stress, with the
situation in practice somewhere in between, as (Fig. 9), showing the
critical stress, denoted − σc, as a function of the hole radius R, illus-
trates. The applied theory of plasticity ignores the dilatational stress,
which makes it suitable for fibres but less suitable for polymeric ma-
terials; hence, it may overpredict matrix failure. The lower bound
(Fig. 9) compensates for this uncertainty. In this regard, it is empha-
sized that the constitutive models in Section 3 allow all cases of time-
independent elastic-plastic behaviour of the constituents.

7.2. Design

At steady state, (Fig. 10), showing the fibre rotation ϕ as a function
of the initial band inclination β0, indicates, in accordance with the
experimental studies [29–30], that >ϕ β2 0.

(Fig. 11) shows the steady-state kinking stress − σs as a function of
the initial band inclination β0, with the minimum normalized steady-
state kinking stress− =σ G/ 0,059s min, ; whereG denotes the elastic shear
modulus of the composite. A comparison with (Fig. 9) indicates that a
lower bound for the critical stress of a unidirectional open-hole fibre
composite can be estimated by the minimum steady-state kinking
stress, provided that the hole is small in proportion to the composite, in
which case one avoids global failure. Still, local failure, at the hole
edges, may take place. To avoid failure at the hole edges, the applied
stress, acting on a cut-out of the composite surrounding the hole
(Fig. 12), must be within the range (Fig. 9). In this regard, the ratio R

W
must remain low, desirably close to 0,1; otherwise, the free edges, i.e.
the top and bottom edges (Fig. 3), will interact to a higher degree with
the open-hole, in which case (Fig. 9) underestimates the local load
bearing capacity. If the number of 0° plies, in a laminate, is high in
comparison with the number of off-axis plies, these plies govern the
compressive failure of the laminate (Subsection 7.1); hence, the latter
design approaches also apply for laminates.

(Fig. 10) and (Fig. 11) correspond to [8].

8. Conclusion

A non-empirical approach is introduced for determining the mi-
cromechanics of kink band formation in open-hole fibre composites
under compressive loading. Our results explain and predict, in ac-
cordance with experimental observations, that a kink band propagates
from the edges of an open-hole in a direction almost perpendicular to
the loading direction and the 0° plies govern the compressive failure of

an open-hole laminate. These findings lead to the conclusion that the
constitutive models (Section 3) are applicable to describe the micro-
mechanics using a homogenized description of the composite. This
homogenization takes the microstructure, including the fibre/matrix
bonding, and the nonlinear behaviour of the constituents into account.
A non-empirical approach is introduced for designing of structural
components with open-holes. Using the mentioned homogenization to
describe the behaviour of the composite, the semi-analytical model
(Section 6) predicts, in accordance with experimental observations, that
the kink band lock-up condition at steady-state, used by many previous
studies, underestimates the rotation of the kink band relative to the
base material. Our results indicate that the steady-state kinking stress
can be estimated as a lower bound, provided that the hole is small in
comparison to the laminate. This design approach is suitable to prevent
global failure by kink banding of a laminate containing stress con-
centrations; however, to prevent local failure at the hole edges, the
constitutive models in Section 3 predict the local compressive strength
using finite element analysis. The present work suggests a convenient
and useful predictive tool for design engineers.
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Appendix A

Jaumann rate of Cauchy stresses

From the definition of Cartesian tensors, a second order tensor Ai j transforms between
arbitrary coordinate system by

A′
i j = RikR jlAkl (A.1)

Where Ri j are components of a proper orthogonal rotation tensor. An infinitesimal line
element between to neighbouring points P and Q is denoted dx j and dx′j, when they are
observed from the two coordinate systems xi and x′i, see Fig. A.1. The two systems coincide
at time t, so dx j and dx′j are identical at this instant. During a rigid body rotation, at instant
t = t+dt, the coordinate system xi stays stationary and the system x′i takes part of the rotation.
The differnce dx j −dx′j observed from the two systems is equal to

dx j −dx′j = dv j dt (A.2)

where dv j denotes the relative velocity of point Q with respect to P. The relative velocity is

x1, x′1

x2, x′2

P

Q

P

Q

x1

x′1

x′2
x2

t
t

t +dt

x1, x′1

x2, x′2 dx j

dx′j

dv j dt

Figure. A.1 Illustration of the concept of rotating coordinate systems.
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given by

dvi =
∂vi

∂x j
dx j (A.3)

The velocity gradient tensor ∂vi/∂x j can be divided into a symmetric and anty-symmetric
part

ε̇i j =
1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
ωi j =

1
2

(
∂vi

∂x j
−

∂v j

∂xi

) (A.4)

Where ε̇i j is the strain rate tensor and ωi j is the spin tensor. When considering a rigid body
rotation the relative velocity Eq. (A.3) can be written as

dv j = ω ji dx′i (A.5)

Combining Eqs. (A.2) and (A.5) yields

dx j −dx′j = ω ji dx′i dt (A.6)

Which can be rewritten
dx j = (δi j +ω jidt)dx′i (A.7)

Since ωi j is an anti-symmetric tensor ω ji =−ωi j which leads to

dx j = (δi j −ωi jdt)dx′i (A.8)

The expression in the parenthesis can be compared to the directional cosines given by
Eq. (A.1). Let σ̇i j and σ̊i j be the stress rates referred to the fixed xi and the rotating x′i
coordinate system respectively. Using Eq. (A.8) the stress components at the time t +dt of
the rotating coordinates becomes

σi j + σ̊i j dt = (δik −ωikdt)
(
δ jl −ω jldt

)
(σkl + σ̇kl dt) (A.9)

By neglecting terms containing squares and cubes of dt, the equation can be expanded to

σi j + σ̊i jdt = δik δ jl σkl +δik δ jl σ̇kl dt −δik ω jl σkl dt −δ jl ωik σkl dt (A.10)
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Using the property, that Kronecker delta substitutes index, yields

σi j + σ̊i j dt = σi j + σ̇i j dt −ω jl σil dt −ωik σk j dt (A.11)

The equation can be simplified to give the stress rate in the rotating coordinate system

σ̊i j = σ̇i j −ω jk σik −ωik σk j (A.12)

In some literatures the relation is written in the equivalent form

σ̊i j = σ̇i j −ωik σk j +σik ωk j (A.13)

This stress rate is known as the co-rotational Jaumann-Zaremba stress rate and is often used
in constitutive relations since the stress rate is objective.



Appendix B

Nominal stresses

In this chapter the relation between the rate of nominal and Kirchhoff stresses is set-up.
The relative motion between two neighboring points can be described through the de-

formation gradient Fi j = ∂xi/∂X j where xi are components of the current coordinates of
material points and Xi are the reference coordinates. The inverse of the deformation gradient
F−1

i j = ∂Xi/∂x j relates material lines of the reference configuration as a function of material
lines in the current configuration

dXi =
∂Xi

∂x j
dx j = F−1

i j dx j (B.1)

Due to conservation af mass, the product between the density and the volume remains
constant

ρ ds j dx j = ρ0 dSi dXi (B.2)

where ρ and ρ0 are densities of material points in the current and reference configuration
respectively. dsi and dSi are infinitesimal surfaces in the current and reference configuration.
Combining Eqs. re f de fgrad and (B.2) yields

ρ ds j dx j = ρ0 dSi
∂Xi

∂x j
dx j (B.3)

Which can be rewritten (
ds j −

ρ0

ρ

∂Xi

∂x j
dSi

)
dx j = 0 (B.4)
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Since dx j in general is non-zero, the equation embraced by the parenthesis must be zero,
which gives the Nanson’s formula

ds j =
ρ0

ρ

∂Xi

∂x j
dSi (B.5)

Which relates surface vectors between the current and reference configuration.
To give a relation between Cauchy stresses σi j (true stress) and the nominal stresses

ti j an infinitesimal force d f j is introduced. The following relation between the stresses is
introduced

d f j = ti j dSi = σk j dsk (B.6)

Substitution of dsk using Eq. (B.5) yields

ti j dSi = σk j
ρ0

ρ

∂Xi

∂xk
dSi (B.7)

Since dSi is a common factor the relation between the nominal and Cauchy stresses is

ti j =
ρ0

ρ

∂Xi

∂xk
σk j = J F−1

ik σk j (B.8)

The relation between Cauchy and Kirchhoff stress is given by

τi j = J σi j (B.9)

Where J is the Jacobian, which represent the density ratio (J = ρ0/ρ) from the initial to
the current configuration. The relationship between nominal stress and Kirchhoff stress is
thereby

ti j =
∂Xi

∂xk
τk j = F−1

ik τk j (B.10)

To calculate the nominal stress rate the material derivative is utilised. The operator represent-
ing the material derivative of a spatial field is introduced

d(•)
dt

=
∂ (•)
∂ t

+ vm
∂ (•)
∂xm

= (•),t + vm(•),m (B.11)

The first term in Eq. (B.11) denotes the spatial time derivative of the spatial field, while the
second term is the convective rate of change of the spatial field. By using the product rule of
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differentiation the material time derivate of Eq. (B.8) can be written as

d(ti j)

dt
=

∂Xi

∂xk

d(τk j)

dt
+

d
dt

(
∂Xi

∂xk

)
τk j (B.12)

Now focus is given to the material time derivative of the inverse of the deformation gradient.
By using the operator Eq. (B.11) the derivative can be written as

d
dt

(
∂Xi

∂xk

)
= Xi,kt + vmXi,km (B.13)

A term vm,k Xi,m is added and subtracted from the expression

d
dt

(
∂Xi

∂xk

)
= Xi,kt + vmXi,km + vm,kXi,m − vm,kXi,m (B.14)

Using the product rule of differentiation the equation can be rewritten

d
dt

(
∂Xi

∂xk

)
= (Xi,t + vmXi,m),k − vm,kXi,m (B.15)

The term in the parenthesis is the material time derivative of the initial coordinates dXi/dt.
Since the initial coordinates do not change with time dXi/dt = 0. The equation can be
simplified into

d
dt

(
∂Xi

∂xk

)
=−vm,kXi,m (B.16)

By using Eq. (B.16) the stress rate can be written as

ṫi j = F−1
ik τ̇k j − vm,k F−1

im τk j (B.17)

This can be rewritten, using the fact that the repeated indices can be renamed, and that the
Kirchoff stress tensor is symmetric

ṫi j = F−1
im
(
τ̇m j − τ jkvm,k

)
(B.18)

If the initial state coincide with the current state then ∂Xi/∂xm = δim.

ṫi j = δim
(
τ̇m j − τ jkvm,k

)
(B.19)

Kronecker delta renames index
ṫi j = τ̇i j − τ jkvi,k (B.20)
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The Jaumann rate of Kirchhoff stresses is given by

τ̊i j = τ̇i j −ω jk τik −ωik τk j (B.21)

Combining Eqs. (B.20) and (B.21) yields

ṫi j = τ̊i j +ω jk τik +ωik τk j − τ jkvi,k (B.22)

Replacing the spin tensor ωi j using Eq. (3.3) yields

ṫi j = τ̊i j +
1
2
(
v j,k − vk, j

)
τik +

1
2
(
vi,k − vk,i

)
τk j − τ jkvi,k (B.23)

Expanding the parenthesis

ṫi j = τ̊i j +
1
2

v j,k τik −
1
2

vk, j τik +
1
2

vi,k τk j −
1
2

vk,i τk j − τ jkvi,k (B.24)

The last and the fourth term on the right have the same components since the Cauchy stress
tensor is symmetric the terms cancel out.

ṫi j = τ̊i j +
1
2

v j,k τik −
1
2

vk, j τik −
1
2

vi,k τk j −
1
2

vk,i τk j (B.25)

Reapeted index can be renamed

ṫi j = τ̊i j +
1
2

v j,k τik −
1
2

vl, j τil −
1
2

vi,k τk j −
1
2

vl,i τl j (B.26)

Kronecker Delta is added and indices are substituted

ṫi j = τ̊i j +
1
2

vl,k τikδ jl −
1
2

vl,k τil δ jk −
1
2

vl,k τk j δil −
1
2

vl,k τl j δik (B.27)

The Jaumann stress rate can be calculated using an incremental stiffness tensor

τ̊i j = Li jkl ε̇kl (B.28)

The incremental stiffness tensor must satify the symmetries

Li jkl = L jikl = Li jlk (B.29)
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Using the symmetries of Li jkl in Eq. (B.28) leads to

τ̊i j = Li jkl ε̇kl = Li jkl
1
2
(
vk,l + vl,k

)
=

1
2
(
Li jkl vk,l +Li jkl vl,k

)
=

1
2
(
Li jlk vl,k +Li jkl vl,k

)
= Li jkl vl,k

(B.30)

Combining Eq. (B.30) and (B.27) yields

ṫi j = Li jklvl,k +
1
2

vl,k τikδ jl −
1
2

vl,k τil δ jk −
1
2

vl,k τk j δil −
1
2

vl,k τl j δik (B.31)

Isolating vl,k yields

ṫi j =

(
Li jkl +

1
2

τikδ jl −
1
2

τil δ jk −
1
2

τk j δil −
1
2

τl j δik

)
vl,k (B.32)

By moving around terms, the fourth order tensor in the parenthesis can written as

Ci jkl = Li jkl −
1
2

δil τk j −
1
2

δik τl j −
1
2

τil δk j +
1
2

τikδl j (B.33)

Which is the tensor of nominal moduli relating nominal stress increments to velocity gradients
through the Kirchhoff stress tensor.



Appendix C

Constitutive formulation

In this appendix the derivations behind the constitutive model developed by Christoffersen
and Jensen (1996) is explained.

It is convenient to decompose the constitutive equations into a matrix representation for
simplicity in the derivation, where the rate of nominal stresses are collected in the vectors

ṫ1 =

(
ṫ11

ṫ12

)
ṫ2 =

(
ṫ21

ṫ22

)
(C.1)

The velocity components are collected in the vector

v =

(
v1

v2

)
(C.2)

The constitutive equation given by Eq. (3.26) can be written in the form

ṫα = Cαβ v,β α,β ⊂ {1,2} (C.3)

The matrix system written in the full form
ṫ11

ṫ12

ṫ21

ṫ22

=


C1111 C1112 C1121 C1122

C1211 C1212 C1221 C1222

C2111 C2112 C2121 C2122

C2211 C2212 C2221 C2222




v1,1

v2,1

v1,2

v2,2

 (C.4)
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The components of Cαβ represents the matrices

C11 =

(
C1111 C1112

C1211 C1212

)

C12 =

(
C1121 C1122

C1221 C1222

)

C21 =

(
C2111 C2112

C2211 C2212

)

C22 =

(
C2121 C2122

C2221 C2222

)
(C.5)

Eq. (3.22) can be rewritten using the introduced matrix notation

ṫ f
2 = ṫm

2 = ṫ2 (C.6)

ṫc
2 for the constituents can be calculated using Eq. (C.3)

ṫc
2 = Cc

2β
vc
,β = Cc

21 vc
,1 +Cc

22 vc
,2 (C.7)

Using the first assumption given by Eq. (3.17) vc
,1 = v,1 leads to

ṫc
2 = Cc

21 v,1 +Cc
22 vc

,2 (C.8)

Using the latter equation with Eq. (C.6) yields the equality

C f
21 v,1 +C f

22 v f
,2 = Cm

21 v,1 +Cm
22 vm

,2 (C.9)

To find a relation between the velocity gradients of the constituents, Eq. (3.19) is used. The
equation (3.19) can be written using the matrix notation

c f v f
,2 + cmvm

,2 = v,2 (C.10)

Isolating v f
,2 yields

v f
,2 =

1
c f

(
v,2 − cmvm

,2
)

(C.11)

Multiplying by Cm
22 on both sides yields

Cm
22v f

,2 =
1
c f

(
Cm

22v,2 − cmCm
22vm

,2
)

(C.12)
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Cm
22vm

,2 can be isolated from Eq. (C.9), and combined with the latter equation, which yields

Cm
22v f

,2 =
1
c f

(
Cm

22v,2 − cm
(

C f
21 v,1 +C f

22 v f
,2 −Cm

21 v,1
))

(C.13)

Moving c f to the left and expanding the parenthesis yields

c f Cm
22v f

,2 = Cm
22v,2 − cmC f

21 v,1 − cmC f
22 v f

,2 + cmCm
21 v,1 (C.14)

Moving terms related to v f
,2 to the left and collecting terms related to v,β yields(

cmC f
22 + c f Cm

22

)
v f
,2 = cm

(
Cm

21 −C f
21

)
v,1 +Cm

22v,2 (C.15)

Introducing the matrix C∗
22

C∗
22 = cmC f

22 + c f Cm
22 (C.16)

the velocity gradients v f
,2 for the fibre can be isolated using the latter term

v f
,2 = C∗−1

22

(
cm
(

Cm
21 −C f

21

)
v,1 +Cm

22v,2
)

(C.17)

The equation can also be written in the form

v f
,2 = cm C∗−1

22

(
Cm

21 −C f
21

)
v,1 +C∗−1

22 Cm
22 v,2 (C.18)

In the same manner, the velocity gradients vm
,2 for the matrix can be determined as

vm
,2 = c f C∗−1

22

(
C f

21 −Cm
21

)
v,1 +C∗−1

22 C f
22 v,2 (C.19)

The terms in front of v,2 can be replaced. It is convenient to write the velocity gradients in
the equivalent form

v f
,2 =−cm C∗−1

22

(
C f

21 −Cm
21

)
v,1 − cmC∗−1

22

(
C f

22 −Cm
22

)
v,2 +v,2

vm
,2 = c f C∗−1

22

(
C f

21 −Cm
21

)
v,1 + c f C∗−1

22

(
C f

22 −Cm
22

)
v,2 +v,2

(C.20)

In the latter equations the following identities were utilized

C∗−1
22 Cm

22 v,2 =−cmC∗−1
22

(
C f

22 −Cm
22

)
v,2 +v,2

C∗−1
22 C f

22 v,2 = c f C∗−1
22

(
C f

22 −Cm
22

)
v,2 +v,2

(C.21)
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The first identity will be proven in the following. The terms with coefficients of v,2 can be
isolated in the right part of the equality

C∗−1
22 Cm

22 v,2 =
(
−cmC∗−1

22

(
C f

22 −Cm
22

)
+ I
)

v,2 (C.22)

Where I is the identity matrix. The identity matrix can be replaced by I = C∗−1
22 C∗

22

C∗−1
22 Cm

22 v,2 =
(
−cmC∗−1

22

(
C f

22 −Cm
22

)
+C∗−1

22 C∗
22

)
v,2 (C.23)

The matrix C∗−1
22 can be isolated and put outside the parenthesis, and C∗

22 can be expanded
using Eq. (C.16)

C∗−1
22 Cm

22 v,2 = C∗−1
22

(
−cm

(
C f

22 −Cm
22

)
+ c f Cm

22 + cm C f
22

)
v,2 (C.24)

The inner parenthesis is expanded

C∗−1
22 Cm

22 v,2 = C∗−1
22

(
−cm C f

22 + cmCm
22 + c f Cm

22 + cm C f
22

)
v,2 (C.25)

The two terms (cm C f
22) cancel out

C∗−1
22 Cm

22 v,2 = C∗−1
22

(
cmCm

22 + c f Cm
22
)

v,2 (C.26)

Cm
22 is isolated

C∗−1
22 Cm

22 v,2 = C∗−1
22

(
cm + c f )Cm

22 v,2 (C.27)

using the property that the sum of the volume fractions is unity c f + cm = 1 yields

C∗−1
22 Cm

22 v,2 = C∗−1
22 Cm

22 v,2 (C.28)

Similarly, the second identity in Eq. (C.21) can be proven. The nominal stress rate for the
components in the vector ṫc

1 can be calculated using Eq. (C.3)

ṫc
1 = Cc

1β
vc
,β = Cc

11 v,1 +Cc
12 vc

,2 (C.29)

Using Eqs. (C.20) the nominal stress rate vectors ṫ f
1 and ṫm

1 can be determined

ṫ f
1 =C f

11 v,1 +C f
12

(
−cm C∗−1

22

(
C f

21 −Cm
21

)
v,1 − cmC∗−1

22

(
C f

22 −Cm
22

)
v,2 +v,2

)
ṫm
1 =Cm

11 v,1 +Cm
12

(
c f C∗−1

22

(
C f

21 −Cm
21

)
v,1 + c f C∗−1

22

(
C f

22 −Cm
22

)
v,2 +v,2

) (C.30)
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Collecting terms related to v,β

ṫ f
1 =

(
C f

11 − cmC f
12C∗−1

22

(
C f

21 −Cm
21

))
v,1 +

(
C f

12 − cmC f
12C∗−1

22

(
C f

22 −Cm
22

))
v,2

ṫm
1 =

(
Cm

11 + c f Cm
12C∗−1

22

(
C f

21 −Cm
21

))
v,1 +

(
Cm

12 + c f Cm
12C∗−1

22

(
C f

22 −Cm
22

))
v,2
(C.31)

For overall equilibrium of nominal stress rates, Eq. (3.25) was introduced which can be
rewritten using the matrix format

ṫ1 = c f ṫ f
1 + cm ṫm

1 (C.32)

Combining this equation with Eq. (C.31) yields

ṫ1 =c f
((

C f
11 − cmC f

12C∗−1
22

(
C f

21 −Cm
21

))
v,1 +

(
C f

12 − cmC f
12C∗−1

22

(
C f

22 −Cm
22

))
v,2
)
+

cm
((

Cm
11 + c f Cm

12C∗−1
22

(
C f

21 −Cm
21

))
v,1 +

(
Cm

12 + c f Cm
12C∗−1

22

(
C f

22 −Cm
22

))
v,2
)

(C.33)

Moving around terms, the equation can be simplified into

ṫ1 =
(

c f C f
11 + cmCm

11 − c f cm
(

C f
12 −Cm

12

)
C∗−1

22

(
C f

21 −Cm
21

))
v,1+(

c f C f
12 + cmCm

12 − c f cm
(

C f
12 −Cm

12

)
C∗−1

22

(
C f

22 −Cm
22

))
v,2

(C.34)

Next the focus is on the nominal stress rate vector ṫc
2 for the constituents. Again the relation

given by Eq. (C.3) is used
ṫc
2 = Cc

21 v,1 +Cc
22 vc

,2 (C.35)

Inserting v f
,2 and vm

,2 from Eq. (C.20) yields the nominal stress rates

ṫ f
2 =C f

21 v,1 +C f
22

(
−cm C∗−1

22

(
C f

21 −Cm
21

)
v,1 − cmC∗−1

22

(
C f

22 −Cm
22

)
v,2 +v,2

)
ṫm
2 =Cm

21 v,1 +Cm
22

(
c f C∗−1

22

(
C f

21 −Cm
21

)
v,1 + c f C∗−1

22

(
C f

22 −Cm
22

)
v,2 +v,2

) (C.36)
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Collecting terms related to v,β entail the two alternative expressions for ṫ2 according to the
second assumption Eq. (C.6)

ṫ2 =
(

C f
21 − cmC f

22C∗−1
22

(
C f

21 −Cm
21

))
v,1 +

(
C f

22 − cmC f
22C∗−1

22

(
C f

22 −Cm
22

))
v,2

ṫ2 =
(

Cm
21 + c f Cm

22C∗−1
22

(
C f

21 −Cm
21

))
v,1 +

(
Cm

22 + c f Cm
22C∗−1

22

(
C f

22 −Cm
22

))
v,2
(C.37)

The two expressions of ṫ2 give the same result based on the second assumption. It is of
interest to collect the two terms into one expression using the volume fractions, who obey
the property c f + cm = 1.

ṫ2 =c f
((

C f
21 − cmC f

22C∗−1
22

(
C f

21 −Cm
21

))
v,1 +

(
C f

22 − cmC f
22C∗−1

22

(
C f

22 −Cm
22

))
v,2
)
+

cm
((

Cm
21 + c f Cm

22C∗−1
22

(
C f

21 −Cm
21

))
v,1 +

(
Cm

22 + c f Cm
22C∗−1

22

(
C f

22 −Cm
22

))
v,2
)

(C.38)

Moving around terms, the equation can be simplified into

ṫ2 =
(

c f C f
21 + cmCm

21 − c f cm
(

C f
22 −Cm

22

)
C∗−1

22

(
C f

21 −Cm
21

))
v,1+(

c f C f
22 + cmCm

22 − c f cm
(

C f
22 −Cm

22

)
C∗−1

22

(
C f

22 −Cm
22

))
v,2

(C.39)

The matrix system may be written in the form given by Eq. (C.3), where the components of
Cαβ is

Cαβ = c f C f
αβ

+ cmCm
αβ

− c f cm
(

C f
α2 −Cm

α2

)
C∗−1

22

(
C f

2β
−Cm

2β

)
(C.40)

Based on the composite constitutive relation the nominal stress increments can be determined.
By returning to the original index notation used in the dissertation, the moduli given by
Eq. (C.40) can be written in the form introduced in Eq. (3.27). Going from the matrix notation
to the index notation, the components of the matrix C∗

22 are equal to the components given
by Mαβ . Similarly, the components of C∗−1

22 are equal to the components of Hαβ .

Volume fraction increment

The fibre c f and matrix cm volume factions will change during deformation, due to the
difference in the constituent properties. It is chosen to determine the fibre volume fraction
increment ċ f . Based on this volume fraction increment, both volume fractions can be
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determined. The volume fractions for the constituents are based on

c f =
V f

V
cm =

V m

V
(C.41)

Where V is the total volume of a unit cell and V c are volumes of the constituents in the unit
cell. The volume increment for the constituents can be calculated using the velocity gradients

V̇ c =V c vc
k,k (C.42)

Which can be expanded using Eq. (C.41)

V̇ c =V cc vc
k,k (C.43)

The volume increment of a unit cell is a combination of the increments of both constituents

V̇ =V
(

c f v f
k,k + cm vm

k,k

)
(C.44)

The total fibre volume can be written as

V f = c f V (C.45)

The fibre volume increment can be determined using the product rule of differentiation

V̇ f = ċ f V + c f V̇ (C.46)

Isolating the term ċ f V yields
ċ f V = V̇ f − c f V̇ (C.47)

V̇ f and V̇ can be replaced using Eqs. (C.43) and (C.44)

ċ f V =V c f v f
k,k − c f V

(
c f v f

k,k + cm vm
k,k

)
(C.48)

The volume V is a common factor and can be omitted

ċ f = c f v f
k,k − c f

(
c f v f

k,k + cm vm
k,k

)
(C.49)

Multiplying the first part on the right by (cm + c f ) and expanding the parenthesis yields

ċ f = c f c f v f
k,k + c f cm v f

k,k − c f c f v f
k,k − c f cm vm

k,k (C.50)
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This can be simplified into
ċ f = c f cm

(
v f

k,k − vm
k,k

)
(C.51)

Expanding the repeated indices yields

ċ f = c f cm
(

v f
1,1 + v f

2,2 + v f
3,3 − vm

1,1 − vm
2,2 − vm

3,3

)
(C.52)

The constitutive model is two-dimensional and assumes plane strain conditions, thereby
vc

3,3 = 0. The constitutive model is based on the assumption that material lines parallel with
the fibres (parallel with x1 axis) are subject to a common stretch, thereby v f

1,1 = vm
1,1. The

latter equation can thereby be simplified into

ċ f = c f cm
(

v f
2,2 − vm

2,2

)
(C.53)
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