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ABSTRACT 

Certain advanced control schemes are capable of making a part of the thermostatic loads of space 

heating in buildings flexible, thereby enabling buildings to engage in so-called demand response. 

It has been suggested that this flexible consumption may be a valuable asset in future energy 

systems where conventional fossil fuel-based energy production have been partially replaced by 

intermittent energy production from renewable energy sources. Model predictive control (MPC) 

is a control scheme that relies on a model of the building to predict the future impact on the 

temperature conditions in the building of both control decisions (space heating) and phenomena 

outside the influence of the control scheme (e.g. weather conditions). MPC has become one of 

the most frequently used control schemes in studies investigating the potential for engaging 

buildings in demand response. While research has indicated MPC to have many useful 

applications in buildings, several challenges still inhibit its adoption in practice. A significant 

challenge related to MPC implementation lies in obtaining the required model of the building, 

which is often derived from measurements of the temperature and heating consumption. 

Furthermore, studies have indicated that, although demand response in buildings could contribute 

to the task of balancing supply and demand, suitable tariff structures that incentivize consumers 

to engage in DR are lacking. The main goal of this work is to contribute with research that 

addresses these issues. This thesis is divided into two parts.  

The first part of the thesis explores ways of simplifying the task of obtaining the building model 

that is required for implementation of MPC. Studies that explore practical ways of obtaining the 

measurement data needed for model identification are presented together with a study evaluating 

the suitedness of different low-order model structures that are suited for control-purposes. 

The second part of the thesis presents research on the potential of utilizing buildings for demand 

response. First, two studies explore and evaluate suitable incentive mechanisms for demand 

response by implementing an MPC scheme in a multi-apartment building block. These studies 

evaluate two proposed incentive mechanisms as well as the impact of building characteristics and 

MPC scheme implementation. Finally, a methodology for bottom-up modelling of entire urban 

areas is presented, and proved capable of predicting the aggregated energy demand of urban areas. 

The models resulting from the methodology are then applied in an analysis on demand response.  
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RESUMÉ 

En del af energiforbruget som går til opvarmning af bygninger kan gøres fleksibelt ved hjælp af 

avancerede kontrolmetoder. Dette gør bygninger i stand til at deltage i såkaldt demand response 

– et begreb som dækker over energiforbrugere, der er i stand til at  tilpasse deres forbrug til

energisystemets behov. Flere studier har indikeret at dette koncept til dels kan afhjælpe nogle af

de udfordringer som er forbundet med at basere en større del af vores energisystem på vedvarende

energi kilder med fluktuerende produktion. Model predictive control (MPC) er en af de

kontrolmetoder der anvendes til at styre opvarmningen af vores bygninger og dermed skabe gøre

en del af dette forbrug fleksibelt. I praksis sker dette ved eksempelvis at forvarme bygningen (og

dens masse) inden perioder med højt energiforbrug (spidslast) eller lav energiproduktion, således

at forbruget i bygningen under spidslasten kan sænkes uden at gå på kompromis med indeklimaet.

MPC bruger en termisk model af bygningen til at forudsige den fremtidige effekt af både eget

varmeforbrug, men også af andre fænomener (fx vejrforhold) som kan have en indflydelse på

bygningens varmebalance. Denne model bliver typisk kalibreret ved brug af måledata af

temperaturforhold og energiforbrug i bygningen. Til trods for at forskning har påvist flere fordele

ved denne kontrol metode, har flere udfordringer forbundet med metoden betydet at den endnu

ikke er anvendt i bygninger i praksis. Blandt disse er udfordringen det kan være at opsætte en

model af bygningen der er tilpas nøjagtig til brug i MPC. Ligeledes er en mangel på økonomiske

incitamenter der skal få forbrugere til at deltage i demand response et problem. Målet med denne

afhandlingen er at adressere nogle af disse problemstillinger.  Afhandlingen er derfor inddelt i to

dele.

Den første del udforsker metoder hvormed udfordringen der ligger I modelleringen af bygninger 

som er nødvendig for MPC implementering. Forskningen præsenteret I denne del undersøger 

metoder hvormed måledata til bygnings modellering kan erhverves på praktiske måder. 

Derudover præsenteres en evaluering af forskellige typer af modeller.  

Den anden del udforsker mulige tilgange til etablering af de økonomiske incitamenter der skal få 

forbrugere til at deltage I demand response. Først præsenteres studier som tager udgangspunkt i 

en enkelt bygning. Dernæst præsenteres en udviklet metode som muliggør modellering af 

bygninger i større bolig områder. Metoden bruges til at opsætte modeller af et boligområde i 

Aarhus, og vises at være i stand til at forudsige forbruget af boligområdet med høj præcision. De 

resulterende modeller anvendes til sidst i et studie af demand response på større skala.  
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1 INTRODUCTION 

  

1.1 Background and problem statement 
The increasing evidence of climate change has prompted the beginning of a shift towards an 

energy system powered by renewable energy production rather than conventional production 

based on burning fossil fuels. These efforts are accompanied by an ambition to increase the 

sustainability of almost every aspect of our daily lives – this includes an increased focus on 

recycling and the development of more energy efficient cars, electronics and appliances. 

Buildings, which account for nearly 40% of the energy consumption in Europe [1], are also facing 

increasingly steep requirements for energy efficiency through national or European building 

regulations (BR). Despite these efforts, the data on the final energy use of the building sector 

reported by Eurostat, the EU entity providing statistical information, shows no clear tendency of 

decreasing consumption levels [2]. Similar trends are reported by studies concerned with nations 

outside the EU [3]. Possible reasons for this lack of progress in the building sector are a growth 

in population and thus also in the number of buildings; the increasing number of energy 

consuming devices in our society; and occupants trading in the energy efficiency increases gained 

from building retrofits for increased comfort (the so-called rebound effect).  

The EU introduced its first directive on the energy performance of buildings in 2002 [4], which 

required the energy performance calculation in the BR of its member states to not only consider 



2 

thermal insulation levels, but take all factors that influence the energy consumption in a building 

into account. These factors included the impact of the building design and furthermore allowed 

on-site renewable energy production to offset consumption in the calculation. In Denmark, this 

resulted in a new calculation method being implemented in the national BR in 2006, along with 

a forecast of the BR requirements being further tightened in 2010 and 2015 – each time by 

approximately 25% of the 2006 baseline level. The 2010 revision of the EU’s Energy Performance 

of Buildings Directive (EPBD) [5] introduced a requirement for its member states to ensure 

buildings built after 2020 to be nearly net zero-energy buildings (nZEB). This led to the voluntary 

‘Building Class 2020’ being introduced in the Danish BR in 2010 [6]. This building class further 

tightened the energy requirements with 25% of the 2006 baseline (now 75% in total), and 

constituted the Danish nZEB definition, which was to become mandatory in 2020. Since then, 

‘Building Class 2020’ has faced criticism from the construction industry because of the 

diminishing returns associated with passive energy efficiency measures: The last millimetre of 

insulation is not as effective as the first. Because of these diminishing returns, it was argued that 

‘Building Class 2020’ constituted a de facto requirement for on-site renewable production for 

buildings to be able to comply. Furthermore, a recent review of ‘Building Class 2020’ indicated 

that implementing it as a mandatory requirement would not be economically feasible – neither in 

societal terms nor for consumers [7]. This has led to ‘Building Class 2020’ being replaced by the 

‘Low-Energy Building Class’ [8], which features slightly lower requirements for energy 

efficiency and remains a voluntary class even after 2020. This development indicates that the 

current levels of regulatory requirements for energy efficiency have reached a point where further 

tightening them would require new technological development.  

In parallel to this development on the demand side, the production of electricity from renewable 

energy sources in the EU has seen a steady increase for almost two decades, as indicated by the 

upper part of Figure 1. In 2016, energy production from wind and solar in the current 28 member 

states of the EU reached levels more than 18 times higher than the production recorded in 2000 

[9]. In contrast, the total energy production in the EU only saw an 8 % increase in the same period 

[10]. These developments indicate that both the demand side and the supply side are currently 

undergoing a transition towards higher energy efficiency and more renewable energy production. 

However, this transition brings about new challenges that need to be addressed as the penetration 

of renewable energy in the system increases. Solar and wind energy, which are among the types 

of renewable energy production that have seen the highest growth in recent years, depend entirely 
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on weather phenomena and are therefore characterized by a high degree of intermittency. This 

intermittency complicates the task of maintaining a balance between supply and demand in the 

energy system.  

An example of this issue is given in the lower part of Figure 1, which shows wind power 

production together with the annual number of hours that saw negative electricity prices for the 

Nord Pool electricity market region of Western Denmark (DK1) [11]. This region is characterized 

by a high share of electricity production from intermittent wind power [12]. The data indicates a 

clear tendency of increased intermittent production from wind turbines leading to an increase in 

the number of hours where the region experienced negative electricity prices. The Pearson 

correlation between the two data series supports this with a strong correlation of 0.90 (p=0.00216). 

Negative electricity prices occur when there are no buyers for the excess production, which may 

happen when the interconnectors between different market regions are congested, or at times 

when neighbouring market regions are also experiencing excess production.  

 

Figure 1 Top) The combined power production from renewable energy sources in the 28 EU member 
states, source: Eurostat. Bottom) Relationship between wind power production and the occurrence of 

negative prices in the DK1 day-ahead market region (source: Energinet). 
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Traditionally, imbalances between supply and demand have been addressed by adjusting the 

output of dispatchable generation units such as combined heat and power plants, or by using 

interconnectors between different regions to resolve balancing issues through import and export. 

However, as the number of dispatchable power plants declines and the RES-based production in 

all market regions increases, these conventional approaches may no longer be sufficient for 

maintaining a balanced energy system. The practice of allowing local renewable production to 

offset consumption in the calculation method used to evaluate the energy efficiency of a building 

may further complicate things. Recent research has indicated that nZEB buildings, despite having 

a near-zero impact on the grid on an annual basis, are characterized by a significant mismatch 

between the times at which energy is produced and consumed locally [13–14]. In practice, this 

imbalance is handled by exporting excess production to the grid and importing electricity in times 

of insufficient local production – thus using the electricity grid as a virtual energy storage. As a 

result, despite what the zero-energy label suggests, these buildings are not highly autonomous 

from the rest of the energy system. On the contrary, this two-way interaction with the grid may 

result in nZEB buildings contributing negatively to the balancing issue already at hand [15].  

These challenges suggest that the conventional load-driven structure of energy-systems may not 

be ideal for system configurations with a high penetration of RES-based production. This has led 

to the proposal of complementing the efforts towards energy efficiency, more renewable 

production, and strengthened energy import and export capabilities with the implementation of 

so-called smart grids [16]. The main attribute that separates smart grids from conventional 

electricity grids is that smart grids can utilize information and communication technology to 

integrate the actions of all parties connected to it in an intelligently manner, thereby increasing 

the efficiency of the energy system as a whole. One of the key characteristics of smart grids is 

that the task of maintaining a balance between supply and demand is not only addressed through 

supply-side initiatives but also through demand side initiatives. This increases the ability of 

individual regions to absorb the fluctuations of renewable production themselves, thus 

maximizing the utilization of RES while avoiding production curtailment. While the smart grid 

concept relates purely to electricity grids, which arguably face the largest challenges in terms of 

RES-based production and balancing, Lund et al. [17] argue that there may be several benefits to 

be gained from taking a smart energy systems approach rather than focusing efforts on individual 

energy sectors. A closer integration between electricity grids and other energy system sectors such 
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as the district heating networks may reveal synergies that benefit all sides. As such, several aspects 

of smart grids may also be relevant for other energy sectors. 

The notion of adapting demand to the benefit of the energy system is generally denoted demand 

response (DR). The share of consumption that may be adapted without a significant degradation 

of the consumer experience is referred to as flexible consumption. Because of the significant 

energy consumption that takes place in buildings, many researchers have considered them suitable 

candidates for DR initiatives, see e.g. [3, 18–19]. A similar point of view is found in the recent 

2018 amendments of the EPBD (Directive 2018/844/EU), which states that the Union by end of 

2019 shall have adopted a common scheme for rating the smart readiness of buildings [20]. The 

directive further elaborates on this term by defining it as the ability of a building or building unit 

to adapt its operation to the needs of occupants or the grid.  

Several energy-consuming processes in buildings may be adapted in this way and are therefore 

considered partially flexible. These processes include the operation of certain appliances (e.g. 

dishwashers and washing machines) and the charging of electrical vehicles or domestic hot water 

tanks [21–22]. Flexible loads may be scheduled to take place at times which benefit the grid, e.g. 

at times of sufficient or excessive energy production from renewables or at times of otherwise 

low grid load. Another approach is to adapt the more continuous thermostatic loads for space 

heating and cooling of buildings. The approach is often referred to as structural thermal energy 

storage (STES), as it utilizes the inherent thermal capacity of massive structural elements in 

buildings as a means of storage. The way that energy is stored in this approach depends on how 

the particular heating system interacts with the thermal mass of the building. Some heating 

systems are designed to act directly on the thermal mass of the building through thermal activation 

of building components (e.g. underfloor heating), while other systems use convectors or radiators 

to dissipate most of their heat output into the air of the building. Figure 2 presents an illustration 

of a heating strategy that utilizes the thermal mass of a building by engaging in preheating in order 

to reduce consumption during peak periods.  

The task of utilizing STES to generate flexible demand in practice is characterized by several 

challenges. One of these is that there are certain limitations as to how large (and how fast) the 

temperature fluctuations used to enable energy storage may be, before the occupants of the 

building begin to feel thermal discomfort. Therefore, utilization of STES requires the occupants 

of the building to indicate what level of comfort they consider acceptable, e.g. in the form of a 
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temperature comfort-band as indicated in Figure 2. Furthermore, since the process of storing heat 

in structural mass is not lossless, a key aspect of effective utilization of this storage method is the 

task of determining the exact intensity and duration of a temperature-increase that results in the 

right amount of energy being stored. Doing so with sufficient accuracy involves accounting for 

the current thermal state of the building as well as external influences that affect the building in 

the near future. Model predictive control (MPC) is a control scheme that utilizes a building energy 

model (BEM) to address all of these concerns.  

 
Figure 2 Principle in utilizing the structural thermal energy storage  

for demand response. Adapted from (P4). 

MPC schemes determine the optimal control strategy for a given process by solving an 

optimization problem. This process involves using a model of the process in combination with 

forecasts to predict the impact of phenomena outside the influence of the control scheme. In a 

building-control context, a dynamic model of the thermal dynamics of a building is used to 

account for the impact of e.g. weather conditions and occupancy-related internal heat gains. These 

influences are incorporated in the optimization problem solved by the control unit to ensure that 

the obtained control strategy accounts for them. Furthermore, the optimization routine that serves 

as the foundation of the control scheme allows for the inclusion of explicit constraints relevant to 

the particular process. While incorporating system-related constraints such as the maximum 

power output of a HVAC system is straightforward for any control scheme, the use of a BEM as 

an integrated part of the control scheme allows the optimization problem to include comfort-

related constraints as well. These may represent an allowed range of temperatures or an upper 



 Chapter 1. Introduction 

 

     7 

bound of the temperature rate-of-change. Solving the optimization problem yields the control 

strategy that is optimal in terms of a predefined objective function and constraints. The objective 

function may reflect the objectives of the building owner or the utility company supplying the 

building with energy. Typically used objectives minimize the overall energy consumption or 

economic costs of operating the building – while others maximize the share of the consumed 

energy that is produced from renewable energy sources. The functions that describe these 

objectives may be readily adapted as circumstances change and new control behaviour is desired. 

This, together with the ability of MPC to explicitly handle constraints related to the operation of 

the building, has resulted in MPC becoming the most frequently used control strategy for research 

on smart buildings [23]. In spite of several advantages of utilizing MPC for DR purposes in 

buildings, several factors still hindered progress towards realizing these potentials in actual 

buildings at the time when the work presented in this thesis was conducted – and still do.  

Among these factors are several challenges related to implementing MPC in buildings in a cost-

effective and reliable way. MPC is an advanced control scheme requiring a significant amount of 

technical infrastructure in order to function; both in terms of the sensors needed in the building 

and in terms of the infrastructure used to communicate with external entities. Examples of the 

latter are weather services providing the weather forecasts to be used in the optimization, but also 

utility companies who broadcast time-varying energy prices or engage in DR coordination by 

other means. Although the need for a complex technical infrastructure seems highly inhibitive for 

the viability of MPC schemes, several factors indicate otherwise: the recent EU Directive 

2018/844 directly underlines the importance of establishing high-capacity communication 

networks for smart homes [20], thus suggesting that standardized solutions for facilitating such 

communication may be rolled out in the future. Furthermore, Killian and Kozek [24] argue that 

the increasing adoption of home automation systems is likely to reduce or eliminate many of the 

expenses related to establishing the internal infrastructure required in the buildings, since many 

of the sensors needed for MPC are typically already a part of such systems. Another and more 

urgent issue, however, is the task of obtaining a BEM that is a sufficiently accurate representation 

of the building to be used in MPC schemes. Obtaining the BEM is generally considered the most 

challenging aspect of implementing model-based control schemes in practice, because the 

diversity of buildings has hindered the development of standardized modelling methods, thus 

resulting in this process being both expensive and time-consuming while also requiring some 

level of expert knowledge [23–25].  
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In addition to the challenging aspects related to the practical implementation of MPC, Cutter et 

al. [26] consider one of the greatest barriers for utilization of DR in general to be the lack of 

appropriate market structures to support it. The authors argue that many of the requirements that 

apply to participants in conventional power markets may render the balancing power achievable 

through DR unable to compete with that of conventional combustion turbine plants. Similarly, 

Ma et al. [27] describe how a tendency toward continued use of rules and definitions of the 

conventional bulk power system may inhibit potential providers of DR from participating in the 

markets. In this regard, the authors mention requirements for the minimum bidding amounts 

(energy quantities) that may enter the balancing markets as well as requirements related to the 

technical infrastructure needed to coordinate/facilitate DR as examples of inhibiting regulatory 

structures. Finally, O’Connell et al. [28] point to the lack of transparency in current tariff 

structures as a barrier, especially for residential customers, who are unable to respond to variations 

in electricity production prices if these variations are not reflected in their utility expenses directly.  

1.2 Scope of this work  
The topic of this thesis is the utilization of buildings as flexible resources that may be used to 

address some of the challenges related with the transition to an energy system powered by 

intermittent renewable energy sources. The aim of the presented work is to contribute with 

research addressing some of the specific challenges of the previous section that inhibit utilization 

of buildings for DR in practice. This section is devoted to limiting the scope of the thesis within 

this relatively broad setting, and condensing the observations presented so far into a set of explicit 

research objectives.  

As consumers are not obligated through rules and regulations to participate in DR activities, the 

potential of DR is determined entirely by the willingness of consumers to adapt their consumption 

– and hence the convenience at which they may do so. In this regard, the approach of manipulating

thermostatic loads for utilize STES separates itself from many other sources of flexible

consumption, because the level of participation may be seen as a continuous variable. Continuous,

in this sense, refers to the fact that the level of degradation of the consumer experience is entirely

up to the consumers themselves. As such, the more sensitive consumer who is still willing to

participate in DR may specify a stricter set of constraints, e.g. a smaller range of allowable

temperatures, at the cost of a corresponding reduction in the economic incentive provided by the

utility company. This is in contrast to the type of DR originating from many of today’s marketed
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smart appliances, which often have a binary ‘either/or’ characteristic to them, where consumers 

on a day-to-day basis have to decide whether e.g. a postponement of running the dishwasher is 

acceptable to them. Compared to DR gained from thermostatic loads, I consider these types of 

discrete sources of DR much more likely of being perceived as inconvenient by consumers, and 

thereby in themselves constitute a hindrance for the utilization of DR in general. This belief, 

together with my background in civil engineering and building physics, has resulted in the scope 

of this work being limited to DR initiatives based on the utilization of STES.  

Furthermore, while essentially all buildings in which the thermal environment is conditioned 

through space heating or cooling may be utilized for DR, this work focuses on residential 

buildings for a number of reasons. With the residential building sector accounting for 25% of final 

energy use in the EU, whereof approximately two-thirds is used for space heating in the north and 

west regions of the EU [1, 29], the theoretical potential for DR in residential buildings is 

enormous. Furthermore, due to the fact that DR based on STES can be tailored to fit the personal 

preferences of consumers, residential buildings may be the ideal setting for such initiatives. 

Finally, the more lenient attitude towards indoor climate control that has traditionally applied to 

residential buildings may result in increased thermal comfort being experienced by occupants as 

more advanced control schemes are implemented. This may increase the willingness of consumers 

to allow for controlled temperature fluctuations used to enable DR, both benefitting the grid and 

generating economic incentives for the building owners.  

These observations have led to the scope of the thesis being limited to the utilization of STES for 

DR purposes in residential buildings. Considering the challenges outlined in this thesis so far, two 

relevant areas requiring further research emerge: modelling residential buildings and demand 

response in residential space heating.  
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Part I: Modelling residential buildings  
Building energy modelling is a field of research that has been gaining interest due to the many 

possible applications of building energy models. These include model-assisted design, control, 

commissioning, fault detection and energy labelling. In rough terms, setting up a building model 

generally amounts to selecting a suitable model structure and identifying its parameters from 

relevant information about the building. In purely physics-based modelling approaches, building 

models are derived from information on specific buildings (e.g. construction plans or energy 

performance certificates) or, alternatively, information about buildings in general (e.g. typical 

geometry and materials). Statistical methods, on the other hand, rely on measurements to derive 

models. This data describes the influence of various factors such as weather conditions (inputs) 

on the indoor temperature or the heating demand of the building (inputs or outputs). While the 

latter often result in highly accurate building energy models that are suitable for control-purposes, 

data-driven modelling approaches are characterized by several challenges.  

One of these challenges is the data acquisition itself, where the sensor equipment needed to 

measure weather conditions constitutes an economic and practical barrier for residential 

applications. Another challenge is ensuring that the data has a set of properties that makes it suited 

for dynamic modelling. To achieve this, data is often collected by conducting experiments in the 

building that are designed with this particular goal in mind. These experiments typically involve 

imposing a series of temperature fluctuations (excitation) on the building to reveal its dynamic 

properties. In many cases, increasing the amplitude of these fluctuations results in better data, 

since the dynamic characteristics of the building are exposed more clearly, while the effects of 

noise or disturbances are reduced. High-quality data not only allows for more precise parameter 

estimates, but also allows the modeller to work with more complex model structures with a higher 

number of parameters. In this regard, the challenge with residential buildings is that these 

buildings are rarely vacant for extended periods. Due to comfort considerations, the presence of 

occupants limits how large these fluctuations may be. At the same time, occupants may affect the 

heat balance of the building in ways that are difficult to account for in the measured data. As such, 

occupants simultaneously introduce noise in the measurement data and limit the precautions that 

can be taken to address such noise. The choice of model structure thus becomes a trade-off 

between increasing the model complexity to achieve a better representation of the physical 

phenomena that take place in the building, or decreasing model complexity to ensure that the 

model parameters can be identified from the measured data.  
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These challenges have been condensed into the following set of explicit research objectives. Each 

objective is addressed in one or more of the primary or secondary publications of this thesis, 

which are stated in the parentheses following each objective.  

1.1 Investigate how to design excitation experiments with special attention to the trade-off 

between the conflicting objectives of maintaining a comfortable indoor climate during 

experiments and obtaining building models of high quality. (P5, S7) 

1.2 Identify low-complexity model structures capable of describing the thermodynamic 

characteristics and behaviour of buildings when identified using typical measurement data. 

(P6) 

1.3 Identify practical methods for obtaining (or avoiding) weather measurements intended for 

control-oriented modelling of buildings. (P3) 
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Part II: Demand response in residential space heating 
Several studies have investigated leveraging structural thermal energy storage (STES) in 

buildings for DR purposes. An example of a study applying MPC in buildings is that of Široký et 

al. [30], who implemented an MPC scheme in a university building to lower energy consumption 

while improving comfort levels. Another application was presented by Ma et al. [31], who in a 

simulation-based study involving a commercial building showed that MPC was superior to other 

rule-based control schemes in terms of generating economic savings under time-varying energy 

prices. Oldewurtel et al. [32] used a mixed objective function considering both electricity prices 

and the grid load for MPC in an office building. 

In the current body of research, only a few studies investigating the potential of engaging 

residential buildings in STES-driven demand response applications were identified. Reynders et 

al. [14] investigated the ability of rule-based control schemes (both non-predictive and predictive) 

to improve the temporal match between local energy production and consumption. This work was 

further expanded Reynders’ doctoral thesis [33], in which he presented a fundamental analysis of 

the potential for utilizing STES and the impact of certain building characteristics. One of the 

conclusions drawn in this work was that the efficiency at which STES in buildings may be utilized 

depends not only on the available thermal mass, but also on the energy efficiency of the envelope. 

Other studies have investigated the performance of MPC in achieving economic or societal 

objectives: Halvgaard et al. [34] demonstrated the use of MPC for exploiting the thermal mass of 

a residential building equipped with underfloor heating, and achieved 25-35% economic savings 

by adapting the heating strategy to the time-varying electricity prices from the Nord Pool day-

ahead electricity market. The authors furthermore argued that, since electricity prices are 

correlated with the amount of renewable production from e.g. wind turbines, MPC could 

essentially be used to store cheap renewable energy in the thermal mass of buildings. Knudsen 

and Petersen [35] argued that such a relationship between energy prices and the source of its 

production cannot always be assumed, and demonstrated the ability of an MPC scheme 

controlling the space heating in a dormitory apartment to handle a multi-purpose objective 

function, which considered both the electricity prices and the carbon-dioxide intensity associated 

with the electricity production. Depending on the chosen weighing between the objectives of 

reducing costs and reducing CO2 emissions, the change in economic costs compared to a baseline 

ranged from approximately +6% (higher costs) to -15% (savings). Similarly, the change in CO2 

emissions ranged from +6% to -8%. In general, studies report significant differences in the 
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potential of utilizing MPC in buildings. Most likely, the building characteristics identified by 

Reynders [33], which were found to influence the effectiveness at which buildings may engage 

in DR, are among the main causes of discrepancies between studies. Another possibility is 

differences in the prices used to evaluate these potentials.  

The scarcity of studies on DR in residential buildings calls for further research on the potential 

benefits of utilizing this source of flexible consumption. Furthermore, previous research has 

indicated that the energy performance of buildings affects their ability to engage in DR. However, 

research on how these relationships affect the control actions of MPC schemes is lacking. Finally, 

several studies have used the time-varying prices from electricity wholesale markets to set up 

objectives concerned with minimizing the costs of operating a building. However, research has 

indicated that wholesale market prices may not truly reflect the actual needs of the grid [32, 35]. 

Therefore, further research exploring alternative incentive mechanisms is needed. These gaps in 

current knowledge have led to the formulation of four explicit research objectives:  

2.1 Investigate the influence of building energy efficiency on the potential for utilizing the 

structural thermal mass for residential demand response through model predictive control. 

(P1, P2) 

2.2 Identify the impact of heat exchange between adjacent zones on the performance of 

centralized and decentralized control schemes. (P1, S5) 

2.3 Explore and evaluate existing and new market structures on their ability to incentivize 

residential DR that generates societal or grid-related benefits. (S3, P1, P2, P5) 

2.4 Investigate how the demand response potential in individual buildings translates to a scenario 

of large-scale utilization. (P5) 
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1.3 Thesis outline 
The format of this thesis is based on the two research areas identified in the previous section:  

Part I: Modelling residential buildings 
Part II: Demand response in residential space heating 

Each part begins with an introductory chapter, which is followed by three chapters presenting 

research related to the objectives defined in section 1.2. These chapters are comprised of a short 

motivation of the study that is presented, the paper itself and finally a section discussing the 

analysis and main findings in the context of the objectives of this thesis. In a few cases, additional 

results that were either left out of the published paper or obtained since the publication are also 

provided. The thesis is concluded with a unifying summary of the main findings together with 

suggestions for future work.  



PART I MODELLING RESIDENTIAL BUILDINGS 

PART I 
MODELLING RESIDENTIAL 

BUILDINGS
PART I: MODELLING RESIDENTIAL BUILDINGS  



Part I: Modelling residential buildings 

16 



Chapter 2. Modelling approach 

17 

2 MODELLING APPROACH 

The process of modelling any physical system involves a series of choices being made by the 

modeller. Among the most significant, is the choice between the physics-based and statistics-

based modelling approaches. Physics-based modelling, which is also referred to as white-box 

modelling, relies on knowledge about the characteristics of the system and the physical 

phenomena affecting it to set up a model. Detailed building energy performance simulation tools 

such as EnergyPlus, BSim, IDA-ICE and TRNSYS Type56 are examples of white-box modelling 

tools. These tools have an emphasis on detail, and achieve it through a deterministic modelling 

approach that is heavily reliant on user-specified inputs describing the building. This approach 

allows them to be used for detailed analysis of buildings that have not yet been built, and so-called 

model-assisted building design where models are used actively in the design phase of a building 

project. An issue associated with this approach is that the high complexity of these models makes 

them unfit for control purposes, since the modelling approach requires a level of detail that is 

rarely available. This typically necessitates a significant amount of assumptions being made in 

setting up the model, which may be based on default values described in modelling standards or 

on the subjective experience of the modeller.  Such assumptions inevitably affect the accuracy of 

the resulting models, thereby limiting their use for control purposes. Even if a high level of detail 

is available, several factors during the building construction and operational phases may still 

cause discrepancies between the theoretical (as-ordered) and actual (as-built) energy performance 

of the building. A way of improving the accuracy of such models is to calibrate them using 

measured data. However, even if an acceptable level of accuracy may be achieved in this way, 

the complexity of the models itself renders them unfit for many control purposes due to the 

significant computational work involved in simulating them [25, 36].  

The requirement for accuracy and computationally fast simulations has led to this work focusing 

on modelling approaches that rely on measured data to obtain simple models that are suited for 

control purposes. Before any analysis is presented, the following chapter provides a brief 

description of some of the modelling-related choices that have applied to the majority of the 

conducted work.  
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2.1 Data-driven modelling 
The field of system identification is concerned with the practice of developing mathematical 

models of real-world phenomena using data. This data consists of measurements of phenomena 

(inputs) affecting a given system, and the corresponding change in the state of the system 

(outputs). The combination of these measurements describes the input-output relationships that 

are characteristic of the modelled system. The objective of the modelling process is to identify a 

model which, when exposed to the measured inputs, replicates the measured output of the true 

system with sufficient accuracy. System identification is a mature field of research in which 

several methods for deriving models from measured data have been developed. Among these, 

some of the more intuitive techniques are those belonging to the family of prediction error (PE) 

methods [37]. The basic principle of PE methods is to parameterize a given model in terms of a 

finite number of parameters. The parameter identification then becomes an optimization problem 

with the objective of minimizing some measure of the error between the output of the model and 

the measured output of the true system, which is a function of model parameters. The basic 

principle of PE methods is depicted in Figure 3.   

Figure 3 The principle of the family of prediction error methods in system identification. 

STATISTICS- AND PHYSICS-BASED MODELLING

A family of methods that is frequently used as an alternative to the PE methods are the purely 

data-driven subspace identification (SID) methods, which rely on projections of the input-output 

data to determine the optimal state vector, from which the system matrices (model) can be 

extracted [38]. One of the significant advantages of SID methods is that the model parameters are 

identified in a non-iterative fashion and are hence easily computed. This is only the case for a 

small subset of models when using the PE methods. The system matrices obtained through SID 
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are freely parameterized, meaning that no a-priori structure may be imposed on them. An 

advantage associated with this is that models may be derived with minimum effort and knowledge 

about the system. On the other hand, a drawback of free parameterization is that the parameters 

of the obtained models have no physical meaning. Furthermore, the disregard of the physical 

characteristics of the modelled system results in a heavy reliance on the measured data to reveal 

the internal workings of the system. Naturally, this results in strict requirements for the quality of 

the data, but also has the consequence that these models generally have poor extrapolation 

capabilities – i.e. the ability of the model to describe the behaviour of the system under other 

conditions than those present in the training data [36]. The lack of parameter interpretability in 

models obtained through SID methods has earned them the label black-box models.  

One of the key differences between the SID and PE methods is the fact that only the latter allows 

for the use of structured models, as also suggested by Figure 3 [36]. This allows the modeller to 

base the structure of the model on knowledge about the physical phenomena affecting the system 

– e.g. the laws of thermodynamics. Thereby, the modelling principles of the aforementioned 

white-box approach are mixed those of the statistical methods, which is why these models are 

referred to as grey-box models. The use of structured models is the main driver of both the 

advantages and disadvantages of PE methods when compared to SID methods. Using a physics-

based model structure often reduces the number of parameters of the model when compared to its 

black-box counterpart, thereby in many cases simplifying the task of identifying the parameter 

values from data. Another advantage is that the parameters become physically interpretable, thus 

allowing the modeller to not only incorporate knowledge about the modelled system through the 

specification of the model structure itself, but also by constraining or guiding the parameter 

identification. This may be done by fixing certain parameters whose values are known with 

sufficient certainty, or by specifying the likelihood of a given parameter assuming a given value. 

As stated by Tangirala [36], incorporating a model structure also reduces the sensitivity of the 

parameter identification to the quality of the input-output data;  

‘… a practical benefit of working with grey-box models is that the prior  

knowledge significantly lowers the burden of persistent excitation or  

information requirements in input-output data that is normally required  

for black-box identification’ – Arun K. Tangirala 
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A final advantage of the PE method is its ability to identify parameters from input-output data 

captured under closed-loop control, and therefore contain a high level of feedback [37]. The 

prevalence of closed-loop control in buildings could pose an issue for the correlation, spectral 

analysis and subspace identification methods, since they are more sensitive to data containing 

feedback [39]. 

CHALLENGES IN GREY-BOX MODELLING 

The perhaps most significant drawback of the PE method is that it typically involves an iterative 

identification approach rather than the non-iterative approaches applied in SID methods. In almost 

all cases, the optimization problem of minimizing the prediction error as a function of model 

parameters is non-linear in nature. In these cases, there is no guarantee of the applied optimization 

routine finding the set of parameters associated with the global minimum of the chosen error 

criterion – i.e. the function that maps a sequence of prediction errors to the scalar that is 

minimized during the parameter identification. This issue becomes more significant as the size 

and complexity of the model structure increases. Therefore, increasing the complexity of a model 

structure may allow it to represent the dynamics of the modelled system more accurately, but it 

may also render the optimization routine unable to identify a suitable set of parameters. A term 

denoting the ability to identify the parameters from data is identifiability. The trade-off between 

model complexity and parameter identifiability constitutes one of the most challenging aspects of 

grey-box modelling.   

Clearly, both the black-box and grey-box modelling approaches have their own merits. In the 

context of buildings, however, I consider the advantages of the PE methods to outweigh the added 

efforts related to the proposal of model structures and the added computational work in identifying 

their parameters. The primary reason for this is the requirements for data-quality that are 

associated with black-box modelling. Usually, input-output data is obtained through measurement 

experiments that are designed to yield as informative data as possible. In the context of buildings, 

such experiments usually involve exciting the building by imposing temperature fluctuations 

through the heating system. However, several factors may inhibit the generation of highly 

informative data in buildings. These include the lack of control over certain inputs (weather 

phenomena, occupancy-related heat gains) and the high costs (both in economic and comfort 

terms) associated with measurement experiments. Therefore, the prediction error method and 

physics-based grey-box model structures were used in the modelling work of this thesis.  



 Chapter 2. Modelling approach 

 

     21 

CHOICE OF ERROR CRITERION 

A significant choice related to PE methods is the choice of error criterion. The classical PE method 

minimize some measure or norm of the one-step-ahead prediction errors of a model using an 

either predefined or identified noise model. This approach yields models ideal for e.g. set point 

tracking and other applications that benefit from short-term predictions. Furthermore, Zhao et al. 

[40] argue that the one-step-ahead approach is optimal if the prediction errors are mainly driven 

by stochastic noise in the data originating from disturbances acting on the system. Whenever long-

range predictions are desirable, several studies have suggested that minimizing the k-step-ahead 

(or multi-step-ahead) prediction error is more appropriate [41, 42]. The underlying notion is that 

the simultaneous identification of the deterministic model (in our context; the building model) 

and the stochastic model (noise model) in the one-step-ahead approach produces a potentially 

biased estimate of the plant model. This biased plant-model is optimal when used in combination 

with the identified noise model to make predictions. However, since the input to the noise-model 

is the previous prediction errors, it cannot be used in long-range predictions. Therefore, in this 

setting, a biased plant model would perform worse than an unbiased plant model which was 

identified either without a stochastic noise model (Output Error model), or with a noise model but 

using a k-step-ahead error criterion. Here, the latter ensures that more emphasis is put on the 

deterministic model than the noise model, thus increasing the accuracy of long-range predictions.  

The connection between the k-step-ahead error criterion and the long-range predictive 

performance have led to identification methods using this criterion being referred to as control-

relevant identification or, in the context of MPC, MPC-relevant identification. The modelling 

conducted in this thesis uses an infinite-step-ahead error criterion (also denoted simulation error), 

essentially putting full emphasis on the plant model estimate. For applications where a noise 

model is desired, the parameters of the noise model were identified independently – i.e. after the 

parameters of the plant model had been identified.  

USE OF BUILDING ANALOGUES 

Finally, although research concerned with modelling the thermodynamic behaviour of buildings 

should ideally be based on experimental data captured in actual buildings, the majority of the 

analysis contained in this thesis is based on simulations. The main reason for this is that several 

of the thesis objectives (of both Parts I and II) call for comparative analyses that require a 

proposed set of methods (e.g. experiment design or control schemes) to be evaluated under 
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identical boundary conditions. Changing weather conditions, for instance, make such analyses 

difficult to conduct in real buildings. Instead, in the majority of the conducted research, detailed 

building models are used as analogues for real buildings to retain as much of the complexity of 

real buildings as possible, while still allowing repeated and identical evaluation of modelling and 

control-related methods. The building energy performance simulation tool EnergyPlus [43], 

developed by the U.S. Department of Energy, was used for this purpose. EnergyPlus simulates 

the thermal conditions inside buildings down to a temporal resolution of one minute, and uses 

detailed algorithms to describe the thermodynamic phenomena that take place in buildings. The 

Building Controls Virtual Test Bed [44] software allows the EnergyPlus to be coupled with 

programming engines such as MATLAB [45]. This approach of simulating two separate pieces 

of software simultaneously and exchanging information between them is referred to as co-

simulation. This simulation method constitutes a versatile framework for evaluating a wide range 

of the aspects related to building modelling and control.  

The following chapters each present a research paper that addresses one of the research objectives 

related to the first part of this thesis. Each chapter provides a brief motivation for the study, before 

the paper is presented in full in its own separate section. Finally, each chapter contains an epilogue 

in which the main findings of each paper are discussed in the context of the objectives of the 

thesis.  
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3 EXPERIMENT DESIGN 

A prerequisite for the ability to identify the parameters of models describing any given system 

(including buildings) from measured input-output data is that the data is informative [37]. Data 

can be regarded as informative if it reveals all relevant properties of a given system and allows 

the modelling procedure to distinguish between any two candidate models. Experiment design is 

concerned with ensuring that the measured data is sufficiently informative to identify the type of 

model that is desired. Assuming that other basic prerequisites are met (e.g. that all relevant inputs 

are measured), experiments are designed with two important attributes of the resulting input-

output data in mind: the frequency content and signal-to-noise ratio of the data.  

FREQUENCY CONTENT 

The frequency content of an input signal is the instrument used to reveal the dynamic properties 

of the system. The more frequencies with sufficient power contained in the input signal, the more 

clearly can the resulting input-output data reveal the differences between two similar candidate 

models. A lack of power in a certain frequency band of an input signal may render it unable to 

reveal certain dynamics of the system. A way to ensure sufficient frequency content is to choose 

an input signal with a flat frequency spectrum – e.g. a signal of pure white noise. However, a 

more frequently used type of input signal is pseudo-random binary sequence (PRBS) signals, 

which can be generated in a way that ensures they have white noise-like properties – power in 

essentially all frequencies. Signals that by default carry information in all frequencies may be 

manipulated to put emphasis on certain parts of the frequency spectrum, which is advantageous 

whenever the relevant dynamics of the modelled system are confined to a certain frequency range. 

For instance, Rivera et al. [46] proposed a set of guidelines for constructing suitable PRBS signals 

through utilizing prior estimates of the dominant time-constants of the modelled system. This is 

particularly useful in the context of buildings, where the time constant of the room air may be in 

the order of minutes, while the heavy structural components may have time-constants spanning 

upwards of days. Figure 4 depicts a PRBS signal and its frequency power spectrum generated 
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using this approach1. The PRBS signal carries information across the entire frequency band that 

was specified as relevant when designing the signal.  

 

Figure 4 Full-length PRBS signal and its power spectrum. Relevant bandwidth as per [46, 47].  
Only part of the signal is shown – length of full signal is approx. 28 days. 

SIGNAL-TO-NOISE RATIO 

The second prerequisite for informative data is a suitable signal-to-noise ratio (SNR). This ratio 

describes the strength of the input signal (determined by signal amplitude) relative to the amount 

of noise present in the data. Noise, in this context, may originate from the sensor equipment itself 

or from unmeasured phenomena acting on the system. The higher the SNR, the easier it is to 

differentiate between measured output effects resulting from the inputs and those driven by noise. 

A low SNR can result in the in a high uncertainty associated with identified the parameter 

estimates. In more severe cases, the noise in the data may be so dominant that the relationship 

between inputs and outputs cannot be identified; thereby resulting in a model that describes the 

true system poorly.  

                                                      
1 Signal generated for a system with low and high time-constants of 30 minutes and 3 days, respectively. 

User design input was selected as 𝛼 ൌ 2 and 𝛽 ൌ 1, see [46].  
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The maximum input power that can be exerted on a system, and thereby the achievable SNR, may 

be limited by a variety of considerations that depend on the specific system in question. An 

example of this is a desire to maintain the state of the system within a certain range – e.g. within 

typical operating conditions or to ensure that the system remains in a regime in which it can be 

approximated by a linear model [48]. Another reason may simply be that it is expensive or 

impossible to manipulate an input to achieve a certain level of power. A building-related example 

of the latter could be the maximum power output of the heating system that is used to excite the 

building. In cases where such limitations exist, the type of signals that are imposed during 

measurement experiments are often chosen with the crest factor in mind. The crest factor (𝐶) 

describes the ratio between the peak amplitude and the root mean square of a given signal ሺ𝑢ሻ 

[36], and is defined by Eq. (3.1).  

𝑪𝒓 ൌ
𝐦𝐚𝐱𝐭൫𝒖ሺ𝒕ሻ െ 𝒖ഥሺ𝒕ሻ൯

𝐥𝐢𝐦
𝒏→ஶ

𝟏
𝑵 ට∑ 𝒖𝟐ሺ𝒕ሻ𝑵

𝒕ୀ𝟏

  (3.1) 

In a more applied sense, the crest factor describes the input power obtainable through a given 

signal confined to a certain maximum amplitude – the lower the crest factor the higher the power 

(variance). PRBS signals also excel in this sense, since these signals are characterized by the 

lowest possible crest factor. From a theoretical standpoint, these properties of PRBS signals make 

them ideal for (linear) building modelling applications, where the presence of occupants poses a 

significant challenge to the efforts of ensuring a high SNR. The reason for this is that occupants 

limit the input power due to comfort considerations, and at the same time generate noise through 

their metabolism and other activities that affect the heat balance of the building such as venting 

or use of appliances.  

Because of these observations, thesis objective 1.1 is concerned with the question of whether a 

sufficiently high SNR can be achieved in occupied buildings without causing the occupants to 

feel thermal discomfort. The paper in the following section presents an analysis of this topic. Due 

to significant differences in the layout of this thesis and the conference proceedings in which the 

paper was published, the paper is reproduced here in a format more in line with the rest of this 

thesis.  
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Abstract 

Model predictive control (MPC) uses mathematical models of the building to plan HVAC 

operation. One way of obtaining models is to use statistical methods to derive models 

from building measurement data. This data is typically collected through excitation 

experiments that impose temperature fluctuations on the building to reveal information 

on the buildings thermal dynamics. This paper investigated the trade-off between 

occupant comfort during excitation experiments and the quality of the resulting model. 

The results showed no clear tendency of higher model quality with increasing experiment 

strength. Implementation of models with varying accuracy in an MPC algorithm showed 

similar heating patterns and achieved cost savings during operation. None of the 

experiments violated the comfort requirements which indicate that expedient grey-box 

models for MPC can be obtained without annoying occupants when generating data for 

calibration of the model. 

Keywords - Model Predictive Control, Building models, Occupancy comfort, Excitation signals. 

1 Introduction  

In the pursuit of increasing energy efficiency and flexibility, a number of model-based 

control schemes are beginning to emerge in building automation. One of the most 

prevailing approaches is model predictive control (MPC). An important part of MPC 

algorithms is the mathematical building model which is used to predict how the building 

response to stimuli such as changing weather conditions, internal heat loads and the 

operation of the heating, ventilation and air conditioning (HVAC) system [1] [2]. While 

these building models can be derived based on knowledge of physics, a more common 

approach is to derive models using statistical methods. Such methods, also referred to as 

system identification, are either used to calibrate grey-box models or to create black-box 

models to reproduce the behavior of the system being modelled [3]. Statistical approaches 

to building modelling rely on measurement data from the actual building to estimate 

(black-box) or fine-tune (grey-box) the model parameters. To obtain this data, an 

experiment that imposes temperature fluctuations on the actual building is carried out. 

The general theory is that these fluctuations must excite the system in question to a degree 

that data reveals the dynamic properties of the system [4]. As stated in [5], fitting models 

intuitively amounts to explaining variations in the output of the system. This task becomes 

increasingly difficult as the ratio between the known signal and the unknown noise 

decreases. This is probably why previous experiments exited buildings with temperature 

fluctuations far beyond normal indoor environment conditions [6] [7]. Such experiments 

are, however, infeasible if complex model-aided HVAC controls are ever to enter the 

residential building sector since the extreme indoor climate would force occupants to 

leave their homes during experiments. The aim of this study is to investigate whether 

suitable models for MPC can be obtained through low thermal comfort-impacting 

experiments.  
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2 Methods 

The following sections present the methodology used to generate and evaluate results as 

well as important assumptions regarding model structure, input design and the presence 

of noise. Overall, the study is based on the co-simulation principle. The actual building is 

modelled in EnergyPlus [8] while a MATLAB program handles the MPC operation of 

the heater in the EnergyPlus model. The two programs are coupled with the Building 

Controls Virtual Test Bed [9].   

2.1 Model structure 

The model used in this study can be categorised as grey-box models. Grey-box models 

are characterized by having a predefined structure of physically meaningful parameters, 

such as the U-value of the building envelope or the g-value of the windows. These 

parameters are coupled with the principles of thermal dynamics to derive differential 

equations that describe the temperature conditions in the building, and thus how the 

building responds to the operation of HVAC-equipment, occupants and weather 

conditions. The model structure used in this study has two lumped capacities: one for the 

room air and one for the building construction. The model takes solar heat gains, outdoor 

temperature and heating from the HVAC system as input. Fig. 1 depicts the used model 

structure, which is a modification of the model presented in [10]. 

 

Fig. 1 Model structure and coefficient nomenclature. 

With the model structure being fixed, the task of the system identification process is to 

determine the values of the coefficients in the model.  

2.2 Artificial noise generation 

Excitation experiments are carried out to lower the impact of noise on the system 

identification process. This study would therefore not be meaningful unless there is some 

noise involved. A simple method for generating random noise in an expected occupancy-

related heat load profile in a building is therefore developed. The noise is generated in 

two steps: 

 The times at which occupants arrive or leave home are randomized using the 

uniform distribution. Uncertainty varies depending on time-of-day with occupant 

arrival in afternoons being characterized by the highest uncertainty.  

 Random fluctuations are added to emulate the opening of windows and use of 

electronic equipment. The fluctuations are created using a combination of a 

random walk and a moving average filter. 

  

Inputs  

Text: Outdoor air temperature.  

Qsun: Solar heat gains.  

Qheat: Thermal energy from HVAC system.  

Temperature nodes  

Tm: Temperature of construction mass  

Ts: Surface temperature  

Ta: Room air temperature  

Parameters  ሺHTF = Heat Transfer Coefficientሻ 

Hea: HTF from room air to ambient air  
Hsa: HTF from surface to room air  
Hms: HTF from construction mass to surface  
Hem: HTF from ambient air to envelope mass  
Ca: Thermal capacity of room air  

Cm: Thermal capacity of construction mass 
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Fig. 2 shows an example of how the noise model affects a static occupancy profile. It is 

clear how the developed noise model retains some of the occupancy patterns that is 

expected to occur in residential buildings, but alters both the duration and times at which 

heat loads occur.  

 
Fig. 2 Top: Expected heat load based on 24-hour static schedules. Bottom: Actual heat load, i.e. 

noise added to the static profile using the developed noise generator. 

In this study, a total of five different noise sequences were generated and used in 

simulations to ensure that conclusions are not based on mere coincidence generated with 

the noise model. The actual heat load (Fig. 2, bottom) is the one used in the EnergyPlus 

simulation to represent the actual heat load in the building. 

2.3 Experimental Design 

The design of the excitation sequence is based on the methodology for designing common 

input signals in multivariable systems presented by Gaikwad and Rivera [11]. Buildings 

are good examples of such systems since room air and furniture are characterized by 

relatively low time constants while the buildings thermal mass can have a time constant 

spanning over several days. The type of input sequence chosen for this study is the pseudo 

random binary signal (PRBS). The PRBS signal has advantages that makes it a widely 

used for excitation experiments. First of all, since PRBS signals are deterministic, they 

can be designed specifically to fit the system to be identified in terms of the frequency 

content [11]. Furthermore, PRBS signals are persistently exciting which means that they 

excite the system on many different frequencies [4]. Because of this, even the properties 

of complex systems containing several different time constants can be identified. The 

user-specified parameters of the signal design process are shown in Table 1. For the 

remaining steps of the signal design process, see the original paper [11]. 

Table 1. Design values used in the design of the input signals 

𝜶-value: Determines signal high-frequency content.   0.25 [-] 

𝛽-value: Determines signal low-frequency content. 3 [-] 

Sampling time (simulation timestep) 60 [s] 

Lowest (fastest) time constant 6 [min] 

Highest (slowest) time constant  160 [h] 

In the following, the term experiment strength will refer to the size of heating fluctuations 

occurring during the experiment. Four different input signals with identical mean heat 
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loads are generated. The upper and lower bound of each excitation signal and their 

respective signal-to-noise ratio are shown in Table 2. 

Table 2. Experiment designs. Mean value of all experiments is 120 W. SNR-values are 

calculated using the normalized signal (PRBS+Expected occupancy) and the noise (Expected 

occupancy-Actual occupancy). 

Experiment PRBS 1 PRBS 2 PRBS 3 PRBS 4 

Heating load bounds [W] 90 – 150 60 – 180 30 – 210 0 – 240 

Signal-to-noise ratio [dB] 3.4 7.7 10.8  13.2  

2.4 System Identification Methodology 

The process of estimating the parameters of the grey-box model is carried out using the 

System Identification Toolbox in MATLAB. Fig. 3 gives an overview of the methodology 

to generate data and identify models used in this study. 

 

Fig. 3. System identification methodology (Hold-out cross-validation).  

The method uses one subset of the data to train several models, while the other is used to 

validate model performance and find the best model. This approach is often referred to as 

hold-out cross-validation. In this study, five models are identified with each experiment. 

Both data subsets are affected by the presented noise model.  

2.5 Case Building 

The analysis is carried out on a dorm apartment built according to the Danish low-energy 

2015 building standard. The apartment has a 2.55 m2 south facing window with a U-value 

of 1.1 W/(m2K). One façade is facing the outside, while all other room boundaries are 

considered adiabatic. The heat source is an electric radiator. As seen in Table 3, the 

apartment is characterized by heavy construction elements, most of which consist of 

concrete. The EnergyPlus model was created by Knudsen in [12]. 

 

Table 3. Construction elements and material properties used in the EnergyPlus model [12]. 

 Material Thickness 

[m] 

Resistance 

[m2K/W] 

Capacity 

[kJ/(m3K)] 

External wall 

Concrete (ext.) 

Insulation 

Concrete (int.) 

0.100 

0.250 

0.200 

0.09 

6.76 

0.18 

736 

52 

736 

Internal wall Concrete 0.180 0.16 736 

Ceiling/ Floor 

Wood floor 

Air space 

Concrete 

0.025 

0.050 

0.220 

0.17 

0.10 

0.20 

991 

 

736 

 



5 

 

3 Results and Discussion 

This section presents the results from the model fitting process using the different PRBS 

signals and how they affect thermal comfort, model quality, and model effectiveness in 

relation to MPC.  

3.1 Occupant Comfort During Experiments  

For simplicity, this section only evaluates the impact on comfort of the low-strength 

PRBS1 experiment and the high-strength PRBS4 experiment. Fig. 4 shows the amplitude 

of the excitation signals and their impact on room air and operative temperatures, 

respectively.  

 

Fig. 4 Comparison of low- and high-strength experiments. Top: PRBS1, Bottom: PRBS4. 

Fig. 4 shows how both experiments keep the temperature levels within the typical thermal 

comfort boundaries used in buildings (20-26 °C). It is thus not the temperature itself that 

may give rise to occupant discomfort but rather the rate of change of the temperature as 

the heating power fluctuates.  

Several studies have been carried out to determine the impact of transient thermal 

conditions in the indoor environment, but with contradicting conclusions [13]. ASHRAE 

requirements for the maximum allowable rate of change of operative temperatures [14] 

are used in this study, see Table 4. The 15 minute-requirement is considered to be the 

strictest of the requirements during PRBS experiments. This is because the PRBS signal 

essentially produces series of step responses with short but high temperature rate of 

change. Inspection of the simulation data, however, revealed that the high-strength 

experiment only comes close to violating the 15-minute requirement with a maximum 

rate-of-change of 0.94 °C. 

Table 4. ASHRAE requirements on thermal drifts and ramps compared to experiment data. 

Duration of temperature increase  0.25 h 0.5 h 1.0 h 2.0 h 4.0 h 

ASHRAE limits [K] 1.10 1.70 2.20 2.80 3.30 

PRBS1 max rate-of-change [K] 0.39 0.57 0.68 0.80 0.88 

PRBS4 max rate-of-change [K] 0.94 1.24 1.4 1.49 1.51 

As mentioned in section 2.5, the dormitory apartment consists of heavy construction 

elements, which effectively dampens the temperature fluctuations. The same experiment 

may impact light-weight buildings more severely.  
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The results presented here should be interpreted in light of the assumptions that typically 

apply to the use of building performance simulation programs: The source of heat is 

modelled as a fully convective source of heat, and the heat is assumed to be distributed 

evenly throughout the whole apartment. In actual buildings both the radiative and 

convective contributions from radiators will affect the near vicinity more than more 

distant parts of the room. Whether this effect is enough to cause discomfort is not treated 

in this study.  

3.2 Model Quality 

Model quality is evaluated through the commonly used normalized root mean square error 

(NRMSE) goodness-of-fit metric. Prior to the analysis two new terms are introduced; the 

realistic fit and benchmark. Fig. 5 clarifies the terminology and can be seen as an 

extension to the methodology depicted on Fig. 3. 

 
Fig. 5 Methodology of assessing model quality 

The realistic fit is the only of the two measures of model quality that can be obtained in 

real-world applications. The data used to calculate the benchmark fit does not stem from 

the experiments simulated, but a noise-free simulation of the EnergyPlus building using 

several different excitation signals as well as periods of constant heat load. The dataset 

were designed to expose the models to both high-frequency and low-frequency signals to 

thoroughly test the models.  

Six different occupancy profiles were used in the simulation. All of them are based on the 

same expected occupancy profile, but five of them have been altered by the noise model 

(see section 2.2). For each occupancy profile, four different experiments were carried out 

and used to identify models. The NRMSE-fits of the resulting models on experiment and 

benchmark data respectively are shown on Fig. 6.  

 
Fig. 6 Comparison of model accuracy on different noise realizations. Prediction horizon: infinite 
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The realistic fits show a clear tendency of model quality improvements as the experiment 

strength is increased. The benchmark fits, which are much better estimates of model 

quality, showed that only in a few cases the increased experiment strength actually 

provided better circumstances for deriving models. During identification using one of the 

occupancy profiles the benchmark fits were even seen to decrease with experiment 

strength – despite the realistic fit-values indicating the opposite. The decline in 

benchmark fit is most likely a coincidence but the result is still highly relevant in this 

discussion as it highlights the fact that using normalized fits during model validation 

should be carried out with caution.  

The NRMSE-fit, or other normalized fit metrics, are often used as they give a 

dimensionless rating of model accuracy which is easily interpreted. Furthermore, it seems 

logical to view model residuals in the context of how large of an interval the data spans. 

The use of such fit metrics, however, becomes problematic when they are used as a basis 

for designing experiments. This is because using normalized fits essentially favours 

highly fluctuating experiments because of the way it is calculated [15] – a tendency 

clearly shown in the results presented here. This characteristic of the NRMSE-fit means 

that it could easily be interpreted as incentive for increasing the strength of the 

experiments more than needed. Based on the tendencies of model-fits seen in Fig. 6, low-

strength experiments – which are less likely to introduce occupant discomfort – may be 

sufficient to derive suitable building models.  

3.3 Model Effectiveness 

In this analysis, a selection of the models estimated in section 3.2 was tested as part of an 

economic MPC algorithm to investigate the control scheme’s robustness to model 

inaccuracies. The effectiveness of a model is evaluated as the MPC’s ability to generate 

savings by exploiting varying electricity prices compared to a traditional PID controller, 

and ability to maintain room air temperature above a specified set point of 21 °C. 

The Nord Pool electricity spot price [16] is used as the cost of space heating. The MPC 

prediction horizon is six days and the time step is one hour. A Kalman filter is used to 

introduce feedback in the control scheme. Danish design weather data is used in the 

simulation [17]. Table 5 presents the results from a 45-day simulation using three of the 

models generated in the last section. The MPC algorithm used is further presented in [12].  

Table 5. Model performance as part of an MPC algorithm. Fits on noise-free benchmark data.  

Realistic/Bechmark fits Time below 21 °C Min./Mean temp. Cost reduction 

27 / 52% 1.55% 20.94 / 22.42 °C 7.75% 

46 / 66% 26.40% 20.49 / 22.22 °C 9.22% 

77 / 81% 4.87% 20.80 / 22.39 °C 8.15% 

It is seen that the model fit value says very little about whether a model is sufficiently 

accurate to carry out MPC. Visual inspection of model fits during system identification 

showed that all of the models were able to describe the building’s dynamic behavior 

reasonable well, but that lower-fitting models had a tendency of slowly diverging from 

the measurement data. In such scenarios, state estimators such as the Kalman Filter 

becomes very useful as they keep track of inconsistencies between the temperatures of 

the model and measurements in the buildings and applies corrections. This ensures that 

each prediction carried out during MPC operation has a reasonable set of initial conditions 

which is vital for efficient model-aided control.  

The results in Table 5 shows that the model with 66 % fit on benchmark data caused small 

but frequent violations of the prescribed temperature set point, which in term resulted in 

higher savings on space heating. These differences are, however, considered to be 
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relatively low – just as the comfort violations are considered to be of too small magnitude 

and/or duration to be considered critical. 

4 Conclusion 

This simulation-based study investigated the necessity for conducting high-strength 

excitation experiments to derive models suited for model predictive control of heating 

systems in buildings. Mathematical models were identified using data from the simulated 

experiments. No clear tendency of better model fits with increasing experiment strength 

was found which suggests that the quality of measurement data was sufficient in all of 

the experiments. The NRMSE fit, however, was unable to indicate this, as fit values of 

low-strength experiments were found to be much lower than those achieved using high-

strength experiments. This suggests a pitfall in system identification that may lead to 

experiments being designed with unnecessarily high temperature fluctuations. All models 

performed satisfactory in terms of thermal comfort but due to general simplifications 

made in building performance simulation programs, further research on this topic is 

needed (e.g. physical experiments in climate chambers). Finally, simulations where low-

fit models were used to perform economic MPC showed the control scheme to be robust 

to model inaccuracies both in terms of the achieved cost savings and in terms of 

maintaining the prescribed set point. Depending on how realistically the noise model 

developed in this study reproduced the disturbances occurring in actual buildings, these 

results suggest that sufficiently accurate models can be derived from relatively subtle 

excitation experiments. Future research could be to investigate performance of other 

building scenarios, and carry out similar analysis using an actual building instead of an 

EnergyPlus model. 
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3.2 Epilogue 
The purpose of this analysis was to investigate the trade-off between the conflicting objectives of 

maintaining a comfortable indoor environment during experiments and obtaining models of 

sufficient accuracy. While all experiments used a PRBS input signal, the amplitude of the signal 

was varied between experiments to generate data with different signal-to-noise ratios. Each 

experiment was repeated multiple times under different realizations of noise generated with a 

simple occupancy model, and models were identified using the obtained input-output data. The 

quality of these models was evaluated both on their predictive capabilities using validation data, 

and on their impact on the performance of an economic MPC scheme. The results indicated no 

clear tendency for the model quality to improve when the amplitude of the PRBS signals was 

increased. Furthermore, the MPC scheme was found to be relatively robust to model deficiencies, 

since acceptable performance was achieved even when it was implemented using the poorest 

performing model. Further inspection of the results suggested that the nature of the prediction 

errors in an MPC context could be even more important than the size of the prediction errors.  

The term model quality used in the paper is clearly a broad term that covers a wide range of model 

deficiencies. These deficiencies may affect the ability of the model to describe the thermodynamic 

characteristics of buildings under steady-state or dynamic conditions. A steady-state prediction 

bias results in a prediction error that grows as the prediction horizon increases. On the other hand, 

a poor estimate of the dynamic properties of the building affects the ability of the model to 

describe dynamic transitions as well as its ability to account for thermal energy being stored and 

discharged from the thermal mass of the building. In the context of MPC schemes, a steady-state 

prediction bias is less problematic than a poor representation of dynamic properties. This is 

because Kalman filters [49] are typically used in MPC schemes to continuously estimate the 

current state of the model using measurements from the building. Since this feedback does not 

allow the state of the model to drift away from the state of the actual building, it ensures that the 

predictions made by the control scheme are always made with a reasonable initial state of the 

model. This, in turn, ensures that the short-term prediction errors are kept to a minimum. The 

differences in the impact of these two types of model deficiencies were not treated further in the 

analysis. Therefore, a more detailed analysis on how such deficiencies impact the control 

performance of MPC schemes, and how they may be addressed through experiment design, are 

considered relevant topics of future research.  
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In a more recent study (S7) on experiment design, we investigated through a similar analysis 

whether the PRBS signal used in the experiments here could be substituted with a signal that was 

more representative of MPC operation. One of the guiding principles of experiment design is that 

the resulting input-output data should reflect the conditions under which the model is to be used 

in its intended application [48]. Therefore, we proposed simply implementing an MPC scheme 

with an un-calibrated model, and generating the input-output data by allowing the MPC scheme 

to impose temperature fluctuations by engaging in load shifting. An advantage of the MPC data 

was that the temperature fluctuations imposed on the building were less frequent than in the 

PRBS-approach, and therefore considered less likely to cause occupant discomfort during the 

initial experiment period. The analysis showed that the models obtained from the MPC data 

performed similarly to models generated by an experiment in which a PRBS signal were used.  

The fact that both of these studies relied purely on simulations and therefore applied several 

assumptions, calls for further research to assess the generality of the conclusions drawn. In 

addition to the assumed occupancy model, the most significant assumptions were the assumption 

of adiabatic internal walls; a fully mixed indoor air temperature distribution; and finally, the use 

of transmitted solar heat gains instead of a more realistic input such as measurements of global 

radiation on a horizontal plane. With these assumptions in mind, the analyses of both studies 

indicate that models of sufficient accuracy can be obtained from input-output data created under 

conditions that do not impose significant discomfort on occupants. The analysis presented in the 

following chapter applies this result in a comparative evaluation of the suitability of different 

grey-box model structures.   
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4 MODEL STRUCTURE 

SELECTION 

Grey-box models representing the thermodynamic behaviour of buildings typically model these 

phenomena as a network of resistances, capacities, energy sources and energy sinks. Because they 

primarily consist of these components, these models are often referred to as RC models or RC 

networks. Usually, a lumped parameter approach is used to reduce the order of these models, 

which eases both the task of identifying the parameters of the model and simulating it. The optimal 

complexity of a particular RC-model may vary significantly depending on the intended 

application of the model. In the simplest models, a thermal capacity and resistance may represent 

an entire thermal zone, while more detailed models use multiple resistances and capacities to 

represent individual structural components alone. The choice of complexity (order, layout) of an 

RC model affects both the identifiability of model parameters, their interpretability, and the 

predictive performance of the model itself.  

Only a few studies comparing several model structures were identified in previous literature: 

Reynders et al. [50] evaluated RC-models of varying complexity in terms of their predictive 

performance and their ability to produce accurate estimates of building characteristics through 

system identification techniques. The authors concluded that models of low orders (2nd and 3rd 

order) resulted in high uncertainties associated with the parameter estimates, and therefore 

preferred 4th and 5th order models instead. Harb et al. [51] presented a similar analysis in which 

models ranging from 1st to 3rd order were evaluated. In this case, the authors found the 2nd order 

model superior to the other models investigated. Finally, Bacher and Madsen [52] applied a 

forward modelling approach and likelihood ratio tests to identify suitable model structures. The 

approach indicated that expanding the model structure from the initial 1st order model resulted in 

statistically significant improvements until a 4th order model was reached. Furthermore, residual 

analysis and the physical meaningfulness of parameter estimates indicated that models of 3rd order 

and above were preferable.  
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In addition to the many case-specific details which inevitably differ between such studies, 

possible reasons for the discrepancies between the conclusions drawn in previous work are 

differences in the used input-output data as well as differences in the layout of the RC components 

of each of the evaluated model structures. In terms of data, Reynders et al. [50] used data 

simulated with detailed building energy models to avoid the inevitable uncertainties and noise 

associated with measurements from actual buildings, while both Harb et al. [51] and Bacher and 

Madsen [52] used data measured in actual buildings. Furthermore, only the forward modelling 

method applied in [52] explicitly addressed the possibility of the drawn conclusions being affected 

by the chosen layouts of the proposed RC-networks. Due to the discrepancies between the 

conclusions drawn in previous studies, additional research aimed at identifying suitable grey-box 

model structures for modelling the thermodynamic characteristics and behaviour of buildings is 

needed.  

The following paper presents an evaluation of four simple grey-box model structures, and 

constitutes the published research of this thesis that contributes to research objective 1.2. Due to 

paper size limitations, several relevant details were left out. These are laid out in the section 

following the article itself.  
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The ability to obtain reliable estimates the actual thermal characteristics of whole buildings through fitting 
dynamical resistance-capacitance grey-box models to measurement data was investigated. The actual total heat loss 
coefficient was identified with a maximum deviation of 4% for all the evaluated model structures. The best performing 
models tended to overestimate the effective thermal mass by 10-32 % compared to the Effective Thickness Method 
of ISO 13786. The results also indicated that identifying the distribution of the total heat loss into transmission and 
infiltration heat losses is unlikely to be achieved from typical building measurement data. 
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1. Introduction 

Estimation of actual thermodynamic characteristics of real buildings is relevant for many purposes, e.g. for energy 
labelling and verification of the desired effect of energy saving measures in new as well as renovated buildings. Several 
methods for this purpose already exist, which in general can be characterized as 1) local methods focusing on 
individual building components, and 2) methods that seek to characterize the building as a whole. Standardized local 
methods for characterizing the performance of building envelope walls are specified in ISO 9869-1:2014 [1]. These 
methods rely on measurements of the internal and external temperature conditions and heat flux, usually measured at 
the internal surface of the component. The ISO standard presents both a quasi-stationary method and a dynamic 
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method; however, a recent study suggests that the dynamic method gives better estimates of the U-value when 
compared to theoretical values [2]. Whole-building thermal characteristics can be inferred through co-heating tests 
which rely on linear regression and measurement data from the building under quasi-stationary heat loss conditions 
to provide reliable estimates of the whole-building heat transfer coefficient [3]. A limitation of co-heating tests is the 
neglect of dynamic characteristics. Another more practical limitation is the need of a fairly long measurement periods; 
the recommended duration of co-heating experiments as specified in IEA EBC Annex 58 is 2-4 weeks [4], while a 
recent study concluded that newer and more insulated buildings need up to eight weeks [5]. Everett [6] list other 
factors that complicate the analysis such as solar gains, varying air infiltration rate, ground floor losses and shared 
walls. Dynamic methods have also been proposed for whole-building characterization. A common approach is to 
model the dynamic heat transfer in the building as resistance-capacitance (RC) networks and then fit the model 
parameters to experimental data. This approach is in many aspects opposite from the quasi-stationary co-heating test. 
A major difference is that instead of seeking stationary conditions, emphasis is put on exciting the building during the 
measurement campaign to reveal the transient thermodynamic behaviour in the measurement data. Studies have 
previously evaluated the use of different RC models for data-based whole-building characterization. Reynders et al. 
[7] evaluated RC models of different complexity ranging between first order and fifth order models, and came to 
multiple conclusions: Low-order models (third order and below) were concluded to be too simple to obtain reliable 
estimates while fourth and fifth order models were found to be of sufficient complexity, but came with the significant 
price of needing heat flux measurements in addition to temperature measurements in order to be identified. Harb et 
al. [8] evaluated low-order RC-models on their ability to give acceptable estimates and predictive performance without 
any prior knowledge of the building. Two models included in the analysis showed reasonable predictive performance, 
while only a second order model yielded parameter estimates considered plausible by the authors. Thus, the studies 
of Reynders et al. [7] and Harb et al. [8] present significantly different answers to the question of which type of 
reduced-order RC model structure that is suitable for data-based characterization of the thermal characteristics of 
buildings. The discrepancies between the two conclusions could potentially be caused by identifiability issues during 
the selection of model structures.    
On this background, the goal of this study is to derive model structures that only rely on temperature measurements 
to identify the building dynamics and quantify various characteristics relating to the thermodynamic behaviour of 
buildings. To further improve the robustness and practical application of such models, special attention is devoted to 
evaluating simple models that reduce potential identifiability issues.  

2. Method 

The goal of this study is to identify robust model structures suitable for characterization of the thermal 
characteristics of real buildings. Simulations are used to ensure the availability of high-quality data. The simulation 
platform consists of the building performance simulation program EnergyPlus and MATLAB, coupled via the 
Building Controls Virtual Test Bed [9]. Two geometrically different apartments are modelled in EnergyPlus, and data 
collected from the thermal zones and environment is used to identify models with the MATLAB System Identification 
Toolbox. The two apartments are 93 m2 and 50 m2, respectively. Further details on the two case apartments are 
provided in ref. [10]. The model structures included in the analysis undergo identifiability analysis using MATLAB 
and DAISY [11]. The following sections provide more details on the method used.  

2.1. Reference estimates 

The thermal characteristics of the apartments are estimated through widely used methods defined in standards and 
compared to the estimates resulting from using different model structures. Heat losses expressed as heat transfer 
coefficients (equivalent to UA-values) are calculated from material properties, construction element composition and 
standard values for internal and external surface resistances as specified in ISO 6946 [12]. Infiltration heat loss is 
calculated directly from zone volume and air change rate. Heat loss through windows are calculated using the U-value 
for the entire window component as calculated by Window 7.4 [13], which was used to model the windows in the 
EnergyPlus model. The effective thermal capacity is estimated using the Effective Thickness Method of ISO 13786 
Annex A [14]. Despite the fact that the heating system during the experiment period introduced smaller temperature 
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method; however, a recent study suggests that the dynamic method gives better estimates of the U-value when 
compared to theoretical values [2]. Whole-building thermal characteristics can be inferred through co-heating tests 
which rely on linear regression and measurement data from the building under quasi-stationary heat loss conditions 
to provide reliable estimates of the whole-building heat transfer coefficient [3]. A limitation of co-heating tests is the 
neglect of dynamic characteristics. Another more practical limitation is the need of a fairly long measurement periods; 
the recommended duration of co-heating experiments as specified in IEA EBC Annex 58 is 2-4 weeks [4], while a 
recent study concluded that newer and more insulated buildings need up to eight weeks [5]. Everett [6] list other 
factors that complicate the analysis such as solar gains, varying air infiltration rate, ground floor losses and shared 
walls. Dynamic methods have also been proposed for whole-building characterization. A common approach is to 
model the dynamic heat transfer in the building as resistance-capacitance (RC) networks and then fit the model 
parameters to experimental data. This approach is in many aspects opposite from the quasi-stationary co-heating test. 
A major difference is that instead of seeking stationary conditions, emphasis is put on exciting the building during the 
measurement campaign to reveal the transient thermodynamic behaviour in the measurement data. Studies have 
previously evaluated the use of different RC models for data-based whole-building characterization. Reynders et al. 
[7] evaluated RC models of different complexity ranging between first order and fifth order models, and came to 
multiple conclusions: Low-order models (third order and below) were concluded to be too simple to obtain reliable 
estimates while fourth and fifth order models were found to be of sufficient complexity, but came with the significant 
price of needing heat flux measurements in addition to temperature measurements in order to be identified. Harb et 
al. [8] evaluated low-order RC-models on their ability to give acceptable estimates and predictive performance without 
any prior knowledge of the building. Two models included in the analysis showed reasonable predictive performance, 
while only a second order model yielded parameter estimates considered plausible by the authors. Thus, the studies 
of Reynders et al. [7] and Harb et al. [8] present significantly different answers to the question of which type of 
reduced-order RC model structure that is suitable for data-based characterization of the thermal characteristics of 
buildings. The discrepancies between the two conclusions could potentially be caused by identifiability issues during 
the selection of model structures.    
On this background, the goal of this study is to derive model structures that only rely on temperature measurements 
to identify the building dynamics and quantify various characteristics relating to the thermodynamic behaviour of 
buildings. To further improve the robustness and practical application of such models, special attention is devoted to 
evaluating simple models that reduce potential identifiability issues.  

2. Method 

The goal of this study is to identify robust model structures suitable for characterization of the thermal 
characteristics of real buildings. Simulations are used to ensure the availability of high-quality data. The simulation 
platform consists of the building performance simulation program EnergyPlus and MATLAB, coupled via the 
Building Controls Virtual Test Bed [9]. Two geometrically different apartments are modelled in EnergyPlus, and data 
collected from the thermal zones and environment is used to identify models with the MATLAB System Identification 
Toolbox. The two apartments are 93 m2 and 50 m2, respectively. Further details on the two case apartments are 
provided in ref. [10]. The model structures included in the analysis undergo identifiability analysis using MATLAB 
and DAISY [11]. The following sections provide more details on the method used.  

2.1. Reference estimates 

The thermal characteristics of the apartments are estimated through widely used methods defined in standards and 
compared to the estimates resulting from using different model structures. Heat losses expressed as heat transfer 
coefficients (equivalent to UA-values) are calculated from material properties, construction element composition and 
standard values for internal and external surface resistances as specified in ISO 6946 [12]. Infiltration heat loss is 
calculated directly from zone volume and air change rate. Heat loss through windows are calculated using the U-value 
for the entire window component as calculated by Window 7.4 [13], which was used to model the windows in the 
EnergyPlus model. The effective thermal capacity is estimated using the Effective Thickness Method of ISO 13786 
Annex A [14]. Despite the fact that the heating system during the experiment period introduced smaller temperature 
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fluctuations in the building, the period of variation defined in the standard is chosen to be 24 hours because the data 
spans several days and therefore include a natural day-night variation. The total thermal mass capacity is calculated 
as half the thickness of symmetrical internal walls separating thermal zones and all mass before the first layer of 
insulating material in other parts of construction parts. In addition to the abovementioned characteristics, it is 
interesting to evaluate whether dynamic modelling can distinguish between infiltration and transmission heat losses. 
If the environment surrounding the building gets colder these heat losses will naturally increase. For the opaque parts 
of the envelope, this increase in transmission heat loss is delayed as the envelope components with high thermal inertia 
cool down. Infiltration, on the other hand, is not characterized by any significant thermal inertia, and can thus be 
considered instantaneous. These differences in how changing weather conditions affect the measurements makes it, 
at least in theory, possible to distinguish between the two heat loss mechanics. Windows, however, complicate this 
task. On one hand, the thermal mass of the window is small compared to the rest of the envelope, which is why 
windows are typically modelled without mass in building energy performance simulation tools such as EnergyPlus 
[15]. Consequently, there is no delay as for the opaque (heavy) envelope components. The inner glass pane absorbs 
heat through long-wave radiation and convection. The convective part affects the room air temperature directly, and 
is thus often assumed to be a part of the infiltration rather than transmission heat loss. The radiative part receives a net 
gain of heat from other surfaces inside the zone, thereby affecting the temperature of the thermal mass. This part of 
the heat loss is therefore assumed to exhibit some of the same inertia as transmission losses. Following this distinction, 
the question is how to distribute the total heat loss through windows onto these two heat loss mechanics and thereby 
determine the equivalent transmission and infiltration heat loss coefficients of the system that include the contribution 
to heat loss from windows. In this paper, we assume this distribution corresponds to the fractions of convective and 
radiative heat transfer coefficients of uncoated soda lime glass as defined in EN 673 [16]. It is noted that this 
assumption does not affect the modelling procedure as it is only used to derive the reference measurements used for 
comparison. The calculated thermal characteristics of the apartments are shown in Table 1.  

 Table 1 White-box estimates of thermal characteristics 
  

  
         Large apartment         Small apartment 

Capacities Air capacity 
 

2.93E+05 J/K 1.57E+05 J/K  
Total interior mass capacity 

 
1.49E+07 J/K 7.89E+06 J/K  

Effective mass capacity  (ISO 13786)  
 

1.26E+07 J/K 6.71E+06 J/K        

Heat loss coefficients Envelope (opaque parts) 
 

22.7 W/K 6.4 W/K  
Windows  

 
49.9 W/K 35.8 W/K  

Infiltration  
 

40.7 W/K 21.8 W/K  
Total heat loss  

 
113.3 W/K 64.1 W/K 

       Equivalent heat loss Transmission 
 

49.30 W/K 25.52 W/K  
Infiltration 

 
64.03 W/K 38.57 W/K 

 
The dynamic characteristics such as the thermal inertia of the heavy elements in the building is also relevant to 

identify. From a comfort point of view, the thermal mass can reduce temperature fluctuations caused by internal or 
external gains throughout the day. Furthermore, the thermal inertia is also directly linked to the potential for storing 
energy in the building, which ties into research on the flexibility of buildings and demand response. However, since 
the active thermal capacity is not a static parameter in the same way as the resistance of most building components 
can be assumed to be, a methodology for comparing the ISO 13786 estimates with the RC-estimates is needed. One 
approach is to compare the capacity estimates of the model to the reference value directly. This method, however, 
seems impractical since the layout of resistances and capacitances in the model affects the estimates of the capacities 
significantly. Instead, the time constants of the models are used to calculate an effective mass using the assumptions 
of the lumped capacitance approach, where the estimate of the thermal mass is obtained by multiplying the time 
constant with the total heat loss coefficient. The capacitance estimate of the air-node is not sensitive to the specific 
model layout, and is thus compared directly to the reference value. In practice, this estimate will also contain the 
capacitance of the heating system and furniture, but this influence is outside the scope of this study. Finally, it should 
be noted that the estimate of the small capacity will rely on the chosen sampling time.  
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2.2. Model structures 

EN ISO 13790 suggests a single-capacity RC-model in the simple hourly method for calculating the heating and 
cooling needs of buildings [17]. However, this study does not include single-state models for several reasons. While 
the assumptions of the ISO 13790 model related to the temperature of the zone air may be sufficiently accurate when 
estimating energy performance under fairly constant temperature conditions, it is not sufficient in the case of changing 
set points and fluctuating heating output. A sudden step in heating power from fast-response systems such as radiators 
and convectors will result in an initial fast temperature increase as the air heats up followed by a slower response as 
the capacity of the construction is activated. A single state model is unable to predict or simulate the combined 
response from these very different capacities. Finally, first-order models have been shown to have too low predictive 
performance [7]. For these reasons, this study investigated a simple second-order model which was expanded upon 
using a forward modelling approach. The resulting model structures are depicted in Figure 1.  
 

 
Figure 1 Model structures depicted as RC-networks. Red text denotes inputs, blue highlights the assumptions made for third order models. 

The initial model (2R2C in Figure 1) is a modified version of the model presented in ref. [18], which was initially 
intended for white-box simulation. The modification was to replace an algebraic equation describing the surface 
temperature in the original model with a single resistance to reduce the number of parameters and thereby improve 
the identifiability of the model. The proposed 3R2C model extends the modified 2R2C model by adding a transmission 
heat loss directly from the thermal mass to the exterior. The 3R2C model was finally expanded into two third-order 
models: The 4R3C model contains an interior capacity representing internal elements that only interact with the zone 
air. In the 4R3Cw model the third thermal mass node is placed in the envelope in an attempt to better model the 
distribution of capacity in the envelope. The heating system was assumed to be fully convective in all models, which 
matches the heating system modelled in EnergyPlus. However, the two third order models required further 
assumptions to be introduced in order to reduce identifiability issues: In the 4R3C model, where the mass capacity is 
separated in internal capacity and envelope capacity, two dependencies between parameters were introduced to ensure 
identifiability. These dependencies were 1) an equal distribution of the thermal mass between the interior and envelope 
nodes, and 2) that 90 % of the envelope resistance is placed on the cold side of the envelope capacity node. Assumption 
2 draws on the assumption that only the capacity on the warm side of the insulation layer will significantly add to the 
efficient thermal capacity. In the 4R3Cw model, where the envelope contains two states, assumptions were again 
made both with respect to the distribution of resistance and thermal mass: 1) The internal mass node contains the 
majority (75%) of total thermal mass, as it represents all mass on the warm side of the insulation layer and 2) the 
resistance is assumed to be symmetrically distributed around the insulation layer, corresponding to a ‘sandwich-type’ 
envelope. This assumption is considered likely in apartment blocks and less likely in buildings where the envelope 
also contains ground floor and roof constructions.  
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fluctuations in the building, the period of variation defined in the standard is chosen to be 24 hours because the data 
spans several days and therefore include a natural day-night variation. The total thermal mass capacity is calculated 
as half the thickness of symmetrical internal walls separating thermal zones and all mass before the first layer of 
insulating material in other parts of construction parts. In addition to the abovementioned characteristics, it is 
interesting to evaluate whether dynamic modelling can distinguish between infiltration and transmission heat losses. 
If the environment surrounding the building gets colder these heat losses will naturally increase. For the opaque parts 
of the envelope, this increase in transmission heat loss is delayed as the envelope components with high thermal inertia 
cool down. Infiltration, on the other hand, is not characterized by any significant thermal inertia, and can thus be 
considered instantaneous. These differences in how changing weather conditions affect the measurements makes it, 
at least in theory, possible to distinguish between the two heat loss mechanics. Windows, however, complicate this 
task. On one hand, the thermal mass of the window is small compared to the rest of the envelope, which is why 
windows are typically modelled without mass in building energy performance simulation tools such as EnergyPlus 
[15]. Consequently, there is no delay as for the opaque (heavy) envelope components. The inner glass pane absorbs 
heat through long-wave radiation and convection. The convective part affects the room air temperature directly, and 
is thus often assumed to be a part of the infiltration rather than transmission heat loss. The radiative part receives a net 
gain of heat from other surfaces inside the zone, thereby affecting the temperature of the thermal mass. This part of 
the heat loss is therefore assumed to exhibit some of the same inertia as transmission losses. Following this distinction, 
the question is how to distribute the total heat loss through windows onto these two heat loss mechanics and thereby 
determine the equivalent transmission and infiltration heat loss coefficients of the system that include the contribution 
to heat loss from windows. In this paper, we assume this distribution corresponds to the fractions of convective and 
radiative heat transfer coefficients of uncoated soda lime glass as defined in EN 673 [16]. It is noted that this 
assumption does not affect the modelling procedure as it is only used to derive the reference measurements used for 
comparison. The calculated thermal characteristics of the apartments are shown in Table 1.  

 Table 1 White-box estimates of thermal characteristics 
  

  
         Large apartment         Small apartment 

Capacities Air capacity 
 

2.93E+05 J/K 1.57E+05 J/K  
Total interior mass capacity 

 
1.49E+07 J/K 7.89E+06 J/K  

Effective mass capacity  (ISO 13786)  
 

1.26E+07 J/K 6.71E+06 J/K        

Heat loss coefficients Envelope (opaque parts) 
 

22.7 W/K 6.4 W/K  
Windows  

 
49.9 W/K 35.8 W/K  

Infiltration  
 

40.7 W/K 21.8 W/K  
Total heat loss  

 
113.3 W/K 64.1 W/K 

       Equivalent heat loss Transmission 
 

49.30 W/K 25.52 W/K  
Infiltration 

 
64.03 W/K 38.57 W/K 

 
The dynamic characteristics such as the thermal inertia of the heavy elements in the building is also relevant to 

identify. From a comfort point of view, the thermal mass can reduce temperature fluctuations caused by internal or 
external gains throughout the day. Furthermore, the thermal inertia is also directly linked to the potential for storing 
energy in the building, which ties into research on the flexibility of buildings and demand response. However, since 
the active thermal capacity is not a static parameter in the same way as the resistance of most building components 
can be assumed to be, a methodology for comparing the ISO 13786 estimates with the RC-estimates is needed. One 
approach is to compare the capacity estimates of the model to the reference value directly. This method, however, 
seems impractical since the layout of resistances and capacitances in the model affects the estimates of the capacities 
significantly. Instead, the time constants of the models are used to calculate an effective mass using the assumptions 
of the lumped capacitance approach, where the estimate of the thermal mass is obtained by multiplying the time 
constant with the total heat loss coefficient. The capacitance estimate of the air-node is not sensitive to the specific 
model layout, and is thus compared directly to the reference value. In practice, this estimate will also contain the 
capacitance of the heating system and furniture, but this influence is outside the scope of this study. Finally, it should 
be noted that the estimate of the small capacity will rely on the chosen sampling time.  
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2.2. Model structures 

EN ISO 13790 suggests a single-capacity RC-model in the simple hourly method for calculating the heating and 
cooling needs of buildings [17]. However, this study does not include single-state models for several reasons. While 
the assumptions of the ISO 13790 model related to the temperature of the zone air may be sufficiently accurate when 
estimating energy performance under fairly constant temperature conditions, it is not sufficient in the case of changing 
set points and fluctuating heating output. A sudden step in heating power from fast-response systems such as radiators 
and convectors will result in an initial fast temperature increase as the air heats up followed by a slower response as 
the capacity of the construction is activated. A single state model is unable to predict or simulate the combined 
response from these very different capacities. Finally, first-order models have been shown to have too low predictive 
performance [7]. For these reasons, this study investigated a simple second-order model which was expanded upon 
using a forward modelling approach. The resulting model structures are depicted in Figure 1.  
 

 
Figure 1 Model structures depicted as RC-networks. Red text denotes inputs, blue highlights the assumptions made for third order models. 

The initial model (2R2C in Figure 1) is a modified version of the model presented in ref. [18], which was initially 
intended for white-box simulation. The modification was to replace an algebraic equation describing the surface 
temperature in the original model with a single resistance to reduce the number of parameters and thereby improve 
the identifiability of the model. The proposed 3R2C model extends the modified 2R2C model by adding a transmission 
heat loss directly from the thermal mass to the exterior. The 3R2C model was finally expanded into two third-order 
models: The 4R3C model contains an interior capacity representing internal elements that only interact with the zone 
air. In the 4R3Cw model the third thermal mass node is placed in the envelope in an attempt to better model the 
distribution of capacity in the envelope. The heating system was assumed to be fully convective in all models, which 
matches the heating system modelled in EnergyPlus. However, the two third order models required further 
assumptions to be introduced in order to reduce identifiability issues: In the 4R3C model, where the mass capacity is 
separated in internal capacity and envelope capacity, two dependencies between parameters were introduced to ensure 
identifiability. These dependencies were 1) an equal distribution of the thermal mass between the interior and envelope 
nodes, and 2) that 90 % of the envelope resistance is placed on the cold side of the envelope capacity node. Assumption 
2 draws on the assumption that only the capacity on the warm side of the insulation layer will significantly add to the 
efficient thermal capacity. In the 4R3Cw model, where the envelope contains two states, assumptions were again 
made both with respect to the distribution of resistance and thermal mass: 1) The internal mass node contains the 
majority (75%) of total thermal mass, as it represents all mass on the warm side of the insulation layer and 2) the 
resistance is assumed to be symmetrically distributed around the insulation layer, corresponding to a ‘sandwich-type’ 
envelope. This assumption is considered likely in apartment blocks and less likely in buildings where the envelope 
also contains ground floor and roof constructions.  
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3. Results 

The four model structures were used to estimate the thermal characteristics of the two apartments using two weeks’ 
worth of measurements with a 1-minute sample rate. To investigate the consistency of the estimates across different 
weather conditions, data from four of the coldest months were used (Nov-Feb). The estimates were normalized against 
the reference values from Table 1 to ease the model comparison. Figure 2 depicts the estimates of all model structures 
using data from each of the four months. The red line denotes the reference values. 

 
Figure 2 Comparison of normalized parameter estimates. Red line denotes the reference value of the characteristics.  

 
The results show that all model structures yielded accurate and consistent estimates of the short time constant (air 

cap.) and the overall heat loss coefficient (total HTC). The 2R2C model is not capable of providing estimates of the 
individual heat loss coefficients due to its structure. It is also clear that this simple model together with the 4R3C 
model lack the consistency and accuracy of the other two models, and are therefore not suitable for thermodynamic 
characterization purposes. The 3R2C and the 4R3Cw models showed very similar estimates of all characteristics, with 
decent accuracy and consistency across all datasets. Both models tended to slightly overestimate the effective thermal 
mass by 10-32 %. Upon closer inspection of the results, the 4R3Cw model outperformed the 3R2C model in terms of 
the average deviation seen over all parameters and all data sets. The third-order model deviated on average 8% and 
7% on the small and large apartment, respectively. With the second order model the deviations were 13% and 17%, 
respectively. Despite decent accuracy on average, the estimates of the individual heat loss components exhibit the by 
far highest inconsistency across all models, thus suggesting that these are difficult to reliably estimate.  

4. Discussion 

The 4R3Cw model showed slightly better performance than the second order model 3R2C. This performance was 
gained through the added complexity of the model, which came at the price of introducing interdependency 
assumptions between some of the parameters of the model. The question is then whether these assumptions hold for 
other types of building models and, more importantly, for real buildings. The assumption concerning the distribution 
of capacities in the 4R3Cw model is considered to some extent to be case-specific. Future work could therefore be to 
carry out a sensitivity analysis of the assumptions, e.g. for several different building compositions, before such 
assumptions can be assumed reasonable for a wider range of buildings. The models estimated the thermal capacitance 
higher than the reference value calculated with a simplified (yet impractical) method described in ISO 13786. It 
remains to be concluded which of the two approaches – data-based identification or calculation – yields the most 
accurate or useful result. Finally, Gaspar et al. [2] concluded that dynamic local characterization methods 
outperformed the static ones. An in-depth comparison of the co-heating test and the dynamic RC-model approach 
should therefore be conducted to determine whether the same applies to whole-building characterization methods. 
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5. Conclusion 

This paper presented an evaluation of four different RC-model structures intended for data-based estimation of the 
thermal characteristics of buildings. The four model structures were evaluated in a comparative analysis, where 
estimates from each model were compared to estimates from calculation methods described in relevant standards. The 
results indicated that both second order and third order models, depending on their RC-network structure, are capable 
of yielding consistent estimates of the short time constant (zone air, furniture), the effective thermal mass and the total 
heat loss coefficient. Individual estimates of infiltration and transmission heat losses were found to be highly 
inconsistent across all models, with deviations as high as 47% even for the better performing models.  

The 3R2C model is considered to be the most practically viable model structure for characterization purposes over 
the third order models because of 1) the additional assumptions needed to make consistent estimates with the 
investigated third order models, and 2) the relatively low performance increase gained by introducing the extra state. 
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3. Results 

The four model structures were used to estimate the thermal characteristics of the two apartments using two weeks’ 
worth of measurements with a 1-minute sample rate. To investigate the consistency of the estimates across different 
weather conditions, data from four of the coldest months were used (Nov-Feb). The estimates were normalized against 
the reference values from Table 1 to ease the model comparison. Figure 2 depicts the estimates of all model structures 
using data from each of the four months. The red line denotes the reference values. 

 
Figure 2 Comparison of normalized parameter estimates. Red line denotes the reference value of the characteristics.  
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4.2 Extension to paper 
The analysis used an EnergyPlus model as an analogue for an actual building. This has both 

advantages and disadvantages: the main disadvantage is that even detailed building models to 

some extent simplify the complex phenomena occurring in actual buildings, thus inevitably 

reducing the trustworthiness of the results. A clear advantage, however, is that simulations allow 

us to know the exact composition of materials and the geometry of the building, thus allowing a 

fair comparison of the true characteristics of the building, and those indicated by identified RC 

models. Two apartments of different sizes were used to evaluate the sensitivity of the conclusions 

to geometric properties such as footprint area, window area and the ratio between floor area and 

envelope surface area. Figure 5 depicts the floor plans of the two apartments that were modelled 

with EnergyPlus.  

 
Figure 5 Layout of the two apartments modelled in EnergyPlus 

A closed-loop experiment using a conventional PI control scheme was simulated in each 

apartment to generate informative input-output data. The experiment imposed excitation on the 

apartments by letting the heating set points follow a PRBS signal alternating between a set point 

of 20 °C and 23 °C. In order to evaluate the consistency of the parameter estimates obtained with 

each model structure, an experiment was simulated during the first three weeks of each month 

from November to February. The temporal resolution of the data used in the analysis to identify 

the models was 60 seconds. Furthermore, to keep the results as clear as possible, the analysis used 

the actual solar heat gains extracted from EnergyPlus. Figure 6 depicts (in hourly resolution) one 

of the input-output datasets captured in the large apartment. 
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Figure 6 The Input-output used for parameter identification. The data was  

simulated with an EnergyPlus model containing two apartments. For readability,  
the data is here presented as hourly values.  

As stated in the paper, the four model structures resulted from a forward modelling approach 

initiated with a 2R2C model structure. The forward modelling approach was guided by an 

evaluation of the identifiability of each proposed model structure. The structural identifiability of 

each model structure was first assessed with the DAISY (differential algebra for identifiability of 

systems) software [53]. Once structural identifiability was ensured, the practical identifiability of 

the models was assessed by initiating several parameter identification runs from randomized 

starting points in the parameter space. If the majority of these runs converged to the same 

optimum, the model was considered practically identifiable. In the case of the two third order 

models, practical identifiability was first achieved when the parameter-interdependencies outlined 

in the paper were introduced. The four resulting model structures were all concluded to be 

structurally identifiable, as well as practically identifiable with the input-output data used in the 

analysis. 
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A set of models were identified for each combination of model structure and dataset. The criterion 

minimized in the identification process was the simulated prediction errors (i.e. infinite-step-

ahead predictions). All but the best-performing model of each model-set were discarded. The 

resulting models were then evaluated on their parameter estimates (documented in the paper), and 

on their predictive performance on the validation data depicted in Figure 6. The initial state of the 

models used in the simulation of the validation dataset was estimated from the training dataset. 

Figure 7 presents the performance of the models identified with each model structure using data 

from the large apartment.  

 

Figure 7 Predictive performance of identified models on the December dataset (large apartment).  
Each plot depicts the best-performing model obtained with a given model structure.  

The indicated fit-values are the NRMSE-fits.  
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The NRMSE fit was the metric that was used to quantify the predictive performance of the 

models. The NRMSE is defined according to Eq. (4.1), in which 𝒚 is a vector of measurements, 

𝒚ഥ is the mean of the measurements, 𝒚ෝ is the vector of simulated model output and ‖∗‖ is the 2-

norm of a vector.  

𝑵𝑹𝑴𝑺𝑬 ൌ 𝟏𝟎𝟎 ⋅ ቆ𝟏 െ
‖𝒚 െ 𝒚ෝ‖
‖𝒚 െ 𝒚ഥ‖

ቇ  (4.1) 

Comparison of the simulated and measured time series of Figure 7 show that the models are 

capable of describing the thermodynamic phenomena of the more complex EnergyPlus model 

with a high accuracy. A similar multi-step-ahead predictive was found also found for the datasets 

not depicted here. The similarities between the predictive performances of the models also meant 

that this aspect did not affect the conclusions drawn in the paper. 

Finally, the analysis presented so far featured two assumptions, whose potential impact was 

considered worth investigating further: 1) an unusually high temporal resolution of the data (1-

minute resolution), and 2) the use of the actual solar heat gains transmitted through the windows 

of the apartments. These assumptions were originally introduced to ensure that the conclusions 

related to the suitedness of the model structures were not affected by our ability to handle solar 

heat gains or our beliefs related to the availability of data. To evaluate whether these assumptions 

had a significant effect on the results, the entire analysis was also conducted two additional times, 

each time with one of these assumptions addressed.  

SENSITIVITY ANALYSIS 

This subsection presents the results achieved by conducting the analysis presented in the paper, 

but using 1) an hourly temporal resolution (instead of 1-minute), and 2) the horizontal global 

radiation (instead of the transmitted solar heat gains). The latter is of particular interest since using 

of anything but the transmitted solar heat gains results in the need for an additional parameter 

describing the actual or equivalent window areas (sometimes referred to as the solar aperture). 

Figure 8 presents these results for the 3R2C model structure only, since these results were 

representative for the tendencies observed in all model structures. For ease of comparison, the 

results published in the paper are reproduced as well.  
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Figure 8 Evaluation of the sensitivity of parameter estimates to the assumptions drawn in the initial 
analysis. Normalized parameter values relative to their white-box estimate (red line). Rows 1, 2 and 3 

present the estimates obtained with data using 1) transmitted solar data with 1-minute resolution (from the 
paper), 2) global radiation with 1-minute resolution, and 3) transmitted solar with hourly resolution.  

The results of the sensitivity analysis indicated that using measurements of the global radiation 

did not affect the interpretability of the identified model parameters, which in general were similar 

to those presented in paper. Reducing the sampling rate to hourly measurements resulted in a loss 

of information in relation to the thermal capacity of the zone air, leading to inaccurate estimates 

of this parameter. In actual buildings, this parameter will also contain contributions from the 

heating system and furniture, which could reduce this issue by slowing down the dynamic 

temperature response. The reduced resolution did not affect the estimates of the remaining 

parameters. Neither in terms of the predictive performance of the models did the assumptions 

have a significant impact, as clear from the relatively similar NRMSE fits achieved for the model 

structures using each of the three datasets depicted on Figure 9.  
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Figure 9 Impact of the used dataset on the NRMSE fits of the resulting models  
evaluated on the validation data. The top/bottom row presents results for the  

small/large apartment, while each column refers to the dataset (published, hourly  
or global radiation) used for identifying model parameter.  
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4.3 Epilogue 
The purpose of the analysis presented in this chapter was to identify RC model structures capable 

of describing the thermodynamic characteristics and behaviour of buildings when identified using 

typical measurement data. The analysis indicated that the 3R2C model structure offered a good 

trade-off between model complexity and performance. Furthermore, two models of second- and 

third order, respectively, were found capable of identifying the thermal capacity of the indoor air 

and the effective thermal capacity of the structural building components with sufficient accuracy. 

While all of the investigated model structures were capable of identifying the overall heat loss 

coefficient of each apartment, none of them yielded consistent estimates of the transmission and 

infiltration heat loss components. Since this was not possible even under the idealized conditions 

of this analysis, obtaining estimates of the individual heat loss components in this way is not 

considered possible in practice.   

Identifiability issues were encountered when extending the model from a second-order to a third-

order model. While the proposed layout of the models undoubtedly has some influence in this 

regard, the primary cause of the identifiability issues was considered to be the growth in the 

number of model parameters associated with increasing the model order. Doing so required the 

introduction of not only additional resistance and capacity parameters, but also parameters 

describing the distribution of heat gains – e.g. from solar or the heating system. Two ways of 

addressing identifiability issues are to 1) extend the dataset with additional measurements, or 2) 

reduce the number of free parameters by either fixing certain parameters or introducing parameter 

interdependencies. Identifiability issues with model structures of order three and above were also 

identified in the study of Reynders et al. [54]. Here, the authors addressed these issues by 

extending the training data with heat flux measurements, while acknowledging the difficulty of 

obtaining such measurements in practice. Therefore, we instead addressed identifiability issues 

by imposing assumptions that simplified the parameterization of the model structure. Despite 

these efforts, the analysis did not indicate any significant benefits from choosing one of the third-

order models over the 3R2C model, thus leading to differences in the conclusions drawn in the 

study of Reynders et al., for example, and in the present study.  

The analysis indicated that all of the evaluated model structures described the thermodynamic 

behaviour of the apartments with a level of accuracy considered sufficient for MPC purposes. 

While the application of grey-box models in control does not necessarily require that model 
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parameters be physically interpretable, the ability to characterize the thermodynamic properties 

of buildings through dynamic building energy modelling has several other interesting 

applications. These include identification of relevant retrofit strategies, building commissioning, 

HVAC fault detection and energy labelling. Therefore, it is worth discussing potential causes of 

the discrepancies between the conclusions drawn in previous studies and those drawn here.  

DISCUSSION OF DISCREPANCIES  

One of the possible explanations that come to mind relates to the simplifications involved when 

using models from detailed building energy modelling tools (e.g. EnergyPlus) as analogues for 

actual buildings. These simplifications typically include assumptions of a fully mixed air 

temperature distribution and uniform surface temperatures. However, since the study of Reynders 

et al. applied similar assumptions, the use of these tools alone cannot be considered the cause of 

differences in the drawn conclusions. This is supported by the fact that both of the studies 

conducted by Harb et al. [51] and Bacher and Madsen [52] used data from real buildings, yet still 

reached different conclusions. A possible explanation for the discrepancy between these two 

studies is that only Bacher and Madsen imposed excitation on the building during the 

measurement period, while Harb et al. relied on consumption data from normal operation.  

Another hypothesis, which seems more consistent with the methods applied by different studies, 

is that the discrepancies may be related to differences between studies in the error criterion used 

for parameter identification. Both the present study and the study of Harb et al. concluded that 

second-order models were preferable - both in terms of predictive capability and the physical 

interpretability of the parameter estimates. Another similarity between these studies is their use 

of the simulation error (infinite-step-ahead) as the error criterion. In contrast, the studies by 

Reynders et al. as well as the study by Bacher and Madsen relied on one-step-ahead prediction 

errors, and concluded that higher-order models were preferable. It therefore seems worthwhile to 

investigate whether the choice of error criterion itself is the cause of the discrepancies in the drawn 

conclusions. From my point of view, there are both advantages but also potential issues associated 

with using the one-step-ahead error criterion for the thermodynamic characterization of buildings. 

A potential issue is the inevitable effect on the parameter estimates of the deterministic model 

(the building model) that originates from the simultaneous tuning the deterministic and stochastic 
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(noise model) components of the model. As noted by Ljung [48], it seems more natural (from a 

physical point of view) to identify these models separately2.  

THE INFLUENCE OF THE ERROR CRITERION 

In the context of thermodynamic characterization, intuition would suggest that if we wish to 

interpret the parameters of the deterministic part of a given model as estimates of the 

characteristics of the actual system, we would also want such a model to be characterized by high 

simulation performance – i.e. be somewhat independent of the noise-model.  

This, in turn, would suggest the simulation error criterion to be an appropriate choice for this 

application. However, this reasoning is flawed in cases where significant levels of noise from 

unmeasured disturbances have corrupted the input-output data. A good example of such a 

disturbance in buildings is the presence of occupants, whose stochastic behaviour and use of 

appliances may have a significant effect on the thermal state of the building. In this case, a 

parameter identification method relying on the simulation error criterion would inevitably 

incorporate these effects into the estimates of the deterministic part of the model. This would be 

less of an issue for parameter identification methods relying on the one-step-ahead error criterion, 

since the effects of such disturbances would (at least partially) be absorbed by the noise model. 

A similar point is made by Zhao et al. [40], who state that the multi-step-ahead error criterion is 

preferable when prediction errors are dominated by a model bias (under-modelling), while the 

one-step-ahead criterion is preferable in the presence of significant disturbances.  

To further investigate these effects, the parameters of each model structure (2R2C, 3R2C, 4R3C 

and 4R3Cw) were identified using the same noise-free data as was used in the original analysis, 

but using the one-step-ahead error criterion instead. Equations (4.2a) and (4.2b) present the 

innovations form of a state-space model [48]. 

𝒙𝒌ା𝟏 ൌ 𝑨𝒙𝒌  𝑩𝒖𝒌  𝑲𝒆𝒌	 (4.2a)  

𝒚 ൌ 𝑪𝒙  𝑫𝒖  𝒆 (4.2b) 

In these equations, the subscripts refer to the time-increment in a given simulation, 𝒙 is a vector 

of model states, 𝒖 is a vector of inputs, and 𝒆 is the unpredictable prediction errors (or model 

residuals) that are assumed to follow a Gaussian white-noise process. The matrices 𝑨, 𝑩, 𝑪 and 

                                                      
2 Section ‘Output Error Model Structure’ in ‘System Identification – Theory for the User’, 2nd edition.  
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𝑫 describe the characteristics of the modelled system – here in discrete form. Finally, 𝑲 is the 

Kalman gain that scales the impact of the prediction errors, 𝒆. The magnitude of the Kalman 

gain is derived from the system matrices and assumed uncertainties related to the measurements 

and the prediction of the states, respectively.  

The difference between the simulation and one-step-ahead error criteria lies in whether the current 

(or past) prediction error is used for predicting the future state of the model. More formally, an 

Equation Error model (implying a k-step-ahead error criterion, here with k = 1) is achieved by 

setting the 𝑲 in Eq. (4.2a) equal to the Kalman gain, while an Output Error model (implying the 

infinite-step-ahead error criterion, or simulation) is achieved by setting 𝑲 to zero. The terms 

Output Error model and Equation Error model refer to the fact that the prediction error only 

enters the output, i.e. Eq. (4.2b), in the case of the former, while for the latter it also enters the 

equation that predicts the future state of the model, i.e. Eq. (4.2a). The impact of the choice of 

error criterion on the parameter estimates is depicted on Figure 10.  

 
Figure 10 The impact of identification error criterion on parameter estimates. 
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Comparison of the results depicted in Figure 10 shows that the choice of error criterion did not 

affect the estimates of the total heat transfer coefficient of the building. On the other hand, a 

tendency of higher estimates of the thermal capacities associated with the one-step-ahead error 

criterion is seen. Especially the capacity of the air volume was estimated higher for this criterion 

consistently across all model structures. For the 3R2C model, the one-step-ahead error criterion 

led to significantly higher estimates of the thermal capacity mass: the maximum overshoot was 

32% and 70% for the simulation and one-step-ahead error criteria, respectively. This tendency 

was less pronounced for the results of the 4R3Cw model – the other of the four models that was 

concluded in the paper to yield consistent estimates.  

This investigation of the influence of the choice of error criterion indicated that it does affect the 

estimates of model parameter and thereby potentially their interpretability. While these results are 

merely a preliminary analysis, they indicate that this choice in modelling may be one of the causes 

of the discrepancies found in the conclusions of studies that compare several model structures.  

Most theoretical work on the subject of the consistency of parameter estimates (e.g. [36], chapter 

21.3) assumes that the deterministic model structure (i.e. the building model) matches the true 

system. Since this is never the case in practice (and, in particular for reduced-order models), it is 

difficult to apply the results of such theoretical analysis to our context. In this preliminary 

analysis, I used noise-free EnergyPlus simulation data to compare the two error criteria, which 

arguably favours the simulation error criterion. The one-step-ahead error criterion may prove 

more appropriate when using more realistic datasets characterized by noise from unmeasured 

disturbances. It would therefore be interesting to investigate whether a compromise between the 

two extreme error criteria (one-step-ahead and infinite-step-ahead) would produce the best results 

in practice. For instance, a k-step-ahead criterion could be applied, where k could be chosen with 

regard of the dynamics of the modelled system or the characteristics of the noise acting on the 

system. Other approaches, suggested in previous studies include combining the one-step-ahead 

and simulation errors in a single weighted error criterion [55], or relying solely on the one-step-

ahead criterion but penalizing the size of the state correction that is applied in that process [56]. 

This topic has not been investigated further in this thesis, but is considered a relevant topic for 

future research.  
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In the following chapter, the 3R2C model structure is used to investigate whether the 

implementation of MPC schemes can be simplified by applying weather forecasts in a way that 

may make weather measurements unnecessary.   
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5 PRACTICAL DATA 

ACQUISITION 

The task of obtaining a model that describes the thermodynamic properties of a given building is 

widely considered to be the most challenging aspect of implementing MPC schemes in buildings 

[24, 25]. In this context, one of the practical challenges is that the sensor equipment needed to 

obtain the input-output dataset used in system identification is typically not present in residential 

buildings, and would therefore constitute an expense associated with the modelling effort. 

Therefore, it is relevant to investigate whether any of these sensors can be omitted without 

significantly affecting the performance of the resulting MPC scheme. Especially sensors 

measuring weather conditions would be beneficial to avoid in MPC applications, since the control 

scheme during the operational phase use weather forecasts – and not measurements. A potential 

issue of using weather measurements for identifying the building model is that there might be a 

bias between these measurements and the forecasts obtained from a given meteorological model. 

This bias carries through to the predictions made with the model in the operation of the MPC 

scheme, thus potentially reducing the performance of the control scheme. Gyalistras et al. [57] 

addressed this issue by bias-correcting forecasts using local observations. A relevant question, 

however, is whether this issue can be avoided entirely by identifying models using weather data 

derived from forecasts instead of relying on weather measurements. If sufficiently accurate 

models can be obtained in this way, this approach has two advantages:  

1. The bias in model predictions resulting from the use of weather data from multiple 
sources is eliminated. Furthermore, a potential bias between the actual weather at the site 
of the building and the weather indicated by forecasts is automatically absorbed in the 
parameters of the model during system identification. 

2. The sensor array dedicated to measuring weather conditions can be avoided, thereby 
simplifying the technical infrastructure needed to implement MPC schemes.  

The following paper presents an analysis of the viability of this proposed MPC implementation 

approach – thereby constituting the research efforts that addresses thesis objective 1.3.  
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a b s t r a c t 

Model-based control schemes such as model predictive control (MPC) can assist smart-energy systems 

in achieving higher efficiency and utilization of renewable energy sources. A practical barrier for deploy- 

ing such control schemes for space heating of residential buildings is the costs related to obtaining the 

weather data measurements needed for identifying a model that describes the dynamic behaviour of 

the building. Therefore, this paper reports on a simulation-based study investigating whether there is a 

significant impact on the performance of MPC schemes when substituting these weather measurements 

with data from meteorological weather services. Since access to weather forecasts is necessary during 

the operation of the MPC scheme, this implementation approach draws on data already available to re- 

move the need for weather measurements. The results indicated that this approach only led to a minor 

performance impact in that heating savings were reduced by 4% while comfort violations increased by 

less than 0.1 Kh per day on average. The results thereby suggest that the use of data from meteorological 

forecast services for model identification may constitute a cost-efficient alternative to on-site or near-by 

weather measurements. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

There is an increasing interest in the use of model predictive 

control (MPC) of building systems due to its potential for synergy 

with smart grids [1] and its potential for improving the energy per- 

formance of building HVAC systems and occupant comfort [2] . Sev- 

eral theoretical studies have indicated that MPC schemes are able 

to exploit the thermal storage capacity of building structures to 

provide price-based demand response to reduce the total operating 

costs [3–5] and to facilitate incentive-based demand response pro- 

grams [6–7] . However, there are a number of practical challenges 

currently preventing MPC from being widely deployed in practice: 

an MPC scheme utilizes a mathematical model of the thermody- 

namic behaviour of the building together with forecasts of weather 

and potential internal loads to determine the optimal strategy for 

operating the building’s HVAC systems. One of these challenges is 

the effort needed to obtain a suitable building model [8] . 

The data required for obtaining building models suitable for 

MPC is time series with measurements of indoor air temperature, 

energy use for HVAC and local weather conditions (solar radiation 

and external temperature). The same measurements are needed 

∗ Corresponding author. 

E-mail address: reh@eng.au.dk (R.E. Hedegaard). 

during the operational phase of the MPC scheme, along with the 

weather forecasts needed for predicting the influence of weather 

on the building. In some cases additional factors such as inter- 

nal heat gains, wind speed and direction may improve the per- 

formance of the MPC scheme. With regard to MPC of residential 

buildings, Killian and Kozek [1] note that home automation sys- 

tems and advances in wireless technology have provided practical 

and flexible means for collecting data needed for MPC, but these 

technologies are an extra cost if they are not already present in 

residential buildings. However, while there are currently no alter- 

natives to acquiring sensors for measuring indoor air temperature 

and energy use, there might be alternatives that could eliminate 

the need for sensors measuring weather data. 

Conventional ways of collecting weather data for estimating a 

building model for MPC are to install a weather station at the 

site of the building or to rely on data from nearby public weather 

stations. All other things being equal, the advantage of on-site 

weather stations over nearby measurements is that the result- 

ing measurements reflect the weather conditions that the build- 

ing is exposed to, thus providing optimal conditions for obtaining 

a good building model. However, the benefit of on-site measure- 

ments comes at the cost of installing and maintaining an external 

array of sensors. Relying on data from nearby public weather sta- 

tions eliminates these expenses, but introduces a risk of discrepan- 

cies between the measurements and the actual weather conditions 

https://doi.org/10.1016/j.enbuild.2018.04.014 

0378-7788/© 2018 Elsevier B.V. All rights reserved. 
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Table 1 

Scenarios for weather data sources. 

Scenario Data for model identification Forecast data for MPC 

PB On-site measurements Perfect forecasts 

A1 On-site measurements Corrected forecasts using on-site measurements 

A2 Public measurements Raw or corrected forecasts using public measurements 

A3 Forecast data Uncorrected forecasts 

at the site of the building, which may affect the quality of the ob- 

tained model. In both cases, the MPC scheme would require con- 

tinuous access to weather measurements to be able to bias-correct 

weather forecasts. This is assumed to be unproblematic with on- 

site sensors, while the access to online measurements from public 

weather stations may depend on the specific setup. 

To overcome the practical and economic disadvantages related 

to the two different ways of obtaining measured weather data, we 

propose utilizing forecast data from the weather forecast service 

used to facilitate the MPC scheme as a substitute for weather mea- 

surements during model identification. If this approach is viable, 

one practical barrier for deploying MPC, i.e. the costs of on-site 

or public weather data measurements, is eliminated. In this pa- 

per, we therefore present a simulation-based study comparing MPC 

performance when using measured weather data from on-site and 

nearby weather stations, respectively, and weather forecasts for 

generating the building model required for MPC of space heating. 

Section 2 describes the prerequisites for the analysis including 

the used methods, data and the case study itself. The results are 

presented in Section 3 and discussed in Section 4 . Finally, the over- 

all conclusions of the study are drawn in Section 5 . 

2. Method 

The presented study was based on simulations to enable com- 

parison of how different types of weather data affect the qual- 

ity of obtained control-oriented models and subsequently the per- 

formance of MPC schemes. The influence of occupants and inter- 

nal heat gains were considered outside the scope of the analysis 

to ensure clearly interpretable results. A case building was mod- 

elled in EnergyPlus (EP) [9] , while the MPC scheme was imple- 

mented in MATLAB [10] . The connection between the MPC scheme 

and EP was facilitated with the Building Controls Virtual Test Bed 

(BCVTB) [11] . This setup was used to investigate the performance 

of MPC schemes with different implementation approaches in the 

case building. Table 1 outlines three scenarios (denoted A1-A3) 

which rely on different sources of weather data for the implemen- 

tation and operation of the MPC scheme. 

All scenarios make use of the same case building (EP model) 

and the same actual weather conditions at the site of the build- 

ing (EP weather file). The differences between scenarios are the 

data for identifying the control-oriented models used in the MPC, 

and whether there is access to online measurements during op- 

eration. Here, the latter affects the ability of the controller to use 

bias-correction algorithms to further improve the accuracy of fore- 

casts from weather services – a process which requires local mea- 

surements (see Section 2.5 for further details). 

In addition to scenarios A1-A3, a performance bound (PB) sce- 

nario using perfect weather forecasts was included as a benchmark 

enabling comparison of the realizable potentials to the theoretical 

potentials often reported in studies. Each implementation approach 

was evaluated in terms of the predictive performance of the re- 

Fig. 1. Map showing the location of the building, weather stations and forecast points. 
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Fig. 2. Comparison of on-site measurements and the two weather stations. 

sulting building models and the performance of these models once 

implemented in a MPC scheme. 

The following sections present the weather data used in the 

analysis, the EP case building model, the grey-box model used for 

the MPC, the formulation of the MPC problem, and finally the 

method used to bias-correct forecasts in the simulations where 

this is relevant. 

2.1. Weather data and control configurations 

The weather data used for model calibration in scenario PB and 

A1 were measurements from a Delta-T GP1 weather station (accu- 

racy: temp. ± 0.3 °C, global rad ± 5%) located on an unshaded roof 

top at the site of the case building in the city of Aarhus, Denmark 

(labelled ‘Building’ in Fig. 1 ). 

Model identification in scenario A2 was run for two sets of 

measurements from public weather stations (WS) located within 

10 km from the building: WS1 is a complete weather station while 

WS2 is a combination of measurements from two different loca- 

tions (see Fig. 1 ). Fig. 2 depicts time series of a two-week period of 

the measurements from the on-site sensors and the two weather 

stations together with histograms of the deviations between on- 

site observations and WS1 and WS2, respectively, for the entire 

simulation period. 

Model identification for scenario A3 was carried out using five 

sets of weather forecasts generated for locations between 1.6 km 

and 22 km from the building. All forecasts were provided by the 

Danish Meteorological Institute (DMI) and were generated with the 

HIRLAM ensemble-based meteorological model at a spatial resolu- 

tion of 5 km [12] . The forecasts used for this study were taken as 

the average of the ensemble-set consisting of 25 forecasts for each 

location. Fig. 3 presents time series and deviations for three out of 

the five forecast locations used in this study. New forecasts were 

available every six hours, meaning that time series were created by 

consecutively combining the first six hours of each forecast. Con- 

sequently, only the part of the forecast with a short lead-time is 

used, thus minimizing forecast errors. The histograms of the tem- 

perature deviations show that the bias and spread of forecast er- 

Fig. 3. Comparison of on-site measurements and forecast time-series for a period of two weeks. 
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Fig. 4. Geometry of the 10-apartment building (3rd floor) used in the case study. Top: East façade. Bottom: West façade. (Illustration from [4] ). 

rors strongly depend on the forecast point. Libonati et al. [13] list 

factors contributing to systematic forecast errors as discrepancies 

of the meteorological model in topological heights and specifica- 

tion of surface-related parameters such as the soil-reflectivity. Fur- 

thermore, forecast accuracy is influenced by the spatial resolution 

of the meteorological model. Therefore, this study features fore- 

casts from five different forecast points: F1–F4 were chosen be- 

cause of their distance from the building while the last point (F5) 

was included due to its location slightly off-coast (see Fig. 1 ). The 

first four forecasts (F1–F4) differed primarily in the size of the sys- 

tematic bias, while the off-coast point (F5) was characterized by a 

broader and less systematic distribution of forecast-errors. To give 

an indication of this, Fig. 3 presents the forecast error histograms 

of the forecast point closest (F1) and furthest (F4) from the build- 

ing, as well as the off-coast forecast location (F5). 

The weather data from both measurements and forecasts were 

time series with hourly values of incident global radiation [W/m 

2 ] 

and external air temperature [ °C] from 1 December 2016 to 28 

February 2017. 

2.2. Case building 

The EP model described by Pedersen et al [4] was used as 

case building. The model represents the thermal behaviour of ten 

energy-retrofitted residential apartments located on the third floor 

of an unobstructed four-story typical Danish pre-fabricated con- 

crete building from the 1970 ′ ies. Fig. 4 depicts a sketch of the 

east/west-oriented building facades. The energy efficiency of the 

case study building is indicated in Fig. 8 (result section). A detailed 

description of the construction components and HVAC systems 

used in the model is available in [4] . It is noted that the apart- 

ments were assumed heated by fully convective electrical base- 

board heaters, and that internal loads from people and plug loads 

are left out to make results easier to interpret. 

The building is modelled as 15 individual thermal zones: 10 

apartments and 5 stairwells. Floors and ceilings were modelled as 

adiabatic zone boundaries while interior walls allowed heat trans- 

fer between both zones and the stairwells which were kept at a 

minimum temperature of 15 °C. Simulations were carried out using 

a weather file populated with weather measurements from the site 

of the building. Dew-point temperature was approximated accord- 

ing to ref. [14] and the direct and indirect components of the mea- 

sured global radiation were approximated according to ref. [15] . 

The time step used in the EP model was 1 min.. 

2.3. Grey-box model for MPC 

The MPC scheme applied in this study relied on a grey-box 

model to represent the thermodynamics of each apartment in the 

EP building model. Whether the choice of a particular grey-box 

model structure is appropriate depends significantly on the in- 

Fig. 5. RC-network of the physics-based 3R2C-model used in the MPC scheme of 

each apartment. 

tended application of the model. An important trade-off to con- 

sider when choosing a model structure is that, while more com- 

plex models in principle are able to describe the physics of the 

system more accurately, the added complexity also makes the pa- 

rameters of the model increasingly difficult to estimate from mea- 

sured data. Fig. 5 shows the rather simple model structure chosen 

for the MPC scheme in this study. This choice was based on results 

from a previous study [16] in which this structure was found to 

be robust for identifying the thermal behaviour and characteristics 

of buildings when compared to other model structures of similar 

complexity. 

The resistances of the model structure ( R ) represent the interior 

surface resistance and the resistances for transmission and infil- 

tration heat losses, respectively. The capacities ( C ) are the lumped 

thermal capacities of the indoor air and building components, re- 

spectively. The temperature nodes of the model are denoted by 

T. F is a dimensionless factor determining distribution of solar 

heat gains between the internal air and construction components 

while A w 

is the solar aperture equivalent to the area of horizon- 

tally placed windows with perfect transmittance. The inputs of the 

model (in red) are the external air temperature, T ext , the global so- 

lar radiation, Q s , and the heating power, Q h . 

A grey-box model for each apartment was calibrated using 

hourly values of energy consumption and indoor air temperature 

obtained from a simulation of the multi-zone EP model using a 

weather file containing the measurements taken at the site of the 

building. These measurements were combined with weather data 

from one of the three scenarios listed in Table 1 . While some 

model parameters can be identified using data measured during 

steady-state conditions in the building, steady-state data is insuf- 

ficient for identifying other parameters that describe the dynamic 

behaviour of the building. In Fig. 5 , this especially applies to the 

thermal capacities of the model. Therefore, a series of temperature 

fluctuations were imposed on the EP model to create data suitable 

for dynamic modelling. The necessary excitation was evaluated by 

observing at the convergence of the parameter estimates when re- 
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Fig. 6. One week of the hourly data used to identify grey-box models with three different sources for weather measurements. 

peating the process multiple times with different initial conditions. 

The relatively simple model structure meant that suitable conver- 

gence of the parameter estimates was achieved using a simple ex- 

citation signal based on a night-setback of three degrees. However, 

this signal may not be sufficient for identification of models with 

stochastic occupancy. 

Data from a period of two weeks was used as training data to 

identify models, while a third week was used for validation (cross- 

validation). The parameters in the grey-box models were identi- 

fied using the gradient-based greyest function available in MAT- 

LAB’s System Identification Toolbox [17] . Fig. 6 depicts a part of the 

data series used in the model identification process. Each data set 

used to train models consisted of indoor air temperature and heat- 

ing power from the EP model (identical across all scenarios) and 

weather measurements specific to the scenario being evaluated. 

To increase the robustness of the analysis, models of the ten 

apartments were identified using data from five different periods. 

This was done for each of the eight sources of weather data (i.e. 

F1–F5, WS1, WS2 and the on-site weather station) resulting in 

400 RC-models of apartments to be evaluated as part of the con- 

trol scheme of their respective scenarios. Because of this relatively 

large number of models, it was decided to keep the number of 

weather inputs at a minimum to ease the task of identifying the 

models. This was done by using the global radiation directly, in- 

stead of projecting it onto vertical surfaces in the four cardinal di- 

rections as suggested by Reynders et al. [18] . 

2.4. Model predictive control scheme 

The MPC scheme used to operate the space heating of each 

apartment in the EP model was a so-called Economic Model Pre- 

dictive Control (E-MPC) scheme, where the optimal sequence of 

control actions was determined by solving the optimization prob- 

lem defined by Eq. 1a –g . A decentralized MPC scheme in which 

each apartment has its own control unit was chosen since previ- 

ous studies indicated that decentralized schemes have similar per- 

formance to the more complicated centralized control schemes in 

terms of implementation [4,19] . The control objective was to min- 

imize the total operational cost while maintaining room tempera- 

tures within a predefined comfort interval. 

minimize 
u 

N ∑ 

k =1 

c T k · u k (1a) 

sub ject to x k = A x k −1 + B u k −1 + E d k −1 (1b) 

y k = Cx k (1c) 

0 ≤ u k ≤ P max (1d) 

T min,k ≤ y k ≤ T max,k (1e) 

�T min,k ≤ �y k 
�t 

≤ �T max,k (1f) 

x 0 | k = x 0 | k −1 + K ·
(
y measured − C · x 0 | k −1 

)
(1g) 

The objective function ( 1a ) describes the price of implement- 

ing the full extent of the control sequence, u , under a forecasted 

sequence of time varying prices, c . The length of the sequence de- 

pends on the chosen prediction horizon, N . The building dynamics 

governed by the grey-box model is specified in ( 1b ), while ( 1c ) re- 

lates the states of the model to the indoor air temperature. The 

maximum available heating power is defined by ( 1d ), and was in 
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Fig. 7. Impact of forecast bias corrections of air temperaturte and global solar radiation on short-term forecast errors. Top: 1 h lead time. Bottom: 6 h lead time. 

this study assumed to be 50 W/m 

2 . The temperature interval in 

which thermal comfort was assumed was defined by ( 1e ) as 20–

24 °C for all apartments corresponding to thermal comfort class II 

in EN 15251 [20] . Temperatures outside of this range were consid- 

ered comfort violations which were attributed a significant penalty 

in the optimization problem, such that the controller at all times 

tried to maintain temperatures within the specified temperature 

interval. Eq. (1f) constrained the temporal temperature gradient 

to not surpass the recommendation of 2.1 °C/h by ASHRAE [21] . 

Finally, Eq. (1g) used measurements to update the states of the 

model with a Kalman filter. Here, x 0 | k −1 and y k were the predicted 

and measured temperature in the building, respectively, while K 

was the Kalman gain. 

The implementation of the E-MPC scheme was based on the re- 

ceding horizon principle [2] , where an optimization problem was 

solved at a frequency depending on the time-resolution of the con- 

trol unit. In this study a control frequency of one hour was used. 

The optimal sequence of control actions, u , was determined for a 

prediction horizon of 24 h. Only the first action of the sequence 

was implemented in the EP building, after which a new optimiza- 

tion problem was solved using updated weather forecasts and en- 

ergy prices. The price signal used in the optimization problem of 

the control scheme was the historic whole-sale electricity price 

for the period (spot-market) excluding taxes, which were obtained 

from the Danish transmission system operator EnergiNet [22] . Con- 

sequently, the reported results should be interpreted as a way of 

comparing the performance of the MPC using different weather 

data sources rather than an indication of the actual obtainable sav- 

ings in practice. 

2.5. Bias-correction of weather forecasts 

The presence of systematic biases in weather forecasts has re- 

sulted in the development of several methods for improving the 

accuracy of forecasts by using local measurements. Several studies 

have used a Kalman filter for this purpose [13,23–24] . In the con- 

text of MPC of buildings, Gyalistras et al. [25] implemented a bias 

correction in the MPC scheme of an office building and found that 

performance varied between forecasts of different weather phe- 

nomena. The bias correction performed well when correcting fore- 

casts of the outdoor air temperature (20–30% RMSE improvement), 

while the correction for some periods made the forecasts of global 

radiation worse by increasing the variability of the forecast errors. 

Gyalistras et al. [25] concluded the latter to be related to the use of 

a constant noise variance ratio for the Kalman filter and suggested 

that use of time-varying noise variance ratios could potentially ad- 

dress the issue. 

Due to these findings, a bias-correction scheme was also im- 

plemented in this study to fully include the added value of having 

measurements available in the MPC operational phase. The correc- 

tion scheme was used in all simulations of the A1 scenario and in 

half of the simulations from the A2 scenario, which was evaluated 

both with and without bias-correction (see Table 1 ). As elaborated 

on in Section 3.2 , the simulations of the presented case study were 

limited to winter months. It is therefore considered unlikely that a 

time-varying and adaptive correction scheme would have a signifi- 

cant effect on the results, since one of the main strengths of these 

schemes is the ability to adapt to seasonal changes in the bias. Be- 

cause of this, and to avoid issues with the tuning parameters as in 

[25] , a time-invariant correction scheme based on the Kalman up- 

date equation was chosen. The correction scheme was defined by 

Eq. 2a and b . 

ε0 = T OBS 
0 − T F 0 (2a) 

T F ∗i = T F i + K f · ε0 · e b·i ∀ i = 0 , ..., N − 1 (2b) 

Eq. 2a defines the forecast error ( ε0 ) calculated as the differ- 

ence between the observation ( T OBS 
0 

) and the forecasted value ( T F 
0 

). 

The correction was then applied as defined in Eq. 2b , which is a 

modification of the update equation of the Kalman filter. Here, the 
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size of the correction is determined by the forecast error ( ε0 ) and a 

time-invariant gain ( K f ). Furthermore, it was decided to let the cor- 

rection decay as the lead time (denoted i ) of the forecasted value 

increased (i.e. b < 0). The length of the forecasts ( N ) matches the 

prediction horizon of the MPC scheme described in Section 2.4 . 

The decay was included to reflect the fact that the information 

provided by the observation diminishes over time. Therefore, the 

correction is applied to the first hour of the forecast in full effect, 

after which the size of the correction decays as a function of the 

lead time. The outline of the correction scheme is based on the 

external air temperature forecasts. For the correction of solar ra- 

diation, the correction scheme was slightly adapted to ensure cor- 

rections that would not result in negative solar radiation in the 

forecasts. To ensure a well-performing correction scheme suitable 

for the purposes of the case study, the gain ( K f ) of the correc- 

tion and the rate-of-decay ( b ) were optimized using forecasts and 

weather measurements from the simulated period itself. The ob- 

jective of the optimization was to minimize the sum of forecast er- 

rors throughout the forecast. In practice, a similar scheme could be 

used to obtain an adaptive correction similar to the Kalman filter- 

based methods. The gain ( K f ) was fixed at 1 and 0.6 for the correc- 

tion of air temperature and global radiation, while the correspond- 

ing rates of decay ( b ) were fixed at 0.02 and 0.04, respectively. The 

introduction of the decay slightly increased the performance of the 

correction scheme despite the fact that the relatively small rates of 

decay for both parameters indicated that the information provided 

by the observations only diminished rather slowly. The impact of 

the correction scheme on one of the forecast series is presented in 

Fig. 7 . The bias correction was highly efficient in removing the sys- 

tematic biases of the air temperature forecasts. The forecast errors 

of the global radiation, however, were characterized by an insignifi- 

cant bias and relatively high variability; the latter makes it difficult 

to achieve reliable estimates of the forecast error which resulted in 

the correction scheme generally applying smaller corrections. 

3. Results 

The effect of using the different weather data sources outlined 

in Table 1 were evaluated in terms of model quality as well as the 

performance of the models when used for MPC. 

3.1. Quality of the models 

The quality of the identified models using the different weather 

data sources was evaluated on the training and validation data, re- 

spectively, using the normalized root mean square error (NRMSE) 

as the performance metric: 

NRMSE = 100 ·
(

1 − || y − ˆ y || 
|| y − ȳ || 

)
(3) 

where y is the measured zone temperature, ˆ y is the simulated 

temperature of the identified model and ȳ is the average of the 

measured zone temperature time series. The metric thus relates 

the size of the prediction errors to the variability of the air tem- 

perature measurements. The resulting NRSME-fit percentages are 

directly comparable since only the weather inputs of the model 

(external temperature and solar radiation) varied between control 

configurations, whereas the temperature measurements from the 

EP model (i.e. y and ȳ ) were identical across all datasets. 

Table 2 lists the average NRMSE-fit percentage for the apart- 

ment models, where the entries of each row describe 50 models 

(10 apartments, modelled with data from five different periods). As 

expected, models identified using forecast data tended to be char- 

acterized by lower NRMSE-fits than the models identified using 

measured weather data. On-site measurements led to the highest 

fits on both training and validation data, while models identified 

Table 2 

Average NRMSE-fit percentages for the ten apartment models for all data sources. 

Weather data Model NRMSE-fit [%] 

Training data Validation data 

Weather data source Average Std. dev. Average fit Std. dev. 

Forecast data F1 82.2 0.3 75.3 0.6 

F2 81.7 1.7 75.1 0.5 

F3 82.1 0.7 75.1 0.6 

F4 82.0 0.4 73.7 0.8 

F5 75.8 7.3 69.0 2.0 

WS data WS1 86.2 0.4 82.5 1.4 

WS2 83.6 1.0 75.2 1.6 

On-site data 90.4 0.4 87.6 0.9 

using forecasts from F5 achieved the lowest fits on average; most 

likely caused by the wider distribution of forecast errors of the F5- 

forecasts (see Fig. 3 ). While use of the data from WS1 resulted in 

models nearly on par with those derived from on-site measure- 

ments, the models identified with WS2 data generally resulted in 

models of similar quality to those derived with forecast data. Fig. 8 

shows the impact of the biased weather data on the estimates of 

the overall heat loss coefficients and the solar apertures for the 

400 apartment models identified. 

The results presented on Fig. 8 suggests a relation between the 

bias of a given weather measurement, and the corresponding pa- 

rameter estimate obtained in the physics based state space model: 

A biased estimate of the external air temperature affects the es- 

timates of the overall heat loss coefficient, where negative biases 

(temperature measurement colder than actual conditions) gener- 

ally resulted in lower estimates of the heat loss coefficients and 

vice versa. Similarly, negatively biased global radiation (WS2) data 

was compensated for through higher estimates of the solar aper- 

ture (equivalent window area). 

These tendencies support the notion that RC-models can only 

be trusted to predict accurately when the predictions are made us- 

ing weather data with a bias similar to that of the data initially 

used to train the models. This is the reason it makes sense to bias- 

correct forecasts using measurements from the same sensors that 

were used in the initial model identification. The alternative of do- 

ing so is to use the forecasts directly in both phases (i.e. for iden- 

tification and prediction), as proposed in the A3 scenario, whereby 

any discrepancy between data sources is removed entirely if the 

bias can be assumed stationary. 

3.2. MPC performance 

The differences in model quality indicated in Table 2 may affect 

the ability of the E-MPC scheme to maintain temperatures within 

the specified comfort bounds as well as the potential for generat- 

ing cost savings. Therefore, we also evaluated the performance of 

the models when used for E-MPC as described in Section 2.4 over 

a three month simulation period covering a typical Danish heating 

season (1 December 2016–28 February 2017). Two E-MPC perfor- 

mance metrics were used: the achieved economic savings and the 

extent of thermal comfort violations. Savings were defined as the 

reduction in space heating costs obtained by E-MPC when com- 

pared to the space heating costs of a reference simulation in which 

the air temperature was maintained at the lower bound of the 

comfort range. Comfort violations were quantified as the number 

of degree-hours where the indoor air temperature was outside the 

comfort bounds. Both metrics are necessary to obtain a fair per- 

formance evaluation, since e.g. frequent violations of the lower set 

point lowers the overall consumption thereby giving the appear- 

ance of high savings. Fig. 9 depicts indoor air temperature and 

heating consumption data from three scenarios together with on- 
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Fig. 8. Parameter estimates across grey-box models identified using data from different sources. 

site weather conditions and the utility price signal used for the op- 

timization in the E-MPC scheme. Three time-series were selected 

to aid the interpretation of the overall results: 1) a simulation from 

the performance bound scenario with low comfort violations and 

relatively high cost savings, 2) the simulation that led to the high- 

est comfort violations from scenario A2, and 3) a simulation from 

scenario A3 with average performance in both metrics. 

The pattern of the energy consumption and the time-varying 

energy price indicate the general mechanism of the E-MPC scheme 

in all scenarios; space heating consumption was increased when- 

ever fluctuations in the price encouraged it (i.e. during low price 

periods or just before a high price period). 

The simulation from scenario A2(WS2) was the least capable of 

maintaining temperatures above the specified lower limit of 20 °C. 

The time-series also indicate that the comfort violations typically 

occur during hours of high global radiation. This can be attributed 

to the tendency of WS2 data leading to the solar aperture be- 

ing overestimated for some of the identified models, see Fig. 8 . In 

addition to this, the model used in the depicted WS2 simulation 

also seemed to describe the dynamics of the building inadequately, 

which at several points throughout the simulation led to control 

actions significantly different than those made in the more similar 

simulations of the PB and A3 scenarios. 

Fig. 10 presents the MPC performance (energy savings and com- 

fort violations) of each scenario using forecast data from each of 

the five forecast locations shown in Fig. 1 . The models used in sce- 

nario A3 were identified using forecast data obtained at the same 

point as the forecasts used in the operational phase, while mod- 

els used in scenarios A1 and A2 were identified using measured 

weather data. Scenario A2 was simulated twice using data from 

WS1 and WS2, where each simulation was carried out using raw 

and corrected forecasts. Finally, the PB is depicted as a single box- 

plot bar since only one forecast series was used (perfect forecasts). 

The horizontal red line in the second box plot denotes the number 

of degree hours that correspond to a 1-degree violation occurring 

in 5% of the dwelling’s time-of-use (assumed 24/7), in accordance 

with EN 15,251 [18] . 

Each boxplots contains results from the 50 MPC simulations 

(ten apartments each simulated five times with different RC mod- 

els as per Section 2.3 ). The horizontal line of each box indicates the 

median while the box itself contains simulation results within the 

first and third quartile (also referred to as the interquartile range 

or IQR), while the whiskers contain the remaining results. The size 

of the whiskers were limited to 1.5 times the IQR, while points re- 

siding outside these limits were regarded as outliers. 

The vast majority of MPC simulation results indicated savings in 

the range of approx. 9–12% compared to the costs of the reference 

case (PI control). The highest energy savings were not achieved by 

the PB, but by scenario A1 which, on the other hand, had almost 

twice as many comfort violations as the PB. The energy savings 

achieved in scenarios A2 and A3 tended to be slightly lower and 

characterized by higher variability than those obtained in the A1 

and PB scenarios. Here, especially the energy savings in scenario 

A3 using forecasts from location F5 stood out with higher variation 

between simulations. 

The majority of scenarios led to rather similar magnitudes of 

comfort violations (approx. 40–50 Kh) with fewer violations for the 

PB scenario and more frequent violations for the A2(WS2) scenario. 

The A2(WS2) simulations were also characterized by a significant 

number of outliers in both directions which most likely is linked to 

the large spread in parameter estimates apparent from Fig. 8 . The 

outliers with high comfort violations were the only results indicat- 
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Fig. 9. Simulation data from an apartment controlled by the E-MPC-scheme for three weather source data scenarios. The red symbols in the legend refer to the results of 

Fig. 10 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

ing poorer performance than the guidelines specified in EN 15,251 

[18] . 

Finally, the bias-correction of incoming weather forecasts in the 

A2 scenarios only led to an insignificant increase in average sav- 

ings ( < 0.2%). The reduction of comfort violations for the A2(WS1) 

scenarios were also insignificant due to the fairly low bias of the 

measurements from WS1. However, the bias correction of the more 

biased WS2 measurements reduced comfort violations by 11% be- 

cause the effect of the positively biased measurements from WS2 

was amplified by the mainly negatively biased forecast series. 

4. Discussion 

The variability of the results within each of the scenarios shown 

in Fig. 10 can be caused by either varying accuracy of the sources 

of weather data between the five periods, or that the actual 

weather conditions during some periods was less suited for dy- 

namic modelling. An example of the latter could be extended pe- 

riods of cloudy weather with low solar heat gains. The impact of 

these factors can likely be addressed through frequent recalibration 

of the control models; we consider this a topic for future stud- 

ies. Similarly, the impact of neglecting occupants and the internal 

heat gains related to them is a topic worth investigating further. 

While this uncertainty would apply to all of the investigated sce- 

narios, one could argue that the data sets derived from weather 

forecasts could be more sensitive to these, due to their generally 

lower signal-to-noise ratio compared to the data sets relying on 

on-site sensors. 

Furthermore, despite the seemingly large differences in comfort 

violations resulting from the different scenarios, detailed inspec- 

tion of the results indicated that the bulk of the comfort violations 

were of small amplitude; 74% of the observed degree-hours were 

caused by violations of less than half a degree, which are consid- 

ered likely to go unnoticed by occupants. The comfort violations 

surpassing the 0.5 °C threshold typically occurred in hours with 

high solar radiation. This is likely due to the adoption of the global 

solar radiation as the measure of solar heat gains which, due to 

the East/West oriented facades of the building, overestimates the 

solar heat gains during mid-day when a high amount of solar ra- 

diation is on the windowless South-oriented part of the envelope. 
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Fig. 10. Energy savings and comfort violations from the MPC simulations of the different scenarios (see Table 1 ) using weather forecasts from different locations (see Fig. 1 ). 

Red symbols refer to specific simulations shown on Fig. 9 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

However, this issue can to a wide extent be addressed by im- 

plementing a P(ID)-control to maintain the lower temperature set 

points as previously proposed in Pedersen et al [4] . 

Finally, we acknowledge that the results from the A2 scenarios 

involving public weather stations are case specific. These scenarios 

were included merely to illustrate how the perhaps most obvious 

alternative to on-site measurements may affect performance. How- 

ever, the ability to identify building models using on-site measure- 

ments as in scenario A1 does not depend on the location. Simi- 

larly, it is reasonable to assume that the accuracy of the HIRLAM 

(or similar) meteorological forecast model used in scenario A3 does 

not vary significantly with location. 

We therefore consider it likely that the results from the A1 and 

A3 scenarios can be reproduced in other locations – at least in lo- 

cations with temperate climate like the Danish. 

5. Conclusion 

A practical barrier for deploying MPC of space heating in resi- 

dential buildings is the cost of obtaining on-site or public weather 

measurements needed for identifying the building models in the 

MPC scheme. In this paper, we have therefore presented an anal- 

ysis on whether this cost can be eliminated by using a weather 

forecast service as an alternative to weather measurements. 

The results indicated that identifying models using on-site mea- 

surements led to the best MPC performance. In comparison, the 

use of public weather stations led to a generally lower perfor- 

mance – the degree of the impact depending on the particular 

weather station investigated. The results from the proposed ap- 

proach relying on access to a weather forecast service only led to 

a minor impact on the MPC performance; the average savings de- 

creased by less than 0.5% points while the daily average comfort 

violations increased with less than 0.1 Kh (degree hours) compared 

to the use of on-site measurements. The simulation results thereby 

suggest that an MPC setup for space heating of residential build- 

ings relying solely on a weather forecast service and two internal 

sensors (zone temperature and heating power) may constitute a 

cost-efficient alternative to a setup relying on on-site or near-by 

weather measurements. However, more case studies are needed to 

support the key conclusion of this paper. Furthermore, future stud- 

ies should investigate the viability of the method when applied 

in real buildings under the influence of stochastic occupancy and 

other uncertainties. 
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5.2 Epilogue 
This study investigated whether the task of obtaining control-oriented models of residential 

buildings could be simplified by substituting weather measurements with forecasts from a 

meteorological weather service. In the study, excitation was imposed on the building through a 

conventional night-setback scheme. Identification of models suited for MPC was achieved, 

despite the lower frequency content associated with this input signal. In this context, a significant 

assumption made in the analysis was the neglect of stochastic occupancy and the effects that it 

can have not only on MPC performance, but also in particular on the input-output data used for 

identifying the control-model. While this simplification could potentially affect the robustness of 

the conclusions, the study of Reynders et al. [54] found that the impact of occupants could be 

reasonably accounted for by using the domestic electricity consumption as an indication of the 

internal heat gains. The same study also suggested that the accuracy of model predictions could 

be improved by projecting the solar radiation onto vertical surfaces facing each cardinal direction, 

as opposed to the approach of using the horizontal global radiation that was applied in the present 

study. Despite the potential performance gain, oriented solar radiation inputs were not adopted 

since they would require the introduction of either additional model parameters (effective window 

areas facing each direction) or, alternatively, an assumed distribution of windows on each building 

façade.  

The results indicated that the use of forecasts only resulted in a minor impact on the performance 

of the MPC algorithms. If similar performance can be achieved in actual buildings as well as for 

locations other than the one featured in the study, the analysis suggests this implementation 

method to be an effective means of reducing the complexity of the technical infrastructure needed 

to implement MPC in residential buildings and, by extension, the associated costs. Conducting 

proof-of-concept experiments in actual buildings is considered a relevant future research 

endeavour.  

This chapter concludes Part I of this thesis. In Part II, a outline of the historical developments that 

have led to the current peak of interest in demand response is presented along with chapters 

presenting the research related to the research objectives of Part II.  
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6 DEMAND RESPONSE –

THEN AND NOW 

In recent years, the concept of balancing supply and demand by controlling the demand for 

electricity has received a great deal of attention from researchers. While this may seem like a 

break away from the load-driven structure of the electricity grid we are mostly familiar with today, 

the practice of interfering with when and how consumers consume electricity is not by any means 

new. In a historic review, Kidd [58] stated that the first known attempts to introduce time-varying 

price tariffs date back to 1897, and were motivated by the large daily fluctuation in demand caused 

by street lighting in the evenings. In the period following the Second World War, several utility 

companies retained the right to switch off water heaters during daily recurring peaks, which at 

this time were caused by midday cooking. The energy crisis of 1973 sparked new development 

in the field of load management throughout the 1970s. In spite of these developments, the field 

was still in its infancy, with a lack of common terminology [59]. In the 1980s, a series of articles 

by Clark Gellings et al. on the topic attempted to remedy this by formalizing the concept of 

demand side management (DSM) [60–62]. In 1985, Gellings provided the following definition of 

DSM [61]:  

‘DSM is the planning, implementation, and monitoring of those utility 

activities designed to influence customer use of electricity in ways that will 

produce desired changes in the utility’s load shape, i.e., changes in the time 

pattern and magnitude of a utility’s load.’ – Clark W. Gellings 

This definition clearly suggests that demand side management spans demand-side initiatives 

aimed at both energy conservation (e.g. energy retrofits) and load management initiatives that 

alter the temporal distribution of demand. In recent years, however, the terminology surrounding 

DSM has again become subject to confusion with the introduction of the term demand response 

(DR). Among the earliest identified occurrences of the demand response-term in the context of 

DSM is the conference article written by Fereidoon Sioshansi titled ‘Demand response: the sequel 



Part II: Demand response in residential space heating 

76   

to DSM?’ [63], which was later expanded in [64]. In these works, the authors argue that the load 

management techniques of DSM such as real-time pricing (RTP) and DR are two different (but 

complementary) initiatives, and promote the following distinction between them: RTP 

programmes advise customers on how to adjust their consumption based on variable electricity 

prices, thereby incentivizing behaviour that has a low impact on the grid. DR programmes, on the 

other hand, deal with immediate capacity issues and address these by encouraging flexible 

consumers to reduce their load when networks are congested.  

Regardless of exact definitions, the close resemblance between the concepts of DR and DSM has 

led many researchers to use the two terms interchangeably. Recently, several larger entities have 

also adopted DR in their active terminology. This is the case in the federal ruling in Order No. 

745 of the U.S. Federal Energy Regulatory Commission (FERC) – in which the FERC dictates 

that DR resources capable of reducing consumption should be compensated with the same 

marginal prices in the electricity wholesale markets as if they met that demand by generating 

electricity [65]. Similarly, the International Energy Agency used DR to cover both RTP schemes 

and other price-based schemes aimed at altering the demand of consumers [66]. The growing 

consensus seems to be that DSM can refer to both permanent measures (e.g. promoting energy 

efficiency) and temporary measures (load shifting and curtailment), whereas DR can only refer 

to the latter; I will not engage in further discussion of terminology here, but simply adopt this 

definition. Furthermore, the term DR schemes (or DR programmes) will refer to the agreement 

between actors on the demand and supply side, which may include details related to incentive 

mechanisms as well as other consumer or grid-related constraints relevant to the given DR 

initiative. Finally, a DR event refers to a given period during which normal operation has seized 

and DR is in effect. In this context, DR may refer to a deviation from the business-as-usual 

demand profile that may be both positive and negative.  

The literature on DR (or DSM) shows that consumers, although motives may have shifted along 

the way, have been brought into play in the task of balancing supply and demand at several 

moments throughout history. The recent large-scale expansion of energy production from 

intermittent renewable sources constitutes a new challenge in this regard, which has prompted a 

new wave of research activity within the area of DR. The significant amount of consumption that 

takes place in buildings has naturally resulted in them being considered suitable candidates for 

DR [3, 18–19]. However, just as DR is not a new concept, neither is the idea of utilizing the 

thermal inertia of buildings for DR purposes. Already in 1981, Gellings [60] listed several 
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manufacturers of systems that were aimed at conducting DR by utilizing underfloor heating 

systems as structural thermal energy storage. However, the author states that the control methods 

used at the time were unable to ensure acceptable thermal conditions in the building and thus 

resulted in overheating. These issues dampened enthusiasm for the concept and hindered its use 

in practice. Recent developments in advanced control schemes, wireless technology and smart 

metering have reignited research on the utilization of structural thermal energy storage. In their 

review, Shaikh et al. [23] found several control methods that have been applied in research on so-

called smart buildings. The list included dynamic programming, fuzzy logic, artificial neural 

networks and model predictive control. Of these methods, model predictive control (MPC) was 

found to be the most frequently used by researchers.  

MODEL PREDICTIVE CONTROL 

MPC schemes that control space heating in buildings rely on a dynamic model of the building to 

predict the influence of its own control actions as well as the effects of external phenomena such 

as weather conditions, and use these predictions to identify the optimal sequence of control 

actions. In addition to the predictive nature of these control schemes, other often-praised 

advantages of MPC schemes are their ability to handle multiple objectives; incorporate explicit 

constraints on the system state or control actions; and account for interactions between different 

sub-systems with possibly conflicting objectives [67]. These advantages and consideration of the 

future impacts of current control actions make MPC highly suitable for addressing the comfort 

issues that, according to Gellings, had previously hindered attempts to utilize structural thermal 

energy storage for DR purposes. Although MPC was developing as a control method around the 

same time that Gellings noted comfort-related issues in his 1981 article (see e.g. [68–69]), the 

control method would for many years primarily be used in refinery and chemical process control 

applications [70]. Only in approximately the last two decades, have researchers have started to 

consider MPC as a viable approach to building control [25]. Early research related to MPC in 

buildings includes that of Florita and Henze [71], Oldewurtel et al. [72], and Dong et al. [73].  

Recent years have seen a steep increase in the number of studies on MPC and its potential for 

enabling DR in buildings [74]. Several authors have conducted extensive reviews of MPC and its 

uses in buildings; see e.g. the recent reviews of Clauß et al. [75] and Benndorf et al. [67]. The 

authors of the latter especially provide an extensive overview of current literature, and also 

dedicate a significant portion of their review to describing the various aspects of MPC, including 
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modelling approaches; optimization approaches; introduction of feedback (state estimation); 

handling of uncertainties; and choice of optimization objectives. Therefore, no review of MPC 

theory or the current body of research on MPC is given here.  

The following sections present the research contributions of this project that relate to DR in 

residential buildings. Each chapter presents one of the primary research publications, which may 

be concerned with one or several of the objectives of this second part of the thesis. Relevant 

secondary research contributions are referenced and discussed where appropriate.  
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7 IMPACT OF BUILDING 

CHARACTERISTICS 

The potential of utilizing the inherent thermal mass of buildings for short-term thermal energy 

storage depends on several factors. The fundamental analysis of Reynders [33] indicated that 

increasing the energy efficiency of a building (e.g. through retrofitting) increases the efficiency 

at which thermal energy may be stored in the structural mass of the building and, by extension, 

the efficiency at which demand may be shifted in time. However, the analysis also indicated that 

storage capacity, i.e. the amount of energy that can be stored in the thermal mass during a DR 

event, decreases as the energy efficiency of a building is improved. A factor that may affect DR 

enabled through MPC schemes is the heat exchange between adjacent thermal zones (e.g. adjacent 

apartments), which has been shown to potentially deteriorate MPC performance if not 

incorporated in the control scheme [76]. Finally, in addition to aspects related to the specific 

building and the MPC implementation method, the potential of DR is also inherently dependent 

on the economic incentive offered to consumers for participating in DR events. Several studies 

have used hourly tax-free prices from the day-ahead wholesale electricity market as the main 

incentive for consumers to engage in DR, see e.g. [34–35, 77]. However, the study presented in 

(S3) indicated that time-invariant tax components of the electricity price paid by consumers is 

inhibitive of price-based DR [78]. The following section presents a paper on how these aspects 

influence the potential of conducting DR by using MPC to exploit the structural thermal mass of 

a typical Danish apartment building. The results are evaluated for both an existing and several 

retrofitted versions of the building in order to investigate how the relationships between building 

characteristics and storage capability identified by Reynders [33] manifest themselves in the 

control actions of both centralized and decentralized MPC schemes. The tax components of the 

Danish electricity price were included in the analysis, but made time varying by redistributing 

them according to the methodology described in [78]. The analysis thereby aims to provide 

insights on thesis objectives 2.1, 2.2 and 2.3.  
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a  b  s  t  r  a  c  t

In  future  and  smarter  energy  systems,  time  varying  energy  prices  enable  indirect  demand  response  (DR)
to assist  the electricity  supply  system  to meet  demand.  This  simulation-based  study  investigates  how
economic  model  predictive  control  (E-MPC)  schemes  for  space  heating  operation  can  utilize the thermal
mass in  an  existing  multi-story  apartment  block  and  eight  retrofit  scenarios  to  provide  DR. The perfor-
mance  of the  E-MPC  scheme  was  evaluated  in terms  of  its ability  to  enable  end-user  cost  savings,  reduce
CO2 emissions  and  to perform  load  shift  of the  heating  demand  compared  to a conventional  PI  controller.
Two  E-MPC  approaches  were  considered:  centralized  E-MPC  where  inter-zonal  effects  were  considered
and decentralized  E-MPC  that  neglected  heat  transfer  between  adjacent  apartments.  The  E-MPC  schemes
led  to  increasing  cost  savings  (up  to approx.  6%)  and reduced  CO2 emissions  (up  to  approx.  3%)  as  a  func-
tion  of  increasing  energy  efficiency  of the  retrofit  scenarios.  The  absolute  amount  of  shifted  power  from
peak load  periods  was  rather  consistent  (approx.  2  kWh/m2 heated  net area)  across  all retrofit  scenarios
compared  to  the  existing  building.  The  centralized  E-MPC  scheme  led  to  marginally  better  results  than
the  decentralized  E-MPC.  The  added  complexity  involved  in  establishing  a  centralized  E-MPC  compared
to  a  decentralized  E-MPC  may  therefore  not  be  worth  the  effort.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Instantaneous balance between supply and demand is a manda-
tory characteristic of the electricity supply system. Today, this
balance is ensured almost exclusively by adjusting supply to meet
demand. However, sheer supply-side management (SSM) is ineffi-
cient in systems with a high penetration of intermittent renewable
energy sources (RES) such as wind turbines and photovoltaics [1].
Demand-side management (DSM) can to some extent assist supply-
side management in such systems. There are different categories
of DSM [2]. Traditionally, the most favored aspect of DSM has been
energy efficiency [3,4] but recently several studies have explored
the potential of demand response (DR), where consumers adjust
their demand to meet supply [5–9]. It has mainly been applied
by large scale industrial and commercial customers [10] but DR
programs for space heating for residential customers could also be
considered as they represents a large share of the total consump-
tion: Private households accounted for approx. 25% of the total
energy consumption in the European Union (EU) in 2011 [11] of

∗ Corresponding author.
E-mail address: thp@eng.au.dk (T.H. Pedersen).

which approx. 67% was used for space heating in the Northern and
Western regions of the EU [12].

Several studies have demonstrated DR potentials in residential
space heating operation. A simulation-based study by Acvi et al.
[13] obtained a 13% cost reduction and reduced the energy con-
sumption in peak-hours by 23.6% compared to a baseline controller
by applying real time prices (RTP) together with economic model
predictive control (E-MPC) of an AC unit in a single residence. Halv-
gaard et al. [14] investigated the performance of a residential-scale
heat pump operated by an E-MPC scheme using RTP. The control
scheme achieved 25% cost savings using hard comfort constraints
and 35% using softened constraints. Vrettos et al. [15] used day-
ahead prices in an E-MPC scheme to investigate the DR potential of a
residential building equipped with several installations for efficient
DR (heat pump, slab cooling, electrical water heater, PV and battery)
and achieved an energy consumption reduction of 20% and cost sav-
ings of 28% compared to a rule-based controller (RBC). Knudsen and
Petersen [16] applied RTP and corresponding CO2 intensity signals
to an E-MPC scheme for space heating operation in a residential
apartment and demonstrated a potential for cost savings together
with CO2 emission reductions as well as shifting consumption from
periods of peak load to low load periods.

However, to the knowledge of the authors, there have been only
a few studies on how the thermal characteristics of existing resi-

http://dx.doi.org/10.1016/j.enbuild.2017.02.035
0378-7788/© 2017 Elsevier B.V. All rights reserved.
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Table  1
Construction characteristics of the existing building.

Construction type Material Thickness Thermal Properties

Interior Wall Concrete 0.120 m � = 1.10 W/(m K) c = 920 J/(kg K)
Floor/Ceiling Wood 0.020 m � = 0.15 W/(m K) c = 1630 J/(kg K)

Insulation 0.050 m � = 0.04 W/(m K) c = 1210 J/(kg K)
Air  space 0.050 m R = 0.18 (m2 K)/W
Hollow concrete slap 0.180 m � = 1.29 W/(m K) c = 270 J/(kg K)

Exterior  Wall − Facades Concrete 0.070 m � = 1.10 W/(m K) c = 920 J/(kg K)
Insulation 0.060 m � = 0.04 W/(m K) c = 1210 J/(kg K)
Concrete 0.080 m � = 1.10 W/(m K) c = 920 J/(kg K)

Exterior  Wall − Gables Concrete 0.095 m � = 1.10 W/(m K) c = 920 J/(kg K)
Insulation 0.060 m � = 0.04 W/(m K) c = 1210 J/(kg K)
Air  space 0.015 m R = 0.15 (m2 K)/W
Concrete 0.150 m � = 1.10 W/(m K) c = 920 J/(kg K)
Air  space 0.015 m R = 0.15 (m2 K)/W
Insulation 0.060 m � = 0.04 W/(m K) c = 1210 J/(kg K)
Concrete 0.090 m � = 1.10 W/(m K) c = 920 J/(kg K)

Existing  window Double glazing (4-12Air-4) 0.020 m Uglazing = 2.84 W/(m2 K) gglazing = 0.773
Wood frame Uframe = 1.700 W/(m2 K)

Table 2
Facade retrofit measures.

Construction name Material Thickness Thermal Properties

Facade 1 External insulation 0.125 m � = 0.036 W/(m K) c = 920 J/(kg K)
Facade  2 External insulation 0.205 m � = 0.036 W/(m K) c = 920 J/(kg K)
2-layer  window Low-E glazing (4-14Ar-LowE4) 0.022 m Uglazing = 1.220 W/(m2 K) gglazing = 0.671

Wood/Alu frame Uframe = 1.700 W/(m2 K)
3-layer window Low-E glazing (4LowE-14Ar-4-14Ar-LowE4) 0.040 m Uglazing = 0.688 W/(m2 K) gglazing = 0.547

Wood/Alu frame Uframe = 1.700 W/(m2 K)

dential buildings affect DR potentials of space heating operation.
Reynders et al. [17] applied an RBC scheme to investigate the rela-
tion between energy efficiency of the building envelope and the
potential for exploiting the structural thermal storage for DR in
dwellings. Simulation results for six test cases showed that up to
40% of the stored energy was lost due to poor thermal charac-
teristics. A subsequent parametric study of the building envelope
thermal characteristics suggested that increased insulation level
and air tightness were the two most important factors to increase
the DR efficiency [18]. Upgrading the thermal performance of build-
ing envelopes of existing residential buildings in an energy system
with a high penetration of renewable energy production therefore
seems to be critical if space heating is to be used for DR.

The aim of the work reported in this paper is to contribute
with further knowledge regarding the importance of the thermal
characteristics of existing residential building envelopes on the
latent DR potentials in residential space heating. The paper reports
on a simulation-based study where centralized and decentralized
E-MPC were used to operate the space heating in eight retrofit
scenarios of an existing residential multi-story apartment block.
The E-MPC scheme was evaluated in terms of its ability to reduce
end-user cost, CO2 emission and the resulting load shift of heating
demand.

2. Method

A section of an existing apartment block was  modelled in Ener-
gyPlus (EP) [19] and represents as such an actual building to be
controlled by E-MPC. The E-MPC scheme was implemented in MAT-
LAB [20] and used to operate the space heating (electrical baseload)
of the EP model through co-simulation using the Building Controls
Virtual Test Bed (BCVTB) [21,22]. The following sections provide
further information on the modelling of the test case in EP, the
building model used in the E-MPC, the E-MPC scheme and the per-
formance evaluation metrics used for performance evaluation of
the E-MPC scheme.

2.1. EnergyPlus model

The third floor of an existing four-story apartment block was
used as test case and thus modelled in EP. The EP files are provided
in ref. [23]. The block was built in 1978 and has only undergone
minor refurbishments since then. The geometry is depicted in Fig. 1
and consists of five stairwells (S) and ten apartments: one 1-room
apartment (9), four 3-room apartments (1, 3, 5 and 7) and five 4-
room apartments (2, 4, 6, 8 and 10) with east-west oriented facades
where the west oriented facades have unheated balconies (blue
boxes in Fig. 1). The stairwells and apartments were modelled as
individual thermal zones with adiabatic horizontal surfaces (floor
and roof). The stairwells were kept at a minimum temperature of
15 ◦C while the apartments had individual heating with different
set points as explained in Section 2.4.

The thermal characteristics of the existing building envelope
used in the EP model are specified in Table 1. The windows were
modelled in WINDOW [24] and imported into the EP model. The
infiltration air change rate was modelled as a constant rate of
0.5 h−1. Internal loads from people and equipment were neglected
to make the results easier to interpret. The Conduction Finite Dif-
ference algorithm in EP was used to calculate the construction heat
balances with a 60 s time step. The standard EP weather data file for
Copenhagen, Denmark was used in all simulations [25]. The simu-
lation period was November 1, 2015 to February 28, 2016, which
constitutes the coldest period of the heating season in Denmark.

To investigate the influence of the energy efficiency of the
building envelope, a range of typically used retrofit solutions for
existing Danish apartment blocks (Table 2) were combined into
eight retrofit scenarios (Table 3) with gradually increasing energy
efficiency. All scenarios were assumed to increase the air tight-
ness due to the increased focus on the importance of building air
tightness compared to when the existing building was constructed;
hence, the infiltration rate was  reduced to either 0.18 h−1 or 0.1 h−1

in an attempt to investigate the effect of different retrofit ambitions.
Mechanical ventilation with heat recovery efficiency of 80% was
assumed in all retrofit scenarios to ensure a constant air change of



160 T.H. Pedersen et al. / Energy and Buildings 141 (2017) 158–166

Fig. 1. Test case geometry as modelled in EnergyPlus with applied apartment numbering.

Table 3
Retrofit scenarios.

External insulation Window Infiltration rate

Existing – existing 0.50 h−1

Retrofit1 0.125 m 2-layer 0.18 h−1

Retrofit2 0.125 m 2-layer 0.10 h−1

Retrofit3 0.205 m 2-layer 0.18 h−1

Retrofit4 0.205 m 2-layer 0.10 h−1

Retrofit5 0.125 m 3-layer 0.18 h−1

Retrofit6 0.125 m 3-layer 0.10 h−1

Retrofit7 0.205 m 3-layer 0.18 h−1

Retrofit8 0.205 m 3-layer 0.10 h−1

0.5 h−1 in all apartments. The retrofit measures facade 1 and facade
2 in Table 2 would, in practice, also consist of an external cladding
and other materials but the thermal characteristics of these were
neglected in the model.

2.2. Control model

A model describing the thermal dynamics of the building is
required when applying MPC  schemes. In this study, the model is
defined as a discrete-time linear time-invariant system specified
on state-space form (Eq. (1a)) with state matrix A, system states
xk, input matrix B, control inputs uk, disturbance matrix E, distur-
bances dk and controlled system states yk (Eq. (1b)) with output
matrix C.

xk+1 = Axk + Buk + Edk (1a)

yk = Cxk (1b)

There are several modelling techniques for representing the
building dynamics [26] commonly categorized as white box (e.g.
[19]), grey box (e.g. [27,28]) or black box model approaches (e.g.
[29,30]). In this study, a grey box model approach was  chosen as it
provides the additional possibility of identifying the actual physical
parameters of the building, e.g. the total heat loss coefficient, which
could be beneficial to document the effects of retrofits in practice.
Furthermore, grey box models are characterized by having rela-
tively low requirements in terms of the amount of data needed to
obtain them compared to the alternatives.

The model structure of the apartments was defined as a multi-
zone model as illustrated in Fig. 2 for apartment j with adjacent
apartments i, where Text is the external temperature [◦C], Qsun is
the solar heat gains [W], Qheat is the thermal energy from the space
heating system [W], T is the temperature [◦C], C is the thermal
capacity [J/K], H is the heat transfer coefficients [W/K] and sub-
scripts m, e and a represent the construction mass, ambient air and

Table 4
Average model fit-percentage compared to validation data.

Multi-zone Single-zone

Existing 84% 91%
Retrofit1 86% 88%
Retrofit2 84% 87%
Retrofit3 87% 88%
Retrofit4 85% 88%
Retrofit5 87% 85%
Retrofit6 86% 84%
Retrofit7 88% 86%
Retrofit8 87% 86%

room air, respectively. The multi-zone model can be reduced to a
set of single-zone models by setting Hinteraction = 0 throughout the
model, i.e. neglecting the inter-zonal effects.

An inherent part of grey box modelling is to make data-based
estimations of the parameters describing the thermal dynamic
characteristics of the building (C and H in Fig. 2). The parame-
ters were estimated for the multi-zone and the set of single-zone
models, respectively, based on output data from a simulated exper-
iment with a duration of 14 days (01.01.2016–14.01.2016). During
the experiment the output of the heaters were controlled to fol-
low a so-called Pseudo Random Binary Signals (PRBS) designed to
excite systems with multiple time constants [31,32]. Ten different
PRBS signals were used in the ten apartments. The output from the
first seven days of data was  used for parameter estimation using
the MATLAB system identification toolbox [33,34] by minimizing
the multiple-step ahead prediction error, while the output from the
remaining seven days was used for model validation. The average
model fits (NRMSE) [35] across all zones on the validation data for
the multi-zone and single-zone model, respectively, are shown in
Table 4. The fits of the multi-zone and single-zone model are within
the same range. Differences in model fits are due to the different
parameter estimations as shown in Fig. 3.

The estimated room air capacities for the two modelling
approaches was similar, whereas the construction mass capaci-
ties differ slightly, presumably because the single-zone models
lump the effects of inter-zonal heat exchange into other parame-
ters. The complexity of one comprehensive multi-zone model also
complicates the system identification, which is seen by the greater
parameter estimation uncertainties.

When the multi-zone model is used in E-MPC as one com-
prehensive building model, the optimal control inputs for all
apartments are calculated simultaneously for each discrete time
step. This is called centralized E-MPC [36]. Using the set of
single-zone models for E-MPC, i.e. each optimal control input is
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Fig. 2. Illustration of the model structure for apartment j and adjacent apartments i.

Fig. 3. Parameter estimations and standard deviation of the thermal capacity of the room air (top) and construction mass (bottom).

determined for each zone individually, is called decentralized E-MPC
[36]. Thus, in theory, decentralized E-MPC will return a sub-optimal
control strategy compared to the centralized E-MPC due to the
neglect of inter-zonal effects. However, the decentralized control
approach may  be more practical since it does not require mapping
of zone adjacency or exchange of information between controlled
zones. This paper therefore investigates the performance differ-
ences between a decentralized and centralized control approach.

2.3. Economic model predictive control

The objective of the E-MPC scheme formulated in Eqs. (2a)–(2g)
is to minimise the total operational cost for a finite prediction hori-
zon N. At each discrete time step k, measurements of the room
air temperatures are taken and the optimization problem is solved
yielding a sequence of optimal space heating control input u* [W].
The first element of u* is then applied to the space heating system

in the EP building model. At the next time-step k + 1 the optimiza-
tion problem is solved again with a prediction horizon shifted one
time-step ahead in time and with updated room air temperature
measurements. This receding horizon introduces feedback in the
control scheme [37]. The optimal sequence of control inputs u* is
constrained by the maximum heating design power Pmax (Eq. (2d))
and the value and rate of change of the room air temperatures y
(Eqs. (2e) and (2f), respectively). All of the inequality constraints
(Eqs. (2d)–(2f)) were enforced as equality constraints by intro-
ducing slack variables, which ensured that a feasible solution was
always available. Furthermore, a low-level proportional controller
is introduced in the EP model that ensures thermal comfort since
model mismatch in the E-MPC scheme could lead to thermal com-
fort violations. The prediction horizon N and the discrete time step
k were set to 3 days and 1 hour, respectively. To simplify the inter-
pretation of the results, perfect predictions of the input weight c
(Eq. (3)), in this case the electricity price and weather forecasts,
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Fig. 4. Input weight for the period of December 7–14, 2015.

Fig. 5. Partition of the daily consumption into periods of low, high and peak load for December 7–14 2015 [6](Nord Pool).

are assumed. Hence, the optimization problem forms a determin-
istic linear program (LP). The LP can be solved efficiently using the
MOSEK solver [38].

minimize
u

N∑
k=1

cT
k · uk (2a)

subject  to xk+1 = Axk + Buk + Edk (2b)

yk = Cxk (2c)

0 ≤ uk ≤ Pmax (2d)

Tmin,k ≤ yk ≤ Tmax,k (2e)

�Tmin,k ≤ �yk

�t
≤ �Tmax,k (2f)

x0 = x (0) (2g)

2.4. Constraints and input weight

In this study, the control input and state constraints (Eqs.
(2d)–(2f)) are time-invariant but differ for each apartment as spec-
ified in Table 5.

The input weight vector c in Eq. (2a) is a signal designed to
transform a multi-objective optimization problem into a single-

Table 5
Specification of input and state constraints.

Zone Pmax Tmin Tmax �Tmin �Tmax

Apartment 1 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 2 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 3 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 4 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 5 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 6 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 7 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 8 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 9 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 10 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h

objective optimization problem [16], which is summarised in Eq.
(3).

c [k] = spot [k]

spot

·  cCOM

︸  ︷︷  ︸
pCOM

+ load [k]

load

·  cTRA

︸ ︷︷  ︸
pTRA

+ CO2 [k]

CO2

· cEL TAX

︸ ︷︷  ︸
pEL  TAX

+ fPSO [k] · cPSO︸  ︷︷  ︸
PPSO

(3)

where k is a discrete hourly time step, spot is the hourly electric-

ity spot price, spot is the mean electricity spot price, cCOM is the
yearly average commercial tariff on electricity, load is the hourly

grid load, load is the mean grid load, cTRA is the yearly average cost
of electricity transportation through the transmission and distri-
bution grid, CO2 is the hourly CO2 intensity associated with the

electricity production, CO2 is the mean intensity and cEL TAX is the
yearly average taxes and levies. cPSO is the yearly average cost of
a Danish public service obligation (PSO) levy put on electricity use
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Fig. 6. Simulation results for apartment 7 for the existing building (top) and retrofit scenario 8 (middle) using a PI controller and E-MPC scheme, respectively, during the
period December 7–14, 2015. The bottom chart shows the energy price (input weight c) during the same period.

where fPSO is the PSO scaling factor. Approximately half of the PSO
levy covers subsidies for wind turbines as supplement to the mar-
ket price. The proposed fPSO scaling factor is constructed in such a
way that it is low in periods with low spot prices and high wind
power production.

The data used in this study for Eq. (3) are electricity spot prices,
grid load, CO2 intensity signals and wind production from Nord Pool
market data for Western Denmark during the simulation period
[39] and Danish average component tariffs for 2015 [40]. Fig. 4
depicts an example of the input weight c as defined in Eq. (3) for
the period December 7–14, 2015. The component share of the total
tariff is specified in the legend where the percentage in brackets
indicates the 2015 yearly shares.

2.5. E-MPC performance evaluation

Determining the true value of residential DR programs for the
electricity supply system is a challenge of great concern [9]. The
economic DR incentive may  be limited on a household scale while
significant on a societal level [6]. In this study, the performance
of the E-MPC for residential space heating will be evaluated rela-
tive to a traditional PI controller in terms of achieved reductions
of costs and CO2 emissions as suggested by Knudsen and Petersen
[16]. This form of evaluation will provide some insights into the

value of the proposed E-MPC, but it will not provide evaluation of
other potential benefits such as the amount, time and duration of
shifted energy which may  affect production patterns and societal
energy infrastructure investments. Several performance evaluation
measures have been proposed to quantify the amount of shifted
energy using active demand response [41,18]. However, quantify-
ing the time to which the load is shifted is an equally relevant aspect
of DR. A simple approach is to consider static periods of low, high
and peak load; hence, evaluate the amount of energy shifted from
peak periods to periods of low or high load [16]. In this study, the
shifted energy of the E-MPC relative to the PI controller is evalu-
ated with respect to a dynamic metric where each time step of the
simulation period is categorized as either a period of low, high or
peak load based on historical grid load data as illustrated in Fig. 5.
For each day, the hours with grid load below the 25% quantile and
above the 75% quantile were defined as low and peak load periods,
respectively. The remaining hours were characterized as high load
periods.

3. Results

To illustrate the mechanisms of the E-MPC scheme, Fig. 6 (top
and middle) depicts the temperature conditions and heating con-
sumption for apartment 7 in one week using the PI controller and
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the centralized E-MPC, respectively. Fig. 6 (top) shows results from
simulations of the existing building and Fig. 6 (middle) shows
results from the most extensive energy retrofit scenario 8 (see
Table 3 for details). In both cases, the PI controller maintained
a room air temperature near the specified minimum comfort set
point of 20 ◦C at all times, resulting in a smooth and fairly constant
heating pattern. The E-MPC scheme, however, increased the room
air temperature at times with low energy cost (Fig. 6 bottom) and
thereby exploited the thermal mass of the constructions, which
then reduced the need for space heating in the following periods
characterized by higher energy cost.

Immediate comparison of the control actions in the two  build-
ings indicates that improved energy efficiency of the building
envelope increased the frequency at which load shifting was prof-
itable.

3.1. Economic and environmental assessment

The cost and CO2 emissions over the simulation period were
accumulated for each combination of the nine buildings (the exist-
ing and the eight retrofit scenarios) and the three control schemes
(PI, centralized E-MPC and decentralized E-MPC). Fig. 7 depicts
the achieved cost and emission reductions for the centralized and
decentralized E-MPC scenarios relative to the PI controller for all
simulations. Both E-MPC schemes of the existing building led to
minor cost savings while increasing CO2 emissions slightly. In all
retrofit scenarios both E-MPC schemes reduced the cost and CO2
emissions compared to the PI controller. However, the centralized
E-MPC had a marginally better performance than the decentralized
E-MPC in all scenarios.

3.2. Load shifting potential

The absolute and relative ability of the E-MPC scheme to shift
space heating consumption to low load periods as defined in Sec-
tion 2.4 is exemplified by the performance of the centralized E-MPC
in Fig. 8. Applying E-MPC on the existing building (R0) shifted

Fig. 7. Achieved cost and emission reductions for the centralized and decentralized
E-MPC schemes relative to the PI controller for all simulations. The existing building
is referred to with index 0 and the remaining numbers refer to the retrofit scenarios.

approx. 7% of the energy use away from peak load periods. For the
retrofit scenarios, the shifted load was in the range of 30–47%.

4. Discussion

A tendency of decreasing cost and CO2 emission as a function
of the increasing energy efficiency can be observed in Fig. 7, which
is a consequence of an increasing number of load shift events (as
illustrated in Fig. 6). Fig. 7 suggests that reducing the infiltration

Fig. 8. Accumulated load shift of centralized E-MPC for all retrofit scenarios compared to the baseline PI control. Top: Absolute load shift. Bottom: Relative load shift.
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air change rate was an important measure in terms of both cost
and CO2 emission reduction. The clustering of data with respect
to the two types of window glazing indicates that reducing heat
loss through windows influenced the potential. The added external
insulation was most efficient in the buildings with 3-layer glazing
since the heat loss through the envelope was a more dominating
factor in these scenarios compared to the 2-layer glazing scenarios.
While it is difficult to make a general valid ranking of the specific
measures such as increasing the air tightness or lowering the trans-
mission losses, the results show that reductions in the overall heat
loss have a significant effect on cost savings, CO2 emissions and
load shifting in a building heated by a convective radiator system.

Fig.  8 shows that the relative load shift potential of the scenarios
increased with increasing energy efficiency. This was  primarily due
to the corresponding reduction of the baseline space heating con-
sumption: The absolute load shifting potential is seen to be rather
constant across all retrofit scenarios.

The simulation results indicate that the centralized E-MPC
scheme resulted in marginally better results than the decentral-
ized E-MPC. Though not investigated, it is likely that inter-zonal
effects would be less pronounced with insulated interior walls
instead of the 0.12 m massive concrete walls used in this study.
The difference in performance compared to the increased complex-
ity of centralized E-MPC and the challenge of obtaining suitable
multi-zone model suggests that decentralized E-MPC is sufficient
for many practical applications.

5.  Conclusion

This paper reports on a simulation-based study of the theo-
retical potential for utilizing the thermal mass in an existing and
eight retrofit scenarios of a multi-story apartment block for demand
response enabled by E-MPC of the space heating system. The con-
trol objective was to minimize the cost of space heating for the
end-user, and performance was evaluated by comparison to a con-
ventional controller. The E-MPC was also evaluated in terms of
its ability to reduce CO2 emissions and to perform load shift of
the heating demand. Two E-MPC approaches were considered:
centralized E-MPC where inter-zonal effects were considered and
decentralized E-MPC that neglected heat transfer between adjacent
apartments.

The E-MPC schemes yielded increased cost savings (up to
approx. 6%) and reduced CO2 emissions (up to approx. 3%) as
a function of increasing energy efficiency of the retrofit scenar-
ios. The centralized E-MPC only performed marginally better than
the decentralized E-MPC, suggesting that using the more practical
decentralized approach, which does not need configuration of zone
adjacency or exchange of information between controlled zones, is
sufficient in many situations.

The simulation results also suggest that the E-MPC schemes
shifted consumption more frequently in the retrofit scenarios com-
pared to the existing building. However, the absolute amount of
shifted energy across the retrofit scenarios compared to the exist-
ing building was rather consistent. The relative amount of energy
shifted from peak periods increased slightly with increasing energy
efficiency due to the decreased baseline energy use in each retrofit
scenario.

This study used perfect predictions of disturbances (weather
and occupancy) to identify the theoretical potential of the E-MPC
scheme. Future studies should include investigations on how this
potential will be affected by uncertainties in weather forecasts and
occupancy. Furthermore, experimental verification of the demon-
strated potentials is recommended.
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[29]  S. Prívara, Z. Váňa, D. Gyalistras, J. Cigler, C. Sagerschnig, M.  Morari, L. Ferkl,
Modeling and identification of a large multi-zone office building, in: IEEE
International Conference on Control Applications (CCA), Denver, CO, USA,
2011, http://dx.doi.org/10.1109/CCA.2011.6044402.

[30] J. Cigler, S. Prívara, Subspace idenfication and model predictive control for
buildings, in: 1th International Conference Control, Automation, Robotics and
Vision, Singapore, 2011, p. 1, http://dx.doi.org/10.1109/ICARCV.2010.
5707821.

[31] S.V. Gaikwad, D.E. Rivera, Control-Relevant Input Signal Design for
Multivariable System Identification: Application to High-Purity Distillation,
1996, San Francisco.

[32] R.E. Hedegaard, T.H. Pedersen, M.D.S. Knudsen Petersen, Identifying a
comfortable excitation signal for generating building models for model
predictive control: a simulation study, in: CLIMA 2016 ? Proceedings of the
12th REHVA World Congress: Volume 10, Aalborg, 2016.

[33] The MathWorks, inc., System Identification Toolbox 9.3, [Online].
[34] L. Ljung, System Identification. Theory for the User, Prentice Hall PTR, New

Jersey, 1999.
[35] A.K. Tangirala, Principles of System Identification. Theory and Practice, CRC

Press, Taylor & Francis Group, 2015.
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7.2 Epilogue 
The analysis of the previous section used MPC to engage a residential building in price-driven 

DR by altering its energy consumption for space heating. In this analysis, the impact that the 

energy efficiency of the building had on the potential for conducting DR was investigated. In this 

regard, the results of the study were found to agree with the findings of Reynders [33]: an increase 

in the energy efficiency of the building led to 1) higher storage efficiency, thus resulting in the 

MPC scheme engaging in DR events more frequently; and 2) a lower storage capacity, and thus 

less energy shifted per DR event. The results of the study indicated that the absolute amount of 

energy consumption shifted to periods of low grid load remained approximately constant across 

the retrofitted buildings (buildings R1-R8), while the poor energy efficiency of the existing 

building led to less energy being shifted.  

The similar results achieved for the retrofitted buildings may be explained by the two 

contradictory effects that increased energy efficiency has on the amount of load shifting occurring 

(increased efficiency, decreased capacity). This would also suggest that an optimal degree of 

building energy efficiency (in terms of DR) may exist, since the DR potential of buildings at either 

end of the energy efficiency scale would suffer from either a low storage efficiency or capacity, 

respectively. To investigate this further, the analysis was repeated for a building built after the 

passive house standard (assumed: 400 mm wall insulation, 0.08 1/h infiltration rate). Figure 11 

presents the results of the paper extended with the passive house (PH) simulation. The building 

labelling approach originally used in the paper was based on the implemented retrofit measures – 

and not their impact on the energy efficiency of the building. To improve the clarity of the figure, 

the buildings were reordered according to their total heat loss coefficients, which are now also 

depicted in the figure.  

Similar to the findings in the paper, Figure 11 indicates a consistent relationship between the 

energy efficiency of a building and the relative amount of energy shifted in that building. In 

contrast, close inspection of the absolute amount of load shifting reveals that the passive house 

building shifted the second-least amount of energy – in this aspect only performing better than 

the existing building. The similar results of the retrofitted buildings (R1-R8) suggest that the exact 

retrofit-level only had a minor impact on the overall energy quantities shifted. However, the lower 

storage capacities of the more retrofitted buildings imply that, although they may shift similar 

amounts on the aggregated level, their impact on individual DR events is limited compared to that 
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of existing buildings. Because of this, the potential for highly energy efficient buildings depends 

on the nature of the challenges faced by the grid and the associated price volatility. Finally, 

fundamental research has indicated that storage capacity also depends on the heating system of 

the building [79]. Therefore, expanding the analysis to include underfloor heating, which is the 

predominant heating system in new buildings, could be an interesting topic of future research.  

 

Figure 11 Impact of energy efficiency on the energy quantities shifted to periods of low grid load.  
Top) Total heat loss coefficient of each building, middle/bottom) the amount of space heating 

consumption that was shifted to/from each period.  

The analysis also indicated a modest, but consistent, difference between the performance of 

centralized and decentralized MPC schemes. Clearly, the significance of the heat transfer between 

adjacent thermal zones affects the performance impact of neglecting such interactions. Therefore, 

in a more recent paper (S5) [80], the centralized and decentralized MPC implementation methods 

were also evaluated for a building in which the internal walls contained a layer of thermal 

insulation (due to noise concerns). In this case, the results showed that the benefits of a centralized 

MPC approach were reduced to a point where it is unlikely that the added efforts associated with 

this approach can be justified. In both studies, each apartment was modelled as a single zone in 

both EnergyPlus and in the MPC schemes. In practice, the layout of a building may necessitate 
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the use of multi-zone models. The added complexity of such a case, both in terms of model 

identification and control optimization, would further suggest neglecting the less significant 

coupling between adjacent apartments. 

Finally, the analysis applied a price signal that was derived through the method described in [78]. 

The price signal, which incorporated both societal and grid-related objectives, proved capable of 

incentivizing DR that reduced consumption in periods characterized by either high grid loads or 

by CO2-intense electricity production. On the other hand, the method was incapable of generating 

significant economic incentives for consumers, as these ranged from approximately 0-6%. It 

seems questionable whether economic savings in this range will be sufficient incentive for 

consumers to engage in DR. The analysis presented in the following chapter therefore investigates 

alternative means of generating economic incentives for consumers while contributing towards 

grid balancing.  
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8 MULTI-MARKET APPROACH 

One of the barriers for the utilization of electrical demand response is a lack of market structures 

to support such activities [28]. Vrettos et al. [77] evaluated the use of time-varying prices of both 

the day-ahead electricity wholesale market and real-time balancing market as incentive 

mechanisms for enabling DR. The authors argued that day-ahead prices could be suitable for 

shifting demand to hours of high renewable energy production, while the real-time balancing 

market prices could be used to balance the grid in real-time. A disadvantage of real-time DR, 

however, is the lack of ability to prepare the thermal state of the building for a demand response 

event. Furthermore, since higher requirements are associated with bids on the balancing power 

market (e.g. minimum capacity), not all of the available flexibility may be readily offered on this 

market in practice [12]. An alternative to the real-time market is the intraday market, which allows 

electricity market actors to trade in the period between the clearing of the day-ahead market and 

the opening of the balancing market.  Trading on this market thereby allows market actors to 

correct the energy volumes they originally contracted on the day-ahead market. This is especially 

desirable for actors who are exposed to high uncertainties in their daily operation – e.g. electricity 

producers with a large portfolio of production from intermittent renewable energy sources. 

Scharff et al. [12] argue that the need to account for uncertainties in production could result in the 

intraday market playing a vital role in integrating increasing levels of intermittent renewable 

energy production, and therefore expect the intraday market trading volumes to increase as more 

production from intermittent renewable energy sources is integrated in the energy system.  

The intraday market could provide flexible consumers with economic incentives since market 

actors who face imbalanced operation may be willing to offer favourable prices to acquire the 

contracted consumption of others in order to reduce their own imbalance. The following section 

presents an analysis of the potential associated with using the intraday market as a DR incentive 

mechanism. To ensure that the prices of the two different markets are aligned and to reduce the 

impact of nation-specific tax structures, all tax components of the prices were neglected in the 

analysis. As the analysis is carried out for an existing and retrofitted building, the analysis 

contributes towards thesis objectives 2.1 and 2.3. 
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Several  studies  have  evaluated  the  potential  for  residential  buildings  participating  in demand  response
programs  based  on  the  day-ahead  electricity  market  prices.  However,  little  is known  about  the  bene-
fits  of residential  buildings  providing  demand  response  by  engaging  in  trading  on  the intraday  market.
This  paper  presents  a simulation-based  study  of  the  performance  of an  economic  model  predictive  con-
trol  scheme  used  to enable  demand  response  through  parallel  utilization  of day-ahead  market  prices
and  intraday  market  trading.  The  performance  of  the control  scheme  was  evaluated  by  simulating  ten
apartments  in  a residential  building  located  in  Denmark  through  a heating  season  (four  months)  using
historical  market  data. The  results  showed  that  the  addition  of  intraday  trading  to  the  more  conventional
day-ahead  market  price-based  control  problem  increased  the  total  cost  savings  from  2.9%  to  5.6%  in
the  existing  buildings,  and  13%–19%  in retrofitted  buildings  with  higher  energy-efficiency.  In the  existing
building  the  proposed  control  scheme  traded  on  average  12.7 kWh/m2 on the intraday  market  throughout
the  simulation  corresponding  to  21%  of  the  reference  consumption.  For  a  retrofitted  building  the  traded
volume  was  9.6 kWh/m2 which  corresponds  to 52%  of  the reference  consumption.  These  results  suggest
that  the  benefits  of  considering  intraday  market  trading  as  a demand  response  incentive  mechanism
apply  to a  wide  range  of buildings.
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1. Introduction

As the penetration of intermittent renewable energy sources
(RES) such as wind power increases, so will the uncertainty associ-
ated with electricity production prognoses because of the inherent
uncertainties of weather forecasts. This uncertainty complicates
the task of maintaining an instantaneous balance between elec-
tricity supply and demand [1,2]. A commonly suggested way of
addressing the issue of grid balancing under more volatile elec-
tricity production is the implementation of smart grids [3–6]. A
characteristic of smart grids is effective utilization of Demand
Response (DR) programs, where consumers are encouraged to
adjust their demand to meet supply and thereby increase the
overall efficiency of the energy system. Energy use in residential
buildings constitutes a significant potential for DR as it accounts
for 25% of the total energy consumption in the EU of which 67%
is used for space heating in the North and West regions of EU [7].
This flexible consumption can be activated through different types
of DR programs.

∗ Corresponding author.
E-mail address: reh@eng.au.dk (R.E. Hedegaard).

1.1. Demand response programs

DR programs are often divided into direct and indirect control
programs [4,8,9]. In direct control programs, the consumer entrusts
the energy planners and operators (PO) with direct control of their
electrical loads; the PO can change consumption pattern directly. In
indirect control programs, the consumer has full control of the elec-
trical loads and the PO can only provide incentives for consumers to
change their consumption pattern. One incentive from PO to con-
sumers is to provide time-varying energy prices, which motivates
consumers to reduce consumption in high price periods, e.g. by
shifting consumption to periods with lower prices. This approach
is referred to as indirect price-based DR programs. Previous studies
have demonstrated that residential building owners may bene-
fit from this type of DR programs. Halvgaard et al. [10] operated
a residential-scale heat pump using Economic Model Predictive
Control (E-MPC) with day-ahead prices and achieved 25–35% cost
savings compared to traditional set point control dependent on
comfort constraints. Avci et al. [11] used E-MPC to achieve a 13%
cost reduction compared to a two-position thermostatic control of
a residential heat pump, and Oldewurtel et al. [12] used MPC  with a
multi-objective cost-function to reduce consumption peaks by up
to 39% and costs by 31.2%. Knudsen and Petersen [13] demonstrated
that using E-MPC for space heating can enable cost savings, CO2

http://dx.doi.org/10.1016/j.enbuild.2017.05.059
0378-7788/© 2017 Elsevier B.V. All rights reserved.
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Nomenclature

Abbreviations
DR Demand response
E-MPC  Economic model predictive control
RES Renewable energy sources
PO  (Energy) Planners and operators
SSM Supply-side management
TSO  Transmission system operator
BRP Balance responsible party
MILP  Mixed integer linear problem
ITH  Intraday trading horizon
ID  Intraday (market)
DA  Day-ahead (market)

Symbols
x  State vector of the resistance-capacitance building

model
pda Vector containing forecasted day-ahead market

prices
u∗

da
Optimal sequence of control actions with respect to
day-ahead prices

pid Vector containing prices from intraday market
trades

u*
id Optimal sequence of control actions after intraday

optimization
J* Cost of implementing the entire optimal control

strategy

emission reductions, and shift consumption from periods of peak
load to low load periods. The large spread in savings found in the
above-mentioned studies may  be caused by several factors includ-
ing the magnitude of price fluctuations, how the reference case is
defined as well as the inclusion of taxes. For example, Knudsen et al.
[14] demonstrated that the economic incentive of performing DR
using E-MPC of residential space heating strongly depends on the
taxation mechanism of energy: a case study led to end-user energy
cost savings between 2% and 9% depending on the taxation. Fur-
thermore, Pedersen et al. [15] demonstrated that the cost savings
of indirect price-based DR programs using E-MPC depends on the
energy-efficiency of the building envelope and consequently the
storage efficiency, which relates the amount of energy lost during
the storage process to the amount of energy actually stored.

All  of the mentioned studies use forecasts of energy prices and
weather with durations upwards of days to prepare the building
for DR by utilizing the inherent thermal inertia of the building as an
energy storage. However, previous studies have demonstrated that
buildings can also help solve grid balancing issues that arise on a
shorter time scale. Oldewurtel et al. [16] used MPC  with critical peak
pricing to quantify the flexible consumption immediately avail-
able in buildings that have not been prepared to deliver flexibility,
by introducing two performance metrics: Power Shifting Potential
and Power Shifting Efficiency. De Coninck et al. [17] used MPC  to
derive cost curves describing the costs associated with deviation
from optimal control strategies to activate flexibility. Both studies
conclude that the availability and associated cost of flexibility in
building space heating depend on several dynamic factors such as
the current thermal state of the building and weather conditions,
but they do not attempt to investigate whether the cost of the flexi-
bility is aligned and compatible with the current electricity markets
or incentive mechanisms. The following section describes the struc-
ture of wholesale electricity markets and clarifies why these may  be
suitable for activating the DR potential in residential space heating.

1.2.  Electricity markets as DR platforms

This study evaluates an indirect price-based DR program uti-
lizing two  European-based wholesale electricity markets: the
day-ahead market Elspot and the intraday market Elbas. Both mar-
kets are a part of the cross-border electricity market Nord Pool. Each
participating country is divided into individual bidding areas that
reflect geographical and grid characteristics. For example, Denmark
consists of two  bidding areas of which the Western Denmark region
(DK1) is characterized by a high penetration of wind power produc-
tion [18]. In 2015 the accumulated annual wind power production
constituted approximately 55% of the total annual consumption of
the DK1 region [19].

In  DK1, the majority of electricity is traded on the day-ahead
market Elspot, where electricity trades confirmed upon market clo-
sure is to be delivered the following day. The market closes each
day at 12:00 CET and shortly thereafter the hourly day-ahead prices
(pda) for the following day are available to the public. The hourly
price is settled through the pay-as-clear principle in which, for
each hour, the price that balances supply and demand applies to all
electricity traded across different market regions. However, in peri-
ods where transmission lines between bidding areas are congested
(bottlenecks), a market split occurs resulting in different prices on
each side of the congestion. The physical limitations of transmission
lines thus lead to increased price fluctuations in regions with high
shares of intermittent RES such as DK1. Fig. 1 shows how high wind
power production within the region has a tendency to reduce the
DK1 day-ahead clearing prices in 2015. Furthermore, the produc-
tion from wind exceeded the regional consumption in 1442 h while
negative prices were observed in 65 h. It is these day-ahead prices
that have served as the sole price signal in many E-MPC or rule-
based studies on DR for space heating in buildings [10,12,13,20–23].

The significance of wind power production in the region for the
day-ahead market principle means that the trades depend strongly
on the accuracy of production (and consumption) prognoses. The
market therefore needs a way  of correcting the already traded
quantities on the day-ahead market to be consistent with updated
production prognoses. Such corrections can be made through trad-
ing on the intraday electricity market (Elbas) which remains open
from the day-ahead market closure up until one hour before the
electricity is to be delivered. Despite the fact that trades can be
made up to 33 h before delivery, over 50% of all intraday trades
are made within the last three hours before intraday market clo-
sure as the accuracy of prognoses increase [18]. The total volumes
traded on the Elbas market are currently small, constituting only
approximately 3% of the annually sold and bought electricity on
Elspot in 2015 [19]. However, Scharff et al. [18] identified high
shares of intermittent production from RES to be a contributing
factor towards increased intraday trading.

In conventional power systems grid balancing is achieved
through supply-side management (SSM), where the transmission
system operator (TSO) hires power plants that are able to adjust
their power output to address any imbalanced operation from mar-
ket actors. In all trades on the day-ahead electricity market, one
of the actors involved with the trade assumes the role of the Bal-
ance Responsible Party (BRP). The BRP is committed to cover any
expenses of the TSO to counteract any imbalance associated with
the trade. The balancing power price is thus directly linked to
the expenses associated with balancing carried out by the TSO.
As the share of fluctuating renewable production increases, the
task of balancing the grid becomes increasingly complicated which,
consequently, increases the expenses resulting from imbalanced
operation. As the balancing expenses increase, BRPs are expected
to be more involved in intraday trading to ensure a balanced oper-
ation.
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Fig. 1. The effect of wind power production on day-ahead electricity prices in the DK1 area. Source: Nord Pool, 2015 data.

The intraday electricity market prices (pid) are settled accord-
ing to the pay-as-bid principle, which means that individual trade
prices are determined when market participants accept available
offers. Therefore, prices may  vary within any given hour [18]. Fig. 2
shows the marginal price of the day-ahead market and the interval
for each hour in which trades settled on the intraday market over
a three-day period in December 2015. The average intraday price
and the day-ahead price are strongly correlated with a Pearson
correlation factor of 0.91. However, as shown in Fig. 2, signifi-
cant deviations between intraday and day-ahead prices occurred
in several hours of the depicted period.

While the day-ahead price is a product of supply and demand,
the intraday price is an indication of imbalances expected by the
BRPs themselves. BRPs with flexible buildings in their own con-
sumer portfolio may  utilize this flexible demand to lower or avoid
entirely the need for intraday trading. Similarly, other actors may
use flexible consumption as a virtual power plant, offering energy
on the intraday market.

1.3. Aim of this paper

Residential building owners or aggregators may  increase their
economic incentive to deliver DR to the electricity grid when mul-

tiple electricity markets are considered. A study by Ali et al. [24]
demonstrated that the charging pattern of domestic hot water
tanks can be planned taking both day-ahead market prices and
(artificial) instantaneous balancing events into consideration. It
therefore seems reasonable to assume that space heating can be
planned in a similar manner. However, to the knowledge of the
authors, there have been no reported studies on whether space
heating of residential buildings can participate in multiple DR pro-
grams using day-ahead and intraday prices simultaneously. This
study therefore investigates whether space heating can be oper-
ated to respond to both day-ahead and intraday market-driven DR
programs in parallel without compromising thermal comfort.

2. Method

The following sections introduce the proposed control scheme
capable of utilizing market conditions on the day-ahead and intra-
day market in parallel. First, Section 2.1 presents economic model
predictive control in its more conventional configuration where
only day-ahead prices are used to optimize operation of the
building. Then, Section 2.2 expands upon the control scheme by
introducing the expanded multi-market algorithm. Finally, Section

Fig. 2. Day-ahead clearing price and intraday market price-intervals (week 8, 2016).
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2.3 presents the assumptions made for a case study used to illus-
trate the performance of the proposed control method.

2.1. Economic model predictive control

Economic model predictive control solves an optimization prob-
lem to determine the optimal sequence of control actions, u, for the
space heating system by minimising the total operational cost for
a finite prediction horizon N:

minimize
u

N∑
k=1

CT
k · uk (2a)

subject to xk = Axk−1 + Buk−1 + Edk−1 (2b)

yk. = Cxk (2c)

0 ≤ uk ≤ Pmax (2d)

Tmin,k ≤ yk ≤ Tmax,k (2e)

�Tmin,k ≤ �yk

�t
≤ �Tmax,k (2f)

x0 = x (0) (2g)

where ck is the time varying price associated with control action,
uk. The thermodynamics behaviour of the building to be controlled
is described by Eqs. (2b) and (2c), and the control actions are con-
strained by the maximum design power of the space heating system
by Eq. (2d). The controlled variable is the room air temperature,
yk, whose value and rate of change are constrained by Eqs. (2e)
and (2f), respectively. Measurements are used to define the cur-
rent state of the building in Eq. (2g), where the unobservable states
are estimated using a Kalman Filter.

The model of the building thermodynamics used in this study
was a grey-box model formulated in state space form. Grey-box
models are categorised by having a predefined structure of phys-
ically meaningful parameters such as heat loss coefficients and
thermal capacities. These parameters are estimated from measure-
ment data through methods from the field of System Identification.
The model used in this study is a simple two-state model, where the
two states represent the lumped thermal capacity of the zone air
and the construction components, respectively. Forecasts of ambi-
ent temperature, solar heat gains and space heating are treated as
inputs from which the model produces a prediction of the zone air

temperature as output. A detailed description of the model struc-
ture used in this study is provided in Ref. [15].

At each discrete time step k, the states of the building model are
updated and the optimization problem is solved using the MOSEK
solver [25] resulting in a sequence of optimal space heating con-
trol inputs u∗. The output of the control scheme is thus the control
strategy that, over a predefined prediction horizon N, satisfies the
imposed constraints at the lowest operational cost. Only the first
control action of each control sequence is implemented in the
building after which a new sequence is computed at the start of
the following time step − a control principle referred to as receding
horizon control [26]. This approach allows for the control scheme to
update weather and price forecasts continuously while enabling
the use of building measurements to introduce feedback in the
control loop.

2.2. Scenario-based optimization

The control scheme in Section 2.1 was expanded to enable the
use of intraday price intervals in the optimization. A challenge in
relation to this is to prevent the control scheme from purchasing
and selling electricity within the same hour. One way of preventing
such behaviour is to implement logic in the optimization problem
that restricts the algorithm to be either in selling-mode or buying-
mode. The resulting optimization problem would be a mixed integer
linear problem (MILP) − an approach that was used in Bianchini
et al. [27] to obtain on/off control of heaters. However, as the
authors point out, MILPs are significantly more complex to solve
than linear or quadratic programs, which limits the computation-
ally tractable size of the problem. To avoid restricting the size of the
optimization problem we  chose a scenario-based approach instead,
where optimization problems with different cost vectors corre-
sponding to each relevant scenario were solved individually and
then compared.

The decision making process including both the day-ahead and
intraday market can be condensed to the principle described in
Table 1. First, the optimal control strategy, u*,  is computed in each
hour by solving the optimization problem defined in Eqs. (2a)–(2g)
which only consider the day-ahead prices over a three day predic-
tion horizon. While prices may  not be available three days ahead,
studies have shown E-MPC to be robust to simply repeating the
price fluctuations from the first day [13]. This study assumes per-
fect price predictions for simplicity. Secondly, a shorter intraday
trading horizon (ITH) is introduced − in this study ITHs of one and

Table 1
Breakdown of the new control algorithm.
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Fig. 3. Faç ades of case building with numbers indicating the apartments’ number of rooms.

three hours were evaluated. Within the span of the ITH the algo-
rithm evaluates currently available offers on the intraday market.
If no offers are available, the intraday trading stage of the algo-
rithm is not activated and the building is operated solely based on
optimization using day-ahead prices. If trading offers are available
inside the ITH, the algorithm treats the consumption procured on
the day-ahead market as a trade commodity in the following intra-
day scenario optimization problems. These optimization problems
evaluate all possible combinations of purchasing additional con-
sumption or selling already procured consumption in each hour
within the ITH. The controller then implements the intraday trad-
ing strategy that yields the highest profit, which may  be to either
store energy, sell part of the procured electricity back or stick to
the original day-ahead optimized control sequence. In either case,
the same comfort-related constraints used in the day-ahead opti-
mization problem apply to all intraday scenarios, meaning that the
algorithm will only sell energy in the extent that the thermal indoor
climate remain within predefined comfort boundaries. To ensure
compliance with the intraday market structure where the market
closes one hour before delivery, each control strategy is computed
one hour before implementation; hence, the strategy computed at
time t = 8:00 is implemented in the building from t = 9:00 to 10:00.

An ITH of one hour results in three optimization problems to
be solved: the initial day-ahead problem, a sell-scenario and a buy-
scenario. Expanding the ITH by one hour introduces, in addition to
the three previous scenarios, the two scenarios where electricity
is bought in the first hour and sold in the second hour, and vice-
versa. The number of scenarios and thereby optimization problems
nscenario = 1 + 2ITH to be solved in each time step increases exponen-
tially with the ITH and is consequently

However, as mentioned in Section 1.2, approximately half of all
trades are made within the last three hours before intraday mar-
ket closure. Therefore, in order to limit the number of scenarios to
evaluate, a maximum ITH of three hours was chosen in this study.

2.3. Case study

This section presents the simulation-based case study used for
demonstrating the performance of the proposed control scheme.
The building to be controlled is a four-story apartment block built
in 1978 and located in Aarhus, Denmark. An EnergyPlus [28] model
of the building serves as a representation of the actual building.
The apartment block has east-west oriented window configura-
tions and west-oriented open balconies, see Fig. 3. To simplify the
modelling and simulation process, only the third floor was  inves-
tigated which is comprised of ten differently sized apartments. All
apartments were modelled as individual thermal zones with all

horizontal zone boundaries (ceiling, floor) assumed adiabatic. All
thermal zones were modelled with electrical baseboard heating
systems operated by the E-MPC control algorithm implemented
in MATLAB [29]. The maximum allowed temperature increase of
Eq. (2e) was chosen as four degrees above the set point in all apart-
ments. Furthermore, the maximum rate of change in Eq. (2f) was
specified as 2.1 ◦ per hour in accordance with ASHRAE’s recom-
mendations [30]. The link between MATLAB and EnergyPlus was
facilitated with the Building Controls Virtual Test Bed (BCVTB) [31].

The simulation period was  chosen as November 1 to February
28 corresponding to the main heating season in Denmark using the
standard EnergyPlus weather data file of Copenhagen, Denmark
[32]. Historical market data of electricity production, trading and
prices (2015/16) from the day-ahead and intraday markets were
used in the simulation as forecasts for operational planning of
the building. The data was  acquired through the Danish TSO,
Energinet.dk [22] and Nord Pool [33,34]. Taxation of electricity was
omitted in this study for the sake of simplicity in interpretation of
results. Consequently, results presented in absolute values cannot
be directly compared to the actual price paid by building owners.
The case study does not investigate how weather and price fore-
cast uncertainties affect the performance of the proposed control
scheme.

Detailed information on the intraday trading was not available.
The only data publicly available was  the minimum, average and
maximum prices of settled intraday trades for each hour. Because
of this, optimal trading conditions were assumed, meaning that
the algorithm achieves the lowest intraday price observed while
energy is being purchased and highest when energy is sold back to
the market. Another piece of information that was unavailable was
the period during which a trade offer was available on the intra-
day market. Because of this, all trades settled during the ITH were
assumed to be available at the beginning of the ITH. To reduce the
significance of this assumption the ITH was limited to a maximum
of three hours in this study. Finally, day-ahead prices were assumed
outside the ITH interval.

Previous studies have indicated that the energy efficiency of the
building envelope is an important factor in relation to DR quan-
tity and duration [15,35]. The performance of the proposed control
scheme was therefore also tested on two retrofitted versions
of the existing building to investigate how increased energy-
efficiency affected the potential for residential multi-market DR.
Both retrofits involve more energy-efficient windows, additional
external facade insulation, reduced infiltration rate, and a mechan-
ical constant air volume ventilation rate of 0.5 h−1 with 80% heat
recovery efficiency as listed in Table 2. The table also lists the
reference consumption for space heating over the four months sim-
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Table  2
Specification of retrofit scenarios and reference consumption in the simulated period.

Additional faç ade insulation Infiltration rate Window configuration Reference consumption

Existing – 0.50 [h−1] existing 59.9 kWh/m2

Retrofit1 0.125 m 0.18 [h−1] 2-layer glazing 28.1 kWh/m2

Retrofit2 0.205 m 0.10 [h−1] 3-layer glazing 18.6 kWh/m2

ulated for each respective building controlled with a PI-controller
with constant set point. A more detailed description of the building
model and the retrofit scenarios can be found in ref. [15].

3. Results

The following sections present the results from the simula-
tions of the case building. The mechanism of the proposed control
scheme is illustrated and evaluated on its impact on energy con-
sumption, overall cost savings, utilization of the intraday market,
and the fraction of trades that contributed towards grid balance.

3.1. The mechanism

The air temperature and heating rate in a three-room apartment
using a conventional PI-control scheme with a constant set point, E-
MPC  using only day-ahead prices, and the proposed multi-market
control scheme are shown in Fig. 4 to illustrate the mechanism of
the controller. The intraday action (Fig. 4 bottom) shows how the
control scheme interacted with the intraday market in each time
step. As a guide to the remaining figures of this article, it should
be noted that any control scheme that involve intraday trading
(marked ITH) also includes day-ahead trading.

It is not possible to compare results from the two E-MPC-based
control schedules directly because they are outcomes of separate
simulations where the state of the building may  deviate signifi-
cantly at any given time. However, on multiple occasions the effects
of intraday trading are easily distinguishable. For example on Fri-
day where the intraday trading resulted in additional temperature
boosting before noon and again in the evening compared to the
E-MPC based on only day-ahead prices. On Sunday the opposite
happened, where extended periods of temperature boosting were
cancelled since selling the procured energy was more profitable.

3.2. Energy consumption and cost savings

The extension of the E-MPC scheme to include intraday trad-
ing enables the building to participate in grid balancing while also
increasing the potential for cost savings. Fig. 5 shows the perfor-
mance of three E-MPC schemes when implemented in the case
building and the two  retrofit scenarios. For transparency, results
are presented both in absolute and relative terms compared to a
PI-controlled baseline of each building case (origo).

The results from the E-MPC based on day-ahead prices indicated
that the retrofitted buildings (R1 and R2) only achieved moderately
higher absolute cost savings compared to the existing building (R0).
The reason is that, although the E-MPC scheme in the retrofitted
buildings tended to load shift more often, the magnitude of load
shifts in the existing building is larger due to the higher reference
consumption, as also seen in [15]. The introduction of intraday trad-
ing reduces the difference in absolute cost savings achieved in the
three buildings. This can be explained by relatively low fluctuations
in the day-ahead prices that were only sufficient to make utiliza-
tion of flexibility profitable in the retrofitted buildings, but not in
the existing building where a higher loss is associated with the
storage process. Since the prices on the two markets, as mentioned
in Section 1.2, are strongly correlated, this often resulted in the
energy-efficient buildings having already utilized all the available
flexibility before trading on the intraday market, whereas this was
not the case with the existing building. Ali et al. [24] addressed this
issue by reserving part of the flexibility by using more restrictive
comfort constraints in the initial day-ahead optimization than the
following intraday optimization problems. However, the authors
argued that reserving flexibility may  just as well influence the
economic potential negatively as positively since the benefits and
viability of reserving flexibility depend strongly on the frequency
of DR-events, the size of the economic incentives offered, and the
risk-willingness of the consumer.

Fig. 4. Example period of both upward and downward regulation in the Retrofit2 building.
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Fig. 5. Economic performance of the algorithm and effect on consumption aggregated for all apartments.
Left  (a) absolute differences from reference, right (b) relative to the reference.

Fig. 5b, which shows the cost savings in relative terms, indicates
a significant difference in the achieved cost savings between the
three buildings, suggesting that a higher fraction of the consump-
tion can be made flexible in retrofitted buildings. Furthermore,
the effect of enabling the control scheme to trade on the intraday
market is seen to positively influence the potential in all cases sig-
nificantly. The increase in consumed energy seen in Fig. 5 happens
since heat is stored by increasing the air temperature. This increase
in temperature naturally results in a higher heat loss to the sur-
roundings, and thereby a higher overall consumption. The control
algorithm determined when market conditions were sufficiently
profitable to make up for the heat lost in the storage process. Finally,
Fig. 5 suggest that the economic potential gained by increasing the
ITH from one to three hours is marginal.

3.3. Interaction with the intraday market

This section presents how the proposed control scheme inter-
acts with the two electricity markets. The electricity volumes
traded by the E-MPC using day-ahead only and the proposed mul-
timarket E-MPC are displayed in Fig. 6.

The results indicate that extending the ITH leads to a moder-
ate increase in intraday trading activity. The reason is that this
allows the control scheme to use more elaborate trading patterns
including scenarios where electricity was  bought in one hour in
order to sell procured electricity in the next hour. Furthermore, the
share of electricity procured through intraday trading increased for
the retrofitted scenarios. This suggests that energy-efficient build-
ings, retrofitted or new, could on an aggregated level be considered
assets in terms of short-notice residential DR.

As described in Section 1.2, BRPs with imbalanced operation are
motivated to engage in intraday trading to avoid paying balanc-
ing prices. This suggests a certain correlation between the intraday
trading and the expected grid balance. The philosophy behind the
proposed control scheme is that, by contributing to the balance
of individual market actors, the resulting DR will on average have
contributed more to overall grid balance than imbalance. How-
ever, since balancing out a single BRP does not necessarily equate
to increased grid balance, it is necessary to evaluate whether the
performed DR actually contributed to balancing the grid.

This was done by labelling all intraday trades carried out by
the control scheme based on whether it contributed to balancing

Fig. 6. Electricity traded on the day-ahead and intraday markets (mean of all zones).
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Table  3
Percentage of time the DR contributed to balance and imbalance, respectively.

Grid state Building R0 R1 R2

Control action 1 h
ITH

3  h
ITH

1  h
ITH

3  h
ITH

1  h
ITH

3  h
ITH

Downregulation Correct 33.1% 39.8% 36.9% 42.7% 35.0% 41.4%
(48% of time) Incorrect 2.5% 8.1% 3.9% 8.8% 4.4% 7.7%

No  action 64.4% 52.1% 59.2% 48.5% 60.6% 50.9%

Upregulation Correct 9.6% 17.8% 11.8% 18.6% 14.6% 17.4%
(28% of time) Incorrect 17.4% 24.6% 17.4% 23.9% 15.6% 21.7%

No  action 72.9% 57.6% 70.9% 57.6% 69.8% 60.9%

the grid or introduced further imbalance. The terminology used in
the following takes offset in the grid point of view. This means that
buildings can provide upward regulation to the grid by lowering the
consumption and, conversely, downward regulation by increasing
consumption. According to Table 3, the grid was in need of down-
regulation 48% of the time and upregulation 28% of the time during
the simulation period [19].

Furthermore, Table 3 indicates how the algorithm operated dur-
ing these hours by dividing control actions into ‘correct’ ones that
aided the grid and ‘incorrect’ ones that would have negatively
impacted grid balance. As such, the following is an evaluation of
both the proposed control scheme and the historical market condi-
tions in relation to the needs of the electricity grid. Periods where
the grid was not in need of balancing power was  left out of this
analysis.

It is seen that the control scheme, in a relatively large fraction of
the time where the grid was in need of regulation, did not engage in
intraday trading, but merely implemented the control action opti-
mized with respect to day-ahead prices. Depending on the specific
simulation, this tendency was observed between 48% and 73% of
the time, which can be caused by e.g. poor price conditions or a
lack of available flexibility.

The  results in Table 3 also indicate that the algorithm performed
well during times where the grid was in need of downregula-
tion during which the actions carried out by the controller mostly
favoured the grid. During these periods, the controller increased the
consumption of the building to store energy between 33% and 43%
of the time. On the other hand, it is seen that the control scheme
was less efficient at providing services to a grid in need of upreg-
ulation. In these periods, more incorrect actions than correct were
carried out. Inspecting the historical data revealed that the intraday
prices often did not reflect the state of the grid correctly. When the
grid needed downregulation, the prices indicated the opposite 22%
of the time while in the upregulation scenario this was  the case 47%
of the time.

4.  Discussion

The case results presented in Section 3.2 indicate that the major-
ity of the economic benefits of including intraday trading can be
achieved with a one-hour ITH, and thereby − compared to three-
hour ITH − reduce the complexity of the planning phase. This
implies that simple one-way trading patterns (i.e. buy-only or sell-
only strategies) were sufficient. However, in real-world application,
the ability to consider multiple offers at the same time may  allow
for easier integration with the market, where offers may  be placed
at any time throughout the trading window corresponding to the
relevant hour. Longer trading horizons allowing utilization of offers
entering the intraday market early may  therefore be more practical,
also bearing in mind that the computational time of the three-hour
ITH control problem including both the day-ahead and all eight
intraday scenarios for all ten zones was approximately 1.2 s. Rule-
based logic could potentially speed this up further by ruling out

scenarios  that are unlikely to produce optimal solutions based on
price characteristics.

The  economic optimization in the E-MPC control scheme will
often result in the control scheme tracking the lower temperature
set point to minimise the energy consumption − only raising the
temperature when prices encourage it. During periods of set point
tracking the building has, due to the zero-tolerance for comfort
violations, no negative flexibility to offer to the intraday market.
Consequently, the controller was  only able to sell electricity when
temperature boosting had occurred as a result of the day-ahead
optimization. This relationship can be found in Fig. 4 where it is
clear that electricity was only sold in periods where the day-ahead
algorithm was  performing temperature boosting. This limitation, in
combination with misleading prices, is seen to impact the results
of Section 3.3, where the control scheme is less efficient at reduc-
ing consumption (i.e. providing upward regulation) than increasing
consumption (downward regulation). Enabling buildings to pro-
vide upward regulation could be done by allowing temperature
violations based on either the profitability of prices or simply a
certain fraction of time could to some extent address this limitation.

5. Conclusion

This simulation-based study indicates that consumers may
increase their economic incentive to invest in economic predic-
tive control of residential space heating by engaging in trades
on the intraday electricity market in parallel with the day-ahead
electricity market. Especially buildings that do not provide suf-
ficient storage-efficiency to frequently exploit day-ahead price
fluctuations through load shifting benefited from the multi-market
approach; here, cost savings were approx. doubled compared to the
single-market approach. The results also indicated that increasing
the energy efficiency of the building, despite the reduction in over-
all consumption, only had a small negative impact on the quantities
of energy traded on the intraday market. This suggests that also new
or recently retrofitted buildings may  benefit from participating in
intraday market-driven demand response.

Finally, future work should investigate how an alternative for-
mulation of comfort constraints that allows temporary set point
violations increases the potential for buildings to provide services
to electricity grids in need of upward regulation.
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8.2 Epilogue 
The purpose of this paper was to shed light on the potential of offering the flexible consumption 

of buildings on the day-ahead and intraday electricity markets in parallel, and to investigate how 

such an approach could benefit consumers as well as the grid. The results indicate that significant 

economic benefits were achieved when going from the single-market approach to the multi-

market approach. The benefits of intraday trading were especially high in buildings that had not 

undergone retrofitting, which, due to their generally lower storage efficiency (see previous 

chapter), often was not sufficiently incentivized by the day-ahead market prices alone to engage 

in DR. In these buildings, the economic incentives approximately doubled, while the retrofitted 

building saw a slightly lower economic gain. However, the neglect of taxes mean that these results 

do not reflect the regulatory and market conditions, but should instead be interpreted as a 

preliminary investigation of the potential role of the intraday electricity market in a DR setting.  

Another finding was that the intraday market prices did not always reflect the actual needs of the 

grid. Therefore, relying on the maximization of profits-approach to guide how flexible demand is 

offered on the intraday market sometimes resulted in the actions of the control unit contributing 

towards the overall grid imbalance. This issue was also documented by Scharff et al. [12] in their 

analysis of the trading behaviour on the Nordic intraday market, Elbas. In theory, the principles 

of balancing power settlement should prevent such issues, since balance responsible parties are 

only incentivized to reduce their own imbalances if they expect them to contribute to an overall 

grid imbalance. If the imbalance an actor imposes on the grid is opposite in direction to an overall 

grid imbalance (and thereby has a mitigating effect), the imbalance settlement takes place using 

the day-ahead price of that hour. As such, the imbalance poses no further risk to an actor in this 

position, and therefore does not incentivize the actor to engage in trading3. Scharff et al. argue 

that the most likely cause of such irrational trading activity still occurring on the intraday market 

is that the market participants lack information about the current grid conditions, and are therefore 

                                                      
3 Clarification: An actor in this position may still benefit from trading on the intraday market – but only if 

other market actors who are more exposed to imbalance costs allow the actor to eliminate his own imbalance 

at prices more favourable than the day-ahead prices. However, this scenario is irrelevant for our purposes, 

since flexible consumers would not be inclined to sell their contracted energy acquired at day-ahead prices 

for lower prices – and vice-versa in the opposite scenario. 
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unsure of their exposure to imbalance expenses. The authors describe how the latest information 

on the state of the grid that is available to market actors at the time of intraday market gate closure 

is four hours old. As such, although both the intended purpose and structure of the intraday market 

makes it seem suited for utilization of consumer flexibility through DR, current market conditions 

make it difficult to ensure that such endeavours also result in grid-friendly DR.  

Finally, as described in the discussion section of the paper, the comfort constraints of the 

implemented MPC scheme rendered it unable to reduce consumption levels and provide negative 

DR (upward regulation in grid-terms). To address this issue, we proposed altering the comfort 

constraints of the MPC scheme such that they allow a certain extent of comfort violations. In a 

more recent article (S6), we proposed both single and multi-objective control problems designed 

with this in mind [81]. The analysis showed that the proposed single-objective control problem, 

which was both computationally more efficient and considered to be more intuitive to occupants 

specifying their comfort preferences, was almost on par with the performance of the multi-

objective control problem. This paper did not apply the proposed way of handling comfort 

constraints in the intraday market context of the present paper – but this could constitute a topic 

for future research.  
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9 URBAN-SCALE ANALYSIS 

Several studies, including those presented in the two previous chapters, have indicated a potential 

for conducting DR through studies of individual buildings, see e.g. [32–33, 79, 82–83]. However, 

as argued by O’Connell et al. [28], it is not a given that the findings resulting from such analyses 

of individual buildings may be readily extrapolated to scenarios of large-scale utilization of DR. 

In this context, load-shifting activities that seem desirable on a small scale may prove to be 

problematic when conducted on a larger scale. Therefore, upscaling the analysis on DR to larger 

groups of buildings is an important step towards assessing its actual potential. 

The field of urban building energy modelling (UBEM) is concerned with modelling the energy 

consumption of buildings on the large scale, and applies both top-down or bottom-up approaches 

do to so [84]. Top-down approaches typically neglect the physical phenomena that drive energy 

consumption, and instead resort to statistical models using e.g. socioeconomic explanatory 

variables. The lack of a physics-based representation of buildings makes these methods unfit for 

analysis of topics such as DR, in which these phenomena play a central role. As the name suggests, 

bottom-up methods approach the modelling task of describing the aggregated consumption by 

representing each of the energy consuming processes that contribute to it. As stated by Reinhart 

and Davila [84], the task of obtaining the required information needed for detailed modelling of 

individual buildings makes this approach infeasible for large-scale applications. Several studies, 

including (S1), have therefore used archetype approaches in their efforts to represent buildings 

on the large scale [85–88]. These approaches represent the building stock by segmenting it into 

archetypes defined by characteristics such as construction year or use type, and then applying a 

set of assumptions that are considered applicable for that archetype. An example of a frequently 

used segmentation is the one defined in the TABULA project [89].  

A potential disadvantage of this approach is its inability to represent the diversity of real groups 

of buildings. As indicated both by Reynders [33] and the analysis presented previously in this 

thesis, the thermodynamic characteristics of a building have a significant effect on the efficiency 

at which the building may be used to conduct DR. Therefore, models that accurately represent 
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this diversity are an essential prerequisite for obtaining a realistic response from a group of 

buildings in a DR context. This is especially true in the case of indirect DR schemes, where the 

decision of engaging in DR lies entirely with the consumers themselves. In this case, the 

characteristics of the individual building not only affect how the building engages in DR, but also 

whether it does.  

In recent years, several Danish municipalities have begun a large-scale rollout of smart-meters 

that report the district heating consumption of buildings in an hourly temporal resolution. While 

bottom-up modelling of entire cities is still considered infeasible in practice (but only due to the 

computational efforts involved), the enormous amount of data that results from these smart-

meters constitutes new and exciting opportunities for bottom-up modelling of individual buildings 

on the neighbourhood or district level. Combining grey-box modelling techniques with 

consumption data could allow bottom-up UBEM models to achieve novel levels of accuracy. This 

approach allows us to emphasize the identification of the phenomena that govern the energy 

consumption of buildings – including both important aspects of occupant behaviour and building 

characteristics. The result is a diverse pool of building models, each parameterized with the 

parameters that best describe the energy consumption of that building. Such an approach is not 

only likely to improve the predictive performance of the UBEM model in general, but it could 

also constitute a suitable framework for conducting analyses of large-scale DR. Therefore, the 

following section presents a paper in which a methodology for establishing urban 

building energy models through grey-box modelling techniques is proposed. The work 

presented in the paper thereby contributes to thesis objective 2.4.   
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H I G H L I G H T S

• Calibration of models using smart-meter data and basic building characteristics.

• Separation of district heating into space heating and domestic hot water components.

• Use of priors in Bayesian calibration framework to address data-related uncertainty.

• Performance showcased in case study modelling 159 residential single-family houses.

• Models used to investigate demand response schemes aimed at peak reduction.
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A B S T R A C T

Several studies have indicated a potential to exploit the thermal inertia of individual residential buildings for
demand response purposes using model predictive control and time-varying prices. However, studies that in-
vestigate the response obtained from applying these techniques to larger groups of buildings, and how this
response affects the aggregated load profile, are needed. To enable such analysis, this paper presents a modelling
methodology that enables bottom-up modelling of large groups of residential buildings using data from public
building registers, weather measurements, and hourly smart-meter consumption data. The methodology is based
on describing district heating consumption using a modified version of the building energy model described in
ISO 13790 in combination with a model of the domestic hot water consumption, both of which are calibrated in
a Bayesian statistical framework. To evaluate the performance of the methodology, it was used to establish
models of 159 single-family houses within a residential neighbourhood located in the city of Aarhus, Denmark.
The obtained bottom-up model of the neighbourhood was capable of predicting the aggregated district heating
consumption in a previously unseen validation period with high accuracy: CVRMSE of 5.58% and NMBE of
−1.39%. The model was then used to investigate the effectiveness of a simple price-based DR scheme with the
objective of reducing fluctuations in district heating consumption caused by domestic hot water consumption
peaks. The outcome of this investigation illustrates the usefulness of the modelling methodology for urban-scale
analysis on demand response.

1. Introduction

The increasing availability of various high-resolution monitoring
data from energy systems in operation leads to new opportunities for
maintaining the balance between supply and demand while increasing
the efficiency of energy systems as a whole. One of these opportunities
is improved demand side management initiatives, i.e. attempts to adapt
demand to supply. The conventional notion of demand side

management covers both initiatives that seek to reduce the overall
demand as well as initiatives that seek to optimize the temporal dis-
tribution of demand. The latter is often referred to as demand response
(DR); an approach which is increasingly being considered a viable tool
for supporting the transition to an energy system based on renewable
energy sources [1,2], in which an inherent challenge is to maintain an
instantaneous match between demand and fluctuating energy produc-
tion. Here, the availability of high-resolution monitoring data is an
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important prerequisite for enabling DR in practice.
The energy use in residential buildings constitutes a significant

potential for DR as they account for 25% of the total energy con-
sumption in the EU, whereof 67% is used for space heating in the North
and West regions of EU [3,4]. Several simulation-based studies have
demonstrated that DR schemes for residential space heating may be
used to achieve societal objectives such as reductions of peak demand
[5,6], but also cost savings for consumers through strategic consump-
tion [7–9]. These studies exploit the thermal inertia of the buildings to
shift the energy consumption used for space heating in time, thereby
achieving economic or societal benefits while ensuring acceptable
thermal conditions inside the buildings. While most of these studies

focus on the DR potential with respect to the electrical grid, the same
type of DR initiatives could in principle also be used for generating
benefits for other parts of the energy system such as district heating
(DH) networks, e.g. as it was done for production of domestic hot water
(DHW) by Knudsen and Petersen [10]. Furthermore, previous studies
have primarily focused on investigating the DR potential of individual
buildings or apartments, see e.g. [5–9,11–14]. O’Connell et al. [15]
argue that, while such studies provide great insights on the DR for the
specific scenarios considered, such isolated cases may not describe the
behaviour of DR on the larger scale. To develop the current body of
research on the potential for DR in space heating of residential build-
ings, it therefore seems reasonable to investigate the DR potential of

Nomenclature

Abbreviations

DR demand response
DH district heating
UBEM urban building energy modelling
MPC model predictive control
DHW domestic hot water
MAP maximum a posteriori
RC resistance capacitance (model)

Symbols and variables

DH consumption rate: Vector of district heating measurements
sim consumption rate: Simulated energy consuming process
b consumption rate: Space heating component
DHW consumption rate: Domestic hot water component

stochastic component (assumed normally distributed and
i.i.d.)
standard deviation of normal distribution

X vector containing values for fixed parameters (see
Appendix A)

b vector of calibrated building-specific parameters
DHW vector of calibrated DHW-specific parameters

W matrix containing relevant weather measurements
t time (in hours) in simulation
nt duration of simulation (in hours)
d categorical value describing the type of day (workday/

weekend day)
Ci thermal capacity of interior
Cm thermal capacity of thermal mass (heavy building ele-

ments)
Ti temperature of interior
Ts surface temperature
Tm temperature of thermal mass
Texterior outdoor air temperature
Tsupply temperature of ventilation supply air

ia internal gains affecting room air (interior node)
st internal gains affecting internal surfaces
m internal gains affecting thermal mass

Am effective surface area of thermal mass
Hv ventilation and infiltration heat transfer coefficient (HTF)
Hw HTF for transmission loss through windows (massless)
Hem HTF for transmission loss through opaque building en-

velope elements
His HTF between interior and internal surfaces
Hms HTF between thermal mass and internal surfaces
b venting factor for scaling design air change rate
MAPE mean absolute percentage error
MCMC Markov Chain Monte Carlo

PSRF post scale reduction factor
NMBE normalized mean biased error
CVRMSE coefficient of variance of the root mean squared error
PMV predicted mean vote

occ rate of heat gains from occupant metabolism
app rate of heat gains from appliances

Eapp energy quantity: Annual electricity consumption for ap-
pliances

Afootprint building footprint area obtain from Building and Dwelling
Register (see Section 2.2)

EDHW energy quantity: Annual DHW consumption of a house-
hold

cp,water specific thermal heat under constant pressure of water
water density of water

Vocc annual consumption of hot water [m3]
TDHW assumed temperature of tapping water
Tmains assumed temperature of mains water

occ number of occupants of the household (calibrated)
B covariance matrix of Metropolis proposal distribution of

building-specific parameters
DHW covariance matrix of Metropolis proposal distribution of

DHW parameters
vector of shape parameters for specification of prior
Gamma distributions
vector of scale parameters for specification of prior
Gamma distributions

c optimization problem: Vector of energy costs
u optimization problem: Vector of control inputs (heating

power)
d optimization problem: Vector of disturbances (weather

conditions, internal gains)
x optimization problem: States of the state space models
A, B, C and E matrices of state space representation of the building

energy model (see Appendix B)
Pmax optimization problem: Maximum available heating power
Tmin, Tmax optimization problem: Boundaries of allowed temperature

interval during DR events
DR vector of combined consumption rate of case-buildings in

the DR scenario
ref vector of combined consumption rate of case-buildings in

the reference scenario
charge vector containing the rates at which each case-building

stores energy before peak
discharge vector containing the reduction in consumption of each

building during peak
hcharging vector of hours in which charging is allowed in Eq. (12a)
hpeak vector of hours in which discharging is allowed in Eq.

(12b)
max,event maximum consumption during DR event
DR demand response efficiency as defined by Eq. (13)

R.E. Hedegaard, et al. Applied Energy 242 (2019) 181–204

182



buildings on an aggregated level using techniques inspired by the
emerging field of urban building energy modelling (UBEM) [16]. Re-
search within this field has modelled the aggregated consumption of
groups of buildings through a variety of methods and tools including
neural networks [17–18], reduced order models [19] and high-fidelity
building simulations tools [20,21]. Among the topics investigated
within the field are the performance-gap between theoretical and actual
energy consumption [22] and the potential for energy retrofitting on
city-scale [23]. Currently, studies on how the aggregated DR from
several individual buildings affects operational challenges in urban
district heating systems are rare; the only identified studies are those of
Dominkovic et al. [24] and Cai et al. [25]. Dominkovic et al. used ar-
chetype building models calibrated with data from 54 households to
extract performance characteristics of typical DR events. Here, the term
DR event refers to a period of time during which the normal operation
of the building is modified through demand response. This condensed
representation of the building stock and the use of predefined set of
example DR events allowed the authors to evaluate the potential for
utilizing the thermal mass of buildings for generating flexible con-
sumption in an energy system level optimization. The authors demon-
strated that the flexible demand generated by buildings in their case
accounted for 5.5–7.7% of the total demand. Cai et al. used first order
models to represent the space heating requirements and hot water tanks
of 20 residential apartment buildings as well as a commercial con-
sumer. These models were used in optimization to reduce the opera-
tional costs of the supply side through utilization of flexible consump-
tion, while ensuring consumer comfort. The optimization resulted in
achieved savings of up to 11% when compared to a baseline.

While these studies indicate a potential for utilization of passive
thermal storage, both studies used simplified representations of build-
ings in their analysis, either through the use of archetype models which
neglect diversity, or by relying on first order models that are a relatively
crude representation of the thermodynamic phenomena that are
exploited when using the thermal mass of buildings for storage pur-
poses. In this paper, we propose a different take on the evaluation of
residential DR utilizing passive thermal storage, which rely on statis-
tical calibration of physics-based models of individual single-family
houses. We introduce a physics-based second order model describing
the thermal dynamics of the buildings, and validate its ability to de-
scribe dynamic conditions in buildings through experiment data. We
couple this model to a proposed model of the DHW consumption.
Together, these two models can be used to predict the combined district
heating consumption in buildings (space heating and DHW), thereby
allowing us to use hourly district heating consumption data from smart
meters to calibrate the two models in parallel. The calibration relies on
the repetitive and weather-independent nature of DHW consumption to
separate it from the space heating consumption. We demonstrate the
performance of the proposed modelling method by calibrating a
bottom-up model of a neighbourhood that consist of individual building
models each with their own thermal characteristics and domestic hot
water draw profiles. The modelling method is evaluated both on the
scale of individual buildings and on the neighbourhood-scale. Finally,
we demonstrate the application of the models by using them to evaluate
the performance of a simple price-based DR scheme aimed at achieving
peak load reductions in urban district heating systems. Although several
interesting results are presented in this analysis, the main objective of
this paper is to present the developed modelling method with a level of
detail that allows other researchers to apply and possibly further de-
velop it in their analysis. Therefore, the application of the models for
DR analysis should be seen as a demonstration of the usefulness of the
models rather than an in-depth analysis on DR schemes.

The paper is structured as follows: Section 2 describes the proposed
methodology in terms of the established statistical framework, the
physics-based building energy model and the model of DHW con-
sumption. In Section 3, we apply the methodology in a case study where
we model the consumption of 159 detached single-family houses. The

obtained UBEM model is validated both on the scale of the individual
building and on the aggregated level before it is applied in a case study
on the residential DR potential using model predictive control (MPC).
Finally, we draw our final conclusions and outline future work in
Section 4.

2. Method

The current field of UBEM consists of a variety of methods for
modelling of the energy use of groups of buildings. In general, UBEM
models can be categorized as either top-down or bottom-up models.
Top-down models tend to rely on socio-economic factors such as energy
prices, population size and weather conditions for modelling energy use
[26]. The use of aggregated data for obtaining top-down models leads
to little emphasis on ensuring accurate representation of the energy-
consuming processes themselves, thus rendering them ill-suited for
evaluating the DR potential of utilizing building thermal mass as pas-
sive thermal storage. Bottom-up models, on the other hand, does not
suffer from this issue, since they model the physical processes and
phenomena of the energy-consuming processes themselves before ag-
gregating the results [27,28]. These models may be rooted in either
statistical methods, physical principles or a combination thereof. Sta-
tistical methods include regression analysis, support vector machines
and artificial neural networks, whereas physics-based models rely on
the first principles to model the energy consuming process [26]. These
two modelling paradigms differ significantly in the prerequisites
needed to obtain the model. Statistical methods rely on measurement
data describing input-output relationships of the process, whereas
physics-based methods rely on knowledge about the process itself.
While both modelling approaches have advantages and disadvantages,
it is the combination of them that truly makes them useful in practical
applications. Combining the two paradigms typically involves setting
up an initial model based on thermodynamic principles and any
available information regarding the buildings, and then calibrating or
identifying the parameters of said model using measured input-output
data. This significantly improves the accuracy of the resulting models
compared to those derived from the purely physics-based approach,
while at the same time lowering the requirements for both the quality
and quantity of the data needed in the statistical approach [29,30].
Examples of studies combining the physics-based and data driven
modelling approaches to model individual buildings are plentiful –
studies that have modelled buildings on the larger scale include Kris-
tensen et al. [31], who calibrated a UBEM for prediction of the annual
energy use in Danish detached single-family-houses, and Gianniou et al.
[32], who used ordinary-least-squares linear regression and the degree-
day method to derive estimates of the indoor set point temperature and
overall heat losses of over 15,000 residential buildings from similar
smart-meter data. More recently, Kristensen et al. [33] used smart-
meter data in a 3-hourly resolution and a hierarchical modelling ap-
proach to construct archetype models capable of predicting the ag-
gregated consumption of out-of-sample groups of buildings.

Taking experiences from previous UBEM studies in literature into
account, it seems reasonable to use a bottom-up modelling approach
that calibrates physics-based models with measured data to explore the
DR potential of flexible space heating consumption through exploita-
tion of the thermal inertia that is inherent to buildings. We therefore
propose a modelling methodology which relies on Bayesian calibration
methods to derive physics-based models of individual houses. The
proposed methodology is unfolded in the following sections. First, the
Bayesian statistical framework used for the inference of model para-
meters is described. Then details on the building modelling including
the physics-based model structure as well as assumptions used for
modelling building geometries, venting and internal loads are provided.
Finally, a novel method for separating measurements of the total dis-
trict heating consumption into its space heating and domestic hot water
components is proposed.
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2.1. Statistical framework

The statistical calibration of the physics-based models is based on
the Bayesian paradigm, which enables incorporation of a-priori in-
formation in an otherwise measurement data-driven model calibration
– not in the form of best-guesses, but as arbitrary probability distribu-
tions reflecting the uncertainty of the information. This coupling of
measurement data and prior knowledge is particularly useful in appli-
cations where the data alone may not be sufficiently informative to
identify the value of a given model parameter. In the context of
buildings, priors may therefore be used to guide the inference of
parameters which are only vaguely described by the data towards re-
gions of high prior probability. Another benefit of the Bayesian mod-
elling approach is that the resulting models contain full approximations
of the parameter posterior distributions, thus allowing all the un-
certainty indicated by the inference to be included in future analysis.
These posteriors may be reduced to point estimates such as the max-
imum a posteriori (MAP) estimate to be used in applications where the
full Bayesian model description including the uncertainties are of less
relevance.

A key assumption made in the Bayesian inference of the proposed
method was that measurements of district heating consumption DH in
a residential building can be modelled as the sum of an energy-con-
suming process, sim, and a stochastic component, t . Furthermore, the
output of the energy-consuming process was assumed to consist of two
components: energy used for space heating ( h) and for preparation of
domestic hot water ( DHW). Time is denoted by t throughout Eq.
(1a)–(1e). In Eq. (1e), hr refers to the hour number within a day while d
is a categorical variable denoting the current type of day (“workday” or
“weekend day”). nt denotes the length of a simulation. The relationship
between a time series of district heating measurements DH,t for t = [1,
2, …, nt] and the vector containing the output of the model, tsim, are
described by Eqs. (1a)–(1c). As indicated by the index, tsim, is the si-
mulated prediction, thus implying that the calibration applies the in-
finite-step-ahead error criterion.

= +t t tDH, sim, (1a)

= +t t tsim, h, DHW, (1b)

N(0, )t
2 (1c)

= X W tF( , , , )th, B (1d)

= d hrF( , , , )tDHW, occ DHW (1e)

The input arguments used in the individual models for space heating
and domestic hot water preparation are listed in Eqs. (1d) and (1e).
Here, B and DHW are vectors containing the calibrated parameters of
the building model and DHW model, respectively, while X is a vector
containing the fixed parameters of the thermal model not subject to
calibration, see Appendix A of this paper. The matrix W of height nt
contains columns with measurements of relevant weather conditions.
Finally, the scalar occ B denotes the inferred number of occupants of
the building.

The stochastic component t in Eq. (1a) governs any unpredictable
variation caused by potentially noisy measurements of both weather
and district heating consumption, process noise (occupancy) as well as
the inevitable mismatch between the chosen model-structure and the
true energy-consuming process. An assumption in the inference is that
the residuals of the model output on the measurement data, t , are in-
dependent realizations of a normally distributed random variable with
zero-mean and homoscedastic variance 2. These assumptions are un-
likely to hold in all cases due to the many complex phenomena that
affect the district heating consumption in a building. For buildings
where these assumptions are subject to a significant violation, the re-
sulting models may fail to provide accurate estimates of the confidence
intervals associated with predictions [34]. While we do not necessarily

require this functionality of the models for our purposes, we acknowl-
edge this as an aspect of the modelling approach which could be im-
proved in future work – e.g. by moving from deterministic to stochastic
models. The likelihood of the data conditional on all the calibrated
model parameters ( B, DHW and ) is then:

= =p( , , ) 1
2

eDH B DHW 2

1
2 t

nt
t2 1
2

(1f)

Assuming that the model accurately describes the measured phe-
nomenon, Bayes’ theorem states that the joint posterior probability of
the parameters conditional on the measurement data,
p( , , )B DHW DH , is proportional to the RHS of Eq. (1g), where
p( , , )DH B DHW is the likehood of the data while p( )B , p( )DHW and
p( ) denote the probability of the building model parameters under
their respective priors.

p( , , ) p( , , )·p( )·p( )·p( )B DHW DH DH B DHW B DHW (1g)

The objective of the Bayesian inference was to identify the values
for each of the calibrated parameters of the building energy model and
DHW model that yield the highest joint posterior probability. There are
several algorithms that are capable of achieving this through by itera-
tive sampling from Eq. (1g) which is proportional to the joint posterior
probability. Our approach relies on the Metropolis algorithm [35] to do
so – further details are given in Section 3.1. The following section
provides details on the physics-based model structure chosen to de-
scribe the energy-consuming process ( sim) of Eq. (1a).

2.2. Physics-based model structure

The functional traits required for a model to be suitable for bottom-
up modelling of the energy consumption of buildings on the urban scale
using the Bayesian calibration approach are 1) a relatively low number
of input parameters as only scarce information about the modelled
buildings is available, 2) a low computational cost of simulation due to
the iterative process of calibrating models for a large group of buildings
and 3) physically interpretable parameters for which prior specification
is possible. An implication of the first two traits is that high-fidelity
models such as EnergyPlus, TRNSYS or IDA-ICE were dismissed in fa-
vour of simpler reduced order resistance-capacitance (RC) models. In
addition to the computational efficiency, another benefit of RC models
is that they are suitable for implementing optimization-based control
schemes such as MPC [36] – the control method most frequently used in
studies on smart buildings [37]. Finally, the last trait not only rules out
black-box models that does not have physically interpretable para-
meters, but also many physics-based grey-box models which have
lumped parameters that are difficult to specify priors for. This led us to
adopt the model described in the “simple hourly method” presented in
ISO 13790 [38] as the model structure used in this methodology. The
model is based on the principles of thermodynamics and consists of five
thermal resistances as well as a single thermal capacity (in short:
5R1C). The model is a first order model as it only contains a single
thermal capacity. The state of the model describes the temperature of
the thermal mass (Cm), while both the air (Ti) and mean surface (Ts)
temperatures are represented as mass-less temperature nodes without
inertia. Several reports have documented detailed tests on the ability of
the model to describe the energy consumption of buildings accurately
under typical operating conditions by comparing the RC model to more
complex building energy modelling tools such as the EnergyPlus or
TRNSYS [39,40].

The modelling framework specified in ISO 13790 requires geometric
information about the building as well as information about the thermal
dynamic properties of its components to set up a model. Since detailed
information about geometry is typically unavailable, a simplified geo-
metric model was used instead. This model relies on basic geometry-
related information that is often available in public building registers –
in our case in the Danish Buildings and Dwellings Register [41]. From
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this database we extracted the footprint area, number of stories and the
areas of any conditioned attic and/or basement. Fig. 1 depicts the
geometric model that was used to translate this basic geometrical in-
formation into building envelope surface areas. The geometric model
assumes a certain length-to-width ratio and room height in this trans-
lation – a method previously applied in [31,33]. Furthermore, the
geometric model assumed each facade of a building to be facing one of
the four cardinal directions. Appendix A lists the assumed values of
parameters both in the geometric model and the ISO 13790 model. In
addition to the assumed relationships related to the overall geometry of
the buildings, a simplified representation of the window-distribution
was assumed. This assumption was introduced to reduce the number of
parameters governing the solar heat gains of the model. The assumed
distribution was equal to the distribution used in the Danish window
energy balance calculation methodology (Eref [42]) North = 26%,
West = 16.5%, East = 16.5% and South = 41%.

The first order model described in ISO 13790 is intended for si-
mulating the heating and/or cooling consumption in buildings under
relatively stationary operating conditions with constant heating or
cooling set points. The limited fluctuations in air temperature under set
point tracking mean that the thermal capacity of the indoor air and
furniture can be neglected without significantly impacting the ability of
the model to describe the heating demand of the building. However, the
results of a study by Reynders et al. [29] suggested first order models to
be unable to describe the thermal conditions in buildings under dy-
namic operating conditions (e.g. changing set points). This is proble-
matic given our intent of using the model for evaluating demand re-
sponse based on exploiting the thermal characteristics of the building,
since the majority of Danish residential buildings are heated with hy-
dronic radiator-based systems. In buildings equipped with these pri-
marily convection-driven heating systems, energy is stored in the heavy
building elements by increasing the room temperature to initiate a flow
of energy from the interior environment to the heavy thermal mass.
Therefore, a stationary indoor air temperature cannot be maintained
during DR activities. This issue with first order models has led several
researchers to suggest using models of higher orders to represent the
thermal dynamics of buildings: Reynders et al. [29] suggested using
high-quality data including heat flux measurements from the building
envelope to calibrate fourth and fifth order models, but argued that
models of lower orders could suffice for predictive control applications.
Hedegaard and Petersen [43] compared second and third order models
on the physical meaningfulness of their parameters and concluded a
second order model to perform well. Harb et al. [44] tested RC-models
of orders one to three and concluded that the second order model
provided the best compromise between good predictive capabilities and

interpretability of model parameters. Finally, Vivian et al. [38] con-
cluded a second order model to be preferable to the first order model of
ISO 13790.

As the ISO 13790 model is well-suited in terms of all other traits that
are desirable for the intended purpose of the modelling methodology,
we opted for a modification of the original model structure instead of
replacing it with a different structure. The modification was to model
the thermal inertia of the interior (room air, furniture, etc.) by turning
the previously mass-less air temperature node into a temperature state
with an associated thermal capacity (C )i , thereby expanding the pre-
viously first order model to a second order model. In order to keep the
model simple and true to the framework described in the 13790 stan-
dard, we did not introduce further modifications. A resistance-capaci-
tance network of the proposed 5R2C-model including the modification

Fig. 1. Geometric model used for approximating the areas of the building envelope from the building’s floor area. The model assumes a length/width ratio of 0.5, a
room height of 2.6 m, and distribution of windows as depicted.

Fig. 2. Modified RC-network of the model used in ISO 13790’s hourly method
for calculating heat consumption. Green: modification, red: thermal loads.
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(in green) is shown in Fig. 2. Since the air change in the residential
buildings are assumed maintained through natural ventilation, the
ventilation supply temperature indicated on the figure (Tsupply) is as-
sumed to be equal to the exterior air temperature (Texterior).

To evaluate whether the proposed modification sufficiently im-
proved the ability of the model to describe the temperature conditions
in buildings under dynamic operating conditions, we compared the
original 5R1C model structure to the modified 5R2C model structure
using two datasets captured in real buildings that both featured dy-
namic thermal excitation: an Experimental dataset generated in a la-
boratory room at the Aarhus University campus and a Field dataset
generated in a newly built and unoccupied terraced house. The ex-
perimental dataset consisted of three days of hourly measurements
during which a pseudo-random binary sequence was used to control the
valve opening in a hydronic heating system and impose temperature
fluctuations on the test room. The field dataset consisted of a seven days
of hourly measurements during which electrical heaters were used to
excite the building by modulating the temperature set points. Both
datasets included measurements of the internal air temperature (Ti),
heating power ( h) and weather conditions (solar irradiance and air
temperature).

The five parameters present in both the original 5R1C-model and
the modified 5R2C-model that were selected to be calibrated in the
urban-scale application of the models (see Section 3.1.1) were cali-
brated using each of the two datasets. The added thermal capacity of
the interior was calibrated for the modified model structure. Fig. 3
shows the model output of both model structures after calibration. The
mean absolute percentage error (MAPE) calculated for each model is
provided in the legend.

The comparison of the two model structures depicted in Fig. 3 in-
dicates that the modification significantly improves the ability of the
model to represent the thermal conditions in buildings under dynamic
operating conditions. The calibration was carried out without the use of
priors to remove any impact of our a-priori beliefs on the result of the
model evaluation. The simulated time-series of Fig. 3 thereby corre-
spond to the predictions of models that were parameterized with
maximum likelihood parameter estimates. The main benefit of the
modification was that it allowed us to remove the feedthrough com-
ponent of the original ISO 13790 model. In modelling, feedthrough is

when inputs (in this case heating power hand solar gains in ia) act
directly on the output of the model, as opposed to acting indirectly on
the output by affecting the states of the model. Removing the feed-
through and adding thermal inertia to the interior (Ci) eliminates un-
realistic changes in the temperature output of the model caused by e.g.
a sudden change in heating output due to a change in the heating set
point – an effect that is clearly seen in Fig. 3. This tendency of large
fluctuations was also found by Bruno et al. [45], who compared the ISO
13790 5R1C model to the more complex TRNSYS Type56 building
model. The full state-space representation of the modified model
structure is provided in Appendix B of this paper.

Despite the indicated benefits of calibrating the thermal capacity of
the interior, it is considered infeasible to estimate this model parameter
during the modelling of urban areas, as the available data does not
include measurements of the indoor air temperature. Therefore, we
chose to fix the value of the thermal capacity. By default, EnergyPlus
models the thermal capacity of the interior as that of the air volume
inside the building alone [46]. We do not consider this realistic in the
context of low-order resistance-capacitance models used in simulations
of hourly temporal resolution. Instead, we find it likely that contribu-
tions from the interior (e.g. furniture), the heat delivery system itself,
and even the inner-most layers of construction elements are all lumped
into the interior thermal capacity (Ci). Therefore, it seemed reasonable
to fix the value based on the results from the calibration the un-
furnished terraced house (“Field data” in Fig. 3). The obtained em-
pirical posterior distribution of the interior thermal capacity resembled
a Normal distribution with a mean of 56.6 kJ

m K2 , std. dev. of 2.46 kJ
m K2 ,

and a minimum-maximum from approximately 45to 65 kJ
m K2 . In the

context of exploiting the dynamic behaviour of buildings for realizing
flexible consumption, choosing a lower estimate of the available
thermal capacity would be on the safe side. Therefore, we chose the
minimum value from the obtained posterior, i.e. =C 45i

kJ
m K2 . This value

is considered to be conservative, especially when considering that the
terraced house was unfurnished. Appendix C provides details as well as
the estimated posteriors of the parameters obtained in this calibration.

Fig. 3. Impact of the modification of the ISO 13790 model. The upper and lower graphs show simulation performance of the models when calibrated with ex-
perimental data and field data, respectively. The depicted models are parameterized with the maximum likelihood-estimates of the calibrated parameters.
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2.3. Occupancy

In addition to the thermal properties and insulation level of the
building that are described by the physics-based RC model, the heat
balance of the building is also affected by the actions of occupants. One
of the ways that occupants influence the heat balance of buildings is
through venting. The vast majority of existing Danish detached single-
family houses are naturally ventilated. The air change in each building
was therefore modelled as an intentional component (venting) and in-
filtration, respectively. Since occupants are expected to vent less in
colder periods, a model for the intentional venting reflecting this re-
lationship was introduced. The model for venting was based on Rijal
et al. [47] who proposed the use of a logistic model for describing the
nonlinear relationship between the external temperature and the frac-
tion of open windows in office buildings based on field surveys. In our
study, we adapted the coefficients of this model so that it describes the
effective amount of natural ventilation as a fraction of a design flow-
rate. Fig. 4 depicts the relation between the external air temperature
and the venting factor b used to scale a base venting rate fixed at 0.4 l

s m· 2
used in the model. Here, the whole design air change rate is in effect at
external temperatures (Text) equal to the internal temperature (20 °C),
while all venting seized at external temperatures of −20 °C.

Occupant behaviour may also contribute positively to the heat
balance of the building through the internal heat gains generated by the
metabolism of the occupants themselves ( occ) as well as their use of
appliances ( app). Each occupant was assumed to each generate 80 W of
sensible heat and occupy the dwelling two-thirds of the time, see Eq.
(2). The internal heat gains from appliances were modelled as the
electricity consumption of a typical Danish household - an assumption
considered appropriate in Danish dwellings where cooking is pre-
dominantly done using electricity. Gram-Hanssen [48] derived the
empirical regression in Eq. (3) for the annual electricity consumption in
detached single-family houses (Eapp) based on data from 8500 dwell-
ings. The regression relies on the area of the building and the number of
occupants as predictors for the annual consumption in kWh. Since no
information was available on the specific use-times of each dwelling,
we assumed flat profiles for both internal heat gains - i.e. Eqs. (2) and
(4).

= 2
3

·80occ (2)

= + +E A530 12· 690·app footprint occ (3)

=
E ·1000

8760app
app

(4)

2.4. Domestic hot water

The smart meters that reported the measurements of district heating
consumption featured in this study are primarily intended for billing
purposes. As such, they are not designed in a way that allows them to
separate the consumption related with space heating and preparation of
DHW. It is therefore necessary to introduce a model of the daily DHW
consumption profiles in order to 1) improve the predictive performance
of the model, 2) avoid neglecting variation in the DHW component of
the district heating measurements which could potentially affect the
estimates of the remaining building-specific parameters, and 3) to dis-
tinguish between inflexible and flexible demand. While hot water tanks
can be charged in a flexible manner as demonstrated in [10], the DHW
production in the majority of the residential buildings featured in this
study is handled with a flow heat exchanger, thus rendering the DHW
consumption inflexible.

Previous studies have proposed various methods for separating
district heating consumption into the two components dedicated to-
wards DHW preparation and space heating. Bacher et al. [49] separated

DHW and space heating by using a kernel smoother to identify peaks in
measurements of 10 min temporal resolution. However, this method
would not work using the hourly smart-meter data available for this
study, since the peaks caused by DHW consumption due to the hourly
time-resolution of the data are essentially averaged out to an extent
where distinguishing between space heating and DHW consumption in
this way is infeasible. Burzynski et al. [50] interpreted district heating
consumption measured outside the heating season (during summer
months) as domestic hot water consumption alone and assumed this
consumption pattern to apply throughout the year. While this approach
in principle would work despite the low temporal resolution of the
smart meter measurements, using data collected during the summer
months makes the process of inferring DHW consumption prone to any
errors caused by differences in consumption levels between the warmer
summer period and the rest of the year – e.g. due to holidays or an
increased frequency of showering due to the generally warmer weather.

Because of the above-mentioned limitations of the existing methods,
we chose to model the DHW consumption for each building directly and
infer it in parallel with the inference of the building-specific para-
meters. Assuming significant differences in use patterns between
weekdays and weekends, two distinct DHW daily profiles of 24 hourly
values were inferred for each building; one profile for weekdays and
one profile for weekend days, respectively. The model relies on two
elements to describe the DHW consumption of a given house on a given
day: a normalized shape-profile ( dDHW, ) and a scaling factor (EDHW)
denoting the average daily district heating consumption for preparation
of domestic hot water. An underlying assumption was that the average
annual DHW consumption per occupant (Vocc) amounted to 15 m3 hot
water [51], which was assumed evenly distributed across all days of the
year. The daily energy consumption for preparation of DHW (EDHW) is
given in kWh by Eq. (5).

=E
c V T T( )

365
p

DHW
,water water occ occ DHW mains

(5)

where occ denotes the inferred number of occupants in the building,
while cp,water and water denote the thermal capacity and density of water
at 30 °C, respectively. Finally, a mains water temperature (Tmains) of
10 °C and a DHW draw-temperature (TDHW) of 55 °C were assumed. The
daily consumption, EDHW, was distributed onto each hour within a day
by the inferred DHW profile ( dDHW, ) associated with that type of day in
accordance with Eq. (6):

= Et d hrDHW, DHW DHW, , (6)

where d hrDHW, , describes the share of EDHW within a particular hour
(hr) on either a working day or weekend day (d). There are two main
factors contributing to the inferred shape of the DHW profiles ( dDHW, ),
namely the prior information introduced by us (see Section 3.1.2), and
the repeated and weather-independent daily patterns observed in the
measurement data. This use of repeated patterns may result in other

Fig. 4. Model for external temperature-dependent manual venting.
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phenomena than DHW consumption being absorbed by the DHW
model. Examples of these are routine venting (e.g. each morning) or
heating set points which are scheduled through home automation sys-
tems. The latter violates one of the core assumptions of the statistical
calibration framework (a constant temperature set point), and buildings
whose consumption data is characterized by strongly repetitive con-
sumption patterns should either be excluded from the analysis or cali-
brated under other assumptions. Phenomena such as routine venting,
which may be more difficult to identify due to their relatively limited
impact, are absorbed by the DHW model in its current implementation.
However, this is not considered a critical issue since one of the main
purposes of the DHW model is to distinguish potentially flexible and
inflexible demand. Since increased space heating consumption due to
venting is not considered flexible, it is a desired behaviour of the cali-
bration to assign this consumption to the DHW model.

3. Case study

The urban residential neighbourhood selected for the case-study is
depicted in Fig. 5. The neighbourhood consists of 206 detached single-
family houses in Aarhus, Denmark, all located in a hydraulically well-
defined area in the city district heating network: all consumers are
supplied from the same point in the distribution grid located in the
lower left corner of the figure.

Each building is equipped with a smart meter that reports the

district heating consumption in a truncated hourly kWh-resolution, i.e.
in an unrounded state and without decimal points. However, a total of
47 out of the 203 dwellings in the neighbourhood (marked in red in
Fig. 5) were excluded from the case study due to one of the following
three data-related issues: 1) some/all consumption data was missing
(12 buildings), 2) data indicated night setback heating control (16
buildings), and finally 3) odd heating patterns perhaps caused by the
presence of secondary heating systems (e.g. wood-fired stoves) or fre-
quent occupant intervention of temperature set points (19 buildings).
Fig. 6 depicts the aggregated consumption of the remaining 159 houses
for the months of January and February 2017, along with the weather
conditions for the same period. It is evident that the heating profile is
characterized by relatively fast daily fluctuations as well as slower
fluctuations exhibiting a large dependency on especially the external air
temperature.

In the following sections we apply the proposed modelling metho-
dology to obtain a UBEM model of the urban residential neighbour-
hood. Section 3.1 presents the choices made in relation to setting up the
calibration algorithm, the selection of calibration parameters, and
specification of their respective priors. Section 3.2 presents an evalua-
tion of the obtained UBEM model first on the individual building level
and then on the urban area level.

Fig. 5. The urban neighbourhood used as case-study. All buildings within the neighbourhood are supplied with district heating from the same point in the grid.
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3.1. Inference

An approximation of the joint posterior probability distribution for
all model parameters given the data can be obtained using one of
several Markov Chain Monte Carlo (MCMC) based methods. These
methods are characterized by their ability to sample from particularly
high-dimensional parameter spaces. The methodology presented in this
paper relies on an implementation based on the Metropolis algorithm
[35], which from a randomly selected starting point in the parameter
space walks randomly through (i.e. samples from) a multi-dimensional
Markov chain – a stochastic process satisfying the Markov property – to
approximate the joint posterior distribution. When converged, the
Metropolis algorithm produces an unbiased mapping of the posterior
probability density distribution. The part of the algorithm which allows
it to focus on the regions of the parameter space of high probability, and
eventually converge to a stationary estimate the posterior density
function, is the fact that not all steps of the random walk are successful.
Whether a step is rejected or accepted is determined by the ratio be-
tween the joint posterior probability of the current draw and the newly
proposed draw. The computation of probabilities are carried out in the
log-domain to ensure numerical stability. Each proposed step of the
random walk in the parameter space is done by drawing from a so-
called proposal distribution. For this, the Metropolis algorithm applies a
marginal normal distribution (or a multivariate normal distribution)
centred at the algorithm’s current position in the parameter space. It is
essential to tune the parameters of the proposal distribution (i.e. the
variance for one-dimensional sampling, and the covariance matrix for
multi-dimensional sampling) if fast convergence and efficient sampling
from the posterior is desired [52].

The building model parameters ( B in Eq. (1d)) and the DHW model
parameters ( DHW in Eq. (1e)) were kept separate in the implementation
of the Metropolis algorithm, and therefore each had their own proposal
distributions. Due to differences in how the building-specific para-
meters and the DHW-related parameters acted upon the model, the
tuning of the two proposal distributions were carried out in slightly
different ways. The building model parameters were all proposed from
a multivariate normal distribution with zero-mean and covariance
matrix B. The tuning of this proposal distribution included a full
covariance adaptation including the correlation between parameters
[52]. Since the parameters of the building models may be significantly
correlated, the tuning of the parameter-correlation entries of B ensured
a much more efficient sampling and quicker convergence than using a
proposal distribution which neglects parameter correlation. In spite of
this, tuning of the covariance matrix of the DHW model’s proposal
distribution ( DHW) did not involve tuning of the off-diagonal elements

of the matrix. The reason for neglecting the correlation was that the
DHW model describes a normalized consumption profile, which after
each proposed change required a post-processing of the proposal in the
form of a renormalization of the entire profile. This post-processing
reduced the effectiveness of the covariance tuning that was used for the
building model parameters.

After a number of iterations, the algorithm converges to a stationary
state in the high-probability region of the parameter space. Until this
happens the algorithm is considered cold, and all samples are discarded
since they may still be influenced by the random point in the parameter
space where the algorithm was initialized. The algorithm is considered
warm once the marginal Markov chains of all parameters have con-
verged – after which further sampling contributes to the approximation
of the posterior distributions. The potential scale reduction factor
(PSRF) was used to indicate convergence (see Section 3.2.1) [53]. For
each building, three separate instances of the algorithm were run for
10,000 iterations – out of which the first 8000 iterations where dis-
carded. The three remaining batches of 2000 samples where joined and
used to form an empirically based posterior distribution. For further
details on the Metropolis algorithm we refer to the original work by
Metropolis et al. [35]. The following sections present the chosen cali-
bration parameters and their associated prior distributions.

3.1.1. Calibration parameters
Using physics-based building energy models (BEM) to represent the

performance of an existing building requires calibration of a range of
user-defined input parameters. Standard practice is to assign fixed va-
lues to all of the model parameters that are either known with rea-
sonable certainty or do not have a significant effect on the output of the
model. Limiting the number of calibrated parameters reduces issues
related to the identifiability of these parameters – especially in cases
where the available data is of limited quantity or quality. Table 1 lists
the five building-related parameters ( B) that were chosen for calibra-
tion in this study, while the rest were fixed at values considered suitable
for the type of buildings featured in this case study (see Appendix A for
details). The selection of these specific five parameters was based on a
compromise between the sensitivity of the model output to the specific
parameter (and thus the identifiability of the parameter), and the re-
levance of the parameter in light of the intended application of the
model.

The first three parameters in Table 1 are related to how weather
conditions (external temperature and solar radiance) affect the heat
balance of the building. The occupant density (used to derive occ) de-
termines the impact of occupants by scaling both the internal heat gains
and the DHW consumption. Finally, the effect of the thermal mass in

Fig. 6. Aggregated DH-consumption of urban district (only the 159 buildings marked in green in Fig. 5) and weather data for the training period (January 2017) and
the validation period (February 2017).
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the ISO 13790 standard models is governed by two parameters; the
effective thermal capacity (Cm) and the effective mass area (A )m . ISO
13790 proposes five classes of thermal mass in buildings ranging from
very light to very heavy – each class with its respective values for the
thermal capacity and effective mass area. To avoid calibrating both of
these parameters, we chose to couple them by a simple piecewise linear
relationship for the effective mass area as a function of the thermal
mass as depicted in Fig. 7, and only calibrate the thermal capacity (Cm).

3.1.2. Specification of priors
A prior was specified for each of the BEM parameters of Table 1. The

marginal prior for the WFR was specified as a beta-distribution ac-
cording to Eq. (7), while the priors for the remaining BEM and DHW
model parameters were specified as gamma-distributions according to
Eq. (8). The reason for using a beta-distribution for the WFR is that this
particular parameter is a ratio and therefore only is defined in the range
0 to 1.

WFR Beta (5, 25) (7)

q U Occ C Gamma[ , , , , ] ( , )inf envelope m DHW (8)

In Eq. (8), the vectors and contain the shape and scale para-
meters that describe the prior for each of the remaining parameters of
the model. The specific values for each parameter prior distribution are
listed in Appendix A while Fig. 8 depicts the distributions for the BEM
parameters and Fig. 9 depicts the prior profile used for the DHW
parameters.

The prior describing the insulation level of a given building to be
modelled (envelope U-value) was determined by the construction year
according to the Danish archetypes identified in the TABULA-project
[54]. The priors for the other parameters were assumed identical across
all buildings regardless of the construction year. The prior for the in-
filtration rate was based on air tightness measurements of multiple
dwellings [55]. It is likely that some of the case buildings to be mod-
elled have undergone minor refurbishments since they were built, but
we have no reliable information on this. To account for this uncertainty,
we specified fairly broad prior distributions for both the envelope U-
values and the airtightness of the buildings. The prior for the occupant
density was based on statistical estimates [56], while the prior on the
thermal capacity was specified to reflect the construction classes of ISO
13790 [38].

The shape of the priors for the two DHW profiles ( DHW) was based
on the average measured DHW consumption for a sample of 107 British
dwellings [57]. The prior for each hour was specified as a gamma-
distribution parameterized in a way such that the mean value of the
distribution coincided with the (normalized) profile from [57]. Since
the hourly priors are specified for the normalized profiles, they describe
the probability of a given share of the daily consumption falling inside
each given hour. Since the report on the DHW consumption in the
British dwellings does not provide separate results for weekends and
weekdays, the same prior specification was used for both profiles. Fig. 9
shows a contour of the prior distributions for each hour of the day,
where the intensity of the contour indicates the probability, while the x-

and y-coordinates indicate the hour number and share of daily con-
sumption, respectively. Here, it should be noted that, despite the con-
tinuous appearance of the contours visualizing the distributions, the
contour at a given x-coordinate (hour) describes the marginal dis-
tribution of that specific hour. The distribution related to a given hour
of the day, say =x 19 (depicted), is totally separate from the marginal
distribution specified for the 18th hour of the day ( =x 18).

Finally, the last parameter of the statistical framework outlined in
Section 2.1 is the prior distribution of the standard deviation de-
scribing the residual errors ( ) of Eq. (1a). Here, the prior distribution
was chosen as the half-Cauchy distribution with mode 0 and a scale
value of 0.25, thus producing a distribution that favours small values of

.

3.2. Model performance

While the intended application of the obtained UBEM model is
analysis on an aggregated level, the phenomena that enables utilization
of flexible consumption require the individual BEM to describe the in-
volved energy consuming processes with sufficient accuracy. Therefore,
an evaluation of the performance of individual BEMs is a necessary part
of interpreting the validity of the bottom-up UBEM model. Section 3.2.1
evaluates the UBEM model on the scale of the individual BEM before
the aggregated scale is evaluated in Section 3.2.2.

3.2.1. Individual building performance
The output of the MCMC-based parameter inference are approx-

imations of the posterior distributions for the calibration parameters.
The validity of these posterior distributions rely heavily on the con-
vergence of the MCMC algorithm to a stationary state within the so-
lution space of high probability. A method for quantifying the con-
vergence of MCMC algorithms is to run the algorithm multiple times
and use the part of each chain which is assumed to have converged to
compute the Potential Scale Reduction Factor (PSRF) [53]. The PSRF
estimates the reduction of the scale (uncertainty) of the posterior dis-
tribution achievable if the number of MCMC draws were increased to
infinity. As such, PSRF values near 1.0 indicate that the algorithm has
converged to a stationary distribution. PRSF values below 1.2 can
generally be interpreted as an approximate convergence [58]. The PSRF
was calculated for all of the obtained marginal distributions for the
parameters of each individual BEM. The model parameter posterior
estimates achieved PSRF values below 1.1 (highly converged) for all but
two BEMs that achieved values below 1.2 (approximate convergence).
Convergence alone, however, does not imply that the resulting models
have good predictive performance. The predictive performance was
therefore evaluated using the normalized mean bias error (NMBE) and
the coefficient of variation of the root mean square error (CVRMSE) as
proposed by ASHRAE guideline 14 [59]. The NMBE is derived

Table 1
Model parameters selected for Bayesian inference ( B).

Abbreviation Description Unit

1 WFR Window-to-floor ratio [ ]
2 qinf Infiltration rate (at 50 Pa) l

s·m2

3 Uenvelope U-value for roof and façade walls (assumed equal) W
K

4 Occ Occupant density m2
occupant

5 Cm Thermal capacity of construction elements kJ
m2·K

Fig. 7. Regression used to couple the thermal capacity (Cm) and the effective
mass area (Am) of ISO 13790.

R.E. Hedegaard, et al. Applied Energy 242 (2019) 181–204

190



according to Eq. (9), and indicates whether the model is accurate on
average by describing the bias of the model output as a percentage of
the mean value of the measurements. The CVRMSE is defined by Eq.
(10), and gives the sample standard deviation of the prediction errors,
also normalized by the mean of the dataset.

=NMBE
y y

n y
( )

( 1) ¯
i i

(9)

=CVRMSE
y

y y
n

100
¯

·
( )

1
i i

2

(10)

The CVRMSE can (contrary to the NMBE) be interpreted as the
ability of the model to correctly predict variation in the data, and as-
sumes only positive values, whereas the NMBE may be both negative
and positive. Both metrics indicate higher performance as the value of
the metric approaches zero. For calibration data of hourly resolution,
the maximum values recommended by ASHRAE [59] are ± 10% for the
NMBE metric and 30% for the CVRMSE metric. The two metrics were
computed by comparing the output of a model parameterized with the
MAP parameter estimates to measurements from the training and va-
lidation periods indicated in Fig. 6. Fig. 10 presents the performance of
the remaining 159 models to measurements from the training and va-
lidation periods indicated in Fig. 6. The performance of the five
buildings highlighted in red and denoted with letters A–D are further
investigated and depicted in Fig. 11.

The vast majority of building models achieve an NMBE within the
limits suggested by ASHRAE: All models pass on the training period
while only five models (3%) were not able to pass on the validation data
set. It is noted that a significant number of models actually had higher
CVRMSE values than the recommended 30%: 31 models (19%) when
evaluating on the training period and 43 models (27%) for the vali-
dation period. However, inspection of measurement time series and
model predictions revealed that the metrics alone were not suited for
deciding whether or not a given model should be discarded. In some
cases, high CVRMSE values were caused by extreme consumption peaks
that were relatively far-in-between, and thus not represented well by
the inferred DHW profiles that describe the average daily DHW-con-
sumption. In other cases it would seem that the building had been va-
cant for extended periods of time, which were characterized by a lack of
DHW consumption and sometimes also a reduced consumption for
space heating (lowered temperature set points). Finally, the truncated
nature of the smart-meter data used for the comparison is also a cause
of discrepancies between measurements and model output.

Fig. 8. Prior-specification of building-specific parameters ( B). The prior of the
WFR (top graph) is specified as a Beta distribution, while all other priors where
specified as Gamma distributions.

Fig. 9. Contours of marginal prior distributions for both DHW profiles (workdays/weekends). The contour at each x-coordinate depicts the marginal distribution for
that specific hour of the day – see highlighted hour.
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To illustrate examples of these issues, Fig. 11 depicts time series of
the five buildings (A–E) that are highlighted in red in Fig. 10. These
buildings serve as examples of the conditions that in many cases con-
tributed to a violation of one or both of the recommendations of
ASHRAE in relation to the CVRMSE and NMBE metrics. The figure
depicts time-series of the district heating consumption and the simu-
lated output of the calibrated models associated with each building. The
simulation of the models during the calibration assumed of a constant
heating temperature set point of 20 °C. While both the calibration and
the calculation of the two metrics were carried out using hourly values,
we present the time series in a 3-hourly resolution for readability.
Periods where the consumption deviated from the expected level have
been highlighted and, even though it is impossible to identify the exact
causes by analysing the existing data, labelled with plausible explana-
tions of the observed deviation. The assumptions related to occupancy
and set points in the simulations of the models were not adjusted to
match the conditions that are suspected to have applied in the build-
ings.

In addition to the various phenomena indicated in Fig. 11, a re-
curring cause of mismatch between the predicted and measured con-
sumption was peaks that are likely related to DHW consumption. Only a
small number of the buildings (e.g. B in Fig. 11) did not feature such
peaks – a likely explanation being that they are fitted with domestic hot
water tanks that distribute DHW consumption over longer time periods.
Even though separate weekday and weekend DHW profiles were in-
ferred for each dwelling, the DHW model assumes these profiles to
apply equally to all of the days for which they were defined (i.e.
weekdays or weekend days). Therefore, in cases where large peaks
(presumably showering) are spaced randomly with one or multiple days
in-between, the inferred DHW profile tend to indicate peaks of average

size on all days.
While the challenges related to DHW consumption contribute sig-

nificantly to the value of CVRMSE, we do not consider them critical to
the validity of the models in an urban-scale context, where the sto-
chastic behaviour of occupants from many different buildings to a large
extent is averaged out. Similarly, due to the relative rarity of the phe-
nomena depicted in Fig. 11, we expect the impact of these phenomena
on the parameter estimates to be insignificant. Therefore, although
many building models did fulfil the ASHRAE recommendation, the
suggested limits proved perhaps too strict to act as a hard requirement
for this application, where the measurements were both truncated and
heavily influenced by effects of stochastic occupancy. The inferred
DHW profiles for all 159 buildings are shown in Fig. 12. Both nor-
malized and absolute profiles are presented as the former is useful for
comparing the distribution of DHW consumption between buildings
with varying overall consumption, while the absolute profiles describe
the actual impact on the grid.

Not surprisingly, comparison of the mean profiles indicate that the
largest difference between weekdays and weekends is the pickup in
consumption in the morning hours: On weekdays, the consumption has
a steep incline starting at 06:00 before it peaks in the hour 07:00–08:00.
Weekend days are characterized by a smoother pickup in consumption
and a peak which happens two hours later than the weekday peak in the
hour 09:00–10:00. Although there currently is no way of evaluating the
validity of the inferred DHW-profiles, the profiles are considered
plausible since the differences between weekend and weekday profiles
that are observed despite the use of identical prior information, match
both our own expectations and agree with previous research findings
[60].

Fig. 10. Performance metrics CVRMSE and NMBE for each building model parameterized with the MAP parameter estimates. Time series of the five highlighted
buildings (A–E) are presented in Fig. 11.
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3.2.2. Urban scale performance
The performance of the UBEM of the 159 case-buildings is depicted

in Fig. 13, where the predicted consumption is compared to measure-
ments. The aggregation of data from the entire pool of buildings im-
proves the readability, thus allowing us to show these results in hourly
resolution. The upper part of the figure depicts the period used to ca-
librate the models, while the lower part depicts the performance on
previously unseen validation data.

Visual inspection of the time series suggest an overall good perfor-
mance of the model in both periods which is supported by the CVRMSE
and NMBE metrics. Furthermore, it is clear that the UBEM is able to
accurately describe the majority of the daily peaks in consumption, thus
indicating not only that the aggregation of multiple buildings have
indeed lowered the issues related to DHW consumption peaks that were
seen on the scale of individual buildings in the previous section, but
also that the proposed modelling method is capable of separating
weather-dependent and –independent district heating consumption
successfully. A drop followed by a pick-up in consumption in the hours
afterwards is seen on January 25. This coincides with the highlighted
drop in the consumption of “dwelling A” in Fig. 11, and may therefore
suggest that multiple buildings were taken off the grid temporarily

possibly due to pipe maintenance.
While top-down UBEMs may achieve similar performance when

calibrated with the aggregated data directly, the advantage of the
bottom-up approach is that the diversity of the buildings producing the
aggregated consumption profile is preserved. It is this characteristic of
the bottom-up UBEM that allows it to be used as a basis for more de-
tailed analysis such as investigating the combined response of the
building stock to proposed DR initiatives. The following section pro-
vides demonstrates how the UBEM may be applied in analysis of DR
schemes and incentives on the urban level.

4. Urban-scale demand response

As indicated by previous studies, the thermal inertia inherent to
buildings can be exploited to allow the consumption dedicated towards
space heating to be shifted in time without significantly impacting the
indoor thermal climate in the buildings [5–9,11–14]. In this case study
we evaluate the performance of a DR scheme aimed at utilizing this
phenomenon to achieve peak reductions in the district heating con-
sumption profile of an urban neighbourhood. Strategic peak reductions
benefit utility companies by allowing them to optimize the daily

Fig. 11. Evaluation of individual building models that performed poorly in terms of CVRMSE/NMBE through comparison of time series. The dashed line separates the
training and validation period. Time series of 3-hourly averages were used for readability. The NMBE and CVRMSE metrics are indicated next to the time series.

R.E. Hedegaard, et al. Applied Energy 242 (2019) 181–204

193



operation, e.g. by avoiding having to fire up cold boiler plants during
peak hours. An even larger potential may be associated with the ability
to address congestion issues in distribution networks and reduce the
need for maintaining standby generation capacity for critical peak
events. A way to incentivize building owners to engage in DR is through
time-varying prices, e.g. by offering cheaper prices at off-peak times
than during peak times. This approach to demand response is generally
referred to as indirect price-based DR [61] due to the fact that the de-
cision of whether to engage in DR lies entirely with the consumers
themselves while the incentive (i.e. the time-varying prices) is de-
termined by the utility company. Fig. 14 presents the principle of how a
building can participate in a price-based DR scheme; (A) and (B) depict
the fluctuating demand targeted by the DR scheme and the resulting
price increase during a peak period, respectively, while (C) and (D)
depict the actions made by a building energy management system in
order to minimize the economic expenses of the building owner. Here,
the thermal mass of the building is charged by raising the room tem-
perature prior to the peak, thus allowing the building to become au-
tonomous for either the whole or a part of the duration of the peak. This
control strategy thereby allows the energy flexible building to negate
some of the costs associated with the higher peak time prices.

Model predictive control (MPC) is a control method that is capable
of implementing price-based DR schemes in the operation of space
heating in buildings. MPC schemes use a model of the building to
identify the course of actions that yields the best result in terms of a
predefined objective function [12]. This objective function may reflect
a wish to minimize the economic expenses of the building owner,
maximize utilization of renewable energy, or minimize any negative
impact of the building on the electricity grid or district heating net-
work. In practice, MPC schemes do this by solving a control

optimization problem that through the building model incorporates the
thermal dynamics of the building as well as the influence of both in-
ternal and external factors such as internal heat gains and weather
conditions. These control problems may include a variety of constraints
relevant to the operation of the building and the perceived comfort of
occupants. Similarly, the control problem can be configured to reflect
characteristics of a DR scheme including time-varying prices and other
relevant constraints. The building models used to implement MPC
schemes are similar to those resulting from the calibration approach
described in this paper. Therefore, the obtained building models can be
directly applied in an investigation of how buildings controlled by MPC
schemes would respond to various incentives offered in DR schemes. In
the following sections we formulate an MPC problem that reflects a
price-driven DR scenario and evaluate its performance in terms of peak
reductions.

4.1. Setting up the MPC problem

This case study investigates the relatively simple DR scheme de-
picted in Fig. 14, in which increased prices during hours of peak load
are used to incentivize consumers to shift their consumption out of
these periods. The consumers are assumed to operate their buildings in
a way that minimizes their economic expenses for space heating while
maintaining an indoor temperature within a predefined range of ac-
ceptable temperatures. Previous studies have investigated more elabo-
rate representations of the comfort preferences of consumers. Cigler
et al. [62] proposed using the predicted mean vote or PMV index of
thermal comfort developed by Fanger [63] to incorporate comfort
considerations in MPC schemes. The authors found that the use of the
more comprehensive comfort measure of the PMV index allowed them

Fig. 12. Inferred DHW profiles in absolute and normalized terms along with the average profile of the entire sample. First row presents weekday profiles while the
second row presents the profiles of weekend days. In the normalized profiles, each entry represent the share of daily consumption associated with that hour.
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Fig. 13. Performance evaluation of the aggregated UBEM (159 buildings) on the dataset used for training (top) and on a previously unseen validation dataset
(bottom). Both datasets are in hourly temporal resolution. CVRMSE and NMBE metrics for each period are indicated on each graph.

Fig. 14. Principle of the price-based demand response scheme evaluated in this study.
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to be less conservative in their consideration of thermal comfort during
MPC operation. However, the authors also point to two issues asso-
ciated with the method: (1) incorporating the PMV equations directly
would result in a non-linear optimization problem which is difficult or
sometimes infeasible to solve, and (2) the PMV model requires several
inputs that are typically not available in practice (e.g. clothing and
activity levels). Pedersen et al. [64] investigated both single and multi-
objective MPC formulations designed to maintain a specified set point
temperature while allowing occasional temperature deviations for DR
purposes. The proposed multi-objective scheme is based on identifying
the Pareto-optimal weighing between the two objectives of maintaining
a comfortable indoor climate and achieving economic savings, while
the single-objective scheme is a computationally less demanding ap-
proach that achieves a similar control behaviour through the use of
constraints and slack variables. Compared to how comfort preferences
are handled in the scheme depicted in Fig. 14, an advantage of these
schemes is that they do not track the lower bound of the allowable
temperature interval during typical operation, and may therefore con-
duct DR through both positive and negative deviation of the reference
temperature set point. On the other hand, the DR scheme depicted in
Fig. 14, which tracks the lowest indoor temperature that is considered
comfortable to the occupants, produces a conservative baseline scenario
which under a constant energy price minimizes both energy con-
sumption and the associated costs. These examples illustrate that there
are several ways of handling thermal comfort – each with their own
merits. The temperature-interval approach to incorporating the comfort
preferences of consumers depicted in Fig. 14 was adopted in this case
study in order to extend previously conducted research [7–9] into a
setting involving larger groups of buildings. The resulting MPC scheme
is defined by Eqs. (11a)–(11e).

=
uminimize c ·

u t

n
t t1

t

(11a)

= + ++x A x B E dusubject to t t t t t t1 (11b)

= CxTi t t, (11c)

u P0 t max (11d)

T T Tmin i t max, (11e)

where Eq. (11a) specifies the objective function of minimizing the
product of a vector of time-varying energy costs (c) and a vector of the
energy consumption for each hour (u). The latter is the decision vari-
able of the control problem – i.e. the variable that may be manipulated
by the control scheme. Since DHW consumption is considered inflexible
it is not necessary to include it in the optimization problem, and ut
thereby corresponds to the consumption aimed towards space heating
only. Eqs. (11b) and (11e) are the constraints of the optimization pro-
blem solved by the control unit. Here, (11b) describes the dynamic
behaviour of the building through the building model and (11c) relates
the internal states of the building model (xt), to the indoor temperature
output of the model (T ti, ). The remaining equations are used to specify
constraints relevant for the operation of the building; (11d) describes
the maximum heating rate the heating system can deliver and (11e)
limits the indoor temperature to be within some user-specified
threshold.

For the sake of a clear interpretation of results, the range of ac-
ceptable indoor temperature for the MPC was chosen to be between

=T 20min °C and =T 24max °C in all buildings even though the comfort
preferences in individual buildings would differ in practice. The max-
imum power output achievable for each building Pmax was assumed to
follow the Danish design conditions, where the heating system should
be able to maintain an indoor temperature of =T 20i °C at outdoor

Fig. 15. Top: Aggregated heating consumption from the UBEM. Middle: External air temperature for the period. Bottom: The response of the UBEM obtained by
solving the optimization problem of Eqs. (11a)–(11e) with different peak prices during the four hours of the peak period.

R.E. Hedegaard, et al. Applied Energy 242 (2019) 181–204

196



temperatures of =T 12exterior °C. This design load was approximated by
comparing the indoor-outdoor temperature difference (ΔT) of the
coldest hour of the measurement data and then scaling the corre-
sponding (inferred) space heating consumption (disregarding DHW
component) for that hour to match the =T 32 °C temperature differ-
ence used for determining the needed size of the heating system in
Danish residential buildings. Here, we disregard the discrepancy be-
tween the dynamic data used for this extrapolation and the stationary
conditions assumed in design calculations. This approach suggests that
buildings which have undergone retrofits also have downgraded the
capacity of the installed heating system which is considered very un-
likely. Both of these factors contribute to a conservative estimate of the
maximum power output Pmax available in each building.

4.2. Price-driven demand response

A reference scenario was defined in which the buildings were op-
erated in the most energy efficient way, meaning that the indoor tem-
perature was maintained at Tmin throughout the simulations to minimize
heat loss. Since the conditions in the reference scenario are the same as
those assumed in the calibration of the models, the consumption in-
dicated by the models in the reference scenario is equal to the con-
sumption predicted by the UBEM in Fig. 13. When the heating systems
in the buildings engage in DR, the models are no longer used under the
same conditions as they were calibrated under. Here, our confidence in
the meaningfulness of the model simulations of DR events are based on
(1) the fact that we use a physics-based model structure and incorporate
prior knowledge [65], and (2) the validation of the ability of the model
structure to describe the temperature in buildings under dynamic

conditions. Fig. 15 (top) depicts the aggregated district heating con-
sumption (space heating and DHW) indicated by the 159 building
models in a reference scenario for the period 3–8 January with external
air temperatures as depicted in Fig. 15 (middle). The marked con-
sumption peaks (peak 1 and peak 2) occurring on January 4 and Jan-
uary 6, respectively, were chosen as targets for a DR scheme seeking to
lower the daily fluctuation. For simplicity, the two DR events were
spaced 48 h apart from one another to avoid “spill over” from one DR
event to the next. Similar to Fig. 14B, the consumers were incentivized
to engage in DR through increased prices during the peak periods,
which were chosen as the four consecutive hours with the highest de-
mand during each of the two days. The lower part of Fig. 15 depicts the
response of the case buildings when subjected to seven different peak
period prices.

Fig. 15 (bottom) indicates critical issues associated with the char-
ging and discharging as a result of the DR scheme. During “Peak 1”,
where external temperatures between 2 °C and 5 °C meant that over
50% of the heating system capacity in each building was available for
charging, the amount of load shifting increased quickly as the incentive
(i.e. the energy price during the peak) increased. Since the efficiency
associated with load shifting decreases as the length of the load shift
increases, the majority of the load shifting occurred in the hour just
before the peak of the reference scenario. While the same behaviour
would be expected from “Peak 2”, the effect in this DR event was less
evident due to colder external temperatures ranging from −8°C to
−4°C (the coldest day of the dataset used for model calibration and
validation), which meant that less than 10% of the heating system ca-
pacity was available for charging. While a high efficiency is desirable,
the simulations indicate that concentrated charging as a consequence of

Fig. 16. Metrics describing the aggregated response of the buildings of the urban neighbourhood as a function of the increase in peak energy price. Top: pre-peak
increase and on-peak reduction in consumption. Middle: load shifting efficiency and participation rate. Bottom: maximum consumption during event.
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the DR scheme can lead to the formation of new peaks in the hours prior
to the original peak of the reference scenario. These peaks tend to grow
as the DR incentive is increased and it then becomes economically vi-
able for more buildings to engage in load shifting. Another issue in-
dicated by the figure is that the majority of the stored thermal energy is
discharged at an early stage of the reference case peak period, thus
resulting in a significantly lower reduction in the last hours of the peak
period. This is problematic since the size of the peak seen over the four
hour period is then hardly reduced. Finally, the relatively fast charging
and discharging of the thermal mass would result in a fast rise and drop
in indoor air temperature which may be uncomfortable to the occu-
pants of the buildings.

4.3. Addressing the formation of new peaks

The observed issues associated with the proposed DR scheme sug-
gests that modifications are necessary to achieve a more suitable re-
sponse from the case buildings if the objective is to reduce peaks in the
overall DH system. Our first proposal was to see if a constraint on the
rate-of-change of the indoor temperature could address the observed
issues. While this approach clearly solves the potential issue of dis-
comfort associated with temperature transients, it did not solve the
issue of new peaks being formed. The MPC optimization problem was
therefore expanded with the constraints shown in Eqs. (12a) and (12b).
These constraints are directly aimed at preventing the creation of new
peaks by introducing the concept of a charging period. The first con-
straint requires the buildings to distribute the charging of the thermal
mass across several hours, while the second constraint ensures an
evenly distributed discharging throughout the peak period.

= + htDR,t ref,t charge charging (12a)

= + htDR,t ref,t discharge peak (12b)

where tDR, denotes the consumption during the hour t resulting from
DR activities while tref, refers to the consumption in the reference
scenario without DR. The scalars charge and discharge denote the pre-

peak increase and on-peak decrease in consumption; for instance, a
value of = 100charge indicates that a given building consumes an
extra 100 W intended for storing energy in the thermal mass throughout
the designated charging period. Finally, hcharging and hpeak are sets de-
noting the hours where consumers may charge their buildings and the
hours constituting the peak period with increased prices.

As indicated by the simulation results of Fig. 15, it is essential to
identify the incentive that yields the most suitable response from the
group of buildings. We introduce max,event as the maximum consump-
tion resulting from a given incentive during the entire DR event – i.e.
both the charging and discharging period. Since this metric also takes
the formation of new peaks into account, minimizing it may be seen as
the objective in the task of determining the incentive (peak-price in-
crease) for each DR event that yields the optimal response in terms of
the achieved peak reduction. In addition to the ability of the DR scheme
to reduce the daily fluctuations in demand, it is also relevant to eval-
uate the costs in terms of the energy losses associated with redis-
tributing demand. Eq. (13) formalizes the load shifting efficiency used
in this study, DR, which was inspired by the formulation in [6] but
modified slightly to make it consistent with the economic incentive that
can be generated through load shifting. The index label “peak” refers to
hours inside the peak period, while the label “offpeak” refer to hours on
both sides of the peak. As such, DR,offpeak in Eq. (13) includes both the
period prior to the peak with increased consumption (charging), and
the period following the peak with reduced consumption due to leftover
thermal energy still being discharged. The load shifting efficiency de-
scribes the share of stored thermal energy that is recovered and used to
lower the consumption – both during and after the peak.

= ·100DR
ref,peak DR,peak

ref,peak DR,offpeak (13)

Fig. 16 describes the response of the case buildings as a function of
the price-increase imposed on them during the two peaks for new si-
mulations featuring the constraints in Eqs. (12a) and (12b). The re-
sponse is presented in terms of the two variables of Eqs. (12a) and

Fig. 17. The response of the case buildings obtained by solving the optimization problem of Eqs. (11a)–(11e) including the constraints of Eqs. (12a) and (12b), and
imposing the optimal increase in price indicated in Fig. 16 during peak periods.
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(12b) aggregated across all buildings (top), load shifting efficiency
( DR) and the participation rate (middle), and maximum consumption
of the event ( )max,event along with red crosses marking the price that
yielded the lowest maximum consumption (bottom). Prices to the left of
this optimum are too low to incentivize the optimal amount of load
shifting, while prices to the right of the optimum over-incentivize DR
and thereby result in new peaks being formed.

It is clear from the results depicted in Fig. 16 that there is a sig-
nificant difference in how the case buildings responded during each of
the two DR events. The main driver behind these differences was the
significantly colder weather conditions in the period surrounding the
second DR event. The aggregated amount of DR possible during Peak 1
was significant as indicated by charge and discharge, respectively.
During the second peak, the response of the case buildings was limited
by a lack of reserve heating capacity. Surprisingly, the simulation re-
sults revealed that the buildings required a lower incentive to engage in
DR during the second peak, as seen by the fact that the incentive re-
quired for the first building to engage in DR was 40% and 29% for Peak
1 and 2, respectively. Similarly, the results indicate a higher initial load
shifting efficiency for the second peak. The cause of the increased ef-
ficiency during the period with colder weather was found to be tied to
the venting model described in Section 2.3, which assumes increased
natural ventilation in periods of milder weather. The higher air change
rates associated with increased natural ventilation results in increased
heat losses during the charging period, where indoor temperature levels
are elevated to enable heat to flow into the thermal mass of the
building. Finally, the max,event metric indicates that there is a serious
risk of generating new peaks during the first DR event if the imposed
peak prices are too high, whereas the lack of reserve capacity during the
second DR event reduces this risk. Imposing the optimal peak price for
each respective DR event (marked with red crosses in Fig. 16) produces
the aggregated demand profile depicted in Fig. 17.

Fig. 17 shows that the case buildings were able to reduce peak
consumption levels by engaging in DR: a reduction of 5.2% and 4.3%
was achieved for Peak 1 and 2, respectively. The peak prices needed to
incentivize the optimal response from the case buildings were relatively
high; 56% and 69%, respectively. These high prices were necessitated
by the relatively low efficiency ( DR) at which peak load was shifted;
66.7% and 65.2%, respectively. These percentages imply that ap-
proximately a third of the energy dedicated towards load shifting was
lost in the process, which suggests that the charging period concept
should be further investigated and optimized in future studies. The
additional costs for the consumers associated with each DR event was
derived by considering the consumption between the beginning of each
charging period and until only an insignificant amount of thermal
charge was left in the buildings – here assumed to be 24 h after the end
of each peak. Compared to the reference scenario and assuming that all
buildings were exposed to the elevated peak prices, the two DR events
resulted in average cost increases of 6.7% and 9.5%, respectively. This
added cost was unevenly distributed between the buildings since only
some buildings mitigated a part of the added costs by engaging in DR
and shifting their consumption from peak to off-peak hours. Clearly, the
economic benefits of the peak reductions should be large enough to
enable the utility company to compensate consumers and provide them
with on-average cheaper district-heating.

4.4. Suggestions for future work

Future work should focus on evaluating the effectiveness of DR
schemes to generate direct benefits and savings for utility companies, as
this would also allow for a more detailed analysis of the economic as-
pects of designing DR schemes. A relevant scenario related to district
heating systems is the design phase where utilization of DR could affect
the sizing of network components and pipes, where e.g. a reduction in
pipe sizes could generate significant savings in both materials and re-
duced heat losses during the operation of the network. Another topic

related to the operational phase of district heating networks is the
possibility of using DR to address congestion issues in the distribution
grid.

The case study presented in this paper indicated that DR schemes
must be designed such that the formation of new peaks is prevented. We
therefore investigated a DR scheme with a set of constraints designed to
prevent this. Such constraints are not normally a part of indirect DR
schemes – thereby to some extent making the investigated DR scheme a
hybrid between the indirect and direct approaches to implementing DR.
These constraints accommodated the conflict of interest described by
O’Connell et al. [15], which in this context refers to the fact that the
most efficient (and thereby cheapest) way that buildings can shift their
consumption out of high-price periods does not align well with a
supply-side objective of achieving peak reductions. Comparison of
Figs. 15 and 17 shows that the buildings prior to the introduction of
these constraints required a much lower incentive to engage in DR.
Although the constraints lowered the issue with new peaks being
formed, this comparison indicates they also significantly impacted the
efficiency at which the buildings were capable of shifting demand. This
relationship agrees with the analysis of Reynders [66], who found that
increasing the duration of a DR event significantly reduces the storage
efficiency. This raises the question of whether other approaches to DR
would be capable of achieving similar or better results at a higher ef-
ficiency. One such approach could be replace the two-level pricing
scheme evaluated in this paper with fully time-varying prices (hourly
prices) that are designed to incentivize the exact response wanted by
the utility company. Corradi et al. [67] investigated models for pre-
dicting the response of consumers to time-varying prices in a power-
systems context. The authors concluded that the assumption of a linear
relationship between price and consumption in the presented models is
an aspect of these models that should be improved in order to allow
them to describe saturations in the response of the consumers. The
differences between the observed DR of Peak 1 and 2 of the present case
study suggests that such capabilities would indeed be necessary, as
demonstrated by the lower response during Peak 2 due to the lack of
available heating capacity. For similar reasons, such a model would also
need to incorporate the influence of weather conditions on the price
responsiveness of consumers. An alternative to establishing a model for
the relationship between incentive and response is to rely on bi-level
optimization algorithms as proposed in the study by Hobbs and Nelson
[68], in which an optimization problem representing consumer beha-
viour is nested in an upper-level optimization problem representing the
utility company. The objective of the upper-level optimization problem
is to identify the price signal that results in the desired consumer re-
sponse.

Finally, a fundamentally different approach that could be used en-
sure a suitable response from consumers is direct incentive-based DR
schemes. A advantage of this type of DR scheme is that the behaviour of
the participating consumers is not tied to variation in a broadcasted
price signal, but may instead be determined through centralized opti-
mization and coordination of participants. Such coordination can en-
sure that the optimal response in terms of supply side objectives and
energy efficiency is achieved. In this case, the incentive would not be
provided through time-varying prices, but e.g. directly through pre-
determined energy bill discounts.

5. Conclusion

In this paper we described a methodology for bottom-up modelling
of the district heating consumption of buildings in urban neighbour-
hoods. The objective of the method was to enable investigations of the
aggregated demand response (DR) potential associated with residential
space heating consumption. The methodology uses Bayesian calibration
to identify both domestic hot water draw profiles and the parameters of
a second order RC model describing the thermal dynamic character-
istics of each individual building. The methodology was applied in a
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case study featuring an urban area in the city of Aarhus, Denmark,
consisting of 159 single-family houses. The aggregated profile of hourly
consumption for the neighbourhood simulated for an unseen one-
month validation period indicated a high accuracy: A CVRMSE of
5.58% and an NMBE of −1.39% was achieved. The calibrated urban
building energy model was then used to investigate the efficiency at
which model predictive control (MPC) of space heating for larger
groups of buildings may be used in DR initiatives to benefit district
heating production and distribution. In this case study, the objective
was to lower the daily morning peaks in the demand profile caused by
domestic hot water consumption. An indirect price-based DR scheme
which involved elevated energy prices during peak hours were used to
incentivize the buildings to participate in DR events. MPC was used to
enable individual buildings to engage in DR by exploiting the inherent
thermal mass in the buildings while maintaining the indoor tempera-
ture at comfortable levels. The DR scheme was found to be unfit for the
peak reduction application since it resulted in the formation of new and
larger peaks prior to the original peak. To prevent this, additional
constraints which ensured a more evenly distributed response from the
participating buildings were incorporated in the DR scheme. This
modified DR scheme allowed the buildings to reduce two investigated
peaks by 5.2% and 4.3%, respectively. However, the introduction of
these constraints also reduced the efficiency at which the buildings
where able to shift consumption out of peak periods. This suggests that
future research exploring and comparing various DR schemes on their
effectiveness and efficiency at addressing various supply-side objectives
is needed. The modelling methodology presented in this paper is con-
sidered well-suited for such analysis.

We acknowledge that there are several aspects of the presented
methodology which could be further improved upon. One issue to in-
vestigate is whether idealized assumptions such as a fully mixed air
temperature distribution or an ideal heating system has a significant
influence on the modelling outcome. Another issue is that the data used
for the calibration of the individual building energy models most likely
was captured under typical set-point tracking control, and may there-
fore not contain sufficient information (excitation) for a trustworthy
identification of all model parameters. This is especially critical to the
identification of the effective thermal capacity of the buildings. Future
work is therefore recommended to investigate whether the proposed
approach of using priors to reduce this issue yields models that are
sufficiently accurate representations of the actual buildings. Finally, it
would be interesting to investigate both the effect of including indoor
temperature measurements in the model calibration and the possibility
of improving the quality of the calibration data by imposing subtle
excitation on the thermal dynamics of the buildings - e.g. through night
setback strategies.
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Appendix A. Parameters values and priors

Table 2 lists the parameters used to parameterize the 5R2C reduced-order model used to describe the energy consumption of residential buildings
in this study. Each parameter was either attributed a fixed value or given a prior distribution describing our a-priori beliefs related to the likelihood
of the parameter value.

The prior for the DHW model parameters were specified as Gamma distributions. The same prior was specified for the “workday” and the
“weekend” profiles, respectively. The priors describe the probability distribution of DHW consumption in a given hour as a share of the daily
consumption in percent.

Table 2
Fixed parameter values and priors of the building energy model. * indicates value defined by ISO 13790:2008.

Model parameter Selected value Prior (where applicable)

Geometry
1 Length-width ratio, LWR [-] 0.50
2 Room height [m] 2.60
3 Window-to-floor ratio, WFR [-] Calibrated 1961–78: Beta (5, 25)
4 Window frame fraction [-] 0.25
5 Shading factor (overhang, surroundings) 0.5
6 Internal surface-to-floor ratio 4.5*

Transmission & capacity
7 Temp. adjustment factor (ground) [-] 0.70
8 U-value (floors) [W/(m2 K)] 0.5
9 U-value (basement-walls) [W/(m2 K)] 0.6
10 U-value (walls/roof) [W/(m2 K)] Calibrated 1961–72: ( )Gamma 5, 0.6

5 1973–78: ( )Gamma 5, 0.3
5

11 U-value (windows) [W/(m2 K)] 1.6
12 g-value (windows) [-] 0.60
13 Thermal capacity of interior [kJ/(m2 K)] Assumed from experimental calibration: 45 kJ

m K2

14 Thermal capacity of heavy mass [kJ/(m2 K)] Calibrated 1961–78: Gamma (10, 20)
15 Effective mass area [m2/ m2] Regression, f C( )m
16 Heat transfer coef. (mass-surf.) [W/(m2 K)] 9.10*

17 Heat transfer coef. (surf.-air) [W/(m2 K)] 3.45*

Ventilation
18 Infiltration airflow @ 50 Pa [l/s/m2] Calibrated

1961–78: Gamma 5, 3
5

19 Design airflow (nat. ventilation) [l/s/m2] 0.4
Occupancy

20 Occupant density [m2 /pers.] Calibrated 1961–78: Gamma (10, 6)

(continued on next page)
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Table 3 lists the shape parameter and the mean associated with each hour, which may be expressed as =µ . The values correspond to the
contours of Fig. 9.

Appendix B. State space model representation

This appendix presents the continuous-time state space representation of the modified ISO 13790 building model. The standard notation for
representing state space models is given in Eqs. (15a) and (15b).

= ++x Ax B uk k k1 (15a)

= +Cx Duy kk k (15b)

This representation is slightly different from the representation used when including the models in the MPC optimization problem of Eqs.
(11a)–(11e), since the formulation of the control problem requires that controllable input variables are separated from the uncontrollable input
variables (the disturbances). To make this difference clear, the input matrix B and the input vector ut are marked with a star in this standard
representation. In optimization problem of Eqs. (11a)–(11e), the matrices B and E of Eq. (11b) are obtained by separating out the columns of the B
matrix that describe the impact of disturbances and forming the disturbance matrix, E . The remaining column of B that describes the effect of the
control variable (heating power, h) on the model is then B of Eq. (11b). Similarly, u is split into the control variables, u, and the disturbances, d.

The states (x) and inputs (u ) are column vectors, and are organized as follows:

=x T T[ , ]T
i m (15c)

=u T[ , , , ]T
ext solar int h (15d)

Here, Text is the external air temperature, solar is the solar heat gains per window area (in m2), int denote the internal loads and h is the heating
output of the building’s heating system. The geometric model applied in this study assumed a fixed distribution of windows facing each cardinal
direction (see Section 2.2). Therefore, solar is pre-processed in the following way:

=
=

g F F· ·(1 )·
dir N S E W

dir frame shadingsolar
[ , , , ]

solar, glass
(15e)

where dirsolar, is the incoming solar radiation in W/m2 on a vertical surface facing the cardinal direction dir and with the solar heat gains coefficient
of the glass =g 0.6glass , the frame factor =F 0.25frame and the external shading factor =F 0.5shading . The latter accounts for window overhangs and
other shadowing objects such as surrounding trees and buildings.

The system matrices describing the continuous-time properties of the system are given by the following. The matrices Ac and Bc rely on the time
step (k) indirectly, as the variable Hve depend on the time-varying external temperature T kext, . The starred notation of B is used here to distinguish it
from the B matrix of Eq. (11b).

=
+ + + + +

+ + + +

( )
( )

( )
( )

A k
H T H

H H
( )

( ) · 1 ·

· 1 ·

k
H

H H H C
H H

H H H C

H H
H H H C

H
H H H C

c

ve ext, is
1 ·

( )·

·
( )· ms em

1

is
w is ms i

ms is
w is ms i

ms is
w is ms m

ms
w is ms m (15f)

Table 3
Prior specification for DHW profiles. Based on data from 107 British residential buildings [57].

hour, i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
α 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
μ = α β 1.8 1.1 0.8 0.7 1.4 1.7 4.4 8.9 7.5 6.0 5.6 5.0 4.3 3.5 3.0 3.1 3.6 5.3 7.6 7.1 6.0 6.0 4.1 2.5

Table 2 (continued)

Model parameter Selected value Prior (where applicable)

21 Occupant heat load [W/pers.] 80
22 Room heating set point [oC] 20
23 Appliances heat load [W/m2] Regression, f A nOcc( , )f

Domestic hot water
24 DHW flow temperature [oC] 55.0
25 Mains temperature [oC] 10.0
26 Hot water consumption [m3/pers./year] 15

Material properties
27 Specific heat capacity of air, cp,air [J/kg/K] 1005
28 Density of air, air [kg/m3] 1.205

R.E. Hedegaard, et al. Applied Energy 242 (2019) 181–204

201



=

+ +

+ + +

+ + + + + +

+ + + + + +

( )

( )
B k

H T

H

( )

( ) · · 0.5 ·

· · · 0

k
H H

H H H C

H

H H H
A
C

H

H H H C C

H H
H H H em C

H

H H H
A
A

A
C

H

H H H
A

A C

c

ve ext,
· 1

· 1

( )

· 0.5
1 1

· 1
· 1 · 0.5

0.5· 1

i

A
A

H
h A

A
A

H
h A

ms w
w is ms m

ms
Am
At

Hw
hms At

w is ms
m
t

w
m

A
A

H
h A

is w
w is ms

is m
t

w
ms· t

w is ms
w
i

is
0.5· m

t
0.5· w

ms· t
w is ms i i

· ms
0.5· m

t
0.5· w

ms· t
w is ms

m
t m

(15g)

=C [1 0] (15h)

=D [0 0 0 0] (15i)

The time-varying parameter, Hve depends on the external temperature, Ta in the following way:

=
+

H T c
q q T

A( ) · .
( ( ))

1000
·ve ext p,air air

infiltration venting ext
floor (15j)

where qinfiltration is a function of the calibrated infiltration rate at a pressure difference of 50 Pa (qinf ), and the air change associated with venting
(qventing) is a function of the external temperature. The two air change rates are obtained in l

s m· 2 by the following expressions:

= +q q(0.04 0.06· )infiltration inf (15k)

=q T b T q( ) ( )·venting a a designflow (15l)

The equation for qinfiltration is specified in the Danish building energy performance calculation method [69]. In this study, the design air change
rate (qdesignflow) was fixed at 0.4 l

s m· 2 and the scaling factor for venting, b, was defined as:

=
+

b T e
e

( )
1

T

Text
0.25 0.25

0.25 0.25

ext

ext (15m)

Finally, the thermal capacity of the interior was defined as

= +C A c H C·( )i floor air p,air floor furniture (15n)

where Hfloor is an assumed room height of 2.6 m and Cfurniture is the contribution from furniture and the innermost layers of construction elements. The
value of Cfurniture was for this paper fixed at 45, 000 J

m K2 through field trials (see Section 2.2 and Appendix C). Equations for the remaining parameters
used to establish the state space model are given in [38].

B.1. Discretization

The time-varying parameter necessitates repeated discretization of the matrices for each time step. The simple and computationally efficient
Euler discretization scheme was therefore adopted:

= +A I A TS·c (15o)

=B B TS·c (15p)

where I is the identity matrix (here, 2-by-2) and TS is the simulation time step (3600 s).

Appendix C. Model validation

Fig. 18 shows the obtained estimates of model parameter posterior distributions, which were approximated using non-informative priors to
remove any influence of our own beliefs related to the likeliness of parameter-values.

The estimates of the thermal capacity of the heavy building components is seen to be higher than the values attributed to any of the building
classes of the 13790 standard. Whether this difference can be attributed to the increased excitation of the buildings thermal mass during the dynamic
measurement experiments was not investigated further.

The broad posteriors of the infiltration rate and envelope U-value indicate that distinguishing between these two heat loss phenomena using the
measurements of this dataset alone is difficult, thus agreeing with the conclusions drawn in [43]. A strong correlation was found between the two
heat loss parameters (−0.99), thus indicating that whenever a high estimate the heat loss through transmission (Envelope U-value) appeared in the
posterior, this added heat loss was compensated for through a lower infiltration heat loss (Infiltration rate) and vice versa. This effect is clear if we
add the heat losses of each of the two components together, thus obtaining a much more confined estimate of the posterior distribution for the overall
heat loss, as depicted on the lower-right histogram of Fig. 18.

Typically, such a strong correlation between two parameters would suggest that changes should be made – either to the set of calibrated
parameters or to the model structure itself. Such a change could be to infer the combined heat loss coefficient instead of its components which, as
indicated by Fig. 18, is much easier to identify. While this would remove the issue with strongly correlated parameters, it would introduce a need for
assumptions regarding the distribution of the total heat loss – this without ensuring a better performance of the resulting model. Because of this, and
because the objective of this work is not necessarily to obtain the “true” parameter estimates, we opted to keep the initially proposed structure and
set of calibration parameters.
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9.2 Epilogue 
The purpose of the work presented in this chapter was to first develop and present a methodology 

that enables bottom-up modelling of buildings on the urban scale, and to then apply and evaluate 

the methodology in a case study of large-scale DR. Therefore, this epilogue first discusses the 

presented modelling methodology and important assumptions that were necessary to introduce, 

before discussing the findings of the preliminary work presented in the case study.  

MODELLING METHODOLOGY  

The development of the methodology was guided by a requirement for the modelling approach to 

rely only on data that is, or is becoming, highly available (to researchers). An immediate 

implication of this requirement was that the modelling approach had to be independent of 

measurements of the indoor temperature in the modelled buildings. The parameters of each 

building model were therefore inferred under the assumption of a constant heating set point. As 

argued by Killian and Kozek [24], the emerging market of smart home automation systems may 

in the future extend the data available for modelling to include measurements of indoor 

temperature conditions at a central or even multiple points throughout the building. Therefore, 

not only is it interesting to investigate how the lack of temperature measurements affects the 

estimates of the building characteristics in the current implementation of the method, but also 

how the predictive performance may be improved if these measurements become available.  

Several challenges were associated with the smart-meter consumption data itself. First, the hourly 

consumption was reported by the smart meters in truncated kilowatt-hours. With the data showing 

that many of the featured buildings consumed 3 to 6 kW (kWh per hour) during the coldest periods 

of the year, this truncation errors may be significant. Clearly, this issue increases as the 

consumption decrease in the warmer periods of the year. Another uncertainty is that related to the 

stochastic behaviour of the occupants, which could have a significant impact on the thermal state 

of the building, e.g. due to venting or use of appliances. This challenge was further increased by 

the fact that the district heating measurements also contained the consumption related to the 

preparation of domestic hot water, which thereby constituted an occupancy-related source of 

uncertainty that entered the consumption data directly. A final issue was that the data was 

measured during operating conditions that can only be assumed to involve conventional set point 

tracking control, and was therefore characterized by low levels of excitation primarily driven by 

solar heat gains.  
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The latter of these challenges meant that the data in many cases did not provide sufficient 

information to distinguish between candidate models (i.e. models with different parameters). The 

estimates of the thermal capacity were particularly prone to this issue due to the lack of excitation. 

This led to Bayesian calibration being adopted as the parameter identification method, as it offers 

a powerful framework for incorporating prior knowledge that can guide the parameter search 

towards regions of the parameter space that are characterized by high prior probability. As such, 

in the cases where the data in itself did not contain sufficient information to identify a given 

parameter, the prior distribution associated with that parameter became the dominant component 

of the posterior distribution. Clearly, the use of priors does not ensure that the obtained parameter 

estimates agree with the characteristics of the actual building. However, they allow us to obtain 

models that on one hand have good predictive performance during the typical operating conditions 

described by the calibration data, and on the other hand have realistic dynamic behaviour that – 

in the absence of data suited for dynamic modelling – is rooted in prior knowledge and a physics-

based model structure. Although this study only made use of the parameter estimates associated 

with the maximum a posteriori probability (the MAP estimates), the posterior obtained from the 

Metropolis algorithm [90] also describe the uncertainty associated with each parameter estimate. 

This information is therefore readily available and may be used to conduct sensitivity analyses in 

studies where this is deemed necessary.  

Finally, the methodology did not involve the model structures evaluated in Part I of this thesis 

(P6). The primary reason for this was that specification of priors for the parameters of those model 

structures would require setting up equations defining each parameter in terms of building-

specific characteristics. Since the method described in ISO 13790 [93] essentially already 

contained such equations, it was considered more natural to rely on this calculation method and 

introduce the necessary modifications to the model structure that would allow it to be used under 

more dynamic conditions. The modified 13790 model structure that was used in the study contains 

an algebraic surface temperature node, and is generally constrained in its structure by the 

equations describing heat transfer between nodes these nodes. In spite of this, its ability to 

describe the thermal conditions in buildings is considered similar to that of e.g. the 3R2C model, 

which was the preferred model structure in the analysis of (P6).  
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CASE STUDY: LARGE-SCALE DEMAND RESPONSE 

The case study demonstrated that the modelling methodology can be used to obtain bottom-up 

models of the buildings in urban areas that are capable of predicting their district heating 

consumption with high levels of accuracy. Furthermore, the resulting reduced-order models may 

be readily implemented in MPC schemes, thereby making them ideal for analysis related to space 

heating demand response in residential buildings. In the case study, the obtained building models 

were used to evaluate two DR schemes in terms of their effectiveness in achieving peak-load 

reductions. To enable clear interpretation of the results, both of these DR schemes used simple 

time-of-use prices to incentivize load shifting. The analysis revealed that the first DR scheme, 

which did not impose constraints on the nature of the response from the buildings, resulted in the 

formation of new peaks. The second DR scheme featured utility-related constraints to ensure a 

more evenly distributed response from the buildings. These constraints prevented the formation 

of new peaks and enabled peak-load reductions, but also lowered the overall efficiency of 

conducted load shifting.  

The case study indicated that some of the metrics that were used to evaluate DR in the previous 

chapters of this thesis do not necessarily tell the whole story. An example of this is the analysis 

of (P1), which evaluated the shifted energy quantities from high- or peak-load periods to low-

load periods, but did not discuss how such control behaviour could affect the aggregated load 

profile. The scenario featured in the case study thereby demonstrates the need to further consider 

the effects of proposed DR schemes when they are applied to larger groups of buildings.  
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10 CONCLUSIONS 

 

10.1 Main findings 
In this thesis, I set out to address some of the challenges that are widely considered inhibitive of 

the viability of implementing MPC schemes in the residential building sector. To this end, a set 

of research objectives were defined. The work of addressing these research objectives was 

documented in a series of published research papers – some of which make up the main body of 

present thesis. The following paragraphs provide the main findings of these studies, organized by 

the research objectives of section 1.2.  

PART I 

The first part of this thesis was concerned with aspects of building energy modelling.  In this 

broad setting, my analysis was aimed at aspects that were considered particularly relevant for 

implementation of model predictive control (MPC) schemes for space heating in residential 

buildings. Therefore, the conducted research efforts were aimed at the following three objectives:  

OBJ. 1.1: EXPERIMENT DESIGN AND COMFORT (P5)  

The analysis in (P5) indicated that sufficiently informative data for identifying models for MPC 

implementation could be obtained through experiments that do not impose significant thermal 

discomfort on occupants. This result was further supported by a separate analysis in (S7), which 

suggested that data collected during operation of an (un-calibrated) MPC scheme may be an 

appropriate substitute for the otherwise typically used PRBS signals. Finally, simulations of MPC 

with relatively poor performing models indicated the control scheme to be relatively robust.  

OBJ. 1.2: MODEL STRUCTURE SELECTION (P6) 
The analysis in (P6) indicated that the four low-order (second and third order) models that were 

evaluated are capable of describing the dynamic conditions in buildings with an accuracy 

considered sufficient for MPC applications. Of these model structures, two were also found 

capable of producing consistent and relatively accurate estimates of the thermal capacities and 

overall heat loss coefficient of buildings (compared to ‘white-box’ estimates). On the other hand, 

the results indicated that the models could not be used to estimate the transmission and infiltration 
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components that together constitute the total heat loss. A second-order (3R2C) model structure 

was concluded to be the best trade-off between simplicity and performance. 

OBJ. 1.3: PRACTICAL WEATHER DATA ACQUISITION (P3) 
A method for constructing weather data time-series from meteorological forecasts was proposed 

to eliminate the need for actual weather measurements in the identification of building models 

for MPC implementation. Compared to implementation methods that require measurements, the 

results indicated that the performance impact (on economic savings and comfort) of the proposed 

method was insignificant. Therefore, the main conclusion of the paper was that the method is a 

promising alternative to the more expensive and less practical method of using actual 

measurements. 

PART II 
The second part of this thesis addressed the four research objectives related to the potential of 

enabling demand response through space heating of residential buildings:  

OBJ. 2.1: THE IMPACT OF BUILDING ENERGY EFFICIENCY (P1, P2) 
The results of two studies (P1, P2) featuring buildings with different levels of energy efficiency 

were found to agree with the findings of previous studies: an increase in energy efficiency 

improves the storage efficiency while decreasing the storage capacity. During MPC operation, 

these two contradicting effects led to the absolute energy quantities shifted from high- or peak-

load periods to low-load periods remaining approximately constant across most of the retrofitted 

buildings. However, for the most energy-efficient buildings, the shifted energy quantities were 

achieved through a high frequency of relatively low-impact load shifts. Therefore, the potential 

associated with a building with a given energy efficiency is likely to depend on the type of issues 

that are to be addressed by the demand response initiative – and how often they occur.  

OBJ. 2.2: CENTRALIZED VS. DECENTRALIZED MPC (P1, S5) 

MPC schemes may be implemented in a centralized or decentralized manner, where only the 

former incorporates interaction between adjacent apartments or thermal zones. The decentralized 

approach neglects these inter-zonal effects, and is in theory therefore sub-optimal. However, the 

results of two studies (P1, S5) indicated that the benefits of the more complex centralized MPC 

scheme were modest at best. The results thereby suggest that the centralized approach is unlikely 

to be worthwhile in practice. An exception, however, is in control of buildings with a high thermal 

coupling between zones, e.g. where a single dwelling due to an uneven temperature distribution 

is modelled as multiple thermal zones.  
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OBJ. 2.3: MARKET STRUCTURES AND DEMAND RESPONSE MECHANISMS (S3, P1, P2, P4) 

Several incentive mechanisms have been applied in the papers of this thesis that relates to demand 

response; these include day-ahead market prices (P2, P3, P5, S2, S4, S5, S6), intraday market 

prices (P2), time-of-use prices (P4), and multi-objective signals (P1, S3). Although it is difficult 

to compare the results from these studies directly, several observations were made (numbered for 

clarity). 1) Constant tax components reduce the DR potential (dramatically in the case of the 

current Danish taxes), as they essentially reduce the volatility of the prices (S3). 2a) In the analysis 

of (P2), excluding taxes and relying on pure day-ahead prices resulted in cost savings ranging 

from approximately 3-13% (P2). 2b) Expanding these efforts to include intraday market prices 

doubled the economic savings achieved in some cases (P2). 2c) However, as previously 

concluded, these results would be affected by potential taxes. 3a) In relation to the ability of 

incentive mechanisms to generate societal benefits, the analysis of (P2) indicated that the current 

trading behaviour on the intraday-market rendered the method of engaging in intraday trading 

undesirable from a power-balancing point of view. 3b) On the other hand, the analysis presented 

in (P1, S3) indicated that multi-objective signals could be used to incentivize the utilization of 

renewable energy production, lower the energy demand at peak times, and reduce CO2-emissions.  

OBJ. 2.4: LARGE-SCALE DEMAND RESPONSE (P4) 

The modelling methodology presented in (P4) was developed to provide a framework for 

conducting studies on large-scale demand response. The methodology was evaluated on a case 

study involving 159 single-family houses. The results indicated that the models obtained from 

applying the methodology were capable of predicting the aggregated energy consumption of the 

neighbourhood with high accuracy. A part of this performance was gained due to the inference of 

average domestic hot water draw profiles for each building, which also allowed the models to 

reproduce the peaks that may be targeted by demand response schemes accurately. The models 

were used to investigate a DR scheme using time-of-use prices to incentivize peak load reductions 

in a district heating network. The analysis revealed that measures had to be taken to ensure a 

sensible response from the case buildings that lowered the original peak without leading to the 

formation of new peaks. This issue exemplifies a challenging aspect of demand response that 

would have not have been indicated by studies focusing on demand response on the scale of 

individual buildings.   
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10.2 Future work 
The following is a brief outline of the research directions that are considered relevant given my 

understanding of the current state-of-the-art related to demand response initiatives involving the 

thermostatic load of space heating in residential buildings.  

THEORETICAL STUDIES  

Despite the large research efforts taking place within the fields of dynamic building modelling 

and demand response, several relevant topics for future theoretical research efforts remain.  

BUILDING MODELLING 

The work related to the selection of grey-box model structures revealed discrepancies between 

the observed results and conclusions of previous studies on the same topic. Therefore, identifying 

a set of grey-box model structures that prove consistent in their ability to describe the 

thermodynamic behaviour of buildings and estimate their physical characteristics is considered 

an important future research endeavour. Furthermore, two practical approaches for generating 

input-output data for parameter identification were featured in studies: MPC data (S7) and night-

setback data (P3). Further research is needed to investigate whether simpler experiments such as 

these are also successful when the data is influenced by occupancy-related disturbances that are 

more realistic.  

DEMAND RESPONSE 

Many studies have investigated price-based demand response schemes – likely due to the intuitive 

nature of the concept and the fact that price signals are readily available from various markets. 

However, studies comparing the achievable performance of the price-based (indirect) and 

incentive-based (direct) approaches to DR schemes are needed, as the less restrictive nature of 

the latter could allow DR to be conducted more efficiently. Such analyses could be facilitated 

using the modelling methodology developed in (P4). Another important topic for future research 

is the potential influence that large-scale DR implementation can have on the infrastructure-

determining scenarios in both electricity and district heating networks. The costs associated with 

standby boilers or power plants may be a low-hanging fruit in this regard.  
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EXPERIMENTAL STUDIES  

A common feature of the majority of analyses presented in this thesis is the use of EnergyPlus 

simulations as analogues for actual buildings. Therefore, it is relevant to evaluate the validity of 

the applied assumptions and to what extent they may have influenced the drawn conclusions. 

While each of the papers of the thesis themselves outline relevant topics for future research, the 

following two assumptions was applied to several of the presented studies, and are therefore 

considered to be of high priority. 

FULLY-MIXED TEMPERATURE DISTRIBUTION  

This assumption is applied in the vast majority of simulation-based studies, likely due to the 

difficulties associated with simulating the airflow between rooms realistically including the 

opening and closing of doors. I consider it likely that a single-zone representation may be 

sufficient in some buildings, while others may require multi-zone models due to e.g. differences 

in the heat loads or exposure to weather conditions between different parts of the building. The 

latter would undoubtedly constitute new challenges to both model identification and MPC control.   

OCCUPANCY 

In the context of the topics of this thesis, two different but equally important areas of future 

research are related to occupants.  

First, occupants constitute a significant source of uncertainty. Similar to the fully-mixed 

assumption, this uncertainty may affect both the model identification and the performance of the 

MPC schemes. Two of the analyses of this thesis applied simple occupancy-models for imposing 

coloured noise on the data used to obtain models (P5, S7). A natural next step would be to replicate 

such analyses in actual buildings with real occupants.   

The second occupancy-related topic for future research is the validity of the assumptions about 

thermal comfort that that may affect analyses related to both experiment design (system 

identification) and to the specification of the constraints that are typically incorporated in MPC 

schemes. Especially in the case of the latter, these assumptions may significantly affect the 

indicated DR potentials – both positively and negatively.  
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TERMINOLOGY, QUANTIFICATION METHODS AND OBJECTIVES 

Although demand response in buildings has developed significantly throughout the last decade, 

there are signs that the research field has not yet matured. Further development of a common 

terminology, quantification methods and common test scenarios is needed. The latter especially 

refers to the set of assumptions that are often necessary to introduce in studies featuring DR and 

MPC, including those related to the characteristics of the building, stochastic occupancy, 

reference control method (baseline), and finally the mechanism that incentivizes DR. Many of 

these concerns are currently being addressed in the work conducted in IEA EBC Annex 67 on 

Energy Flexible Buildings. 

Furthermore, a higher involvement from supply-side actors is needed to enable researchers to 

focus on the use-cases where DR in buildings is most likely to benefit the energy system – both 

currently and in the future. A similar argument can be made for regulators, as their participation 

in discussions on demand response could bring clarity to current regulatory concerns that may 

inhibit the utilization of DR in practice.  
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a b s t r a c t 

The application of building archetypes is a widespread approach used in urban building energy mod- 

eling. Working with archetypes has a range of benefits, but it is important that modelers avoid using 

oversimplified approaches when establishing the archetype as they lead to loss of uncertainty and, con- 

sequently, to models with inferior predictive capabilities. In this paper, we propose a multilevel take on 

the challenge of establishing archetypes. A simultaneous modeling and calibration framework is formu- 

lated using Bayesian inference techniques – a technique that allows for the propagation of uncertainty 

throughout the calibration process. By means of hierarchical modeling, information from training build- 

ings is partially pooled together to form an optimal solution between separate building energy models 

and a completely pooled model. This enables the inference of uncertain archetype parameters that are 

less prone to building outliers than what is achieved using ordinary aggregation of individual building 

estimates. The proposed framework incorporates dynamic building energy modeling of arbitrary temporal 

resolution where uncertain parameters are fitted for individual building models and the archetype model 

simultaneously. The application of the framework is demonstrated using case-study data from the Dan- 

ish residential building stock, containing 3-hourly measurements of energy use for 50 training buildings. 

The model is tested for the prediction of 100 out-of-sample test buildings’ aggregated energy use time 

series on a holdout validation period. With a prediction error of only NMBE = 2.9% and CVRMSE = 7.8%, 

the archetype framework promises well for urban modeling applications. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

City governments, utility companies, and other energy policy 

stakeholders work on the urban scale of neighborhoods, cities, or 

even entire building stocks when planning and predicting the ef- 

fect of various energy efficiency and production strategies. They are 

in need of tools and platforms that enable the analysis of aggre- 

gated effects rather than individual building-level effects. 

Urban building energy modeling (UBEM) is a growing research 

field that seeks to facilitate such analyses by combining the ef- 

fects of individual buildings into an aggregated urban model. The 

modeling approach of UBEM is either to model buildings indepen- 

dently and then aggregate their simulated energy use, or to model 

buildings collectively in an all-inclusive urban model with context- 

specific boundary conditions and interactive effects. Regardless of 

the modeling approach, the overall challenge of UBEM is to col- 

lect and assign all the necessary data inputs for establishing suf- 

ficiently detailed building energy models of all buildings in the 

∗ Corresponding author. 

E-mail address: mhk@eng.au.dk (M.H. Kristensen). 

urban area without introducing too many assumptions and sim- 

plifications [1] . Because of this, the establishment of an accurate 

all-inclusive physics-based UBEM persists to be an extremely dif- 

ficult task. However, one can make use of different techniques 

for reasonable tradeoffs between feasibility and accuracy to over- 

come this; of these techniques, the application of archetype mod- 

els seems to offer an attractive solution. 

1.1. Archetype modeling 

The archetype approach seeks to reduce the number of build- 

ings in a given building stock or urban area to a much smaller 

subset of homogeneous archetypes that represent groups of typo- 

logically identical buildings where information that would allow 

further differentiation is typically not available. This approach in- 

evitably obscures the natural variability of occupant behavior and 

construction elements, but in turn reduces requirements for data 

acquisition and computational load. 

The definition and use of building archetypes for urban-scale 

modeling have undergone a lot of work in recent years. In general, 

the literature describes the process of defining archetypes as con- 

sisting of three steps before simulation: (1) classification of build- 

https://doi.org/10.1016/j.enbuild.2018.07.030 

0378-7788/© 2018 Elsevier B.V. All rights reserved. 



220 M.H. Kristensen et al. / Energy & Buildings 175 (2018) 219–234 

Nomenclature 

Variables and parameters 

A m 

effective area of thermal mass [m 

2 /m 

2 ] 

b ground temperature adjustment factor for building ele- 

ments facing the ground [-] 

C m 

capacity of thermal mass [kJ/(m 

2 K)] 

h room 

room height [m] 

H heat loss coefficient (subscripts are used to define 

the element) [W/K] 

f frame window frame fraction [-] 

LWR length-width ratio of building geometry [-] 

n b number of buildings 

n s number of simulations from the building energy 

model 

n t number of simulation time steps 

n θ number of calibration parameters 

p number of levels for Morris sensitivity analysis 

q inf@50Pa infiltration airflow at 50 Pa pressure difference 

[l/(s m 

2 )] 

q vent ventilation airflow [l/(s m 

2 )] 

r number of trajectories for Morris sensitivity analysis 
ˆ R potential scale reduction factor (abbrev.: PSRF) [-] 

SHGC solar heat gain coefficient [-] 

T temperature (index defines which temperature) 

[ °C] 

U heat transfer coefficient (index defines which ele- 

ment) [W/(m 

2 K)] 

V occ hot water consumption of occupants [m 

3 /(pers. 

year)] 

W matrix of weather parameter inputs for building en- 

ergy model (subscripts are used) 

WFR window-floor-ratio of building geometry [-] 

X matrix of fixed parameter inputs for building energy 

model (subscripts are used) 

y vector of measured time series energy use (sub- 

scripts are used) [kW] 

y ∗ vector of simulated time series energy use (sub- 

scripts are used) [kW] 

γ archetype-level scale parameter in half-Cauchy dis- 

tribution 

ε building-level error between measured and simu- 

lated energy use ( y-y ∗) [kW] 

θ vector of building-level calibration parameters (sub- 

scripts are used) 

κ0 a-priori number of “observations” of archetype-level 

means μ on the � scale 

�0 a-priori scale-matrix of the archetype-level covari- 

ance matrix �
μ vector of means of the building-level parameters θ
μ0 a-priori vector of mean values for archetype-level 

means μ

ν0 a-priori degrees of freedom of the archetype-level 

covariance matrix �
� covariance matrix of the building-level parameters 

θ
σ standard deviation of building-level error ε [kW] 

τ vector of standard deviations of the building-level 

parameters θ
�app appliances, equipment and lighting heat load [W] 

�DH district heating energy use ( �DHW 

+ �SH ) [W] 

�DHW 

energy use for domestic hot water [W] 

�occ occupant heat load [W] 

�SH energy use for space heating [W] 

�sol solar radiation [W] 

ω 0 a-priori upper boundary on archetype-level scale- 

parameter γ

Indices and subscripts 

b indexing buildings b = 1 , 2 , . . . , n b 
i indexing parameters for Morris sensitivity 

analysis 

s indexing simulations s = 1 , 2 , . . . , n s 
t indexing time steps t = 1 , 2 , . . . , n t 
out-of-sample quantity based on out-of-sample buildings 

post posterior quantity 

pred predictive quantity 

train quantity based on training data period 

valid quantity based on validation data period 

within-sample quantity based on within-sample buildings 

Abbreviations 

BEM building energy model (or “modeling”) 

BDR building and dwelling register (Danish building and 

property database) 

CVRMSE coefficient of variation of the root mean squared er- 

ror 

DHW domestic hot water 

EPC energy performance certificate 

GIS geographic information system 

GPR Gaussian process regression 

MAP maximum a-posteriori probability 

MCMC Markov chain Monte Carlo 

ML maximum likelihood 

NMBE normalized mean bias error 

PDF probability density function 

PSRF potential scale reduction factor (symbol: ˆ R ) 

UBEM urban building energy model (or “modeling”) 

ings into archetypes, (2) characterization of archetype parameters, 

and (3) calibration and validation of uncertain archetype parame- 

ters [2–6] . In many studies, the application of classifiers such as 

usage type, construction year , and geometry (e.g. surface-volume ra- 

tio) serves as segmentation parameters for clustering buildings into 

archetypes [2,7–9] . These simple segmentation parameters are of- 

ten readily available from public databases such as geographic in- 

formation systems (GIS) and tax and property registers. Parameter 

characterization, on the other hand, is often more difficult. Mod- 

elers can compile parameter data from a mixture of different in- 

formation sources in an effort to draw a holistic picture of the 

archetype; however, the availability of data is very specific to the 

city, region or country in question. Moreover, as data access is 

often limited due to legal constraints and privacy considerations, 

data acquisition easily becomes a delicate compromise. A particu- 

larly difficult task is the description of occupant-related parame- 

ters that influence many aspects of building operation and thereby 

energy use. One can thus seldom expect to have data that is elab- 

orate enough to obtain a purely deterministic description of the 

archetype parameters. Instead, modelers often have to resort to 

‘guessing’, either by means of educated guesses, some kind of anal- 

ysis of historical data, or through a stochastic treatment of uncer- 

tain data. For that reason, it is necessary to apply calibration to 

uncertain archetype parameters [4] . The literature holds a grow- 

ing body of work on calibration methodologies for building energy 

models [10,11] of which the probabilistic calibration approaches, 

e.g. approaches based on Bayesian inference, have become increas- 

ingly popular in recent years [3,4,6,12–20] . As the whole concept 

of archetypes rests on a stochastic treatment of building data, it 

would then only seem natural to expand the probabilistic calibra- 
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tion methodologies to the scale of archetypes and building stocks. 

Nonetheless, there are only few attempts to do so [3,4,6,12,13] . 

1.2. Bayesian calibration of archetypes 

In one of the earliest attempts at probabilistic calibration of 

archetypes by Booth et al. [12] , a Bayesian framework was pro- 

posed for the calibration of a bottom-up physics-based archetype 

based on earlier work by Kennedy and O’Hagan [21] . They applied 

Gaussian process regression (GPR) for fitting four uncertain param- 

eters of a quasi-steady-state building energy model (BEM) – the 

archetype model – to the daily building-averaged energy consump- 

tion data from 35 similar buildings, matching the archetype classi- 

fication, over 61 winter days. Booth et al. [12] list several sources of 

uncertainty related to building stock modeling, which can be sum- 

marized to the following four types: 

• Parameter uncertainty : Building-level variability due to insuf- 

ficient knowledge about BEM input parameters. This also in- 

cludes variability due to human behavior in terms of occupancy, 

operation of appliances, heating and cooling set point prefer- 

ences, etc. 
• Structural uncertainty : Variability due to the inadequacy of the 

BEM in describing the true energy consumption process of the 

building. This is also known as model bias or model discrep- 

ancy. 
• Archetype heterogeneity : Archetype-level variability due to dif- 

ferences in building characteristics across the sampled build- 

ings. 
• Numerical uncertainty: Algorithmic variability due to numeri- 

cal approximations, too small sample sizes, insufficient conver- 

gence of calibration, etc. 

Booth et al. [12] explicitly addressed and incorporated param- 

eter uncertainty by using the GPR technique to fit uncertain pa- 

rameter distributions from a-priori uncertainty specifications, and 

to some degree structural and numerical uncertainty by including a 

statistical bias-correcting term. However, by fitting the calibration 

regression line to averaged building data, they did not account for 

archetype heterogeneity . 

Kristensen et al. [22] also used the GPR technique, but on the 

annual heating energy use from a cluster of 450 similar residential 

buildings to estimate seven shared archetype parameters of a dy- 

namic BEM. They fitted the calibration regression line to the non- 

averaged, building-specific training data, whereby they acknowl- 

edged the uncertainty due to differences in the sampled archetype 

buildings, i.e. archetype heterogeneity . This introduction of a dis- 

aggregated building-level likelihood assessment was important as 

archetype-aggregated data tends to average out much of the vari- 

ability of the building stock, resulting in less informed posterior 

estimates. 

In studies by Cerezo et al. [3,4,6] , a new semi-Bayesian ap- 

proach was proposed relying on an iterative error-analysis between 

dynamic BEM simulations and annually or monthly aggregated 

data, respectively. They used an upper limit for the simulated er- 

rors as a binary likelihood function to filter building-specific dis- 

tributions for the calibration parameters for each building inde- 

pendently. The inferred building-specific parameter estimates were 

subsequently merged together into joint archetype-estimates to be 

used for prediction. By evaluating the likelihood of each build- 

ing independently before combining the data, they implicitly ac- 

counted for archetype heterogeneity. 

In agreement with the abovementioned sources of uncertainty, 

previous studies on the calibration efficacy of individual buildings 

have shown that the Bayesian framework is affected by the level of 

uncertainty in fixed and uncalibrated model parameters [23] , the 

amount of training data [17] , and the level of temporal aggregation 

of calibration data [23,24] . Even though these findings apply to the 

calibration of individual buildings, they presumably also hold for 

the calibration of archetypes; however, this remains unaccounted 

for. A natural next step would thus be to investigate the effect of 

applying calibration data of high temporal resolution, e.g. hourly 

measurements of energy use. The application of high-resolution 

data, in combination with a detailed dynamic BEM, will most likely 

allow for a better estimation of dynamical parameters [23] . How- 

ever, a binary likelihood function as proposed by Cerezo et al. 

[3,4,6] could prove to be too simple to fully exploit the information 

embedded in high-resolution data; for this end, a fully Bayesian 

continuous likelihood, e.g. Gaussian-distributed errors, would prob- 

ably serve as a better ‘filter’. Furthermore, a specific feature of esti- 

mating archetype parameters is the potential correlation between 

calibrated parameters. To our knowledge, this correlation has not 

previously been addressed in the literature of BEM calibration de- 

spite its importance for making accurate out-of-sample predictions 

of new buildings subscribing to the same archetype. 

1.3. Contributions of this paper 

In this paper, we present a new probabilistic archetype model- 

ing and calibration framework where we use data from a number 

of observed training buildings to calibrate uncertain archetype pa- 

rameters in a hierarchical setting. This feature allows the archetype 

calibration to draw strength from all training building datasets si- 

multaneously, hereby exploring the true diversity of the archetype. 

In addition to the propagation of uncertainty throughout the cali- 

bration process due to the abovementioned sources of uncertainty, 

the proposed framework introduces the inclusion of four key fea- 

tures: 

1. Dynamic physics-based building energy modeling; 

2. Time series data and model outputs of arbitrary temporal reso- 

lution, e.g. hourly resolution; 

3. Hierarchical/multilevel likelihood assessment of parameter pro- 

posals (both on building level and archetype level); 

4. Calibration of both building-level and archetype-level parame- 

ters including their correlation. 

We have organized the paper with an initial presentation of the 

proposed hierarchical framework in Section 2 . All assumptions and 

necessary statistical definitions are laid out openly allowing read- 

ers to implement the model using their own data, if wanted. In 

Section 3 , we demonstrate the application of the framework using 

an archetype case study from the Danish residential building stock. 

It is demonstrated how to draw inference about archetype pa- 

rameters even though parameter values of the individual training 

buildings are not themselves observed, and how to perform out- 

of-sample predictions of unseen buildings matching the archetype 

definition. In Section 4 , we provide a discussion on the applicabil- 

ity, limitations and possible future work for further optimization of 

the framework before we draw conclusions in Section 5 . 

2. Proposed archetype framework 

We propose a hierarchical archetype modeling and calibration 

framework using a statistical formulation to describe the correla- 

tion between buildings that share the same archetype classifica- 

tion, as depicted in Fig. 1 . At the archetype level, it is assumed 

that the buildings in the archetype exhibit exchangeable proper- 

ties, meaning they can be seen as a sequence of exchangeable ran- 

dom variables sharing an underlying distribution function – i.e. a 

shared archetype description. Uncertain parameters at both build- 

ing level and archetype level are then calibrated using measured 

energy use time series from training buildings at the building level 
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Fig. 1. Statistical representation of hierarchical framework. 

in a Bayesian setting. This allows for user-specified prior informa- 

tion about their values to be taken into account at hyperprior level. 

The following sections describe the procedures of the framework in 

detail. 

2.1. Building-level formulation 

First, consider a building for which we observe a time series 

y = [ y 1 , y 2 , . . . , y n t ] 
T of its energy use. We model the building us- 

ing a physics-based building energy model (BEM), which we use 

to create a vector of n t simulation outputs y ∗ = [ y ∗
1 
, y ∗

2 
, . . . , y ∗n t ] 

T 

matching the vector of observed data y . The relation between ob- 

served and simulated energy use can be described as: 

y = y ∗ + ε , (1a) 

y ∗ = M 

(
X , W , θ

)
, (1b) 

ε ∼ N 

(
0 , σ 2 I 

)
, (1c) 

where M ( X , W , θ) denotes the BEM evaluated on a matrix X ∈ 

R 

n t × n x of observed and/or fixed building-specific input param- 

eters, a matrix W ∈ R 

n t × n w of relevant weather measurements, 

and a vector θ = [ θ1 , θ2 , . . . , θn θ
] T ∈ R 

n θ × 1 of unknown parameters 

that we want to tune. The error-term ε = [ ε 1 , ε 2 , . . . , ε n t ] 
T ∈ R 

n t × 1 

holds any residual variation between observations and simulations 

that cannot be decomposed as well as observation errors. We as- 

sume the errors to be independent and identical (i.i.d.) Gaussian 

Fig. 2. Conceptual idea of archetype building realizations. 

distributed and to exhibit homoscedasticity across time t such that 

var ( ε t ) = σ 2 ∀ t . 

2.2. Archetype-level formulation 

Now, consider b = 1 , 2 , . . . , n b buildings as described in 

Section 2.1 , each of which we assume to be i.i.d. realizations 

from a single archetype building ( Fig. 2 ). Once again, we under- 

line that the process of segmenting building stocks and defining 

archetypes is not in focus here; we expect the modeler to have 

gone through this classification process already. For the archetype, 

we do not presume the sample buildings to be indistinguishable 

from each other, but whatever difference there is, it is due to 

random variation around a central archetype building. 

For these n b buildings, we employ a two-stage hierarchical for- 

mulation on the relationship between the exchangeable building 

datasets ( Fig. 1 ). Formally, the first stage of the hierarchy – the 

building level – reparametrizes the abovementioned data model 

( 1a )–( 1c ) using b to index individual buildings: 

y b ∼ N 

(
y ∗b , σ

2 
b I 

)
, b = 1 , 2 , . . . , n b . (2) 

We model the observed data y b of the b th building as a sam- 

ple from the corresponding simulated data y ∗
b 

with i.i.d. random 

noise across time to account for residual error. The second stage 

of the hierarchy – the archetype level – defines the link between 

the n b sample buildings, i.e. the interconnectivity of the unknown 

building-level calibration parameters θb : 

θb ∼ N ( μ, �) , b = 1 , 2 , . . . , n b . (3) 

In (3) , the vector of n θ calibration parameters θb of the b th 

building is taken to be an i.i.d. sample from a multivariate Gaussian 

distribution with an unknown but shared vector of archetype mean 

parameters μ ∈ R 

1 ×n θ and unknown covariance matrix � ∈ R 

n θ ×n θ

describing the variance of the calibration parameters across build- 

ings and their internal correlation. It can be necessary to constrain 

or augment the calibration parameters θ to ensure a realistic sam- 

pling distribution; for example, U-values, ventilation rates, ther- 

mal masses, etc. are all constrained to the positive domain only. 

By initially log transforming such calibration parameters, physical 

boundedness is ensured. 

Moreover, in the second stage of the hierarchy, we employ an 

archetype-level formulation for the unknown standard deviation 

σ b of the building-specific error vector ɛ b to help pool the indi- 

vidual building estimates towards a common shared estimate. This 

is particularly useful for buildings with less well-behaved datasets, 

i.e. for datasets where unusual occupancy patterns, among other 

things, would otherwise result in larger errors and thereby hinder 

inference about the calibration parameters. The application of the 

half-Cauchy + distribution (4) is a weakly informative choice for the 

distribution of the σ b s that is centered on zero with a heavy tail 

towards infinity governed by the scale parameter γ [25] : 

σb ∼ halfCauch y + ( 0 , γ ) , b = 1 , 2 , . . . , n b . (4) 

For individual building datasets obtained using the same data 

collection methods and under similar general conditions, the em- 

ployment of a hierarchical pooling of the error standard deviations 
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σ b seems reasonable. However, in many cases, the unpredictable 

and stochastic nature of occupancy may preclude the assumption 

of exchangeable error-terms across buildings. In such cases, we 

might abandon the hierarchical pooling (4) in favor of separate 

building estimates. 

2.3. Calibrating archetype parameters 

The hierarchical structure describes a combined sampling dis- 

tribution for the data y 1: n b 
. However, for the purpose of parame- 

ter calibration, we are more interested in viewing the model as a 

function of the data. The likelihood formally sums up all the data 

as a function of the free, i.e. unknown, parameters of the statis- 

tical model and hence describes the plausibility (probability den- 

sity) of proposed parameter values given the data. The likelihood 

of the b th building dataset containing t = 1 , 2 , . . . , n t data points is 

a Gaussian probability density function due to the assumption of 

Gaussian distributed errors ( 1c ): 

p 
(

y b | θb , σb 

)
= 

1 

( 2 πσb ) 
n t / 2 

e 

{ 

−
1 

2 σ 2 
b 

n t ∑ 

t=1 
( y b,t −y ∗

b,t ) 
2 

} 

, (5a) 

The simulated data y ∗
b 

is obtained through the BEM ( 1b ), which 

is only a function of θb since we consider the observed input pa- 

rameters of X and W to be fixed. Implementing the full hierarchical 

structure to fit the entire dataset of b = 1 , 2 , . . . , n b buildings, the 

combined data likelihood, conditional on the hierarchical model, 

becomes the product of n b Gaussian likelihoods: 

p 
(

y 1: n b 

∣∣θ1: n b , σ1: n b 

)
= 

n b ∏ 

b=1 

1 

( 2 πσb ) 
n t / 2 

e 

{ 

−
1 

2 σ 2 
b 

n t ∑ 

t=1 
( y b,t −y ∗

b,t ) 
2 

} 

. (5b) 

The likelihood function only describes the dependence of the 

data on the immediate data-level parameters. However, as we are 

not specifically interested in these quantities, but more in the 

archetype-level parameters μ, �, γ that indirectly affect the data 

through the hierarchical structure, we thus expand the likelihood 

function by multiplying the immediate data-level likelihood 5b ) 

with the probability density of the building-level parameters ( (3) - 

(4) to obtain what we could call the joint likelihood function: 

p 
(

y 1: n b 

∣∣μ, �, γ
)

= p 
(

y 1: n b 

∣∣θ1: n b , σ1: n b 

)
p 
(
θ1: n b 

∣∣μ, �
)

p 
(
σ1: n b 

∣∣γ )
. 

(6) 

From the left-hand-side of (6) , it is now evident that we do not 

need to consider the values of individual building-level parameters 

to draw an inference about the archetype-level parameters as the 

conditional dependency is accounted for. To infer the values of the 

unknown archetype-level parameters μ, �, γ , we could apply the 

method of maximum likelihood (ML) estimation to approximate 

the most likely values (point estimates) given the data. However, 

as the ML estimate may be seen as a special case of the Bayesian 

maximum a-posteriori probability (MAP) estimate that allows for a 

more thorough treatment of uncertainties, we apply the more gen- 

eral Bayesian approach here [26] . In a Bayesian context, the true , 

i.e. calibrated, parameter distributions after seeing the data are re- 

ferred to as posterior distributions following Bayes theorem. The 

posterior probability density of the parameters in the context of 

this model is: 

p 
(
μ, �, γ | y 1: n b 

)
∝ p 

(
y 1: n b 

∣∣μ, �, γ
)

p ( μ, �, γ ) , (7) 

where p( μ, �, γ | y 1: n b 
) is the joint posterior density of 

the archetype-level parameters conditional on the data, 

p( y 1: n b 
| μ, �, γ ) is the joint data likelihood conditional on the 

model and parameters as given in (6) , and p ( μ, �, γ ) is the 

joint prior density of the archetype-level parameters. To fulfill 

the hierarchical model formulation in a Bayesian context, we thus 

need to specify prior PDFs that reflect our subjective beliefs about 

the unknown archetype-level parameters before seeing the data 

– illustrated as the hyperprior level in Fig. 1 . Different options of 

priors are available for the mean μ and covariance � of the multi- 

variate normal distribution of the θb s (3) ; we make the convenient 

choice of using the conjugated prior – the normal-inverse-Wishart 

distribution [26] – that ensures the posterior to be multivariate 

normal as well: 

� ∼ InvWishart 
(
�−1 

0 , ν0 

)
, (8a) 

μ| � ∼ N ( μ0 , �/ κ0 ) , (8b) 

γ ∼ U ( 0 , ω 0 ) , (8c) 

where the parameters ν0 and �0 represent the degrees of freedom 

and the scale matrix, respectively, of the inverse-Wishart distribu- 

tion on �, and the parameters μ0 and κ0 represent the prior mean 

vector and the number of prior observations on the � scale. Set- 

ting ν0 = n θ + 1 and �0 = I (identity matrix) results in a weakly 

informative prior where each correlation parameter in � has a 

marginal uniform prior distribution. Likewise, setting κ0 to a low 

number, e.g. 1–10 depending on the number of building datasets 

n b being modeled, results in less weight being given to the chosen 

prior mean values μ0 . For the scale γ of the half-Cauchy distribu- 

tion (4) that controls the level of pooling of the building-specific 

error standard deviations σ b , we apply a uniform prior distribu- 

tion constrained to the positive domain ( 8c ). Setting ω 0 to a high 

number relative to the scale of the data ensures a data-driven in- 

ference [25] . 

Employing a straightforward Markov chain Monte Carlo 

(MCMC) algorithm, e.g. the Metropolis-Hastings algorithm [25] , can 

simulate the joint posterior distribution of the model, and subse- 

quently, the marginal posterior distributions of the individual pa- 

rameters. We can address the inferred values of calibrated param- 

eters in terms of either the individual MAP estimates, or by using 

the full posterior probability distribution, effectively retaining all 

model uncertainty. 

Employing an MCMC algorithm to make inferences about the 

uncertain parameters (inferring their posterior distribution) re- 

quires the evaluation of the joint data likelihood (6) and prior dis- 

tributions ( 8a)–(8c) thousands of times. Evaluating the likelihood 

of a given parameter proposal easily becomes computationally in- 

convenient and even practically impossible for larger datasets, i.e. 

many buildings and/or many time series data points. This is due 

to the small probabilities that arise, which often cause numerical 

instability. The widespread approach of using log-probabilities is 

therefore strongly encouraged to improve both numerical stability 

and accuracy (stability is ensured for small probabilities), as well 

as computational speed (addition in the log-domain is less expen- 

sive than multiplication in the arithmetic domain). 

2.4. Predictive performance 

As is typical in Bayesian data analysis, predictions/forecasts 

from the hierarchical model are based on the posterior predictive 

distribution of the parameter of interest, e.g. the predictive distri- 

bution of an energy use time series p pred ( y ). We hereby aim to re- 

port inferences about future predictions of building energy use in 

such a way that the full uncertainty over y from all layers of the 

hierarchical model is accounted for throughout the analysis. 

We can easily forecast energy use time series from the existing 

b = 1 , 2 , . . . , n b buildings used to calibrate the archetype by gener- 

ating random draws from the posterior distributions of the trained 
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Table 1 

Archetype classification applied in demonstration case study. 

Segmentation parameter Value 

Usage/Type Detached single-family house 

Construction period 1950–1959 

Location Aarhus, Denmark 

Number of stories above ground 1 

Basement No 

Attic utilized for living No 

Heating source District heating (space heating and DHW) 

Suppl. heating installations No 

building-specific calibration parameters p post ( θb ) and subsequently 

apply these in the BEM ( 1b ) with existing or forecasted weather 

conditions to generate y b | X b , W new 

, θb . In general, however, we are 

more interested in predicting the consumption of other buildings 

than those used to calibrate the archetype, i.e. we want to predict 

the performance y new 

for a new set of building-specific parameters 

X new 

. In this case, we have no posterior distribution of the cali- 

bration parameters. Instead, we sample the parameters from their 

predictive distribution, i.e. the archetype posterior distributions of 

the calibration parameters: 

p pred 

(
θnew 

)
= N ( μpost , �post ) . (9) 

We then apply the BEM ( 1b ) to generate predictions y new 

| θnew 

, 

W, X new 

for new buildings using random draws from p pred ( θnew 

) 

in combination with the fixed building-specific parameters X new 

and existing or forecasted weather conditions as input. Repeating 

this sampling many times allows us to construct an empirical dis- 

tribution of the posterior predictive space of time series predic- 

tions p pred ( y new 

| θnew 

, W, X new 

) for that specific building and those 

weather conditions. 

3. Demonstration: Danish detached single-family dwellings 

from the 1950s 

In this section, we demonstrate how energy use time series 

data from a limited number of clustered training buildings can be 

used for identifying a shared archetype model using the archetype 

calibration framework described in Section 2 . We do not focus on 

the clustering process itself, i.e. the archetype definition and clas- 

sification, but rather on quantifying the embedded variability (ho- 

mogeneity) in an arbitrary archetype definition selected for the 

purpose of this case study demonstration, and how this archetype 

model may be used for prediction. The predictive capabilities of 

the calibrated archetype are validated against each individual train- 

ing building on a new holdout validation period (within-sample 

prediction), and against new unseen test buildings that have not 

been used for training the archetype (out-of-sample prediction). 

3.1. Archetype classification and case data 

An archetype was defined covering Danish one-storied detached 

single-family dwellings constructed in the 1950s (full archetype 

classification given in Table 1 ). 

3.1.1. Building data 

A publicly available database containing building and property 

characteristics for the Danish building stock – the Building and 

Dwelling Register (BDR) – was used to identify buildings match- 

ing the archetype definition. We filtered the BDR information on 

the entire residential building stock of Aarhus, Denmark (approx. 

80,0 0 0 buildings) using the segmentation parameters in Table 1 . 

A pool of 2,775 buildings matching the archetype description was 

obtained. Of these 2,775 potential archetype buildings, we ran- 

domly selected 50 training buildings for the purpose of archetype 

calibration, and an additional 100 test buildings for archetype per- 

formance testing (out-of-sample validation). Besides the segmen- 

tation parameters listed in Table 1 , the only additional parame- 

ter from the BDR database used for setting up the building energy 

model was the “heated floor area”. 

3.1.2. Time series of building energy use 

The local district heating supplier, AffaldVarme Aarhus, supplies 

most of the city of Aarhus with heat for hydronic space heat- 

ing and/or on-site domestic hot water (DHW) preparation through 

its underground distribution system. They began the replacement 

of their old heat meters with new modern smart meters (Kamp- 

strup Multical® heat meters) in all of its consumer units through- 

out the city in 2015 and finished in 2017. The accumulated district 

heating consumption of each building is now digitally read off its 

smart meter once every hour using a remote reading system and 

logged by the utility in truncated kWh (an actual consumption of 

6,529.999 kWh is reported as 6,529 kWh). No energy is “lost” dur- 

ing the meter reading process though; only the precise temporal 

fixation of the decimals on individual hourly readings remains un- 

accounted for. Consequently, minor parts of the energy consump- 

tion may be shifted one or two hours forward in time. We were 

given access to these hourly logged time series readings from the 

150 archetype buildings for the purpose of this study. All data was 

subsequently anonymized. 

The reading uncertainty was negligible for the large accumu- 

lated meter values, but it was substantial for the hourly differences 

that were in the order of 0 kWh to 5 kWh (difference between two 

successive accumulated hourly readings). The reading uncertainty 

(0 kWh ≤ reading uncertainty < 1 kWh) could potentially amount to 

as much as 100% of the hourly values in hours with low or no con- 

sumption and thus hinder an efficient identification of uncertain 

building parameters. The effect of reading uncertainty is reduced 

by reducing the temporal resolution of the data from hourly val- 

ues into e.g. 2-hourly, 3-hourly, 6-hourly, or 12-hourly values, etc. 

but at the cost of data resolution, and consequently, the ability to 

account for model dynamics [24] . We made a compromise and ag- 

gregated all hourly values into 3-hourly values (difference between 

every third accumulated meter reading). 

3.1.3. Weather data 

A weather file was compiled from hourly measured values of air 

temperature and global horizontal irradiance from a local weather 

station in the city of Aarhus located within a 15 km radius from all 

training buildings. 

3.1.4. Training and validation data periods 

To identify the thermodynamic behavior and characteristics of a 

building, one needs response data captured during transient con- 

ditions that excite the dynamics of the building sufficiently [27] . 

Although we selected training and validation periods ( Table 2 ) in 

which external loads varied substantially ( −9 °C < outdoor air tem- 

perature < + 9 °C), we had no prior knowledge about variations in 

internal loads, nor the actual heating set points. Therefore, esti- 

mates of the dynamic properties remain subject to a high degree 

of uncertainty. 

All building datasets were initially scrutinized for missing en- 

ergy use data in the training and validation periods. Buildings 

with missing data in this two-month period were not accepted in 

the analysis, but instead replaced with a new, randomly sampled 

building from the city with associated district heating readings in 

accordance with the archetype classification ( Table 1 ). This was 

also the case for buildings with erroneous BDR data, i.e. a “nega- 

tive” or “zero” heated area, and for buildings missing construction 

year. 
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Table 2 

Size and temporal resolution of data. 

Training buildings (within-sample) Test buildings (out-of-sample) 

Sample size, n b 50 buildings 100 buildings 

Training period 1.1.2017–31.1.2017 ( n t = 248 3-hourly values) Out-of-sample buildings are not trained 

Validation period 1.2.2017–29.2.2017 ( n t = 248 3-hourly values) 1.2.2017–29.2.2017 ( n t = 224 3-hourly values) 

Fig. 3. Measured time series data. Top: Averaged building energy use for all n b = 50 within-sample training buildings. Middle: Outdoor air temperature. Bottom: Global 

horizontal irradiance. Only data from the training period was used for calibration. 

The averaged energy use time series from all n b = 50 training 

buildings along with corresponding weather data (air temperature 

and global horizontal irradiance) are shown in Fig. 3 for the train- 

ing and validation periods. 

3.2. Building energy model 

The hourly measured district heating energy use ( �DH ) was 

modeled using two separate models; one for space heating ( �SH ) 

and one for DHW ( �DHW 

), which were subsequently added so that 

�DH = �SH + �DHW 

. The following sections explain the models for 

�SH and �DHW 

in detail. 

3.2.1. Building geometry 

The actual and detailed geometric layout of the individual 

buildings was unknown. We therefore applied a general and scal- 

able geometric representation to be used for all buildings, similar 

to what was used in Kristensen et al. [22] . The geometric layout 

consisted of a rectangular box ( Fig. 4 ) with dimensions based on 

simple rules applied to known information about the floor area 

(information from BDR), our a-priori beliefs about the length-to- 

width-ratio ( LWR ), and the floor height of a typical SFH ( Table 3 ). 

The building facades were assumed to face the four cardinal 

directions. As the total window area was unknown, and because 

all buildings varied in size, we modeled the total window area 

as a scalable proportion of the floor area (window-to-floor ratio, 

WFR ). Moreover, we fixed the partitioning of the total window 

area on the four facades following Danish standard calculation pro- 

Fig. 4. Geometric model of archetype building. 

cedures (North = 26%; South = 41%; East/West = 16.5%) for single- 

family dwellings [28] . 

3.2.2. Space heating 

Energy use for space heating �SH was modeled using a slightly 

modified version of the hourly dynamic calculation method de- 

scribed in ISO 13790:2008 ( Fig. 5 ). The building was treated as a 

single thermal zone and the thermal inertia of the building was 

accounted for by modeling thermal resistances and the effective 

thermal capacity, as well as the internal and solar heat gains in an 

equivalent three-node resistance capacitance network (5R1C). The 

supply air temperature of the ventilation was assumed identical 

to the external air temperature as the ventilation principle of Dan- 

ish dwellings from the construction period of the archetype usually 

is natural ventilation, i.e. infiltration, manual opening of windows, 

window valves. 
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Table 3 

List of user-specified values for 20 uncertain model input parameters. The top 10 most influential parameters 

were identified using the Morris sensitivity screening method [29] , assuming a uniformly distributed prior data 

range (max/min). 

Uncertain 

model 

parameter 

Sensitivity analysis Selected 

value 
Min. value Max. value Result (top 10) ∗

Geometry 

Length-width ratio, LWR [-] 0.10 1.00 X 0.50 

Room height, h room [m] 2.30 3.00 2.60 

Window-floor ratio, WFR [-] 0.10 0.50 X Calibrated 

Window frame fraction, f frame [-] 0.10 0.50 0.25 

Transmission 

Temp. adjustment factor (ground), b ground [-] 0.50 1.00 0.70 

U -value (floors) [W/(m 

2 K)] 0.10 0.50 X 0.30 

U -value (walls/roof) [W/(m 

2 K)] 0.10 0.50 X Calibrated 

U -value (windows) [W/(m 

2 K)] 1.00 5.00 X 1.60 

Solar heat gain coef., SHGC [-] 0.50 0.70 0.60 

Capacity of thermal mass, C m [kJ/(m 

2 K)] 50 600 X Calibrated 

Effective mass area, A m [m 

2 / m 

2 ] 3.00 5.00 2.5–3.5 ∗∗

Heat conduction (mass) [W/(m 

2 K)] 8.50 10.00 9.10 ∗∗

Heat transfer coef. (surf.-air) [W/(m 

2 K)] 2.00 5.00 3.45 ∗∗

Ventilation 

Infiltration airflow, q inf@ 50 Pa [l/s/m 

2 ] 0.10 8.00 X Calibrated 

Design airflow (nat. ventilation), q vent [l/s/m 

2 ] 0.10 2.00 X 0.30 

Occupation 

Occupant density, Occ.Density [m 

2 /pers.] 10 150 X Calibrated 

Room heating set point, T set,H [ °C] 18.0 25.0 X 21.5 

Domestic hot water 

DHW flow temperature, T DHW 

[ °C] 40.0 60.0 55.0 

Mains temperature, T mains [ °C] 5.0 15.0 10.0 

Hot water consumption, V occ [m 

3 /pers./year] 10 20 15 

∗Top 10 most influential parameters according to the Morris method [29] . 
∗∗Parameter values are defined in ISO 13790:2008. 

Fig. 5. Space heating model. Modified version of the network presented in ISO 

13790:2008. The area of the building elements A is used to transform resistances 

R into heat transfer coefficients H = A/R . 

The space heating model ( Fig. 5 ) contains three internal tem- 

perature nodes: room air temperature T i , surface temperature of 

the thermal mass T s , and internal temperature of the thermal 

mass T m 

. The nodes are interconnected by three heat transfer co- 

efficients describing the building elements (opaque envelope ele- 

ments H op , windows H w 

, and ventilation H v ) and two coefficients 

describing the heat transfer between the indoor air, indoor sur- 

faces, and thermal mass ( H is and H ms ). Finally, the thermal mass 

of the building is governed by the capacity C m 

. Several of the 

parameters, e.g. T s , T m 

, and H em 

, only exist as provisional values 

in the algorithm of the ISO 13790:2008 calculation method and 

thus did not need any prescribed value. Other parameters, mainly 

heat transfer coefficients between building elements, are defined 

in the standard. User-specified inputs were necessary for the re- 

maining building-specific parameters. As no information was avail- 

able about U -values, SHGC , ventilation airflows, etc., their values 

were based on the Danish building code in force at the time of 

construction, historical surveys of the Danish building stock, and 

our a-priori beliefs ( Table 3 ). Ventilation was assumed a mix of in- 

filtration and opening of windows; no mechanical ventilation was 

modeled. Based on studies by Rijal et al. [30] , the airflow through 

windows was modeled hourly as a percentage of maximum design 

airflow using a logistic regression on the outdoor temperature T e : 

p airflow 

= 

e { 0 . 25 T e −0 . 25 } 
1 + e { 0 . 25 T e −0 . 25 } (10) 

The RC network ( Fig. 5 ) is exposed to external boundary con- 

ditions in terms of the outdoor air temperature T e , solar radia- 

tion �sol , internal heat loads from equipment/lighting �app , oc- 

cupants �occ , and space heating �SH delivered from the district 

heating system. Outdoor air temperature T e and solar irradiation 

�sol were specified using measured weather conditions (Section 0; 

Fig. 3 ). The hourly average of �app was estimated using a regres- 

sion model based on statistical data of annual electricity consump- 
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tion in Danish detached single-family dwellings [31] as follows: 

�app = 

530 

kWh 
year 

+ A floor 12 

kWh 
m 

2 year 
+ n occ 690 

kWh 
pers . year 

8760 

h 
year 

(11) 

The heat load from occupants was modeled as the sensible heat 

load of an average person living in the building (both children and 

adults): 

�occ = 80 

W 

pers . 
n occ . (12) 

Schedules for internal loads �app and �occ were assumed fixed 

and uniform over time (flat schedules with no variation in inter- 

nal loads) as no a-priori information was available to reflect the 

stochastic nature of user-driven phenomena across various build- 

ings. 

3.2.3. Domestic hot water 

The hourly average energy use for domestic hot water prepa- 

ration �DHW 

was modeled using a simple linear model propor- 

tional to the amount of hot water consumed annually, under the 

assumption that the rate of consumption was reasonably constant 

throughout the year: 

�DHW 

= 

4140 

kJ 
m 

3 K 
V occ n occ ( T DHW 

− T mains ) 

8760 

h 
year 

(13) 

The annual hot water consumption V occ . , number of occupants 

n occ . , flow temperature T DHW 

and mains supply temperature T mains 

were unknown and hence based on our a-priori beliefs ( Table 3 ). 

A flat schedule for DHW energy use �DHW 

was applied as no a- 

priori information was available to reflect the stochastic nature of 

user-driven phenomena across various buildings. 

3.3. Selecting parameters for calibration 

The values of the 20 model input parameters ( Table 3 ) were 

unknown for each building and thus left for us to specify based 

on our prior beliefs. Ideally, one ought to calibrate all uncertain 

parameters. In practice, doing so is infeasible – both due to the 

high number of parameter dimensions, but also due to the iden- 

tifiability of the model parameters themselves [32] . We therefore 

based the selection of calibration parameters on a sensitivity anal- 

ysis (SA) in which we assigned a uniform distribution to the input 

space of each parameter to reflect our a-priori knowledge about 

the archetype ( Table 3 ). Based on recommendations by Kristensen 

and Petersen [33] who analyzed the performance of three differ- 

ent SA methods using the ISO 13790 energy calculation models, 

the Morris method [29] was applied to screen the uniformly dis- 

tributed input space for its global effect on the model output. We 

applied the annually aggregated energy use from 8,760 hourly cal- 

culations as the output measure of interest as we wanted to find 

parameters that were important for the entire year and not only 

for the training and validation periods. A total of r = 500 trajec- 

tories (samples from the input space using the original Morris 

sampling technique) with p = 5 levels (discretization of the input 

space) was used to obtain a fully converged ranking of the input 

parameters, resulting in a total of r( k + 1 ) = 10 , 500 model evalu- 

ations. Fewer trajectories, and thus fewer model evaluations, could 

eventually prove enough for the SA; however, as less than one 

minute was used to perform the simulations in Matlab on a stan- 

dard laptop, this was no issue. No correlations between model in- 

put parameters were taken into account in the sampling of values. 

The resulting sensitivity indices are plotted in Fig. 6 for a graphical 

interpretation. 

From the results of the sensitivity screening ( Fig. 6 ), we found 

that the input parameters primarily affect the output (annually 

Fig. 6. Graphical presentation of the results of the Morris sensitivity analysis using 

r = 500 trajectories and p = 5 levels. The absolute mean elementary effects are plot- 

ted against the standard deviation of the elementary effects (20 uncertain model 

input parameters). The ten most influential parameters are named. The line repre- 

sents values for which σ ( EE ) = μ( EE ) . 

Table 4 

Prior values selected for archetype-level hyperparameters (hyperpriors). 

Hyperparameter Prior value 

μ0 WFR [-] 0.15 

U walls/roof [W/(m 

2 K)] 0.50 

C m [kJ/(m 

2 K)] 300 

q inf@ 50 Pa [l/(m 

2 s)] 3.50 

Occ.density [m 

2 /pers.] 50 

κo 1 

�0 5 × 5 identity matrix, I 

ν0 n θ + 1 = 6 

ω 0 10 

aggregated energy use) through a monotonic linear relationship 

(indicated by σ ( EE ) i -values remaining below the dotted line in 

Fig. 6 ), which was expected from a model based on the RC model 

formulation of ISO 13790:2008. Studies on parameter identifica- 

tion using RC-models have shown that it can be difficult to iden- 

tify and separate linearly related parameters in practice [32,34,35] . 

Five out of the ten most influential parameters identified were 

selected for calibration ( θ) based on what we found interesting 

and identifiable in practice: window-floor ratio ( WFR ), U -value of 

walls/roof ( U walls/roof ), internal heat capacity of the thermal mass 

( C m 

), infiltration airflow rate @50 Pa ( q inf@50Pa ), and occupant den- 

sity ( Occ.Density ). The remaining 15 parameters were left uncali- 

brated (fixed) at the selected values ( Table 3 ). These 15 fixed pa- 

rameters were represented through X . 

Weakly informative prior distributions were established for the 

archetype-level parameters μ, �, γ using their five hyperparame- 

ters μ0 , κ0 , �0 , ν0 , ω 0 for which values are given in Table 4 . The 

resulting prior distributions of μ, �, γ are shown in Section 3.4 to- 

gether with the inferred posterior distributions. 

3.4. Calibrated (posterior) parameters 

Four chains were run in parallel with randomly dispersed start- 

ing points in the parameter space to draw samples from the joint 

posterior distribution. For each chain, 18,0 0 0 MCMC samples were 

drawn with the first 14,0 0 0 samples of the chains being considered 

cool , meaning that information about the starting point might still 

prevail; samples from this cold period were thus discarded leaving 

only the warm part of the chains for analysis. 

Convergence in the warm chains was monitored in terms of the 

potential scale reduction factor (PSRF), a positive rational number 
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Fig. 7. Marginal prior and posterior distributions of the five archetype-level calibration parameters. The calibration parameter mean values μ are shown in the left-hand 

column, their decoupled standard deviations τ are shown in the middle column, and their predictive distributions are shown in the right-hand column. 

ˆ R ∈ R | 1 ≤ ˆ R < ∞ [26] . The PSRF measures how much the scale of 

the variations in the inferred parameter distributions might have 

been reduced if the number of draws simulated by the MCMC- 

algorithm approached infinity, lim n →∞ 

( ̂  R → 1 ) . By accounting for 

the within-chain to between-chain variance in the warm chains, 

the PSRF evaluates both the mixing and stationarity of the chains 

simultaneously. A stable and converged solution was considered 

for any given parameter estimation when 

ˆ R < 1 . 1 . 

As it is infeasible to visualize the posterior distributions of the 

five calibration parameters θ for all 50 training buildings (first level 

of the hierarchy), we only show the shared archetype-level param- 

eters μ, �, γ here (second level of the hierarchy). Furthermore, 

we have decomposed the covariance matrix � into parameter spe- 

cific variance τ2 = var (θ) and correlation coefficients ρ = corr (θ) 

for the purpose of visualization. The prior and posterior distribu- 

tions of the five archetype mean values μ are displayed in Fig. 7 

(left-hand column), while their corresponding standard deviations 

τ are shown in Fig. 7 (middle column). In the right-hand column in 

Fig. 7 , the mean and variances have been applied to draw the pre- 

dictive distributions p pred ( θ1: n θ
) = N( μ1: n θ

, τ 2 
1: n θ

) of the five cal- 

ibration parameters themselves. However, it is important to note 

that these predictive distributions are marginal and thus do not 

account for the modeled correlation ρ ( Fig. 8 ) between the pa- 

rameters, which must be taken into account through the covari- 

ance matrix � when predicting coherent values of the parameters 

p pred (θ) = N( μ, �) for new buildings. 

Setting off from broad and weakly informative prior dis- 

tributions, the data has successfully focused the posteriors of 

the means p post ( μ) and to some extent the standard devia- 

Fig. 8. Expected posterior correlation matrix, E post [corr( θ)], of the five calibration 

parameters. 

tions p post ( τ). The posteriors of μWFR , μqinf@50Pa and μOcc.Density 

are focused near the expected value of their respective pri- 

ors, whereas for μU walls / roof 
and μC mass 

, the calibration has drawn 

their posteriors out into the tails towards their maximum values 

( Table 3 ). Common for all five posteriors of the standard devia- 

tions p post ( τ) is that the distributions are weakly informative and 
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Fig. 9. Prior and posterior distribution of the archetype-level scale parameter γ that 

controls scale of the error-term standard deviations σ . 

located relatively far away from zero. This is especially true for 

τU walls / roof 
, τWFR , τqinf@50Pa , and τOcc . Density where the amount of 

uncertainty in the posteriors remains very high and overlaps with 

the posterior mean values p post ( μ). The posterior uncertainty has 

only been reduced for one of the standard deviation parameters: 

the capacity of the thermal mass τC mass 
. However, even though the 

uncertainty of the archetype-level parameters μ, τ may have been 

reduced, it is the resulting predictive distribution of the building- 

level parameters θ that is of most interest. The marginal predic- 

tive distributions of the θs are shown in the right-hand column in 

Fig. 7 using the prior and posterior archetype-level parameters, re- 

spectively. From the plot of the predictive distributions, the effect 

of the large standard deviations τ is immediately evident. For sev- 

eral of the parameters, the priors and posteriors look alike; how- 

ever, for the capacity of the thermal mass, the high posterior mean 

value μC mass 
has drawn the posterior predictive distribution out to 

the boundary of 600 kJ/(m 

2 K). 

The expected posterior correlation matrix E post [corr( θ)] is 

shown in Fig. 8 . No strong correlations are found between the pa- 

rameters, but all of the parameters are found to correlate mod- 

erately with each other (max. correlation strength = 0.5), except 

for the capacity of the thermal mass, which does not exhibit any 

significant correlation with the other parameters. These correla- 

tions are inevitable as the parameters interact through the over- 

all heat balance in every time step; e.g., increasing occupant den- 

sity [m2/pers.] leads to a smaller heat gain from occupants and 

therefore brings the heat balance out of equilibrium. This imbal- 

ance might be corrected by decreasing the U-value (walls/roof) 

[W/(m 

2 K)] and thus the heat loss through the envelope (correla- 

tion = − 0.4). Another possibility could be to increase the WFR and 

thus the overall window area, whereby more sunlight enters the 

building. The correlation obviously depends on other factors also, 

such as overall floor area, U -value (windows), SHGC , window frame 

fraction, etc. 

The posterior distribution for the archetype-level half-Cauchy 

scale parameter p post ( γ ) (see Eq. (4 )) is displayed in Fig. 9 . Since 

a non-informative prior distribution (uniform) was used, the pos- 

terior inference is driven by data alone. 

3.5. Performance of calibrated archetype model 

The performance and overall quality of the calibrated archetype 

model were analyzed based on its predictive capabilities on two 

different hierarchical levels; (1) the within-sample predictive per- 

Table 5 

AHRAE Guideline 14-2014 compliance requirements. 

Measure Monthly data Hourly data 

NMBE < ± 5% < ± 10% 

CVRMSE < 15% < 30% 

formance for the 50 sampled training buildings, and (2) the out-of- 

sample predictive performance for another 100 unseen test build- 

ings. Sample details are given in Table 2 . The predictive perfor- 

mance was assessed on both the scale of individual buildings and 

on the aggregated urban scale. 

Following definitions by the ASHRAE Guideline 14-2014, we em- 

ployed two measures to assess the predictive performance of the 

calibrated building simulations; the normalized mean bias error 

(NMBE) and the coefficient of variation of the root mean squared 

error (CVRMSE): 

NMBE = 

∑ n t 
t=1 ( y t − y ∗t ) 

n t 

/
ȳ × 100 , (14) 

CVRMSE = 

√ ∑ n t 
t=1 

(
y t − y ∗t 

)2 

n t 

/
ȳ × 100 . (15) 

The ASHRAE Guideline 14-2014 compliance requirements are 

given in Table 5 for monthly and hourly data, respectively. As we 

employed 3-hourly data in this study, it seems reasonable to ac- 

cept levels above the monthly requirements but somewhat below 

the ones for hourly data. 

3.5.1. Within-sample predictive performance 

The within-sample predictive performance, i.e. the ability of the 

model to forecast building energy use time series for the 50 known 

training buildings, was used to evaluate the immediate quality 

of fit for the sampled buildings independently and the archetype 

as a whole. This internal assessment of the inferred building- 

level parameters θ was carried out using measured and simulated 

data from the training period and the holdout validation period 

( Table 2 ). 

Measured and simulated data is shown in Fig. 10 A for train- 

ing building b = 6. The figure displays n s = 10 0 0 time series predic- 

tions y ∗6 | X 6 , W train / valid , θ
1:10 0 0 
6 

from the BEM, each simulated using 

independent draws from the posterior distribution of the building- 

level parameters p post ( θ6 ) , fixed building parameters X 6 , and the 

corresponding weather data, either W train or W valid . The fully ac- 

ceptable performance of the training period generalizes well into 

the validation period with new weather conditions ( Fig. 10 A). This 

suggests that a representative set of parameters was estimated for 

the building. The performance measures (NMBE and CVRMSE) of 

building b = 6 are shown together with the remaining 49 training 

buildings in Fig. 11 for both the training and validation period. 

Values of NMBE and CVRMSE were calculated for all 50 training 

buildings individually for both the training and validation period 

( Fig. 11 ). Some of the buildings do not fulfill the ASHRAE Guideline 

14-2014 compliance requirements for monthly data in the train- 

ing period when using the expected values of NMBE and CVRMSE 

as points of reference, but most comply with the requirements for 

hourly data (one building exceeds NMBE = 10% and five buildings 

exceed CVRMSE = 30% in the training period). We find fairly large 

variations in especially the NMBE values for many buildings (error 

bars in Fig. 11 give the 95% confidence interval of individual mea- 

sures around the mean), but for most buildings, their values reach 

across NMBE = 0% with 95% confidence, and all buildings have a 

95% CI with values from within the NMBE < ± 5% band. One build- 

ing ( b = 15) stands out as the one with the highest bias by far 
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Fig. 10. Predictive performance of within-sample prediction. (A): Energy use predictions of building b = 6 against measured data. (B): Aggregated energy use predictions of 

buildings b = 1:50 against aggregated measured data. Simulated data was generated using 10 0 0 draws from the posterior distribution of the calibration parameters p post ( θb ), 

fixed parameters X b , and weather conditions for the training period W train and validation period W valid , respectively. 

in the training period: NMBE = 7.4% ± 14.3% (mean ± 95% CI). Even 

though the building’s bias is higher than that of the other build- 

ings, we chose to not deem it an outlier as there was no reason 

for doing so, e.g. extraordinary oscillations in the training data, be- 

sides the relatively bad fit. 

Predictions from the validation period generally perform worse 

than predictions from the training period as would be expected 

(the NMBE is often more than three times higher in the validation 

period for many buildings). This is most likely caused by the un- 

predictable nature and presence of occupants as their daily move- 

ments and presence remain unaccounted for and hence were not 

modeled explicitly (schedules of occupancy were assumed flat and 

fixed across time). This simplification create a challenge for the 

prediction of the validation period (February 2017) as it contains 

the weeklong Danish winter holiday (public schools are closed) 

which, in the municipality of Aarhus, took place from 10 Febru- 

ary 2017–19 February 2017. From the aggregated time series pre- 

dictions shown in Fig. 10 B, it is clear that much of the bias in the 

validation period is located within the winter holiday period. As 

school holidays, bank holidays, etc. are spread across the year, we 

expect similar predictive performance in the remaining periods of 

the year. Summary statistics of the mean values of within-sample 

validation period performance are given in Table 6 . 

In addition to the building-scale performance, the within- 

sample predictive performance was also evaluated on the aggre- 

gated scale to represent the expected performance in an urban 

setting ( Fig. 10 B). Aggregating all 50 within-sample buildings into 

a single model naturally obscures much of the data variability 

as an aggregated model pays no regard to the fit of individual 

buildings besides their contribution to the summarized consump- 

tion pattern. With an NMBE = 3.0% ± 0.5% (mean ± 95% CI) and a 

CVRMSE = 7.2% ± 0.3% (mean ± 95% CI) for the validation period, 

the aggregated performance is good and, as expected, much bet- 

ter than for most of the individual buildings ( Table 6 ). 

3.5.2. Out-of-sample predictive performance 

The out-of-sample predictive performance, i.e. the ability of the 

model to forecast time series of energy use from unseen test build- 

ings X out −of −sample not used for the calibration of the archetype 

model, is used to evaluate the external robustness and homo- 

geneity of the archetype calibration. However, no direct posterior 

estimate exists for the uncertain parameters θout −of −sample of the 

100 out-of-sample test buildings to be used for simulation; in- 

stead, samples of the parameters are drawn from their posterior 

predictive distribution (9) that is generated using draws from the 

posterior distributions of the archetype-level parameters p post ( μ, 

�). As the archetype-level parameters were inferred from the 

combined information contained by all 50 within-sample training 

buildings, posterior predictions of θout −of −sample represent a gener- 

alized archetype estimate with the inherent variability and hetero- 

geneity of the sampled training buildings. 

Aggregated predictions of the 100 out-of-sample test buildings 

are shown in Fig. 12 against the aggregated measured data for 

both the training and validation periods. An NMBE = 2.9% ± 6.2% 

(mean ± 95% CI) and a CVRMSE = 7.8% ± 2.9% (mean ± 95% CI) are 

found for the aggregated predictions in the validation period 

( Table 6 ). 

When comparing the performance of out-of-sample aggregated 

predictions ( Fig. 12 ) against the performance of within-sample 
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Fig. 11. Normalized mean bias error (NMBE) and coefficient of variation of the root mean squared error (CVRMSE) for the 50 within-sample buildings individually. Measures 

are calculated using 10 0 0 simulations per building, each using a random draw of the calibrated parameters from their posterior distribution p post ( θb ) against measured data 

y b . The height of the bars gives the mean value with error bars around covering the 95% CI. The boxplots at x -value “All” comprise the distribution of mean values for all 50 

buildings. ASHRAE Guideline 14-2014 compliance requirements are given for both measures. 

Fig. 12. Aggregated predictive performance of out-of-sample buildings b = 51:150 against aggregated measured data. Simulations were generated using draws from the 

posterior predictive distribution of calibration parameters p post (θout −of −sample ) = N(μ, �) . 
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aggregated predictions ( Fig. 10 B), it is evident that the aggre- 

gated out-of-sample predictions suffer from a positive bias com- 

pared to the negative bias of the within-sample predictions (2.9% 

vs. − 3.0%). Measures of fit (mean values of NMBE and CVRMSE) 

for within-sample and out-of-sample predictions are summarized 

in Table 6 on the disaggregated scale of individual buildings and 

on the aggregated scale, respectively. 

Out-of-sample predictions are, as expected, inferior to within- 

sample predictions. An insufficient ability to match measured data 

is seen for most out-of-sample predictions on the scale of in- 

dividual buildings (95% interval of NMBEs = [ − 38.7% 112.9%] and 

CVRMSEs = [28.7% 120.1%]). This mismatch is, however, smeared 

out on the scale of aggregated predictions where the cancella- 

tion effect effectively reduces the differences to an acceptable 

level (NMBE = 2.9% and CVRMSE = 7.8%) almost identical to that 

of the within-sample aggregated predictions (NMBE = − 3.0% and 

CVRMSE = 7.2%). Thus, the established archetype model can hardly 

be used for single-building predictions of high-resolution energy 

use time series from unseen buildings without considerable uncer- 

tainty. However, the results promise good performance for aggre- 

gated predictions on an urban level. 

4. Discussion 

4.1. Why hierarchical modeling? 

The proposed archetype framework takes advantage of a hier- 

archical (multilevel) link between data from individual buildings. 

It is a generalization of the ordinary Bayesian calibration frame- 

work in which the building-specific calibration parameters θ are 

themselves given an archetype model – in this case the multivari- 

ate Gaussian distribution – whose parameters μ , � are also esti- 

mated from the data. This statistical setup has several appealing 

features: 

1 Calibrating uncertain parameters without a hierarchical formu- 

lation corresponds to either inferring separate building-specific 

estimates [3,4,6] , or a single pooled archetype estimate [12] . 

The more general hierarchical model allows for a reasonable 

compromise between these two extremes. 

2 It allows for the modeling of the correlation within calibration 

parameters of the archetype. This is essential for any applica- 

tion that relies on drawing archetype parameter-sets of new 

unseen buildings. 

3 Predictions of new unseen buildings draw on a much larger 

dataset that explores the variability of the archetype and should 

therefore be more representative. 

Fitting separate building-independent estimates of the calibra- 

tion parameters θ corresponds to assuming that all buildings are 

unique without sharing any similarities at all. Alternatively, av- 

eraging the data and fitting only a single pooled estimate corre- 

spond to the opposite case of assuming that all buildings are the 

same, whereby all differences are ignored. Both cases are unsatis- 

factory as the reality lies somewhere in between. Applying a hi- 

erarchical model allows us to fit in uncertain archetype parame- 

ters μ using the individual building datasets while accounting for 

archetype heterogeneity among the buildings (represented through 

the variance in the covariance matrix �). Through the process of 

“shrinking”, the hierarchical model pools the individual building 

estimates θ towards a common archetype mean μ as a result of 

the archetype distribution (estimates far away from the archetype 

mean have very low probability under the normality assumption). 

Using a non-hierarchical model based on averaging of separately 

fitted building estimates results in a model more prone to outliers 

[26] . 

The explicit modeling of the correlation and variance between 

calibration parameters at the archetype level, represented through 

the covariance matrix �, allows for informed predictions of un- 

seen buildings under the archetype. This acknowledges not only 

the heterogeneity of the archetype estimates (variance), but also 

the potential correlation corr( θ) that would otherwise be ignored. 

4.2. Within-sample vs. out-of-sample predictions 

The lower accuracy of individual out-of-sample building predic- 

tions (building-scale) compared to predictions of individual within- 

sample buildings ( Table 6 ) is most likely a consequence of the 

uncertainties related to (1) archetype heterogeneity, (2) building 

sample size n b , and (3) human behavior and preferences. Within- 

sample training buildings were all fitted building-specific values of 

the calibration parameters p post ( θwithin-sample ), whereas for out-of- 

sample buildings, these values were predicted from the posterior 

predictive distribution p pred ( θout −of −sample ) = N( μ, �) . The poste- 

rior archetype estimates p post ( μ, �) can be viewed as a compro- 

mise between the characteristics of the training buildings, which 

inevitably will be characterized by some degree of heterogeneity. 

As such, the archetype model gives us an estimate of the average 

building, as well as an estimate of the variability that character- 

izes the archetype. Therefore, evaluating the performance of the 

archetype model’s mean prediction on individual buildings will in- 

evitably indicate a poor performance for some buildings, even if 

the pool of buildings used for training contained practically iden- 

tical buildings. The only way of improving out-of-sample predic- 

tion performance is to eliminate the heterogeneity of the build- 

ings belonging to the archetype by significantly tightening up the 

archetype definition. However, as a very tight archetype defini- 

tion defeats the whole idea of simplifying the building stock into 

a “few” archetypes, a fairly large degree of error has to be ac- 

cepted for out-of-sample predictions of single buildings. Finally, 

even if a very tight and homogeneous archetype definition is ap- 

plied, human behavior remains a very uncertain factor with a sig- 

nificant effect on building energy use [36–40] , which cannot be 

removed by tightening the archetype definition. Incorporating a 

stochastic model of occupancy, e.g. using an agent-based [41,42] or 

a Markov chain-based [43,44] approach, as opposed to the fixed 

and non-varying flat schedules of the demonstration case could 

potentially reduce much of the variability in out-of-sample predic- 

tions and help reduce archetype heterogeneity to that originating 

from differences in technical parameters. However, we foresee sev- 

Table 6 

Summary statistics of expected predictive performance for sampled training buildings (within-sample) and unseen test buildings (out-of-sample). Measures in 

square brackets cover the [2.5% | 50% (median) | 97.5%] percentiles, i.e. the 95% central interval of the distributions of n b individual building means. On the 

aggregated scale, there is only one mean value. 

Sample Period Buildings in 

sample, n b 

Predictive performance 

Building scale Aggregated scale 

Within-sample Validation 50 [ −14.0% | −2.1% | 6.1%] (NMBE) −3.0% (NMBE) 

[9.6% | 17.8% | 34.1%] (CVRMSE) 7.2% (CVRMSE) 

Out-of-sample Validation 100 [ −38.7% | 0.6% | 112.9%] (NMBE) 2.9% (NMBE) 

[28.7% | 38.8% | 120.1%] (CVRMSE) 7.8% (CVRMSE) 
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eral problems with doing this, e.g. issues of over-parameterization 

and identifiability, but it remains to be investigated in future work. 

The performance of aggregated predictions is not affected by 

archetype heterogeneity to the same extent as individual building- 

scale predictions, but is mainly controlled by uncertainty in 

estimating the mean parameters μ that represent an average 

archetype realization. The law of large numbers states that the 

estimated mean of a sample approaches the true mean as the 

number of samples goes to infinity. Here, obtaining an archetype 

model can be considered analogous to estimating the mean of a 

sample, where the archetype model would become more repre- 

sentative of out-of-sample buildings belonging to the archetype 

as the number of buildings used for training increases. The rela- 

tively small difference in aggregated performance between within- 

sample and out-of-sample buildings (NMBE within- sample = − 3.0% vs. 

NMBE out-of- sample = 2.9%) suggests that the number of buildings n b 
needed for estimating the archetype may not be much larger than 

the sample size used in this case study demonstration. 

4.3. Parameter identification 

In the demonstration of the framework, we applied a first-order 

5R1C building energy model for simulating hourly heating energy 

use, and subsequently, for calibrating five model parameters. This 

model was selected for the purpose of demonstration and because 

of its fast computational speed. However, other model formula- 

tions may easily be applied in future applications of the frame- 

work, e.g. higher-order RC formulations or high-fidelity BEM tools 

such as EnergyPlus. In fact, reduced-order models may be too sim- 

ple for identifying the true estimates of building characteristics 

[32,34,35] ; nevertheless, while the obtained parameter estimates 

may not compare directly to reality, they give meaningful informa- 

tion about a building’s characteristics in the context of the model. 

Reynders et al. [35] argue that models of at least fourth order 

(four thermal capacitances) are needed for a reliable identification 

of building parameters, and that additional boundary conditions 

are needed in terms of indoor air temperature and heat fluxes 

through envelope walls. Hedegaard and Petersen [32] addressed 

similar issues in a simulation-based study of four RC-models with 

the most complex being a third-order model; however, they in- 

fer that a second-order model allows for a fit to data that is fully 

compatible to that of a more complex third-order model. They fur- 

ther conclude that none of these low-order models are capable of 

providing a reliable partitioning of the overall heat transfer coef- 

ficient into heat transfer by transmission and ventilation, respec- 

tively. One should therefore be very cautious about trusting the ex- 

act value of calibration parameters θ of individual buildings when 

using low-order RC models. Whether these issues of parameter in- 

terpretation and identifiability persist in applications with high- 

fidelity BEM tools such as EnergyPlus remains unclear and ought 

to be studied in future work. However, Heo et al. [23] show, in a 

case study-based investigation of Bayesian calibration efficacy un- 

der different levels of uncertainty in model input data for Energy- 

Plus models, that the amount of certainty in input data highly af- 

fects the posterior estimates of calibration parameters and thus the 

identifiability of the model. We therefore expect the identifiability 

of the calibration parameters θ, and the predictive performance of 

the proposed archetype framework to increase as more concrete 

and specific data about the training buildings is applied. Such data 

could originate from detailed surveys and audits in carefully se- 

lected training buildings. Another less intrusive option could be to 

incorporate energy performance certificate (EPC) data if available. 

Finally, as demonstrated in recent state-of-the-art UBEM studies 

[5,45] , GIS may be employed for establishing more accurate geo- 

metric models than those used in this study. 

5. Conclusions and outlook 

A hierarchical multilevel framework for the calibration of 

archetype physics-based BEM parameters was proposed. The 

framework relies on the statistical assumption of exchangeability 

among archetype buildings, i.e. the buildings represent a homoge- 

neous sample from the archetype. Using Bayesian inference, infor- 

mation available in independent time series datasets is used col- 

lectively to pool individual estimates of building parameters to- 

wards a common archetype description of the calibration param- 

eters, as well as their variability and correlation. This results in the 

archetype model being less vulnerable to the presence of outliers 

in the building stock used to train the archetype model, thus en- 

abling it to make out-of-sample predictions that are more robust 

than predictions made with models founded on ordinary aggrega- 

tion of individual building estimates. 

The application and performance of the framework were subse- 

quently demonstrated in a case study of Danish residential single- 

family dwellings from the 1950s. The case demonstrates how the 

framework can be used to identify a set of shared archetype pa- 

rameters, and how the inevitable presence of heterogeneity in the 

buildings used for training is manifested into the variance param- 

eters and the prediction of parameters for new unseen buildings. 

The proposed archetype framework is most suited as the cen- 

tral calibration engine for urban-scale building energy modeling 

where archetype models are used as "puzzle pieces” for modeling 

urban areas which would otherwise be too complex to model and 

calibrate using independent building energy models. However, the 

suitability of the proposed archetype framework for such applica- 

tions remains to proven in future work. 
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a b s t r a c t 

Existing simulation-based studies on applying model predictive control (MPC) schemes for space heating 

operation to enable demand response (DR) make use of linear models for the heating system, usually by 

assuming convective electrical baseboard heaters. However, buildings connected to district heating net- 

works are typically equipped with hydronic heat emitters, such as radiators, that behave nonlinear. This 

paper therefore investigates the effect of including the nonlinear dynamics of a hydronic heat emitter on 

the DR potential of MPC for space heating. Furthermore, the performance of a practical two-level con- 

trol approach suitable for real application, in which a heating setpoint was determined by a linear MPC 

and communicated to a conventional proportional integral controller, was investigated. The simulation 

framework for the investigation was based on the application of an experimentally obtained hydronic 

radiator model applied in different co-simulation setups, featuring a model of a poorly and a highly in- 

sulated apartment, respectively. The results indicated that inclusion of the nonlinear thermal effects of 

hydronic radiators did not significantly affect the DR performance when compared to the results of an 

MPC scheme controlling convective electrical baseboard heaters. In general, both setup achieved opera- 

tional cost savings of approx. 5% and 18% in an existing and retrofitted building, respectively, while re- 

stricting the amount of thermal comfort violations to a limited extent. This suggests that results obtained 

in previous studies featuring electrical baseboard heaters also apply to buildings equipped with hydronic 

heating systems, and that future simulation-based studies and practical implementation of MPC for space 

heating can continue to rely on the use of far less computationally demanding linear control-models. Fur- 

thermore, the results suggest that the two-level control scheme seems like an appropriate control setup 

suitable for real applications. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Demand response (DR) programs where building owners ad- 

just their consumption in response to an external request have 

been proposed in several studies to overcome challenges related to 

power imbalances and peak load issues in the electricity grid, e.g. 

[1,2] to mention a few. However, district heating (DH) networks 

may also benefit from building owners participating in DR pro- 

grams as DH networks, in the near future, will be strongly coupled 

with the electricity grid to increase integration of renewable en- 

ergy sources [3,4] . Several studies have thus investigated the ability 

of buildings to provide DR using thermal energy storages, includ- 

ing both active storage (e.g. domestic hot water tanks) [5,6] and 

passive storage obtained by exploiting their thermal mass [7–13] . 

Several control approaches can be used to enable DR of which 

especially the concept of model predictive control (MPC) has re- 

∗ Corresponding author. 

E-mail address: thp@eng.au.dk (T.H. Pedersen). 

ceived significant research attention lately [7,8,11,12] . MPC is an 

optimization-based control scheme that relies on a simplified 

control-model of the building thermodynamics to determine an 

optimal control strategy. Knudsen and Petersen [5] applied an eco- 

nomic MPC (E-MPC) scheme with the objective of minimizing op- 

erational costs of domestic hot water preparation in an ultra-low 

temperature DH system. Considering time varying electricity and 

district heating prices, the proposed E-MPC scheme simultaneously 

enabled load-shift from peak periods and operational cost sav- 

ings of approx. 5%. Avci et al. [11] applied E-MPC together with 

day-ahead electricity prices to minimize the weighted sum of the 

operational cost and the temperature deviations from a preferred 

room air setpoint. Applying the proposed E-MPC scheme to oper- 

ate an AC unit reduced the energy consumption in peak-hours by 

23.6% compared to a conventional two-position control approach. 

Pedersen, Hedegaard and Petersen [7] applied E-MPC and day- 

ahead wholesale electricity prices for optimal operation of con- 

vective electrical space heaters in ten apartments. Compared to a 

conventional constant setpoint tracking proportional-integral (PI) 

https://doi.org/10.1016/j.enbuild.2018.11.015 

0378-7788/© 2018 Elsevier B.V. All rights reserved. 
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Nomenclature 

Abbreviations 

DR demand response 

MPC model predictive control 

E-MPC economic model predictive control 

DH district heating 

N-MPC nonlinear model predictive control 

PRBS pseudo-random binary signal 

PRMS pseudo-random multi-level signal 

Symbols 

τ time step [seconds] 

t temperature [ °C] 

T temperature [K] 

N s number of sections[ −] 

C heat capacity[J/K] 

c p specific heat capacity [J/(kg ·K)] 

ρ density [kg/m 

3 ] 

q flow rate [m 

3 /s] 

Q energy [J] 

φ heat power [W] 

n radiator exponent [ −] 

�t ar arithmetic temperature difference [ °C] 

�t lg logarithmic temperature difference [ °C] 

βC fraction of convective heat emission [ −] 

βR fraction of radiative heat emission [ −] 

A state matrix 

x τ+ n| τ state vector predicted for time step τ+ n at time 

step τ
B input matrix 

u control actions vector 

E disturbance matrix 

d disturbance vector 

KG Kalman gain 

Subscripts 

j section number 

inlet inlet water temperature 

outlet outlet water temperature 

w water 

N nominal (standard conditions) 

controller, the E-MPC scheme achieved load reductions of up to 

47% in peak load periods, depending on the energy efficiency and, 

accordingly, the storage efficiency of the building envelope. How- 

ever, as suggested by Le Dréau and Heiselberg [9] , the type of 

heat emitter significantly affects the magnitude and duration of DR 

events. They applied rule-based control to increase and decrease 

the temperature setpoint for varying durations using two types of 

heat emitters (i.e. radiators and underfloor heating), and found that 

the modulation potential differed significantly for the two consid- 

ered heat emitters. 

Existing simulation studies on applying E-MPC schemes to op- 

erate the space heating system to enable DR mostly make use of 

convective electrical baseboard heaters that behave linearly. How- 

ever, typical heating systems in buildings connected to DH net- 

works consists of hydronic heat emitters, such as radiators, that 

are characterized by nonlinearities in their heat output, driven by 

the temperature difference between the radiator and room [14] . 

Using E-MPC for real applications to operate hydronic heat emit- 

ters therefore introduces nonlinearities that, consequently, lead to 

a less practical and computationally demanding nonlinear MPC (N- 

MPC) scheme. 

To the best of the authors’ knowledge, there are no reported 

studies on whether the nonlinear dynamics of a hydronic heat 

emitter affect the potential of DR when exploiting the structural 

thermal mass to shift energy consumption in buildings. This paper 

therefore reports on a simulation-based study, applying an N-MPC 

scheme with the objective of minimizing operational cost to inves- 

tigate the effect of the DR potential. Furthermore, the performance 

of a two-level MPC scheme suitable for real applications, which al- 

low for a practical coupling between the MPC scheme and existing 

setpoint-tracking controllers was evaluated. 

2. Method 

A dynamic radiator model was needed to accurately evaluate 

the impact of hydronic heating systems; therefore this paper first 

presents a nonlinear radiator model that adequately represents the 

thermodynamics of a hydronic radiator ( Section 2.1 ). Subsequently, 

three MPC scheme setups were formulated: a linear MPC scheme, 

a two-level MPC scheme, and an N-MPC scheme ( Section 2.2 ). 

The performance of the three setups was investigated through co- 

simulations facilitated by the Building Controls Virtual Test Bed 

[15] of an apartment located in Aarhus, Denmark (see Section 2.3 ). 

The apartment was represented by an EnergyPlus (EP) model while 

the dynamic radiator model and the MPC schemes were imple- 

mented in MATLAB. 

2.1. Dynamic radiator model 

A nonlinear grey-box model of a particular hydronic panel ra- 

diator (DeLonghi Radel type 22 [16] ) was established. The thermal 

behavior of the radiator was modeled as a system of nonlinear or- 

dinary differential equations based on the laws of thermodynam- 

ics [17] , thus the radiator was lumped into N S equally sized ho- 

mogeneous horizontal sections in serial connection. The particu- 

lar radiator dimensions and inlet/outlet locations are illustrated in 

Fig. 1 . Preliminary thermographic investigations confirmed that the 

assumption of approximately homogeneous horizontal sections of 

this specific radiator was acceptable (see Fig. 2 ). 

However, it is noted that the modeling was specific to this par- 

ticular radiator since model parameters, such as heat capacity and 

nominal power, vary with the size of the radiator while position of 

the inlet and outlet affects the charging pattern, i.e. the stratifica- 

tion in the radiator. 

The energy balance of each section was expressed as an ordi- 

nary differential equation (see Eq. (1) ), where Q stored denotes the 

stored heat, and ϕin and ϕout denote the power flowing in and out 

of the radiator, respectively. The ordinary differential equation is 

specified in detail for the j’th section of the radiator in Eq. (2) (see 

Appendix A for the full set of radiator model equations). C Rad is 

the combined heat capacity of the water and radiator material, q is 

the flow rate, while c p ,w 

and ρw 

are the specific heat capacity and 

density of the water, respectively. The nominal power of the radia- 

tor determined at standard conditions is denoted φN , while �t ar ,N 

and n are the arithmetic temperature difference at standard con- 

ditions and the radiator exponent, respectively. The water in each 

radiator sub-section was assumed incompressible and fully mixed, 

thus the entire water-volume in each section j has temperature t j 
(see Fig. 1 ). 

d Q stored 

dτ
= 

∑ 

φin −
∑ 

φout (1) 

C Rad 

N S 

· d t j 

dτ
= c p, w 

· ρw 

· q ·
(
t j −1 − t j 

)
− φN 

N S 

·
(

t j − t room 

�t ar, N 

)n 

(2) 

The model requires the inlet temperature ( t j-1 for the first sec- 

tion, see Appendix A ), the room temperature and the flow rate as 
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Fig. 1. Principle of the dynamic radiator model exemplified with N S = 5 horizontal sections with different temperatures t. The octagons mark the position of nine thermo- 

couples (type K) used to measure the surface temperature. 

inputs. The output of the model is the temperature of the water 

in the last section, which is assumed to be equal to the outlet wa- 

ter temperature. Modeling the outlet water temperature enables a 

simple calculation of the heating power to the room, which equals 

the change in energy of the water (see Eq. (3) ). 

φRad = c p, w 

· ρw 

· q · ( t inlet − t outlet ) (3) 

The heating power is delivered to the room by convective and 

radiative heat transfer. The fraction of convection and radiation de- 

noted βC and βR , respectively, depend on the radiator and room 

temperature conditions. Knowing βR,N , i.e. the radiative fraction 

at standard conditions, enables the calculation of βR according to 

Eq. (4) [18] . In this study, βR,N was assumed to be 0.3 which is in 

accordance with other studies [19,20] for a double panel radiator. 

βR = βR , N ·

(
T room 

+ �t lg 
)4 − T room 

4 

(
T room 

+ �t lg, N 

)4 − T room 

4 (
�t lg 

�t lg, N 

)n (4) 

2.1.1. Calibration of radiator model parameters 

The model parameters were calibrated based on measurement 

data from experiments where the radiator was excited by control- 

ling the flow rate according to four experiments as specified in 

Table 1 . The temperatures of inlet, outlet and room air were, in all 

experiments, measured at a sampling rate of 15 seconds along with 

nine surface temperatures (see Fig. 1 ). Three experiments were 

conducted using pseudo-random multi-level signals (PRMS) gen- 

erated by the software Galois [21] , and one experiment was con- 

ducted using a pseudo-random binary signal (PRBS) generated us- 

ing the MATLAB function idinput . The use of both PRBS and PRMS 

signals was to test the prevailing notion in literature that a PRBS 

signal may not provide sufficient perturbation to identify nonlin- 

ear models [22] . The duration of the experiments is denoted P, and 

the number of levels was the number of different flowrates, rang- 

ing from a fully closed to a fully open valve position. The switching 

time, i.e. the shortest amount of time between changing flowrates, 

was set to 300 seconds for all four experiments. 

The radiator model in Eq. (2) contains five unknown parame- 

ters. However, the model structure only allows for calibration of 

two parameters due to issues regarding structural identifiability 

[17] . To reduce the number of unknown parameters, the parame- 

ters describing the properties of water, c p ,w 

and ρw, were assumed 

to be temperature invariant. This assumption seems reasonable as 

temperature fluctuations between 30 °C–60 °C, only leads to ap- 

proximately 0.2% and 1.5% variation of c p ,w 

and ρw 

, respectively. 

For convenience, the material property H w 

is introduced according 

to Eq. (5) . 

H w 

= c p, w 

· ρw 

(5) 

Fig. 2. Thermographic images during heat-up. Left) after 5 minutes. Right) after 8 minutes. 
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Table 1 

Parameters defining the four experiments. 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Training data Training data Training data Validation data 

Excitation signal PRMS PRMS PRBS PRMS 

Number of levels 5 13 2 5 

Duration ( P ) 14 hours 14 hours 14 hours 50 hours 

Table 2 

Specifications from data sheet. 

t inlet t outlet t room ɸ N �t ar ,N 

75 °C 65 °C 20 °C 2479 W 50.0 °C 
70 °C 55 °C 20 °C 2001 W 42.5 °C 
55 °C 45 °C 20 °C 1264 W 30.0 °C 

Fixing the material properties of the hydronic fluid leaves three 

unknown parameters: the nominal power at standard conditions, 

the thermal capacity of the radiator and the radiator exponent. The 

radiator exponent n was estimated using the standard static least- 

squares calibration method [23] based on measurements of the 

nominal power at three standard temperature conditions as stated 

in Table 2 [16] . The two remaining parameters, i.e. the nominal 

power and the thermal capacity, were calibrated with the objective 

to minimize the outlet temperature residuals using the time-series 

measurements obtained during the experiments. Furthermore, the 

radiator models were calibrated for { N s ∈ Z | 2 ≤ N s ≤ 100 } t o iden- 

tify the optimal N s . 

The first three experiments were used as separate training data 

sets for calibrating three versions of the radiator model, and data 

from the fourth experiment was used to validate the calibrated 

models. Measurements from experiment 4, i.e. the validation data, 

are depicted in Fig. 3 . It is seen that the room air temperature 

had an increasing trend during the experiment by a couple of de- 

grees because of the high amount of heat injected into the room. 

The calibrated models were evaluated in terms of the two standard 

metrics root mean square error (RMSE) and normalized root mean 

square error (NRMSE) as defined in Eqs. (6) and (7) , respectively. P 

is the duration of the experiment where the index τ s = {1, 2,…, P} 

denotes the time in 15 seconds increments, z and ˆ z are timeseries 

of the measured data and the output of the model, respectively, 

and ‖ · ‖ denotes the Euclidean norm. Considering both metrics in 

the evaluation ensures reliable evaluation when using three dis- 

tinct experiments with varying variability to calibrate the models. 

RMSE = 

√ ∑ P 
τ s =1 

(
z τ s − ˆ z τ s 

)2 

P 
(6) 

NRMSE = 

( 

1 −
∥∥z − ˆ z 

∥∥
‖ 

z − mean ( z ) ‖ 

) 

· 100 (7) 

2.2. Model predictive control 

MPC is an optimization based control scheme that, in each dis- 

crete time step τMPC , determines an optimal control sequence for 

a finite prediction horizon N . The controllable decision variables u , 

i.e. space heating control actions, are communicated to the EP rep- 

resentation of the building in a receding horizon approach, where 

only the first action of the optimal sequence is actually imple- 

mented [24] . At the next discrete time step, the optimization prob- 

lem is solved again with a prediction horizon shifted one time step 

ahead in time. In this study, a linear objective function was con- 

sidered for the MPC scheme using a time varying cost signal f , as 

specified in Eq. (8) . 

minimize 
u 

J = 

N−1 ∑ 

τ=0 

f τ · u τ (8) 

The MPC scheme is subject to multiple constraints ( Eqs. (9) –

(12) ). Firstly, the scheme is constrained by a control-model which 

describes the thermodynamics of the system to be controlled. The 

dynamics are specified in Eq. (9) , and are a function of the sys- 

tem states x τ , control action u τ and disturbances d τ (i.e. ambient 

temperature and transmitted solar irradiance). 

x τ+1 = g ( x τ , u τ , d τ ) (9) 

At each time step τMPC , the room air temperature was mea- 

sured from the EP representation ( y measured ) and used to correct 

the states of the control-model using a Kalman filter that updates 

the observed and unobserved states according to Eq. (10) , where 

KG is the Kalman gain [25] . 

x τ | τ = x τ | τ−1 + KG ·
(
y measured 
τ − C · x τ | τ−1 

)
(10) 

Addressing thermal comfort when applying MPC schemes can 

be handled in various ways [26] . One approach is to formulate a 

multi-objective optimization problem, which simultaneously min- 

imizes operational costs and thermal comfort deviations [11,27] . 

Another approach is to assume that occupants are comfortable as 

long as the room air temperature is within a predefined comfort 

band [7,8] . In this study, the latter approach was chosen, which 

led to a single objective formulation. The comfort band was de- 

fined by the time invariant lower ( t min ) and upper ( t max ) comfort 

bounds, see Eq. (11) . 

t min ≤ y τ ≤ t max (11) 

Furthermore, the space heating control action u τ was restricted 

by the maximum design heating power according to Eq. (12) . 

0 ≤ u τ ≤ u max (12) 

2.2.1. Investigated MPC setups 

In theory, the control-model of the room and heating system 

dynamics specified in Eq. (9) is a nonlinear function. However, 

many studies approximate the room thermodynamics as a linear 

function by neglecting the nonlinear dynamics of hydraulic sys- 

tems, and assume electrical baseboard heaters in the simulations, 

thus resulting in a convex linear program, see e.g. [7,8] . To investi- 

gate how this approximation affects the control performance, sim- 

ulations of three MPC setups were carried out: 

(a) Linear MPC controlling an electrical baseboard heater. 1 

(b) Two-level control where a linear MPC determined the opti- 

mal heating setpoint to be maintained by a conventional PI- 

controller 2 adjusting the water flow to the hydronic radiator 

model. 

(c) N-MPC scheme, i.e. including the hydronic radiator in the 

control-model. 

The three setups led to distinct co-simulation setups as illus- 

trated in Fig. 4 , facilitated by the Building Controls Virtual Test Bed 

[15] . 

1 A constant radiative fraction βR of 0.3 was assumed. 
2 The PI controller was tuned using the MATLAB function pidtune . 
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Fig. 3. Data from experiment 4 used for model validation. 

Setups a) and b) relied on a linear two-state grey-box control- 

model representing the lumped thermal capacity of the zone air 

and the construction elements. The state space representation of 

the model is given in Eqs. (13) and (14) with state matrix A , input 

matrix B, disturbance matrix E and output matrix C . The control- 

model was estimated in continuous time and then discretized us- 

ing the zero-order hold method with a time step of 60 seconds. 

x τ+1 = A · x τ + B · u τ + E · d τ (13) 

y τ = C · x τ (14) 

The commercial solver CPLEX was used to solve the convex 

linear program and returned the optimal sequence of control ac- 

tions u [W], constrained by the maximum installed heating power, 

i.e. u max = ɸ max ( Eq. (12) ). In setup b) the predicted temperatures, 

resulting from applying the optimal sequence u , were communi- 

cated as a setpoint to the low-level PI-controller which then ad- 

justed the flow rate of the hydronic radiator accordingly (hence 

the name two-level control ). For setup c) the control-model com- 

bined the linear room model ( Eqs. (13) and (14) ) with the model 

of the hydronic radiators Eq. (2) and Appendix A ) leading to a non- 

linear control-model and a nonconvex optimization formulation. 

Fig. 4. Co-simulation setups for the three investigated MPC setups. 
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Fig. 5. Test case geometry as modeled in EP. 

Instead of linearizing and discretizing the control-model, the MAT- 

LAB functions ode45 and fmincon were used to simulate and op- 

timize the model, respectively. The controllable decision variable 

was the sequence of flow rates q which was constrained by the 

maximum flow rate, i.e. u max = q max ( Eq. (12) ). The ode45 function 

simulated the system of ordinary differential equations using the 

fourth and fifth order Runge Kutta to determine an adequate time 

step size, thus ensuring a reliable simulation. The function fmincon 

contains several optimization algorithms of which the active set al- 

gorithm was used for the purposes of this study since it has been 

demonstrated to be able to achieve adequate results in a timely 

manner [28] . However, we found that the solver algorithm was 

sensitive towards the initial sequence of control actions. Especially 

in cases where the initial sequence of flowrates would lead to com- 

fort violations, the algorithm tended to arrive at locally optimal 

solutions. The optimization problem in this study was therefore 

solved using two initial guesses, and the resulting solution with 

the lowest objective value was implemented. The first initial guess 

was determined by taking the solution obtained when neglecting 

the hydronic system and translating it into flowrates using Eq. (3) . 

The second initial guess vector was a constant flow rate which was 

determined so the room air temperature was within the comfort 

bounds during the entire prediction horizon. After determining the 

optimal flow rates q , the resulting radiant and convective emitted 

heating power were calculated using Eqs. (3) and (4) . 

2.3. Test case 

The three MPC setups were tested on an EP model represent- 

ing an apartment located in Aarhus, Denmark. The apartment has 

east-west oriented windows and a west-oriented open balcony il- 

lustrated with yellow in Fig. 5 . The horizontal zone boundaries (i.e. 

ceiling and floor) were assumed adiabatic. Insulation was added to 

the partitioning wall to make it reasonable to neglect heat transfer 

to the adjacent apartment as suggested in [29] , and the tempera- 

ture in the adjacent apartment was kept constant at 20 °C. Previous 

studies have suggested that the DR potential depends on the en- 

ergy efficiency of the building envelope [7] . Therefore, the simula- 

tions were performed for the existing building and a building with 

an improved energy efficiency. Further specifications of materials 

and constructions are provided in ref. [7] where the building con- 

figurations used in this study are denoted Retrofit0 and Retrofit8 . 

The EP model had a time step of 60 seconds, whereas the MPC 

scheme determined new control actions every 15 minutes ( τMPC 

of 900 seconds). On-site weather measurements (see Fig. 6 ) were 

used during the one week simulation period from December 12, 

2016, to December 18, 2016. 

As stated in Eq. (11) , the MPC scheme was constrained to main- 

tain a room air temperature within certain comfort bounds. The 

potential of exploiting the thermal mass as a sensible heat stor- 

age depends on the comfort interval, i.e. how large temperature 

fluctuations occupants will allow. In this study, a rather restrictive 

comfort interval was chosen with comfort bounds t min and t max set 

to 20 °C and 23 °C, respectively. The apartment was assumed to be 

equipped with two radiators which, as described in Section 2.2.1 , 

constrained the linear MPC and N-MPC scheme by the radiator 

characteristics of ɸ max = 2025 W and q max = 110 l/h, respectively. 

The potential of DR can be evaluated with respect to vari- 

ous objectives [5,7,8] . This study considers price-based demand re- 

sponse, where the objective was to achieve operational cost sav- 

ings compared to a reference scenario with a control scheme track- 

ing a constant setpoint t min . Historical day-ahead wholesale elec- 

tricity prices for the bidding area DK1 were used as cost signal f 

(see Eq. (8) ) in all control setups. The efficiency factor in the con- 

version of electricity to thermal energy in setups that include a 

hydronic heating system, i.e. setups ( b) and ( c) , was assumed to 

be equal to one. This allowed for a direct performance compari- 

son of the three MPC setups, as well as comparisons with results 

obtained in previous studies. In practice, however, a heat pump 

would significantly improve the economic performance of setups 

( b) and ( c) . Taxation tariffs are very country specific and were 

therefore neglected to generalize the interpretation of the results. 

Consequently, the resulting operational costs cannot be expected 

to match the actual operational costs paid by consumers. Further- 

more, perfect predictions of f were assumed. A prediction horizon 

N = 48 hours was chosen to ensure that the control scheme utilized 

the full storage capacity of the thermal mass. 

Three key performance indicators were used to evaluate the DR 

potential. One indicator was the ability of the MPC schemes to 

achieve operational cost savings relative to a reference controller 
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Fig. 6. Weather conditions during the simulation period. 

according to Eq. (15) , where c τ denotes the operational cost for 

time step τ . 

�c = 

P ∑ 

τ=1 

c MPC 
τ − c re f 

τ

c MPC 
τ

(15) 

The other indicator was the absolute and relative ability of the 

MPC schemes to shift space heating consumption in each time step 

compared to a reference controller according to Eqs. (16) and (17) , 

respectively. 

�φτ = φτ − φre f 
τ ∀ τ = 1 , . . . , P (16) 

�φτ = 

φτ − φre f 
τ

φre f 
τ

∀ τ = 1 , . . . , P (17) 

Furthermore, the shifting efficiency, which is the ratio between 

decreased and increased heating consumption during charging 

and discharging periods, was evaluated according to Eq. (18) [9] . 

The durations of charging and discharging periods is denoted 

τ charge and τ discharge and is determined at each load shift event 

(see Fig. 12 ). 

ηshi f ting = 

−∫ τ discharge 

0 �φτ ( �φτ s < 0 ) dτ

∫ τ charge 

0 �φτ ( �φτ > 0 ) dτ
(18) 

3. Results 

3.1. Dynamic radiator model 

Three dynamic radiator models were calibrated based on the 

three separate training datasets (see Table 1 ) and with an in- 

creasing number of horizontal sections. Fig. 7 displays the perfor- 

mance indicators RMSE and NRMSE for the identified models eval- 

uated on the validation data. The results suggest that the mod- 

els derived using data generated from PRBS excitation signals (ex- 

periment 3) were less capable of accurately predicting the out- 

let temperature of the radiator compared to models derived us- 

ing data generated from PRMS excitation signals (experiment 1 

and 2). This is in agreement with the prevailing notion in litera- 

ture that PRBS signals are suitable for linear systems, whereas cal- 

ibration of nonlinear systems benefits from the use of PRMS ex- 

citation signals, as they are better at revealing the behavior of dy- 

namic systems [22] . The models calibrated using Experiment 1 and 

2 data achieved similar performance. Generally, the performance 

increases as the number of sections approaches six; hereafter the 

performance stagnates. 

The best performing radiator model was achieved using Ex- 

periment 1 as training data and with nine horizontal sections 

(RMSE = 0.64 °C and NRMSE = 84% on the validation data). This 

model was therefore chosen for the following investigations of the 

MPC schemes. The model parameters are stated in Table 3 . It can 

be seen that the calibrated nominal power φN of 1874 W (using 

�t ar , N = 42.5 °C) is consistent with the declared φN of 2001 W from 

the manufacturer (second row of Table 2 ) with a deviation of ap- 

prox. 6%. 

Fig. 8 shows a comparison of the measured surface tempera- 

tures during the experiment used for model validation (Experiment 

4) and the simulated states of the horizontal sections in the model 

using the parameters in Table 3 . The measured surface tempera- 

tures (see Fig. 1 for their placements) were averaged horizontally 

and compared with the simulated temperatures of sections two, 

five and eight. Fig. 8 left column shows the temperature during 12 

hours of the experiment, and Fig. 8 right column shows the his- 

togram of residuals during the entire experiment (50 hours). The 

temperature deviations increased slightly from the bottom section 

towards the top section, where the RMSE for the four sections 

was 3.55 °C, 1.77 °C, 0.95 °C and 0.64 °C, respectively. As expected, 

the residuals of the outlet temperature were the lowest since the 

model was calibrated with the objective of minimizing the outlet 

residuals. Another reason for this vertical increment is the model 

Table 3 

Calibrated and calculated model parameters of the proposed dynamic radiator 

model. 

N s C Rad [J/K] H w [kJ/(m 

3 ·K)] φ N [W] �t ar ,N [ °C] n 

9 43254.3 4113.7 1873.7 42.5 1.32 
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Fig. 7. RMSE and NRMSE values on validation data for radiator models calibrated based on the three distinct experiments with varying number of sections N S . 

structure, where the heat loss for each horizontal section is a func- 

tion of the room air temperature. However, the temperature of the 

ambient air surrounding the radiator increases vertically, thus the 

model structure overestimates the heat loss in the top sections. 

3.2. Performance of MPC schemes 

The indoor air temperatures for the existing building in the 

simulated one-week period, using the constant setpoint tracking 

controller (reference) and the three MPC setups, respectively, are 

depicted in Fig. 9 . The grey dashed lines indicate the thermal com- 

fort bounds, and the bottom chart displays the historical time vary- 

ing wholesale electricity prices. Compared to the reference con- 

troller, all the E-MPC schemes increased the space heating con- 

sumption and, consequently, increased the air temperatures in low 

price periods. Consequently, the thermal mass of the building con- 

structions was charged and the heating consumption in the fol- 

lowing high price periods was reduced. Overall, the trajectories de- 

picted in Fig. 9 suggest that the three MPC setups resulted in sim- 

ilar space heating strategies. 

It is noted that the simulations were only performed for a pe- 

riod of one week and for one specific apartment, which is why the 

specific absolute results cannot be used for generalizations on the 

effect of the MPC schemes. However, the observed tendencies are 

considered generalizable as they are consistent with previously ob- 

tained results investigating the performance of E-MPC [7,8,11] . 

The summarized results for the simulation week is presented 

in Table 4 and confirm that the three MPC setups achieved similar 

performance. Evaluation of the ability to achieve operational cost 

savings ( Eq. (15) ) showed that the three MPC setups achieved op- 

erational cost savings of approx. 5% and 18% for the existing and 

retrofitted building, respectively. Furthermore, the ability to main- 

tain an air temperature within the comfort bounds was evaluated 

as the number of degree hours where the air temperature vio- 

lated the lower and upper temperature bounds. The performance 

was similar for all MPC setups, and the level of comfort violations 

was generally limited – a fact also indicated by Fig. 9 . The reason 

for the minor comfort violations in setups a) and c) , which solely 

relied on the control-model to predict the required space heat- 

ing consumption, was the practically unavoidable building/control- 

model mismatch. In setup b) , which relied on a low-level PI con- 

troller to track the setpoints specified by the MPC scheme, mi- 

nor temperature over- and undershoots were observed when the 

low-level PI controller was switching between the upper and lower 

comfort bounds as setpoints. 

The relative ability of the MPC setups to shift space heat- 

ing consumption by exploiting the thermal mass as heat stor- 

age ( Eq. (17) ) is depicted in Figs. 10 and 11 for the existing and 

retrofitted building, respectively. A positive difference indicates a 

boosting period, where the room air temperature was increased to 

store heat, whereas a negative difference occurs at high price peri- 

ods, where the heat storage was discharged. A negative difference 

of −100% indicates a period where the space heating was com- 

pletely shut off. In general, the three MPC setups led to similar 

charging and discharging patterns. 

The relative shifting potential was highest in the retrofitted 

building because of the lower reference heating consumption. The 

periods of complete heating shut-off were very limited in the ex- 

isting building, whereas a total shut-off was possible for extended 

periods in the retrofitted building. Furthermore, Figs. 10 and 

Table 4 

Summarized simulation results. 

Energy Operational cost Cost savings Comfort violations 

Existing 

building 

Reference 4.1 kWh/m 

2 € 12.0 0.4 °Ch 

Scenario ( a) 4.3 kWh/m 

2 € 11.3 € 0.7 (5.8%) 3.2 °Ch 

Scenario ( b) 4.3 kWh/m 

2 € 11.3 € 0.7 (5.8%) 3.7 °Ch 

Scenario ( c) 4.4 kWh/m 

2 € 11.4 € 0.6 (5.0%) 2.1 °Ch 

Retrofitted 

building 

Reference 1.4 kWh/m 

2 € 3.9 0.1 °Ch 

Scenario ( a) 1.5 kWh/m 

2 € 3.2 € 0.7 (18.0%) 2.3 °Ch 

Scenario ( b) 1.5 kWh/m 

2 € 3.2 € 0.7 (18.0%) 2.6 °Ch 

Scenario ( c) 1.5 kWh/m 

2 € 3.2 € 0.7 (18.0%) 1.6 °Ch 
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Fig. 8. Simulated system states compared to surface temperature measurements. 

11 show that the temperature boosts resulted in space heating in- 

creases of up to approx. 100% and 300% compared to the reference 

controller for the existing and retrofitted building, respectively. For 

this to be possible, radiators have to be over-dimensioned when 

installed, which is typically the case in many existing Danish resi- 

dential buildings in order to ensure fast response times and suffi- 

cient heating power given the worst-case weather conditions [30] . 

Fig. 12 displays the absolute shifting potential according to 

Eq. (16) for the existing and retrofitted building, respectively, us- 

ing MPC setup ( b). The simulation period was divided into six load 

shift events consisting of a charging and discharging period (see 

Eq. (18) ). Overall, the existing building enabled the highest shifted 

consumption due to the generally higher reference consumption, 

whereas the retrofitted building enabled shifts over longer periods 

because of the increased storage efficiency. Information on the ab- 

solute charge and discharged heat in individual events is specified 

in Table 5 together with the shifting efficiency. In contrast to pre- 

vious studies that used rule-based control to investigate the heat 

storage efficiency of thermal mass [9,31] , the charging and dis- 

Table 5 

Specification of load shifting events. 

Charging Discharging ηshifting 

Existing 

building 

Event 1 108.1 Wh/m 

2 −65.4 Wh/m 

2 60.6% 

Event 2 86.8 Wh/m 

2 −52.9 Wh/m 

2 61.0% 

Event 3 102.8 Wh/m 

2 −74.3 Wh/m 

2 72.4% 

Event 4 79.7 Wh/m 

2 −57.6 Wh/m 

2 72.3% 

Event 5 88.5 Wh/m 

2 −62.5 Wh/m 

2 70.6% 

Event 6 79.4 Wh/m 

2 −60.0 Wh/m 

2 75.5% 

Retrofitted 

building 

Event 1 89.0 Wh/m 

2 −57.9 Wh/m 

2 65.1% 

Event 2 68.5 Wh/m 

2 −53.3 Wh/m 

2 77.9% 

Event 3 81.4 Wh/m 

2 −69.3 Wh/m 

2 85.1% 

Event 4 70.1 Wh/m 

2 −56.6 Wh/m 

2 80.7% 

Event 5 71.7 Wh/m 

2 −57.7 Wh/m 

2 80.5% 

Event 6 69.3 Wh/m 

2 −70.4 Wh/m 

2 101.5% 

charging periods in this study varied in duration since the control 

was optimized based on the cost signal f . 

As expected, the quantity of shifted consumption was slightly 

higher for the existing building; however, the shifting efficiency 
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Fig. 9. One-week simulation results and associated cost signal. 

was significantly higher for the retrofitted building. The efficiency 

of Event 6 was even above 100% since heat stored at previous 

events was not yet fully discharged coming into the event. This 

mechanism can also be observed in Fig. 11 where the relative con- 

sumption at the end of the fifth discharging period was still be- 

low zero before initiating charging period six. The observed shifted 

quantities and efficiencies are consistent with the results in [9] . 

4. Discussion 

The results of this study showed very limited differences in 

performance between setups ( a) and ( b) . This suggests that find- 

ings from previous studies using electrical baseboard heaters as in 

setup a) , e.g. [7,8] , also apply to buildings equipped with hydronic 

heating systems. Besides enabling a more broad generalization of 

previous research results, this equivalency also has a practical ad- 

vantage. The simulation time for setup ( c) significantly increased 

compared to setups ( a) and ( b) with a factor of up to 50. Based on 

the findings of this study, it therefore seems practically reasonable 

that future simulation-based studies as well as real application of 

E-MPC for single-zone residential space heating rely on setup b) . 

However, it may be necessary to include the dynamics of the ra- 

diator when operating multi-zone hydronic space heating systems 

or to investigate the dynamic response of the heating system. 

Furthermore, in agreement with previous studies [7,8,9] , the 

results suggest that the potential for shifting space heating con- 

sumption depends on the energy efficiency of the building enve- 

lope. The absolute potential for shifting energy on the short term 

was greater in the existing building because of the higher refer- 

ence consumption, whereas the higher storage efficiency of the 

retrofitted building made it more suited for shifting loads over 

longer periods. Similarly, the retrofitted building allowed space 

heating to be completely shut off for multiple consecutive hours, 

while the existing building was incapable of sustaining comfortable 

temperatures without space heating. Despite these differences, the 

absolute loads shifted during the load shifting events were similar. 
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Fig. 10. Potential for exploiting the thermal mass as heat storage for the existing building. 

Fig. 11. Potential for exploiting the thermal mass as heat storage for the retrofitted building. 
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Fig. 12. Absolute shifting potential for the existing and retrofitted building using MPC setup (b). 

5. Conclusion 

This paper reported on the development of a reliable dynamic 

hydronic radiator model and an investigation of the effect of in- 

cluding the radiator dynamics in an associated MPC scheme for 

residential space heating with the objective to perform price-based 

demand response. Three MPC setups were defined: ( a) a linear 

MPC controlling an electrical baseboard heater, ( b) a two-level con- 

troller where a linear MPC calculated the heating setpoint for con- 

ventional PI-control of the hydronic radiator model, and ( c) an N- 

MPC scheme that included the hydronic radiator in the control- 

model. The three MPC setups obtained similar simulation results, 

i.e. operational cost savings of approx. 5% and 18% in an existing 

and retrofitted building, respectively, while restricting the amount 

of thermal comfort violations to a limited extent. This suggest that 

the more practical two-level MPC implementation is preferable for 

real applications compared to the significantly more computational 

demanding N-MPC scheme for real applications. 

The calibrated dynamic radiator model developed for this study 

was able to adequately simulate the behavior of the actual radia- 

tor when comparing measured experiment data with the states of 

the proposed dynamic model. As such, this paper also provides a 

reliable radiator model suitable for any simulation-based research 

study in which accurate representation of the dynamic behavior of 

hydronic radiators is desirable. 
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Appendix A 

The complete system of non-linear ordinary differential equa- 

tions of the hydronic radiator model. 

C Rad ·
d t 1 
dτ

= H w 

· q · ( t inlet − t 1 ) · N S − φN ·
(

t 1 − t room 

�t ar, N 

)n 

(A.1) 

C Rad ·
d t 2 
dτ

= H w 

· q · ( t 1 − t 2 ) · N S − φN ·
(

t 2 − t room 

�t ar, N 

)n 

(A.2) 

C Rad ·
d t 3 
dτ

= H w 

· q · ( t 2 − t 3 ) · N S − φN ·
(

t 3 − t room 

�t ar, N 

)n 

(A.3) 

C Rad ·
d t 4 
dτ

= H w 

· q · ( t 3 − t 4 ) · N S − φN ·
(

t 4 − t room 

�t ar, N 

)n 

(A.4) 

C Rad ·
d t 5 
dτ

= H w 

· q · ( t 4 − t 5 ) · N S − φN ·
(

t 5 − t room 

�t ar, N 

)n 

(A.5) 

C Rad ·
d t 6 
dτ

= H w 

· q · ( t 5 − t 6 ) · N S − φN ·
(

t 6 − t room 

�t ar, N 

)n 

(A.6) 

C Rad ·
d t 7 
dτ

= H w 

· q · ( t 6 − t 7 ) · N S − φN ·
(

t 7 − t room 

�t ar, N 

)n 

(A.7) 

C Rad ·
d t 8 
dτ

= H w 

· q · ( t 7 − t 8 ) · N S − φN ·
(

t 8 − t room 

�t ar, N 

)n 

(A.8) 

C Rad ·
d t 9 
dτ

= H w 

· q · ( t 8 − t 9 ) · N S − φN ·
(

t 9 − t room 

�t ar, N 

)n 

(A.9) 

t outlet = t 9 (A.10) 
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Abstract 

Energy consumption for household HVAC systems constitutes a large demand 

response potential if it can be made flexible. One way of doing so is through a model 

predictive control (MPC) scheme that minimizes energy costs by shifting 

consumption according to a time-varying tariff. However, many studies on price-

based demand response use tariffs with little or no taxes even though they often 

constitute a significant share of the total electricity price. This paper investigates the 

impact of taxes on the MPC-driven demand response potential for space heating. 

Simulations were conducted as co-simulations between EnergyPlus and MATLAB 

coupled by the Building Control Virtual Test Bed software. An economic MPC 

defined in MATLAB controls an electric radiator in a one-bedroom dormitory 

apartment. Three electricity tariffs with different taxes were tested as input to the 

MPC cost function to evaluate the effect on the DR potential: a tariff without taxes, 

a tariff with constant taxes and a tariff with variable taxes. The results indicated that 

taxes in general attenuate the load-flattening potential but reduced CO2 emissions. 

Constant taxes were also found to reduce both the economic incentives of the end-

consumer and the usage of wind power compared to a tariff without taxes while 

variable taxes did the opposite. 

Keywords – economic model predictive control; price-based demand response; 

space heating; taxes and levies; 

1. Introduction  

As more and more intermittent renewable energy sources are introduced 
into the electric system it becomes increasingly difficult to rely solely on 
supply-side management to ensure grid stability. Price-based demand 
response (DR) is a demand-side management strategy that is often considered 
as a promising supplement to help keep balance in the electric system. The 
idea is to motivate consumers to change consumption pattern through varying 
electricity tariffs reflecting the state of the electric grid [2-4]. 



In the household sector, space heating represented approximately 68% of 
the total household energy consumption in the European Union [5]. Space 
heating therefore offers a great DR potential if this consumption can be made 
flexible. One possible approach to accomplish this is through an economic 
model predictive controller (E-MPC) that utilizes the thermal capacity of the 
building as an energy storage to be charged in periods with low energy prices 
and discharged when prices are high [6-10]. 

1.1 Related work and main objective 

Many studies on price-based DR use the electricity spot price and ignore 
expenses associated with transportation of electricity, taxes and levies [6,8,11-
13]. Other studies do recognize the importance of including all cost 
components but are often conducted in countries with a small share of taxes 
and levies such as Switzerland [1,7,9] where they represents 5.4% of the total 
tariff. In other countries such as Italy, Germany and Denmark taxes and levies 
represents the bulk of the total tariff [14-15] and this paper investigates how 
this affect the DR potential. 

2. Simulation method  

This study is based on co-simulations between an EnergyPlus model 
representing the true building [16] and an E-MPC controller defined in 
MATLAB [17]. The software environment Building Controls Virtual Test 
Bed handles the co-simulations [18-19]. 

A series of simulations have been carried out with different electricity 
tariffs to investigate the effects hereof. All simulations are performed for a 
simulation period from January 1 to February 14 and applies Danish electricity 
prices and system data from 2014 [20], and standard EnergyPlus weather data 
for Copenhagen [21]. 

2.1 EnergyPlus model 

The simulated test case is a one-bedroom dorm located in Aarhus, 
Denmark, and its geometry is seen in Fig. 1. 

 

Figure 1.  Geometry of the EnergyPlus model 



There is an external south-facing wall with a window with a low-e glazing 
(U=1.1 W/(m2K), g=0.63). All other surfaces are internal and assumed to be 
adiabatic. Details regarding construction compositions are shown in Table 1. 
The dorm is equipped with a constant mechanical ventilation rate of 1.1 h-1 
and has an infiltration rate of 0.05 h-1. The heat source is an electric radiator 
and the heat power 𝛷 is optimized by the E-MPC. 

Table 1. Data for constructions used in the EnergyPlus model. 

 Material Thickness 

[m] 

Resistance 

[m2K/W] 

Capacity 

[kJ/(m3K)] 

External 

wall 

concrete (ext.) 

insulation 

concrete (int.) 

0.100 

0.250 

0.200 

R=0.09 

R=6.76 

R=0.18 

c=736 

c= 52 

c=736 

Internal 

wall 

concrete 0.180 R=0.16 c=736 

Ceiling/ 

Floor 

wood floor 

air space 

concrete 

0.025 

0.050 

0.220 

R=0.17 

R=0.10 

R=0.20 

c=991 

 

c=736 

2.2 Economic model predictive control 

The control objective is to find the optimal heat sequence, �̅�𝑂𝑃𝑇, defined as 

the heat sequence that minimize the linear cost function (1) subjected to 

various constraints (equations 1.a-1.e). The cost 𝐽 represents the 

accumulated electricity cost over a prediction horizon of 72 hours and 𝑝𝑥[𝑘] 
is the electricity tariff in the kth hour. Similar formulations and further 

details can be found in [6-10]. 

 
min 

𝛷
𝐽 = ∑ 𝑝𝑥[𝑘] ∙ 𝛷[𝑘]

71

𝑘=0

 
 

(1) 

s.t. �̅�[𝑘 + 1] = 𝑨�̅�[𝑘] + 𝑩𝛷[𝑘] + 𝑬�̅�[𝑘]

𝑇[𝑘] = 𝑪�̅�[𝑘]                          
} 

(1.a) 

 �̅�[0] = �̂�𝐼𝑁𝐼 (1.b) 

                0 ≤ 𝛷[𝑘] ≤ 500 𝑊 (1.c) 

    21.6 °𝐶 ≤ 𝑇[𝑘] ≤ 25.0 °𝐶 (1.d) 

 
−1.0 

°𝐶

ℎ
≤

∆𝑇[𝑘]

∆𝑡
≤ 1.0 

°𝐶

ℎ
 (1.e) 



The first constraint (1.a) represents the system dynamics formulated as a 
linear state space system, where �̅� are the states of the system, 𝛷 is the heat 

input, �̅� are the disturbances (ambient temperature and solar irradiation) and 
𝑇 is the room air temperature. A, B, E and C are black-box system matrices 
that captures the thermal dynamics of the EnergyPlus model and are 
determined via system identification (N4SID) [22]. Constraint (1.b) sets the 
initial state, (1.c) constrain the heat input according to the physical limitations 
of the radiator, (1.d) constrain room temperature and (1.e) constrain the rate 
of change of the room temperature. 

The solution, �̅�𝑂𝑃𝑇, is the optimal heat sequence over the entire horizon 
of 72 hours but only the first input, 𝛷[0], is applied. The problem is therefore 
solved again in the following hour – an approach known as the receding 
horizon procedure.  

3. Construction of tariffs 

The different tariffs that have been tested as input, 𝑝𝑥, in the objective 
function (1) were constructed according to the methodology described by 
Ulbig and Anderson [1]. However, this method is extended in this paper to 
also include variable taxes in one of the tested tariffs (see section 3.3). 

All test-tariffs are exclusive of VAT but this has no effect on �̅�𝑂𝑃𝑇. This 

is because the tariff inclusive of VAT, 𝑝𝑥,𝑉𝐴𝑇 , is calculated from the tariff 

exclusive of VAT, 𝑝𝑥, as follows: 

𝑝𝑥,𝑉𝐴𝑇 = 𝑓𝑉𝐴𝑇 ∙ 𝑝𝑥  (2) 

where 𝑓𝑉𝐴𝑇  is a conversion factor (1.25 in Denmark). If we replaced 𝑝𝑥 in 

(1) with the expression of 𝑝𝑥,𝑉𝐴𝑇  in (2) we would simply get a new objective 

function similar to (1). The only difference is the constant 𝑓𝑉𝐴𝑇 , which could 
be moved outside of the summation and therefore just scales 𝐽  without 

changing �̅�𝑂𝑃𝑇. Furthermore, the end-consumer also pays subscription fees 
but these are independent of 𝛷 and would therefore be added as a constant 

term in (1). This term would not affect �̅�𝑂𝑃𝑇 and is therefore omitted. 

3.1 Baseline tariff (“Today’s tariff”) 

The baseline tariff, 𝑝𝐵𝐴𝑆𝐸, is a constant tariff corresponding to the average 
tariff that Danish households paid in 2014 [15]. This tariff is comprised of four 
components: 

𝑝𝐵𝐴𝑆𝐸 = 𝑐𝐶𝑂𝑀 + 𝑐𝑇𝑅𝐴 + 𝑐𝐸𝐿_𝑇𝐴𝑋 + 𝑐𝑃𝑆𝑂  (3) 

where 𝑐𝐶𝑂𝑀  is the average commercial cost of electricity determined by 
the price on the Nordic spot market [23] plus expenses to the electricity 
supplier, 𝑐𝑇𝑅𝐴  is the average cost due to transmission and distribution of 

electricity, 𝑐𝐸𝐿_𝑇𝐴𝑋 is the average electricity tax and 𝑐𝑃𝑆𝑂 is the average public 



service obligations (PSO) levy. Table 2 shows the average values of these 
components in 2014 and their share of the total tariff. 

Table 2. Components of the Danish electricity tariff in 2014 [15] 

Component Cost 
[𝐷𝐾𝐾/𝑀𝑊ℎ] 

Share 
[%] 

Spot 𝑐𝐶𝑂𝑀  352.8 30 

Transportation 𝑐𝑇𝑅𝐴 221.8 19 

Tax* 𝑐𝐸𝐿_𝑇𝐴𝑋 412.0 35 

PSO 𝑐𝑃𝑆𝑂 190.0 16 

Total (excl. VAT) 𝑝𝐵𝐴𝑆𝐸  1176.6 100 
*The electricity tax for electric heating is lower than for other purposes. 

3.2 Tariffs with constant taxes 

Many studies on price-based DR apply the market spot price directly into 
the cost function but this is inappropriate as pointed out by Ulbig and 
Anderson [1] since the spot price does not represent the entire price. They 
therefore propose the following tariff: 

𝑝[𝑘] =
𝑆𝑝𝑜𝑡[𝑘]

𝑆𝑝𝑜𝑡̅̅ ̅̅ ̅̅ ̅
∙ 𝑐𝐶𝑂𝑀 +

𝐿𝑜𝑎𝑑[𝑘]

𝐿𝑜𝑎𝑑̅̅ ̅̅ ̅̅ ̅
∙ 𝑐𝑇𝑅𝐴 + 𝑐𝑇𝐴𝑋   (4)

where 𝑆𝑝𝑜𝑡[𝑘] is the spot price in the kth hour, 𝑆𝑝𝑜𝑡̅̅ ̅̅ ̅̅  is the average spot 

price, 𝐿𝑜𝑎𝑑[𝑘] is the grid load [20] in the kth hour, 𝐿𝑜𝑎𝑑̅̅ ̅̅ ̅̅ ̅ is the average grid 
load and 𝑐𝑇𝐴𝑋 is taxes and levies. This way the commercial costs are scaled 
according to the current spot price, transportation costs are scaled according 
to the current grid load and taxes and levies are included as a constant term. It 
is important to realize that a constant electricity consumption under this tariff 
will result in the same yearly costs as under the constant tariff 𝑐𝐶𝑂𝑀 + 𝑐𝑇𝑅𝐴 +
𝑐𝑇𝐴𝑋. 

The studies that (to the knowledge of the authors) applies this method are 
all conducted for Switzerland where taxes and levies represents only 5.4% of 
the total tariff [1,9]. In many other countries, this percentage is significantly 
higher [14], e.g. 51% in Denmark (Table 2). To test the effect that taxes and 
levies have on the performance of the E-MPC the following tariffs are defined: 

𝑝𝑁𝑂_𝑇𝐴𝑋[𝑘] =
𝑆𝑝𝑜𝑡[𝑘]

𝑆𝑝𝑜𝑡̅̅ ̅̅ ̅̅ ̅
∙ 𝑐𝐶𝑂𝑀 +

𝐿𝑜𝑎𝑑[𝑘]

𝐿𝑜𝑎𝑑̅̅ ̅̅ ̅̅ ̅
∙ 𝑐𝑇𝑅𝐴                                   (4.a) 

𝑝𝐶𝑂𝑁_𝑇𝐴𝑋[𝑘] =
𝑆𝑝𝑜𝑡[𝑘]

𝑆𝑝𝑜𝑡̅̅ ̅̅ ̅̅ ̅
∙ 𝑐𝐶𝑂𝑀 +

𝐿𝑜𝑎𝑑[𝑘]

𝐿𝑜𝑎𝑑̅̅ ̅̅ ̅̅ ̅
∙ 𝑐𝑇𝑅𝐴 + 𝑐𝐸𝐿_𝑇𝐴𝑋 + 𝑐𝑃𝑆𝑂  (4.b) 

 where 𝑝𝑁𝑂_𝑇𝐴𝑋 is a tariff without taxes and levies, and 𝑝𝐶𝑂𝑁_𝑇𝐴𝑋 is a tariff 

that includes the Danish electricity tax and PSO levy. The difference in 
performance of the E-MPC under these two tariffs will show how taxes and 
levies can affect the DR potential. 



3.3 Tariff with variable taxes 

It seems natural to further develop (4) to also include variable taxes as 
follows: 

𝑝𝑉𝐴𝑅_𝑇𝐴𝑋[𝑘] =
𝑆𝑝𝑜𝑡[𝑘]

𝑆𝑝𝑜𝑡̅̅ ̅̅ ̅̅ ̅
∙ 𝑐𝐶𝑂𝑀 +

𝐿𝑜𝑎𝑑[𝑘]

𝐿𝑜𝑎𝑑̅̅ ̅̅ ̅̅ ̅
∙ 𝑐𝑇𝑅𝐴 +                               

                              
𝐶𝑂2[𝑘]

𝐶𝑂2̅̅ ̅̅ ̅̅
∙ 𝑐𝐸𝐿_𝑇𝐴𝑋 + 𝑓𝑃𝑆𝑂[𝑘] ∙ 𝑐𝑃𝑆𝑂  

(5) 

where 𝐶𝑂2[𝑘] is the CO2 intensity associated with the electricity production 

in the kth hour, 𝐶𝑂2
̅̅ ̅̅ ̅ is the average CO2 intensity, 𝑓𝑃𝑆𝑂[𝑘] is the PSO scaling 

factor in the kth hour (to be explained). The electricity tax is thus scaled 
according to the CO2 intensity which is aligned with the reasons for 
introducing electricity tax: to encourage a better usage of resources and to 
reduce pollution including CO2 emissions [24]. Another intension of the 
electricity tax is to provide revenue for the state. For this purpose, it is an 
important property of the tariff that a constant electricity consumption results 
in the same yearly electricity tax as under a constant tax. The end-consumer is 
able to obtain a tax discount only if consumption is shifted to periods with a 
CO2 intensity below average. Conversely, the end-consumer will get a price 
surcharge if electricity is used in periods with high CO2 intensity. 

The scaling of the PSO levy is more complicated but is also based on the 
intension of the levy: to cover a range of expenses such as subsidies for wind 
turbines, subsides for decentralized heat and power plants and research 
activities etc. The subsidies for wind power represented 51% of the total PSO 
expenses in 2014 [25] and are paid as a supplement to the spot price. They 
decrease as the spot price increase [26] and are therefore high in periods with 
low market prices combined with a high wind power production. The detailed 
calculation of 𝑓𝑃𝑆𝑂[𝑘] is not included here but it is essentially constructed so 
that it scales the PSO component to be low in periods with high subsidies (see 
Fig. 2). This motivates the end-consumer to shift consumption towards 
periods with a combination of low market prices and a high production from 
wind turbines, thus reducing the need for subsidies. 

 

Figure 2.  PSO Scaling factor as a function of time  



4. Results 

Fig. 3 is a time sample of the simulation results that visualize the 
behaviour of the E-MPC when exposed to the different tariffs. It appears that 
the tariff with no taxes gives rise to the most flexible behavior based on a 
visual inspection of the number of periods with heat-boosts that charge the 
thermal capacity of the building and hence increase the room temperature. 
The two tariffs with taxes seems to attenuate this behavior but less so for the 
tariff with variable taxes. 

 

Figure 3. Time sample of the simulation results for the tested tariffs. 

Fig. 4 depicts different performance indicators of the three test tariffs 
compared to the baseline tariff. The bar plot to the left shows that all tariffs 
resulted in an increased total electricity consumption (blue bar) especially the 
tariff with no tax, which is in line with the tendencies in Fig. 3. All three tariffs 



also increased the usage of wind power but the tariff with variable taxes 
outperforms the others. Furthermore, the tariff without tax increased the usage 
of electricity from other sources than wind turbines (red bar) and increased the 
total CO2 emissions (black bar). In contrast, both tariffs with taxes reduced the 
usage of non-wind generated electricity and CO2 emissions but the variable 
taxing scheme proved most effective. The bar plot to the right in Fig. 4 shows 
how the tariffs managed to shift consumption to low load periods (9 PM–6 
AM) from peak load periods (8 AM-12 PM & 5 PM-7 PM) and high load 
periods (the remaining periods). The tariff with no tax reduced consumption 
in peak and high load periods with 52% and 40%, respectively, and hence 
contributed significantly to flatten out the overall load in the electric grid. This 
load-flattening is reduced for the tariffs with taxes but less so for the tariff with 
variable taxes. 

 

Fig. 4  Performance indicators for the tested tariffs evaluated in percentage w.r.t. the baseline 

tariff (3) 

Finally, Table 3 shows the economic performance of the tariffs. The 
baseline costs are shown in absolute values while the other tariffs are shown 
relative to this. The tariff without taxes obtained savings on the spot and  
transport components and pays, of course, no tax or PSO. This gives a total 



saving of 8.9% compared to the sum of the baseline spot and transport costs. 
The tariff with constant taxes obtained smaller savings on the spot and 
transport component, and end up paying more electricity tax and PSO levies 
due to the increased electricity consumption. The total saving is therefore only 
1.6% compared to the total baseline cost. The tariff with variable taxes 
obtained savings on all components and end up with a total saving of 4.9%. 
Although the tariff without taxes obtained the largest saving in percentage the 
largest saving in absolute values is obtained by the tariff with variable taxes. 
The economic incentives are thus significantly reduced by constant taxes but 
increased when they are made variable.  

Table 3. Economic performance. Baseline values are absolute and the others are relative to this. 

 PBASE 

[DKK] 

PNO_TAX 

[DKK] 

PCON_TAX 

[DKK] 

PVAR_TAX 

[DKK] 

Com. (spot) 52.4 -6.1 -4.3 -5.2 

Trans. 33.0 -1.5  -0.7  -0.7 

Tax 61.2 - 1.4  -2.3 

PSO 28.2 - 0.7 -0.3 

Total 174.9 -7.6* (-8.9%) -2.8 (-1.6%) -8.6 (-4.9%) 
*Compared to a baseline including only commercial and transportation costs. 

5. Discussion and conclusion 

The results presented in this study must be taken with some reservations. 
First of all, the simulations applied perfect forecasts of weather and electric 
grid data, which means that the obtained results should be considered as the 
performance bound. Secondly, the obtained results depended on a number of 
factors such as simulation period, building type and heating system, etc. 
Despite of these reservations, the authors expect that the following tendencies 
in general will hold: 1) taxes attenuate the load flattening potential but reduce 
CO2 emissions, 2) variable taxes perform better than constant taxes on all 
performance indicators, and 3) constant taxes reduces the economic incentive 
of the end-customer while variable taxes increases the incentive. 

Whether variable taxes should be introduced or not is a political decision. 
It might therefore be of political interest that variable taxes reduces the revenue 
for the state slightly but in return the pollution measured in CO2 emissions is 
reduced, which is part of the intension of the tax. Furthermore, the PSO 
revenue is slightly reduced but in return the usage of electricity from wind 
turbines is significantly increased by variable taxes which would arguably 
lessen the need for subsidies. 
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Abstract 

This paper investigates the effect of integrating a proposed time inhomogeneous 

occupancy model in an Economic Model Predictive Control framework. Utilizing 

Model Predictive Control when planning the operation of the HVAC systems enables 

thermal conditioning based on information regarding the current occupancy and 

predictions of future occupancy. Performance evaluation of the proposed occupancy 

model is based on simulations of a one-bedroom apartment subject to stochastic 

occupancy derived from real-world CO2 measurements. The simulation results 

suggest that an occupancy model with a sub-hourly temporal resolution reduces 

occupancy prediction errors compared to an hourly temporal resolution. The 

consequences of this are significantly reduces thermal comfort violations but only 

minor cost savings. 

Keywords - Economic Model Predictive Control; Stochastic Occupancy; Occupancy 

Prediction; Markov Chain 

1. Introduction  

The thermal indoor climate of a building and, consequently, the need for 
heating, ventilation and air conditioning (HVAC) is highly affected by the 
internal heat gains generated by the metabolism of the occupants and their use 
of electrical equipment [1]. The common way to integrate occupancy 
information in HVAC control systems is to repeat a static 24-hour schedule. 
However, static schedules do not capture the stochastic nature of people, 
which may lead to uncomfortable thermal conditions or waste of energy 
because HVAC systems maintain thermal comfort in unoccupied building 
zones [2, 3]. One way to consider the stochastic nature of occupant presence 
in HVAC operation is to implement real-time occupancy detection, which has 
demonstrated to reduce energy consumption and uncomfortable thermal 
indoor climate conditions [4]. However, due to the thermal time-delay of the 
building first arrived occupants may experience uncomfortable thermal 
conditions. Furthermore, when awaiting the departure of the last occupant the 
thermal storage in the building mass is not fully exploited. The concept of 
Model Predictive Control (MPC) is able to accommodate this. MPC uses a 
model of the building dynamics together with predictions of the disturbances 



acting on the building to optimize the HVAC operation by minimizing a cost 
function [5]. MPC is thus able to include information regarding the current 
occupancy and predictions of future occupancy for optimal HVAC operation.  
 The development of occupancy models with the objective to imitate 
realistic occupancy was first designed for building simulations tools [6, 7]. 
Page et al. [8] proposed a two-state time inhomogeneous Markov chain model, 
assuming that the probability of occupant presence satisfies a first order 
Markovian property, i.e. the future state at discrete time-step k+1 only depends 
on the current state at discrete time-step k. The assumption of a first-order 
Markovian property is also employed to model occupant presence patterns for 
employees in an office environment [9]. The model was defined as a 
generalized linear model based on a time inhomogeneous Markov chain, 
which captured the two-peak distribution of occupancy and demonstrated 
similar mean occupancy as the observations.  

The integration of a Markov chain based occupancy model in a MPC 
framework has been proposed by Dobbs and Hencey [10]. In their study, the 
integration of occupancy prediction yielded an energy saving potential of 31-
44% compared to a baseline controller when considering very simple 
fabricated occupancy profiles. The same authors extended the methodology 
by implementing an automatic-trained Markov chain occupancy model, based 
on real occupancy data from an office building [4]. The proposed method uses 
fractional occupancy for each time-step to increase the precision of the 
occupancy prediction. However, a fraction of 0.5 (equivalent to 30 minutes 
with a time-step of 1 hour) do not inform whether the occupants stayed in the 
first or last part of the time-step or if the stays fluctuated throughout the time-
step. The length of the occupancy period and the number of occupancy 
fluctuations has been shown to affect the MPC controller significantly [11], 
causing up to 25% difference on the total energy consumption.    

1.1 Main Objective and Outline 

This paper reports on a simulation-based investigation of the performance 
of an economic MPC which includes occupancy detection and predictions for 
optimal heating system operation of a one-bedroom apartment. The concept is 
similar to the one suggested by Dobbs and Hencey [4] but the case is rather 
different. Furthermore, instead of using binary hourly values or hourly 
percentages of occupancy it is investigated whether an occupancy model with 
a sub-hourly temporal resolution improves the performance of the concept.  

2. Markov Chain Occupancy Model 

The occupancy model is a two-state first-order Markov chain model [8], 
which at every discrete time-step k yields a binary value of either Xk=0 or Xk=1 
indicating vacancy or occupancy, respectively. The probability of continuing 
or changing state is dependent of the time of day k and the current state Xk and 
is collected in a time inhomogeneous right stochastic matrix (1). Since the sum 



of each row is one, only estimates of p01 and p10 are required. It is assumed 
that the transition probabilities are periodic with a period of 24-hours but a 
distinction between workdays and weekends are made. 

 
𝑇𝑘 = [

𝑝00(𝑘) 𝑝01(𝑘)
𝑝10(𝑘) 𝑝11(𝑘)

] (1) 

The estimates of the transition probabilities follows a binomial 
distribution with two outcomes, where N is the total number of detections and 
Ns is the number of successes that indicates state transition (2). 

 𝑓(𝑁, 𝑁𝑠, 𝜃) = (
𝑁

𝑁𝑠
) 𝜃𝑁𝑠(1 − 𝜃)𝑁−𝑁𝑠 (2) 

If the total number of observations N and the number of successes Ns is 
known, the Maximum Likelihood (ML) estimate  of 𝜃 is simply the proportion 
of Ns. The estimate of p01 only updates if the zone changes from vacant and 
p10 only changes if the zone was occupied. The initial estimate of the transition 
matrix entries is the identity matrix, implying that the best guess of the future 
state is the state in the current time-step, which has demonstrated satisfying 
results when used in a MPC framework [3]. The estimates of 𝜃 are updated at 
each observation instant as it is interconnected with real-time sensor-data 
based occupancy detections established by tracking the trajectory of CO2-
concentration measurements [12]. 

As the number of occupancy detections increases the importance of each 
observation decreases which may render the occupancy detection unable to 
adjust to changing occupancy usage. To investigate whether this affects the 
performance of the occupancy model a moving window is introduced which 
neglects observations that are older than the size of the moving window, i.e. 
enabling the occupancy model to maintain its flexibility and to adjust to 
changes in room usage.  

2.1 Occupancy Prediction 

Two methods are tested to evaluate which method makes the most reliable 
predictions of future occupancy: the Expected Occupancy (EO) or the Inverse 
Function Method (IFM) [8]. The expected occupancy is computed by the 
general setting of a time inhomogeneous Markov chain, hence 𝑃(𝑋𝑘+𝑟 =
𝑖 | 𝑋𝑘 = 𝑗)  is determined by calculating the (j,i)’th entry of the matrix 
product  𝑇𝑘+1 ∙  𝑇𝑘+2  ∙ … ∙  𝑇𝑘+𝑟 , where Tk is the time inhomogeneous 
transition matrices at discrete time-step k. The expected occupancy is in 
general the best guess of the future occupancy; however, this method lacks the 
ability to handle stochastic occupancy. For instance, if the current state Xk = 0 
and the transitions probabilities equals p00 = 0.6 and p01 = 0.4, the method of 
expected occupancy yields Xk+1 = 0, i.e. neglecting the rather large 0.4 
probability of Xk+1 = 1. The IFM method is used to reproduce the stochastic 
nature of occupancy [8]. At each time-step, the transition probabilities are 
cumulated and a random number is drawn from a uniform distribution 



determining the future state Xk+1. This approach tries to capture the stochastic 
nature of occupancy, with offset in the historical detections.  

3. Economic MPC Formulation 

The objective of the economic MPC controller (3) is to determine the 
optimal control input u for the heating system by minimizing the total 
operational cost for a finite future time horizon H based on predictions of the 
energy price f. At discrete time-step k the optimization problem is solved based 
on measurements of the current state, a model of the building dynamics, and 
predictions of the disturbances. The first control input of the optimized control 
plan is then applied to the building heating system. At next discrete time-step 
k+1 the optimization problem is solved again where a new measurement of 
the states is taken, and the prediction horizon is shifted by one time-step. This 
receding horizon approach introduces feedback to the system. 

min
 𝑢0 … 𝑢𝐻

  ∑ 𝑓𝑘 ∙ 𝑢𝑘 

𝐻

𝑘=0

  (3a) 

  s.t.   𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐸𝑑𝑘  (3b) 

                                    𝑦𝑘 = 𝐶𝑥𝑘 (3c) 

                                    0 ≤ 𝑢𝑘 ≤ 𝑃𝑚𝑎𝑥 (3d) 

𝑇𝑚𝑖𝑛,𝑘  ≤ 𝑦𝑘 ≤ 𝑇𝑚𝑎𝑥,𝑘 (3e) 

The model of the building dynamics is defined as a discrete-time Linear 
Time Invariant (LTI) system described on state-space form (3b) with state 
matrix A, system states xk, input matrix B, control inputs uk, disturbance matrix  
E and disturbances dk. The indoor air temperature (Ti) is the controllable 
system state yk (3c) with output matrix C. The constraints on Ti is a function 
of the predicted occupancy and thus the requirement to maintain a comfortable 
thermal indoor climate when the room is occupied (3e). The control input is 
constrained by the maximum design power of the heating system (3d). 

4. Simulation 

To demonstrate the efficacy and to evaluate the difference between the 
occupancy prediction methods, simulations concerning the optimization of the 
operation of the heating system for a one-bedroom apartment were used. The 
one-bedroom apartment has a floor area of 3.4m x 5.7m, a room height of 3m 
and a south-facing window.  It is located in a well-insulated new building 
designed to comply the Danish Building Regulation 2015 [13]. For further 
detailed information on the one-bedroom apartment, see [14].  

The co-simulation tool Building Controls Virtual Test Bed (BCVTB) [15] 
was used to link an EnergyPlus model that represented the true apartment to 



the economic MPC programmed in MATLAB. The state-space model of the 
building dynamics (3b) was established as a two-state grey-box model [16] 
discretized at a time-step of 60 seconds. Note that the importance of the 
building dynamics model and model-mismatch is not considered in this paper. 
The simulations were carried out for a period of 45 days using hourly historical 
weather data from Copenhagen, Denmark and Nord Pool Spot electric prices 
[17]. To ease the evaluation of the different approaches of occupancy 
prediction, perfect forecasts of the weather and electricity prices were 
assumed. A finite future time horizon H of 6 days was chosen to exploit the 
full potential of the thermal mass. The time-step for which a new control input 
was send to the heating system (tsCI) varied between 30 or 60 minutes. The 
time-step of the occupancy model (tsOM) and the length of the moving 
window (MW) were varied to evaluate their importance. The temperature 
constraints were defined as 21°C - 24°C when occupied and 19°C-26°C when 
vacant. For workdays the static 24-hour schedule was defined as occupied 
from 00:00 to 08:00 and 17:00 to 00:00 and constantly occupied during 
weekends. 

4.1 Real-World Occupancy Profiles 

The simulations were performed for four different occupancy profiles that 
differed greatly due to the stochastic nature of the occupants. The occupancy 
profiles were established based on real-world CO2-measurements from four 
apartments. The CO2-measurements are transformed to binary occupancy 
schedules according to the method presented in [12] and assumed to be the 
actual occupancy (the ground truth). The total number of transitions from 
vacant to occupied, and the total time-of-use during the simulation period of 
45 days for each apartment is listed in table 1. 

Table 1 Inspection of real-world occupancy profiles 

 Total number of transitions 

from vacant to occupied 

[times] 

Total occupied time 

during the simulation period  

[hours] 

Apartment 1 62 336.8 

Apartment 2 80 589.1 

Apartment 3 68 829.7 

Apartment 4 49 728.7 

Table 1 illustrates a significant difference between the four occupants and 
thus the need for an occupancy model that is able to handle stochastic 
occupancy.  

 



Histograms of vacancy and occupancy intervals are displayed in Fig. 1. 
The histograms also emphasizes the divergent occupancy profiles for each 
apartment. It is remarked that for apartment 1 a bin for vacancy interval 10000-
10050 minutes with probability 0.016 is omitted from the chart because of 
readability. 

 
Fig. 1 Histograms of real-world occupancy profiles 

5. Results and Discussion 

First, the performance of the occupancy model is assessed. Secondly, the 
potential for achieving cost savings and reducing thermal discomfort is 
presented for the economic MPC controller where the influence of the 
occupancy model’s temporal resolution and the impact of utilizing a moving 
window are investigated.  

5.1 Occupancy Prediction 

To assess the performance of the occupancy prediction methods EO and 
IFM, the mean absolute error (MAE) of the predictions was calculated. Fig. 2 
displays the MAE for apartment 4 as a function of the future prediction time-
step and for three occupancy model time-steps tsOM. The charts indicate that 
the EO method leads to fewest predictions errors compared to IFM. 
Furthermore, Fig. 2 illustrates that the amount of false vacancies differs the 
most and that IFM generally underestimates periods of occupancy, potentially 
resulting in thermal comfort violations. Fig. 2 also shows that the EO method 
captures the anticipated periodicity of occupancy presence better. 

Consistently for all four apartments, the EO method yields the most exact 
occupancy predictions. However, for apartment 2, which according to table 2 
represents the most fluctuating occupant presence, the performance is very 
similar. 



 
Fig. 2 Mean absolute prediction error. Top (a): tsOM = 60 min. Middle (b): tsOM = 15 min. 

Bottom (c): tsOM = 5 min. 

The performance evaluations indicate that the IFM results in too 
fluctuating occupancy predictions. Analyzing the result for all four apartments 
showed that an occupancy model time-step of 15 minutes leads to the fewest 
predictions errors. The IFM is a stochastic method since it depends on a 
random number generator; thus, the prediction is one realization out of many. 
Therefore, five simulations using IFM is performed and the mean result is 
presented here. 

5.2 Economic Model Predictive Control 

The aim, when integrating an occupancy model, is to improve the 
performance compared to using static occupancy schedules; hence, results 
obtained with static schedules constitutes the performance benchmark. The 
deviation with respect to operational cost and thermal discomfort is calculated 
as stated in (4) and (5) respectively, and are displayed in Fig. 3. 

∆ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 =
∫ 𝐸 ∙ 𝑓 𝑑𝑡

𝑃

0
− ∫ 𝐸𝑠𝑐ℎ ∙ 𝑓 𝑑𝑡

𝑃

0

∫ 𝐸𝑠𝑐ℎ ∙ 𝑓 𝑑𝑡
𝑃

0

 (4) 

where P is the total simulation period of 45 days, E is the energy use of the 
investigated method, f is the energy price and Esch is the energy consumption 
using occupancy schedules. 

∆ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 =
∫ 𝐷𝑇 𝑑𝑡

𝑃

0
− ∫ 𝐷𝑇,𝑠𝑐ℎ 𝑑𝑡

𝑃

0

∫ 𝐷𝑇,𝑠𝑐ℎ 𝑑𝑡
𝑃

0

 
(5) 

where DT is the thermal discomfort of the investigated method and DT,sch is the 
thermal discomfort using static occupancy schedules. The thermal discomfort 
is the sum of violations of the lower and upper temperature bounds, for both 
occupied and vacant time-steps.  

 



The Performance Bound (PB) constitutes the maximum theoretical 
savings potential, i.e. perfect occupancy predictions. A great potential for 
reducing thermal comfort violations is observed for all four apartments with a 
maximum reduction of approx. 85% (should be 100% if no model mismatch 
was present). The potential for operational cost savings is limited (maximum 
of approx. 4%).  

 
Fig. 3 Results with tsCI = 60 min and MW = 14 days.                                                             

Left (a): tsOM = 5 min.  Right (b): tsOM = 60 min. 

A maximum reduction of approx. 50% of thermal violations is obtained 
when integrating an occupancy model that utilizes either EO or IFM. 
Generally, EO is slightly better than IFM. For apartment 2 proper predictions 
of occupancy were not achieved causing approx. 30% increase of comfort 
violations compared to implementation of static schedules.  

Fig. 3 also shows that the potential for cost savings and thermal 
discomfort reduction is affected by the temporal resolution of the occupancy 
model. To examine the importance of the occupancy model time-step closer, 
Fig. 4 (a) displays the relative savings potential compared to a temporal 
resolution of 60 minutes. Generally, a finer temporal resolution enables the 
occupancy models to handle more stochastic occupancy presence thus 
reducing thermal discomfort. However, Fig. 4 (a) stresses the same tendency 
as demonstrated in section 5.1, i.e. that a temporal resolution of 15 minutes 
yields the least occupancy prediction errors and therefore leads to fewer 
thermal comfort violations.  To evaluate the importance of the moving window 
(MW), an occupancy model without a MW is taken as reference and the 
difference for a model with a MW length equal to 21 days and 14 days is 
illustrated in Fig. 4 (b). The results shows that applying a moving window and 
the length of the window affected the potential discomfort reduction. The 
results suggest that a length of 14 days was too short; hence, better 
performance was achieved with a length of 21 days.  However, a clear 
tendency is difficult to observe and further investigations are necessary. 



 
Fig. 4  Left (a): Importance of occupancy model time-step. tsCI = 60 min / MW = 14 days                       

Right (b) Importance of a moving window. tsCI = 30 min / tsOM = 5 min 

6. Conclusion 

The proposed occupancy model for handling stochastic occupancy in an 
economic model predictive control framework for heating system operation in 
dwellings demonstrated a capability to make reliable predictions of occupant 
presence for four apartments with very different occupant profiles. The 
performance evaluation suggests that a temporal resolution of 15 minutes 
leads to fewer prediction errors compared to an hourly temporal resolution. 
Furthermore, the results suggest that the EO method should be preferred 
compared to using IFM, because IFM provides too fluctuating occupancy 
schedules when used for HVAC control. 

Results from test case simulations of the economic MPC framework 
including the proposed occupancy model suggest a potential for cost savings 
and thermal discomfort reduction compared to an economic MPC controller 
that utilizes static occupancy schedules. The results also indicate that an 
occupancy model with sub-hourly time-step achieves better performance than 
models with an hourly resolution. No clear impact of applying a moving 
window was observed. Future work include: i) Using an equivalent sub-hourly 
temporal resolution in the occupancy model and the optimization problem, 
thus enabling better handling of stochastic occupancy, but still only 
forwarding an hourly control input to the heating system by constraining the 
optimized control input to be equivalent for every hour. ii) Further 
investigations of the EO method. Currently, a transition probability of 0.5 is 
used to decide when a state transition is expected; however, this parameter can 
be increased to provide conservatism to the prediction of occupancy transition. 
iii) Applying the Markov chain transition probabilities in a stochastic 
optimization problem.   
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control actions [1-3]. Several studies have applied MPC to optimize the operation of heating, ventilation and air 
conditioning (HVAC) systems and have achieved significant energy savings. Sourbron et al. [2] applied MPC to 
operate a heat pump in an office building equipped with thermo active building systems, which reduced the electricity 
consumption by 15% while ensuring thermal comfort. Goyal et al. [3] used MPC to operate an air-handling unit and 
achieved energy savings of 55-60% compared to a dual-maximum baseline control. In a simulation study, Oldewurtel 
et al. [1] compared MPC to conventional rule-based control for various building typologies and locations, and found 
that MPC, in most cases, reduced energy consumption while improving thermal comfort. 

Several studies have also considered time-varying energy prices together with MPC to minimize the operational 
cost, i.e. economic model predictive control (E-MPC), to provide flexibility to the energy grid through demand 
response [4-7]. A simulation study by Avci et al. [4] used real time prices together with an E-MPC scheme to operate 
an AC unit in a single residence and reduced the energy consumption in peak-hours by 23.6% and operational cost 
with 13% compared to a baseline controller. Pedersen et al. [5] used an E-MPC scheme and day-ahead power market 
prices to investigate the demand response potential in an existing residential multi-apartment building before and after 
retrofitting the building envelope. Compared to a baseline PI controller, the simulation results suggested that the E-
MPC scheme reduced the energy consumption in peak-hours in the existing and retrofitted building by approx. 7% 
and up to 47%, respectively, while ensuring thermal comfort. 

For multi-zone buildings, centralized and decentralized thermal control schemes exist [5, 8, 9]. Centralized MPC 
schemes require a detailed building model that accounts for heat transfer between adjacent zones to determine the 
operation in all zones simultaneously. Decentralized MPC relies on a set of single-zone models that neglect inter-
zonal heat transfer, leading to multiple detached optimization problems. In theory, decentralized control schemes 
return a sub-optimal solution compared to centralized MPC. To show this, Moroşan et al. [8] compared a conventional 
baseline controller with a decentralized and centralized MPC scheme, which achieved energy savings of 5.5% and 
13.4%, respectively. However, the authors noted that the performance difference depends on the coupling degree 
between zones. Pedersen et al. [5] likewise found a minor performance difference between centralized and 
decentralized control structures when applying E-MPC. 

In existing apartment buildings, the interior partition walls often consist of heavy materials with high conductivity, 
such as concrete. However, in a retrofit situation, where the energy efficiency of the building is increased, insulation 
is often added to the partition walls to reduce inter-zonal noise. Consequently, the conductivity of the wall is reduced, 
which may diminish any advantage of including inter-zonal thermal effects. The decentralized control approach may 
therefore be more practical since it does not require mapping of zone-adjacency during model establishment or 
exchange information between controlled zones during operation. This paper therefore investigates the performance 
difference between centralized and decentralized MPC in an apartment building without and with insulated partition 
walls.

2. Method

The third floor of an existing residential building located in Aarhus, Denmark, consisting of ten apartments and 
five stairwells was modelled in EnergyPlus (EP) and used to represent the actual building to be controlled. In addition 
to the existing building, a case with a retrofitted building envelope was considered. Information on geometry and
thermal characteristics of the existing and retrofitted buildings are provided in ref. [5] (the retrofitted building is 
denoted retrofit8 in the reference). The existing partition walls between apartments were assumed to consist of 120 
mm concrete while additional 100mm mineral wool and 13mm gypsum was added when insulating the walls.

The MPC scheme was implemented in MATLAB and used to operate the space heating (electrical baseload) of 
the EP model through co-simulation facilitated by the Building Controls Virtual Test Bed (BCVTB) [10]. The 
simulations were carried out for the period December 1, 2016 to February 28, 2017, which constitutes the coldest 
period of the heating season in Denmark, using an EP weather data file based on on-site weather measurements. To 
ease the interpretation of the results, internal gains originating from occupants and equipment were omitted and perfect 
weather forecasts were assumed.
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2.1. Centralized and decentralized model predictive control

MPC is an optimization-based control scheme, which at each time step determines a sequence of optimal space 
heating control actions by minimization of a cost function based on an input weight vector c associated with the control 
actions. The problem (eq. 1a-1g) is solved for a finite prediction horizon N which, in this study, was set to 72 hours. 
The control actions are restricted by the maximum design power Pmax of the heating system (eq. 1d), and eq. 1e and 
eq. 1f constrain the apartment air temperatures and the temperature rate of change, respectively. Specifications for 
input and state constraints are listed in Table 1. The control actions are communicated to the space heating system in 
a receding horizon approach, i.e. only the first control action is implemented and the procedure is then repeated at the 
next time step based on recent apartment air temperature measurements and updated disturbance forecasts [1].

… … … … … …    minimize
𝑢𝑢𝑢𝑢0|𝑡𝑡𝑡𝑡,…,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁|𝑡𝑡𝑡𝑡

      J = �𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛|𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇 ∙ 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛|𝑡𝑡𝑡𝑡

𝑁𝑁𝑁𝑁-1

𝑛𝑛𝑛𝑛=0

(1a)

                         subject to     𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1|𝑡𝑡𝑡𝑡 = 𝐀𝐀𝐀𝐀𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛|𝑡𝑡𝑡𝑡 + 𝐁𝐁𝐁𝐁𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛|𝑡𝑡𝑡𝑡 + 𝐄𝐄𝐄𝐄𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛|𝑡𝑡𝑡𝑡                    ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1b)

…………       .𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛+1|𝑡𝑡𝑡𝑡 = 𝐂𝐂𝐂𝐂𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1|𝑡𝑡𝑡𝑡                                             ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1c)

                           0 ≤ 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛|𝑡𝑡𝑡𝑡 ≤ 𝑃𝑃𝑃𝑃max                                              ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1d)

                           𝑇𝑇𝑇𝑇min,n|𝑡𝑡𝑡𝑡 ≤ 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛+1|𝑡𝑡𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇max,n|𝑡𝑡𝑡𝑡                             ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1e)

                           ∆𝑇𝑇𝑇𝑇min,n|𝑡𝑡𝑡𝑡 ≤
𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛+1|𝑡𝑡𝑡𝑡

∆𝜏𝜏𝜏𝜏
≤ ∆𝑇𝑇𝑇𝑇max,n|𝑡𝑡𝑡𝑡                       ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1f)

                           𝑥𝑥𝑥𝑥0|𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 (1g)

The MPC scheme requires a reduced-order model that adequately describes the thermodynamics of the building, 
e.g. grey-box models. Grey-box models are characterized by having a pre-specified model structure consisting of 
physically meaningful parameters that are estimated from measurement data through methods from the field of system 
identification [11]. In a multi-apartment building, the model represents an interconnected system of subsystems 
(corresponding to apartments), where the interactions occur due to conduction between apartments [12]. Identifying 
suitable multi-zone models for centralized control schemes, thus considering the thermal interactions, can be difficult 
and requires time-consuming experiments, planning and modeling [12, 13]. Decentralized control schemes neglect 
the interactions and treat the thermal influences between subsystems as external unknown disturbances, thus adequate 
models are easier to identify. In this study, a two-state grey-box apartment model was used, where the two states 
represent the lumped thermal capacity of the zone air and the constructions. The applied state space representation is 
given in (1b-1c) with state matrix A, system states x for time step t+n forecasted at time t, input matrix B, control 
actions u, disturbance matrix E, disturbances d, output matrix C and output y (i.e. apartment air temperatures).

Table 1. Specification of input and state constraints
Apt. 1 Apt. 2 Apt. 3 Apt. 4 Apt. 5 Apt. 6 Apt. 7 Apt. 8 Apt. 9 Apt. 10

Area       [m2] 81 94 81 94 81 94 81 94 50 94
Pmax           [W/m2] 50 50 50 50 50 50 50 50 50 50
Tmin        [°C] 20 22 20 22 20 22 20 22 20 22
Tmax            [°C] 24 26 24 26 24 26 24 26 24 26
∆Tmin    [°C/h] -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1
∆Tmax     [°C/h] 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

The centralized and decentralized MPC schemes were first evaluated in terms of their ability to track the lower 
comfort bounds, which constitutes the most energy efficient control approach. Secondly, the MPC schemes’ ability to 
achieve end-user cost savings was assessed by considering time varying energy prices as input weights. Historical 
day-ahead power market prices for the simulation period were used, cleared for the bidding area western Denmark 
(DK1). For the sake of simplicity, taxation of electricity was omitted, thus results presented in absolute values are not 
directly comparable to actual costs paid by building owners.
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3. Results and discussion

The ability of the centralized and decentralized MPC schemes to track the lower comfort bound for one week in 
apartment 9 in the retrofitted building, with and without insulated partition wall is displayed in Figure 1. For the 
building with existing partition walls, the centralized MPC scheme kept the air temperature close to the temperature 
set-point, whereas the decentralized MPC scheme overestimated the heating demand, leading to a positive temperature 
offset compared to the temperature set-point. The positive offset was caused by heat gains from adjacent apartments 
with higher temperature set-points (see Table 1). When insulating the partition walls, the heat exchange between 
adjacent apartments was reduced, resulting in a similar performance of the centralized and decentralized MPC
schemes. 

Figure 1. Simulation results of the room temperature in apt. 9 during one week.

The mean biased error (MBE) between the temperature set-points and the resulting air temperatures during the 
entire simulation period is specified in Table 2 (+ indicates insulated partition walls). The MBE supports the 
observations in Figure 1, where the decentralized MPC scheme in buildings with existing concrete partition walls led 
to positive and negative offsets for the apartments with a set-point of 20°C and 22°C, respectively. In the case with
the insulated partition walls, the MBE for the two control schemes were very similar. In some apartments, the
decentralized MPC scheme even achieved better results than centralized MPC, presumably because the required multi-
apartment model was more difficult to identify than the single-apartment models, which led to a significant increase 
in the uncertainty of the parameter estimates [5].

Table 2. Mean biased error
Building Control Apt. 1 Apt. 2 Apt. 3 Apt. 4 Apt. 5 Apt. 6 Apt. 7 Apt. 8 Apt. 9 Apt. 10
Existing Centralized 0.00 0.01 0.00 0.02 0.00 0.01 0.02 0.02 0.00 0.01

Decentralized 0.06 -0.09 0.10 -0.07 0.12 -0.04 0.07 -0.07 0.12 -0.03
Existing+ Centralized -0.01 0.03 -0.02 0.03 -0.01 0.01 -0.01 0.02 0.01 0.00

Decentralized 0.01 -0.01 0.03 -0.01 0.03 -0.01 0.02 -0.01 0.03 0.00
Retrofit Centralized -0.01 0.03 -0.01 0.02 -0.02 0.02 -0.01 0.04 -0.02 0.00

Decentralized 0.06 -0.09 0.10 -0.09 0.11 -0.05 0.06 -0.08 0.17 -0.05
Retrofit+ Centralized -0.03 0.03 -0.02 0.02 -0.02 0.02 -0.04 0.03 0.00 -0.01

Decentralized 0.00 -0.02 0.02 -0.02 0.02 -0.01 0.01 -0.02 0.03 -0.01

The mechanism of a conventional PI-controller and the E-MPC schemes using historical day-ahead prices during 
one week are displayed in Figure 2 for the retrofitted building with the existing partition walls and with insulated 
partition walls. In both cases, the conventional PI-controller maintained the air temperature close to the specified lower 
comfort set-point of 20°C at all times. The E-MPC schemes, however, exploited the structural thermal mass to reduce 
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the space heating consumption in high price periods by increasing the air temperature within the comfort bounds at 
times with low prices. Since the optimal control actions depend on the state of the building at any given time, direct 
comparison between the two control schemes at each time instance should be done carefully. However, in the case 
with the existing concrete partition walls, discrepancies between the two E-MPC schemes are clearly distinguishable
on Thursday and Friday, where only the centralized E-MPC scheme increased the temperature. Furthermore, the 
temperature offset of the decentralized control scheme identified previously was also apparent in the case with the 
concrete partition walls. For the insulated partition walls, the control schemes led to almost identical operations.

Figure 2. Simulation results of the room temperature in apt. 9 during one week using E-MPC.

Table 3 lists the total costs of each of the three control schemes (PI, centralized E-MPC and decentralized E-MPC) 
for the four building cases: before and after a general retrofit of the building envelope and with and without insulated 
partition walls. Furthermore, the total achieved cost savings and mean comfort violations compared to the PI-controller 
are specified. The standard deviations across the apartments are specified in the parentheses. The results suggest that 
centralized and decentralized E-MPC schemes achieved total cost savings similar to those of the PI controller. The 
decentralized control scheme, however, tended to distribute cost savings unevenly between the apartments in the 
scenarios without insulated partition walls. Further inspection of the simulation results indicated that this was due to 
lower achieved cost savings in the apartments with a lower comfort bound of 20°C; here, the E-MPC scheme planned 
the heating operation without considering the heat gains from adjacent apartments. This effect was significantly 
reduced in the scenarios with insulated partition walls. Furthermore, in the case with the insulated partition walls, the 
decentralized control scheme out-performed the centralized control scheme in terms of maintaining comfort, 
presumably because the multi-zone models are more challenging to identify.

Table 3. Summarized simulations results for all ten apartments

Building Control Total cost Cost savings Relative 
cost saving

Mean comfort 
violations

Existing PI € 1040 89.7 (4.3) °Ch
Centralized € 1010 € 30 (0.66) 2.9% 18.1 (9.8) °Ch
Decentralized € 1011 € 29 (1.37) 2.8% 22.7 (9.4) °Ch

Existing+ PI € 1001 84.4 (2.9) °Ch
Centralized € 977 € 24 (0.42) 2.4% 15.9 (2.6) °Ch
Decentralized € 979 € 22 (0.50) 2.2% 11.2 (1.5) °Ch

Retrofit PI € 327 43.9 (3.0) °Ch
Centralized € 293 € 34 (0.86) 10.4% 9.3 (8.7) °Ch
Decentralized € 293 € 34 (1.59) 10.4% 18.0 (8.7) °Ch

Retrofit+ PI € 323 38.5 (1.7) °Ch
Centralized € 287 € 36 (0.55) 11.1% 7.5 (3.0) °Ch
Decentralized € 287 € 36 (0.63) 11.1% 6.9 (2.2) °Ch
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4. Conclusion

This paper reports on a simulation-based study of the performance differences between centralized and 
decentralized MPC schemes for optimal space heating operation in an existing and retrofitted multi-apartment 
building. The results of a 90-day simulation period showed that the decentralized MPC in buildings without insulated 
partition walls tended to result in a constant offset from the specified temperature set-point. Consequently, the 
achieved total cost savings for both schemes were found to be similar, but the decentralized control scheme failed to 
distribute the savings evenly across all apartments. Insulating the partition walls reduced the constant temperature 
offsets when applying the decentralized control scheme, which was reflected in the results. The decentralized control 
scheme was not only able to distribute cost savings evenly, but it also out-performed centralized control in terms of 
maintaining temperatures within the comfort bounds. This reversal in the optimal approach is likely caused by the fact
that the advantages of centralized control diminish as insulation is added between zones, combined with the fact that 
the more complicated setup of the centralized control was more prone to uncertainty issues when identifying a building 
model for MPC. 

Overall, the results suggest that decentralized control schemes can be applied in multi-apartment buildings, 
especially where partition walls are insulated for noise-reduction purposes. However, it is difficult to specify a general
level of insulation, as the performance depends e.g. on the building, the modeling technique and the control purpose. 
Applying decentralized MPC also simplifies and reduces the time-consuming work involved when implementing 
MPC schemes. Furthermore, decentralized control schemes allow apartment owners to specify control objectives 
themselves, just as it allows for individual apartment owners to decide if and when to invest in advanced control.
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1. Introduction

Economic model predictive control (E-MPC) of building energy systems is an optimization based control scheme 
that uses a model of the building thermodynamics, forecasts of disturbances and measurements of the building state 
to determine a sequence of optimal control actions. Applying E-MPC together with time-varying energy prices to 
minimize the space heating operational cost and perform demand response (DR) have been investigated in several 
studies [1-4]. These E-MPC schemes achieve economic benefits by using the thermal capacity of the structural mass 
as storage by charging and discharging it with the room heating system in periods with low or high prices, respectively. 
The schemes therefore result in fluctuating indoor temperatures, and it is therefore necessary to ensure that economic 
benefits are not violating the thermal comfort of the occupants. 

A simple E-MPC formulation in this regard is to assume that occupants are comfortable as long as temperatures 
are within a predefined comfort band, e.g. defined by a preferred temperature and an acceptable deviation from it. 
Using this comfort formulation, several studies have suggested significant cost savings and DR potentials. Halvgaard 
et al. [5] minimized the operational cost of a heat pump and achieved cost savings of 25% compared to traditional 
control. Pedersen et al. [4] optimized the space heating operation in a multi-apartment building which, compared to a 
conventional PI-controller, achieved cost savings of up to 6% and reduced energy consumption in peak-hours with up 
to 47%. Vrettos et al. [1] applied E-MPC for heat pump operation and achieved cost savings of 18.4% compared to a 
rule-based controller. However, an E-MPC scheme using this comfort formulation will often result in the controller 
tracking either the upper or the lower boundary of the comfort band [4]. This behavior means that the air temperature 
rarely is equal to the preferred temperature specified by the occupants. Another shortcoming of this formulation is that 
the building has no downward flexibility to offer in periods where the lower comfort bound is tracked, i.e. it is not 
possible to reduce the space heating demand if this service is requested by the supply side [6].

Another approach to ensure comfort is to formulate a multi-objective optimization (MOO) problem, i.e. 
simultaneously minimize operational costs and thermal comfort violations [2, 7-10]. Avci et al. [2] used an E-MPC 
scheme to minimize energy consumption and penalize temperature deviations from the preferred temperature, and 
introduced a discomfort tolerance index to weigh the objectives. Compared to a baseline controller, the E-MPC scheme 
reduced operational cost with 13% while increasing the mean temperature with 0.15°C. Morales-Valdés et al. [8]
evaluated several MOO formulations and suggested to include Fanger’s predicted mean vote (PMV) index or predicted 
percentage dissatisfied (PPD) index in the cost function which, however, led to a nonlinear optimization problem. 
Therefore, Cigler et al. [7] proposed a convex approximation of the PMV index in the cost function. However, 
including the PMV index in the cost function relies on assumptions regarding clothing level and metabolic rate, as 
well as measurement of air speed, relative humidity and the mean radiant temperature. Furthermore, the performance 
reported in the above-mentioned MOO studies depends on the selection of the assigned relative weights which 
essentially vary in time as they depend on the building conditions. 

Current studies address thermal comfort in E-MPC formulations very differently, which may affect the reported 
DR potentials. This paper therefore reports on a simulation-based study, where the performance of an E-MPC scheme 
using both single-objective and multi-objective formulations to address thermal comfort violations is investigated.  
The aim is to provide a quantitative performance assessment of the different formulations in terms of comfort 
violations and operational cost, and to discuss their practical implications.

2. Method

A residential building consisting of ten apartments and five stairwells located in Aarhus, Denmark, was chosen as 
test case. A detailed EnergyPlus (EP) model was used to represent the building to be controlled; information on 
geometry and thermal characteristics of the building are provided in ref. [4] in which the building is denoted retrofit8.
Furthermore, 100mm insulation was added to the partitioning walls to minimize the effect of inter-zonal heat exchange
and thereby allow for a decentralized control principle [11]. The E-MPC scheme was implemented in MATLAB and 
used to operate the space heating of the EP model through co-simulation facilitated by the Building Controls Virtual 
Test Bed (BCVTB) [12]. The simulations were carried out for the period December 1, 2016 to February 28, 2017, 
which constitutes the coldest period of the heating season in Denmark, using an EP weather file based on on-site 
weather measurements. Historical day-ahead power market prices (cleared for Western Denmark, DK1 region) from 
the simulation period were used. To ease the interpretation of the results, internal gains originating from occupants 
and equipment were omitted, and perfect weather and price forecasts were assumed.
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2.1. Economic model predictive control

At each time step the E-MPC scheme (eq. 1a-1g) determines a sequence of optimal space heating control actions 
which minimize temperature deviations from the preferred temperature (j1) and the operational costs (j2) for a finite 
prediction horizon N (set to 72 hours in this study). 

… … … … … …    minimize
𝜀𝜀𝜀𝜀,𝑢𝑢𝑢𝑢

      𝝐𝝐𝝐𝝐𝑇𝑇𝑇𝑇𝐐𝐐𝐐𝐐 𝝐𝝐𝝐𝝐���
j1

+ 𝒄𝒄𝒄𝒄𝑇𝑇𝑇𝑇𝒖𝒖𝒖𝒖�
j2

(1a)

                         subject to     𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1 = 𝐀𝐀𝐀𝐀𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛  + 𝐁𝐁𝐁𝐁𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 + 𝐄𝐄𝐄𝐄𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛                                ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1b)
…………       .𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛+1 = 𝐂𝐂𝐂𝐂𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1                                                    ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1c)
                           ϵ𝑛𝑛𝑛𝑛+1 = 𝑇𝑇𝑇𝑇preferred -  𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛+1                                  ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1d) 
                           0 ≤ 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 ≤ 𝑃𝑃𝑃𝑃max                                                   ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1e)
                           𝑇𝑇𝑇𝑇min ≤ 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛+1 ≤ 𝑇𝑇𝑇𝑇max                                             ∀𝑛𝑛𝑛𝑛 = 0, … ,𝑁𝑁𝑁𝑁-1 (1f)
                           𝑥𝑥𝑥𝑥0 = 𝑥𝑥𝑥𝑥(0) (1g)

where Q is a time-invariant symmetric matrix with main diagonal elements and c is the time-varying day-ahead prices. 
A state space representation of the building’s thermodynamics is specified in eq. 1b and eq. 1c. The control actions
are restricted by the maximum power Pmax of the heating system (eq. 1e), and the defined thermal comfort band (eq. 
1f), which may vary between the apartments as listed in Table1. Recent measurements of the air temperature are used 
to update the current state of the building in eq. 1g with a Kalman Filter.

Table 1. Input and state constraints
Apt. 1 Apt. 2 Apt. 3 Apt. 4 Apt. 5 Apt. 6 Apt. 7 Apt. 8 Apt. 9 Apt. 10

Pmax 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2

Tpreferred 20.5 °C 22.0 °C 21.5 °C 22.0 °C 20.5 °C 21.5 °C 21.0 °C 20.0 °C 22.0 °C 21.5 °C
Tmin 19.5 °C 20.5 °C 20.5 °C 20.0 °C 19.0 °C 19.5 °C 19.0 °C 19.0 °C 20.5 °C 19.5 °C
Tmax 21.5 °C 23.5 °C 22.5 °C 24.0 °C 22.0 °C 23.5 °C 23.0 °C 21.0 °C 23.5 °C 23.5 °C

Since the two objectives j1 and j2 are conflicting, there is generally no unique solution that optimizes both objectives 
simultaneously, which suggests that a useful approach to solving the MOO is that of Pareto optimality [13]. The set 
of Pareto optimal solutions, which from a mathematically point of view is equally acceptable, forms a Pareto front. 
The simplest method to obtain Pareto optimal solutions is convex combination of j1 and j2, e.g. the weighted sum 
approach (as used in ref. [2, 7, 8]): J = λ ∙ j1 + (1-λ) ∙ j2, where λ ∈ [0,1]. Note that if λ=1 the control scheme is a 
traditional reference tracking control problem, whereas if λ=0 the control scheme is similar to the ones used in ref. [1, 
4, 5]. However, as mentioned in the introduction, the performance of this approach depends significantly on the 
assigned relative weights which are difficult to choose when the Pareto front is steep or if the objective functions have 
very different ranges [13, 14]. Furthermore, thermal discomfort can be difficult to quantify since thermal comfort has 
no direct economic translation. To overcome this, Das and Dennis [13] proposed a normal boundary intersection (NBI) 
method to approximate the Pareto front with evenly distributed discrete solutions that are independent of weights 
between objectives (see Figure 1).

Figure 1. Normalized optimal Pareto solutions with λ increments of 0.05.
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When the set of discrete Pareto solutions has been determined, several approaches exist to select and implement 
an agreeable trade-off between j1 and j2 [15]. In this study, the compromise solution is selected, which corresponds to 
the solution with the shortest Euclidean distance to the utopia point. The utopia point is, as the name suggests, an ideal 
solution when minimizing each objective independently. Figure 1 displays the results of the weighted sum and NBI
methods for a scenario with two objectives with different ranges, and indicates that NBI is more resistant to ill-
conditioned problems. The utopia point is origin, the solid line is the continuous Pareto front and the black and blue
circles mark the obtained discrete Pareto solutions and the compromise solution, respectively.

Since an MOO problem is computationally demanding to solve compared to a single-objective optimization (SOO) 
problem, a SOO formulation is proposed which aims at imitating the behavior of MOO. The formulation builds on 
eq. 2a-2g. However, Q is an appropriate sized matrix of zeros (i.e. only objective j2 is effective). Furthermore, 
additional state constraints are specified as illustrated in Figure 2, describing the maximum acceptable temperature 
deviations within the prediction horizon using the parameter εmax [°Ch] which is then a tuning parameter to indicate 
preference between thermal discomfort and operational cost minimization.   

Figure 2. Principle of proposed additional six state constraints

3. Results and discussion

Simulation results obtained using the following four different E-MPC formulations have been evaluated with regard 
to their ability to reduce deviations from the preferred temperature (see Table 1) and to minimize operational costs: 

a) Single objective: Minimize temperature deviations from the preferred temperature.
b) Single objective: Minimize operational costs.
c) Multi objective:  Compromise solution (see Figure 1) between temperature deviations and cost.
d) Single objective: Minimize operational costs, but with additional state constraints (see Figure 2).

The objectives and constraints imposed in the four different control schemes vary as a result of the different 
formulations, thus rendering any direct comparison of results unfair from a mathematical point of view. The evaluation 
is therefore based on quantification of the four problem formulations on the achieved results. Figures 3a-d depict the 
indoor air temperature for a one week period in apartment 3 using the four E-MPC schemes with the time-varying 
energy prices c depicted at the bottom of Figure 3. Formulation a) ensured a temperature (solid line) close to the 
preferred temperature at all times, whereas the three other formulations utilized the thermal comfort band (dashed 
lines) to minimize operational cost. Formulation b) caused the E-MPC scheme to mainly track the lower and upper 
comfort bounds in order to exploit price fluctuations by charging and discharging the thermal capacity of the building. 
Formulation c) tracked the preferred temperature for the majority of the time, allowing deviations in temperature when 
prices encouraged it. The proposed formulation d) with εmax = 9°Ch exhibited similar behavior and DR-potential as c).
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Figure 3. Mechanism of the four E-MPC schemes and the energy price during one week.

The normalized total operational cost during the entire 90-day simulation period as a function of the normalized 
average root-mean-square-error (RMSE) across the ten apartments is displayed in Figure 4 for the four formulations. 
The solutions obtained using problem formulations a), b) and c), respectively, are marked with “x” while solutions for 
formulation d) with different εmax values are illustrated with “o” (displayed numbers are εmax). Formulation a), which 
was a traditional set point tracking control problem, resulted in the lowest deviations from the preferred set point 
temperature but also the highest operational cost. Formulation b) achieved the lowest operational cost but also the 
highest RMSE. Formulation b) may therefore have overestimated the DR potential since occupants, in reality, may 
experience uncomfortable thermal conditions when tracking the lower comfort bound for long consecutive periods. 
Formulation c) demonstrated an acceptable compromise between the two objectives while formulation d) achieved 
similar performance as formulation c). Figure 4 indicates an almost convex combination of the two solutions a) and 
b) when choosing different values for εmax, which could not be achieved by convex combination of the objectives (e.g. 
using the weighted sum approach) because of the different ranges of the objectives. Furthermore, formulation c) and 
d) enable downward flexibility, i.e. it is possible to reduce space heating if this service is sought by the grid.

Figure 4. Normalized mean RMSE and total operational cost for all ten apartments.
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4. Conclusion

This paper reports on a simulation-based study aimed at quantifying the performance of an E-MPC scheme using 
four different optimization problem formulations that handle thermal comfort in different ways. It is difficult to 
conclude which of the four formulations is preferable as it depends on whether – and how much – the occupants are 
willing to deviate from their preferred indoor air temperature to minimize operational cost through demand responses. 
However, the parameter εmax in the proposed single-objective problem formulation – a parameter describing the 
maximum acceptable deviations from the preferred indoor air temperature – could be communicated to occupants as 
a personal indicator for the acceptable tradeoff between deviations from the preferred temperature and cost savings 
or, in other words, their ‘DR willingness’.  
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1. Introduction 

Model predictive control (MPC) is a versatile control scheme applicable in a wide range of fields, which use a plant 
model to predict and optimize the future behavior of the dynamical system in question. Several studies have suggested 
that MPC of heating, ventilation and air-conditioning systems in buildings holds significant demand response 
potentials, see [1-3] to mention a few. A practical challenge when using MPC for building systems control is to 
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construct an adequate model of the building thermodynamics. Such models can be obtained through system 
identification techniques using measured data. It is often suggested to generate the training data using intrusive 
experiments, which aims to excite the dynamics, e.g. a pseudo random binary sequence (PRBS) [5-6]. A PRBS is 
periodic and deterministic with white noise-like properties [4]. Consequently, models can be fitted well at all 
frequencies, or a band-limited selection of frequencies, and have a low crest factor and high signal to noise ratio (SNR). 
However, it is often not possible or desirable in practice to generate a perfect PRBS for a space heating system. 
Baseboard heaters are often equipped with a thermostat with direct feedback (e.g. a P-regulator) that must be 
circumvented. This might be done by changing the thermostat setpoint according to the PRBS, but it is difficult to 
obtain an exact PRBS heat power input using a temperature setpoint without a risk of violating user thermal comfort. 

To avoid week-long excitation experiments with high risk of user comfort violations before MPC can be applied, 
we propose that historical data already logged by the energy management system during standard heating system 
operation can be used to estimate an initial thermal building model. This initial model is likely to be of relatively poor 
quality since standard operation often uses a feedback controller (e.g. P-regulator) to ensure that the indoor temperature 
only have small deviations from the set point and therefore a low SNR. However, this drawback may be more than 
compensated by the fact that intrusive and costly experimentation can be avoided. The initial model generated from 
standard operation data can be applied directly in an MPC subjected to time-varying tariffs for a certain training period 
and then re-identified using the operation data obtained in the training period. This new data set will be more 
informative than the historical data, and it may result in a just-as-good – or even more suitable – model for MPC as a 
model based on a PRBS experiments since it have frequency content close to what could be expected when the space 
heating system is operated to minimize energy cost. This paper reports on a simulation-based study that aims to 
investigate whether the above-described proposal has the postulated benefits.  

2. Method 

The case building used in this study was a newly retrofitted two-bedroom apartment (75 m2) equipped with 
electrical baseboard heaters. The apartment was modelled in EnergyPlus (EP) and the heaters received control signals 
from MATLAB via the Building Controls Virtual Test Bed (BCVTB) [8] and it was therefore possible to apply MPC 
controllers (Section 2.2) and online system identification (Section 2.3).  For further details regarding the model 
assumptions, see Pedersen et al [7]. 

2.1. State-space representation 

It was assumed that the thermal dynamics of the EP case building could be approximated with sufficient accuracy 
by a low-order state-space model: 

 
                         𝑥𝑥[𝑘𝑘 + 1] = 𝑨𝑨𝑥𝑥[𝑘𝑘] + 𝑩𝑩𝑢𝑢[𝑘𝑘]+ 𝑬𝑬𝑑𝑑[𝑘𝑘] + 𝑤𝑤[𝑘𝑘] (1a) 

…𝑦𝑦[𝑘𝑘]         = 𝐂𝐂𝑥𝑥[𝑘𝑘] + 𝑣𝑣[𝑘𝑘] (1b) 

The state matrix A represents the dynamics of the system and describes how the states x evolve from time step k to 
k+1. The input matrix B and the disturbance matrix E describes how control inputs and uncontrollable (but 
measurable) disturbances are channeled to the states, respectively. The output matrix C describes how the states are 
channeled to the output y while w and v are process and measurement noise, respectively. In this study, the system 
was treated as a black box and the states x does therefore not correspond to physical entities. The input u was heating 
power while the components of the disturbance d were external air temperature and solar irradiation. The time-varying 
internal heat load from two occupants was included in the EP model, but was assumed unmeasured and unpredictable 
to add realism to the simulations and was therefore included in the process noise term w. The measured output y was 
room air temperature and a white noise with standard deviation = 0.067 °C was imposed on the temperature sensor to 
further increase realism. 
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2.2. Model predictive control 

In each hour, the MPC solved a mathematical program (Eq. 2a-2f) and determined hereby a sequence of electrical 
heating power actions that minimized the operational costs for a finite prediction horizon of 48 hours (Eq. 2a). The 
optimal solution had to respect system dynamics (Eq. 2b-c) as well as limitations on maximum radiator power (Eq. 
2d) and acceptable room temperatures (Eq. 2e). Only the first control action u[0] was implemented and the program 
solved the program again in the preceding hour but for a shifted time-horizon (receding horizon). The initial state x0 
was estimated to x̂ini by a Kalman filter incorporating noisy sensor feedback (Eq. 2f). Time-varying tariffs c[k] were 
taken into account to allow for price-based demand response by shifting consumption from high- to low price periods.  

… … … … … …    minimize
𝒖𝒖

      𝐽𝐽 = ∑ 𝑐𝑐[𝑘𝑘] ∙ 𝑢𝑢[𝑘𝑘]
47

𝑘𝑘=0
 (2a) 

                         subject to     𝑥𝑥[𝑘𝑘 + 1] = 𝑨𝑨𝑥𝑥[𝑘𝑘] + 𝑩𝑩𝑢𝑢[𝑘𝑘]+ 𝑬𝑬𝑑𝑑[𝑘𝑘] (2b) 

…………       . 𝑦𝑦[𝑘𝑘] = 𝑪𝑪𝑥𝑥[𝑘𝑘] (2c) 

                            0 ≤ 𝑢𝑢[𝑘𝑘] ≤ 1000 𝑊𝑊 (2d) 

                            21 ℃ ≤ 𝑦𝑦[𝑘𝑘] ≤ 24 ℃ (2e) 

                            𝑥𝑥[0] = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 (2f) 

2.3. System identification procedure 

The matrices A, B, E and C were estimated using the N4SID subspace identification [4]. A number of design 
choices are available in subspace identification and it is out of the scope to go into any details thereon. The model 
order (i.e. number of states) was determined based on the logarithm of Hankel singular values [9]. The process does 
not involve cross validation and the whole dataset was used for training (i.e. no need for validation data). The 
identification procedure was fully automated and the model could therefore be re-identified continuously (i.e. every 
month) although this study only re-identifies a model once after 14 days.  
 

The initial model was identified based on EP simulation data from October 1 to December 31, where the apartment 
was controlled by a P-regulator to track a set point of 21 °C. The initial model was used in the MPC for 14 days from 
January 1 to 14, generating a new data set used to identify a new model, which were used in the MPC for the remaining 
heating season of January 14 to April. The simulation results are presented in the following section and compared to 
results obtained by using the common approach of PRBS. 

3. Results and discussion 

Figure 1 (top) shows data logged from standard space heating operation with a P-regulator tracking a constant set 
point of 21 °C in a historic period from oct-jan. Notice that the measured room air temperature has high frequency 
fluctuations due to the imposed sensor noise. This data set was used to identify an initial state space second order 
model. This initial model was then used in the MPC for a period of 14 days. The generated heating input from this 
period and the resulting indoor air temperatures are shown in Figure 2 (top). The indoor air temperatures are within 
the predefined temperature range (Eq. 2e). This new dataset was used to identify a new second order model, which 
was used in the MPC for the rest of the heating season (end March). The performance of this approach was compared 
to a model generated from a PRBS experiment shown in Figure 2 (bottom). The PRBS input led to violations of the 
predefined temperature range in Eq. 2e. 

 Besides not violating the temperature range, the MPC-based excitation signal has the benefit of being negatively 
correlated with the energy tariffs (boosts temperature in low price periods) and as such, it is more cost-effective than 
the PRBS. In fact, the MPC-based signal reduces costs compared to a normal constant set point tracking P-regulator.  
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Figure 1. Historical data from normal operation.  

 

 
Figure 2. Heating power (black) in the training period when using PRBS and MPC generated heat input, respectively. The red curves show the 

resulting room temperatures. 

Figure 3 depicts the one-step ahead prediction errors for the different models. For the MPC-based model, the errors 
to the left of the vertical dotted line are the errors for the initial model based on historical data while the errors to the 
right belong to the re-identified model based on MPC generated input. It clearly shows that the new model contains 
less prediction errors. For comparison, the bottom plot shows the prediction errors for the model based on PRBS input 
and they are seen to have errors of the same magnitude.  
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Figure 3. Top plot depicts the one-step ahead prediction errors for the MPC-based model before and after the re-identification (indicated with 

dotted vertical line). The bottom plot shows the one-step ahead prediction errors for the PRBS based model. 

The MPC using a model based on the MPC generated input reduced energy costs by 13.7% compared to the baseline 
P-controller in the period January 15 to April. For comparison, the MPC using a PRBS based-model reduced costs by 
13.5% and thus no significant difference in performance. 

Conclusion 

This paper proposes a method that avoids the use of dedicated excitation experiments, which often are regarded as 
mandatory to make sufficiently precise system identification of models for MPC of space heating systems. This paper 
presents simulation results suggesting that data from standard operation of the heating system can be used to identify 
an initial model with sufficient quality to be used by an economic MPC for a subsequent training period. Data from 
this training period can then be used to generate new control input that are informative enough to re-identify a model 
with qualities comparable to that of a PRBS based model. The benefits of this approach is that it does not require an 
intrusive experimental period with potential thermal discomfort and excessive energy costs. Furthermore, the 
perspective of this method is that re-identification of the building model can be done with an appropriate frequency 
to make it up-to-date with current conditions. Further studies are needed to investigate the benefits of a running re-
identification of the model used for MPC of space heating systems.  
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Introduction  

It remains practically infeasible to gather all the required 

data inputs for physics-based urban building-by-building 

energy modelling (Reinhart and Davila, 2016). Simplifi-

cations may therefore be necessary, e.g. through arche-

type segregation of the building stock to reduce the task 

of data acquisition and calibration of uncertain parame-

ters. The authors of this extended abstract recently pro-

posed a novel hierarchical archetype calibration method-

ology that allows a robust probabilistic inference of un-

known archetype input parameters for unseen buildings 

belonging to an archetype (Kristensen et al., 2018). The 

methodology has been proven fast and accurate for ur-

ban-scale predictions of aggregated building energy use 

under uncertainty. 

In this contribution we demonstrate how hierarchically 

calibrated archetype models of Danish detached single-

family houses (SFH’s) can accurately predict the urban 

district heating energy use of unseen buildings in two 

different suburban towns. We end up by discussing the 

various practical applications of such urban models. 

Methods 

Data 

Three-hourly district heating (DH) energy consumption 

data for 27,000 SFH’s located in the municipality of 

Aarhus, Denmark, were coupled with six building-

specific data fields from the Danish Building and Dwell-

ing Register (BDR): 1) usage type, 2) construction year, 

3) footprint, 4) number of floors, 5) basement and 6) at-

tic area utilized for living/heated. The DH time series 

consisted of combined energy use for space heating and 

on-site domestic hot water (DHW) preparation.  

Archetype segregation 

The building stock was partitioned into nine SFH arche-

types following the building stock segregation per-

formed Danish Building Research institute as part of the 

European research project TABULA (Wittchen and 

Kragh, 2012). Only the construction year was used for 

segregation. The nine archetype age groups are shown in 

Table 1. 

Building energy modeling 

The DH energy use time series of each building was 

modeled using the hourly dynamic resistance-

capacitance model of ISO 13790:2008 that treats each 

building as a single thermal zone, in combination with a 

simple DHW consumption model. The only available 

and known data inputs were the footprint, number of 

floors, and the heated basement and attic area (besides 

basic climate data logged from a nearby weather station). 

All other inputs necessary to simulate the BEM were un-

known at the level of individual buildings. A-priori 

probability density functions (PDF’s) or fixed values 

were therefore given each uncertain input parameter at 

the level of archetypes to reflect historical data and edu-

cated guesses.  

Hierarchical archetype calibration 

The archetype calibration methodology proposed by 

(Kristensen et al., 2018) was applied to infer a-posteriori 

PDF’s for six of the uncertain parameters per archetype: 

1) window-floor ratio, 2) U-value of ext. walls/roof, 3) 

capacity of thermal mass, 4) infiltration airflow@50pa, 

5) occupant density, and 6) room heating set point tem-

perature. The methodology applies a Bayesian hierar-

chical formulation that binds training buildings together 

around a shared archetype estimate whereby the infer-

ence draw strength from all training building datasets 

simultaneously. The methodology allows training build-

ings that are very “likely” to dominate the inference of 

uncertain parameters, while outlying/unlikely buildings 

are given less weight – a process known as “shrinkage”. 

Each archetype was trained on a sample of 35 randomly 

selected SFH’s from the dataset, each with time series of 

three-hourly DH energy use of January 2017 (248 data 

points). 

Urban case towns for prediction 

Two suburban case towns were selected for validation of 

the urban-scale predictive capabilities of the archetype 

framework: 1) “DK-8250 Egå” and 2) “DK-8330 Beder” 

(Table 1). February 2017 (224 data points) was used for 

validation. 

Table 1 
Classification of case town buildings into nine archetypes. 

Archetype  partitioning DK-8250 Egå DK-8330  Beder 

Arch. 1 (1851-1930) 105   (4.9%) 56   (8.1%) 

Arch. 2 (1931-1950) 37   (1.7%) 43   (6.2%) 
Arch. 3 (1951-1960) 74   (3.4%) 12   (1.7%) 

Arch. 4 (1961-1972) 1166 (54.2%) 302 (43.8%) 

Arch. 5 (1973-1978) 369 (17.1%) 83 (12.0%) 
Arch. 6 (1979-1998) 226 (10.5%) 149 (21.6%) 

Arch. 7 (1999-2006) 129   (6.0%) 37   (5.4%) 
Arch. 8 (2007-2010) 21   (1.0%) 4   (0.6%) 

Arch. 9 (2011-2015) 26   (1.2%) 4   (0.6%) 

Total, nb 2153  (100%) 690  (100%) 
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Results 

The measured and simulated DH energy use of the two 

case towns is shown in Fig. 1 and measures of predictive 

performance are given in Table 2.  

 
Fig. 1. Measured and simulated aggregated DH energy use 

(three-hourly) of two suburban towns, respectively. Simulated 

energy use consist of the 95% central posterior density region 

derived from aggregating 1000 random simulations from each 

of the individual building energy models. The average of the 

1000 aggregated simulations is highlighted in black.  

Table 2 
Measures of predictive performance.  

Metric DK-8250 Egå DK-8330  Beder 

NMBE 0.4% 4.2% 
MAPE 6.8% 7.2% 

CVRMSE 9.0% 8.5% 

R2 74.0% 78.4% 

The simulated energy use fit the measured energy use 

very well. The entire energy consumption of the valida-

tion period was predicted within a 4.2% error margin for 

both towns when measured with the normalized mean 

bias error (NMBE) metric. The accuracy of which indi-

vidual data points (three-hourly values) were predicted 

was measured with the mean absolute percentage error 

(MAPE) metric to be within 7.2%. The coefficient of 

variation of the root mean squared error (CVRMSE) and 

the coefficient of determination (R
2
) measures the varia-

bility of the residuals and thus the explanatory power of 

the predictions. The two urban models explained approx. 

74%-78% (R
2
-values) of the variability in the measured 

time series.  

Discussion 

Urban-scale models of this kind may allow city govern-

ments, utility companies, and other energy policy stake-

holders that work on the urban scale of neighborhoods, 

cities, or even entire building stocks, to plan and predict 

the effect of various energy efficiency measures and 

production strategies. The application of simple and pub-

licly available building and property information as the 

only need-to-have input data about the buildings to be 

predicted (besides measured energy use datasets from a 

subsample of buildings for the initial archetype calibra-

tion) provides a flexible platform that can easily be ex-

panded or further developed. Because the model struc-

ture is based on thermodynamic principles, it may also 

have use in investigating urban-scale effects on e.g. peak 

loads and overall energy use due to various interventions 

in the building stock, e.g. retrofitting, city densification 

or expansion, and building technologies for facilitating 

demand response programs.  

The application of archetypes to represent the building 

stock is obviously a crude simplification of its true di-

versity. However, applying a probabilistic representation 

and calibration of the uncertain archetype parameters on 

the level of individual buildings through a hierarchical 

structure like in this study preserves much of the natural 

heterogeneity that defines the variability within arche-

types. This preservation of heterogeneity is crucial for 

accurate predictions of new and unseen buildings from 

the archetypes. 

The hierarchical archetype framework proves capable of 

predicting the aggregated energy use of buildings in 

larger urban areas with high accuracy as demonstrated 

for two suburban towns in this study. Although the 

framework remains to be implemented for other build-

ings than detached single-family dwellings in order to 

fully represent a true urban area with many different 

building types, we do not believe this to pose any diffi-

culties for the framework. The temporal resolution of the 

predictions is in no way limited to three-hourly data 

points, but solely defined by the underlying physical 

model structure and quality of calibration data. Urban 

models of increasing temporal resolution will therefore 

be possible in the near future as the distribution of smart 

energy meters proceed to penetrate the marked.  
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