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Abstract

Urban building energy modelling (UBEM) is a growing research field that seeks to expand
conventional building energy modelling to the realm of neighbourhoods, cities or even
entire building stocks. The aim is to establish frameworks for analysing combined urban
effects rather than those of individual buildings, which city governments, utilities and
other energy policy stakeholders can use to assess the current environmental impact of
our buildings, and, maybe more importantly, the future effects that energy renovation
programmes and energy supply infrastructure changes might have. However, the task
of creating reliable models of new or existing urban areas is difficult, as it requires an
enormous amount of detailed input data – data which is rarely available. A solution to
this problem is the introduction of archetype modelling, which is used to break down the
building stock into a manageable subset of semantic building archetypes, for which, it
is possible to characterize their parameters. It is the focus of this thesis to explore and
develop new methods for stochastic archetype characterization that can enable archetype-
based UBEM to be used for accurate urban-scale time series analysis.

The thesis is divided into three parts. The first part acts as an introduction to case
study data of the residential building stock of detached single-family houses (SFHs) in
Aarhus, Denmark, which is used throughout the thesis for demonstration purposes.

The second part concerns the development of methods for archetype modelling.
Bayesian methods for archetype parameter calibration are presented that incorporates
the variability of the underlying cluster of buildings, and correlation between parameters,
to enable informed predictions of unseen buildings from the archetype under uncertainty.
The capabilities of archetype-based UBEM are further widened through the introduction
of dynamic building energy modelling that allows for time series analysis.

The third part of the thesis is devoted to demonstrating the usefulness of the proposed
archetype formulation as a building block for urban-scale applications. An exhaustive
test scheme is employed to validate the predictive performance of the framework before
establishing a city-scale UBEM of approx. 23,000 SFHs in Aarhus. It is used to
forecast citywide heating energy use from 2017 up until 2050 under uncertainty of energy
renovations and climate change.

Overall, the proposed archetype-based UBEM framework promises very useful for fast,
flexible and reliable urban-scale time series analysis, including forecasting the effects of
energy renovation or city densification, to establish an informed basis for energy policy
decision-making.

Keywords: urban building energy modelling; UBEM; single-family houses; building archetypes;
hierarchical modelling; archetype heterogeneity; propagation of uncertainty; Bayesian calibration; time
series data; district heating; energy renovation; climate change
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Resumé (Abstract in Danish)

Bygningers energiforbrug modelleres traditionelt for at dokumentere deres tekniske formå-
en til opnåelse af byggetilladelse, eller for at sandsynliggøre gevinsterne ved en kommende
energirenovering. I de senere år er der imidlertid opstået et behov for at udvide dette felt til,
også at omfatte modellering af grupper af bygninger, byområder, eller endda den samlede
bygningsmasse. Hermed er målet; at etablere simuleringsbaserede platforme til analyse-
ring af bygningsmassens resulterende interaktive of dynamiske effekter, i modsætning til de
meget enkeltstående effekter af konventionel bygningsmodellering. Disse dynamiske plat-
forme kan bruges af kommuner, forsyningsselskaber og andre energipolitiske interessenter
til at evaluere det nuværende energiforbrug, og evt. afledte miljømæssige konsekvenser
heraf, samt, måske endnu vigtigere; de fremtidige konsekvenser som energirenovering, og
infrastrukturmæssige ændringer i fx fjernvarmesystemer, måtte have. Etableringen af så-
danne storskalamodeller er dog stærk udfordret af de enorme mængder af inputdata, som
er nødvendig, for at beskrive de underliggende termodynamiske forhold. En løsning til
dette problem er anvendelsen af arketypemodellering, hvilket bruges til at nedbryde byg-
ningsmassen til en overskuelig mængde af arketypiske bygningskategorier. Det er denne
artikel-baserede afhandlings fokus at udvikle nye metoder for stokastisk identificering af
værdierne til sådanne arketypers underliggende inputparametre, samt at bruge disse til at
etablere storskalamodeller for timeopløst analyse af energiforbruget.

Afhandlingen består af tre dele. Den første del fungerer som en introduktion til case
data af danske parcelhuse i Aarhus Kommune, hvilket bruges gennem hele afhandlingen.

Anden del omhandler udviklingen af metoder for arketypemodellering, herunder
præsenteres nye Bayesianske metoder for kalibrering af arketypeparametre, som tager
højde for forskelligheden (heterogeniteten) i den underliggende bygningsmasse, samt kor-
relationen mellem de forskellige parametres værdier. Endvidere udbygges de prædikative
egenskaber af arketypebaseret modellering med indførelsen af en dynamisk beregnings-
kerne, som tillader timeopløst analyse og fremskrivning af energiforbruget.

Tredje del er tilegnet demonstreringen af de foreslåede arketypemetoder som byggesten
i konstruktionen af byskalamodeller. Den foreslåede metode for modelling af arketyper
valideres grundigt, før en samlet model etableres for næsten 23.000 parcelhuse i Aarhus.
Denne bruges til at fremskrive fjernvarmeforbruget fra 2017 til 2050 under forskellige
scenarier af energirenovering, samt under usikkerhed af klimaforandringer.

Afhandlingen præsenterer samlet set en arketypebaseret bygningsmodel for hurtig,
fleksibel og pålidelig analyse af byområders timeopløste energiforbrug, herunder evnen
til at fremskrive effekterne af fx energirenovering og byfortætning, til etableringen af
informerede beslutningsgrundlag for energipolitiske aftaler og konsekvensanalyser.

Nøgleord: by-skala; arketyper; parcelhuse; bygningsmasse; hierarkisk modellering; arketype heterogen-
itet; sandsynlighed; Bayesiansk kalibrering; tidsserie; fjernvarme; klimaforandringer; renovering
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Chapter 1

Introduction

1.1 The role of buildings in an energy-efficient future
The 21st Conference of the Parties (COP 21) of the United Nations Framework Convention
on Climate Change (UNFCCC) was held in Paris, France, in December 2015 where 197
State Parties to the UNFCCC came together for the first time for a common cause known
as the Paris Agreement to reduce global warming (United Nations, 2015). As of July
2018, 195 Parties have ratified the Paris Agreement’s long-term goal to keep the increase
in global average temperature to well below 2 ◦C, and to pursue efforts to limit the increase
to 1.5 ◦C only.

Cutting the energy consumption of buildings plays a key role in reaching these goals. In
the European Union, as of 2016, the residential and commercial building sectors together
account for 40 % of final energy consumption and about 36 % of final EU greenhouse gas
(GHG) emissions (Sajn, 2016). The residential building sector is particularly important,
accounting for as much as 25.7 % of the total energy consumption in the EU. Similar
numbers are seen for the U.S.1, where 39 % of the total U.S. energy consumption was
consumed by the residential and commercial sectors in 2017, of which residential buildings
accounted for 20.4 % (EIA, 2018).

Special focus is therefore brought towards increasing the energy efficiency of buildings,
and residential buildings in particular. The EU initiated an ambitious legislative frame-
work for increasing the energy efficiency of its Member States’ buildings in 2002 with
the adoption of the Energy Performance of Buildings Directive (EPBD – Directive
2002/91/EC), which introduced calculation methodologies for building energy use, energy
performance certificates (EPCs) and minimum requirements for building energy use. The
EPBD was later amended with the 2010 EPBD recast (Directive 2010/31/EU), which
introduced the concept of nearly zero-energy buildings (nZEB) as a mandatory EU
standard for all new buildings by 31 December 2020. However, focusing on new-build
alone is simply not sufficient; the current rate of approx. 1% (depending on the country)
at which the existing EU building stock is being energy renovated each year has to be
increased (European Commission, 2017). In 2012, the EU adopted the Energy Efficiency
Directive (EED – Directive 2012/27/EU), a new legally binding framework of measures for
the promotion of energy efficiency at all stages of the energy chain. The EED obligates EU
Member States to carry out energy efficient renovations on at least 3 % (by floor area) of
its own governmental buildings every year from 2014 onwards, and with the newest 2018

1Even though U.S. President Donald Trump withdrew the United States from the Paris Agreement in
June 2017, U.S. numbers are shown for the sake of comparison.
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CHAPTER 1. INTRODUCTION

amendments of the EPBD and the EED (Directive 2018/844/EU), EU Member States
are now required to draft strategies for a cost-effective transformation of their existing
buildings into fully de-carbonized national building stocks by 2050, and to set 2030 and
2040 milestones to evaluate this progress; this includes measurable progress indicators for
renovation rates and the overall energy efficiency of buildings.

While goals of reducing GHG emissions and increasing the energy efficiency of the
building stock are often set at the national or international level, major actions have
to be taken at the city scale (Li et al., 2017). In fact, many municipalities in Europe
have set goals of reducing GHG emissions that are more aggressive than those mandated
by their national government or the EU. For instance, more than 7,700 cities and local
authorities in 53 countries have now signed up the EU Covenant of Mayors for Climate
& Energy2, the world’s largest movement for local climate and energy actions. It is
a voluntary commitment initiated by the European Commission in 2008 to establish
ambitious local energy action plans that has later expanded to now also include plans
for adapting to climate change. Signatories are committed to developing action plans
describing the necessary steps towards reaching its 2020 or 2030 targets; all signatories
should at minimum endorse the EU 40% GHG reduction target by 2030.

Evaluating the progress and effects of energy-efficient renovations and other initiatives
to reduce building-related GHG emissions is very difficult, and it is further complicated
by the absence of data. Considerable work is still needed to map the energy consumption
of the building stock in time and space, and to analyse the energy renovation potential
of existing buildings, both on the national scale and city scale. These issues and societal
challenges constitute the overall thematic background of my thesis work; to investigate
and further develop methodologies for modelling building energy use on larger urban
scales, which can be used to analyse and evaluate energy conservation measures (ECMs)
in an effort to help meet the goal of a de-carbonized building stock. The remainder of the
thesis introduction is organized as follows: A comprehensive review of current practice and
state-of-the-art building stock modelling is provided in Sections 1.2-1.4, before summing
up challenges and knowledge gaps in the field in Section 1.5. These identified challenges
serve as the basis for establishing the research objectives of the thesis in Section 1.6.

1.2 Urban building energy modelling
Statistical modelling approaches have traditionally been used to assess the effects of energy
policy using macro-level (aggregated) data and various regression analysis techniques. An
example herof is the dynamic housing stock model by Sandberg et al. (2014a,b) that
uses statistical data on population size, number of persons per dwelling, the demand
for dwellings, etc., to estimate the demolition and renovation activity of the Norwegian
building stock towards year 2050. The model has later been expanded with the ability to
estimate the aggregated stock energy use and energy savings potential per m2 (Sandberg,
Sartori, Vestrum and Brattebø, 2016; Sandberg et al., 2017), and has also been applied
to the residential building stock of 11 European countries (Sandberg, Sartori, Heidrich,
Dawson, Dascalaki, Dimitriou, Vimm-r, Filippidou, Stegnar, Zavrl and Brattebø, 2016)
for similar purposes.

However, even though useful for the aggregated analyis of entire national building
stocks, these top-down methods fall short when it comes to evaluating the effects of specific
building technologies, for instance, energy retrofits, or when the aim is to forecast such

2Covenant of Mayors for Climate & Energy homepage: https://www.covenantofmayors.eu/
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1.2. URBAN BUILDING ENERGY MODELLING

effects into the future (Kavgic et al., 2010). Moreover, top-down models will fail when
discontinuity is encountered as they have no inherent capability to model discontinuous
changes in technology. These limitations make top-down models limited in their ability
to predict the impact of retrofit interventions, which is the theme of this thesis. For this
reason, focus is solely on bottom-up modelling. For the readers interested in top-down
modelling, I refer to the reviews of Swan and Ugursal (2009), Oladokun and Odesola
(2015), and Li et al. (2017).

Urban building energy modelling (UBEM) is a relatively new but rapidly growing
research field that seeks to facilitate analyses on the building stock by combining the effects
of individual bottom-up building energy modelling (BEM) into an aggregated urban-
scale model (Reinhart and Davila, 2016). Contrary to the purely statistical approaches
of top-down modelling, bottom-up UBEM relies on the use of either physical laws for
representing the thermodynamic mechanisms of buildings, or a statistical treatment on a
set of explanatory variables (Figure 1.1). These two sub-approaches to bottom-up UBEM
are outlined in the following sections.

UBEM

Top-downBottom-up

Statistical Physics-based Statistical

Indv. buildings ArchetypesRegression Neural network Other

Figure 1.1. Modelling approaches to urban building energy modelling (UBEM). The top-down
approaches are not reviewed in this thesis.

1.2.1 Statistical bottom-up

Building energy models based on empirical data are often constructed around simple low-
fidelity statistical or black-box methods (Lee et al., 2015). These models make use of
historical data gathered from building meters, building management systems, weather
stations, supplier billing data, or from less accurate public databases depending on the
modelling scale. Statistical models can be applied for highly accurate predictions of
building energy use, both on the aggregated and disaggregated scale, and will often work
with even very limited input data. However, purely statistical bottom-up UBEM does
not provide the same interpretability as physics-based modelling, and often suffers from
a lack of transparency. In fact, it often turns out to be very difficult to validate and
explain unexpected results or model behaviour, as no causal relationships are defined. It
is essential when performing statistical analysis to keep in mind that correlation does not
imply causation; even the most accurate and robust statistical model can never be used to
infer causal relationships between its variables. As a consequence, statistical models often

3



CHAPTER 1. INTRODUCTION

fail to accurately describe building behaviour and energy consumption for new unseen
boundary conditions that has not be used for training its model parameters.

Frequently used techniques for statistical bottom-up modelling include ordinary-least-
squares (OLS) or linear regression (LR), random forrest (RF) regression, artificial neural
network (NN) and other machine learning approaches, such as support vector machines
(SVM) and Bayesian networks. Several of these techniques are reviewed in depth in e.g.
Tso and Yau (2007), Aydinalp-Koksal and Ugursal (2008), Swan and Ugursal (2009), and
Oladokun and Odesola (2015). An overview of the most recent statistical bottom-up
UBEMs and building stock models in the literature is given in Table 1.1.

1.2.2 Physics-based bottom-up

Contrary to the black-box approach applied in statistical methods, physics-based models
are white-box models explaining the causal relationship between variables, and therefore
do not rely on historical data (Swan and Ugursal, 2009). These models rely on the laws
of physics, which makes this approach the most flexible when it comes to integrating
new technologies. However, occupant behaviour must be assumed, which is one of the
biggest weaknesses of the physics-based approach. The level of disaggregation, complexity,
and assumptions made in these models varies significantly. One can generally divide the
physics-based bottom-up approach into models of high fidelity (complex models), and
models of low fidelity (simplified models).

High-fidelity physics-based models rely on advanced and often complex building energy
modelling based on non-linear hygrothermal processes and physical conservation laws.
Many of the developed physics-based models and retrofit tool kits available are based on
highly available calculation engines, e.g. EnergyPlus and IDA ICE (Table 1.1), enabling
transient calculations typically in hourly time steps or lower. The potentially unlimited
resolution and level of detail of high-fidelity models is perhaps their biggest advantage,
but also one of their biggest weaknesses: UBEM founded on a sheer building-physical
description suffers from model complexity, which leads to long data inputs, an extensive
level of explicit information needed for describing the buildings in the urban setting, and
long simulation run time (Lee et al., 2015).

Low-fidelity physics-based models are based on reduced-order modelling (ROM), where
several physical model parameters are lumped together to form less complex model
structures. Such models are based on quasi-steady-state heat balance equations or simple
dynamic methods using resistance-capacitance (RC) formulations, as used in, for example,
the international standard ISO 13790:2008. State-space formulation is often used to
conveniently represent ROMs in a compact mathematical vector-matrix notation as input,
output and state variables related by first-order differential equations (Madsen, 2008).

1.2.3 Modelling approach for UBEM

The need of interpretability, and a physical meaningful model structure, is a strong
argument for choosing a bottom-up physics-based approach to UBEM when analysing
the effect of implementing ECMs on an existing building stock. The abilities of a physics-
based approach enable one to carry out retrofit analysis, changing boundary conditions,
and to forecast urban-scale energy use under previously unseen conditions. In practice,
however, physics-based UBEMs are often calibrated using measured performance data,
where uncertain model parameters are tuned to fit an observed training dataset, leading to
what could be defined as a hybrid approach between physics-based and statistical bottom-
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Table 1.1. Bottom-up UBEM studies.

Bottom-up
approach

Scale of
application

BEM
tool

Archetype
modelling

Calibration
of model

Reported
error a) Reference

Physics-based Country IDA ICE X N/A Tuominen et al. (2014)
Country ROM X X 13% Reynders et al. (2014)
Country ROM X 44% Balaras et al. (2016)
Country ROM 2-7 5% Buffat et al. (2017)
City EnergyPlus X 4% Caputo et al. (2013)
City EnergyPlus X 40%† Davila et al. (2016)
City EnergyPlus 15% Dogan and Reinhart (2017)
City EnergyPlus 49% Lin et al. (2017)
City IDA ICE X 1-61% Nageler et al. (2017)
City IDA ICE X X N/A Dominković et al. (2018)
City eQuest X X 10-13% Heiple and Sailor (2008)
City ROM X 2-7 5% Zhao et al. (2016)
City N/A X 18% Shimoda et al. (2004)
Neighbourhood EnergyPlus N/A Zucker et al. (2016)
Neighbourhood EnergyPlus X X 44-47% Sokol et al. (2017)
Neighbourhood IDA ICE X X 0%‡ Nageler et al. (2018)
Neighbourhood ROM X 5-25% Nouvel et al. (2015)
Neighbourhood ROM X 3% Österbring et al. (2016)
Neighbourhood ROM X 6% Remmen et al. (2017)
Neighbourhood ROM 11%† Panão and Brito (2018)

Statistical Country RA;ROM X N/A Brøgger et al. (2018)
City LR;RF;SVM X N/A Kontokosta and Tull (2017)
City RA X 4% Booth et al. (2013)
City RA X N/A Hsu (2014)
City RA X 9-13% Mastrucci et al. (2014)
City RA X N/A Braulio-Gonzalo et al. (2016)
City RA X 2% Kristensen, Brun and Petersen (2018)?
City RA X X N/A Moghadam et al. (2018)

a) Mean error on aggregated scale if available. Studies where another error measure is used are marked with (†). Studies where the error assessment
is performed on calibration data are marked with (‡). Studies where no error assessment is reported are marked with (N/A).
?) Study presented in this PhD thesis.

up approaches (grey-box models). Stochastic calibration techniques have in recent years
become the standard approach, not relying on a single deterministic values for uncertain
quantities, but incorporating and exploring a distribution of possible values; especially the
Bayesian approach to probabilistic modelling has become popular (Section 1.4.2).

Regardless of the modelling approach, and to some degree the calibration approach, the
overall challenge of UBEM remains that of collecting and assigning all the necessary data
inputs to establish a sufficiently detailed model of the buildings in an area of interest, and
to actually carry out the required simulations. Even though some studies seek to establish
all-inclusive models based on large data surveys (e.g. Dogan and Reinhart, 2017), most
state-of-the-art research within UBEM and building stock modelling incorporates some
sort of clustering or archetype segmentation of the buildings to reduce the burden of data
gathering, model calibration and simulation time. In the following section, I will outline
the concept of archetypes and their use in UBEM.

1.3 Building archetypes
In order to set up and carry out UBEM on a larger urban area, it can be necessary to
segment the building stock into a reduced number of manageable building archetypes
(Reinhart and Davila, 2016). In fact, most studies on bottom-up UBEM found in the
current literature make use of some sort of archetype simplification of its building stock
to simplify the analysis (Table 1.1); however, archetypes can be many different things.
The research and development of building archetypes for urban-scale modelling is still in
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its infancy and to the best of my knowledge, no exhaustive definition of what a building
archetype really is and how to establish it exists. The process of defining archetypes has
been described in recent work by researchers from MIT (e.g. Cerezo et al., 2015; Reinhart
and Davila, 2016; Cerezo et al., 2017; Sokol et al., 2017) to constitute two to three steps
before being applied in UBEM simulations:

1. Classification of buildings into archetypes,
2. Characterization of archetype parameters, and potentially;
3. Calibration and validation of uncertain archetype parameters.

More detailed descriptions of these steps are provided in the following sections.

1.3.1 Classification

The segmentation of buildings into a much smaller subset of archetypes, that represent
groups of typologically identical buildings, is an important first step in the definition of
representative building typologies. Buildings are usually grouped by one or more readily
available building classifiers such as usage type, construction year, technical systems,
geometry, and climatic conditions. Depending on the available information about the
buildings, the segmentation can be either coarse, detailed, or anything in between, thereby
resulting in a few general archetypes, or many highly specific and homogeneous archetypes.
Theodoridou et al. (2011) is an example of a coarse classification where approx. 2,500,000
multi-family houses (MFHs) from the Hellenic building stock were grouped into only
five archetypes based on their construction year and usage type (all being MFHs), while
Fracastoro and Serraino (2011) applied a much more detailed segmentation scheme to
group approx. 900,000 dwellings from the Italian building stock into 3,168 archetypes
based on their construction year, geometry, heating systems and climatic conditions. A
summary of publications where the archetype approach is applied to segment a building
stock is given in Table 1.2.

The level of resolution applied in the classification step is obviously of paramount
importance for the resulting predictive performance of the UBEM, as well as its ability
to accurately incorporate ECMs and other manipulations of the model (Cerezo et al.,

Table 1.2. Classification, characterization and calibration approaches used in archetype-based
studies. All studies apply the synthetic characterization method.

No. of
buildings

No. of
archetypes

Classification
parameters

Characterization
approach

Calibration
approach Reference

N/A (mixed) 30 Type;Age;System Deterministic None Heiple and Sailor (2008)

877,144 (SFH) 3,168 Type;Age;System;
Geometry;Climate Deterministic None Fracastoro and Serraino (2011)

2,514,161 (MFH) 5 Type;Age Deterministic None Theodoridou et al. (2011)
35 (flat) 1 Type Probabilistic Bayesian Booth et al. (2012)
1,320 (MFH) 7 Type;Age Deterministic LR Dall’O’ et al. (2012)
35 (mixed) 13 Type;Size;System Deterministic Clustering Famuyibo et al. (2012)
N/A (School) 1 Type Probabilistic Bayesian Tian and Choudhary (2012)
450 (SFH) 1 Type;Age Probabilistic Bayesian Kristensen, Choudhary, Pedersen and Petersen (2017)?
336 (SFH) a) 1 (case A) Type Deterministic None Cerezo et al. (2017)

4 (case B) Type;Age Deterministic None
4 (case C) Type;Age Probabilistic None
4 (case D) Type;Age Probabilistic Bayesian

399 (SFH) b) N/A Type;Age;System Probabilistic Bayesian Sokol et al. (2017)
54 (SFH) 6 Type;Age Deterministic N/A Dominković et al. (2018)
50 (SFH) 1 Type;Age Probabilistic Bayesian Kristensen, Hedegaard and Petersen (2018a)?
30 (SFH) 8 Type;Age Deterministic N/A Nageler et al. (2018)
a) Four different combinations of archetype classification, characterization and calibration were assessed (case A to D).
b) Each building was defined by more than one archetype. All archetypes were calibrated simultaneously.
?) Studies presented in this PhD thesis.
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2015). Surprisingly, little work has been done to thoroughly investigate the effect of
granularity in the archetype segmentation. Cerezo et al. (2017) and Sokol et al. (2017)
both argue that this is a consequence of UBEM modellers not having access to measured
energy demand data for individual buildings, which in turn makes it impossible to validate
the effectiveness of a chosen classification scheme. An example of a study that actually
performs this investigation is the work by Aksoezen et al. (2015), where building age was
studied as an indicator of building energy use in the city of Basel, Switzerland, using the
classification tree methodology. Another example is the work by Famuyibo et al. (2012),
who used clustering analysis on Irish dwellings to derive 13 archetypes representing 65%
of the building stock. In fact, clustering analysis has been used in several studies to
classify and extract features from building data. Hsu (2015) used and compared different
clustering methods in an effort to segment a dataset of annual metered energy use from
approx. 3,900 MFHs in New York City using more than 250 classifiers. do Carmo and
Christensen (2016) applied similar cluster-wise regression and classification methods to
decompose hourly district heating time series of 139 Danish SFHs into daily archetypical
heating profiles using 16 building and household characteristics. Gianniou et al. (2018)
repeated this exercise using a much larger dataset of hourly district heating time series
from 8,293 Danish SFHs, resulting in the discovery of nine daily archetypical behavioural
profiles, but only five different profiles when segmented with regards to the energy use
intensity. Using regression analysis, they found building age and building area to be
highly significant profile classifiers, while number of adults, teenagers and children were
deemed insignificant.

1.3.2 Characterization

After having classified the building stock into archetype typologies, they must undergo
a characterization process to define their functionality and BEM input parameters. This
is often a difficult task. From a general point of view, archetypes are characterized and
used in two fundamentally different ways throughout research literature; either purely
deterministically as real example buildings or as average synthetic buildings, where the
latter may be done either deterministically or probabilistically. Both approaches are
outlined below with emphasis on the most-used average synthetic approach.

Real example buildings are characterized based on the characteristics of an audited
real exemplary building (Cerezo et al., 2017), i.e. they are carefully selected whole
building representations of the building stock. An example of this approach is the
trans-European IEE project TABULA (performed from 2009-2012), in which residential
archetype typologies were established for 20 EU countries (Loga et al., 2016) using building
usage type, age and size as classifiers for the segmentation3. The TABULA building
typologies have been used in many studies in recent years, e.g. on the Italian building
stock (Ballarini et al., 2014) and the Hellenic building stock (Balaras et al., 2016).

Average synthetic building archetypes, also known as the average approach, are
characterized based on a statistical analysis of a large sample of audited real buildings
or literature data, such as national building surveys, EPC data, and building codes and
standards. Often, modellers collect parameter data from a mixture of these information
sources in an effort to draw a holistic picture of the archetype; however, the availability
of data is often very specific to the city and country in question. Moreover, data
acquisition easily becomes a delicate compromise as data access is often limited due to
legal constraints and privacy considerations; especially in terms of measured consumption

3TABULA WebTool: www.webtool.building-typology.eu
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data. A particularly difficult task is the description of occupant-related parameters that
influence many aspects of building operation and, in extension, the associated energy use
(Huebner et al., 2015). One can thus seldomly expect to have data that are sufficiently
elaborate to obtain a purely deterministic characterization of the archetype parameters, i.e.
a single value assigned each parameter Cerezo et al. (2017). Quantifying, modelling and
propagating this uncertainty is one of the biggest challenges in archetype modelling, which
could be the reason why many studies proceed with a deterministic characterization of the
archetype parameters (Table 1.2); this is often in terms of average values of survey data
or EPC data. In recent years, however, an increasing amount of work has been conducted
on probabilistic treatment of model uncertainty, including archetype modelling.

The final step in the process of defining archetypes is step 3, calibration and validation
of uncertain archetype model parameters; however, before going into this, it is necessary
to establish a terminology and conceptual understanding of what uncertainty entails in
the context of this thesis.

1.4 Uncertainty modelling
Uncertainty is virtually ubiquitous in building energy modelling, as well as in any other
data-driven modelling field. Inaccuracies in BEM simulations may be attributed to the
presence of several uncertainties that tend to affect any modelling process. Examples are:
the simplifications made in the used model structure, uncertainties in the characterization
of its parameter values, and numerical approximations. Moreover, in assessing the error
between model output and measurements hereof, one has to take into account the presence
of noisy observations. These phenomena are all well-known sources of error in mathematic
models; however, working with archetypes for urban building energy modelling introduces
yet another layer of uncertainty; variability due to the archetype segmentation itself, which
could be denoted archetype heterogeneity. Heo (2011) and Booth et al. (2012) have already
addressed several of these issues in their work on uncertainty quantification in BEM and
housing stock models. I here take the freedom to reformulate, expand and elaborate on
their definitions to make them more consistent with the terminology applied in this thesis
work and the current state-of-the-art:

Structural uncertainty Variability that occurs due to the inadequacy of the BEM in
describing the true energy consumption process of the building. This is also known
as model bias or model discrepancy and includes both modelling of thermodynamic
processes as well as building operation and occupant behaviour.

Parameter uncertainty Building-level variability that occurs due to insufficient
knowledge about BEM input parameters. This also includes variability due to human
behaviour in terms of occupancy, operation of appliances, heating and cooling set
point preferences, etc.

Archetype heterogeneity Archetype-level variability that occurs due to differences in
building characteristics across the sampled buildings. Archetype heterogeneity is
strongly affected by the granularity of the archetype segmentation. This uncertainty
can be difficult to distinguish from that of ordinary parameter uncertainty.

Numerical uncertainty Algorithmic variability that occurs due to numerical approx-
imations, small sample sizes, insufficient convergence of calibration, extrapolation,
etc.
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Observation error Variability in measurements of the true process, e.g. noisy
observation of annually aggregated or hourly time series of building energy use, to
be used for verification and validation of simulations, or as training data for model
calibration. Repeated measurements can help to quantify this variability.

Urban building energy modelling – and archetype parameter characterization in
particular – is a natural example of where a probabilistic view on data variability is
beneficial (Cerezo et al., 2017). By assigning probability density functions (PDFs) to
model input parameters (archetype parameters) to reflect their uncertainty of estimation
instead of just a fixed best-guess or average value, we are able to incorporate this variability
and propagate its effects throughout the model structure to the output by applying
probabilistic sampling techniques, e.g. Monte Carlo (MC) or Latin hypercube sampling
(LHS). This process of quantifying uncertainty is commonly known as uncertainty analysis
(UA) and has many applications in building energy assessment (see review by Tian et al.,
2018) and retrofit decision making (e.g. Booth and Choudhary, 2013); however, relatively
few studies on archetype modelling apply probabilistic characterization of the parameters
(Table 1.2). Sensitivity analysis (SA) is a probabilistic analysis technique closely related
to UA, but instead of quantifying output variability, SA focuses on quantifying the effects
of individual model parameters and their interactions with each other through the model
structure (see reviews by Tian, 2013; Menberg et al., 2016). This is useful for selecting
a reduced set of important parameters to concentrate on in, for example, early stages
of building design (e.g. Heiselberg et al., 2009), or when selecting parameters for model
calibration.

Modellers have traditionally employed a strict frequentist approach to UBEM and
archetype parameter characterization where deterministic parameter estimates are derived
from limited samples of empirical data (Table 1.2). This type of analysis somewhat ignores
the abovementioned uncertainties, especially variability between parameters of seemingly
identical buildings risk being ignored, which could result in parameter uncertainty and
archetype heterogeneity being underestimated. No model is perfect, and as the data
available for archetype characterization and model validation are often limited both in
terms of quantity (only few data points) and quality (low temporal resolution), a purely
deterministic approach to data analysis may easily lead us to arrive at conclusions and
decisions from our modelling work which ignore other plausible solutions; solutions that
may yield better results. If we instead embrace uncertainty, we can move from the notion
of having a single deterministic model to that of keeping a potentially infinite collection of
models and combining them to make informed decisions under uncertainty. This is one of
the fundamental ideas behind probabilistic modelling and Bayesian inference in particular
(Frigola-Alcalde, 2015).

The following section contrasts the two leading schools of probability in order to have
a proper foundation for selecting the most appropriate school for the work of this thesis.

1.4.1 Frequentism vs. Bayesianism

There are, in general, two broad categories of probability interpretations, which are often
denoted the objective and the subjective schools of probability, referring to the frequentist
and Bayesian views, respectively.

In a pure frequentist view, probabilities are only meaningful as frequencies, or
proportions, of occurrences from physical phenomena, e.g. dice rolling. Probabilities
are interpreted objectively and as a constant, for example, there is a 1/6 probability of a
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die yielding a six. We might not get a six if we roll the die only six times, but a 1/6 of all
rolls will yield a six when the number of rolls approaches the limit of infinity. This also
means that in a strict frequentist view, it is meaningless to talk about the probability of
e.g. the U-value of a building’s external wall; the U-value is (by definition) a single fixed
value, and to talk about a frequency distribution for a fixed value is nonsense. If repeating
50 measurements of the U-value, a frequentist would take the mean value of the sample
as an estimate of the true U-value and derive a confidence interval (CI) around the mean,
which includes the true parameter with, for instance, 95% probability.

In a Bayesian view, on the other hand, the concept of probability is extended to cover
degrees of certainty about statements. Probabilities are interpreted subjectively and as a
dynamic changing phenomena. As a Bayesian, we would claim to have measured the U-
value with some probability based on the sample of measurements and our own knowledge
about the parameter. This means that we can meaningfully talk about the true U-value as
the probability of values in a given range without relying on it to be a specific value with
some uncertainty specification around to account for its estimation. That probability is the
product of our prior beliefs of what the measurement result will be and the probability
of the sampled data. Given the extreme theoretical case of a totally unbiased (non-
informative) prior understanding of the U-value where we believe all possible values to be
equally plausible, we would estimate the exact same value as in a frequentist view, if we
take the most probable value – the maximum a-posteriori probability (MAP) estimate – as
a point estimate of its value. However, in a strict Bayesian view, one would never reduce
uncertainty to point estimates such as the MAP estimate. Instead, a Bayesian might
report the highest posterior density (HPD) interval, i.e. the shortest possible interval for
the parameter with a fixed probability, say 95%. He would claim to be 95% sure that the
parameter is in this interval, whose width yields the highest possible accuracy. If using a
flat (uniform) prior, the frequentist CI and the Bayeisan HPD may numerically agree.

Bayesian inference techniques rest on the application of Bayes’s theorem (Eq. 1.1) to
describe the conditional probability – our subjective degree of belief – of an event, or an
unknown parameter as in the case of the U-value, based on prior knowledge of the event:

p (θ | D) = p (D | θ) p (θ)
p (D) (1.1)

where:

p (θ | D) = Posterior
p (D | θ) = Likelihood

p (θ) = Prior
p (D) = Evidence

Bayes’s theorem links the a priori degree of belief of the parameter before accounting
for evidence, p (θ), and the a posteriori degree of belief of the parameter after accounting
for evidence, p (θ | D), where the evidence is represented in terms of available data p (D).
The term p (D | θ) is the likelihood of the data occurring given that the parameter θ is
true. The likelihood is a statistical model for the observed data D as a function of the
parameter θ. Since the evidence term, p (D), is going to be the same for all values of
θ, it can be ignored as a constant in practical inference problems reducing the posterior
p (θ | D) to be proportional to the product of the likelihood p (D | θ) and the prior p (θ):
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p (θ | D) ∝ p (D | θ) p (θ) (1.2)

Example: Estimate the mean of a population

To exemplify the differences between frequentist and Bayesian inference, we return to our
example with the estimation of the U-value of an external wall. Consider an experiment
in which we repeat i = 1, 2, ..., N measurements D = {yi} of the U-value with a known
measurement error variance, σ2, which we take to be an independent and identical
sequence of Gaussian distributed measurement noise:

yi ∼ N
(
θ, σ2

)
, for i = 1, 2, ..., N (1.3)

We are interested in estimating the parameter θ as the underlying value of the U-
value. The data likelihood is then the Gaussian probability density function over all
the measurements p(D | θ) =

∏N
i=1(2πσ2)−1/2 exp

{
− 1

2σ2 (yi − θ)2
}
. We can rewrite this

probability model to express the likelihood of a given parameter value θ as a function of
all the observed data D; an expression known as the likelihood function:

L(θ | D) = (2πσ2)−N/2 exp
{
− 1

2σ2

N∑
i=1

(yi − θ)2
}

(1.4)

In a frequentist view, we now apply the method of maximum likelihood estimation
(MLE) to find the parameter value θ̂n that maximizes the probability of the data. In this
simple case, the ML estimator is equal to the empirical mean of the data sample:

θ̂n = 1
N

N∑
i=1

yi (1.5)

In a Bayesian view, we start by specifying our prior beliefs about the parameter p (θ).
Selecting a conjugated prior model for the likelihood function results in a convenient
analytical solution where the posterior has the same form as the prior. The conjugated
prior p (θ) to a Gaussian likelihood is also Gaussian with prior hyperparameters θ0,σ0:

p (θ) = N
(
θ0, σ

2
0

)
(1.6)

The resulting posterior distribution p (θ | D) cf. Bayes’s theorem (Eq. 1.1) is then the
product of two Gaussians, which conveniently results in another Gaussian with posterior
hyperparameters θn,σn:

p (θ | D) = N
(
θn, σ

2
n

)
(1.7a)

θn = σ2
n

(
θ0
σ2

0
+ Nȳ

σ2

)
(1.7b)

σ2
n = 1

N
σ2 + 2

σ2
0

(1.7c)
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Figure 1.2 is an example with the U-value measured with a known observation error
variance σ2 = 0.12 and six different combinations of sample size N = {2, 10} and prior
variance σ2

0 =
{
0.012, 0.12, 12}. The underlying, but unknown, value of θ used for sampling

the data in this experiment is set to θtrue = 0.55. The prior hyperparameter mean is
θ0 = 0.45 for all six cases.

In case of a non-informative flat prior with σ2
0 = 12 (first row of Figure 1.2), it is

seen how the Bayesian posterior distribution coincides with the likelihood, which, when
maximized, gives the frequentist ML estimate. However, introducing more prior knowledge
in terms of σ2

0 = 0.12 and σ2
0 = 0.012 (row two and row three of Figure 1.2, respectively)

biases the posterior distribution away from the data likelihood distribution towards the
prior, while this has no effect on the MLE. The true U-value is shown in the figure, but in
reality, this value is unknown and can never be estimated precisely; thus, we would have
little chance of accurately validating our estimates. In this case study it is seen how the
MLE overestimates the true value (most pronounced in the case of a small data sample
N = 2), while the Bayesian posterior overestimates and underestimates the value using
a non-informative (N = 2, σ2

0 = 12) and a very informative (N = 2, σ2
0 = 0.012) prior,

respectively. Applying moderate prior knowledge (N = 2, σ2
0 = 0.12) results in the best

estimate of the true value in this case study.

1.4.2 Bayesian inference in building energy modelling

The Bayesian school of probability and its inherent probabilistic approach to uncertainty
modelling seem attractive from an engineering perspective (Carstens et al., 2018). In
the case of archetype characterization where little or no data are available to describe
archetype features, a strict frequentist characterization using, for example, simple average
values from survey data may not only result in error-prone point estimates, it is also
not capable of addressing and propagating the underlying uncertainty of the estimation.
Using Bayesian methods, we are fully allowed to incorporate any prior knowledge that
could help in the inference of unknown parameters; knowledge which is often available
from literature data, historical records or as educated guesses by the modeller. Bayesian
inference may therefore be better suited for UBEM applications (Cerezo et al., 2017).

A direct characterization of archetype parameters from available data (mean value
estimation) is, however, rarely sufficient to fully account for model discrepancy, archetype
heterogeneity, observation error and numerical uncertainty, which may easily cause large
inaccuracies when archetype-based models are applied for urban-scale predictions. For
that reason, it can be necessary to employ probabilistic inference techniques to fine-tune
parameter distributions in an effort to match model output to measured training data; a
process known as model calibration, or simply system identification.

Calibration of building energy models (Coakley et al., 2014) has traditioanlly been
caried out using deterministic trial-and-error methodology or frequentist optimization
methodology; however, probabilistic calibration is becoming increasingly popular in the
scientific literature with many new studies being published on Bayesian methods, in
particular, in the last few years. An overview of relevant studies on Bayesian calibration
is given in Table 1.3 based on literature reviews by Lim and Zhai (2017b), Lim and Zhai
(2018) and Chong and Menberg (2018), supplemented with additions from the newest
literature.

Hundreds or thousands of model evaluations are often needed to calibrate a high-
dimensional input space of uncertain parameters in a probabilistic setting using, for
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Figure 1.2. Frequentist maximum likelihood estimate (MLE) and Bayesian posterior distribution
of θ for different combinations of sample size N and prior variance σ2

0 . The first row of plots
corresponds to a case with weak or no prior knowledge (σ2

0 = 12). The second row of plots
corresponds to a case with moderate prior knowledge (σ2

0 = 0.12). The third row of plots
corresponds to a case with strong and very informative prior knowledge (σ2

0 = 0.012). The left
and right columns correspond to cases with a small (N = 2) and large (N = 10) sample size,
respectively, to establish the likelihood distribution.

example, Monte Carlo sampling. The calibration process can therefore easily become
infeasible for high-fidelity UBEM or archetype models relying on tools as EnergyPlus or
IDA ICE. As a consequence, most studies employing Bayesian calibration to tune bottom-
up physics-based BEMs therefore rely on the application of emulators in place of the BEM
tool itself to generate these model evaluations (Table 1.3). An emulator is a statistical
meta-model, often some sort of regression model, of the physical BEM that allows a
much faster simulation of the physical process using the uncertain parameters as the only
explanatory variables (Lim and Zhai, 2017a). However, as the emulator is trained on
a limited number of simulation data (input/output) – perhaps 10 to 200 evaluations –
another layer of numerical uncertainty is inevitably introduced in the calibration due to
insufficient coverage of structural model behaviour.
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CHAPTER 1. INTRODUCTION

Table 1.3. Stochastic inference techniques used for calibrating bottom-up physics-based building
energy models (BEMs).

Scale of
application

No. of
buildings

BEM
tool

Emulator of
BEM tool a)

Resolution of
calibration data Reference

Stock (Offices) 765 ROM LR Annual Zhao et al. (2016)
Archetype (School) N/A EnergyPlus SRC;MARS Annual Tian and Choudhary (2012)
Archetype (Flat) 35 ROM GPR Daily Booth et al. (2012)
Archetype (SFH) b) 336 EnergyPlus None Annual Cerezo et al. (2017)
Archetype (SFH) c) 399 EnergyPlus PolyR Monthly Sokol et al. (2017)
Archetype (SFH) 450 ROM GPR Annual Kristensen, Choudhary, Pedersen and Petersen (2017)?
Archetype (SFH) 50 ROM None 3-hourly Kristensen, Hedegaard and Petersen (2018a)?
Building (Office) 1 EnergyPlus GPR;LR Monthly Li et al. (2016)
Building (Office) 1 EnergyPlus GPR Hourly Kim and Park (2016)
Building (Office) 1 ROM GPR Monthly Heo et al. (2012)
Building (Office) 1 ROM GPR Monthly Kim et al. (2013)

Building (Office) 1 ROM GPR;
PW-LR;None Hourly Manfren et al. (2013)

Building (Office) 2 ROM GPR Monthly Heo et al. (2015)

Building (SFH) 1 ROM GPR 6-hourly;Daily;
Weekly;Monthly Kristensen, Choudhary and Petersen (2017)?

Building (Office) 1 eQuest GPR Monthly Kang and Krarti (2016)
Building (Mixed) d) 3 EnergyPlus RF;NN Monthly Nagpal et al. (2018)

Chiller e) 2 EnergyPlus;
TRNSYS GPR Hourly Chong et al. (2017)

a) (GPR): Gaussian process regression; (LR): Linear regression; (MARS): Multivariate adaptive regression; (NN): Neural network; (PolyR): Polynomial regression;
(PW-LR): Piecewise linear regression; (RF): Random forest regression; (SCR): Standardized regression coefficient; (None): No emulator was applied, i.e. the BEM
was calibrated directly.
b) Four different archetypes were calibrated.
c) Each building was defined by more than one archetype. All archetypes were calibrated simultaneously.
d) Three different buildings were calibrated: a residential building, an office building and a laboratory building.
e) Two different water-cooled chiller systems, in two different buildings, were calibrated.
?) Studies presented in this PhD thesis.

By far the most used, and most complex, emulator is the Gaussian process regression
(GPR), which is a stochastic process that can be seen as a normal distribution of infinite
dimensionality over functions of the data with a continuous domain, e.g. time and/or space
(Rasmussen and Williams, 2006). Many studies have successfully applied the methodology
described in Bayesian calibration of computer models by Kennedy and O’Hagan (2001) or
variations thereof (Higdon et al., 2004), which relies on the use of GPR emulation to tune
model parameters and simultaneously fit a bias function to account for residual variability
that cannot be captured by the model physics (model discrepancy). The benefit of the
Kennedy & O’Hagan (KOH) approach is that modellers may calibrate very complex model
structures using only a limited sample of measurement data and computer simulations
from the actual BEM.

To the best of my knowledge, no study employing the KOH framework or any other
Bayesian technique to tune models of building energy use applies time series data for
the calibration; i.e. they do not use time as the explanatory domain to identify the
temporal dynamics. Most studies apply calibration data on an aggregated temporal scale,
e.g. monthly or annually aggregated data (Table 1.3), which makes it difficult to identify
dynamic parameters such as the capacity of the thermal mass. Such dynamic parameters
have to be discovered with data on a much smaller timescale, e.g. hourly or sub-hourly
(Madsen et al., 2015). Calibration data of an hourly resolution has been applied in only a
few recent studies on building energy modelling by Manfren et al. (2013), Kim and Park
(2016) and Chong et al. (2017), but it remains to be shown how to apply hourly time series
data in Bayesian calibration of BEMs and archetype models, for accurate predictions of
out-of-sample time series of hourly building energy use.

In addition to the issue of temporal resolution of building models, UBEM validation is
most often conducted on an aggregated spatial scale, e.g. on the scale of neighbourhoods,
zip codes, cities, or even entire national building stocks, using aggregated temporal
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performance data, e.g. monthly or even annually aggregated consumption data, where
building-level errors tend to average out (the cancellation effect), resulting in very low
errors (Table 1.1). Future work on UBEM and archetype modelling therefore ought to
focus on modelling, calibration and validation on a higher temporal and spatial scale to
ensure an accurate representation of individual buildings. Brøgger and Wittchen (2018)
support this argument in their review of methodologies for building stock modelling where
they find that modellers rarely validate the central assumptions made in their models in
any meaningful way, including the representativeness of the chosen archetype classification
scheme.

1.5 Summary of challenges
In summing up the challenges of state-of-the-art bottom-up archetype-based UBEM from
the current scientific literature, it is found that it contains little or no work on:

• how probabilistic archetype-based UBEMs can be characterized and calibrated
without relying on the application of statistical emulators, which could eliminate
a layer of numerical uncertainty;

• archetype-based time series modelling and calibration that can cope with system
dynamics satisfactorily; and

• how the presence of archetype heterogeneity and parameter correlation affects
performance and what could be done to incorporate this phenomenon in archetype
characterization and calibration.

1.6 Research objectives
This thesis aims to meet the challenges of bottom-up archetype-based urban energy
modelling outlined in Section 1.5 through the exploration of two research objectives:

1. To develop a bottom-up archetype modelling and calibration methodology
formulated in a Bayesian framework that takes into account and propagates all types
of error and uncertainty throughout the calibration process, including archetype
heterogeneity and parameter correlation. The methodology should incorporate time
series modelling to account for building dynamics.

2. To establish a framework for analysing citywide residential retrofit potential year-by-
year until year 2050 under uncertainty of the rate of energy renovations and climate
change using bottom-up archetype-based UBEM.

The thesis is delimited to focus on the Danish residential building stock of detached
single-family houses (SFHs) using case data from the municipality of Aarhus, Denmark.
Data used throughout the thesis consist of publically available building characteristics data
from the Danish Building and Dwelling Register (BDR) in combination with confidential
data on district heating energy use of individual buildings of both annual and hourly
temporal resolution. Data access is constrained to be used for research purposes only, and
as a consequence, only anonymized and aggregated results are shown in the thesis.
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1.7 Thesis outline
A number of peer-reviewed scientific journal papers and papers in conference proceedings
have been produced during the PhD project, each covering different aspects and
approaches towards resolving the research objectives, and they are in themselves
considered the largest contribution of this paper-based thesis (see List of publications,
p. xi). However, I take the opportunity that the thesis format offers to build on the
publications and extend the presentation of the material. The main text of the thesis
(Chapters 2-8) is divided into three parts, each considering aspects of the research
objectives through a motivation and presentation of relevant publications followed by
an epilogue on the implications of the research. The three parts are structured as follows:

Part 1 is dedicated to the introduction and preliminary statistical analysis of the case
data on the residential building stock of SFHs in the municipality of Aarhus,
Denmark, which are used continuously throughout the thesis. Chapter 2 contains
the presentation of the case data whereas Chapter 3 presents journal paper [P1]
where the data are explored using statistical methods.

Part 2 addresses research objective 1 by providing insights into the exploration
and development of new archetype-based modelling and Bayesian calibration
methodologies, and how the lack of model input information and presence of
uncertainty in UBEM can be handled. Chapter 4 presents conference paper [P2]
on the inclusion of archetype heterogeneity using annual data, Chapter 5 presents
conference paper [P3] on the effect of temporal resolution in calibration data,
and Chapter 6 presents journal paper [P4] where a novel hierarchical (multi-level)
archetype framework is proposed incorporating the criteria defined in research
objective 1.

Part 3 addresses thesis objective 2 by employing the hierarchical archetype approach
from Part 2 for urban building energy modelling. Chapter 7 presents conference
paper [P5] where the archetype framework is applied to construct a UBEM of two
suburban towns. Chapter 8 presents new, previously unpublished, research where
the archetype framework is applied to set up a combined UBEM of the SFHs in
Aarhus, Denmark, and subsequently used to forecast citywide heating energy use up
until the year 2050 under uncertainty of energy renovation and climate change.

The thesis is rounded off with a unifying summary of main contributions and suggestions
for future work in Chapter 9.
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Part 1

Case data presentation and
preliminary statistical analysis
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Chapter 2

Urban case study: The city of
Aarhus

2.1 The building stock of Aarhus
Aarhus is the second largest city of Denmark with a population of approx. 341,000 people
in the municipality (approx. 273,000 people within the city) as of October 2018 (Aarhus
Kommune, 2018). The population is projected to increase almost linearly by approx. 20%
over the next 27 years to reach 405,000 people in 2045 (Aarhus Kommune, 2018). This
expansion adds a considerable load to the existing city infrastructure in terms of energy
supply, mobility and housing.

Aarhus is characterized by a high level of low-rise, some mid-rise and only few high-
rise buildings. It is dominated by its large share of residential buildings, which make
up approx. 84% of all buildings in the municipality and constitute approx. 45% of the
entire heated floor area (Figure 2.1). The residential building stock is primarily composed
of detached single-family houses (SFHs) in terms of building count, but the much larger
mid-rise and high-rise multi-family houses (MFHs) constitute the largest share based on
the overall heated floor area. Terraced houses (THs) only comprise a smaller share of the
stock. Farm houses (FHs), dormitories and 24-hour day care centres together comprise
around 1% of the building stock. All research presented from this point in the thesis is
delimited to the residential stock of SFHs only.

The stock of SFHs in the municipality of Aarhus consists of approx. 27,800 buildings
as of 2015, which make up the data used for research presented in this thesis. Basic
building characteristics and property data on these buildings have been extracted from
the Danish Building and Dwelling Register (BDR) – a database originally intended for
public administration purposes – including the year of construction, building footprints,
number of floors, utilized areas in basements and attics, materials of the building envelope,
roof construction principles, etc. The distribution of the construction year of SFHs built
from 1850 onwards is shown in Figure 2.2A along with heated floor area vs. construction
year in Figure 2.2B. Buildings older than 1850 are not included, which corresponds to
0.3% (92 buildings) of all SFHs. The oldest building in the dataset is registered as being
from 1600.

The interquartile range, i.e. the middle 50%, of the SFHs were constructed between
1951 and 1977, with the median being 1967 (Figure 2.2A). The construction of SFHs
began to accelerate in the beginning of the 20th century up until the beginning of World
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A) Entire building stock of Aarhus
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Figure 2.1. Building stock of the municipality of Aarhus as of 2016 (53,008 buildings) grouped
into building usage categories. The percentage of buildings and heated floor area in each usage
category, respectively, is given as horizontal bars. A) depicts the entire building stock divided
into overall usage categorises. B) depicts the residential building stock only subdivided into the
different dwelling types. Data source: Danish Building and Dwelling Register (BDR).

War 2 in 1939, where it more or less stopped. Houses in this period were generally smaller
than those of previous eras, and somewhat smaller than the overall average of the stock.
With the end of the war in 1945, the construction of SFHs quickly increased to higher
levels than before and continued this way at an almost exponential pace throughout the
1950s and 1960s when the country experienced a financial boom. This also means that
houses slowly began to grow in size. The good times stopped all of a sudden with the
energy crises in 1973-1974 and again in 1979-1980; thereafter the construction of SFHs
quickly decelerated, and houses became slightly smaller again, until the early 1990s, where
the rate of construction in Aarhus was as low as during the second world war. However,
from the middle of the 1990s, it started to increase to a moderate plateau on which it has
stayed since. This has not stopped the size of SFHs from increasing however; newly built
SFHs are now larger than ever (Figure 2.2B).
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Figure 2.2. Descriptive statistics of approx. 27,800 SFHs constructed from 1850 to 2015 in the
municipality of Aarhus, Denmark. A) depicts the frequency histogram and distribution boxplot
of the construction years. B) depicts a scatter of heated floor area vs. construction year with the
mean of each year and global mean of the entire stock overlain. Buildings with a floor area above
400 m2 are not shown. Data source: Danish Building and Dwelling Register (BDR).
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2.2. AARHUS DISTRICT HEATING SYSTEM

2.2 Aarhus district heating system
Approx. 95% of all residents in the municipality of Aarhus are supplied with district
heating (DH) for the purpose of space heating and on-site domestic hot water (DHW)
preparation from the municipal district heating utility, AffaldVarme Aarhus (AVA). This
makes the Aarhus district heating system the second largest in Denmark. The heat has
traditionally been produced based on fossil fuels, but it has been produced (nearly) fossil
free since 2016, where the main plant was converted into burning CO2-neutral wood
pellets (biomass) instead of coal. Today, the majority of the heat is produced from waste
incineration and biomass (primarily wood pellets, straw, wood chips and biogas) with
supplementation of electricity (electric boiler) and excess heat from industry. However, a
few oil boilers are still available and used for peak load situations (AffaldVarme Aarhus,
2018).

District heating is delivered to the costumers through a large network of underground
pipes, heat exchangers, and booster stations from distributed productions plants around
the municipality (Figure 2.3). Hot pressurized water is delivered from the production
plants to a large-diameter transmission grid with typical supply conditions around 105 ◦C
and return conditions around 45 ◦C. These transmission lines transport heat through more
than 136 km pipe across the municipality to be exchanged to a lower energy level (approx.
75 ◦C supply and 45 ◦C return) in about 50 heat exchangers located in strategic places
around the municipality. From here, a distribution grid of more than 2000 km of piping
in local networks delivers the heat to the customers (Dahl, 2018).

2.2.1 Heating data

The production, supply and billing of district heating to the consumers in Aarhus is
handled by AVA, but the consumption data itself are private and owned by the consumers.
Access to consumption data is therefore restricted in accordance with the EU General
Data Protection Regulation (GDPR) directive. End-use DH energy consumption has
traditionally been metered by AVA with energy meters read off manually once per year.
However, since 2013, AVA has begun the installation of digital smart meters with hourly
readings in all consumer installations in its network – a process which was finalized around
2016. For the purpose of this research, access was initially granted to the annually
aggregated energy use data of individual buildings, and later to the hourly time series.

In Figure 2.4A, the mean DH energy use of three years of annual metered data (2013,
2014 and 2015) is shown for all SFHs in Aarhus as function of their construction year.
In Figure 2.4B, the area-normalized energy use – the energy use intensity – is shown.
Both scatters are overlain with the mean consumption of individual construction years
and the overall global mean of all SFHs across construction years. The annual DH
energy use of SFHs from 1850 to the 1970s is characterized by a fairly constant mean
consumption of approx. 20 MWh/year, but with significant variation within individual
vintages (Figure 2.4A). However, it is evident that buildings constructed from around the
late 1970s and onwards are more energy efficient as they consume significantly less heat
– a trend which can likely be attributed to the energy crises of the 1970s, leading to the
considerable tightening of the requirements for heat insulation in the Danish Building
Regulations of January 1977. In addition to the overall drop in consumption after the
1970s, the data also suggests that the increased focus on energy efficiency also reduced
the variability between individual buildings.
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Figure 2.3. Aarhus district heating system. Yellow dots denote boiler plants and blue dots
denote plants using biomass. Red boxes denote heat exchangers. Red lines denote transmission
grid. Purple lines denote distribution grid. Source: AffaldVarme Aarhus (AVA).

By taking the size of the buildings into account, we can obtain the energy use intensity
as shown in Figure 2.4B, which can be interpreted as a measure of energy efficiency. The
trend is more or less the same as with the absolute DH energy use; however, due to
the smaller houses constructed from 1920-1970, which have a relatively larger surface
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Figure 2.4. District heating energy use of approx. 27,800 SFHs constructed from 1850 to 2015 in
the municipality of Aarhus, Denmark. A) depicts a scatter of the 3-year mean DH energy use of
buildings vs. construction year with the mean of each year and the global mean of the entire stock
overlain. Buildings with an energy use above 70 MWh/year are not shown. B) depicts the same
data normalized by the heated floor area of the buildings. Buildings with an energy use intensity
above 400 kWh/m2/year are not shown. Source: Danish Building and Dwelling Register (BDR)
and AffaldVarme Aarhus (AVA).

area, the energy-efficiency of these buildings is smaller than average of the building
stock (Figure 2.2B). Danish building regulations have, since 1985, placed requirements
on the energy use intensity of buildings and this metric is currently the most demanding
requirement to fulfil for newly built houses.
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Chapter 3

Statistical analysis of annual
building energy use

3.1 Motivation
Engineers are faced with steadily increasing amounts of sensor data from building
management systems, building and property data from public databases, utility data,
and other types of logged data that could contain information about building energy use.
This big data is of often a chaotic mix of information of varying quality and quantity,
and composed of data on different aggregation levels, e.g. system level, building level,
zip code level, or even county or national level data, which makes it difficult to apply
it for traditional physics-based modelling. Information processing, data mining, feature
selection, clustering and other techniques in the field of machine learning are therefore
becoming increasingly popular for UBEM applications in these years (Table 1.1). With
the increasing amount of information and data being produced in our buildings and in
society in general, it is expected that such data-driven methods are going to play an
important role in future UBEM.

This understanding of the capabilities of data-driven inference techniques made me
curious to know, whether a statistical treatment of the features contained in the case data
applied in this PhD project – the BDR database and annually metered building energy
use – could be used to train a UBEM capable of predicting building energy use of entire
urban areas.

The following article (journal paper [P1]), published in Elsevier journal Energy
and Buildings, explores how features from the Danish BDR database can be used as
explanatory variables in estimating annual heating energy use in SFHs. The study is
based on a bottom-up statistical UBEM formulation using Bayesian multi-level log-normal
regression analysis on three years of annual data for a sub-sample of 10,000 randomly
selected SFHs from the Aarhus dataset.
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a b s t r a c t 

Urban building energy modeling (UBEM) is a valuable tool for analyzing the building stock. Many dif- 

ferent model approaches have been proposed in recent years suggesting various ways of dealing with 

the challenges of UBEM; however, central for all modeling approaches is the need for informative input 

data about the building stock. The availability of data for urban-scale modeling is both country-specific, 

time-consuming to aggregate, and data access is often limited due to privacy constraints. In this paper, 

we present a hierarchical bottom-up model of the Danish residential building stock using public build- 

ing data for predicting the annual heating energy consumption. For more than 10,0 0 0 randomly selected 

single-family dwellings, the annual energy consumption is modeled and validated for the city of Aarhus, 

Denmark. We found that approx. 50% of the energy use is explained using only four widely available 

building characteristics, which enables building-scale predictions with a mean absolute error of approx. 

25%. In addition, for city-scale predictions, the regression-based model enables aggregated predictions 

with a mean bias error of less than ±2%. Even though building-scale predictions are only somewhat ac- 

curate, the performance remains comparable to state-of-the art high-fidelity models in the literature. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The increasing need for energy efficient building operation 

leads to a need for tools that enable city governments, energy 

policy-makers and supply companies to plan and predict the ef- 

fect of energy efficiency strategies on different urban scales. The 

emerging research field of urban building energy modeling (UBEM) 

seeks to facilitate such analysis by generating models based on 

aggregated effects of individual building energy models (BEM) or 

archetype models to the scale of neighborhoods, cities or ulti- 

mately a complete building stock. As such, one can use UBEM to 

establish an overview of the current state and environmental foot- 

print of an existing urban area, and/or to estimate the effects of in- 

vestments in energy conserving measures (ECM). The challenge of 

UBEM, however, remains to collect and assign the necessary data 

inputs to model the urban energy use reliably. These input data 

are often compiled from a mixture of different sources of infor- 

mation with the availability of data being very much project and 

country-specific. In addition, data access is often limited due to 

legal constraints and privacy considerations making data acquisi- 

tion a delicate compromise. One can thus seldom expect to have 

∗ Corresponding author. 

E-mail address: mhk@eng.au.dk (M.H. Kristensen). 

data that is elaborate enough to obtain a purely deterministic de- 

scription of the building physics. Instead, modelers may have to re- 

sort to ‘guessing’ either by means of educated guesses, some kind 

of analysis of historical data or the like, or through a stochastic 

treatment of uncertain data. Consequently, statistical modeling ap- 

proaches are currently a popular choice for many modelers – either 

in a hybrid form that includes a building-physical description or as 

a sheer data-driven approach. 

1.1. Previous work 

Urban building energy modeling is a growing research field 

with new modeling approaches being proposed regularly for var- 

ious analytical purposes. Several review articles have in recent 

years summarized and defined the concept of UBEM; however, 

the prevailing UBEM approaches all offspring from a paradigm 

of two opposite modeling approaches; top-down or bottom-up, 

as suggested by Swan and Ugursal [1] and Kavgic et al. [2] . The 

top-down approach applies a data-driven statistical approach for 

modeling energy consumption while the bottom-up applies ei- 

ther statistics or building physics to setup the relationship be- 

tween parameters. For the remaining part of this paper, we fo- 

cus only on the bottom-up approach. Even though Reinhart and 

Cerezo [3] in a recent review of urban-scale modeling limit 

UBEM to encompass only techniques categorized as building- 

https://doi.org/10.1016/j.enbuild.2018.05.011 

0378-7788/© 2018 Elsevier B.V. All rights reserved. 

CHAPTER 3. STATISTICAL ANALYSIS OF ANNUAL BUILDING ENERGY USE
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Nomenclature 

Variables 

y b, i Metered building energy use for heating for build- 

ing b , observation i (data) [MWh/year] 

ˆ y b Sample mean of metered building energy use for 

heating for building b (data) [MWh/year] 

ȳ Sample mean of metered building energy use for 

heating for all buildings (data) [MWh/year] 

ˆ σb Sample standard deviation of metered building en- 

ergy use for heating (data) [MWh/year] 

x Explanatory variables (data) 

μb Expected building energy use for heating for build- 

ing b (fitted) [MWh/year] 

σ b Standard deviation of building energy use for heat- 

ing for building b (fitted) [MWh/year] 

γ Scale parameter of half-Cauchy distribution for stan- 

dard deviations (fitted) [MWh/year] 

τ Standard deviation of regression level error (fitted) 

[MWh/year] 

β Regression coefficients (fitted) 

N Number of buildings in sample 

n b Number of observations for building b in sample 

(between 2 and 3 observations per building) 

Indices 

b Indexing buildings in sample from 1 to N 

i Indexing observations in building b from 1 to n b 
train Indexing training sample 

valid Indexing validation sample 

physics, current literature holds suggestions for both statistical and 

physics-based bottom-up approaches for various UBEM purposes 

( Table 1 ). 

For the majority of the bottom-up UBEMs in current literature, 

advanced modeling and a wealth of data inputs is applied to re- 

construct the energy use of an urban area. In many cases, however, 

these high-fidelity models fail to validate the energy performance 

sufficiently reliably. Only five out of 15 recently published papers 

treating bottom-up UBEM ( Table 1 ) report an error less than 10% 

on the aggregated urban level, and only a few of the papers even 

validate the performance on the disaggregated level of individual 

buildings. In fact, some papers do not even validate the perfor- 

mance of the proposed UBEM at all. For some studies, this might 

be because predictive performance is not the scope of the analy- 

sis, or because of insufficient validation data. There is no evidence 

to suggest that the more complex models relying on a building- 

physical description yields better predictive performance than the 

simpler data-driven statistical models. 

1.2. Contribution 

We present in this paper a simple yet efficient approach to 

modeling the energy consumption of buildings in an urban setting. 

In particular, we model the annual building energy use of Danish 

single-family dwellings using a hierarchical multiple log-linear re- 

gression model on data from the publicly available Danish Build- 

ing and Dwelling Register (BDR), and metered annual district heat- 

ing energy use of a large sample of the Danish residential build- 

Table 1 

Modeling approach, data sources and the reported performance for 15 bottom-up UBEM studies. 

Modeling 

approach 

Tools/techniques Scale of application a Data sources b Performance data 

used for calibration 

Performance validation Ref. 

Dataset used 

for validation 

Data points for 

validation 

Scale of error 

assessment 

Error on 

aggregated 

scale 

Building- 

physics 

EnergyPlus City (Boston) A; B; C; E; I − Validation data 23 zip codes Zip code 40% [4] 

Building- 

physics 

EnergyPlus; Radiance Neighborhood (3 

cities, USA) 

E; I − Statistical data 121 buildings Neighborhood < 15% [5] 

Building- 

physics 

EnergyPlus Neighborhood 

(Cambridge) 

A; B; C; E; F; 

G 

+ Validation data 2263 buildings Neighborhood 44% −47% [6] 

Building- 

physics 

EnergyPlus City (Milan) B; E; F − Statistical data N/A City 4% [7] 

Building- 

physics 

EnergyPlus City (Kaohsiung, 

Tainan) 

B; F; I − Validation data 683 grid areas Grid area 49% [8] 

Building- 

physics 

Dynamic reduced 

order model 

Neighborhood 

(Gothenburg) 

B; D; E; F − Validation data 433 buildings Neighborhood 3% [9] 

Building- 

physics 

Dynamic reduced 

order model 

Neighborhood 

(Germany) 

B; F; H; I − Validation data 200 buildings Neighborhood 6% [10] 

Building- 

physics 

Unknown software City (Osaka) E; F; I; − Statistical data 1,128,0 0 0 

buildings 

City 18% [11] 

Building- 

physics 

eQuest City (Houston) B; E; F; I + Statistical data N/A City 10% −13% [12] 

Statistical Regression; RF; SVM City (New York) C; F + Training data 176 zip codes Zip code N/A [13] 

Statistical Regression City (New York) C; F + N/A N/A N/A N/A [14] 

Statistical Regression City (Salford) B; H + Training data 10 city districts City 4% [15] 

Statistical Regression City (Rotterdam) B; E; F + Training data 993 zip codes Zip code 9% −13% [16] 

Statistical Regression; 

EnergyPlus 

City district 

(Castellón de la 

Plana) 

N/A + (simulated) N/A N/A N/A N/A [17] 

Statistical Regression City (Aarhus) C + Validation data 10,0 0 0 

buildings 

City; Building < 2%; 25% This 

study 

Notes: 
a Application scales applied: “Building”, “Neighborhood”, “Zip code”, “City district”, or “City”. 
b Data originates from (A): weather stations; (B): GIS maps and/or 2.5D/ 3D city models; (C): property and tax registers; (D): EPC databases; (E): building codes and/or 

standards; (F): statistical and/or historical databases; (G): utility companies; (H): project specific observations; (I): user definitions/ unknown source. 
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Fig. 1. Histogram of annual building energy use (sample mean of three years) for 27,0 0 0 buildings on the original scale (left) and logarithmic scale (right). 

ing stock. Even though a statistical UBEM like this does not pro- 

vide the same transparency and level of detail as models based 

on a sheer building physics approach, it greatly benefits from its 

simplicity. We demonstrate that even a few explanatory building 

characteristics from a database like the BDR can be used for ac- 

curately predicting annual building energy use on an aggregated 

urban level, and to a wide extent on the disaggregated level of in- 

dividual buildings. Such models are of great value for public au- 

thorities to estimate the current environmental footprint of urban 

areas or even the entire building stock using only widely available 

and simple input data. 

2. Method 

2.1. Data 

The annual metered district heating energy use for hydronic 

space heating and on-site domestic hot water (DHW) prepara- 

tion for approx. 27,0 0 0 detached single-family dwellings in Aarhus, 

Denmark, was collected from the local district heating energy sup- 

plier, AffaldVarme Aarhus. For each building, the annual energy 

use was collected for three years (2013–2015) yielding a total 

of approx. 81,0 0 0 data point. The data did not allow any dis- 

tinction between how much energy was spent on space heating 

and DHW, respectively. Fig. 1 displays histograms of the sample 

mean annual energy use of the 27,0 0 0 buildings on the original 

scale and the logarithmic scale. Due to the strictly positive nature 

of the consumption data, a lognormal distribution fits reasonably 

well (Shapiro–Wilk test of normality on the logarithm of the data, 

p = 0.012). 

Four different building characteristics were collected from the 

Danish Building and Dwelling Register (BDR) – a publicly available 

national property database 1 that is primarily used for building cen- 

sus, public administration, and property valuation and taxation –

to be assessed as potential predictors of annual building energy 

use ( Fig. 2 ). They were: 1) the construction year of the building, 2) 

the heated floor area, 3) the refurbishment status, and 4) the pres- 

ence of supplementary heating installations in addition to district 

1 Only manual one-building-at-a-time look-ups are allowed using the publicly 

available version of the BDR (link: https://www.ois.dk/ ). A non-public version of the 

database was at our disposal for the purpose of this study. 

heating, e.g. heat pumps, electric radiators, fireplaces or wood- 

burning stoves. The predictor ‘Refurbishment status’ comprise an 

unknown degree of refurbishment or retrofitting of the house. We 

assume in this study that the ‘Refurbishment status’ in average re- 

flects a combination of energy upgrades and an expansion of the 

heated floor area. It is noted that it is the responsibility of the in- 

dividual house owners to keep information in the BDR database up 

to date, which is why we also expect that many refurbishments or 

retrofits are unregistered; this could potentially disturb the infer- 

ence. 

For ‘Supplementary heating installations’, the predominant level 

is ‘Stove/Fireplace’ (15.6% of data), besides of course ‘No supple- 

mentary heating installation’ (83.5% of data). The three other lev- 

els only make up a negligible part (approx. 1% of data). Thus, for 

the remaining part of the paper, all supplementary heating instal- 

lations are therefore collapsed, effectually making the categorical 

variable binary (Suppl. heating installations: Yes/No). 

The correlation between the four selected building characteris- 

tics and the logarithm of the annual building energy use for each 

building is shown in Fig. 3 . The heated floor area is treated on the 

logarithmic scale, as it is a strictly positive quantity. For all four 

predictors, a least squares regression line is overlain to highlight 

the linear relationship with the log energy use. This potential lin- 

ear relationship on the logarithmic scale leads us to expect the 

predictors to have multiplicative effects in an exponential model 

on the original scale. In addition, one might expect each of the 

four building characteristics to engage in interaction effects with 

the others; for example, as the need of refurbishments and energy 

upgrades depends on the age of the building, we expect the re- 

furbishment status to interact with both the construction year, the 

heated floor area, and potentially the presence of supplementary 

heating installations. No multicollinearity is present between the 

four predictors (variance inflation factors < 1.2). 

The combined dataset was initially cleaned for obvious out- 

liers and wrong data points; mainly faulty entries in the BDR 

database such as negative building areas. In addition, outliers were 

removed due to energy use data being either unreasonable low 

(below 10 kWh/m 

2 ) or high (above 500 kWh/m 

2 ). Moreover, if the 

energy use of one year deviated more than 100% from that of the 

other two years of the same building, it was also considered an 

outlier and removed from the dataset. Approximately 2% of the 

data was initially discarded as outliers and thus omitted from the 

analysis. 
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Fig. 2. Histograms of four building characteristics from the Danish BDR database (27,0 0 0 buildings). 

Fig. 3. Relationship between logarithm of annual building energy use (sample mean of three years) and four building characteristics from the Danish BDR database (27,0 0 0 

buildings). A least squares regression line is overlain each plot to highlight linearity. The linear correlation coefficient is given for the two continuous variables. 

2.2. Hierarchical regression model 

A hierarchical multiple log-linear regression model with fixed 

and random effects was fitted to the data using Eqs. (1) –(3) . The 

logarithm of the i th observation ( i = 1 , 2 , . . . , n b ) of annual build- 

ing energy use from the b th building ( b = 1 , 2 , . . . , N) was modeled 

according to Eq. (1) as an independent and identical distributed 

Gaussian random sample log (y b,i ) with unknown true mean an- 

nual building energy use μb ∈ R , and unknown standard deviation 

σb ∈ R | σ ≥ 0 . 

log 
(
y b,i 

)
∼ N 

(
μb , σ

2 
b 

)
. (1) 

The building-specific standard deviation, σ b , accounts for 

within-building variation, i.e. variability between observations 

from the same building. As it is difficult to estimate the stan- 

dard deviation for small sample sizes (a maximum of three ob- 

servations per building is available), the standard deviations from 

all buildings were hierarchically constrained to follow a common 

half-Cauchy distribution according to Eq. (2) with scale parame- 
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Table 2 

Proposed regression models. 

Model Description Number of regression 

terms, p 

1 Main effects only 5 

2 Main and pairwise interaction effects 11 

ter γ ∈ R | γ > 0 as recommended by Gelman [18] . The half-Cauchy 

distribution is considered a weakly informative prior distribution 

that to some degree helps draw σ b towards zero when the data 

likelihood is weak. This attractive feature reduces the possibility of 

the standard deviations to overshoot for the small sample sizes. 

σb ∼ Hal fCauchy ( 0 , γ ) . (2) 

The hierarchical modeling introduced with Eq. (2) further al- 

lows buildings with less information embedded in their observa- 

tions to borrow strength through this shared prior distribution, 

hereby constituting a compromise between two conflicting mod- 

els: a ‘no-pooling’ model and a ‘complete pooling’ model. The no- 

pooling model is the limiting case that occurs when γ → ∞ (the 

half-Cauchy distribution becomes a uniform distribution from zero 

to infinity), meaning that separate estimates of σ b are given each 

building, i.e. V ar( log ( y i,b ) ) = σ 2 
b 

. The opposite case – the complete 

pooling model – occurs when γ → 0 meaning that no information 

is available to distinguish the within-building variation of individ- 

ual buildings from each other and thus a single shared estimate 

of σ is given all buildings, i.e. v ar( log ( y i,b ) ) = σ 2 ∀ b. In the hier- 

archical model, Eq. (2) , γ is estimated from the data hence con- 

stituting a partially pooled meta-model compromise between the 

no-pooling and complete pooling cases. 

The true mean annual energy use μb of the b th building was 

subsequently modeled as a multiple linear regression on the four 

predictors of the Danish BDR database ( Fig. 3 ) with independent 

and identical distributed Gaussian noise to allow for buildings with 

identical BDR information to have different energy use and thus 

account for residual error: 

μb ∼ N 

(
β · x b , τ

2 
)

(3) 

In this linear regression, β is the p -dimensional vector of re- 

gression coefficients to be inferred, and x b is the p -dimensional 

design vector of building b with the independent variables them- 

selves. Two different models were proposed ( Table 2 ): 1) a model 

with only the linear first order terms of the four predictors (main 

effects) in addition to an intercept (constant), and 2) a model with 

main effects and pairwise interaction effects between the predic- 

tors (pairwise products of main effects) in addition to the inter- 

cept. The two models have five and 11 independent variables, re- 

spectively. 

The regression error of Eq. (3) – represented by the standard 

deviation τ ∈ R | τ ≥ 0 – accounts for residual variability between 

the mean annual building energy use μb of ‘identical’ buildings, 

i.e. between-building variability that cannot be captured by the lin- 

ear model of the four building characteristics of the BDR database. 

Given a perfect fit to data, this regression-level variability will ap- 

proximate zero indicating that annual building energy use is com- 

pletely predictable from the four investigated predictors, which ob- 

viously is not the case. 

2.3. Training and validation scheme 

Standardization of the predictors using x ′ = ( x − μx ) / σx was 

initially applied to improve convergence speed of the regression 

problem. This standardization makes the values of each predictor 

have zero-mean and unit-variance. 

A subsample of N train = 10 0 0 randomly selected buildings (ap- 

prox. 4% of the buildings in the city) was used for training the 

model. Using residual diagnostics, i.e. Cook’s distance and various 

plots of the studentized residuals, a few highly influential data 

points were detected within the training sample. A Cook’s dis- 

tance higher than four times the mean was found for approx. 1% 

of the training data. These data points were deemed outliers and 

removed from the model before it was refitted. None of the re- 

maining data points had a Cook’s distance higher than one. 

An overall citywide validation of the model using a holdout 

subsample of N valid = 10,0 0 0 randomly selected buildings (approx. 

40% of the buildings in the city) was performed to test the gener- 

alizability of the results within the city. In addition to this general 

validation, the model was furthermore tested on a neighborhood- 

scale test area consisting of N test = 547 dwellings ( Fig. 4 ), all lo- 

cated in a well-defined urban area (approx. 2% of the buildings in 

the city). Using a validation scheme with different urban aggrega- 

tion levels allows for the quantification of effects that links to the 

urban context. None of the validation data was used for training 

the model. 

Fig. 4. Map of Aarhus, Denmark (left) and neighborhood test area (right). The test area contains N test = 547 dwellings. 
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Fig. 5. Estimated standardized parameters of Model 2 on the logarithmic scale using a total of 2983 training observations of annual building energy use from 10 0 0 build- 

ings. Point estimates and error bars show posterior medians (circle), 50% intervals (thick bar), and 95% intervals (thin line). Parameters including zero are not necessarily 

statistically insignificant in a Bayesian framework. 

2.4. Bayesian inference 

A fully Bayesian inference using Hamiltonian Markov Chain 

Monte Carlo sampling was conducted using STAN – a statisti- 

cal programming platform – with an interface for MATLAB (Mat- 

labStan). All free parameters were given non-informative uniform 

prior distributions, i.e. p ( τ , γ , β) ∝ 1 to allow for a data-driven in- 

ference. For both models ( Table 2 ), six chains were run in paral- 

lel each consisting of 50 0 0 samples with a 10 0 0-sample warm-up 

period to draw posterior samples of the model parameters. Con- 

vergence were assessed using the potential scale reduction factor 

[19] for which, all parameters were below 

ˆ R < 1 . 1 for both models 

and hence deemed converged. 

2.5. Measures for model selection 

Model selection was based on the ability of the two models in 

Table 2 to fit the data by means of their expected predictive accu- 

racy. For this purpose, we used the Watanabe-Akaike information 

criterion (WAIC), a fully Bayesian measure of model fit [20] . Com- 

pared to non-Bayesian measures like AIC [21] and BIC [22] , and the 

somewhat Bayesian DIC [23] , WAIC has the desirable property of 

averaging over the entire posterior distribution rather than condi- 

tioning on point estimates, making WAIC a fully Bayesian approach 

for model selection. 

In addition to the WAIC measure for assessing the likelihood 

of accurately fitting the data in the entire hierarchical structure, 

the regression-level predictive performance (prediction of μb ) was 

assessed using more traditional deterministic goodness-of-fit mea- 

sures. Assuming the sample means of annual building energy use 

ˆ y b to represent the true data means, and by using the posterior 

median estimate of μb as point estimate for the regression out- 

put, the proportion of explained variance by the regression model 

was assessed using the coefficient of determination ( R 2 ). The over- 

all accuracy of the median posterior estimates of μb was evaluated 

using the mean absolute percentage error (MAPE) yielding the ex- 

pected level of error for single-building predictions: 

MAPE = 

∑ N 
b=1 

∣∣ ˆ y b − μb 

∣∣
N 

× 100 . (4) 

The concept of accuracy consists of two elements in conjunc- 

tion: bias (trueness) and precision (variance). Model bias is the 

closeness of agreement between the average model prediction and 

the average data ȳ . The bias was evaluated as the normalized mean 

bias error (NMBE) in compliance with ASHRAE Guideline 14–2014 

[24] : 

NMBE = 

∑ N 
b=1 

(
ˆ y b − μb 

)
N 

/ ̄y × 100 , (5) 

which hereby expresses the expected percentage error for large- 

sample aggregated predictions of μb , e.g. that of an urban area. 

As the NMBE measure is prone to the cancellation effect, it ought 

to approximate zero (unbiased predictions). If model predictions 

are unbiased, but to some extend still inaccurate on the individual 

building level, it is due to a lack of model precision as precision 

is the closeness of agreement between independent model predic- 

tions of μb under the same conditions. Model precision was evalu- 

ated as the coefficient of variation of the root mean squared error 

(CVRMSE) in compliance with ASHRAE Guideline 14–2014 [24] : 

CVRMSE = 

√ ∑ N 
b=1 

(
ˆ y b − μb 

)2 

N 

/ ̄y × 100 , (6) 

which is the root mean squared error (RMSE) normalized by the 

mean of the data, hereby becoming a measure of percentage vari- 

ability in predictions of mean annual building energy use with 

identical BDR information. 

3. Results 

The WAIC score for the two models in Table 2 were almost 

identical; −2837 (Model 1) and −2850 (Model 2), respectively. The 

smaller score of Model 2 indicates that it is marginally better in 

terms of representing the data, and hence yields the best predic- 

tive performance. However, with a difference in explained vari- 

ance ( R 2 ) of only 1%, the interaction effects are not influential. One 

could thus regard Model 1 (main effects only) as the proper parsi- 

monious model choice; however, Model 2 was selected for further 

analysis as we believe the interaction effects are important to en- 

sure a trustworthy interpretation of the regression parameters. 

3.1. Posterior model parameters 

Estimated standardized parameters of Model 2 are shown in 

Fig. 5 . The linear model is transformed to a multiplicative expo- 

nential model on the original arithmetic scale of the observations 

as the observations of annual building energy use are modeled on 

the logarithmic scale. Hence, the estimated effects of the individual 

building characteristics on the annual building energy use is not 

immediately clear from the estimated regression coefficients given 

in Fig. 5 . In addition, due to the presence of interaction effects, and 

because the heated floor area ( x 2 ) is log-transformed, the marginal 

effects are even less obvious. For the sake of clarity, we have there- 

fore visualized the marginal effects of changes in the explanatory 

variables by plotting the expected annual heating energy use μb 

as function of the two continuous predictors, namely construction 

year and heated floor area ( Fig. 6 ). 
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Fig. 6. Expected annual heating energy use μ as function of BDR predictors. Top: 

150 m 

2 house with varying construction year. Bottom: House constructed in 1970 

with varying heated floor area. Only posterior median estimates are plotted. (For 

interpretation of the references to color in the text, the reader is referred to the 

web version of this article.) 

In the top plot, the expected annual energy use of a 150 m 

2 

house is shown as function of the construction year, while the en- 

ergy use of a house erected in 1970 is shown as function of the 

heated floor area in the bottom plot. The interactive effects of the 

refurbishment status and the presence of supplementary heating 

installations are illustrated as the differences in the plotted graphs. 

The results imply that an old refurbished house (red curves in 

Fig. 6 ) in average consumes more energy than a non-refurbished 

house (blue curves in Fig. 6 ), but also that this effect varies with 

the construction year such that the difference diminishes for newer 

buildings. In addition, the size of the heated floor area seems to in- 

teract with the effect of a building being labeled as ‘refurbished’. 

We suspect the refurbishment of especially the older refurbished 

buildings to mainly constitute extensions to the original house and 

hence an extension of the heated floor area, which subsequently 

increases the energy use. This would explain why the effect of re- 

furbishments is ‘negative’ for old and now large buildings and ‘pos- 

itive’ for new and/or small buildings. 

3.2. Predictive capabilities 

The fitted multiple linear regression model can be used for 

predictions of the expected annual heating energy use μb using 

Table 3 

Goodness-of-fit measures for predicting expected annual heating energy use μ. The 

posterior predictive probability of μ is reduced to point estimates using the pos- 

terior medians. Sample expectations are the direct sample means of the observed 

data points. 

Dataset N (building data 

points) 

MAPE NMBE CVRMSE R 2 

Training 10 0 0 21% −0.5% 25% 53% 

Validation 10,0 0 0 25% −1.5% 29% 49% 

Urban test area 547 24% 0.3% 32% 35% 

the four building characteristics from the Danish BDR database. 

Fig. 8 (left) illustrates that a good fit was obtained for within- 

sample predictions (training sample) as posterior estimates of μb 

overlap the observed sample means ˆ y b . This was due to sepa- 

rate estimates of the true mean μb and standard deviation σ b for 

each building. For out-of-sample predictions (validation sample), 

μb was not fitted on the observations of annual energy use y but 

inferred using the regression model. Using point estimates of μb 

(median posterior predictions), conventional goodness-of-fit mea- 

sures was calculated for agreement with the sample expectations, 

i.e. the direct sample means of y for each building ( Table 3 ). How- 

ever, these measures – simple and familiar as they are – do not 

represent a fair evaluation of the performance of the regression 

model. The reason is that the regression model was trained on the 

‘true’ means by accounting for the small sample size (2–3 samples 

of annual energy use per building) through σ b and thus predicts 

the ‘true’ mean annual energy use. Consequently, the goodness-of- 

fit measures were very good for the training data. However, the 

goodness-of-fit measures for the validation data remains a pes- 

simistic evaluation as we do not possess a true and unbiased es- 

timate of the means of the validation data to test the regression 

against besides the direct sample means. 

As a feature of the regression-based modeling, the mean bias 

error approximates zero (NMBE < 2%) meaning that the aggre- 

gated (summarized) energy consumption predicted for a larger 

area is very accurate in average. However, relatively large de- 

viations emerge on the scale of individual building predic- 

tions (MAPE < 25%) due to the presence of unexplained variance 

( R 2 ≈ 50%) between individual buildings. Plots of the fit (on the 

original arithmetic scale) is shown in Fig. 7 with predicted expec- 

tations vs. sample expectations (top), a histogram of the residual 

error approximating that of a Gaussian distribution (middle), and a 

scatter of the residual error vs. data points confirming the desired 

presence of homoscedastic variance (bottom). 

When applied to the urban test case, the model was not able 

to capture as much of the data variance ( R 2 ≈ 35%) as in the more 

general setting with randomly selected buildings ( R 2 ≈ 50%). This 

indicates that context-specific effects that were not modeled influ- 

enced the predictions. These context-specific effects, however, have 

no significant influence on the aggregated error (NMBE ≈ 0%), nor 

the error of predicting individual buildings (MAPE < 25%), as these 

measures remain the same as in the more general setting with ran- 

domly selected buildings from all over the city. 

3.3. Effect of building operation 

The total data variance has been partitioned into within- 

building variability, σ b , using partial pooling through Eq. (2) , and 

between-building variability, τ . For each building b , we have esti- 

mated the proportion of total data variance explained by the build- 

ing itself as the intraclass correlation coefficient (ICC). The ICC 

measures the influence of phenomena occurring due to building 
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Fig. 7. Accuracy of regression fit. Top: Sample expectations vs. predicted expec- 

tations for training and validation samples. Middle: Histogram of validation sam- 

ple residuals with fitted Gaussian distribution. Bottom: Scatter of validation sample 

residuals vs. data points. 

operation in relation to the overall data variation. 

IC C b = 

σ 2 
b 

σ 2 
b 

+ τ 2 
(7) 

In Fig. 8 (middle plot), the sample standard deviations and the 

posterior estimates of σ b are shown for the first 20 buildings in 

the training sample. With only three observations available for 

each building, the sample standard deviations ˆ σb are very uncer- 

tain and thus not reliable. Using the hierarchical pooling, uncer- 

tainty about the individual building sample standard deviations ˆ σb 

are jointly taken into account by borrowing strength from one an- 

other to infer estimates of σ b with reduced posterior spread. Still, 

however, large differences in the standard deviations persists be- 

tween individual buildings indicating a large spread in the ef- 

fect of how individual buildings are operated. The ICC of the first 

20 buildings, i.e. the proportional effect of individual buildings, is 

shown in Fig. 8 (right plot). The average ICC coefficient across the 

building sample was 0.33–0.35 (95% highest posterior density) in- 

dicating that phenomena within individual buildings, e.g. occupant 

behavior and settings for building operation, in average explains 

approx. 34% of the total data variance. The remaining data variance 

– in average approx. 66% – is caused by uncertainty in fixing the 

expected annual building energy consumption μb ; that is, residual 

error in the linear regression. 

With the estimated distribution of the scale parameter γ , we 

can draw posterior predictive samples of the within-building stan- 

dard deviation σ b | γ for new unseen buildings ( Fig. 9 ). This reflects 

the expected standard deviation of a random detached single- 

family dwelling in the city. 

Although the inherent uncertainty of building operation obvi- 

ously does not allow us to infer precise estimates of σ b for new 

unseen buildings, the hierarchical pooling has ensured that it can 

be predicted with some degree of confidence. 

4. Discussion 

The predictive capabilities of many UBEM studies documented 

in the literature is low (see Table 1 ) mainly due to the quality 

of input and validation data for performance testing. Overall, their 

predictive performance appears unsatisfactory considering the high 

level of detail and high model complexity that characterize many 

of these UBEMS. In this study, we presented a much more parsimo- 

nious approach to the UBEM challenge using a simple regression- 

based framework on public building data. Even though the original 

objective of this study was to detect predictors of building energy 

use in the Danish Building and Dwelling Register, the resulting lin- 

ear model – banal as it is – proves to be equally accurate com- 

pared to high fidelity models in terms of the aggregated predic- 

tive performance (city-scale) and to some degree the disaggregated 

performance (building-scale). We must emphasize though, that the 

case study-based nature of many UBEM studies make it difficult to 

carry out a consistent and unbiased comparison. Thus, we do not 

necessarily expect the regression model presented in this study to 

perform equally well under all circumstances. On the other hand, 

we find no arguments for not expecting similar predictive perfor- 

mance using building inventory databases of other countries. 

4.1. Significant predictors of building energy use 

The main contribution of this study lies in the documentation 

of how simple building characteristics from a public database like 

the Danish BDR contains significant information to be used for pre- 

diction of building energy use. We found that all four BDR param- 

eters considered – construction year, heated floor area, refurbish- 

ment status and the presence of supplementary heating installa- 

tions – contain information about annual building heating energy 

use. In total, 10 transformations of the four parameters – including 

both main effects and pairwise interaction effects – contribute in 

describing annual building energy use. This is a very common phe- 

nomenon of large datasets as even the smallest of effects becomes 

visible. This does not mean that those terms contribute a lot in 

explaining data variance, i.e. increasing the R 2 -value but only that 

their effects are indisputable. In total, the linear model explains ap- 

prox. 53% of the training data variance, approx. 49% of the variance 

in the holdout validation sample, and only approx. 35% of the hold- 

out neighborhood-scale test area, leaving a lot of information to 

be explained by other variables than those investigated. The lower 
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Fig. 8. Fit to training data for the first 20 buildings. Left: Observations, sample mean of observations and posterior estimates of true means. Middle: Sample standard 

deviation of observations and posterior estimates of standard deviations. Right: Posterior estimates of ICC and mean ICC estimate, approx. 0.34, of entire training sample. 

Fig. 9. Posterior predictive distribution of σ b | γ . 

R 2 -value found for the test area suggests the presence of context- 

specific effects that are averaged out on the larger aggregated scale 

as also found in previous studies [25] . Additional explanatory vari- 

ables may thus be necessary to perform accurate predictions of in- 

dividual buildings or smaller urban areas; however, if one is will- 

ing to accept a mean absolute error in single-building predictions 

of approx. 25%, the four widely available building characteristics 

investigated in this study is sufficiently informative for such pur- 

poses. 

The BDR contains many other variables not considered in this 

study that might serve as additional predictors of building energy 

use. However, many of these variables are related to legislative 

and regulatory classifications, or additional non-heated buildings 

on the property. BDR data that might contain information about 

building energy use, but not included in this study, is utilized base- 

ment and attic areas. Although these features were not explicitly 

treated, heated basement and attic area is already included in the 

total heated floor area that we included. 

Although the amount of data variance explained by the four 

building characteristics may seem low, our findings are in line with 

previous research on the topic. In a thorough statistical analysis of 

924 English households, Huebner et al. [26] found that 11 building 

variables in total, including floor area, dwelling type and dwelling 

age, contribute in explaining approx. 39% of the variability in heat- 

ing energy use. In another analysis of 15,0 0 0 dwellings across the 

Netherlands, Santin et al. [27] found that the type of dwelling only 

accounts for approx. 4% of the variability in heating energy use, 

while another 38% is explained by building variables, including 

floor area and construction year. Accounting for the fact that these 

studies cover several different dwelling types and different heating 

systems (electrical and gas systems), we find no arguments for not 

trusting our findings. 

4.2. Explaining residual variability 

What could explain the remaining 50% −75% of the data vari- 

ance? The role of occupants, i.e. socio-demographics, comfort pref- 

erences, behaviors and attitudes are often ascribed significant ef- 

fect [26–29,25] ; however, these phenomena are very complex and 

not easy to separate from one another although many have tried. 

In the study by Huebner et al. [26] , they found that 43% of do- 

mestic heating energy use could be ascribed such occupant-related 

effects, while results by Santin et al. [27] show that occupants 

and behavior characteristics only account for 4% of heating energy 

use variation. Other studies have found values around 18% −20% 

[30,31] . 

Even though many obvious outliers were removed during the 

initial data cleaning process, we still suspect some degree of error 

to remain in the BDR data that might explain parts of the resid- 

ual data variability. As an example, many buildings are listed as 

constructed in year 1900; however, it seems unreasonable that this 

specific year would have a larger rate of construction than e.g. year 

1901. This phenomenon might be explained by a general practice 

of entering year 1900 whenever the actual year of construction is 

unknown. One should thus be careful trusting single data points 

from public databases like the BDR. 

5. Conclusions 

The annual heating energy use observed over three successive 

years for 27,0 0 0 Danish detached single-family dwellings was ana- 

lyzed using hierarchical regression modeling on four building char- 
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acteristics from the Danish Building and Dwelling register. The 

analysis suggests that knowing these four specific building char- 

acteristics (construction year, heated floor area, refurbishment sta- 

tus, and presence of supplementary heating installations) will in 

average explain approx. 50% of the variability in the expected an- 

nual heating energy use of randomly selected buildings. For aggre- 

gated predictions on the scale of neighborhoods or cities, the pro- 

posed regression model can be used to approximate the true an- 

nual energy consumption (NMBE < 2%), but due to the presence of 

unexplained variance between individual buildings, single-building 

predictions remain somewhat imprecise (MAPE < 25%). This per- 

formance is comparable to current state-of-the art high fidelity 

UBEMs, underlining a need for further work on how to apply 

UBEM for more than just aggregated analysis. Thus, if the pur- 

pose of a given urban modeling task is to calculate the aggregated 

energy use on an urban scale – where the influence of occupant 

behavior is negligible – we recommend a simple regression-based 

approach like the one proposed in this study relying on much less 

input data compared to high fidelity physics-based models. How- 

ever, we should emphasize that the statistical model is not able to 

assess the effect of various energy conserving measures in building 

retrofit scenarios. 
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3.2 Epilogue
It is found that approx. 50% of the variability in annual heating energy use of SFHs across
the city can be explained using four widely available building characteristics: construction
year, heated floor area, refurbishment status (yes/no), and the presence of supplementary
heating installations in addition to district heating (yes/no). However, the explanatory
power of building characteristics falls to around 35% when applied in a specific urban
context; a neighbourhood test area of very similar buildings. This suggests the presence
of additional area-specific effects that were not accounted for. One of these effects – the
effect of zip code – was later investigated in another study using a sample of 350 SFHs
from the same construction year and located in 37 city districts in the municipality of
Aarhus. The study is reported in conference paper [S4] that is appended to the thesis.

The statistical analysis on the BDR database presented in this chapter can be used
for estimating the aggregated or averaged building energy use of large urban areas where
features that make individual buildings differ from the group mean are levelled out (the
cancellation effect). This can be very useful as an initial and rough assessment of the
energy efficiency of an urban area, or larger part of the building stock. However, it
lacks the physical meaningfulness that is necessary to evaluate ECMs and other retrofit
interventions because it is founded on a purely statistical treatment of variables. Therefore,
it cannot stand alone in accurately predicting residential building energy use; additional
information and modelling work is needed for this purpose. Our focus shall therefore be
on bottom-up physics-based modelling alone in the remaining part of the thesis to remedy
these shortcomings.
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Chapter 4

A regression-based approach using
annual data

4.1 Motivation
The current literature on archetype modelling and calibration only contains a few examples
of studies in which stochastic methods are applied (Table 1.3). These studies address the
diversity and heterogeneity of the underlying building stock by either: 1) average training
data prior to calibrating a single archetype distribution (Booth et al., 2012), or 2) calibrate
parameter estimates of individual training buildings and subsequently combine them into
an average archetype distribution (Cerezo et al., 2017). Even though stochastic in nature,
these approaches simplify the true archetype heterogeneity of the training data through
the averaging process. This leaves a need for research on methods to include this source
of error.

The following paper (conference paper [P2]), presented at the 15th conference
of the International Building Performance Simulation Association (IBPSA), Building
Simulation 2017, demonstrates an archetype-based application of the Bayesian calibration
methodology by Kennedy and O’Hagan (2001) that was briefly reviewed in Section 1.4.2.
It shows how to identify posterior distributions of seven unknown input parameters to
an hourly dynamic physics-based BEM of a SFH archetype using annual DH energy
use data of 450 training buildings. The study constitutes a novel effort to expand the
KOH framework to include the inference of shared archetype parameters, and not just
parameters of individual buildings, as has been current practice.

The paper makes use of sensitivity analysis (SA) as a method to decide which BEM
input parameters to calibrate. The process of setting up and carrying out this SA lead to
a considerable amount of comparative research on the appropriateness of SA methods for
BEM-based analysis, which was conducted concurrently with the research on archetype-
based inference. This research resulted in the publication of journal papers [S1] and [S2],
and conference paper [S3]. These secondary publications are appended to the thesis.
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Abstract

For a homogeneous cluster of single-family dwellings,
an archetype model incorporating simple scalable ge-
ometry and an hourly dynamic building energy model
was set-up to represent its energy performance. Us-
ing metered annual energy use for a random sample
of 450 buildings in the cluster, the archetype model
was calibrated in a Bayesian regression framework us-
ing the floor area as common scale for regression of
the physics-based input to the hourly dynamic en-
ergy model. In this process, posterior estimates of
seven selected building parameters shared by build-
ings within the cluster were inferred. The calibrated
archetype model was used to make predictions of an-
nual building energy use with a normalized mean bias
error (NMBE) of 2.3 % and a coefficient of variation
of the root mean squared error (CVRMSE) of 26.5 %.

Introduction

Building energy modeling (BEM) often relies on
physics-based principles for representing the thermo-
dynamic mechanisms of buildings (see Kavgic et al.
(2010) for a review on physics-based approaches). To
have better estimates of the inputs to such building
models, it is often advantageous to calibrate them
using appropriate field data. In the case where a
vast amount of buildings is to be modeled for anal-
ysis, e.g. the housing stock of a larger city, it might
be practical to model a group of similar buildings
as a homogeneous cluster, also known as archetype
modeling. However, as emphasized by Reinhart and
Davila (2016), the inevitable presence of heterogene-
ity among buildings within an archetype can make it
difficult to identify a deterministic best fit of physical
model parameters in the calibration process. Using
instead probabilistic calibration, one may incorporate
and propagate parameter uncertainty more appropri-
ately including both aleatory uncertainty (i.e. het-
erogeneity across a building cluster) and epistemic
uncertainty (i.e. uncertainty about the true value of
parameters).

Booth et al. (2012) used a monthly average quasi-
steady-state energy model in combination with the
Bayesian calibration framework by Kennedy and

O’Hagan (2001) to set up a probabilistic model and
calibrate uncertain model parameters for a group
of 35 identical flats using energy performance cer-
tificates data and metered energy use. In Booth
et al. (2013), this framework was expanded to the
scale of housing stock models using synthetic/re-
gressed calibration data from a macro scale and
GIS-recorded building geometry. In a recent study
by Sokol et al. (2017), a residential building stock
was subdivided into archetypes and calibrated using
the Bayesian framework and individual EnergyPlus
BEMs to set up an aggregated urban building energy
model (UBEM). They used monthly and annually
metered calibration data, in combination with sim-
ple building-specific property information from tax
assessments and GIS-based estimates of the geome-
try, to achieve a a mean error of 44 %-47 % and a
CVRMSE of 58 %-66 % for a validation sample of
2263 buildings.

In all of these studies, information about the geom-
etry of the individual buildings of the cluster was
available (or inferred); however, in many cases, this
information may be sparse or difficult to collect. In
this study, we therefore investigate whether a single
geometric and scalable building representation – an
archetype model – modeled using an hourly dynamic
BEM can adequately represent the variations within
a cluster of similar residential buildings. Using the
Kennedy and O’Hagan (2001) calibration methodol-
ogy that relies on Bayesian propagation of uncertain-
ties, we train the model using metered district heating
consumption data, and information about the con-
struction year and building footprint area from 450
buildings belonging to the archetype, and validate it
against an unseen sample of 150 buildings to test the
reliability in the inferred results. As a result, both the
aleatory and epistemic uncertainties in model param-
eters are quantified for the cluster to perform highly
accurate archetype model predictions.

Method

Characteristics of the building cluster

A building cluster consisting of detached single-family
dwellings from the Danish building stock was iden-
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tified based on the typological characterizations de-
fined by the European research project TABULA
(Wittchen and Kragh, 2012; Loga et al., 2016).
The cluster represents buildings constructed between
1979-1998 in Denmark, a period with rather uniform
building traditions and non-varying building codes.
The buildings within the cluster were therefore as-
sumed to exhibit similar building-physical properties.
In fact, the value and state of unknown technical
properties, whether it be the U-values or the air tight-
ness of the envelope, etc., were assumed independent
and identically distributed samples drawn from the
same population. Pictures of typical buildings repre-
sented by the cluster are shown in Figure 1.

Figure 1: Examples of typical buildings of the cluster.

A total sample of N = 2000 existing buildings situ-
ated in the district heating grid of Aarhus, Denmark,
were sampled from the cluster. Information about
the construction year, building footprint area, num-
ber of floors and envelope materials for each building i
within the cluster sample was collected from the Dan-
ish Building and Dwelling Register (BDR), which is
publicly available (Table 1). The aggregated annual
district heating energy use, EDH , for the last three
years (2013-2015) was collected for all N buildings
from the local district heating supplier (AffaldVarme
Aarhus). As indicated in (1), EDH consists of energy
use for hydronic space heating, ESH , and energy use
for on-site domestic hot water preparation, EDHW .
The data does not allow any distinction between how
much energy is spent on space heating and DHW,
respectively.

EDHi = ESHi + EDHWi . (1)

The expected mean annual energy use per building,
EDH ,was computed as the direct average of the me-
tered consumption over the last three years (Table
1) in accordance with (2). It was assumed that this
three-year average represented the true mean.

EDHi =
1

3

3∑

y=1

EDHi,y . (2)

Geometric building representation

The actual geometry of the individual buildings in
the sample was unknown. The individual building
geometry was instead estimated using a rectangular
box (Figure 2) with dimensions based on simple rules
applied to known information about the floor area,
Afloor, and number of floors, nfloors, (Table 1), and

our a-priori beliefs about the length-to-width-ratio,
ρLW , and floor height, hfloors, (Table 2). In the case
of two or three-storey buildings with unequal floor
areas, Afloor was averaged over the floors to fit the
geometric model. The four facades were assumed to
face the four cardinal directions (North, East, South,
West) while the unknown window area in each facade
was allowed to vary for each building (Table 2).

Figure 2: Geometric model of archetype building.

Building energy model for space heating and
domestic hot water

The energy use for space heating, ESH , was mod-
eled using the simple hourly dynamic model of
ISO 13790:2008 (International Organization for Stan-
dardization, 2008), treating the building as a single
thermal zone. The Danish building code energy re-
quirements in force at the time of construction (BR77,
BR82 and BR85), historical surveys of the Danish
building stock (Bøhm et al., 2009; Bergsøe, 2015),
and our educated guesses were used to estimate the
majority of the technical and occupation-related in-
puts required to run the model (Table 2). Ventila-
tion was assumed a mix of infiltration and opening
of windows. Based on studies by Rijal et al. (2007),
the airflow through windows was modeled hourly as a
percentage of maximum design airflow using a logistic
transformation of a linear regression on the outdoor
temperature (3) where Tout is the outdoor tempera-
ture, and a and b are empirical regression coefficients
(Table 2).

p =
exp (aTout + b)

1 + exp (aTout + b)
. (3)

Internal heat loads from occupants were modeled as a
scalable day profile for the activity level constructed
with a variable period without any presence called
Away time (Figure 3).

Energy use for DHW, EDHW , was modeled using a
simple linear model proportional to the consumed
amount of hot water under the assumption that
the rate of consumption was approximately constant
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Table 1: Data quantiles of known cluster characteristics (N = 2000).

Name Unit
Quantiles

- 2.5% 25% Median 75% 97.5%
Construction year - 1979 1982 1987 1995 1998

Number of floors*, nfloors - 1 1 1 1 1
Floor area, Afloor m2 98 130 149 170 238

Energy use, EDH MWh/year 7.20 11.85 14.65 17.75 28.60

Energy use intensity**, EUI kWh/m2/year 54.7 83.4 97.9 112.8 155.3
* 97.8 % of the buildings had one floor, 2.15 % had two floors, and 0.05 % had three floors.
** Calculated quantity, EUI = EDH/Afloor.

Figure 3: Day profile for occupant heat loads with
variable period without presence.

throughout the year:

EDHW =ρcVocc.nocc. (Tflow − Tmains) +

L∑

t=1

H
(t)
circ.

(
Tflow − T (t)

air

)
.

(4)

The room air temperature, Tair, was modeled dy-
namically in the ISO 13790 model, and the volu-
metric heat capacity of the water, ρc, was given as
4140 kJ/(m3K). The remaining model parameters
were unknown, i.e. Vocc. (hot water consumption
per occupant per year), nocc. (number of occupants),
Tflow (flow temperature), Tmains (mains supply tem-
perature), and Hcirc. (specific heat loss in the circu-
lation system). An additional time varying term was
added to account for residual hot water circulation
loss to the building, assuming that the temperature
difference between hot water and room air was pro-
portional. This loss was also added as an internal heat
gain in the dynamic model for calculation of energy
for space heating.

The simulated district heating energy use should
represent the true mean energy use, hence average
weather conditions of the outdoor temperature and

global solar irradiation were needed as boundary con-
ditions. For this end, the Danish design reference year
(DRY) was applied; a set of hourly weather conditions
composed from historical measurements in Denmark
used for designing and testing buildings (Jensen and
Lund, 1995).

Sensitivity analysis for selecting calibration
parameters

Prior to calibration of the archetype model, 32 in-
put parameters were unknown. For each parameter,
probability density functions (PDFs) were assigned
to reflect our beliefs about their values; distribu-
tion types Uniform(min, max), Beta(shape1, shape2),
Gamma(shape, scale), and Normal(mean, variance)
were applied (Table 2). As these distributions rely on
a-priori information, they are referred to as a-priori
distributions or simply priors.

A probabilistic sensitivity analysis using the method
of Sobol’ (Sobol’, 1993) was conducted to rank the 32
unknown model input parameters, given their prior
distributions, in descending order of importance (Ta-
ble 2). Based on recommendations by Kristensen
and Petersen (2016), who analyzed the performance
of three different sensitivity analysis methods on the
ISO 13790 energy calculation models, the Sobol’ to-
tal effects index, STi, was applied as a measure of
explaining individual parameters’ combined effect on
model output variability. A total of 15 000 Monte
Carlo iterations were performed to obtain conver-
gence of the Sobol’ algorithm,

∑
(STi) ≈ const. No

correlations between model parameters were taken
into account.

Ideally, one ought to calibrate all uncertain model pa-
rameters; however, as this is computationally infea-
sible, a limited number of parameters must be cho-
sen. We selected the seven highest ranked parame-
ters from the sensitivity analysis, which in total ac-
counted for approx. 75 % of the model output vari-
ability (Figure 4). In descending order of importance,
the selected parameters were: the heating set point,
U-value (windows), appliances heat load, infiltration
rate @50 Pa, window-wall ratio (North), window-wall
ratio (South), and U-value (walls). The remaining 25
parameters were left uncalibrated with their prior un-
certainty specification being propagated through the

CHAPTER 4. A REGRESSION-BASED APPROACH USING ANNUAL DATA

42



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1297

model.

Figure 4: Cumulative sum of explained variance in
model output (STi) by ranked input parameters.

Calibration framework

The Bayesian approach used in this study followed
the approach proposed by Kennedy and O’Hagan
(2001). It explicitly incorporates uncertainty in
model inputs, uncertainty due to limited numbers of
simulation runs, and discrepancy between the model
outputs and the actual energy-consuming mechanism
of the buildings. We represented the measured energy
use data (Table 1) statistically as

ymeasi = ζ (xmeasi ) + emeasi i = 1, . . . , n, (5)

where ymeasi is the field data for the i-th building, i.e.
measured annual energy use in kWh/year, each ob-
served by a p-dimensional vector of known explana-
tory design points, x = (x1, x2, . . . , xp), for which
x ∈ Rp. In this study, we applied the known heated
floor area as the only explanatory variable; hence
p = 1. The field data, ymeasi , was assumed to be
realizations from the true energy-consuming process,
ζ (xi), at the observed design points, xmeasi , with an
unknown observation error, emeasi . We modeled the
true process as:

ymeasi = η (xmeasi ,θ) + δ (xmeasi )

+ emeasi i = 1, . . . , n, (6)

using the building energy model as an emulator,
η(xi,θ), evaluated at the (p + q)-dimensional in-
put vector (xmeasi ,θ) comprising the vector of known
design points, xmeas, and additional calibrated pa-
rameters, θ ∈ Rq, represented by the vector θ =
(θ1, θ2, . . . , θq). For this study, we took the top-seven
ranked model parameters (Figure 4) as the calibra-
tion parameters; hence q = 7. As no model is per-
fect, a stochastic model bias was introduced through

δ(·) independently of η(·, ·) to account for discrepancy
between the model and the true physical process.
The inclusion of a noise-term, emeasi , allowed for dif-
ferent observations of y at identical settings of x. In
addition to measurement error, the true archetype
energy-consuming process may be inherently unpre-
dictable and stochastic due to e.g. occupant behavior.
Thus, strictly speaking, emeasi includes any residual
variability that cannot be decomposed in addition to
measurement error. This also includes violations of
the assumption of cluster homogeneity. We denote
these different sources of uncertainty (archetype het-
erogeneity, measurement error, and chance variabil-
ity) aleatory uncertainty.
The true or best achievable distributions of the cali-
bration parameters, θ, are to be inferred in the cali-
bration process, and are thus unknown. They are re-
ferred to as a-posteriori distributions or simply poste-
riors. The posterior distributions represent the epis-
temic parameter uncertainty, that is uncertainty due
to modeling assumptions of the BEM, our estimates
of the prior distributions, and the amount of calibra-
tion data available for a precise identification of the
true parameter values. We represented the calibra-
tion parameters in the simulations in terms of their
priors, t = (t1, t2, . . . , tq), given in Table 2. Evalu-
ating the BEM at randomly selected design points,
xsimj , and at random samples of the prior distribu-
tions, tj , yields simulated annual energy use data de-
noted ysimj .

ysimj = η
(
xsimj , tj

)
+ esimj j = 1, . . . ,m. (7)

As proposed by Higdon et al. (2004), we added a small
numerical white noise error-term, esimj , in the statis-
tical representation (7) to secure the positive definite-
ness of the later covariance matrix (16) necessary for
the Gaussian process (GP) regression. We modeled
both emeasi and esimj as i.i.d. Gaussian distributed
noise:

emeasi ∼ N
(
0, σ2

meas

)
, (8)

esimj ∼ N
(
0, σ2

sim

)
. (9)

For the evaluation of the model, η(·, ·), the remain-
ing 25 non-calibrated input parameters were sampled
at random for each simulation run j. As the value
of the functions η(·, ·) and δ(·) are known only at the
applied design points, they were modeled as Gaussian
processes (GP) represented in terms of multivariate
Gaussian distributions (10)-(11), allowing an infinite
number of different regressions to be fit. Other for-
mulations are available though, e.g. multiple linear
regression as proposed by Li et al. (2016). A key
property of the applied GP regression model is that
it obtains a perfect fit to the training data. However,
due to the inclusion of the observation error, emeasi ,
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Table 2: Prior distributions and ranking of 32 unknown model parameters using the Sobol’ sensitivity analysis
method.

Parameter Unit PDF
Quantiles Sensitivity Analysis

2.5% 25% Median 75% 97.5% STi* Rank
Geometry
Length-width ratio - Unif(0.3;3.0) 0.4 1.0 1.7 2.3 2.9 2.6% 8
Room height m Unif(2.1;3.1) 2.12 2.35 2.60 2.85 3.08 1.2% -
Window-wall ratio (North) - Beta(3;3) 0.10 0.30 0.40 0.50 0.75 5.4% 5
Window-wall ratio (East) - Beta(3;3) 0.10 0.30 0.40 0.50 0.75 2.5% 9
Window-wall ratio (South) - Beta(3;3) 0.10 0.30 0.40 0.50 0.75 4.2% 6
Window-wall ratio (West) - Beta(3;3) 0.10 0.30 0.40 0.50 0.75 2.4% 10
Window frame fraction - Beta(8;24) 0.12 0.20 0.24 0.30 0.41 0.5% -
Transmission
Temp. adjustment factor (ground) - Beta(10;1.1) 0.78 0.87 0.91 0.94 0.98 0.1% -
U-value (floors) W/(m2 K) Gam(7;0.029) 0.08 0.15 0.19 0.24 0.37 1.7% -
U-value (walls) W/(m2 K) Gam(7;0.043) 0.12 0.22 0.29 0.37 0.56 3.3% 7
U-value (basement) W/(m2 K) Gam(4;0.088) 0.10 0.22 0.32 0.45 0.77 1.4% -
U-value (roofs) W/(m2 K) Gam(7;0.029) 0.08 0.15 0.19 0.24 0.37 2.1% -
U-value (windows) W/(m2 K) Gam(50;0.05) 1.86 2.25 2.48 2.73 3.24 14.2% 2
SHGC (windows) - Beta(45;32.6) 0.49 0.56 0.60 0.64 0.71 0.4% -
Internal shading coef. - Unif(0.2;0.9) 0.22 0.38 0.55 0.73 0.88 0.1% -
Internal heat capacity kJ/(m2 K) Gam(10,17) 59 138 225 312 391 1.0% -
Effective mass area m2/m2 Gam(70;0.04) 2.2 2.6 2.8 3.0 3.5 <0.1% -
Heat conduction (mass) W/(m2 K) Gam(350;0.026) 7.1 8.3 9.1 9.8 11.3 <0.1% -
Heat transfer coef. (surf.-air) W/(m2 K) Gam(350;0.01) 3.1 3.3 3.4 3.6 3.8 <0.1% -
Ventilation
Infiltration airflow @ 50 Pa l/(s m2) Gam(5;0.50) 0.97 2.02 2.80 3.76 6.15 7.9% 4
Design airflow (windows) l/(s m2) Gam(10;0.04) 0.19 0.31 0.39 0.48 0.68 0.9% -
Regression coef. a - Unif(0.1;0.4) 0.11 0.17 0.25 0.33 0.39 0.3% -
Regression coef. b - Unif(-4;-1) -3.92 -3.25 -2.50 -1.75 -1.07 1.9% -
Occupation
Occupant density m2/pers Gam(10;5.18) 25 40 50 62 88 1.9% 8
Occupant heat load W/(MET pers) Gam(50;1.60) 60 70 80 90 100 <0.1% -
Appliances heat load W/m2 Gam(40;0.75) 21 27 30 33 40 12.8% 3
Away time @ 0 MET h/day Unif(0;12) 0.3 3.0 6.0 9.0 11.7 0.5% -
Room heating set point ◦C Norm(20.5;22) 16.6 19.2 20.5 21.8 24.4 28.5% 1
Domestic hot water
DHW flow temperature ◦C Gam(200;0.263) 42.7 48.9 52.3 56.0 63.3 0.9% -
Mains temperature ◦C Gam(100;0.125) 10.2 11.6 12.5 13.3 15.1 <0.1% -
Specific circulation loss W/K Gam(25;0.32) 5 7 8 9 11 <0.1% -
Hot water consumption m3/(pers year) Gam(25;0.75) 9.7 12.9 14.8 16.9 21.4 1.1% -

* Sobol’ total effects index, 0 ≤ STi ≤ 1

the training data was treated as noisy measurements
letting instead the GP model identify and fit the true
mean energy use at each value of x by attributing
fluctuations from the archetype mean energy use to
the noise-term.

η(·, ·) ∼ N (0,Ση) . (10)

δ(·) ∼ N (0,Σδ) . (11)

By standardizing the data (y,x, t,θ) to a range [0; 1],
the two GPs were specified with constant mean func-
tions of zero and squared exponential covariance func-
tions (12)-(13), allowing a smooth and stationary rep-
resentation of the process less prone to numerical
problems:

Ση = σ2
η exp

(
−

p∑

d=1

βη,d
∣∣xi,d − x′i,d

∣∣2
)

· exp

(
−

q∑

d′=1

βη,p+d′
∣∣ti,d − t′i,d

∣∣2
)
, (12)

Σδ = σ2
δ exp

(
−

p∑

d=1

βδ,d
∣∣xi,d − x′i,d

∣∣2
)
. (13)

In (12)-(13), σ2
η and σ2

δ control the marginal function
variance of the energy-consuming process, i.e. varia-
tion that is explained by the GP regression function,
while βη and βδ are weighting parameters for the d-th
dimension of the input space controlling the strength
of each model parameter as a predictor. The larger β
is, the more dimension d is weighted in the summation
of the Euclidean distances. We refer to these vari-
ance and weighting parameters as hyperparameters
of the GPs. They were unknown and hence to be in-
ferred in the calibration process. The total number of
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unknown model parameters were thus comprised by
calibration parameters θ, variance parameters σ2

meas,
σ2
sim, σ2

η and σ2
δ , and weighting parameters βη and

βδ.
Defining a (n + m) observation vector, z =
(ymeas,T ,ysim,T )T , containing n field observations
ymeas = (ymeas1 , . . . , ymeasn )T , and m simulation runs
ysim = (ysim1 , . . . , ysimm )T , the regression model be-
comes the following by combining (5) and (6):

z =




ymeas1
...

ymeasn

ysim1
...

ysimm




=




η (xmeas1 ,θ) + δ (xmeas1 ) + emeas1
...

η (xmeasn ,θ) + δ (xmeasn ) + emeasn

η
(
xsim1 , t1

)
+ esim1

...
η
(
xsimm , tm

)
+ esimm




.

(14)

Applying Bayes theorem, the joint posterior distribu-
tion of the parameters, conditional on the augmented
observation vector z, is obtained:

p(θ, σ2
meas, σ

2
sim, σ

2
η, σ

2
δ , βη, βδ|z)

∝ L(z|θ, σ2
meas, σ

2
sim, σ

2
η, σ

2
δ , βη, βδ)

p(θ)p(σ2
meas)p(σ

2
sim)p(σ2

η)p(σ2
δ )p(βη)p(βδ). (15)

The likelihood of z conditional on the parameters,
L(·|·), is computed from a multivariate Gaussian dis-
tribution with zero mean function and a combined
(n+m) · (n+m) covariance matrix Σz:

Σz = Ση +

[
Σδ 0
0 0

]
+

[
Inσ

2
meas 0
0 Imσ

2
sim

]
, (16)

where In and Im are the n ·n and m ·m identity ma-
trices, respectively, to put the Gaussian noise-terms
on the diagonal.
For this study, we performed 1000 simulations, ysim,
using draws from the prior distributions (m = 1000),
and applied a sub-sample of 450 randomly selected
field data points, ymeas, for calibration (n = 450)
from the N = 2000 cluster sample.

Prior distributions

Prior information is a very important aspect of the
Bayesian framework as it influences the calibration
output through a weighted fitting of the prior in-
formation and data at hand. For the calibration
parameters, θ, we applied the distributions defined

in Table 2 to reflect our a-priori beliefs about their
values. The standardized variance hyperparameters,
σ2
meas, σ

2
sim, σ2

η and σ2
δ , were parametrized as preci-

sion parameters, λ = 1/σ2, for which Gamma dis-
tributions were applied constraining the values to
λ ∈ R|0 < λ <∞. The weighting parameters, βη and
βδ, were parametrized as ρ = exp(−β/4), constrain-
ing the values to ρ ∈ R|0 < ρ < 1, making it conve-
nient to apply Beta distributions (Table 3).
For the parametrised weighting parameters, ρ, most
of the prior mass is placed on values of ρ near 1 indi-
cating vague parameter strength.

MCMC algorithm and convergence for poste-
rior inference

The multi-dimensional joint posterior distribution
cannot be obtained analytically. Therefore, we em-
ployed a random walk Markov Chain Monte Carlo
(MCMC) algorithm – the Metropolis-Hastings algo-
rithm (Gelman et al., 2014) – whose equilibrium dis-
tribution is indeed an approximation of the joint pos-
terior distribution. Four chains were run in parallel
with randomly dispersed starting points in the pa-
rameter space to draw samples from the posterior
distribution. For each chain, 14 000 MCMC sam-
ples were drawn with the first 7000 samples of the
chains being considered cool, meaning that informa-
tion about the starting point might still prevail. Sam-
ples from this cold period were thus discarded leaving
only the warm part of the chains for analysis.
Convergence in the warm chains was monitored in
terms of the potential scale reduction factor, R̂, for
which R̂ ∈ R|1 < R̂ < ∞. It is an estimate of the
scale with which the variations in the inferred param-
eter distributions might be reduced if the simulations
were continued in the limit n→∞ (limn→∞ R̂ → 1)
(Gelman et al., 2014). R̂ accounts for the within-
chain and between-chain variance in the warm chains,
simultaneously evaluating both the mixing and the
stationarity of it. For R̂ < 1.1, a stable and con-
verged estimation was considered for each parameter,
respectively.

Results
The MCMC algorithm is considered converged for
both the calibration parameters and the hyperparam-
eters (R̂ < 1.1 for all parameters). The calibration
parameters are shown in Figure 5 in terms of their
prior and posterior (calibrated) distributions.
Using the posterior parameter distributions, 1000
draws from the GP regression model are shown in
Figure 6 with posterior uncertainty given as 95% un-
certainty bands. In Figure 6A, predictions from the
combined regression model, y = η (x,θ) + δ (x) + ε,
are shown; in Figure 6B, isolated predictions of
the physics-based ISO 13790 emulator, η (x,θ), are
shown; in Figure 6C, isolated predictions of the model
bias term, δ (x), explaining the inadequacy of the
physical model are shown; and in Figure 6D, the pos-
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Table 3: Standardized prior distributions for hyperparameters of covariance functions.

Hyperparameter PDF
Constraints Quantiles

Lower Upper 2.5% 25% Median 75% 97.5%
λη Gam (10,0.10) 0.1 ∞ 0.5 0.8 1.0 1.2 1.7
λδ Gam (10,3.33) 0 ∞ 16.0 25.7 32.2 39.7 56.9

λmeas Gam (10,20.0) 0 ∞ 95.9 154.6 193.4 238.3 342.0
λsim Gam (10,1000) 100 2e5 4799 7721 9662 11907 17054
ρη Beta(1.0;0.5) 0 1 0.05 0.44 0.75 0.94 1.0
ρδ Beta(1.0;0.4) 0 1 0.06 0.51 0.82 0.97 1.0

Figure 5: Prior PDFs (Table 2) and posterior PDFs (1000 draws) for calibration parameters.

terior distribution of the standard deviation of the ob-
servation error, σmeas, is shown. It should be noted
that the bias term only makes up a negligible part
of the overall model predictions (approx. zero across
the entire range of x), leaving predictions of the true
energy-consuming process of the archetype building,
ζ (x) = η (x,θ) + δ (x) (noise-free predictions), to be
based mainly on the physics-based term of the model.

Following ASHRAE Guideline 14 (ASHRAE, 2014),
the normalized mean bias error (NMBE), the coef-
ficient of variation of the root mean squared error
(CVRMSE), and the coefficient of determination (R2)
are used to assess model fit. These are supplemented
with the mean absolute percentage error (MAPE) and
shown in Table 4.

Discussion

The application of a common scalable geometric
building model to fit all buildings of the cluster proves
to be appropriate for the given field data. The regres-
sion model ascribes no significant value to the model
bias term, δ(x), indicating that the field data con-
forms to the physics-based model (geometrical model
in combination with hourly dynamic ISO 13790 model
and DHW model). Given the constraints of the

archetype model, the seven calibrated parameters are
thus regarded true for the cluster.

As opposed to previous studies applying monthly
quasi-steady-state housing stock modeling (Booth
et al., 2012, 2013), the application of hourly dynamic
modeling allows a more meaningful interpretation of
the calibration parameters by permitting a better in-
clusion of time-varying parameters. However, addi-
tional work is required to improve the representation
of individual occupant schedules, user pattern, and
other highly stochastic and time-varying mechanisms.
As long as the model does not fully and accurately
capture the energy-consuming phenomena, the cali-
brated parameters can only be considered true when
applied in connection with the applied model.

Goodness of fit

Regressing average annual building energy use as a
function of heated floor area leaves approx. 60 % un-
explained variance (R2 = 42%). This residual vari-
ability the model has successfully identified and cap-
tured as i.i.d. Gaussian distributed observation error,
emeas, leaving only the true mean building energy use
at a given floor area, ζ (x), to be fitted. Hence, in av-
erage, the regression model predicts the energy use of
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Figure 6: Archetype model predictions using 1000 draws from posterior distributions. (A) Combined regression
model. (B) Physics-based term (ISO 13790 emulator) . (C) Bias term. (D) Histogram of posterior distribution
of error term standard deviation.

Table 4: Measures of model predictive accuracy; NMBE (normalized mean bias error), MAPE (mean absolute
percentage error), CVRMSE (coefficient of variation of the RMSE), and R2 (coefficient of determination).
All measures were computed using posterior mean predictions of the true energy-consuming process, ζ (x) =
η (x,θ) + δ (x) (noise-free predictions).

Dataset n NMBE ± 95% conf. interval MAPE ± 95% conf. interval CVRMSE R2

Training set 450 -0.3% ± 2.2% 20.0% ± 1.9% 24.1% 61.6%
Validation set 150 +2.3% ± 4.3% 21.9% ± 4.5% 26.5% 41.9%

the archetype within the ranges of the validation data
(50-350 m2) to an NMBE of approx. 2.3 % for the val-
idation set. The NMBE measure holds for the average
of large-sample predictions, e.g. aggregated predic-
tions on the urban scale, but as the NMBE measure
is subject to cancellation errors, the model predic-
tive accuracy of single-building predictions may be
more intuitively interpreted in terms of the MAPE, a
measure of absolute error, resulting in approx. 22 %.

This means that while the aggregated prediction er-
ror of a large sample of the archetype buildings is
approx. 2.3 % in average, single-building predictions
will be approx. 22 % uncertain in average. The model
precision, i.e. the consistency of the model predictive
accuracy, is assessed in terms of the CVRMSE, a nor-
malized measure of variability between field data and
model predictions across the ranges of the validation
data (50-350 m2). A CVRMSE score of 26.5 % seems
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satisfactory given the fact that measurements origi-
nate from different buildings, and hence should not be
confused with the ASHRAE Guideline 14 (ASHRAE,
2014) requirements for monthly calibrations (15 %)
and hourly calibrations (30 %) as such requirements
only cover single-building calibrations, where data is
not subjected to the same level of heterogeneity and
hence ought to be calibrated more easily.

Sources of error

As elaborated upon in the section Calibration frame-
work, the observation error, emeas, includes a mix-
ture of uncertainties: geometrical heterogeneity be-
tween buildings of the archetype (even though the
floor area is similar, the surface-to-volume ratio might
not be), heterogeneity of technical properties between
buildings (U-values, air tightness, etc.), variations
due to occupant-related building operation (heating
set point temperature, schedules, venting, domestic
hot water, etc.), measurement error, and any residual
variability that cannot be decomposed and ascribed
to the parameters of the Gaussian process models.
We assume the majority of this error to be driven
by chance variability among buildings, predominantly
occupant-related variation. However, also the as-
sumption of archetype homogeneity is suspected to
contribute significantly.

In order to fully understand the effect of these indi-
vidual sources of uncertainty and ultimately secure a
better and more reliable parameter calibration, ad-
ditional work has to be performed to address the
sources of error individually. In this context, the
homogeneity assumption could be investigated in a
comparison of single-building calibrations against the
entire archetype calibration.

To further reduce model uncertainty, one could in-
clude additional explanatory input dimensions in x,
i.e. other design points known for each observation
besides the heated floor area, e.g. number of occu-
pants registered on the address, number of heating
and/or cooling degree days in the year, level of re-
furbishment, etc. The application of Gaussian pro-
cesses to model such diverse data spaces enables a
very flexible framework that will encompass both lin-
ear and non-linear phenomena without relying on a
specific model structure and, at the same time, allow
the modeler to embed his prior knowledge if he wants
to. This feature in particular is highly beneficial for
sparsely distributed input spaces. However, we have
to acknowledge that modeling the two-dimensional
data presented here might have been done using a
more parsimonious model, e.g. a linear model, with-
out any noticeable difference in model predictive ac-
curacy.

Scaling archetype predictions to the urban
level

A natural next step would be to set up similar
archetype models for the remaining building stock

and use these for composing urban-scale building
energy models to assess the aggregated energy use
and subsequently the retrofit potential of such case
studies. However, as advocated for by Reinhart
and Davila (2016), the approach of scaling archetype
models to the urban level by multiplying each indi-
vidual archetype by the number of buildings in the
urban area ignores the urban context, i.e. the pres-
ence of shading, local wind patterns, etc. Hence, one
has to find a way to reliably compose aggregated mod-
els and, at the same time, account for the presence of
such context-specific uncertainties, e.g. by inclusion
of GIS-data.

Assessing retrofit potential

The probabilistic nature of the archetype model
makes it suitable for assessing the averaged effect of
building retrofits under uncertainty. This could be
done by setting priors on selected physical parame-
ters to reflect the anticipated, but uncertain, value
of the parameters in question after implementation
of energy conserving measures (ECM). Using this
framework, the uncertainty of the ECM would then
be propagated through the model to reflect its effect
on the annual energy use of an average building rep-
resented by the archetype. The details of such an
analysis, and how to actually conduct it, we leave for
future work; however, inspiration for a similar study
can be found in Booth and Choudhary (2013) who
performed a retrofit analysis for the UK housing stock
under uncertainty.

Conclusion
Using a Bayesian calibration technique it was demon-
strated how a homogeneous cluster of single-family
dwellings could be fitted to a single archetype geome-
try and hourly dynamic building energy model. The
probabilistic treatment of the model allowed a quan-
tification of the epistemic uncertainties embedded in
the calibration parameters and the aleatory uncer-
tainty in the cluster homogeneity assumption. The
application of a single archetype model to fit the clus-
ter showed to be adequate as all weight was attributed
to the physics-based model, leaving only insignificant
influence to the statistical model bias term. The cal-
ibrated archetype model can be used to make predic-
tions of annual building energy use with a NMBE of
2.3 % and a CVRMSE of 26.5 %.
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CHAPTER 4. A REGRESSION-BASED APPROACH USING ANNUAL DATA

4.2 Epilogue
An archetype model (denoted building cluster in the paper) for simulating annual heating
energy use of SFHs constructed from 1978-1998 was calibrated using the KOH framework.
The employment of the GP-based calibration framework in this study demonstrates a way
to deal with the the issue of archetype heterogeneity, by taking into account the heated
floor area of the buildings when fitting the GP regression line that is used to tune the
BEM input parameters. However, the heterogeneity assessment becomes one-dimensional
when only taking into account the heated floor area as an explanatory variable, i.e. only
heterogeneity originating from differences in building size is inferred. This one-dimensional
assessment is obviously a crude simplification of the true variability between the 450 SFHs
of the study; nonetheless, the analysis demonstrates a useful first take on how to approach
the issue of archetype heterogeneity. It would be interesting in future work to extend the
approach to include multiple regression dimensions to extract a larger portion of variability
(heterogeneity) in the training buildings, which I believe would lead to more informed and
accurate posterior distributions of the calibration parameters.

The calibration was conducted using training and validation data of annual resolution.
It may seem strange to apply data of annual resolution in this study when the availability
and granularity of building energy data to be used for modelling and calibration of UBEMs
is increasing in general; however, the reality is that many modellers are still faced with
annual or monthly data for the wider building stock without having access to the dynamic
information contained in time series data of higher resolution (Table 1.3). Nonetheless,
there is no doubt that such time series data is going to become generally available in the
near future for even entire building stocks. A next step is therefore to incorporate time
series data of a higher resolution to adequately address system dynamics and archetype
heterogeneity. This issue is addressed in the following two chapters.
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Chapter 5

The effect of temporal resolution
on calibration

5.1 Motivation
The previous chapter focused on the presence of heterogeneity in archetype models using
annual calibration data. In this chapter, the focus is on the temporal resolution in
calibration data and how it influences the inferred posterior distributions of the calibration
parameters, and the predictive accuracy of the tuned model.

The following paper (conference paper [P3]) was presented at the CISBAT 2017
International Conference – Future Buildings & Districts and later published in Elsevier
journal Energy Proceedia. It continues with the emulator-based KOH framework to assess
the effects of varying training data resolution. Four different levels of temporal aggregation
of hourly data are investigated in the calibration of six unknown BEM input parameters
of a case study building: 1) 6-hourly, 2) daily, 3) weekly, and 4) monthly data. The same
data period (one year of hourly DH meter readings) is used in the four scenarios, only
the aggregation of the data is different. As argued for in the paper, the lowest temporal
resolution applied is 6-hourly due to the high reading uncertainty (observation error) of
the hourly values.
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1. Introduction

Setting up a valid building energy model (BEM) is often a difficult task, e.g. in the case of modeling an already
existing building stock where one, to some extent, have to resort to conjecturing about construction details, type of 
materials and their state of condition. The uncertainty embedded in such BEMs may be dealt with by means of 
calibration [1, 2] where parameters are fitted to metered energy use data; however, depending on the level of 
uncertainty in the model, it can be difficult to find a deterministic best fit of model parameters. Probabilistic calibration 
is suitable for incorporating and quantifying this error, as one does not have to rely on single-value estimates, but can 
allow noisy data and the uncertainty of unidentifiable parameters to be propagated through the model.

In recent years, a plethora of Bayesian-based calibration techniques have been proposed and demonstrated, e.g. [3, 
4, 5, 6, 7, 8, 9]. These references all offspring from the original emulator-based framework proposed by Kennedy and 
O’Hagan [10] and Higdon et al. [11] utilizing Gaussian process (GP) regression to match BEM evaluations with 
observed data by fitting calibration parameters. The emulator-based Bayesian approach enables probabilistic 
calibration of uncertain inputs for a given BEM using a limited number of evaluations from the building model. 
Implementing prior information about uncertain input parameters further enables the modeler to bias or even constrain 
the posterior inference – an option that can be reasonable to use when a limited amount of observed data is available 
for calibration. The calibration efficacy of the Bayesian framework has previously been studied under different levels 
of uncertainty [6] and different training set sizes [8]. However, it remains unclear how the temporal data resolution of 
the observed training set affects the posterior parameter inference and overall model accuracy. 

In this paper, we investigate the issue of training data resolution by presenting a study on how different temporal
resolution of metered district heating (DH) data affects the predictive accuracy of a BEM of a detached single-family 
house. We compare the posterior estimates of the calibration parameters and the predictive capabilities of the posterior 
model as measures of this effect. As such, this paper advances our understanding of how the temporal resolution of 
currently available DH smart meter read data affects calibration quality. This knowledge is valuable in many situations, 
for instance when modeling existing buildings for retrofit decision making under uncertainty, and for the future design 
of building energy management systems.

2. Methods

In the following subsection, we shortly outline the Kennedy and O’Hagan calibration formulation [10] in the 
context of BEM and point out changes made for the purpose of this study.

2.1. Emulator-based Bayesian calibration framework

The building-physical system used to generate 𝑖𝑖𝑖𝑖 = 1,2, … ,𝑛𝑛𝑛𝑛 observations of building energy use 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 at observed 
settings 𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 and unknown observation error 𝜀𝜀𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖 is represented as

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜁𝜁𝜁𝜁(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖) + 𝜀𝜀𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖                           i = 1, ... , n, (1)

where 𝜁𝜁𝜁𝜁(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖) denotes the true energy-consuming process. The observable setting xi consists of a p-dimensional vector 
of explanatory design points 𝒙𝒙𝒙𝒙 ∈ ℝ𝑝𝑝𝑝𝑝. In this study, we took p = 2 by letting 𝑥𝑥𝑥𝑥1 index the outdoor air temperature and 
𝑥𝑥𝑥𝑥2 index the insolation. The inclusion of a Gaussian distributed noise-term 𝜀𝜀𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖~𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 ) allowed for different 
observations of 𝑦𝑦𝑦𝑦 at identical settings of 𝒙𝒙𝒙𝒙, hereby accounting for the very stochastic nature of the energy-consuming 
process, e.g. occupant behaviour.

Using a BEM to represent the energy-consuming process, the observations were statistically modeled as

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜂𝜂𝜂𝜂(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 ,𝜽𝜽𝜽𝜽) + 𝛿𝛿𝛿𝛿(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖) + 𝜀𝜀𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖                 i = 1, ... , n, (2) 

where 𝜂𝜂𝜂𝜂(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 ,𝜽𝜽𝜽𝜽) denotes evaluations of the BEM at the p+q-dimensional input vector (𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 ,𝜽𝜽𝜽𝜽) comprising observed 
design points 𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 and additional calibrated parameters 𝜽𝜽𝜽𝜽 ∈ ℝ𝑞𝑞𝑞𝑞. In this study, we selected q = 6 BEM input parameters 
for calibration based on a Sobol sensitivity analysis on the model as demonstrated by Kristensen and Petersen [12].
They were U-value (windows), Infiltration@50Pa, Thermal mass, Heating temperature set point, Occupant density
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and Appliances heat load. Because no model is perfect, a stochastic model bias was introduced through 𝛿𝛿𝛿𝛿(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖),
independently of 𝜂𝜂𝜂𝜂(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 ,𝜽𝜽𝜽𝜽), to account for discrepancy between the BEM and the true energy-consuming process 𝜁𝜁𝜁𝜁(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖).
The true or best achievable calibration parameters 𝜽𝜽𝜽𝜽 were inferred in the calibration process and thus unknown. We 
represented them in the simulations in terms of our prior estimates 𝒕𝒕𝒕𝒕 ∈ ℝ𝑞𝑞𝑞𝑞.

For a fixed set of 𝑗𝑗𝑗𝑗 = 1,2, … ,𝑚𝑚𝑚𝑚 BEM simulations, we obtained simulated data 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗∗ = 𝜂𝜂𝜂𝜂�𝒙𝒙𝒙𝒙𝑗𝑗𝑗𝑗∗, 𝒕𝒕𝒕𝒕𝒋𝒋𝒋𝒋∗�. Using the combined 
data set Ɗ of n observed data points 𝑦𝑦𝑦𝑦 , and m simulated data points 𝑦𝑦𝑦𝑦∗ , a statistical surrogate model of 𝜂𝜂𝜂𝜂 was
constructed to emulate the BEM at untried input settings of (𝒙𝒙𝒙𝒙, 𝒕𝒕𝒕𝒕). For this purpose, a GP specified by a constant mean 
function at zero and a squared exponential covariance function was used. The bias term was likewise modeled as a 
GP to account for discrepancies between the emulator and the observed data. Formally, the two GPs were trained by 
simultaneously learning the posterior densities of their hyperparameters 𝝋𝝋𝝋𝝋 and the calibration parameters 𝜽𝜽𝜽𝜽 that map 
the GPs to the observed data through the following regression formula:

𝒟𝒟𝒟𝒟 =

⎝

⎜⎜
⎛

𝑦𝑦𝑦𝑦1
⋮
𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛
𝑦𝑦𝑦𝑦1∗
⋮
𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚∗ ⎠

⎟⎟
⎞

=
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⎜⎜
⎜
⎛

𝜂𝜂𝜂𝜂(𝒙𝒙𝒙𝒙1,𝜽𝜽𝜽𝜽) + 𝛿𝛿𝛿𝛿(𝒙𝒙𝒙𝒙1) + 𝜀𝜀𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,1
⋮

𝜂𝜂𝜂𝜂(𝒙𝒙𝒙𝒙𝑛𝑛𝑛𝑛,𝜽𝜽𝜽𝜽) + 𝛿𝛿𝛿𝛿(𝒙𝒙𝒙𝒙𝑛𝑛𝑛𝑛) + 𝜀𝜀𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑛𝑛

𝜂𝜂𝜂𝜂(𝒙𝒙𝒙𝒙1∗ , 𝒕𝒕𝒕𝒕1∗) + 𝜀𝜀𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚,1
⋮

𝜂𝜂𝜂𝜂(𝒙𝒙𝒙𝒙𝑚𝑚𝑚𝑚∗ , 𝒕𝒕𝒕𝒕𝑚𝑚𝑚𝑚∗ ) + 𝜀𝜀𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 ⎠

⎟⎟
⎟
⎞

. (3) 

To ensure numerical stability of the model, a small Gaussian distributed white-noise error-term 𝜀𝜀𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗~𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚2 )
was added to the emulator. The multivariate Gaussian likelihood model of the data Ɗ then became

ℒ(𝒟𝒟𝒟𝒟|𝜽𝜽𝜽𝜽,𝜎𝜎𝜎𝜎,𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚,𝝋𝝋𝝋𝝋) ∝ 𝚺𝚺𝚺𝚺𝒟𝒟𝒟𝒟
−12𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 �− 1

2
(𝒟𝒟𝒟𝒟 − 𝜇𝜇𝜇𝜇𝑰𝑰𝑰𝑰𝑛𝑛𝑛𝑛+𝑚𝑚𝑚𝑚)𝑇𝑇𝑇𝑇𝚺𝚺𝚺𝚺𝒟𝒟𝒟𝒟−1(𝒟𝒟𝒟𝒟 − 𝜇𝜇𝜇𝜇𝑰𝑰𝑰𝑰𝑛𝑛𝑛𝑛+𝑚𝑚𝑚𝑚)�, (4) 

where the (𝑛𝑛𝑛𝑛 + 𝑚𝑚𝑚𝑚) × (𝑛𝑛𝑛𝑛 + 𝑚𝑚𝑚𝑚) covariance matrix 𝜮𝜮𝜮𝜮𝒟𝒟𝒟𝒟equals

𝚺𝚺𝚺𝚺𝒟𝒟𝒟𝒟 = 𝚺𝚺𝚺𝚺𝜂𝜂𝜂𝜂 + �𝚺𝚺𝚺𝚺𝛿𝛿𝛿𝛿 0
0 0� + �𝑰𝑰𝑰𝑰𝑛𝑛𝑛𝑛𝜎𝜎𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

2 0
0 𝑰𝑰𝑰𝑰𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚2 �. (5) 

Applying Bayes theorem, the joint posterior distribution, conditional on the data, became

𝑒𝑒𝑒𝑒(𝜽𝜽𝜽𝜽,𝜎𝜎𝜎𝜎,𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚,𝝋𝝋𝝋𝝋|𝒟𝒟𝒟𝒟) ∝ ℒ(𝒟𝒟𝒟𝒟|𝜽𝜽𝜽𝜽,𝜎𝜎𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚,𝝋𝝋𝝋𝝋) × 𝑒𝑒𝑒𝑒(𝜽𝜽𝜽𝜽)𝑒𝑒𝑒𝑒(𝜎𝜎𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)𝑒𝑒𝑒𝑒(𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚)𝑒𝑒𝑒𝑒(𝝋𝝋𝝋𝝋), (6) 

which was found using the Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm. We ran four auto-
tuning MCMC chains in parallel with randomly selected starting points until all parameters, and the combined log-
likelihood, converged using a warm-up period of 50% of the chain length. Convergence was assessed using the 
potential scale reduction factor (PSRF) [13] that accounts for within-chain and between-chain variance, hereby 
simultaneously evaluating both the mixing and stationarity of the chains (convergence criterion: PSRF < 1.1).

2.2. Observed data

A randomly selected detached single-family dwelling constructed in 1992 in an urban area in Aarhus, Denmark, 
was used as case building. The total floor area is 173 m2 divided between two floors. Of these, 92 m2 make up the 
ground floor and the remaining 81 m2 make up the first floor. The house has no basement or heated attic, it is made 
of brick walls with cement stone roofing, and uses district heating (DH) for space heating and domestic hot water 
(DHW) preparation. All known information about the building was obtained from the publically available Danish 
Building and Dwelling Register. 

DH energy use for space heating and DHW preparation was gauged using a Kamstrup MULTICAL® smart heat 
meter with a manufacturer-calculated accuracy, cf. European standard EN 1434 of maximum ± 5%. The meter value
displaying accumulated energy use in kWh was digitally read off once every hour (reading resolution = 1 kWh). 
Climate data consisting of the outdoor air temperature and the insolation was measured from a local weather station 
located within a 5 km radius from the building.

The hourly data was logged from January 1, 2015, until June 31, 2016. The entire year of 2015 was used as training 
data, and the first five months of 2016 as validation data. Four different aggregated temporal resolutions of the data 
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were considered: 1) six-hourly, 2) daily, 3) weekly and 4) monthly. The lowest resolution investigated was six-hourly
and not hourly due to the low reading resolution of the data.

2.3. Simulated data

The building was modeled as a single-zone rectangular box with dimensions based on simple rules applied to 
known information about the floor area and number of floors, and our prior beliefs about the length-to-width-ratio and 
floor height (see [9] for further information). The four façades were assumed to face the four cardinal directions 
(North, East, South, West) while the unknown window area in each façade was allowed to vary based on our prior 
beliefs.

Energy use for space heating was modeled using the simple hourly dynamic model of ISO 13790:2008. The fully 
prescribed calculation method incorporates the thermal inertia of the building mass in hourly time steps by modeling 
the thermal resistances and capacitances, as well as the internal and solar heat gains, in an equivalent three-node 
resistance capacitance network (5R1C model). Energy requirements of the Danish Building Regulations in force at 
the time of construction (BR85), historical surveys of the Danish building stock and our educated guesses were used 
to set up prior estimates of the technical and occupation-related inputs required to run the model. Internal heat loads 
from occupants were modeled as a scalable day profile for the activity level constructed with a variable period without 
any presence, and ventilation was assumed a mix of infiltration and opening of windows. Airflow through the windows 
was modeled hourly as a percentage of maximum design airflow using a logistic transformation of a linear regression 
on the outdoor temperature [14]. Energy use for DHW was modeled using a simple linear model proportional to the 
consumed amount of hot water under the assumption that the rate of consumption was approximately constant 
throughout the year. For each of the four scenarios, the BEM was simulated m = 500 times.

3. Results and discussion

The posterior estimates of the six calibration parameters 𝜽𝜽𝜽𝜽 generally demonstrate the same behavior across the four 
scenarios with some variation present (Figure 1).

The largest overall deviation seems to be between the posteriors of the scenarios with daily and weekly values.

Figure 1. Prior (orange) and posterior (blue) probability densities of the six calibration parameters θ.

This shift in the posteriors is most obvious for the Thermal mass parameter, which we find more skewed for the two 
scenarios with lowest temporal resolution, but also parameters U-value (window), Temperature set point and 
Appliances heat load seem to be affected. This effect may be explained by the fact that these two scenarios represent 
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the largest temporal difference (seven days per one week) compared to e.g. the difference between the scenarios with 
6-hour values and daily values (three 6-hour values per one day).

As the posterior estimates of the hyperparameters 𝝋𝝋𝝋𝝋 – including the parameters governing the stochastic model 
bias 𝛿𝛿𝛿𝛿(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖) – reveal no noteworthy difference (𝐸𝐸𝐸𝐸[𝛿𝛿𝛿𝛿(𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖)] ≈ 0∀𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖), we have omitted them from the paper. However, we
must emphasise that the hyperparameters contain important information about the behavior of the GP emulator and 
hence influence the trueness of the six physics-based parameter estimates 𝜽𝜽𝜽𝜽 to some unknown degree. 

The model fit (Table 1) of the GP emulators was assessed using four goodness-of-fit (GOF) measures: 1) the 
coefficient of determination (R2), 2) the mean absolute percentage error (MAPE) and, following ASHRAE Guideline 
14 [15], these were supplemented with 3) the normalized mean bias error (NMBE) and 4) the coefficient of variation 
of the root mean squared error (CVRMSE). For the training set, a scenario with data of monthly resolution (ntrain =
12) obviously ensures a better fit than a scenario with 6-hourly resolution (ntrain = 1460) as the model has to fit a much 
smaller data sample. However, in order to assess model fit justly and ensure comparability between the four calibration 
scenarios, GOF measures should be based on the predictive performance assessed from an unseen validation set of 
the same temporal resolution – here in the form of 6-hourly data from the first five months of 2016 (nvalidation = 500). 
GOF measures of the validation set reveal a systematic pattern of increasing predictive accuracy as a function of 
increasing temporal resolution of the training data (Figure 2). The model trained using data of monthly resolution 
yields an NMBE of more than 10% in average, while the model trained using the same data, but with a temporal 
resolution of 6-hour values, yields an NMBE of less than 2.5% in average. Similar trends are seen for the other GOF 
measures. The results hereby indicate that the applicability of a model to perform out-of-sample predictions is highly 
influenced by the temporal resolution of the training data available. These results are obviously influenced by the case 
data at hand – especially dynamic phenomena such as occupant behavior and weather conditions. However, we find 
no arguments for not expecting similar trends and effects when using other data sets. 

Table 1. Goodness-of-fit measures of the mean posterior emulator estimates.

Training set (January - December, 2015) Validation set (January - June, 2016)
Resolution n R2 MAPE NMBE CVRMSE Resolution n R2 MAPE NMBE CVRMSE
6-hourly 1460 71.8 % 25.8 % 0.0 % 25.4 % 6-hourly 500 54.0 % 16.3 % 2.4 % 19.8 %

Daily 365 82.2 % 18.4 % 0.0 % 19.4 % 6-hourly 500 45.5 % 19.0 % 2.5 % 21.5 %
Weekly 53 91.1 % 11.0 % 0.4 % 13.0 % 6-hourly 500 29.7 % 19.4 % 9.6 % 24.5 %
Monthly 12 99.7 % 2.4 % 0.1 % 2.4 % 6-hourly 500 15.0 % 20.9 % 10.5 % 26.9 %

Figure 2. Goodness-of-fit measures of the four models using the validation set (6-hourly resolution).
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4. Conclusion

A Bayesian emulator-based calibration of the ISO 13790 hourly dynamic building energy model was conducted 
using training data from four different temporal resolutions. Results suggest that the temporal aggregation level of 
training data has a significant influence on the calibration quality in terms of both the estimated parameter values and 
the predictive performance of the calibrated model. Information about important thermodynamic processes seems to 
be leveled out or even lost with decreasing temporal resolution of the training data. These findings support the 
promotion of commercial utility data meters with high temporal resolution (≤ 1 hour) and high reading resolution (0.1 
kWh) for more accurate model calibration and parameter inference. 
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5.2 Epilogue
The paper suggests that the applicability of a model to perform out-of-sample predictions
is highly influenced by the temporal resolution of the training data available. Moreover,
it is seen that the inferred posterior distributions of the calibration parameters vary
significantly with the temporal resolution applied for calibration; in particular, the thermal
capacity of the ISO 13790 model is influenced, which is the only heat capacity in the model
and thus controls all of its dynamic behaviour. A truthful identification of this parameter
is therefore particularly important in order to perform accurate hourly predictions from
the model. However, it is not possible to obtain such identification of the capacity using
low-resolution data, for instance monthly metered consumption values, as the data lack
the excitation that reveals dynamic behaviour.

With this realization in mind and to accommodate the need for data containing dynamic
information in the analysis of archetype heterogeneity, we shall focus our attention on the
application of hourly smart meter time series data in the following chapter, in contrast to
the annually aggregated billing data applied in this and previous chapters. However,
the calibration method applied so far relies on the GP-based calibration framework
by KOH, including the inversion of covariance matrices on the input space to obtain
posterior distributions of the calibration parameters. Dealing with model outputs that
are time series extends the input space with an additional term for the time t; however,
this quickly increases the size of the covariance matrix to a point where it becomes
computationally intractable, even for relativly short time series (Higdon et al., 2008). For
the remaining part of the thesis, we shall therefore focus on other calibration methods,
which apply a more direct evaluation of the time series output. However, it should be
noted that alternative methods do exist for the inclusion of time series outputs in GP-
based calibration of dynamic models that is fully capable of adressing the benefits of time
series data. The interested reader may want to see the works by Liu and West (2009) and
Frigola-Alcalde (2015).
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Chapter 6

A hierarchical approach using
time series data

6.1 Motivation
The previous two chapters on Bayesian calibration of archetypes applied the KOH
emulator-based approach. An initial attempt to account for archetype heterogeneity was
presented in Chapter 4 using annual training data and one-dimensional data variance.
It was later shown in Chapter 5 that the temporal resolution of the training data has
a significant impact on both posterior estimates of the calibration parameters, and on
the predictive accuracy of the tuned model. Both studies rely on the application of the
ISO 13790 hourly dynamic building energy model for calibration; however, to the best
of my knowledge, it remains to be shown how to calibrate an archetype model using the
ISO 13790 hourly dynamic model, or other dynamic model structures, with time series
data. This would be needed to adequately account for dynamic behaviour, and at the
same time account for difference in training buildings (archetype heterogeneity).

In the following paper (journal paper [P4]), published in Elsevier journal Energy
and Buildings, a novel hierarchical archetype calibration methodology is proposed and
demonstrated using case data from Aarhus. It employs a direct tuning of the building-
physical archetype model itself by evaluating the differences between measured and
simulated time series data. The application of direct tuning, in combination with a
ISO 13790 building energy model structure, renders the use of the KOH emulator-based
approach – and emulators is general – redundant. The direct calibration hereby eliminates
a layer of numerical uncertainty in the calibration process. However, the novelty of the
work primarily consists of the hierarchical structure itself, in which training buildings
are set up to form a statistical archetype without relying on the training buildings being
completely pooled together, i.e. archetype parameters are not formed by a direct average
of individual building parameters. Instead, the hierarchical archetype model makes use
of a statistical phenomenon known as shrinkage. Shrinkage is a process that occurs then
individual building parameters are partially pooled to form a statistical compromise based
on the assumption that they are exchangeable samples from a multivariate Gaussian
distribution, in which the mean parameters are those of the archetype. This enables
the inclusion of parameter covariance, i.e. correlation between input parameters, and
variance across training buildings (archetype heterogeneity).
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The application of building archetypes is a widespread approach used in urban building energy mod- 

eling. Working with archetypes has a range of benefits, but it is important that modelers avoid using 

oversimplified approaches when establishing the archetype as they lead to loss of uncertainty and, con- 

sequently, to models with inferior predictive capabilities. In this paper, we propose a multilevel take on 

the challenge of establishing archetypes. A simultaneous modeling and calibration framework is formu- 

lated using Bayesian inference techniques – a technique that allows for the propagation of uncertainty 

throughout the calibration process. By means of hierarchical modeling, information from training build- 

ings is partially pooled together to form an optimal solution between separate building energy models 

and a completely pooled model. This enables the inference of uncertain archetype parameters that are 

less prone to building outliers than what is achieved using ordinary aggregation of individual building 

estimates. The proposed framework incorporates dynamic building energy modeling of arbitrary temporal 

resolution where uncertain parameters are fitted for individual building models and the archetype model 

simultaneously. The application of the framework is demonstrated using case-study data from the Dan- 

ish residential building stock, containing 3-hourly measurements of energy use for 50 training buildings. 

The model is tested for the prediction of 100 out-of-sample test buildings’ aggregated energy use time 

series on a holdout validation period. With a prediction error of only NMBE = 2.9% and CVRMSE = 7.8%, 

the archetype framework promises well for urban modeling applications. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

City governments, utility companies, and other energy policy 

stakeholders work on the urban scale of neighborhoods, cities, or 

even entire building stocks when planning and predicting the ef- 

fect of various energy efficiency and production strategies. They are 

in need of tools and platforms that enable the analysis of aggre- 

gated effects rather than individual building-level effects. 

Urban building energy modeling (UBEM) is a growing research 

field that seeks to facilitate such analyses by combining the ef- 

fects of individual buildings into an aggregated urban model. The 

modeling approach of UBEM is either to model buildings indepen- 

dently and then aggregate their simulated energy use, or to model 

buildings collectively in an all-inclusive urban model with context- 

specific boundary conditions and interactive effects. Regardless of 

the modeling approach, the overall challenge of UBEM is to col- 

lect and assign all the necessary data inputs for establishing suf- 

ficiently detailed building energy models of all buildings in the 

∗ Corresponding author. 

E-mail address: mhk@eng.au.dk (M.H. Kristensen). 

urban area without introducing too many assumptions and sim- 

plifications [1] . Because of this, the establishment of an accurate 

all-inclusive physics-based UBEM persists to be an extremely dif- 

ficult task. However, one can make use of different techniques 

for reasonable tradeoffs between feasibility and accuracy to over- 

come this; of these techniques, the application of archetype mod- 

els seems to offer an attractive solution. 

1.1. Archetype modeling 

The archetype approach seeks to reduce the number of build- 

ings in a given building stock or urban area to a much smaller 

subset of homogeneous archetypes that represent groups of typo- 

logically identical buildings where information that would allow 

further differentiation is typically not available. This approach in- 

evitably obscures the natural variability of occupant behavior and 

construction elements, but in turn reduces requirements for data 

acquisition and computational load. 

The definition and use of building archetypes for urban-scale 

modeling have undergone a lot of work in recent years. In general, 

the literature describes the process of defining archetypes as con- 

sisting of three steps before simulation: (1) classification of build- 

https://doi.org/10.1016/j.enbuild.2018.07.030 
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Nomenclature 

Variables and parameters 

A m 

effective area of thermal mass [m 

2 /m 

2 ] 

b ground temperature adjustment factor for building ele- 

ments facing the ground [-] 

C m 

capacity of thermal mass [kJ/(m 

2 K)] 

h room 

room height [m] 

H heat loss coefficient (subscripts are used to define 

the element) [W/K] 

f frame window frame fraction [-] 

LWR length-width ratio of building geometry [-] 

n b number of buildings 

n s number of simulations from the building energy 

model 

n t number of simulation time steps 

n θ number of calibration parameters 

p number of levels for Morris sensitivity analysis 

q inf@50Pa infiltration airflow at 50 Pa pressure difference 

[l/(s m 

2 )] 

q vent ventilation airflow [l/(s m 

2 )] 

r number of trajectories for Morris sensitivity analysis 
ˆ R potential scale reduction factor (abbrev.: PSRF) [-] 

SHGC solar heat gain coefficient [-] 

T temperature (index defines which temperature) 

[ °C] 

U heat transfer coefficient (index defines which ele- 

ment) [W/(m 

2 K)] 

V occ hot water consumption of occupants [m 

3 /(pers. 

year)] 

W matrix of weather parameter inputs for building en- 

ergy model (subscripts are used) 

WFR window-floor-ratio of building geometry [-] 

X matrix of fixed parameter inputs for building energy 

model (subscripts are used) 

y vector of measured time series energy use (sub- 

scripts are used) [kW] 

y ∗ vector of simulated time series energy use (sub- 

scripts are used) [kW] 

γ archetype-level scale parameter in half-Cauchy dis- 

tribution 

ε building-level error between measured and simu- 

lated energy use ( y-y ∗) [kW] 

θ vector of building-level calibration parameters (sub- 

scripts are used) 

κ0 a-priori number of “observations” of archetype-level 

means μ on the � scale 

�0 a-priori scale-matrix of the archetype-level covari- 

ance matrix �
μ vector of means of the building-level parameters θ
μ0 a-priori vector of mean values for archetype-level 

means μ

ν0 a-priori degrees of freedom of the archetype-level 

covariance matrix �
� covariance matrix of the building-level parameters 

θ
σ standard deviation of building-level error ε [kW] 

τ vector of standard deviations of the building-level 

parameters θ
�app appliances, equipment and lighting heat load [W] 

�DH district heating energy use ( �DHW 

+ �SH ) [W] 

�DHW 

energy use for domestic hot water [W] 

�occ occupant heat load [W] 

�SH energy use for space heating [W] 

�sol solar radiation [W] 

ω 0 a-priori upper boundary on archetype-level scale- 

parameter γ

Indices and subscripts 

b indexing buildings b = 1 , 2 , . . . , n b 
i indexing parameters for Morris sensitivity 

analysis 

s indexing simulations s = 1 , 2 , . . . , n s 
t indexing time steps t = 1 , 2 , . . . , n t 
out-of-sample quantity based on out-of-sample buildings 

post posterior quantity 

pred predictive quantity 

train quantity based on training data period 

valid quantity based on validation data period 

within-sample quantity based on within-sample buildings 

Abbreviations 

BEM building energy model (or “modeling”) 

BDR building and dwelling register (Danish building and 

property database) 

CVRMSE coefficient of variation of the root mean squared er- 

ror 

DHW domestic hot water 

EPC energy performance certificate 

GIS geographic information system 

GPR Gaussian process regression 

MAP maximum a-posteriori probability 

MCMC Markov chain Monte Carlo 

ML maximum likelihood 

NMBE normalized mean bias error 

PDF probability density function 

PSRF potential scale reduction factor (symbol: ˆ R ) 

UBEM urban building energy model (or “modeling”) 

ings into archetypes, (2) characterization of archetype parameters, 

and (3) calibration and validation of uncertain archetype parame- 

ters [2–6] . In many studies, the application of classifiers such as 

usage type, construction year , and geometry (e.g. surface-volume ra- 

tio) serves as segmentation parameters for clustering buildings into 

archetypes [2,7–9] . These simple segmentation parameters are of- 

ten readily available from public databases such as geographic in- 

formation systems (GIS) and tax and property registers. Parameter 

characterization, on the other hand, is often more difficult. Mod- 

elers can compile parameter data from a mixture of different in- 

formation sources in an effort to draw a holistic picture of the 

archetype; however, the availability of data is very specific to the 

city, region or country in question. Moreover, as data access is 

often limited due to legal constraints and privacy considerations, 

data acquisition easily becomes a delicate compromise. A particu- 

larly difficult task is the description of occupant-related parame- 

ters that influence many aspects of building operation and thereby 

energy use. One can thus seldom expect to have data that is elab- 

orate enough to obtain a purely deterministic description of the 

archetype parameters. Instead, modelers often have to resort to 

‘guessing’, either by means of educated guesses, some kind of anal- 

ysis of historical data, or through a stochastic treatment of uncer- 

tain data. For that reason, it is necessary to apply calibration to 

uncertain archetype parameters [4] . The literature holds a grow- 

ing body of work on calibration methodologies for building energy 

models [10,11] of which the probabilistic calibration approaches, 

e.g. approaches based on Bayesian inference, have become increas- 

ingly popular in recent years [3,4,6,12–20] . As the whole concept 

of archetypes rests on a stochastic treatment of building data, it 

would then only seem natural to expand the probabilistic calibra- 
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tion methodologies to the scale of archetypes and building stocks. 

Nonetheless, there are only few attempts to do so [3,4,6,12,13] . 

1.2. Bayesian calibration of archetypes 

In one of the earliest attempts at probabilistic calibration of 

archetypes by Booth et al. [12] , a Bayesian framework was pro- 

posed for the calibration of a bottom-up physics-based archetype 

based on earlier work by Kennedy and O’Hagan [21] . They applied 

Gaussian process regression (GPR) for fitting four uncertain param- 

eters of a quasi-steady-state building energy model (BEM) – the 

archetype model – to the daily building-averaged energy consump- 

tion data from 35 similar buildings, matching the archetype classi- 

fication, over 61 winter days. Booth et al. [12] list several sources of 

uncertainty related to building stock modeling, which can be sum- 

marized to the following four types: 

• Parameter uncertainty : Building-level variability due to insuf- 

ficient knowledge about BEM input parameters. This also in- 

cludes variability due to human behavior in terms of occupancy, 

operation of appliances, heating and cooling set point prefer- 

ences, etc. 
• Structural uncertainty : Variability due to the inadequacy of the 

BEM in describing the true energy consumption process of the 

building. This is also known as model bias or model discrep- 

ancy. 
• Archetype heterogeneity : Archetype-level variability due to dif- 

ferences in building characteristics across the sampled build- 

ings. 
• Numerical uncertainty: Algorithmic variability due to numeri- 

cal approximations, too small sample sizes, insufficient conver- 

gence of calibration, etc. 

Booth et al. [12] explicitly addressed and incorporated param- 

eter uncertainty by using the GPR technique to fit uncertain pa- 

rameter distributions from a-priori uncertainty specifications, and 

to some degree structural and numerical uncertainty by including a 

statistical bias-correcting term. However, by fitting the calibration 

regression line to averaged building data, they did not account for 

archetype heterogeneity . 

Kristensen et al. [22] also used the GPR technique, but on the 

annual heating energy use from a cluster of 450 similar residential 

buildings to estimate seven shared archetype parameters of a dy- 

namic BEM. They fitted the calibration regression line to the non- 

averaged, building-specific training data, whereby they acknowl- 

edged the uncertainty due to differences in the sampled archetype 

buildings, i.e. archetype heterogeneity . This introduction of a dis- 

aggregated building-level likelihood assessment was important as 

archetype-aggregated data tends to average out much of the vari- 

ability of the building stock, resulting in less informed posterior 

estimates. 

In studies by Cerezo et al. [3,4,6] , a new semi-Bayesian ap- 

proach was proposed relying on an iterative error-analysis between 

dynamic BEM simulations and annually or monthly aggregated 

data, respectively. They used an upper limit for the simulated er- 

rors as a binary likelihood function to filter building-specific dis- 

tributions for the calibration parameters for each building inde- 

pendently. The inferred building-specific parameter estimates were 

subsequently merged together into joint archetype-estimates to be 

used for prediction. By evaluating the likelihood of each build- 

ing independently before combining the data, they implicitly ac- 

counted for archetype heterogeneity. 

In agreement with the abovementioned sources of uncertainty, 

previous studies on the calibration efficacy of individual buildings 

have shown that the Bayesian framework is affected by the level of 

uncertainty in fixed and uncalibrated model parameters [23] , the 

amount of training data [17] , and the level of temporal aggregation 

of calibration data [23,24] . Even though these findings apply to the 

calibration of individual buildings, they presumably also hold for 

the calibration of archetypes; however, this remains unaccounted 

for. A natural next step would thus be to investigate the effect of 

applying calibration data of high temporal resolution, e.g. hourly 

measurements of energy use. The application of high-resolution 

data, in combination with a detailed dynamic BEM, will most likely 

allow for a better estimation of dynamical parameters [23] . How- 

ever, a binary likelihood function as proposed by Cerezo et al. 

[3,4,6] could prove to be too simple to fully exploit the information 

embedded in high-resolution data; for this end, a fully Bayesian 

continuous likelihood, e.g. Gaussian-distributed errors, would prob- 

ably serve as a better ‘filter’. Furthermore, a specific feature of esti- 

mating archetype parameters is the potential correlation between 

calibrated parameters. To our knowledge, this correlation has not 

previously been addressed in the literature of BEM calibration de- 

spite its importance for making accurate out-of-sample predictions 

of new buildings subscribing to the same archetype. 

1.3. Contributions of this paper 

In this paper, we present a new probabilistic archetype model- 

ing and calibration framework where we use data from a number 

of observed training buildings to calibrate uncertain archetype pa- 

rameters in a hierarchical setting. This feature allows the archetype 

calibration to draw strength from all training building datasets si- 

multaneously, hereby exploring the true diversity of the archetype. 

In addition to the propagation of uncertainty throughout the cali- 

bration process due to the abovementioned sources of uncertainty, 

the proposed framework introduces the inclusion of four key fea- 

tures: 

1. Dynamic physics-based building energy modeling; 

2. Time series data and model outputs of arbitrary temporal reso- 

lution, e.g. hourly resolution; 

3. Hierarchical/multilevel likelihood assessment of parameter pro- 

posals (both on building level and archetype level); 

4. Calibration of both building-level and archetype-level parame- 

ters including their correlation. 

We have organized the paper with an initial presentation of the 

proposed hierarchical framework in Section 2 . All assumptions and 

necessary statistical definitions are laid out openly allowing read- 

ers to implement the model using their own data, if wanted. In 

Section 3 , we demonstrate the application of the framework using 

an archetype case study from the Danish residential building stock. 

It is demonstrated how to draw inference about archetype pa- 

rameters even though parameter values of the individual training 

buildings are not themselves observed, and how to perform out- 

of-sample predictions of unseen buildings matching the archetype 

definition. In Section 4 , we provide a discussion on the applicabil- 

ity, limitations and possible future work for further optimization of 

the framework before we draw conclusions in Section 5 . 

2. Proposed archetype framework 

We propose a hierarchical archetype modeling and calibration 

framework using a statistical formulation to describe the correla- 

tion between buildings that share the same archetype classifica- 

tion, as depicted in Fig. 1 . At the archetype level, it is assumed 

that the buildings in the archetype exhibit exchangeable proper- 

ties, meaning they can be seen as a sequence of exchangeable ran- 

dom variables sharing an underlying distribution function – i.e. a 

shared archetype description. Uncertain parameters at both build- 

ing level and archetype level are then calibrated using measured 

energy use time series from training buildings at the building level 
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Fig. 1. Statistical representation of hierarchical framework. 

in a Bayesian setting. This allows for user-specified prior informa- 

tion about their values to be taken into account at hyperprior level. 

The following sections describe the procedures of the framework in 

detail. 

2.1. Building-level formulation 

First, consider a building for which we observe a time series 

y = [ y 1 , y 2 , . . . , y n t ] 
T of its energy use. We model the building us- 

ing a physics-based building energy model (BEM), which we use 

to create a vector of n t simulation outputs y ∗ = [ y ∗
1 
, y ∗

2 
, . . . , y ∗n t ] 

T 

matching the vector of observed data y . The relation between ob- 

served and simulated energy use can be described as: 

y = y ∗ + ε , (1a) 

y ∗ = M 

(
X , W , θ

)
, (1b) 

ε ∼ N 

(
0 , σ 2 I 

)
, (1c) 

where M ( X , W , θ) denotes the BEM evaluated on a matrix X ∈ 

R 

n t × n x of observed and/or fixed building-specific input param- 

eters, a matrix W ∈ R 

n t × n w of relevant weather measurements, 

and a vector θ = [ θ1 , θ2 , . . . , θn θ
] T ∈ R 

n θ × 1 of unknown parameters 

that we want to tune. The error-term ε = [ ε 1 , ε 2 , . . . , ε n t ] 
T ∈ R 

n t × 1 

holds any residual variation between observations and simulations 

that cannot be decomposed as well as observation errors. We as- 

sume the errors to be independent and identical (i.i.d.) Gaussian 

Fig. 2. Conceptual idea of archetype building realizations. 

distributed and to exhibit homoscedasticity across time t such that 

var ( ε t ) = σ 2 ∀ t . 

2.2. Archetype-level formulation 

Now, consider b = 1 , 2 , . . . , n b buildings as described in 

Section 2.1 , each of which we assume to be i.i.d. realizations 

from a single archetype building ( Fig. 2 ). Once again, we under- 

line that the process of segmenting building stocks and defining 

archetypes is not in focus here; we expect the modeler to have 

gone through this classification process already. For the archetype, 

we do not presume the sample buildings to be indistinguishable 

from each other, but whatever difference there is, it is due to 

random variation around a central archetype building. 

For these n b buildings, we employ a two-stage hierarchical for- 

mulation on the relationship between the exchangeable building 

datasets ( Fig. 1 ). Formally, the first stage of the hierarchy – the 

building level – reparametrizes the abovementioned data model 

( 1a )–( 1c ) using b to index individual buildings: 

y b ∼ N 

(
y ∗b , σ

2 
b I 

)
, b = 1 , 2 , . . . , n b . (2) 

We model the observed data y b of the b th building as a sam- 

ple from the corresponding simulated data y ∗
b 

with i.i.d. random 

noise across time to account for residual error. The second stage 

of the hierarchy – the archetype level – defines the link between 

the n b sample buildings, i.e. the interconnectivity of the unknown 

building-level calibration parameters θb : 

θb ∼ N ( μ, �) , b = 1 , 2 , . . . , n b . (3) 

In (3) , the vector of n θ calibration parameters θb of the b th 

building is taken to be an i.i.d. sample from a multivariate Gaussian 

distribution with an unknown but shared vector of archetype mean 

parameters μ ∈ R 

1 ×n θ and unknown covariance matrix � ∈ R 

n θ ×n θ

describing the variance of the calibration parameters across build- 

ings and their internal correlation. It can be necessary to constrain 

or augment the calibration parameters θ to ensure a realistic sam- 

pling distribution; for example, U-values, ventilation rates, ther- 

mal masses, etc. are all constrained to the positive domain only. 

By initially log transforming such calibration parameters, physical 

boundedness is ensured. 

Moreover, in the second stage of the hierarchy, we employ an 

archetype-level formulation for the unknown standard deviation 

σ b of the building-specific error vector ɛ b to help pool the indi- 

vidual building estimates towards a common shared estimate. This 

is particularly useful for buildings with less well-behaved datasets, 

i.e. for datasets where unusual occupancy patterns, among other 

things, would otherwise result in larger errors and thereby hinder 

inference about the calibration parameters. The application of the 

half-Cauchy + distribution (4) is a weakly informative choice for the 

distribution of the σ b s that is centered on zero with a heavy tail 

towards infinity governed by the scale parameter γ [25] : 

σb ∼ halfCauch y + ( 0 , γ ) , b = 1 , 2 , . . . , n b . (4) 

For individual building datasets obtained using the same data 

collection methods and under similar general conditions, the em- 

ployment of a hierarchical pooling of the error standard deviations 
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σ b seems reasonable. However, in many cases, the unpredictable 

and stochastic nature of occupancy may preclude the assumption 

of exchangeable error-terms across buildings. In such cases, we 

might abandon the hierarchical pooling (4) in favor of separate 

building estimates. 

2.3. Calibrating archetype parameters 

The hierarchical structure describes a combined sampling dis- 

tribution for the data y 1: n b 
. However, for the purpose of parame- 

ter calibration, we are more interested in viewing the model as a 

function of the data. The likelihood formally sums up all the data 

as a function of the free, i.e. unknown, parameters of the statis- 

tical model and hence describes the plausibility (probability den- 

sity) of proposed parameter values given the data. The likelihood 

of the b th building dataset containing t = 1 , 2 , . . . , n t data points is 

a Gaussian probability density function due to the assumption of 

Gaussian distributed errors ( 1c ): 

p 
(

y b | θb , σb 

)
= 

1 

( 2 πσb ) 
n t / 2 

e 

{ 

−
1 

2 σ 2 
b 

n t ∑ 

t=1 
( y b,t −y ∗

b,t ) 
2 

} 

, (5a) 

The simulated data y ∗
b 

is obtained through the BEM ( 1b ), which 

is only a function of θb since we consider the observed input pa- 

rameters of X and W to be fixed. Implementing the full hierarchical 

structure to fit the entire dataset of b = 1 , 2 , . . . , n b buildings, the 

combined data likelihood, conditional on the hierarchical model, 

becomes the product of n b Gaussian likelihoods: 

p 
(

y 1: n b 

∣∣θ1: n b , σ1: n b 

)
= 

n b ∏ 

b=1 

1 

( 2 πσb ) 
n t / 2 

e 

{ 

−
1 

2 σ 2 
b 

n t ∑ 

t=1 
( y b,t −y ∗

b,t ) 
2 

} 

. (5b) 

The likelihood function only describes the dependence of the 

data on the immediate data-level parameters. However, as we are 

not specifically interested in these quantities, but more in the 

archetype-level parameters μ, �, γ that indirectly affect the data 

through the hierarchical structure, we thus expand the likelihood 

function by multiplying the immediate data-level likelihood 5b ) 

with the probability density of the building-level parameters ( (3) - 

(4) to obtain what we could call the joint likelihood function: 

p 
(

y 1: n b 

∣∣μ, �, γ
)

= p 
(

y 1: n b 

∣∣θ1: n b , σ1: n b 

)
p 
(
θ1: n b 

∣∣μ, �
)

p 
(
σ1: n b 

∣∣γ )
. 

(6) 

From the left-hand-side of (6) , it is now evident that we do not 

need to consider the values of individual building-level parameters 

to draw an inference about the archetype-level parameters as the 

conditional dependency is accounted for. To infer the values of the 

unknown archetype-level parameters μ, �, γ , we could apply the 

method of maximum likelihood (ML) estimation to approximate 

the most likely values (point estimates) given the data. However, 

as the ML estimate may be seen as a special case of the Bayesian 

maximum a-posteriori probability (MAP) estimate that allows for a 

more thorough treatment of uncertainties, we apply the more gen- 

eral Bayesian approach here [26] . In a Bayesian context, the true , 

i.e. calibrated, parameter distributions after seeing the data are re- 

ferred to as posterior distributions following Bayes theorem. The 

posterior probability density of the parameters in the context of 

this model is: 

p 
(
μ, �, γ | y 1: n b 

)
∝ p 

(
y 1: n b 

∣∣μ, �, γ
)

p ( μ, �, γ ) , (7) 

where p( μ, �, γ | y 1: n b 
) is the joint posterior density of 

the archetype-level parameters conditional on the data, 

p( y 1: n b 
| μ, �, γ ) is the joint data likelihood conditional on the 

model and parameters as given in (6) , and p ( μ, �, γ ) is the 

joint prior density of the archetype-level parameters. To fulfill 

the hierarchical model formulation in a Bayesian context, we thus 

need to specify prior PDFs that reflect our subjective beliefs about 

the unknown archetype-level parameters before seeing the data 

– illustrated as the hyperprior level in Fig. 1 . Different options of 

priors are available for the mean μ and covariance � of the multi- 

variate normal distribution of the θb s (3) ; we make the convenient 

choice of using the conjugated prior – the normal-inverse-Wishart 

distribution [26] – that ensures the posterior to be multivariate 

normal as well: 

� ∼ InvWishart 
(
�−1 

0 , ν0 

)
, (8a) 

μ| � ∼ N ( μ0 , �/ κ0 ) , (8b) 

γ ∼ U ( 0 , ω 0 ) , (8c) 

where the parameters ν0 and �0 represent the degrees of freedom 

and the scale matrix, respectively, of the inverse-Wishart distribu- 

tion on �, and the parameters μ0 and κ0 represent the prior mean 

vector and the number of prior observations on the � scale. Set- 

ting ν0 = n θ + 1 and �0 = I (identity matrix) results in a weakly 

informative prior where each correlation parameter in � has a 

marginal uniform prior distribution. Likewise, setting κ0 to a low 

number, e.g. 1–10 depending on the number of building datasets 

n b being modeled, results in less weight being given to the chosen 

prior mean values μ0 . For the scale γ of the half-Cauchy distribu- 

tion (4) that controls the level of pooling of the building-specific 

error standard deviations σ b , we apply a uniform prior distribu- 

tion constrained to the positive domain ( 8c ). Setting ω 0 to a high 

number relative to the scale of the data ensures a data-driven in- 

ference [25] . 

Employing a straightforward Markov chain Monte Carlo 

(MCMC) algorithm, e.g. the Metropolis-Hastings algorithm [25] , can 

simulate the joint posterior distribution of the model, and subse- 

quently, the marginal posterior distributions of the individual pa- 

rameters. We can address the inferred values of calibrated param- 

eters in terms of either the individual MAP estimates, or by using 

the full posterior probability distribution, effectively retaining all 

model uncertainty. 

Employing an MCMC algorithm to make inferences about the 

uncertain parameters (inferring their posterior distribution) re- 

quires the evaluation of the joint data likelihood (6) and prior dis- 

tributions ( 8a)–(8c) thousands of times. Evaluating the likelihood 

of a given parameter proposal easily becomes computationally in- 

convenient and even practically impossible for larger datasets, i.e. 

many buildings and/or many time series data points. This is due 

to the small probabilities that arise, which often cause numerical 

instability. The widespread approach of using log-probabilities is 

therefore strongly encouraged to improve both numerical stability 

and accuracy (stability is ensured for small probabilities), as well 

as computational speed (addition in the log-domain is less expen- 

sive than multiplication in the arithmetic domain). 

2.4. Predictive performance 

As is typical in Bayesian data analysis, predictions/forecasts 

from the hierarchical model are based on the posterior predictive 

distribution of the parameter of interest, e.g. the predictive distri- 

bution of an energy use time series p pred ( y ). We hereby aim to re- 

port inferences about future predictions of building energy use in 

such a way that the full uncertainty over y from all layers of the 

hierarchical model is accounted for throughout the analysis. 

We can easily forecast energy use time series from the existing 

b = 1 , 2 , . . . , n b buildings used to calibrate the archetype by gener- 

ating random draws from the posterior distributions of the trained 
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Table 1 

Archetype classification applied in demonstration case study. 

Segmentation parameter Value 

Usage/Type Detached single-family house 

Construction period 1950–1959 

Location Aarhus, Denmark 

Number of stories above ground 1 

Basement No 

Attic utilized for living No 

Heating source District heating (space heating and DHW) 

Suppl. heating installations No 

building-specific calibration parameters p post ( θb ) and subsequently 

apply these in the BEM ( 1b ) with existing or forecasted weather 

conditions to generate y b | X b , W new 

, θb . In general, however, we are 

more interested in predicting the consumption of other buildings 

than those used to calibrate the archetype, i.e. we want to predict 

the performance y new 

for a new set of building-specific parameters 

X new 

. In this case, we have no posterior distribution of the cali- 

bration parameters. Instead, we sample the parameters from their 

predictive distribution, i.e. the archetype posterior distributions of 

the calibration parameters: 

p pred 

(
θnew 

)
= N ( μpost , �post ) . (9) 

We then apply the BEM ( 1b ) to generate predictions y new 

| θnew 

, 

W, X new 

for new buildings using random draws from p pred ( θnew 

) 

in combination with the fixed building-specific parameters X new 

and existing or forecasted weather conditions as input. Repeating 

this sampling many times allows us to construct an empirical dis- 

tribution of the posterior predictive space of time series predic- 

tions p pred ( y new 

| θnew 

, W, X new 

) for that specific building and those 

weather conditions. 

3. Demonstration: Danish detached single-family dwellings 

from the 1950s 

In this section, we demonstrate how energy use time series 

data from a limited number of clustered training buildings can be 

used for identifying a shared archetype model using the archetype 

calibration framework described in Section 2 . We do not focus on 

the clustering process itself, i.e. the archetype definition and clas- 

sification, but rather on quantifying the embedded variability (ho- 

mogeneity) in an arbitrary archetype definition selected for the 

purpose of this case study demonstration, and how this archetype 

model may be used for prediction. The predictive capabilities of 

the calibrated archetype are validated against each individual train- 

ing building on a new holdout validation period (within-sample 

prediction), and against new unseen test buildings that have not 

been used for training the archetype (out-of-sample prediction). 

3.1. Archetype classification and case data 

An archetype was defined covering Danish one-storied detached 

single-family dwellings constructed in the 1950s (full archetype 

classification given in Table 1 ). 

3.1.1. Building data 

A publicly available database containing building and property 

characteristics for the Danish building stock – the Building and 

Dwelling Register (BDR) – was used to identify buildings match- 

ing the archetype definition. We filtered the BDR information on 

the entire residential building stock of Aarhus, Denmark (approx. 

80,0 0 0 buildings) using the segmentation parameters in Table 1 . 

A pool of 2,775 buildings matching the archetype description was 

obtained. Of these 2,775 potential archetype buildings, we ran- 

domly selected 50 training buildings for the purpose of archetype 

calibration, and an additional 100 test buildings for archetype per- 

formance testing (out-of-sample validation). Besides the segmen- 

tation parameters listed in Table 1 , the only additional parame- 

ter from the BDR database used for setting up the building energy 

model was the “heated floor area”. 

3.1.2. Time series of building energy use 

The local district heating supplier, AffaldVarme Aarhus, supplies 

most of the city of Aarhus with heat for hydronic space heat- 

ing and/or on-site domestic hot water (DHW) preparation through 

its underground distribution system. They began the replacement 

of their old heat meters with new modern smart meters (Kamp- 

strup Multical® heat meters) in all of its consumer units through- 

out the city in 2015 and finished in 2017. The accumulated district 

heating consumption of each building is now digitally read off its 

smart meter once every hour using a remote reading system and 

logged by the utility in truncated kWh (an actual consumption of 

6,529.999 kWh is reported as 6,529 kWh). No energy is “lost” dur- 

ing the meter reading process though; only the precise temporal 

fixation of the decimals on individual hourly readings remains un- 

accounted for. Consequently, minor parts of the energy consump- 

tion may be shifted one or two hours forward in time. We were 

given access to these hourly logged time series readings from the 

150 archetype buildings for the purpose of this study. All data was 

subsequently anonymized. 

The reading uncertainty was negligible for the large accumu- 

lated meter values, but it was substantial for the hourly differences 

that were in the order of 0 kWh to 5 kWh (difference between two 

successive accumulated hourly readings). The reading uncertainty 

(0 kWh ≤ reading uncertainty < 1 kWh) could potentially amount to 

as much as 100% of the hourly values in hours with low or no con- 

sumption and thus hinder an efficient identification of uncertain 

building parameters. The effect of reading uncertainty is reduced 

by reducing the temporal resolution of the data from hourly val- 

ues into e.g. 2-hourly, 3-hourly, 6-hourly, or 12-hourly values, etc. 

but at the cost of data resolution, and consequently, the ability to 

account for model dynamics [24] . We made a compromise and ag- 

gregated all hourly values into 3-hourly values (difference between 

every third accumulated meter reading). 

3.1.3. Weather data 

A weather file was compiled from hourly measured values of air 

temperature and global horizontal irradiance from a local weather 

station in the city of Aarhus located within a 15 km radius from all 

training buildings. 

3.1.4. Training and validation data periods 

To identify the thermodynamic behavior and characteristics of a 

building, one needs response data captured during transient con- 

ditions that excite the dynamics of the building sufficiently [27] . 

Although we selected training and validation periods ( Table 2 ) in 

which external loads varied substantially ( −9 °C < outdoor air tem- 

perature < + 9 °C), we had no prior knowledge about variations in 

internal loads, nor the actual heating set points. Therefore, esti- 

mates of the dynamic properties remain subject to a high degree 

of uncertainty. 

All building datasets were initially scrutinized for missing en- 

ergy use data in the training and validation periods. Buildings 

with missing data in this two-month period were not accepted in 

the analysis, but instead replaced with a new, randomly sampled 

building from the city with associated district heating readings in 

accordance with the archetype classification ( Table 1 ). This was 

also the case for buildings with erroneous BDR data, i.e. a “nega- 

tive” or “zero” heated area, and for buildings missing construction 

year. 

6.2. PAPER [P4]: "HIERARCHICAL CALIBRATION OF ARCHETYPES ..."

65



M.H. Kristensen et al. / Energy & Buildings 175 (2018) 219–234 225 

Table 2 

Size and temporal resolution of data. 

Training buildings (within-sample) Test buildings (out-of-sample) 

Sample size, n b 50 buildings 100 buildings 

Training period 1.1.2017–31.1.2017 ( n t = 248 3-hourly values) Out-of-sample buildings are not trained 

Validation period 1.2.2017–29.2.2017 ( n t = 248 3-hourly values) 1.2.2017–29.2.2017 ( n t = 224 3-hourly values) 

Fig. 3. Measured time series data. Top: Averaged building energy use for all n b = 50 within-sample training buildings. Middle: Outdoor air temperature. Bottom: Global 

horizontal irradiance. Only data from the training period was used for calibration. 

The averaged energy use time series from all n b = 50 training 

buildings along with corresponding weather data (air temperature 

and global horizontal irradiance) are shown in Fig. 3 for the train- 

ing and validation periods. 

3.2. Building energy model 

The hourly measured district heating energy use ( �DH ) was 

modeled using two separate models; one for space heating ( �SH ) 

and one for DHW ( �DHW 

), which were subsequently added so that 

�DH = �SH + �DHW 

. The following sections explain the models for 

�SH and �DHW 

in detail. 

3.2.1. Building geometry 

The actual and detailed geometric layout of the individual 

buildings was unknown. We therefore applied a general and scal- 

able geometric representation to be used for all buildings, similar 

to what was used in Kristensen et al. [22] . The geometric layout 

consisted of a rectangular box ( Fig. 4 ) with dimensions based on 

simple rules applied to known information about the floor area 

(information from BDR), our a-priori beliefs about the length-to- 

width-ratio ( LWR ), and the floor height of a typical SFH ( Table 3 ). 

The building facades were assumed to face the four cardinal 

directions. As the total window area was unknown, and because 

all buildings varied in size, we modeled the total window area 

as a scalable proportion of the floor area (window-to-floor ratio, 

WFR ). Moreover, we fixed the partitioning of the total window 

area on the four facades following Danish standard calculation pro- 

Fig. 4. Geometric model of archetype building. 

cedures (North = 26%; South = 41%; East/West = 16.5%) for single- 

family dwellings [28] . 

3.2.2. Space heating 

Energy use for space heating �SH was modeled using a slightly 

modified version of the hourly dynamic calculation method de- 

scribed in ISO 13790:2008 ( Fig. 5 ). The building was treated as a 

single thermal zone and the thermal inertia of the building was 

accounted for by modeling thermal resistances and the effective 

thermal capacity, as well as the internal and solar heat gains in an 

equivalent three-node resistance capacitance network (5R1C). The 

supply air temperature of the ventilation was assumed identical 

to the external air temperature as the ventilation principle of Dan- 

ish dwellings from the construction period of the archetype usually 

is natural ventilation, i.e. infiltration, manual opening of windows, 

window valves. 
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Table 3 

List of user-specified values for 20 uncertain model input parameters. The top 10 most influential parameters 

were identified using the Morris sensitivity screening method [29] , assuming a uniformly distributed prior data 

range (max/min). 

Uncertain 

model 

parameter 

Sensitivity analysis Selected 

value 
Min. value Max. value Result (top 10) ∗

Geometry 

Length-width ratio, LWR [-] 0.10 1.00 X 0.50 

Room height, h room [m] 2.30 3.00 2.60 

Window-floor ratio, WFR [-] 0.10 0.50 X Calibrated 

Window frame fraction, f frame [-] 0.10 0.50 0.25 

Transmission 

Temp. adjustment factor (ground), b ground [-] 0.50 1.00 0.70 

U -value (floors) [W/(m 

2 K)] 0.10 0.50 X 0.30 

U -value (walls/roof) [W/(m 

2 K)] 0.10 0.50 X Calibrated 

U -value (windows) [W/(m 

2 K)] 1.00 5.00 X 1.60 

Solar heat gain coef., SHGC [-] 0.50 0.70 0.60 

Capacity of thermal mass, C m [kJ/(m 

2 K)] 50 600 X Calibrated 

Effective mass area, A m [m 

2 / m 

2 ] 3.00 5.00 2.5–3.5 ∗∗

Heat conduction (mass) [W/(m 

2 K)] 8.50 10.00 9.10 ∗∗

Heat transfer coef. (surf.-air) [W/(m 

2 K)] 2.00 5.00 3.45 ∗∗

Ventilation 

Infiltration airflow, q inf@ 50 Pa [l/s/m 

2 ] 0.10 8.00 X Calibrated 

Design airflow (nat. ventilation), q vent [l/s/m 

2 ] 0.10 2.00 X 0.30 

Occupation 

Occupant density, Occ.Density [m 

2 /pers.] 10 150 X Calibrated 

Room heating set point, T set,H [ °C] 18.0 25.0 X 21.5 

Domestic hot water 

DHW flow temperature, T DHW 

[ °C] 40.0 60.0 55.0 

Mains temperature, T mains [ °C] 5.0 15.0 10.0 

Hot water consumption, V occ [m 

3 /pers./year] 10 20 15 

∗Top 10 most influential parameters according to the Morris method [29] . 
∗∗Parameter values are defined in ISO 13790:2008. 

Fig. 5. Space heating model. Modified version of the network presented in ISO 

13790:2008. The area of the building elements A is used to transform resistances 

R into heat transfer coefficients H = A/R . 

The space heating model ( Fig. 5 ) contains three internal tem- 

perature nodes: room air temperature T i , surface temperature of 

the thermal mass T s , and internal temperature of the thermal 

mass T m 

. The nodes are interconnected by three heat transfer co- 

efficients describing the building elements (opaque envelope ele- 

ments H op , windows H w 

, and ventilation H v ) and two coefficients 

describing the heat transfer between the indoor air, indoor sur- 

faces, and thermal mass ( H is and H ms ). Finally, the thermal mass 

of the building is governed by the capacity C m 

. Several of the 

parameters, e.g. T s , T m 

, and H em 

, only exist as provisional values 

in the algorithm of the ISO 13790:2008 calculation method and 

thus did not need any prescribed value. Other parameters, mainly 

heat transfer coefficients between building elements, are defined 

in the standard. User-specified inputs were necessary for the re- 

maining building-specific parameters. As no information was avail- 

able about U -values, SHGC , ventilation airflows, etc., their values 

were based on the Danish building code in force at the time of 

construction, historical surveys of the Danish building stock, and 

our a-priori beliefs ( Table 3 ). Ventilation was assumed a mix of in- 

filtration and opening of windows; no mechanical ventilation was 

modeled. Based on studies by Rijal et al. [30] , the airflow through 

windows was modeled hourly as a percentage of maximum design 

airflow using a logistic regression on the outdoor temperature T e : 

p airflow 

= 

e { 0 . 25 T e −0 . 25 } 
1 + e { 0 . 25 T e −0 . 25 } (10) 

The RC network ( Fig. 5 ) is exposed to external boundary con- 

ditions in terms of the outdoor air temperature T e , solar radia- 

tion �sol , internal heat loads from equipment/lighting �app , oc- 

cupants �occ , and space heating �SH delivered from the district 

heating system. Outdoor air temperature T e and solar irradiation 

�sol were specified using measured weather conditions (Section 0; 

Fig. 3 ). The hourly average of �app was estimated using a regres- 

sion model based on statistical data of annual electricity consump- 
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tion in Danish detached single-family dwellings [31] as follows: 

�app = 

530 

kWh 
year 

+ A floor 12 

kWh 
m 

2 year 
+ n occ 690 

kWh 
pers . year 

8760 

h 
year 

(11) 

The heat load from occupants was modeled as the sensible heat 

load of an average person living in the building (both children and 

adults): 

�occ = 80 

W 

pers . 
n occ . (12) 

Schedules for internal loads �app and �occ were assumed fixed 

and uniform over time (flat schedules with no variation in inter- 

nal loads) as no a-priori information was available to reflect the 

stochastic nature of user-driven phenomena across various build- 

ings. 

3.2.3. Domestic hot water 

The hourly average energy use for domestic hot water prepa- 

ration �DHW 

was modeled using a simple linear model propor- 

tional to the amount of hot water consumed annually, under the 

assumption that the rate of consumption was reasonably constant 

throughout the year: 

�DHW 

= 

4140 

kJ 
m 

3 K 
V occ n occ ( T DHW 

− T mains ) 

8760 

h 
year 

(13) 

The annual hot water consumption V occ . , number of occupants 

n occ . , flow temperature T DHW 

and mains supply temperature T mains 

were unknown and hence based on our a-priori beliefs ( Table 3 ). 

A flat schedule for DHW energy use �DHW 

was applied as no a- 

priori information was available to reflect the stochastic nature of 

user-driven phenomena across various buildings. 

3.3. Selecting parameters for calibration 

The values of the 20 model input parameters ( Table 3 ) were 

unknown for each building and thus left for us to specify based 

on our prior beliefs. Ideally, one ought to calibrate all uncertain 

parameters. In practice, doing so is infeasible – both due to the 

high number of parameter dimensions, but also due to the iden- 

tifiability of the model parameters themselves [32] . We therefore 

based the selection of calibration parameters on a sensitivity anal- 

ysis (SA) in which we assigned a uniform distribution to the input 

space of each parameter to reflect our a-priori knowledge about 

the archetype ( Table 3 ). Based on recommendations by Kristensen 

and Petersen [33] who analyzed the performance of three differ- 

ent SA methods using the ISO 13790 energy calculation models, 

the Morris method [29] was applied to screen the uniformly dis- 

tributed input space for its global effect on the model output. We 

applied the annually aggregated energy use from 8,760 hourly cal- 

culations as the output measure of interest as we wanted to find 

parameters that were important for the entire year and not only 

for the training and validation periods. A total of r = 500 trajec- 

tories (samples from the input space using the original Morris 

sampling technique) with p = 5 levels (discretization of the input 

space) was used to obtain a fully converged ranking of the input 

parameters, resulting in a total of r( k + 1 ) = 10 , 500 model evalu- 

ations. Fewer trajectories, and thus fewer model evaluations, could 

eventually prove enough for the SA; however, as less than one 

minute was used to perform the simulations in Matlab on a stan- 

dard laptop, this was no issue. No correlations between model in- 

put parameters were taken into account in the sampling of values. 

The resulting sensitivity indices are plotted in Fig. 6 for a graphical 

interpretation. 

From the results of the sensitivity screening ( Fig. 6 ), we found 

that the input parameters primarily affect the output (annually 

Fig. 6. Graphical presentation of the results of the Morris sensitivity analysis using 

r = 500 trajectories and p = 5 levels. The absolute mean elementary effects are plot- 

ted against the standard deviation of the elementary effects (20 uncertain model 

input parameters). The ten most influential parameters are named. The line repre- 

sents values for which σ ( EE ) = μ( EE ) . 

Table 4 

Prior values selected for archetype-level hyperparameters (hyperpriors). 

Hyperparameter Prior value 

μ0 WFR [-] 0.15 

U walls/roof [W/(m 

2 K)] 0.50 

C m [kJ/(m 

2 K)] 300 

q inf@ 50 Pa [l/(m 

2 s)] 3.50 

Occ.density [m 

2 /pers.] 50 

κo 1 

�0 5 × 5 identity matrix, I 

ν0 n θ + 1 = 6 

ω 0 10 

aggregated energy use) through a monotonic linear relationship 

(indicated by σ ( EE ) i -values remaining below the dotted line in 

Fig. 6 ), which was expected from a model based on the RC model 

formulation of ISO 13790:2008. Studies on parameter identifica- 

tion using RC-models have shown that it can be difficult to iden- 

tify and separate linearly related parameters in practice [32,34,35] . 

Five out of the ten most influential parameters identified were 

selected for calibration ( θ) based on what we found interesting 

and identifiable in practice: window-floor ratio ( WFR ), U -value of 

walls/roof ( U walls/roof ), internal heat capacity of the thermal mass 

( C m 

), infiltration airflow rate @50 Pa ( q inf@50Pa ), and occupant den- 

sity ( Occ.Density ). The remaining 15 parameters were left uncali- 

brated (fixed) at the selected values ( Table 3 ). These 15 fixed pa- 

rameters were represented through X . 

Weakly informative prior distributions were established for the 

archetype-level parameters μ, �, γ using their five hyperparame- 

ters μ0 , κ0 , �0 , ν0 , ω 0 for which values are given in Table 4 . The 

resulting prior distributions of μ, �, γ are shown in Section 3.4 to- 

gether with the inferred posterior distributions. 

3.4. Calibrated (posterior) parameters 

Four chains were run in parallel with randomly dispersed start- 

ing points in the parameter space to draw samples from the joint 

posterior distribution. For each chain, 18,0 0 0 MCMC samples were 

drawn with the first 14,0 0 0 samples of the chains being considered 

cool , meaning that information about the starting point might still 

prevail; samples from this cold period were thus discarded leaving 

only the warm part of the chains for analysis. 

Convergence in the warm chains was monitored in terms of the 

potential scale reduction factor (PSRF), a positive rational number 
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Fig. 7. Marginal prior and posterior distributions of the five archetype-level calibration parameters. The calibration parameter mean values μ are shown in the left-hand 

column, their decoupled standard deviations τ are shown in the middle column, and their predictive distributions are shown in the right-hand column. 

ˆ R ∈ R | 1 ≤ ˆ R < ∞ [26] . The PSRF measures how much the scale of 

the variations in the inferred parameter distributions might have 

been reduced if the number of draws simulated by the MCMC- 

algorithm approached infinity, lim n →∞ 

( ̂  R → 1 ) . By accounting for 

the within-chain to between-chain variance in the warm chains, 

the PSRF evaluates both the mixing and stationarity of the chains 

simultaneously. A stable and converged solution was considered 

for any given parameter estimation when 

ˆ R < 1 . 1 . 

As it is infeasible to visualize the posterior distributions of the 

five calibration parameters θ for all 50 training buildings (first level 

of the hierarchy), we only show the shared archetype-level param- 

eters μ, �, γ here (second level of the hierarchy). Furthermore, 

we have decomposed the covariance matrix � into parameter spe- 

cific variance τ2 = var (θ) and correlation coefficients ρ = corr (θ) 

for the purpose of visualization. The prior and posterior distribu- 

tions of the five archetype mean values μ are displayed in Fig. 7 

(left-hand column), while their corresponding standard deviations 

τ are shown in Fig. 7 (middle column). In the right-hand column in 

Fig. 7 , the mean and variances have been applied to draw the pre- 

dictive distributions p pred ( θ1: n θ
) = N( μ1: n θ

, τ 2 
1: n θ

) of the five cal- 

ibration parameters themselves. However, it is important to note 

that these predictive distributions are marginal and thus do not 

account for the modeled correlation ρ ( Fig. 8 ) between the pa- 

rameters, which must be taken into account through the covari- 

ance matrix � when predicting coherent values of the parameters 

p pred (θ) = N( μ, �) for new buildings. 

Setting off from broad and weakly informative prior dis- 

tributions, the data has successfully focused the posteriors of 

the means p post ( μ) and to some extent the standard devia- 

Fig. 8. Expected posterior correlation matrix, E post [corr( θ)], of the five calibration 

parameters. 

tions p post ( τ). The posteriors of μWFR , μqinf@50Pa and μOcc.Density 

are focused near the expected value of their respective pri- 

ors, whereas for μU walls / roof 
and μC mass 

, the calibration has drawn 

their posteriors out into the tails towards their maximum values 

( Table 3 ). Common for all five posteriors of the standard devia- 

tions p post ( τ) is that the distributions are weakly informative and 
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Fig. 9. Prior and posterior distribution of the archetype-level scale parameter γ that 

controls scale of the error-term standard deviations σ . 

located relatively far away from zero. This is especially true for 

τU walls / roof 
, τWFR , τqinf@50Pa , and τOcc . Density where the amount of 

uncertainty in the posteriors remains very high and overlaps with 

the posterior mean values p post ( μ). The posterior uncertainty has 

only been reduced for one of the standard deviation parameters: 

the capacity of the thermal mass τC mass 
. However, even though the 

uncertainty of the archetype-level parameters μ, τ may have been 

reduced, it is the resulting predictive distribution of the building- 

level parameters θ that is of most interest. The marginal predic- 

tive distributions of the θs are shown in the right-hand column in 

Fig. 7 using the prior and posterior archetype-level parameters, re- 

spectively. From the plot of the predictive distributions, the effect 

of the large standard deviations τ is immediately evident. For sev- 

eral of the parameters, the priors and posteriors look alike; how- 

ever, for the capacity of the thermal mass, the high posterior mean 

value μC mass 
has drawn the posterior predictive distribution out to 

the boundary of 600 kJ/(m 

2 K). 

The expected posterior correlation matrix E post [corr( θ)] is 

shown in Fig. 8 . No strong correlations are found between the pa- 

rameters, but all of the parameters are found to correlate mod- 

erately with each other (max. correlation strength = 0.5), except 

for the capacity of the thermal mass, which does not exhibit any 

significant correlation with the other parameters. These correla- 

tions are inevitable as the parameters interact through the over- 

all heat balance in every time step; e.g., increasing occupant den- 

sity [m2/pers.] leads to a smaller heat gain from occupants and 

therefore brings the heat balance out of equilibrium. This imbal- 

ance might be corrected by decreasing the U-value (walls/roof) 

[W/(m 

2 K)] and thus the heat loss through the envelope (correla- 

tion = − 0.4). Another possibility could be to increase the WFR and 

thus the overall window area, whereby more sunlight enters the 

building. The correlation obviously depends on other factors also, 

such as overall floor area, U -value (windows), SHGC , window frame 

fraction, etc. 

The posterior distribution for the archetype-level half-Cauchy 

scale parameter p post ( γ ) (see Eq. (4 )) is displayed in Fig. 9 . Since 

a non-informative prior distribution (uniform) was used, the pos- 

terior inference is driven by data alone. 

3.5. Performance of calibrated archetype model 

The performance and overall quality of the calibrated archetype 

model were analyzed based on its predictive capabilities on two 

different hierarchical levels; (1) the within-sample predictive per- 

Table 5 

AHRAE Guideline 14-2014 compliance requirements. 

Measure Monthly data Hourly data 

NMBE < ± 5% < ± 10% 

CVRMSE < 15% < 30% 

formance for the 50 sampled training buildings, and (2) the out-of- 

sample predictive performance for another 100 unseen test build- 

ings. Sample details are given in Table 2 . The predictive perfor- 

mance was assessed on both the scale of individual buildings and 

on the aggregated urban scale. 

Following definitions by the ASHRAE Guideline 14-2014, we em- 

ployed two measures to assess the predictive performance of the 

calibrated building simulations; the normalized mean bias error 

(NMBE) and the coefficient of variation of the root mean squared 

error (CVRMSE): 

NMBE = 

∑ n t 
t=1 ( y t − y ∗t ) 

n t 

/
ȳ × 100 , (14) 

CVRMSE = 

√ ∑ n t 
t=1 

(
y t − y ∗t 

)2 

n t 

/
ȳ × 100 . (15) 

The ASHRAE Guideline 14-2014 compliance requirements are 

given in Table 5 for monthly and hourly data, respectively. As we 

employed 3-hourly data in this study, it seems reasonable to ac- 

cept levels above the monthly requirements but somewhat below 

the ones for hourly data. 

3.5.1. Within-sample predictive performance 

The within-sample predictive performance, i.e. the ability of the 

model to forecast building energy use time series for the 50 known 

training buildings, was used to evaluate the immediate quality 

of fit for the sampled buildings independently and the archetype 

as a whole. This internal assessment of the inferred building- 

level parameters θ was carried out using measured and simulated 

data from the training period and the holdout validation period 

( Table 2 ). 

Measured and simulated data is shown in Fig. 10 A for train- 

ing building b = 6. The figure displays n s = 10 0 0 time series predic- 

tions y ∗6 | X 6 , W train / valid , θ
1:10 0 0 
6 

from the BEM, each simulated using 

independent draws from the posterior distribution of the building- 

level parameters p post ( θ6 ) , fixed building parameters X 6 , and the 

corresponding weather data, either W train or W valid . The fully ac- 

ceptable performance of the training period generalizes well into 

the validation period with new weather conditions ( Fig. 10 A). This 

suggests that a representative set of parameters was estimated for 

the building. The performance measures (NMBE and CVRMSE) of 

building b = 6 are shown together with the remaining 49 training 

buildings in Fig. 11 for both the training and validation period. 

Values of NMBE and CVRMSE were calculated for all 50 training 

buildings individually for both the training and validation period 

( Fig. 11 ). Some of the buildings do not fulfill the ASHRAE Guideline 

14-2014 compliance requirements for monthly data in the train- 

ing period when using the expected values of NMBE and CVRMSE 

as points of reference, but most comply with the requirements for 

hourly data (one building exceeds NMBE = 10% and five buildings 

exceed CVRMSE = 30% in the training period). We find fairly large 

variations in especially the NMBE values for many buildings (error 

bars in Fig. 11 give the 95% confidence interval of individual mea- 

sures around the mean), but for most buildings, their values reach 

across NMBE = 0% with 95% confidence, and all buildings have a 

95% CI with values from within the NMBE < ± 5% band. One build- 

ing ( b = 15) stands out as the one with the highest bias by far 
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Fig. 10. Predictive performance of within-sample prediction. (A): Energy use predictions of building b = 6 against measured data. (B): Aggregated energy use predictions of 

buildings b = 1:50 against aggregated measured data. Simulated data was generated using 10 0 0 draws from the posterior distribution of the calibration parameters p post ( θb ), 

fixed parameters X b , and weather conditions for the training period W train and validation period W valid , respectively. 

in the training period: NMBE = 7.4% ± 14.3% (mean ± 95% CI). Even 

though the building’s bias is higher than that of the other build- 

ings, we chose to not deem it an outlier as there was no reason 

for doing so, e.g. extraordinary oscillations in the training data, be- 

sides the relatively bad fit. 

Predictions from the validation period generally perform worse 

than predictions from the training period as would be expected 

(the NMBE is often more than three times higher in the validation 

period for many buildings). This is most likely caused by the un- 

predictable nature and presence of occupants as their daily move- 

ments and presence remain unaccounted for and hence were not 

modeled explicitly (schedules of occupancy were assumed flat and 

fixed across time). This simplification create a challenge for the 

prediction of the validation period (February 2017) as it contains 

the weeklong Danish winter holiday (public schools are closed) 

which, in the municipality of Aarhus, took place from 10 Febru- 

ary 2017–19 February 2017. From the aggregated time series pre- 

dictions shown in Fig. 10 B, it is clear that much of the bias in the 

validation period is located within the winter holiday period. As 

school holidays, bank holidays, etc. are spread across the year, we 

expect similar predictive performance in the remaining periods of 

the year. Summary statistics of the mean values of within-sample 

validation period performance are given in Table 6 . 

In addition to the building-scale performance, the within- 

sample predictive performance was also evaluated on the aggre- 

gated scale to represent the expected performance in an urban 

setting ( Fig. 10 B). Aggregating all 50 within-sample buildings into 

a single model naturally obscures much of the data variability 

as an aggregated model pays no regard to the fit of individual 

buildings besides their contribution to the summarized consump- 

tion pattern. With an NMBE = 3.0% ± 0.5% (mean ± 95% CI) and a 

CVRMSE = 7.2% ± 0.3% (mean ± 95% CI) for the validation period, 

the aggregated performance is good and, as expected, much bet- 

ter than for most of the individual buildings ( Table 6 ). 

3.5.2. Out-of-sample predictive performance 

The out-of-sample predictive performance, i.e. the ability of the 

model to forecast time series of energy use from unseen test build- 

ings X out −of −sample not used for the calibration of the archetype 

model, is used to evaluate the external robustness and homo- 

geneity of the archetype calibration. However, no direct posterior 

estimate exists for the uncertain parameters θout −of −sample of the 

100 out-of-sample test buildings to be used for simulation; in- 

stead, samples of the parameters are drawn from their posterior 

predictive distribution (9) that is generated using draws from the 

posterior distributions of the archetype-level parameters p post ( μ, 

�). As the archetype-level parameters were inferred from the 

combined information contained by all 50 within-sample training 

buildings, posterior predictions of θout −of −sample represent a gener- 

alized archetype estimate with the inherent variability and hetero- 

geneity of the sampled training buildings. 

Aggregated predictions of the 100 out-of-sample test buildings 

are shown in Fig. 12 against the aggregated measured data for 

both the training and validation periods. An NMBE = 2.9% ± 6.2% 

(mean ± 95% CI) and a CVRMSE = 7.8% ± 2.9% (mean ± 95% CI) are 

found for the aggregated predictions in the validation period 

( Table 6 ). 

When comparing the performance of out-of-sample aggregated 

predictions ( Fig. 12 ) against the performance of within-sample 
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Fig. 11. Normalized mean bias error (NMBE) and coefficient of variation of the root mean squared error (CVRMSE) for the 50 within-sample buildings individually. Measures 

are calculated using 10 0 0 simulations per building, each using a random draw of the calibrated parameters from their posterior distribution p post ( θb ) against measured data 

y b . The height of the bars gives the mean value with error bars around covering the 95% CI. The boxplots at x -value “All” comprise the distribution of mean values for all 50 

buildings. ASHRAE Guideline 14-2014 compliance requirements are given for both measures. 

Fig. 12. Aggregated predictive performance of out-of-sample buildings b = 51:150 against aggregated measured data. Simulations were generated using draws from the 

posterior predictive distribution of calibration parameters p post (θout −of −sample ) = N(μ, �) . 
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aggregated predictions ( Fig. 10 B), it is evident that the aggre- 

gated out-of-sample predictions suffer from a positive bias com- 

pared to the negative bias of the within-sample predictions (2.9% 

vs. − 3.0%). Measures of fit (mean values of NMBE and CVRMSE) 

for within-sample and out-of-sample predictions are summarized 

in Table 6 on the disaggregated scale of individual buildings and 

on the aggregated scale, respectively. 

Out-of-sample predictions are, as expected, inferior to within- 

sample predictions. An insufficient ability to match measured data 

is seen for most out-of-sample predictions on the scale of in- 

dividual buildings (95% interval of NMBEs = [ − 38.7% 112.9%] and 

CVRMSEs = [28.7% 120.1%]). This mismatch is, however, smeared 

out on the scale of aggregated predictions where the cancella- 

tion effect effectively reduces the differences to an acceptable 

level (NMBE = 2.9% and CVRMSE = 7.8%) almost identical to that 

of the within-sample aggregated predictions (NMBE = − 3.0% and 

CVRMSE = 7.2%). Thus, the established archetype model can hardly 

be used for single-building predictions of high-resolution energy 

use time series from unseen buildings without considerable uncer- 

tainty. However, the results promise good performance for aggre- 

gated predictions on an urban level. 

4. Discussion 

4.1. Why hierarchical modeling? 

The proposed archetype framework takes advantage of a hier- 

archical (multilevel) link between data from individual buildings. 

It is a generalization of the ordinary Bayesian calibration frame- 

work in which the building-specific calibration parameters θ are 

themselves given an archetype model – in this case the multivari- 

ate Gaussian distribution – whose parameters μ , � are also esti- 

mated from the data. This statistical setup has several appealing 

features: 

1 Calibrating uncertain parameters without a hierarchical formu- 

lation corresponds to either inferring separate building-specific 

estimates [3,4,6] , or a single pooled archetype estimate [12] . 

The more general hierarchical model allows for a reasonable 

compromise between these two extremes. 

2 It allows for the modeling of the correlation within calibration 

parameters of the archetype. This is essential for any applica- 

tion that relies on drawing archetype parameter-sets of new 

unseen buildings. 

3 Predictions of new unseen buildings draw on a much larger 

dataset that explores the variability of the archetype and should 

therefore be more representative. 

Fitting separate building-independent estimates of the calibra- 

tion parameters θ corresponds to assuming that all buildings are 

unique without sharing any similarities at all. Alternatively, av- 

eraging the data and fitting only a single pooled estimate corre- 

spond to the opposite case of assuming that all buildings are the 

same, whereby all differences are ignored. Both cases are unsatis- 

factory as the reality lies somewhere in between. Applying a hi- 

erarchical model allows us to fit in uncertain archetype parame- 

ters μ using the individual building datasets while accounting for 

archetype heterogeneity among the buildings (represented through 

the variance in the covariance matrix �). Through the process of 

“shrinking”, the hierarchical model pools the individual building 

estimates θ towards a common archetype mean μ as a result of 

the archetype distribution (estimates far away from the archetype 

mean have very low probability under the normality assumption). 

Using a non-hierarchical model based on averaging of separately 

fitted building estimates results in a model more prone to outliers 

[26] . 

The explicit modeling of the correlation and variance between 

calibration parameters at the archetype level, represented through 

the covariance matrix �, allows for informed predictions of un- 

seen buildings under the archetype. This acknowledges not only 

the heterogeneity of the archetype estimates (variance), but also 

the potential correlation corr( θ) that would otherwise be ignored. 

4.2. Within-sample vs. out-of-sample predictions 

The lower accuracy of individual out-of-sample building predic- 

tions (building-scale) compared to predictions of individual within- 

sample buildings ( Table 6 ) is most likely a consequence of the 

uncertainties related to (1) archetype heterogeneity, (2) building 

sample size n b , and (3) human behavior and preferences. Within- 

sample training buildings were all fitted building-specific values of 

the calibration parameters p post ( θwithin-sample ), whereas for out-of- 

sample buildings, these values were predicted from the posterior 

predictive distribution p pred ( θout −of −sample ) = N( μ, �) . The poste- 

rior archetype estimates p post ( μ, �) can be viewed as a compro- 

mise between the characteristics of the training buildings, which 

inevitably will be characterized by some degree of heterogeneity. 

As such, the archetype model gives us an estimate of the average 

building, as well as an estimate of the variability that character- 

izes the archetype. Therefore, evaluating the performance of the 

archetype model’s mean prediction on individual buildings will in- 

evitably indicate a poor performance for some buildings, even if 

the pool of buildings used for training contained practically iden- 

tical buildings. The only way of improving out-of-sample predic- 

tion performance is to eliminate the heterogeneity of the build- 

ings belonging to the archetype by significantly tightening up the 

archetype definition. However, as a very tight archetype defini- 

tion defeats the whole idea of simplifying the building stock into 

a “few” archetypes, a fairly large degree of error has to be ac- 

cepted for out-of-sample predictions of single buildings. Finally, 

even if a very tight and homogeneous archetype definition is ap- 

plied, human behavior remains a very uncertain factor with a sig- 

nificant effect on building energy use [36–40] , which cannot be 

removed by tightening the archetype definition. Incorporating a 

stochastic model of occupancy, e.g. using an agent-based [41,42] or 

a Markov chain-based [43,44] approach, as opposed to the fixed 

and non-varying flat schedules of the demonstration case could 

potentially reduce much of the variability in out-of-sample predic- 

tions and help reduce archetype heterogeneity to that originating 

from differences in technical parameters. However, we foresee sev- 

Table 6 

Summary statistics of expected predictive performance for sampled training buildings (within-sample) and unseen test buildings (out-of-sample). Measures in 

square brackets cover the [2.5% | 50% (median) | 97.5%] percentiles, i.e. the 95% central interval of the distributions of n b individual building means. On the 

aggregated scale, there is only one mean value. 

Sample Period Buildings in 

sample, n b 

Predictive performance 

Building scale Aggregated scale 

Within-sample Validation 50 [ −14.0% | −2.1% | 6.1%] (NMBE) −3.0% (NMBE) 

[9.6% | 17.8% | 34.1%] (CVRMSE) 7.2% (CVRMSE) 

Out-of-sample Validation 100 [ −38.7% | 0.6% | 112.9%] (NMBE) 2.9% (NMBE) 

[28.7% | 38.8% | 120.1%] (CVRMSE) 7.8% (CVRMSE) 
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eral problems with doing this, e.g. issues of over-parameterization 

and identifiability, but it remains to be investigated in future work. 

The performance of aggregated predictions is not affected by 

archetype heterogeneity to the same extent as individual building- 

scale predictions, but is mainly controlled by uncertainty in 

estimating the mean parameters μ that represent an average 

archetype realization. The law of large numbers states that the 

estimated mean of a sample approaches the true mean as the 

number of samples goes to infinity. Here, obtaining an archetype 

model can be considered analogous to estimating the mean of a 

sample, where the archetype model would become more repre- 

sentative of out-of-sample buildings belonging to the archetype 

as the number of buildings used for training increases. The rela- 

tively small difference in aggregated performance between within- 

sample and out-of-sample buildings (NMBE within- sample = − 3.0% vs. 

NMBE out-of- sample = 2.9%) suggests that the number of buildings n b 
needed for estimating the archetype may not be much larger than 

the sample size used in this case study demonstration. 

4.3. Parameter identification 

In the demonstration of the framework, we applied a first-order 

5R1C building energy model for simulating hourly heating energy 

use, and subsequently, for calibrating five model parameters. This 

model was selected for the purpose of demonstration and because 

of its fast computational speed. However, other model formula- 

tions may easily be applied in future applications of the frame- 

work, e.g. higher-order RC formulations or high-fidelity BEM tools 

such as EnergyPlus. In fact, reduced-order models may be too sim- 

ple for identifying the true estimates of building characteristics 

[32,34,35] ; nevertheless, while the obtained parameter estimates 

may not compare directly to reality, they give meaningful informa- 

tion about a building’s characteristics in the context of the model. 

Reynders et al. [35] argue that models of at least fourth order 

(four thermal capacitances) are needed for a reliable identification 

of building parameters, and that additional boundary conditions 

are needed in terms of indoor air temperature and heat fluxes 

through envelope walls. Hedegaard and Petersen [32] addressed 

similar issues in a simulation-based study of four RC-models with 

the most complex being a third-order model; however, they in- 

fer that a second-order model allows for a fit to data that is fully 

compatible to that of a more complex third-order model. They fur- 

ther conclude that none of these low-order models are capable of 

providing a reliable partitioning of the overall heat transfer coef- 

ficient into heat transfer by transmission and ventilation, respec- 

tively. One should therefore be very cautious about trusting the ex- 

act value of calibration parameters θ of individual buildings when 

using low-order RC models. Whether these issues of parameter in- 

terpretation and identifiability persist in applications with high- 

fidelity BEM tools such as EnergyPlus remains unclear and ought 

to be studied in future work. However, Heo et al. [23] show, in a 

case study-based investigation of Bayesian calibration efficacy un- 

der different levels of uncertainty in model input data for Energy- 

Plus models, that the amount of certainty in input data highly af- 

fects the posterior estimates of calibration parameters and thus the 

identifiability of the model. We therefore expect the identifiability 

of the calibration parameters θ, and the predictive performance of 

the proposed archetype framework to increase as more concrete 

and specific data about the training buildings is applied. Such data 

could originate from detailed surveys and audits in carefully se- 

lected training buildings. Another less intrusive option could be to 

incorporate energy performance certificate (EPC) data if available. 

Finally, as demonstrated in recent state-of-the-art UBEM studies 

[5,45] , GIS may be employed for establishing more accurate geo- 

metric models than those used in this study. 

5. Conclusions and outlook 

A hierarchical multilevel framework for the calibration of 

archetype physics-based BEM parameters was proposed. The 

framework relies on the statistical assumption of exchangeability 

among archetype buildings, i.e. the buildings represent a homoge- 

neous sample from the archetype. Using Bayesian inference, infor- 

mation available in independent time series datasets is used col- 

lectively to pool individual estimates of building parameters to- 

wards a common archetype description of the calibration param- 

eters, as well as their variability and correlation. This results in the 

archetype model being less vulnerable to the presence of outliers 

in the building stock used to train the archetype model, thus en- 

abling it to make out-of-sample predictions that are more robust 

than predictions made with models founded on ordinary aggrega- 

tion of individual building estimates. 

The application and performance of the framework were subse- 

quently demonstrated in a case study of Danish residential single- 

family dwellings from the 1950s. The case demonstrates how the 

framework can be used to identify a set of shared archetype pa- 

rameters, and how the inevitable presence of heterogeneity in the 

buildings used for training is manifested into the variance param- 

eters and the prediction of parameters for new unseen buildings. 

The proposed archetype framework is most suited as the cen- 

tral calibration engine for urban-scale building energy modeling 

where archetype models are used as "puzzle pieces” for modeling 

urban areas which would otherwise be too complex to model and 

calibrate using independent building energy models. However, the 

suitability of the proposed archetype framework for such applica- 

tions remains to proven in future work. 

Funding 

The European Union’s Research and Innovation Funding Pro- 

gramme (7th EU Framework Programme) supported this work 

through the FP7-Energy project “Resource Efficient Cities Imple- 

menting Advanced Smart City Solutions” (READY), work package 3 

[project reference 609127]. 

Acknowledgments 

The authors would like to thank the district heating company 

in Aarhus, AffaldVarme Aarhus, for supplying the case data that 

serves to demonstrate the application of the proposed calibration 

framework. 

Supplementary materials 

Supplementary material associated with this article can be 

found, in the online version, at doi:10.1016/j.enbuild.2018.07.030 . 

References 

[1] C.F. Reinhart, C.C. Davila, Urban building energy modeling – a review of a 

nascent field, Build. Environ. 97 (2016) 196–202, doi: 10.1016/j.buildenv.2015. 

12.001 . 
[2] E. Mata, A. Sasic Kalagasidis, F. Johnsson, Building-stock aggregation through 

archetype buildings: France, Germany, Spain and the UK, Build. Environ. 81 
(2014) 270–282, doi: 10.1016/j.buildenv.2014.06.013 . 

[3] C. Cerezo, J. Sokol, C. Reinhart, A. Al-Mumin, Three methods for characteriz- 
ing building archetypes in urban energy simulation. A case study in Kuwait 

City, in: Proceedings of the Forteenth Conference of International Building Per- 
formance Simulation Association Building Simulation, IBPSA, Hyderabad, India, 

2015, pp. 2873–2880. URL: http://www.ibpsa.org/proceedings/BS2015/p2435. 

pdf . 
[4] C. Cerezo, J. Sokol, S. AlKhaled, C. Reinhart, A. Al-Mumin, A. Hajiah, Compari- 

son of four building archetype characterization methods in urban building en- 
ergy modeling (UBEM): a residential case study in Kuwait City, Energy Build. 

154 (2017) 321–334, doi: 10.1016/j.enbuild.2017.08.029 . 

CHAPTER 6. A HIERARCHICAL APPROACH USING TIME SERIES DATA

74



234 M.H. Kristensen et al. / Energy & Buildings 175 (2018) 219–234 

[5] T. Dogan, C. Reinhart, Shoeboxer: an algorithm for abstracted rapid multi-zone 
urban building energy model generation and simulation, Energy Build. 140 

(2017) 140–153, doi: 10.1016/j.enbuild.2017.01.030 . 
[6] J. Sokol, C. Cerezo Davila, C.F. Reinhart, Validation of a Bayesian-based method 

for defining residential archetypes in urban building energy models, Energy 
Build. 134 (2017) 11–24, doi: 10.1016/j.enbuild.2016.10.050 . 

[7] G. Dall’O, A. Galante, M. Torri, A methodology for the energy performance 
classification of residential building stock on an urban scale, Energy Build. 48 

(2012) 211–219, doi: 10.1016/j.enbuild.2012.01.034 . 

[8] L. Filogamo, G. Peri, G. Rizzo, A. Giaccone, On the classification of large res- 
idential buildings stocks by sample typologies for energy planning purposes, 

Appl. Energy 135 (2014) 825–835, doi: 10.1016/j.apenergy.2014.04.002 . 
[9] M. Aksoezen, M. Daniel, U. Hassler, N. Kohler, Building age as an indicator 

for energy consumption, Energy Build. 87 (2015) 74–86, doi: 10.1016/j.enbuild. 
2014.10.074 . 

[10] D. Coakley, P. Raftery, M. Keane, A review of methods to match building energy 

simulation models to measured data, Renew. Sustain. Energy Rev. 37 (2014) 
123–141, doi: 10.1016/j.rser.2014.05.007 . 

[11] H. Lim, Z.J. Zhai, Review on stochastic modeling methods for building 
stock energy prediction, Build. Simul. 10 (2017) 607–624, doi: 10.1007/ 

s12273- 017- 0383- y . 
[12] A.T. Booth, R. Choudhary, D.J. Spiegelhalter, Handling uncertainty in housing 

stock models, Build. Environ. 48 (2012) 35–47, doi: 10.1016/j.buildenv.2011.08. 

016 . 
[13] A.T. Booth, R. Choudhary, D.J. Spiegelhalter, A hierarchical Bayesian framework 

for calibrating micro-level models with macro-level data, J. Build. Perform. 
Simul. 6 (2013) 293–318, doi: 10.1080/19401493.2012.723750 . 

[14] Q. Li, G. Augenbroe, J. Brown, Assessment of linear emulators in lightweight 
Bayesian calibration of dynamic building energy models for parameter esti- 

mation and performance prediction, Energy Build. 124 (2016) 194–202, doi: 10. 

1016/j.enbuild.2016.04.025 . 
[15] Y. Heo, R. Choudhary, G.A. Augenbroe, Calibration of building energy mod- 

els for retrofit analysis under uncertainty, Energy Build. 47 (2012) 550–560, 
doi: 10.1016/j.enbuild.2011.12.029 . 

[16] Y. Heo, G. Augenbroe, D. Graziano, R. T. Muehleisen, L. Guzowski, Scalable 
methodology for large scale building energy improvement: relevance of cal- 

ibration in model-based retrofit analysis, Build. Environ. 87 (2015) 342–350, 

doi: 10.1016/j.buildenv.2014.12.016 . 
[17] Y. Kang, M. Krarti, Bayesian-emulator based parameter identification for cali- 

brating energy models for existing buildings, Build. Simul. 9 (2016) 411–428, 
doi: 10.1007/s12273- 016- 0291- 6 . 

[18] Y.J. Kim, C.S. Park, Stepwise deterministic and stochastic calibration of an en- 
ergy simulation model for an existing building, Energy Build. 133 (2016) 455–

468, doi: 10.1016/j.enbuild.2016.10.009 . 

[19] A. Chong, K.P. Lam, M. Pozzi, J. Yang, Bayesian calibration of building energy 
models with large datasets, Energy Build. 154 (2017) 343–355, doi: 10.1016/j. 

enbuild.2017.08.069 . 
[20] W. Tian, R. Choudhary, A probabilistic energy model for non-domestic building 

sectors applied to analysis of school buildings in greater London, Energy Build. 
54 (2012) 1–11, doi: 10.1016/j.enbuild.2012.06.031 . 

[21] M.C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. 
Soc. Ser. B (Stat. Methodol.) 63 (3) (2001) 425–464, doi: 10.1111/1467-9868. 

00294 . 

[22] M.H. Kristensen, R. Choudhary, R.H. Pedersen, S. Petersen, Bayesian calibra- 
tion of residential building clusters using a single geometric building repre- 

sentation, in: Proceedings of the Fifteenth Conference of International Building 
Performance Simulation Association Building Simulation, IBPSA, San Francisco, 

August 2017, pp. 1294–1303. URL: http://www.ibpsa.org/proceedings/BS2017/ 
BS2017 _ 330.pdf . 

[23] Y. Heo, D.J. Graziano, L. Guzowski, R.T. Muehleisen, Evaluation of calibration 

efficacy under different levels of uncertainty, J. Build. Perform. Simul. 8 (3) 
(2014) 135–144, doi: 10.1080/19401493.2014.896947 . 

[24] M.H. Kristensen, R. Choudhary, S. Petersen, Bayesian calibration of building 
energy models: comparison of predictive accuracy using metered utility data 

of different temporal resolution, Energy Procedia. 122 (2017) 277–282, doi: 10. 
1016/j.egypro.2017.07.322 . 

[25] A. Gelman, Prior distributions for variance parameters in hierarchical models, 

Bayesian Anal. 1 (3) (2006) 515–534, doi: 10.1214/06-ba117a . 

[26] A. Gelman , J.B. Carlin , H.S. Stern , D.B. Dunson , A. Vehtari , D.B. Rubin , Bayesian 
Data Analysis, third ed., Chapman and Hall/CRC, 2013, ISBN 1439840954 . 

[27] H. Madsen, P. Bacher, G. Bauwens, A.-H. Deconinck, G. Reynders, S. Roels, 
E. Himpe, G. Lethe, Thermal Performance Characterization Using Time Se- 

ries Data – IEA EBC Annex 58 Guidelines, Technical University of Denmark 
(DTU), Lyngby, Denmark, 2015 ‘Technical report’ URL: http://orbit.dtu.dk/files/ 

127709087/guidelines _ IEA58 _ statisticalModeling _ 2016 _ 11 _ 28.pdfhttp://orbit. 
dtu.dk/files/127709087/guidelines _ IEA58 _ statisticalModeling _ 2016 _ 11 _ 28.pdf . 

[28] K. Duer, S. Svendsen, M.M. Mogensen, J.B. Laustsen, Energy labeling of glazings 

and windows in Denmark: calculated and measured values, Solar Energy 73 
(1) (2002) 23–31, doi: 10.1016/s0038- 092x(02)00031- 2 . 

[29] M.D. Morris, Factorial sampling plans for preliminary computational exper- 
iments, Technometrics 33 (2) (1991) 161–174 ISSN 0040-1706, doi: 10.1080/ 

00401706.1991.104 84 804 . 
[30] H.B. Rijal, P. Tuohy, M.A. Humphreys, J.F. Nicol, A. Samuel, J. Clarke, Using re- 

sults from field surveys to predict the effect of open windows on thermal com- 

fort and energy use in buildings, Energy Build. 39 (7) (2007) 823–836 ISSN 

0378-7788, doi: 10.1016/j.enbuild.20 07.02.0 03 . 

[31] K. Gram-Hanssen. Husholdningers elforbrug - hvem bruger hvor 
meget, til hvad og hvorfor? SBi 2005:12. Danish Building Re- 

search Institute, 2005. ISBN 87-563-1235-0. URL https://sbi.dk/Assets/ 
Husholdningers- elforbrug- hvem- bruger- hvor- meget- til- hvad- og- hvorfor/ 

2006- 01- 12- 0481751096.pdf . Language: Danish. 

[32] R.E. Hedegaard, S. Petersen, Evaluation of grey-box model parameter estimates 
intended for thermal characterization of buildings, Energy Procedia. 132 (2017) 

982–987, doi: 10.1016/j.egypro.2017.09.692 . 
[33] M.H. Kristensen, S. Petersen, Choosing the appropriate sensitivity analysis 

method for building energy model-based investigations, Energy Build. 130 
(2016) 166–176, doi: 10.1016/j.enbuild.2016.08.038 . 

[34] P. Bacher, H. Madsen, Identifying suitable models for the heat dynamics of 

buildings, Energy Build. 43 (7) (2011) 1511–1522 ISSN 0378-7788, doi: 10.1016/ 
j.enbuild.2011.02.005 . 

[35] G. Reynders, J. Diriken, D. Saelens, Quality of grey-box models and identified 
parameters as function of the accuracy of input and observation signals, En- 

ergy Build. 82 (2014) 263–274, doi: 10.1016/j.enbuild.2014.07.025 . 
[36] W. Abrahamse, L. Steg, How do socio-demographic and psychological factors 

relate to households’ direct and indirect energy use and savings, J. Econ. Psy- 

chol. 30 (5) (2009) 711–720, doi: 10.1016/j.joep.2009.05.006 . 
[37] O.G. Santin, L. Itard, H. Visscher, The effect of occupancy and building charac- 

teristics on energy use for space and water heating in Dutch residential stock, 
Energy Build. 41 (11) (2009) 1223–1232, doi: 10.1016/j.enbuild.2009.07.002 . 

[38] G.M. Huebner, I. Hamilton, Z. Chalabi, D. Shipworth, T. Oreszczyn, Explaining 
domestic energy consumption – the comparative contribution of building fac- 

tors, socio-demographics, behaviours and attitudes, Appl. Energy 159 (2015) 

589–600, doi: 10.1016/j.apenergy.2015.09.028 . 
[39] S. Yang, M. Shipworth, G. Huebner, His, hers or both’s? The role of male and fe- 

male’s attitudes in explaining their home energy use behaviours, Energy Build. 
96 (2015) 140–148, doi: 10.1016/j.enbuild.2015.03.009 . 

[40] M.H. Kristensen, S. Petersen, Explaining variability in metered energy use for 
similar buildings using Bayesian inference, Energy Procedia 132 (2017) 897–

902, doi: 10.1016/j.egypro.2017.09.709 . 
[41] Y.S. Lee, A. M, Malkawi. Simulating multiple occupant behaviors in buildings: 

An agent-based modeling approach, Energy Build. 69 (2014) 407–416, doi: 10. 

1016/j.enbuild.2013.11.020 . 
[42] J. Langevin, J. Wen, P.L. Gurian, Simulating the human-building interaction: de- 

velopment and validation of an agent-based model of office occupant behav- 
iors, Build. Environ. 88 (2015) 27–45, doi: 10.1016/j.buildenv.2014.11.037 . 

[43] D. Aerts, J. Minnen, I. Glorieux, I. Wouters, F. Descamps, A method for the iden- 
tification and modeling of realistic domestic occupancy sequences for building 

energy demand simulations and peer comparison, Build. Environ. 75 (2014) 

67–78, doi: 10.1016/j.buildenv.2014.01.021 . 
[44] P.D. Andersen, A. Iversen, H. Madsen, C. Rode, Dynamic modeling of presence 

of occupants using inhomogeneous Markov chains, Energy Build. 69 (2014) 
213–223, doi: 10.1016/j.enbuild.2013.10.001 . 

[45] C.C. Davila, C.F. Reinhart, J.L. Bemis, Modeling Boston: a workflow for the effi- 
cient generation and maintenance of urban building energy models from exist- 

ing geospatial datasets, Energy 117 (2016) 237–250, doi: 10.1016/j.energy.2016. 

10.057 . 

6.2. PAPER [P4]: "HIERARCHICAL CALIBRATION OF ARCHETYPES ..."

75



CHAPTER 6. A HIERARCHICAL APPROACH USING TIME SERIES DATA

6.2 Epilogue
This chapter formally ends Part 2 of the thesis and the treatment of research objective 1
(Section 1.6). It has been shown how to incorporate both dynamic time series modelling,
archetype heterogeneity and parameter correlation in the characterization of uncertain
archetype parameters, without relying on the use of statistical emulators. The framework
shows a considerable promise for UBEM applications, as is demonstrated in Part 3 of the
thesis, but it also contains simplifications and choices that ought to be further investigated
in future work, as is also partially discussed in the paper [P4].

One thing that I suspect to have a major impact on the archetype model is the
underlying geometric model; in this case a simple scalable rectangular box with a fixed
non-varying orientation, and fixed standardized location of the windows and external
shadowing. With a relatively simple upgrade of the model it should be possible to include
information from building-specific EPC schemes and urban GIS models, if available, which
contains a great deal of geometric and technical data. The application of the CityGML
modelling standard for establishing 3D massing models, in particular, offers considerable
promise (Chen et al., 2017; Nageler et al., 2017; Jaeger et al., 2018). It would allow for a
much more detailed assessment of transmission losses and solar heat gains, thus securing
a more accurate identification of uncertain archetype parameters in the calibration
process. Another important assumption is the modelling of occupancy behaviour. This is
notoriously difficult in UBEM settings, but recent stochastic developments may be worth
investigating in future work (Happle et al., 2018).

In journal paper manuscript [S5] that is appended to this thesis and which is currently
under review for publication in Elsevier journal Applied Energy, we applied a non-
archetype approach to the establishment of a neighbourhood-scale UBEM in the city
of Aarhus, i.e. all buildings were characterized independently. This paper is worth
mentioning in relation to the discussion on occupant behaviour and usage schedules
because we herein applied Bayesian, i.e. stochastic, methods to identify building-specific
24-hour occupant schedules for weekdays and weekends. It would be interesting to extend
this usage pattern identification to the scale of archetypes using the hierarchical set-up
already in place in [P4] to investigate whether such profiles exist for building archetypes.
Data clustering studies on time series energy use data have previously shown that, in fact,
there appears to exist a semantic subset of usage profiles, as described in Section 1.3.1
on the classification of archetypes. However, it remains doubtful whether these correlate
with a classical segmentation of the building stock based on the construction year.

A less complex approach would be to explicitly model known calendar and holiday data,
as demonstrated by Dahl et al. (2018) in the forecast of aggregated DH energy loads. The
authors find that including calendar data (discrimination between month, weekday and
hour of day) may significantly increase performance, while including local holiday data
(observances, national holidays and school holidays) provides only a slight performance
increment.

The improvements outlined above should be seen as suggestions for future work, as they
are not included in this thesis. A unifying discussion on and suggestions for future work
can be found in Section 9.2. The last part of the thesis – Part 3 – concerns the treatment
of research objective 2 and the application of the hierarchical archetype approach for
setting up and simulating urban building energy models under uncertainty. To do so, the
entire stock of SFHs in Aarhus is classified into archetypes and characterized using the
hierarchical archetype calibration framework presented in this chapter.
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Chapter 7

Archetype-based UBEM

7.1 Motivation
The hierarchical archetype calibration framework presented in Chapter 6 was demon-
strated on the stock of SFHs from the 1950s using one month of 3-hourly training data
from 50 training buildings, and validated on its predictive capabilities using a different
month. In addition, the ability of the archetype to accurately characterize 100 new unseen
buildings belonging to the archetype was tested based on the predictive capability of these
100 buildings in the validation month.

The following two-page extended abstract (conference paper [P5]) was presented at
the 4th IBPSA England conference, Building Simulation & Optimization 2018. The
hierarchical archetype calibration approach of Chapter 6 is herein applied on the entire
stock of SFHs in the municipality of Aarhus (1850-2015), and subsequently used to
populate UBEMs of two suburban towns within the municipality. The two UBEMs
account for 2,153 and 690 SFHs, respectively. Each of these buildings was simulated
independently (1,000 simulations per building to explore model uncertainty) with a
subsequent aggregation of their time series to form aggregated UBEM predictions. The
paper shows 3-hourly time series predictions from the two UBEMs against measured data
and discusses the potential applications of such archetype-based urban modelling.
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Introduction  

It remains practically infeasible to gather all the required 

data inputs for physics-based urban building-by-building 

energy modelling (Reinhart and Davila, 2016). Simplifi-

cations may therefore be necessary, e.g. through arche-

type segregation of the building stock to reduce the task 

of data acquisition and calibration of uncertain parame-

ters. The authors of this extended abstract recently pro-

posed a novel hierarchical archetype calibration method-

ology that allows a robust probabilistic inference of un-

known archetype input parameters for unseen buildings 

belonging to an archetype (Kristensen et al., 2018). The 

methodology has been proven fast and accurate for ur-

ban-scale predictions of aggregated building energy use 

under uncertainty. 

In this contribution we demonstrate how hierarchically 

calibrated archetype models of Danish detached single-

family houses (SFH’s) can accurately predict the urban 

district heating energy use of unseen buildings in two 

different suburban towns. We end up by discussing the 

various practical applications of such urban models. 

Methods 

Data 

Three-hourly district heating (DH) energy consumption 

data for 27,000 SFH’s located in the municipality of 

Aarhus, Denmark, were coupled with six building-

specific data fields from the Danish Building and Dwell-

ing Register (BDR): 1) usage type, 2) construction year, 

3) footprint, 4) number of floors, 5) basement and 6) at-

tic area utilized for living/heated. The DH time series 

consisted of combined energy use for space heating and 

on-site domestic hot water (DHW) preparation.  

Archetype segregation 

The building stock was partitioned into nine SFH arche-

types following the building stock segregation per-

formed Danish Building Research institute as part of the 

European research project TABULA (Wittchen and 

Kragh, 2012). Only the construction year was used for 

segregation. The nine archetype age groups are shown in 

Table 1. 

Building energy modeling 

The DH energy use time series of each building was 

modeled using the hourly dynamic resistance-

capacitance model of ISO 13790:2008 that treats each 

building as a single thermal zone, in combination with a 

simple DHW consumption model. The only available 

and known data inputs were the footprint, number of 

floors, and the heated basement and attic area (besides 

basic climate data logged from a nearby weather station). 

All other inputs necessary to simulate the BEM were un-

known at the level of individual buildings. A-priori 

probability density functions (PDF’s) or fixed values 

were therefore given each uncertain input parameter at 

the level of archetypes to reflect historical data and edu-

cated guesses.  

Hierarchical archetype calibration 

The archetype calibration methodology proposed by 

(Kristensen et al., 2018) was applied to infer a-posteriori 

PDF’s for six of the uncertain parameters per archetype: 

1) window-floor ratio, 2) U-value of ext. walls/roof, 3) 

capacity of thermal mass, 4) infiltration airflow@50pa, 

5) occupant density, and 6) room heating set point tem-

perature. The methodology applies a Bayesian hierar-

chical formulation that binds training buildings together 

around a shared archetype estimate whereby the infer-

ence draw strength from all training building datasets 

simultaneously. The methodology allows training build-

ings that are very “likely” to dominate the inference of 

uncertain parameters, while outlying/unlikely buildings 

are given less weight – a process known as “shrinkage”. 

Each archetype was trained on a sample of 35 randomly 

selected SFH’s from the dataset, each with time series of 

three-hourly DH energy use of January 2017 (248 data 

points). 

Urban case towns for prediction 

Two suburban case towns were selected for validation of 

the urban-scale predictive capabilities of the archetype 

framework: 1) “DK-8250 Egå” and 2) “DK-8330 Beder” 

(Table 1). February 2017 (224 data points) was used for 

validation. 

Table 1 
Classification of case town buildings into nine archetypes. 

Archetype  partitioning DK-8250 Egå DK-8330  Beder 

Arch. 1 (1851-1930) 105   (4.9%) 56   (8.1%) 

Arch. 2 (1931-1950) 37   (1.7%) 43   (6.2%) 
Arch. 3 (1951-1960) 74   (3.4%) 12   (1.7%) 

Arch. 4 (1961-1972) 1166 (54.2%) 302 (43.8%) 

Arch. 5 (1973-1978) 369 (17.1%) 83 (12.0%) 
Arch. 6 (1979-1998) 226 (10.5%) 149 (21.6%) 

Arch. 7 (1999-2006) 129   (6.0%) 37   (5.4%) 
Arch. 8 (2007-2010) 21   (1.0%) 4   (0.6%) 

Arch. 9 (2011-2015) 26   (1.2%) 4   (0.6%) 

Total, nb 2153  (100%) 690  (100%) 

Proceedings of BSO 2018: 
4th Building Simulation and Optimization Conference, Cambridge, UK: 11-12 September 2018
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Results 

The measured and simulated DH energy use of the two 

case towns is shown in Fig. 1 and measures of predictive 

performance are given in Table 2.  

 
Fig. 1. Measured and simulated aggregated DH energy use 

(three-hourly) of two suburban towns, respectively. Simulated 

energy use consist of the 95% central posterior density region 

derived from aggregating 1000 random simulations from each 

of the individual building energy models. The average of the 

1000 aggregated simulations is highlighted in black.  

Table 2 
Measures of predictive performance.  

Metric DK-8250 Egå DK-8330  Beder 

NMBE 0.4% 4.2% 
MAPE 6.8% 7.2% 

CVRMSE 9.0% 8.5% 

R2 74.0% 78.4% 

The simulated energy use fit the measured energy use 

very well. The entire energy consumption of the valida-

tion period was predicted within a 4.2% error margin for 

both towns when measured with the normalized mean 

bias error (NMBE) metric. The accuracy of which indi-

vidual data points (three-hourly values) were predicted 

was measured with the mean absolute percentage error 

(MAPE) metric to be within 7.2%. The coefficient of 

variation of the root mean squared error (CVRMSE) and 

the coefficient of determination (R
2
) measures the varia-

bility of the residuals and thus the explanatory power of 

the predictions. The two urban models explained approx. 

74%-78% (R
2
-values) of the variability in the measured 

time series.  

Discussion 

Urban-scale models of this kind may allow city govern-

ments, utility companies, and other energy policy stake-

holders that work on the urban scale of neighborhoods, 

cities, or even entire building stocks, to plan and predict 

the effect of various energy efficiency measures and 

production strategies. The application of simple and pub-

licly available building and property information as the 

only need-to-have input data about the buildings to be 

predicted (besides measured energy use datasets from a 

subsample of buildings for the initial archetype calibra-

tion) provides a flexible platform that can easily be ex-

panded or further developed. Because the model struc-

ture is based on thermodynamic principles, it may also 

have use in investigating urban-scale effects on e.g. peak 

loads and overall energy use due to various interventions 

in the building stock, e.g. retrofitting, city densification 

or expansion, and building technologies for facilitating 

demand response programs.  

The application of archetypes to represent the building 

stock is obviously a crude simplification of its true di-

versity. However, applying a probabilistic representation 

and calibration of the uncertain archetype parameters on 

the level of individual buildings through a hierarchical 

structure like in this study preserves much of the natural 

heterogeneity that defines the variability within arche-

types. This preservation of heterogeneity is crucial for 

accurate predictions of new and unseen buildings from 

the archetypes. 

The hierarchical archetype framework proves capable of 

predicting the aggregated energy use of buildings in 

larger urban areas with high accuracy as demonstrated 

for two suburban towns in this study. Although the 

framework remains to be implemented for other build-

ings than detached single-family dwellings in order to 

fully represent a true urban area with many different 

building types, we do not believe this to pose any diffi-

culties for the framework. The temporal resolution of the 

predictions is in no way limited to three-hourly data 

points, but solely defined by the underlying physical 

model structure and quality of calibration data. Urban 

models of increasing temporal resolution will therefore 

be possible in the near future as the distribution of smart 

energy meters proceed to penetrate the marked.  
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7.2 Epilogue
The extended abstract documents preliminary results from the work on resolving research
objective 2. The end-goal is to use the hierarchical archetype approach to assemble a
single large UBEM of all SFHs in the municipality of Aarhus, and to validate its ability
to accurately simulate the energy use for all hours of the year. This effort is continued in
the following chapter, the final chapter of Part 3.
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Chapter 8

Citywide retrofit analysis under
uncertainty

This chapter comprises work that has not yet been submitted for publication, but is
expected to be in the near future. The research presented in the following sections is
therefore not formatted as a self-contained paper manuscript with its own introduction,
but rather builds on the published papers of the thesis and findings presented in previous
chapters. In particular, the reader might want to familiarize him- or herself with the work
on hierarchical archetype calibration outlined in journal paper [P4] that was presented in
Chapter 6, before delving into this final chapter of the thesis.

8.1 Motivation
An application of the hierarchical archetype modelling and calibration framework was
demonstrated in Chapter 7, where two UBEMs of smaller towns in the municipality of
Aarhus were established using nine archetypes of SFHs from the Danish building stock.
These archetypes were identified using training data from 35 buildings per archetype, each
with 3-hourly time series data from one month. The predictive performance of the UBEMs
was subsequently tested on the following month. However, it remains to be demonstrated
how to apply the hierarchical archetype approach to meet the goals of research objective
2 (Section 1.6, p. 15); this endeavour is the focal point of the current chapter.

It is the intention of this chapter to illustrate an application of the hierarchical
archetype framework where the energy use of an entire city is forecast far into the future
under uncertainty of both energy renovations and climate change. As such, it has a three-
fold objective:

1. To classify the building stock of SFHs into a reduced number of archetypes.

2. To further refine the archetype training and validation scheme applied in [P4] and
demonstrated on two UBEMs in [P5].

3. To set up a single UBEM covering all SFHs in the municipality of Aarhus, and to
apply it to forecast citywide SFH energy demand from 2017-2050 under uncertainty
of energy renovations and climate change.

The details of the investigation are outlined below in Sections 8.2-8.4.
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8.2 Data cleansing and archetype segmentation
The stock of SFHs in in the municipality of Aarhus consists of approx. 27,800 buildings
(Figure 2.2; Figure 2.4). Most of these buildings – approx. 23,000 (83%) – have no
secondary heating installed in addition to district heating (DH) and thus rely on DH for
both space heating and on-site domestic hot water (DHW) preparation. The remaining
17% of the SFHs are equipped with at least one heating installation in addition to DH,
e.g. heat pumps, electric radiators, oil-fired boilers, wood-burning stoves, etc. Only the
approx. 23,000 SFHs without any additional heating installations were considered in this
study to reduce heterogeneity.

The dataset was cleaned for buildings with erroneous data entries, as well as buildings
for which consumption levels differed significantly from the majority of the building
stock, further treatment. Buildings with a "negative" or "zero" heated area, missing
construction year, missing energy use data, and buildings with either unreasonably low
(below 10 kWh/m2/year) or high (above 500 kWh/m2/year) energy use intensity were
removed – in total 115 buildings. The BDR building data and DH energy use data of the
final 22,914 SFHs are shown in the three left plots of Figure 8.1A, where the buildings are
classified by construction years.

The largest share of buildings (69%) was constructed between 1940 and 1990, with 1969
being the year with by far the most newly built SFHs (5% of the stock). The heated floor
area is on average 159 m2 for the whole dataset1 with the smallest houses being those
constructed from 1930 to 1960, on average 141 m2, and the largest houses being those
constructed from 2007 to 2015, on average 178 m2. The annual DH energy consumption
per heated floor area (mean consumption of 2013, 2014 and 2015) is on average around
145 kWh/m2/year for buildings construction up until the 1950s. For buildings from the
late 1950s onwards, the energy use intensity decreases steadily until it reaches a somewhat
constant plateau of approx. 100 kWh/m2/year for buildings from the 1980s and 1990s.
Hereafter, the trend of the mean exhibits the steepest decline so far reaching approx.
50 kWh/m2/year on average for buildings from 2015.

The SFHs were partitioned into nine archetypes (Table 8.1) following the segmentation
performed by the Danish Building Research Institute (Wittchen and Kragh, 2012) as part
of the EU’s IEE projects TABULA (2009-2012) and EPISCOPE (2013-2016), in which
residential building archetypes were developed for 20 European countries (Loga et al.,
2016). Besides from all buildings being SFHs, only the construction year of the buildings
was used for the segmentation. A visual interpretation of the building data after being
classified into archetypes is shown in the three right plots of Figure 8.1B.

8.3 Training and validation of hierarchical archetypes
The following subsections provide details on the training and validation of nine hierarchical
archetypes, which together are used to set up the UBEM.

8.3.1 Building energy modelling

Building energy models (BEMs) were established for the SFHs to simulate their space
heating and DHW energy consumption using the physics-based 5R1C hourly dynamic
BEM of ISO13790:2008 in combination with a simple scalable building geometry similar

1The global average of all SFHs in the municipality of Aarhus before cleansing is 161 m2 cf. Figure 2.2.
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Figure 8.1. Archetype segmentation of 22,914 SFHs in the municipality of Aarhus from 1850-
2015. A) The three left plots depict the building stock classified by their construction year. B)
The three right plots depict the building stock classified in nine archetypes. Data source: Danish
Building and Dwelling Register (BDR) and AffaldVarme Aarhus (AVA).

to the models presented in [P2], [P3] and [P4]. The only data that were available and thus
known about the buildings were the building characteristics gathered from the Danish
national BDR database. Four of these parameters – the building footprint area, the
number of floors, the utilized attic area, and the utilized basement area – were used to set
up the building geometry. The remaining data inputs that were necessary for establishing
the BEMs were unknown at the level of individual buildings. A database of BEM input
data was therefore constructed at the level of archetypes using available historical data
and educated guesses (Table 8.2).
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Table 8.1. Partitioning of Danish SFHs constructed from 1851-2015 into nine archetypes based
on the construction year. Archetype periods are defined by shifts in building traditions and in
energy requirements given by the Danish Building Regulations (BR). Pictures and segmentation
arguments are partly reproduced from "Danish building typologies – Participation in the TABULA
project" (Wittchen and Kragh, 2012).

Archetype Example Building period Segmentation argument

Archetype 1 1851-1930 Shift in building tradition

Archetype 2 1931-1950 Cavity walls introduced

Archetype 3 1951-1960 Insulated cavity walls introduced

Archetype 4 1961-1972 First energy requirements (BR61)

Archetype 5 1973-1978 Tightened energy requirements (BR72)

Archetype 6 1979-1998 Tightened energy requirements (BR78)

Archetype 7 1999-2006 Tightened energy requirements (BR98)

Archetype 8 2007-2010 Tightened energy requirements (BR06/BR08)

Archetype 9 2011-2015 Tightened energy requirements (BR10)

8.3.2 Hierarchical archetype calibration scheme

Since the majority of necessary BEM input parameters were unknown at the level of
individual buildings, estimates of their values were established at the level of archetypes
based on educated guesses (Table 8.2). These guessed archetype-level BEM input
parameters were tuned using the Bayesian archetype calibration framework proposed in
journal paper [P4] that was presented in Chapter 6. However, to enable the construction a
UBEM from these nine archetypes that can validly facilitate urban-scale retrofit analysis
(objective 1 of this chapter), it proved necessary to further enhance the archetype training
and validation scheme proposed in [P4], and later demonstrated in [P5]. This enhancement
encompasses four specific upgrades:

1. The resolution of the time series data is increased from 3-hour values to 1-hour
values to allow for a more nuanced identification of system dynamics.

2. The number of training buildings per archetype nb is increased to 75 to allow for
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Table 8.2. Uncertain archetype-level BEM input parameter values. Five parameters marked with
(?) were calibrated within the designated prior range. Three parameters marked with (??) have
their values prescribed in the ISO 13790:2008 international standard.

Uncertain model parameter Unit Prior range Archetype

Min. Max. 1 2 3 4 5 6 7 8 9

Geometry
Length-width-ratio [-] 0.10 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Room height [m] 2.30 3.00 2.30 2.40 2.40 2.40 2.50 2.50 2.60 2.70 2.80
Window-floor-ratio? [m2/m2] 0.10 0.50
Frame-window-ratio [m2/m2] 0.10 0.50 0.30 0.30 0.25 0.25 0.25 0.25 0.20 0.15 0.15

Transmission
Temp. factor ground [-] 0.50 1.00 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70
U-value (floor) [W/(m2K)] 0.10 0.50 0.50 0.38 0.36 0.30 0.30 0.20 0.12 0.12 0.12
U-value (basement) [W/(m2K)] 0.10 1.20 1.00 1.00 1.00 0.65 0.40 0.35 0.30 0.20 0.18
U-value (walls)? [W/(m2K)] 0.10 0.50
U-value (roof)? [W/(m2K)] 0.10 0.50
U-value (windows)? [W/(m2K)] 0.70 5.00
Solar heat gain coef. [-] 0.50 0.70 0.60 0.60 0.60 0.60 0.60 0.60 0.50 0.50 0.50
Thermal capacity (mass)? [kJ/(m2K)] 50 600
Effective area (mass)?? [m2/m2] 2.5 3.5 Building specific, see the ISO 1379:2008 standard
Heat conduction (mass)?? [W/(m2K)] 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10
Heat transfer coef. (surf.-air)?? [W/(m2K)] 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45

Ventilation
Infiltration airflow? [l/(sm2)] 0.10 10.0
Mechanical ventilation [-] No Yes No No No No No No Yes Yes Yes
Heat recovery efficiency [-] 0.50 0.90 N/A N/A N/A N/A N/A N/A 0.60 0.70 0.85
Design airflow [l/(sm2)] 0.10 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Occupancy
Occupant density? [m2/pers.] 10 150
Heating set-point temp.? [◦C] 17.0 25.0

Domestic hot water
Flow temperature [◦C] 40.0 60.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0
Mains supply temperature [◦C] 5.0 15.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
Circulation pipe heat loss? [W/K] 0.00 20.0
Hot water consumption [m3/(pers.yr)] 5 25 15 15 15 15 15 15 15 15 15

a more informed identification of the archetypes and their heterogeneity, which, in
turn, allows for more accurate predictions of parameters θnew for new out-of-sample
buildings.

3. The training period is extended from 1 month (January) to 3 months (January,
March and May), and the validation period is similarly extended from 1 month
(February) to 3 months (February, April and June). New out-of-sample buildings
are tested on the entire 6 months from January up to and including June (4,344
hourly values). This enables a more reliable validation of the predictive performance
that takes into account the changing seasons from winter to summer. Ideally, the
performance would be tested on hourly data for the entire 12 months of the year,
but such data were not available at the time of the study. However, as the seasonal
conditions of the second half-year (from July up to and including December) more or
less mirror those of the first half-year, it is assumed that the buildings’ behaviour and
performance equal that of the first half-year. This assumption allows for predictions
of annual building energy use, which is necessary in the retrofit analysis (Section 8.4).

4. The out-of-sample predictive performance is tested on the level of individual
archetypes (75 out-of-sample buildings per archetype) and on the level of three
different urban areas, to account for urban-specific effects.
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8.3.3 Archetype-level performance validation

BEMs for 75 out-of-sample buildings were established for each of the nine archetypes using
their known input data (data from the BDR supplemented with data from Table 8.2).
The values of the calibrated input parameters were drawn at random from the archetype-
specific posterior predictive distributions of θnew. This process was repeated Nθ = 1, 000
times per building using Monte Carlo (MC) sampling to cover all areas of the 5-dimensional
distribution (five calibration parameters). By the central limit theorem, the sampling error
approximates:

εsampling ≈
1√
N
, (8.1)

which for Nθ = 1, 000 yields a 3% sampling error. Quadrupling the number of draws
from θnew, and thus the number of building simulations, halves the error, regardless of
the number of dimensions in θ (calibration parameters).

These 1,000 different time series simulations for each of the 75 out-of-sample buildings
per archetype were subsequently merged to form an aggregated distribution of 1,000 time
series simulations per archetype. Posterior predictive simulations are shown in Figure 8.2
for Archetype 1 and 9, respectively, against aggregated measured data for the 75 out-of-
sample buildings.
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Figure 8.2. Posterior predictions of Archetype 1 and Archetype 9, respectively. Aggregated
time series data from 75 new out-of-sample buildings from each of the two archetypes are shown
together with 1,000 posterior MC simulations of the buildings, each applying a random draw from
the archetype-specific predictive distribution of θnew. The temporal resolution of the graphs is
three hours for the purpose of visualization.

The resulting predictive performance of the nine calibrated archetypes is shown in
Figure 8.3 in terms of the normalized mean bias error (NMBE) and coefficient of the root
mean squared error (CVRMSE) metrics. The distribution of metrics for each archetype
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were derived based on the aggregated time series of all of the 1,000 simulations of each of
the 75 out-of-sample buildings.
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Figure 8.3. Distributions of NMBE and CVRMSE for the aggregated prediction of the time
series energy use of 75 out-of-sample buildings from 1 January 2017 to 30 June 2017. The error
distributions comprise the outcome of 1,000 repeated predictions per archetype.

All archetypes are found to perform satisfactorily considering the fact that the 75
buildings used for evaluation constitute new unseen buildings that were not used for
training, and that the time series predictions consist of 4,344 hourly values across the
changing seasons from winter to summer. The median NMBE of all archetypes complies
with the NMBE < 10% requirement of ASHRAE Guideline 14-2014 for hourly data,
meaning that the summarized energy use across the period is less than 10% wrong;
however, the box-plots of Figure 8.3A bear witness of a large uncertainty in the predictions
(the NMBE distributions’ tails cover a large range of values). The 50% most probable
outcome space – the interquartile range of the distributions – is illustrated by the
boxes themselves in grey. Several of the NMBE distributions include values within
−5% < NMBE < 5% and even 0%, with 50% certainty.

A different picture is drawn when looking at the CVRMSE metric (Figure 8.3B),
which measures the scale of variations in the simulations compared to the measurements.
The CVRMSE of the first six archetypes fall well below the ASHRAE requirement of
CVRMSE < 30% for hourly data time series; however, for the three newest archetypes
(1999-2006, 2007-2010 and 2011-2015), the CVRMSE distributions cross or go beyond
the recommended upper bound of CVRMSE = 30%. This trend of increasing CVRMSE
(worse fit) with the construction years of the archetypes is suspected to be an effect of
the inadequacy of the DHW and occupant models in describing individual SFHs’ comfort
preferences, behaviours and attitudes. The preparation of DHW requires a large amount
of heating power in a short time period, e.g. 10-15 min for a shower. This becomes more
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important in newer energy-efficient houses as they experience an increasing share of overall
heating energy use spent on DHW preparation compared to aged houses. In addition, older
houses rely on the use of DHW tanks, which charge slowly, to a larger extent than newer
houses, which almost exclusively make use of plate heat exchangers. Nevertheless, the
impact of the three newest archetypes’ inability to accurately match hourly consumption
peaks is deemed less important in the prediction of urban-scale energy use, as they only
make up less than 10% of the building stock of SFHs. Moreover, a low CVRMSE score
is not deemed particularly important for the application presented in this chapter, i.e. to
forecast annually aggregated urban-scale building energy use.

8.3.4 Urban-level performance validation

In addition to the testing of the individual archetypes’ predictive performance in general,
their interacting performance in real urban settings was also tested, where other factors
such as demography and local architectural design might influence performance. Different
sub-samples of Aarhus were selected for this task, as it was computationally infeasible to
validate the archetypes’ urban-scale performance on the entire municipality (simply too
much validation data to gather and process).

Three self-contained urban areas in the context of residential suburbs were considered
as case study towns for prediction (Table 8.3). These three suburban areas provided
suitable cases for testing the effect of urban context on archetype predictive performance
due to their status as independent towns with local communities. Moreover, the SFHs
of the towns offer somewhat different combinations of the nine archetypes and hence
represent three different technical compositions. For example, approx. 50% of all the
SFHs in Harlev are from Archetype 4 (1961-1972), while this is only true for 20% of the
SFHs in Højbjerg. On the other hand, 32% of the SFHs in Højbjerg are from Archetype
3 (1951-1960), while this is true of 2% in Beder.

Table 8.3. Partitioning of SFHs in three urban test areas (towns) into archetypes.

Urban test area Buildings
included

Partitioning of buildings into archetypes

1 2 3 4 5 6 7 8 9

DK-8270 Højbjerg 3191 (57%) 10.4% 17.6% 31.7% 19.8% 7.6% 8.5% 1.8% 0.8% 1.9%
DK-8330 Beder 645 (90%) 8.7% 6.2% 1.9% 44.0% 12.9% 20.2% 5.0% 0.6% 0.6%
DK-8462 Harlev 800 (81%) 11.6% 6.4% 6.5% 47.9% 10.8% 7.9% 3.8% 4.6% 0.6%

All SFHs located in the three towns that have correct and complete hourly datasets
throughout the period from 1 January 2017 up until and including 30 June 2017, were
included in the analysis. Unfortunately, many of the SFHs did not have smart meters
installed and running in January 2017, which is why only a reduced subset of the buildings
in the three towns was analysed (see Table 8.3 for the number of included test buildings).
On average, 63% of the buildings across the three towns were included the analysis,
meaning that 37% were left out due to insufficient validation data. However, there is
no reason to expect the omitted buildings to perform any different than those included in
the analysis.

The predicted time series of Højbjerg and Harlev are shown in Figure 8.4 against the
aggregated measured data of their buildings, while the overall performance of the three
towns is shown in Figure 8.5 in terms of the NMBE and the CVRMSE metrics. The
presentation of time series predictions from Beder is omitted from Figure 8.4 because it is
located very close to the time series of Harlev, and thus would obscure the visualization.
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Figure 8.4. Posterior predictions of urban test areas DK-8270 Højbjerg and DK-8462 Harlev,
respectively. Aggregated time series data from their buildings are shown together with 1,000
posterior MC simulations of the buildings, each applying a random draw from the archetype-
specific predictive distribution of θnew. The temporal resolution of the graphs is three hours for
the purpose of visualization.
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Figure 8.5. Distributions of NMBE and CVRMSE for the aggregated prediction of the time
series energy use from 1 January 2017 to 30 June 2017, for the three urban test areas. The error
distributions comprise the outcome of 1,000 repeated predictions for each urban area.
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The urban-scale predictions are, in general, very accurate, with Højbjerg being the
most accurately predicted town and Harlev the least accurately predicted town. However,
all three towns perform satisfactorily; only Harlev has some of its NMBE distribution
(approx. 50%) above the NMBE = 10% line, indicating a tendency to overshoot the
energy consumption (Figure 8.5A). The CVRMSE measures are in the area of 10-20%,
indicating a good ability of the UBEMs to accurately capture urban-scale fluctuations in
consumption.

8.4 Forecasting citywide energy demand from 2017-2050

8.4.1 Urban building energy model of Aarhus

The nine archetypes were applied to populate BEMs of the 22,914 SFHs supplied with
district heating in the municipality of Aarhus (Figure 8.1). Aggregated predictions of their
hourly energy use are shown in Figure 8.6 for the entire year of 2017 using Nθ = 100 MC
draws from the archetype-specific distributions of θnew per building (εsampling ≈ 10%),
and locally measured weather data.
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Predicted energy use for 22,914 SFHs in Aarhus

Figure 8.6. Posterior prediction of aggregated district heating energy use of 22,914 SFHs in
Aarhus in 2017, simulated using N = 100 individual MC draws per building.

A very low variability is present in the predictions of the aggregated energy use due
to a large number of individual building energy use time series being aggregated (the
cancellation effect). The predicted energy use intensity of the buildings in 2017 is, on
average, 142-143 kWh/m2/yr (95%-HPD of 100 draws per building). This is approx.
15% higher than the global mean intensity found from 3 years (2013, 2014 and 2015)
of measured DH data for approx. 27,800 SFHs in Aarhus (Figure 2.4). It is difficult to say
whether this deviation is caused by: 1) natural between-year variations in the weather,
2) inaccuracies in predicting the second half-year of 2017, for which no time series data
were available for validation (Section 8.3.2), or by 3) numerical error due to insufficient
coverage of θnew; probably a mixture of all three. A similar predictive bias of approx.
10% was found for the time series validation of the urban test area of Harlev (Figure 8.5).
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8.4.2 Building retrofit scenarios

Two different building energy renovation rate scenarios were analyzed in addition to a
no-renovation scenario:

A) A business-as-usual scenario with 1% of the building stock being renovated per year.

B) An aggressive scenario with 5% of the building stock being renovated per year.

These two scenarios were selected to represent the lower and upper boundaries of what
can be achieved. With a renovation rate of 1% (Scenario A), only 32% of the building
stock will have undergone energy retrofit by the end of year 2049, while a renovation rate
of 5% (Scenario B) means that all buildings are retrofitted by the end of year 2037. The
reality may be that the achievable renovation rate is somewhere in between. Article 5 of
the EED (Section 1.1) stipulates that a least 3% of all buildings owned and occupied by
EU member state governments should be energy renovated each year to meet minimum
energy performance requirements. No official data exist to assess whether this target is
met; however, some studies reveal that the actual renovation rate may be even lower than
1% per year in practice (Filippidou et al., 2017).

Many different definitions exist regarding what can be considered to be energy
renovation. In the EU there is a general understanding that a deep renovation should
improve building energy use by at least 75% and/or have a primary energy consumption
after renovation of less than 60 kWh/m2/yr (Shnapp et al., 2013). Such comprehensive
renovations require a complete reconstruction of most energy systems and envelope
elements that affect building energy use, and that is rare (Filippidou et al., 2017). A
less ambitious but perhaps more realistically achievable level of retrofit was applied in
this study with only three elements of the building envelope in focus: external walls, roof
and windows.

All buildings were sorted in order of their heat loss coefficient (HLC) from highest to
lowest after each annual simulation, starting from 2017 up until year 2049. The worst
performing buildings in terms of highest HLC – e.g. the worst 1% in Scenario A – then
had their three building elements retrofitted to a new standard if the current value of
the building elements exceeded a given retrofit threshold value (Table 8.4). If one, or
all three, of the building elements exceeded the retrofit threshold value, the value of
the building element was replaced with the retrofit value corresponding to an energy
upgrade/or replacement of that building element. Accordingly, only the worst-performing
buildings in terms of HLC were energy renovated, and to various degrees depending on
their current state. Some buildings only had one or two building elements retrofitted,
while others would have all three building elements retrofitted. No building could be
energy renovated more than once.

Table 8.4. Replacement values for the three building elements when engaged in retrofit. Only if
the current building element value exceeds the retrofit threshold value is it replaced with the new
standard value.

Building element Retrofit threshold New standard

Ext. walls U-value >0.5 [W/(m2K)] U-value = 0.5 [W/(m2K)]
Roof U-value >0.5 [W/(m2K)] U-value = 0.3 [W/(m2K)]
Windows U-value >2.5 [W/(m2K)] U-value = 1.5 [W/(m2K)]

93



CHAPTER 8. CITYWIDE RETROFIT ANALYSIS UNDER UNCERTAINTY

The chain of 32 annual simulations of the period 2017-2050 were repeated Nθ = 200
times for both renovation rate scenario A and B to account for the stochastic nature of
the uncertain parameters assigned to individual buildings (i.e. the parameters consist
of distributions of values and not fixed deterministic values). Each of the chains of
simulations were started in year 2017 by randomly assigning a value from the archetype-
specific posterior predictive distribution of θnew to each building. Buildings were thereby
exposed to a different characterization of its uncertain archetype parameters in each of
the 200 chains, which, subsequently, also lead to 200 different sequences of buildings being
energy renovated. These random Monte Carlo draws made it possible to propagate the
uncertainty throughout the simulations and thereby explore the space of possible outcomes
(εsampling ≈ 7%).

8.4.3 Projected weather conditions

The internationally agreed upon RCPs – RCP2.6 (van Vuuren et al., 2011), RCP4.5
(Thomson et al., 2011), RCP6.0 and RCP8.5 (Riahi et al., 2011) – consist of four
independent greenhouse gas concentration trajectories used for climate modelling. They
are named after their radiative forcing level projections2 in the year 2100 relative to
pre-industrial age values (+2.6, +4.5, +6.0, and +8.5 W/m2, respectively). As such,
they describe four different future climate scenarios, all of which are considered potential
outcomes depending on global greenhouse gas emissions in the forthcoming years. The
RCPs are used in many scientific studies, e.g. in the climate change assessments by the
Intergovernmental Panel on Climate Change (IPCC) under the United Nations.

Two of the RCPs were applied in this study, namely RCP2.6 and RCP8.5, which
correspond to the most optimistic and most pessimistic scenario, respectively, in terms of
global temperature increase in the year 2100. Necessary weather conditions for building
energy modelling of the 22,914 SFHs in Aarhus (hourly values of air temperature and
global horizontal irradiance) from 2017 up until 2050 were extracted from the ICHEC-EC-
EARTH HIRHAM5 climate model (Christensen et al., 2007; Hazeleger et al., 2012) using
projections generated on the basis of RCP2.6 and RCP8.5. Projections of air temperature
and global horizontal irradiance is shown as annually averaged values from 2010 up until
2100 in Figure 8.7. However, only the values in the period 2017-2050 were used in the
simulations of this study.

The mean annual temperature projections of the two RCP scenarios increase steadily
with approx. 1 ◦C in the simulation period from 2017-2050 (Figure 8.7A). Only subtle
differences are present between the two projections to distinguish between them in the
simulation period. Thereafter, the RCP2.6 projection flattens out, whereas the RCP8.5
projection continues its incline up until 2100. The projections of mean annual irradiance
remain somewhat unchanged throughout the entire period from 2010-2100 (Figure 8.7B).

8.4.4 Citywide heating energy use forecasts from 2017-2050

The annually aggregated forecasts of district heating energy use for the 22,914 SFHs are
shown in Figure 8.8A as the energy use intensity (aggregated energy use normalized by the
aggregated heated floor area), using projected weather data from 2017 up until the end of
2049 for both climate scenarios (RCP2.6 and RCP8.5). The forecasts of how the building

2Radiative forcing is the difference in energy flux between insolation (sunlight) absorbed by the Earth
and energy radiated back to space. A positive radiative forcing results in near-surface warming (Köhler
et al., 2010).
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Figure 8.7. Projections of mean annual air temperature and global horizontal irradiance in
Aarhus, Denmark, from 2010 up until 2100 using representative concentration pathways RCP2.6
and RCP8.5, respectively. Only the period shaded in grey (2017-2050) is used for simulation.

stock energy use evolves over the years are plotted for both energy renovation scenarios
(1% and 5%) in addition to a no-renovation scenario (0%) for the sake of comparison.
Each of the six trajectories comprise 200 chains of consecutive and interconnected MC
simulations from the UBEM to cover the predictive probability distribution of the forecast.
In Figure 8.8B is shown the relative energy use savings potential of the renovation rate
scenarios (1% and 5%) compared to the no-renovation scenario (0%).

It is obvious from the forecasts (Figure 8.8A) that the weather has a large influence
on the future energy use. Large fluctuations are present from year-to-year, even within
the same RCP scenario; in fact, these variations are at the same level as the variations
between the two RCP scenarios for the same energy renovation rate.

With a 5% energy renovation rate, the energy use quickly drops across the building
stock to a new plateau around year 2033 where it fattens out relative to the no-renovation
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B) Forecasted heating energy use savings in SFHs
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Figure 8.8. Forecasts of the aggregated energy use of 22,914 SFHs from 2017 up until 2050. A)
Aggregated energy use intensity of the buildings for renovation rate scenario 0%, 1% and 5%, all
simulated using both RCP-scenarios, respectively. Each of the trajectories constitute the mean of
Nθ = 200 chains of consecutive and interconnected simulations with the shaded bands visualizing
the 95%-HPD of the simulations. B) Aggregated savings potential of a renovation rate scenario of
1% and 5%, respectively, relative to a 0% scenario (no renovation).

scenario (Figure 8.8B), which is when all buildings are simulated to have undergone retrofit
to some degree. An aggregated savings potential of approx. 35-45% is forecasted compared
to the no-renovation scenario, dependent on the RCP scenario in question; however, due
to annual variations in the weather and climate change, which affects retrofitted and non-
retrofitted buildings differently, the relative savings potential varies from year to year,
even after all buildings have undergone energy renovation in 2033.

For the 1% scenario on the other hand, only 33% of the buildings are simulated to have
undergone retrofit in 2050, which is why the two 1% trajectories decrease throughout the
whole period without reaching the plateau of the 5% trajectories. This would theoretically
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happen after 100 years in year 2117 if no further energy renovation were to be initiated.
An aggregated savings potential of approx. 20-25% is forecasted compared to the no-
renovation scenario in the end of year 2049.

8.5 Discussion
It has been shown how the hierarchical archetype model and calibration framework
presented in Chapter 6 can be used to fit archetype models of an entire building stock;
nine archetypes of SFHs in this case. In this chapter, it was applied using 3 months of
hourly series training data from 75 training buildings per archetype, distributed across the
first half-year of 2017, in an effort to further refine the capabilities and reliability of the
originally proposed training scheme. The predictive capabilities were tested on the level
of archetypes and urban test areas before being applied to populate an UBEM of Aarhus,
and subsequently used to forecast the effects of energy renovation from 2017-2050.

8.5.1 Archetype modelling

From the results of testing the archetypes’ predictive capabilities it is evident that
not all archetypes perform equally satisfactorily in terms of imitating the peaks of the
consumption profiles; in particular, the three newest archetypes are affected, which
together cover buildings constructed from 1999 onwards. This effect could be caused
by several phenomena, of which the following ones are considered most important:

• Newer SFHs are more diverse and unique in their geometry than older buildings.
They also have larger window areas, and a larger proportion of the window
area facing south, which violates the assumption of a fixed distribution of the
windows. The scalable geometric model may thus not fit newer houses that well.
Resulting from a larger window area facing south, newer houses may experience a
larger amount of solar heat gain that could lead to fluctuations in the indoor air
temperature.

• Newer buildings have faster reacting heating systems which might create larger peaks
than the slower reacting systems of older buildings.

• The proportion of the DH energy use that is spent on the preparation of DHW is
larger in newer houses than older houses. Newer houses furthermore draw DHW
instantaneously using plate heat exchangers (P ≈ 30 kW), which generate large
peaks, whereas old houses to a larger extend are expected to use hot water tanks
(P ≈ 5-15 kW), which charge slowly and thus may make the DHW energy use look
like space heating. This phenomena is considered the largest and most influential
difference between the older and newer archetype models.

To remedy these shortcomings, future work ought to focus on further rectifying the
inadequacy of the model structure, especially the part that concerns geometry, DHW
and occupancy in general. Such improvements would ensure a higher level of model
representativeness, and identifiability of uncertain model parameters. This is particularly
important in retrofit applications where these parameters are later altered without the
ability to validate the resulting performance of the model. Further discussion on these
matters is to be found in the discussion section of journal paper [P4] and the epilogue
provided in Section 6.2.
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Testing the predictive capabilities of the archetypes on the aggregated scale of three
urban areas indicated a high out-of-sample predictive performance. This might be a
consequence of the fact that most buildings belong to the pre-1999 archetypes, which
perform best. Only one of the three urban test areas, the town of Harlev, had problems
with biased predictions. Whether this was an effect of Harlev having a slightly newer
building stock than the two other test areas (Table 8.3), or because of underlying
demographic effects (occupant behaviour, attitudes and preferences), remains uncertain.
However, we have previously suggested the existence of such effects across the city of
Aarhus in a statistical study of annual district heating energy use, which is to be found
in conference paper [S4] that is appended to this thesis.

8.5.2 Modelling energy renovations

Two energy renovation rates were incorporated in the analysis: 1% and 5% of the buildings
per year, respectively. These rates encircle a space of potential outcome; the actual
renovation rate is most likely going to be somewhere in between. However, assessing energy
renovation on an aggregated scale is more complex than that. A relatively simple retrofit
model for the renovation of individual buildings was applied in this study: Buildings were
sorted for each year in order of their overall heat loss – the theoretically derived HLC –
and the worst-performing buildings, 1% and 5%, respectively, were allowed to have their
external walls, roofs, and windows retrofitted to a fixed new standard, independently,
if their current standard were worse than some fixed threshold value (Table 8.4). This
retrofit decision model is obviously a simplified representation of reality, but contains some
degree of randomness and variation across buildings, which is desired, to account for the
stochastic nature of occupants. However, future work should focus on further refining the
decision model on a range of areas:

• The extent of the renovations considered; e.g. single building elements, several
independent elements, or packages of coherent ECMs with their derived effects
taken into account. An example of such a package could be the retrofit of envelope
walls with the addition of external facade isolation and a simultaneous replacement
and movement of windows out in the facade. This would further result in a
reduced infiltration heat loss from increased air tightness, and lower linear thermal
transmittance in window junctions.

• The magnitude of the individual ECMs; e.g. a simple replacement or refurbishment
of worn building elements, e.g. windows, with new elements of minimum energy
efficiency, or a much more ambitious retrofit that seeks to drastically reduce energy
use by selecting low-energy solutions.

• The driver of building energy renovation; is it because the overall energy efficiency
of the building is low, because building elements need to be refurbished, or due
to politically driven factors, such as support by government subvention? Some
buildings may never be energy renovated, even though they require it. Others may
be retrofitted several times throughout the lifetime of the building.

Although simple, the energy renovation model applied in this study demonstrates
a valuable application of the archetype framework, which can easily be expanded to
accommodate other requirements and political targets.
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8.5.3 Climate scenarios

Future climate data were projected using two of the four RCPs; the most optimistic
(RCP2.6) and the most pessimistic (RCP8.5) trajectory, respectively, in terms of global
radiative forcing levels in year 2100. However, a warmer climate is not necessarily a bad
thing if looking at heating energy use in buildings from an isolated perspective. One might
thus expect the overall warmer projections from RCP8.5 to result in the lowest energy use
forecasts, but the results are not unambiguous in that respect; forecasts using the RCP2.6
and RCP8.5 climate projections exhibit a considerable degree of overlap (Figure 8.8).
This could be due to the fact that the difference between the two RCPs are small in
the simulation period from 2017-2050 (Figure 8.7). If the simulation period were to be
extended further into the future, the forecasts would probably deviate significantly more.
This suggest that the effects of climate change on building energy use are complex and
cannot be accounted for by investigating individual projections of future climate. Future
research using climate projections to assess building energy use therefore ought to include
a larger ensemble of climate data, e.g. all four RCPs, to map the uncertainty of the
climate.
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Chapter 9

Thesis conclusion

9.1 Main contributions
The thesis set out to meet the challenges of bottom-up archetype-based urban energy
modelling (Section 1.5), identified from a review of the current state-of-the-art, through
the exploration of two research objectives (Section 1.6). A number of contributions toward
resolving these objectives have been offered through a presentation and discussion of both
published and unpublished work with the main contributions listed below.

Bayesian view on uncertainty: All work presented in this thesis is based on a Bayesian
view on probability to facilitate a fully stochastic treatment and propagation of all
sources of error throughout model inference, and to allow for prior knowledge about
uncertain archetype parameters to be included, if available. This propagation of
uncertainty has made it possible to quantify the uncertainty of predictions made with
archetype models, which is useful to improve, for example, retrofit decision-making
and the impact of energy policy. However, modelling and propagating uncertainty
in a stochastic framework imposes an extra computational burden that the non-
probabilistic counterparts do not have to bear.

Dynamic archetype modelling: Calibration data of different temporal resolution have
been investigated in the thesis (Chapter 5). It is found that the application of
dynamic building energy modelling, which offers the opportunity to learn archetype
parameters using, for instance, hourly time series data, gives the best predictive
performance. Moreover, the use of dynamic modelling has the ability to facilitate
analysis on an hourly basis, or higher if needed, which is required in the analysis
of energy systems, e.g. district heating system operation. It is found that the
application of hourly time series data affects the inference of uncertain archetype
parameters, as such data contain information about system dynamics that is not
available with data of monthly or annual resolution.

Hierarchical archetype modelling: Archetype modelling is generally based on the
assumption that a given building stock can be segmented into a semantic subset
of homogeneous building archetypes. Quantifying and propagating the error of
this assumption – the level of archetype heterogeneity – is vital for the successful
implementation of archetypes in urban building energy modelling. A hierarchical
(multi-level) archetype modelling framework is introduced in this thesis (Chapter 6),
which incorporates the heterogeneity of a given archetype classification scheme and
propagates this throughout the calibration of archetype parameters.
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Fast simulation without statistical emulators: The application of statistical emu-
lators – surrogate models – is widespread in the literature on Bayesian archetype
parameter calibration and Bayesian model calibration in general. The Bayesian
calibration methodology offered in this thesis is based on Markov Chain Monte
Carlo tuning of uncertain parameters from a direct evaluation of the errors between
simulated and measured time series outputs whereby the use of statistical emula-
tors is rendered redundant. This approach ensures a more transparent calibration
process and eliminates a layer of numerical error in obtaining posteriors over uncer-
tain parameters. This direct calibration approach is viable because the underlying
building energy model is based on a fast and simple 1st-order ROM formulation
(ISO13790:2008 hourly dynamic model).

Urban-scale forecasts under uncertainty: A framework is offered to forecast urban
building energy use under uncertainty of energy renovations and climate change
(Chapter 8). This was demonstrated for the stock of approx. 23,000 district heating-
supplied SFHs in the municipality of Aarhus, Denmark, from 2017 up until 2050,
using the archetype-based modelling approach. The projection of citywide heating
energy use was conducted for two different energy renovation rates and two different
climate change scenarios to explore the future outcome. Such analyses are valuable in
the context of energy policy decision-making, and planning and operation of energy
supply systems. It would be relatively easy to implement other retrofit decision
models, and to expand the framework to include other building types.

9.2 Limitations and future work
The models and methods introduced in the thesis have a number of limitations and areas
that might be further developed to better fit the needs of specific applications. Several
of these issues are already discussed in part in the thesis and relevant papers. They
are recapitulated below together with a number of interesting future research directions
resulting from the work.

Model fidelity: The underlying BEM relies on a simple 1st-order ROM formulation.
The simplicity of the BEM structure allows for very fast simulations of hourly
building energy use, which makes it possible to do without statistical emulators.
However, it comes at a price of reduced fidelity and representation of system
dynamics compared to more complex alternatives such as EnergyPlus, IDA ICE,
etc. This also means that there is a limit to what can be included in the model
and the analysis that can be performed. It may therefore be necessary to resort to
more complex BEM formulations, possibly in connection with a statistical emulator
to reduce computational time, in studies where the application requires enhanced
control of system dynamics on an hourly basis or more. An example of this is
the study reported in journal paper [S5] where we expanded the 1st-order ROM to
a 2nd-order variant. This was done to accommodate an application where model
predictive control (MPC) schemes were used to exploit the thermal mass of buildings
in a neighbourhood-scale UBEM study – an analysis that requires a more detailed
representation of the dynamic properties of buildings. However, we continued to
work without emulating the BEM, as this 2nd-order ROM formulation remained
relatively simple and very fast to evaluate.

Modelling occupant behaviour: The presence, behaviour and attitude of occupants is
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assumed to be fixed and time-invariant. This is a limitation of the framework that
reduces the analysis to be performed only on the aggregated scale where the effects
of occupants are levelled out. Future work ought to focus on how to improve the
representation of occupants on the building level.

Known input data: The implementation of additional input data, in addition to the
public building characteristics data of the BDR database, is considered to be a rather
straightforward way to improve model representativeness. Many recent UBEM
studies have shown how the inclusion of GIS data can be used to extract geometrical
building shape data for the generation of extruded massing models (e.g. Davila et al.,
2016; Chen et al., 2017; Jaeger et al., 2018). In this context, state-of-the-art seems
to revolve around the usage of the CityGML standard for establishing citywide GIS-
based models. Moreover, building survey data, such as EPC schemes, are becoming
readily available in many countries; data which contain a great deal of technical
information to be used for modelling.

Archetype training and identification of model parameters: The calibration of
uncertain model parameters is a central feature of the archetype framework. These
tuned parameter estimates are used both to secure accurate model predictions, and
in the subsequent retrofit analysis of the building stock. However, it is a fact that
the 1st-order model structure applied in this thesis together with measurements of
only external loads to the system, i.e. building energy use and weather conditions,
encounters problems with the partitioning of heat loss into that of transmission and
ventilation, as discussed in journal paper [P4] of Chapter 6. Several efforts have
been proposed to remedy some of these shortcomings in Chapter 8, e.g. extending
the training and testing period to 3 and 6 months of hourly data, respectively,
and extending the number of training buildings from 50 to 75. However, it remains
uncertain to which extent the inferred parameter estimates are consistent with those
of the actual buildings; this would need to be tested in an controlled experimental
set-up of a test-building.

Archetype classification and heterogeneity: The segmentation of building stocks
into archetypes has never been the scope of this thesis; focus has solely been on the
characterization and calibration of archetypes. Instead, the classification scheme
offered by the TABULA project was applied in Chapter 8 with a small modification
to account for newer buildings. However, optimizing the classification scheme to
better fit the diversity of the building stock could potentially result in a large
performance improvements of the subsequent archetype models, as the heterogeneity
would be reduced. In this context, it would be interesting to further investigate
the possibility of different classification schemes depending on the parameters and
phenomena in question. For example: one archetype segmentation based on the
construction year of the buildings to account for technical aspects, building traditions
and architecture, and another segmentation based on, for instance, demography or
location of the buildings to account for occupant-related aspects.

Other building categories: All research presented in this thesis has revolved around
the application of case data from detached SFHs in Aarhus, Denmark. These
buildings are relatively homogeneous in nature; stand-alone buildings with no
thermal connection to adjacent buildings, single-family occupants, and only small
variations in architecture and geometrical layout. However, in order to simulate
all buildings in a city, it would be necessary to extend the archetype framework to
cover all residential building categories, as well as commercial buildings, cultural
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buildings, etc. (Chapter 2, Figure 2.1). For several of these building categories,
e.g. industrial buildings or high-rise buildings of mixed-use, this could prove very
challenging. Some buildings are so unique that they in themselves form an archetype,
e.g. large cultural buildings or old city landmarks. One should thus not expect the
same level of performance and homogeneity for the remaining building categories as
obtained in this thesis using SFHs.

Decision model for energy renovation: The model applied to forecast energy renova-
tion of the building stock from 2017-2050 relies on a relatively simple set of decision
rules for the initiation of individual retrofit measures. This makes the energy ren-
ovation analysis both transparent and fast to integrate in the existing forecasting
set up; however, it is suggested for future work to further expand on this approach
to distinguish between simple and deep retrofit solutions, as well as how and when
energy renovation is initiated in individual buildings.

Other urban-scale applications: Finally, the archetype-based UBEM framework
could be applied in applications other than estimating the overall environmental
footprint of the building stock and forecasting the effects of energy renovation,
as demonstrated in this thesis. Utility companies, such as suppliers of district
heating, may be interested in supply-side management applications for: i) forecasting
daily load profiles to optimize district heating operation and supply, ii) forecasting
the effects of running city densification (increasing load) in combination with
running energy renovation of the ageing building stock (reducing load) to evaluate
maintenance and expansion plans of existing distribution grids underneath the city,
and iii) planning and dimensioning of new distribution grids in suburban areas
subdivided for newly built houses.
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a  b  s  t  r  a  c  t

Current  literature  holds  various  examples  of investigations  that  make  use of  a  building  energy  model
(BEM)  combined  with  a sensitivity  analysis  (SA)  technique  to identify  and  rank  the BEM  input  parame-
ters  that  the  model  output  is  most  sensitive  to. However,  a  sound  argumentation  that  vouches  for  the
reliability,  validity  and  necessary  complexity  of  the  chosen  SA method  for the specific  purpose  of  the
BEM-based  analysis,  is  rare.  This paper  reports  on an  investigation  of  how  two  different  levels  of  a-priori
information  about  input  parameters,  applied  to three  different  SA  methods  (Local,  Morris  and  Sobol),
influenced  the  identification  and  ranking  of  the  input  parameters  that  the  annual  energy  need  output  of
a quasi-steady-state  BEM  using  monthly  time  steps,  and  a simple  dynamic  BEM  using hourly  time  steps,
is most  sensitive  to.  It was  found  that the  three  SA methods,  to a great  extent,  were  able  to identify  the
same  cluster  of most sensitive  input  parameters,  independent  of the  level  of a-priori  input  parameter
information  and BEM.  However,  the  ranking  of most  sensitive  input  parameters  varied  with  the  applied
SA  method,  BEM,  and level  of  a-priori  input  parameter  information.  From  a practical  point  of  view,  the
choice  of  appropriate  SA  method  is  concluded  to  depend  on  the  purpose  of  the SA analysis.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In the context of using building energy modelling (BEM) for per-
formance predictions, it is often valuable to conduct a sensitivity
analysis (SA) to explore the model behaviour and to identify which
input parameters that drive the majority of the model output vari-
ation. Sensitivity analysis is thus a generic description of different
techniques for quantification of how variability in model output
can be apportioned to the variability and uncertainty of the model
input parameters. SA methods are often categorised as either local
sensitivity analysis (LSA) or global sensitivity analysis (GSA) [1].

1.1. Local sensitivity analysis

LSA methods rely on an OAT-methodology (one-parameter-at-
a-time) where the effect of the variation of a single input parameter
to a BEM tool is valuated at discrete points of the input space
while all other input parameters are held constant at their refer-
ence value. The nature and behaviour of the input parameters are
not taken into account, i.e. all values have an equal probability of

∗ Corresponding author.
E-mail address: mhk@eng.au.dk (M.H. Kristensen).

occurrence without considering the effect of range and shape of the
probability density function (PDF). Consequently, LSA methods do
not consider any effects from correlated input parameters or any
non-linear and non-additive model behaviour.

LSA methods have previously been used for various types of
BEM-based analysis [2–5]. Petersen and Svendsen [2] used LSA
together with a simple hourly dynamic BEM tool to provide build-
ing designers with an overview of the consequences of adjusting a
performance-decisive parameter, in terms of energy performance
and indoor environment, prior to any actual design decision. In a
study of macro-parameters for net zero energy building design by
Sun [3], LSA was used to quantify the impact of design parameters
on the outcome of BEM tool TRNSYS. Besides this direct applica-
tion, LSA has also been used to reduce large sets of parameters to
smaller manageable sets before applying more complicated and
computationally demanding GSA methods [4,5].

1.2. Global sensitivity analysis

GSA is a generic description of methods that evaluates the
effect of an input parameter on the output by varying not only
the parameter in question, but all other input parameters cho-
sen for analysis as well. GSA uses a probabilistic framework where
the effect of range and shape of input PDFs are incorporated. The

http://dx.doi.org/10.1016/j.enbuild.2016.08.038
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assignment of an individual PDF for each input parameter is an
important and often difficult task; however, in most cases one
can narrow down the range of variation and chose an appropri-
ate PDF describing the variation [4]. The probabilistic framework
of GSA requires that the model output be evaluated multiple times
on randomly selected input samples from the entire input space.
This requires a large number of Monte Carlo-based (MC) evalua-
tions of the model. The accuracy of a MC  analysis strongly depends
on the sampling technique that must ensure good coverage of the
input space [6]. Several different sampling techniques are available,
but specific GSA methods often require a specific type of sampling.
The prevailing sampling techniques includes simple random samp-
ling (e.g. Monte Carlo sampling), quasi-random low-discrepancy
sampling (e.g. Sobol’ sequences [7,8]) and stratified sampling (e.g.
Latin hypercube sampling (LHS) [9]). Quasi-random sampling using
Sobol’ sequences and LHS are known to outperform crude Monte
Carlo random sampling [7,9]. Moreover, Helton et al. [10] argues
that LHS is a good choice for computationally demanding models,
because its efficient stratification properties allow a broad coverage
of the entire probability distribution, at a relatively low computa-
tional cost.

A commonly used group of GSA methods for BEM-based analy-
sis are the so-called screening-based methods. These methods seek
to identify the least important input parameters that can be fixed at
any given value without considerably reducing output variance. In
this way, these methods are capable of ranking input variables by
their importance in descending order using only a relatively small
number of model evaluations [11]. Screening-based methods are
efficient for computational heavy models, and/or models with a
large number of input parameters, as e.g. building energy models
[4]. They are, however, most reliable when the number of important
input parameters is low, but as this is often the case, they are widely
applicable [11]. For a detailed review on screening-based methods,
see Saltelli et al. [12]. The screening-based method by Morris [13]
has been widely used for BEM-based analysis, e.g. in an identifica-
tion of important design parameters in sustainable buildings [4],
in an uncertainty study of retrofits for residential buildings [14],
in an investigation of important parameters for the performance of
different active cooling systems [15], in an evaluation of how geom-
etry effects building energy use [16], and for reducing the number
of uncertain parameters in early building design [17,18].

Another group of GSA methods is the so-called variance-based
methods. They rely on a decomposition of the model output
variance; thus, they are known as ANOVA (analysis of variance)
methods. They are regarded as model independent black-box
methods making them suitable for complex non-linear and non-
additive models. These advantages come, however, at the price
of a high computational cost compared to the screening-based
methods. A popular variance-based GSA method is the method of
Sobol’ [19], which, based on a decomposition of the output vari-
ance, is capable of estimating sensitivity indices describing the
contribution of first-order effects for each input parameter alone,
second-order interaction effects between two parameters, third-
order effects and so on. The original method has since evolved
as described in Borgonovo and Plischke [1] and Saltelli et al.
[7]. Another popular variance-based method is the FAST (Fourier
Amplitude Sensitivity Test) [20], and the extended FAST [21], which
both uses a Fourier decomposition of the model output to estimate
first-order and total-order effects. The main difference between
Sobol’ and FAST lies in the numerical estimation of the multidi-
mensional integrals of the model necessary for the computation
of the variances. The method by Sobol’ applies Monte Carlo inte-
gration loops while FAST applies a sinusoidal function for pattern
search. Variance-based methods are not used as widely for BEM-
based analysis as screening-based methods; the few examples, to
the knowledge of the authors, are the studies by Mechri et al. [22]

who used the FAST method to assess important parameters in office
energy design, Shen and Tzempelikos [23] who applied a FAST sen-
sitivity analysis of daylighting and energy performance of offices,
Mara and Tarantola [6] who used the Sobol’ method in an investi-
gation of the thermal behaviour of an experimental test cell, and
Spitz et al. [5] who  used the Sobol’ method in an experimental setup
where measured parameter uncertainty was used as input data for
the sensitivity analysis.

1.3. Information level in input parameters

The information level of input parameters to a BEM is impor-
tant to the outcome of the sensitivity analysis; therefore, one has
to specify an input parameter space of interest to be examined. The
input parameter space for the SA can be defined by a range and a
distribution of the likelihood for each value within this range. If the
purpose is to explore the effect of equally possible parameter val-
ues, for example in a design situation, this space can be assumed
uniformly distributed across a defined range meaning that the like-
lihood of different input parameter values are given equal weight.
This uniform distribution is called a non-informative distribution as
no information can be extracted from it besides the range of varia-
tion. One can also explore the output variability of a non-uniform
distribution. A non-uniform distribution is called an informative
distribution because it is based on a-priori information about the
variation of the parameters, which could be available from e.g.
expert judgements, historical data, or sample measurements. All
SA methods are able to handle non-informative distributions, but
not all SA methods are able to handle informative distributions.

1.4. Aim of this paper

The previous sections mention several examples where SA has
been applied for BEM-based analysis. However, a sound argu-
mentation that vouches for the reliability, validity and necessary
complexity of the chosen SA method in the context it is being used,
namely for BEM-based analysis, is rare.

The aim of this paper is to provide future BEM-based research
with an argumentation for choosing an appropriate SA method,
when using SA for identifying and ranking the most important
model parameters, given a certain a-priori information level about
the parameter input space. Three different but commonly used SA
methods were therefore applied to a building test zone, represent-
ing an existing residential building stock, using two different BEM
models and two  different degrees of a-priori input parameter infor-
mation (a uniform and a non-uniform distribution within the same
range). The outputs from these analyses were then compared to
identify whether the choice of SA method, BEM, and/or information
level in input parameters, affected the identification and ranking of
the input parameters most sensitive to the BEM output.

2. Methods

The methodology used to investigate the research statement
is illustrated in Fig. 1. First, PDFs were assigned to each input
parameter describing the a-priori beliefs of their shape and range
of variation (see section 2.2 for details). For input scenario A, the
information about shape of the individual input parameters were
ignored by only considering the range of the PDFs using the 0.01 and
0.99 quantiles as boundaries. Hereby parameter variation is treated
as uniformly distributed between the boundaries, which would cor-
respond to the level of information available in the early building
design process where the likelihood of the actual parameter value
is uniformly distributed. For input scenario B, all information about
the shape of the PDFs was  taken into account, which could be the
situation in the case of uncertainty analysis where the likelihood of
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Fig. 1. Methodical approach.

the actual value of a parameter in some way is distributed around
the most likely value (e.g. late in the planning of a new build-
ing or when working with existing buildings). Two different BEMs
(see section 2.1 for details) were then run to calculate the annual
energy need for space heating and cooling, using three different
SA methods to sample from the input distributions (see section 2.3
for details). In total, four different sensitivity analyses outcomes for
each of the two BEMs were generated as two of the SA methods are
restricted to sample from input scenario A, while the third is capa-
ble of sampling from both scenario A and B, respectively, which
has been utilised to compare the effect of input parameter distri-
butions. Finally, the importance of the input parameters for each
SA method in terms of describing model output uncertainty was
quantified by ranking them in descending order (see section 3 for
results).

2.1. Building energy models

The two different building energy models (BEMs) used in this
study are fully prescribed in ISO 13790 (Energy performance of
buildings - Calculation of energy use for space heating and cooling)
[24] as the

• Monthly quasi-steady-state calculation method
• Simple hourly dynamic calculation method

Table 1
Time-in-use schedule for internal loads and ventilation.

Hours Internal heat loads Ventilation

23:00–07:00 25% 10%
07:00–16:00 50% 0%
16:00–23:00 100% 100%

In the monthly quasi-steady-state method, the energy balance
is calculated over sufficiently long time to ignore heat stored
and released; however dynamic effects are taken into account by
introducing correlation factors in terms of empirical gain/loss uti-
lisation factors. In the simple hourly dynamic method, the energy
balance is calculated with short time steps taking into account the
thermal inertia of the building mass by modelling the thermal resis-
tances and capacitances, as well as the internal and solar heat gains,
in a an equivalent three node resistance capacitance network (5R1C
model).

Both methods were applied as models to calculate the annual
energy need for space heating and cooling (kWh/year) of a build-
ing zone test case where geometric and technical properties were
treated as stochastic model input parameters using the PDFs given
in Table 2. Time-in-use schedules for internal heat loads (occupancy
and appliances) and ventilation are given in Table 1.

Weather conditions were modelled using the Danish design
reference year (DRY) dataset, containing hourly values of the neces-
sary weather parameters (air temperature, normal solar radiation
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Table  2
Probability density functions assigned to model input parameters.

Input parameters Unit Building energy model Quantiles

Quasi-steady-
state

Simple
dynamic

Distribution 1% 25% median 75% 99%

Floor area m2 X X lnN[5.3;0.222] 120 173 200 233 333
Room  height m X X lnN[1.1;0.062] 2.6 2.9 3.0 3.1 3.5
U-value (walls) W/(m2 K) X X lnN[−1.4;0.942] 0.03 0.14 0.26 0.48 2.28
U-value (roof) W/(m2 K) X X lnN[−2.1;1.332] 0.01 0.05 0.12 0.30 2.77
U-value (floor) W/(m2 K) X X lnN[−0.9;0.692] 0.08 0.25 0.40 0.63 1.96
Adjustment factor (ground) – X X Beta[30;3.33] 0.75 0.87 0.91 0.94 0.98
Window-%, (N,E,S,W)a – X X Beta[5;20] 0.06 0.14 0.19 0.25 0.41
Window frame fraction – X X Beta[15;60] 0.11 0.17 0.20 0.23 0.32
U-value (window) W/(m2 K) X X lnN[0.7;0.222] 1.16 1.68 1.95 2.27 3.29
SHGC  – X X Beta[20;13.33] 0.40 0.54 0.60 0.66 0.78
Internal solar shading (N,E,S,W) – X X Beta[30;3.33] 0.75 0.87 0.91 0.94 0.98
Ventilation rate l/(s m2) X X lnN[−0.03;0.222] 0.58 0.84 0.98 1.13 1.64
Infiltration rate l/(s m2) X X lnN[−0.43;0.802] 0.10 0.38 0.65 1.12 4.18
Heat  recovery – X X Beta[50;16.67] 0.62 0.72 0.75 0.79 0.86
Internal heat loads (occupancy + appliances) W/m2 X X lnN[0.87;0.312] 1.2 1.9 2.4 2.9 4.9
Thermal mass kJ/(m2 K) X X lnN[11.85;0.372] 60 110 141 180 330
Area  of exposed thermal mass m2/m2 X lnN[1.09;0.112] 2.3 2.8 3.0 3.2 3.8
Reference numerical parameterb – X lnN[−0.01;0.152] 0.7 0.9 1.0 1.1 1.4
Reference time constantc [h] X lnN[2.64;0.372] 6 11 14 18 33
Heating set point [◦C] X X N[22;12] 19.7 21.3 22.0 22.7 24.3
Cooling set point [◦C] X X N[27;12] 24.7 26.3 27.0 27.7 29.3

a Window-% was  changed independently for each of the four cardinal directions (N,E,S,W), using the same parameter distribution.
b Reference numerical parameter for heating (aH,0) and cooling (aC,0). In both cases, ISO 13790 gives an empirical value of 1.0.
c Reference time constant for heating (�H,0) and cooling (�C,0). In both cases, ISO 13790 gives an empirical value of 15 h.

and diffuse solar radiation) [25]. Total solar radiation perpendicular
to the building facades was calculated in both BEM models using
the solar algorithm described in [26].

2.2. Model input parameters

A PDF was assigned to each of the 24 building geometrical
and technical input parameters defining the test zone (Table 2)
to reflect the uncertainty of an existing residential building stock;
as such, these PDFs serves as an example of the a-priori uncer-
tainty that could be contained in such parameters. Three different
distributions were applied: the normal distribution N

(
�, �2

)
,

the log-normal distribution lnN
(

�, �2
)

and the beta distribution

Beta
(

˛, ˇ
)

. The normal distribution was used to represent the vari-
ation of the continuously defined parameters, e.g. temperature set
points, whereas the log-normal distribution was used to represent
those continuously defined parameters that only exist in the pos-
itive domain, e.g. U-values. The beta distribution was assigned to
factors only defined in the range

{
0 − 1

}
, e.g. the solar heat gain

coefficient (SHGC). Correlations between parameters, e.g. window
U-values and SHGC, has not been taken into account.

2.3. Sensitivity analysis methods

Three SA methods were investigated: a local partial derivative-
based method (Appendix A), the OAT global screening-based
method of Morris (Appendix B) and the global variance-based
method of Sobol’ (Appendix C). These three SA methods apply
very different schemes for assessing the parameter influence on
model output variability. Their capabilities are summarised in
Table 3 based on four properties: (1) ability to take into account
the scale and shape of input parameter distributions, (2) ability to
take into account multi-dimensional parameter influence where
all parameters are varied simultaneously, (3) being model inde-
pendent, i.e. embracing both non-linear and non-additive effects
where parameter interactions are taken into account, and (4) the
relative computational time [11].

Table 3
Properties of sensitivity analyses methods.

Property Sensitivity analysis method

Local Morris Sobol’

Scale and shape of input parameter PDF No No Yes
Multi-dimensional averaging No No/Yes Yes
Model independent No Yes Yes
Relative computational time Low Medium High

The only SA method to encompass all three properties is the
global variance-based method of Sobol’. The Sobol’ method utilises
a comprehensive representation of the model behaviour through a
complete decomposition of the output variance by searching across
the entire input space while simultaneously taking into account
range and shape of parameter distributions and correlated effects.
The total-order sensitivity indices (C.4) are bounded to sum to one,
making them physically meaningful measures of parameter influ-
ence. A numerical error is introduced though, as the Monte Carlo
framework only approximates the sensitivity indices. The conver-
gence of the numerical approximations can be assessed as the
variation of the total-order indices and the internal ranking of the
parameters.

A similar direct interpretation can be made with the local sen-
sitivity index; however, where the Sobol’ indices sum to one for
each parameter, the local method do not feature this boundedness.
Instead, the local method applies a single SI-measure (A.1) using the
extreme parameter values to calculate the point elasticity around
the mean. This would be sufficient for identifying the sensitivity of
a linear model, but it might be insufficient for non-linear models.
Another limitation of the local method is that it does not allow any
utilisation of knowledge about the shape of the parameter distri-
butions, meaning that all values within the input range are treated
as equally possible (uniformly distributed); moreover, as the local
method is an OAT method, it does not allow any quantification of
correlated parameter effects.

The Morris method applies the absolute mean of a population of
elementary effects (B.3) to quantify the influence of a given param-
eter. Even though this methodology is regarded partly global by
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Fig. 2. Energy need for space heating and cooling calculated with the hourly dynamic model and the monthly quasi-steady-state model, respectively, using the median value
of  input distributions in Table 2.

averaging across multiple local effects at different points in the
input space, each parameter is still varied one-at-a-time (OAT),
hereby potentially neglecting correlated effects, hence the ‘No/Yes’
in Table 3. Another disadvantage of the Morris method is the dubi-
ous interpretation of the mean elementary effect as a measure of
sensitivity. Just like the local derivative-based method, the Morris
method is also based on derivatives thus lacking the boundedness
of the Sobol method. One should be careful with interpreting a large
absolute value of the mean elementary effect as a sign of great
parameter influence as such values will vary from one model to
another. Only the internal ranking of the means can be used to
quantify the influence of the parameters and sort them in clusters
of importance. The complexity of using the different SA methods

in BEM practice are obvious: the Local method requires less effort
and time than the Morris method, which requires less effort and
time than the method of Sobol’. From a practical point of view, it is
therefore interesting to investigate whether the differences in SA
capabilities has any influence on the ranking of input parameters
in terms of their impact on the BEM output.

3. Results

3.1. Comparison of energy models

The calculated thermal energy need for space heating and cool-
ing, using the two ISO 13790 energy models, is shown in Fig. 2

Fig. 3. Local method sensitivity measure (sensitivity indices).
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Fig. 4. Morris method sensitivity measure (mean of elementary effects). The boxes indicates the 95% confidence bounds.

using the reference value from all input distributions (median value
in Table 2). In general, the quasi-steady-state model predicts a
lower monthly energy need for space heating and higher monthly
energy need for cooling compared to the simple hourly dynamic
model. The monthly differences evens out in the total annual energy
need to 191 kWh/(m2 year) and 182 kWh/(m2 year) for the hourly
dynamic model and monthly quasi-steady-state model, respec-
tively, yielding an annual relative deviation of approximately 4.4%.

3.2. Sensitivity indices

The sensitivity indices of the output (annual energy need for
space heating and cooling) of each of the two BEMs, towards
changes in the model input parameters when applying the local SA
method (Appendix A), are shown in Fig. 3; the mean values of the
elementary effects from the Morris method (Appendix B) are shown
in Fig. 4; the total-order effects from the Sobol’ method (Appendix
C) are shown in Figs. 5a and 5b for the non-informative and the
informative cases, respectively. Ranking of the top-ten parameters
for each analysis is given in Table 4.

3.2.1. Effect of parameter information level
The effect of changing input parameter information level can

be analysed by comparing the Sobol’ method ranking results from
the use of non-informative and informative PDFs, respectively
(Table 4). According to the Sobol’ total-order sensitivity indices
with non-informative parameter distributions (Fig. 5a), approx-
imately 87% to 92% of the output variability in the two BEMs,
respectively, can be ascribed to the top five ranked parameters;
floor area, infiltration rate, U-value of the roof, heating set point,
and U-value of the floor. These five parameters are therefore con-
sidered the most influential parameters when using uniformly
distributed inputs in both BEMs. Applying informative distributions
(Fig. 5b), the ranking of the top five parameters is slightly differ-
ent depending on the applied model. For both BEMs, application of
informative distributions results in the heating set point parameter
being replaced with the U-value of the walls in the top five ranking,

and the amount of variability accounted for in top five parameters
makes up approximately 97% for BEMs.

3.2.2. Effect of sensitivity analysis method
To make a comparison of the performance of the different SA

methods, the ranking of the top five and top ten most influen-
tial parameters identified with the Local method and the Morris
method is compared to the ranking from the Sobol method using
non-informative PDFs (Sobol’ (A)) and informative PDFs (Sobol’ (B)),
respectively (Table 4).

The local SA method applied to the hourly dynamic BEM as
well as the monthly quasi-steady-state BEM identified four out of
five most influential parameters (heating set point, floor area, U-
value of the roof, and infiltration rate) when compared to Sobol’
(A), but ranks them in a different order. When compared to Sobol’
(B), the Local method identified three out of the five most influen-
tial parameters (floor area, U-value of the roof, and infiltration rate)
when compared to Sobol’ (B) for both BEMs, but ranks them in a
different order. The top five parameters identified with the Local
method makes up approximately 86% and 89% of the sensitivity for
Sobol’ (B) in the hourly dynamic and the monthly quasi-steady-
state BEM, respectively. The Local SA method identified nine out of
the top ten most influential parameters for both the hourly simple
dynamic and monthly quasi-steady-state model when compared
to Sobol’ (A) and (B), but the ranking was different in all cases.

The global screening-based method of Morris identified the
same ten most influential parameters as in Sobol’ (A) for both BEMs
and ranks them in the exact same way with the exception of the
top two  parameters which changed places in the monthly quasi-
steady-state BEM. When compared to Sobol’ (B), the Morris method
identifies four out of the five most influential parameters when
applied to both BEMs (floor area, U-value of the roof, U-value of
the floor, and infiltration rate), but with a slightly different ranking
in both cases. The top five parameters identified with the Morris
method makes up approximately 94% and 95% of the sensitivity for
Sobol’ (B) in the hourly dynamic and the monthly quasi-steady-
state BEM, respectively. The Morris method identified nine out
of the top ten most influential parameters in the hourly simple
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Fig. 5. Sobol’ method sensitivity measure (total-order sensitivity index). The boxes indicates the 95% confidence bounds. Variation within the ranking stopped after approx-
imately  6000 iterations for both scenarios. For (a): the sum of total-order indices is 1.05 and 1.06 for the hourly simple dynamic and monthly quasi-steady-state BEM,
respectively. For (b): the sum of total-order indices is 1.02 and 1.03 for the hourly simple dynamic and monthly quasi-steady-state BEM, respectively.

dynamic BEM model when compared to Sobol’ (B), but with a quite
different ranking, and ten out of ten for the monthly quasi-steady-
state BEM, but with a somewhat different ranking.

It is noted that it is only for the hourly dynamic model where a
parameter regarding thermal mass, ‘area of exposed thermal mass’,
comes into top ten (except for Sobol’ (B)).

4. Discussion

When compared to the Sobol’ method using non-informative
uniform PDFs, it has been demonstrated that the Local method

and the Morris method may  be applicable as methods for iden-
tifying the most important cluster of parameters. However, it was
only the Morris method that was  able to rank the parameters in
the same order as the Sobol’ method. When applying informative
PDFs, the performance of both the Local method and the Morris
method decreased when compared to Sobol’ method as none of the
two methods are capable of addressing information about param-
eter shape. However, it is possible to include this information as
proposed by Campolongo and Braddock [27] who expanded the
Morris method to consider also higher order effects (e.g. interac-
tions between any pair of input parameters). Such a second-order
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Table  4
Ranking of top ten most influencing input parameters on the two BEMs for each sensitivity method.

Input Hourly dynamic model Monthly quasi-steady-state model

Local Morris Sobol’ (A)a Sobol’ (B)b Local Morris Sobol’ (A)a Sobol’ (B)b

Floor area 1 1 1 2 2 2 1 3
Room  height – – – – 7 9 9 9
U-value (walls) 9 6 6 5 8 6 6 5
U-value (roof) 4 3 3 3 4 3 3 2
U-value (floor) 6 5 5 4 6 5 5 4
Adjustment factor (ground) 7 – – 10 5 8 8 8
Window-%, (N,E,S,W) – – – – – – – –
Window frame fraction – – – – – – – –
U-value (window) 10 7 7 7 9 7 7 7
SHGC  5 8 8 9 – 10 10 10
Internal solar shading (N,E,S,W) – – – – – – – –
Ventilation rate – – – – – – – –
Infiltration rate 3 2 2 1 3 1 2 1
Heat  recovery – – – – 10 – – –
Internal heat loads – – – – – – – –
Thermal mass – 9 9 8 – – – –
Area  of exposed thermal mass 8 10 10 – – – – –
Reference numerical parameter – – – – – – – –
Reference time constant – – – – – – – –
Heating set point 2 4 4 6 1 4 4 6
Cooling set point – – – – – – – –

a Sobol’ (A): non-informative PDF (uniform distribution).
b Sobol’ (B): informative PDF (non-uniform distribution).

design has been compared to the original first-order design by Mor-
ris in a sensitivity study of an apartment building [28] where it was
found that the implementation of second-order elementary effects
could be helpful to sort variables and to specify their interaction in
pairs. Various versions and extensions of the Local method do also
exist making it possible to investigate a larger domain of the input
space [29].

Only the shape of the PDFs was assessed in the investigation
of the effect of a-priori parameter information. The outcome of SA
could also be affected by the range of the PDFs if there are nonlinear
interactions in the BEM. However, the range will have no influ-
ence for the outcome if the BEM is strictly linear. The behaviour of
the BEMs investigated in this paper are predominantly linear and
additive of nature, and different PDF ranges is therefore most likely
not influencing the identification and ranking of most important
parameters in any of the SA methods.

The two ISO 13790 BEMs used in the analysis presented in this
paper are both based on simplified representation of the building
physics. There are several BEM tools available, which rely on more
accurate models of the building physics. The application of such
a tool could have influenced the results of this study; however,
other studies have demonstrated that the ISO 13790 models are in
good compliance with results from more sophisticated BEM tools
like EnergyPlus [30] and BSim [31]. Furthermore, Kim et al. [30]
found that the ten out of top ten most influential input parameters
on energy need for space heating, and nine out of ten concerning
space cooling, where the same when applying the original Mor-
ris method to the monthly quasi-steady-state BEM of ISO 13790
and the sophisticated BEM tool EnergyPlus; however, the ranking
of the parameters were slightly different in both cases. This could
imply that the overall model behaviour of EnergyPlus has a simi-
lar effect on parameter identification and ranking as the monthly
quasi-steady-state model when modelling the energy need for
space heating and cooling. However, this may  not hold for more
dynamic and detailed systems, e.g. advanced facade systems. In a
future study it would be interesting to apply the Sobol’ method to
a more complex and sophisticated BEM to investigate whether it
identifies and ranks input parameters differently due to any non-
linear and non-additive behaviour in the sophisticated BEM model
that the Morris method cannot detect.

5. Conclusions

The purpose of the study presented in this paper was to elu-
cidate how the choice of sensitivity analysis technique, and the
level of a-priori parameter information one applies in the analysis,
affects the identification and ranking of input parameters to which
the output from a given BEM was  most sensitive. For this purpose,
three different SA methods of increasing complexity and capability
(Local, Morris, and Sobol’) have been applied to the annual energy
need output from an hourly simple dynamic and a monthly quasi-
steady-state building energy model.

Using the Sobol’ method it has been demonstrated that the
level of parameter input information, i.e. the shape of the param-
eter distribution in a certain range, has an effect on the result of
the sensitivity analysis outcome. The effect of distribution shape is
likely to be both model-specific as well as affected by any potential
parameter correlations. The use of the Sobol’ method is therefore
recommended for cases where a continuous or discrete range and
shape of the parameter distributions is known, as the Sobol method
was the only of the three investigated methods that was  able to
account for the aggregated effect of variability in specific param-
eter distributions. However, the use of the less computational
demanding Morris method (no. model evaluations: Local = 49; Mor-
ris = 6,250; Sobol’ = 260,000) is recommended when the variation
of input parameters are uniformly distributed between chosen
boundaries, e.g. when designing a new building, as it seems to lead
to the same identification and ranking as the Sobol’ method.

The study also demonstrated that the Local method was capa-
ble of identifying practically the same cluster of most important
parameters as the more sophisticated Morris and Sobol’ method,
but it was  not capable of identifying the same ranking of parame-
ters in terms of importance to the model output. Consequently, the
use of the simple Local method is only recommended for situations
where identification of a cluster of most sensible input parameters
is of interest and not the actual ranking.

The study furthermore demonstrates that the choice of BEM has
an effect of the outcome of all three applied SA methods mainly in
terms of ranking. Overall, the Sobol’ method seems to be slightly
more robust towards the choice of BEM than the Local and the
Morris method.
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The above conclusions are drawn based on simulations of an
existing residential building stock in a temperate climate, which
has a significant heating and a limited cooling need. Conclusions
might be different for another type of building and/or climate.
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Appendix A. Local method

The simplest SA method included in the investigation was a local
method based on partial derivatives [29]. In the Local method the
model input space, �,  is made up of k number of input parameters
xi, for which a dimensionless sensitivity index, SIi, is calculated OAT
based on the partial derivative of the model output, y:

SIi = %�y

%�xi
=

∣∣∣∣∣∣

y(2)−y(1)

ȳ

x(2)
i

−x(1)
i

x̄i

∣∣∣∣∣∣
(A.1)

The sensitivity index, SIi, expresses the output elasticity of varia-
tion around the mean output value as percentage change in output,
%�y, per percentage change in input, %�xi. The superscripts 1 and
2 refer to values of input, xi, and corresponding output, y, respec-
tively, while the overlined parameters, x̄i and ȳ, refer to the mean
value of those parameters. In this study, the inputs x(1)

i
and x(2)

i
were

sampled from the input distributions as the 0.01 and 0.99 quantiles
transforming the sensitivity index to an expression of the midpoint
arc elasticity. All input assumptions are summarised in Table A.5.

Appendix B. Morris method

The global OAT screening-based method by Morris [13] that,
as opposed to the local method, is capable of addressing non-linear
and interaction effects, was included in the investigation as a simple
global method. In the Morris method, the input space, �,  is made up
of k number of input parameters, xi, each defined within a discrete
range from a specified minimum, x−

i
, to a maximum, x+

i
, normalised

to a scale
{

0 − 1
}

. The range of each parameter is subdivided in p
number of points, denoted levels, with a distance � between them.
Hereby xi assumes integer values in the range:

xi =
{

0,
1

p − 1
,

2
p − 1

, . . .,  1
}

(B.1)

The input space, �,  thus becomes a k-dimensional p-level grid
with pk points. The Morris method is usually applied with uniform
input distributions which means that the levels, p, are obtained by
dividing the interval in which each factor varies (from x−

i
to x+

i
) into

equally large parts. It is however possible to let input parameters
follow non-uniform distributions by selecting the levels e.g. as the
quantiles of the distribution [4,11]. In this study, we  have used the
0.01 and 0.99 quantiles from the input distributions as the delimit-
ing range of variation in the discrete input range and subdivided it
in p = 5 levels (Table A.5). This way, an equal distance between each
level was maintained.

From the input space, each parameter is assigned a random base
value in the discretized grid forming the base input vector, X*,  cor-
responding to a point in �.  From here, the model is evaluated at
different values of X, which is obtained by moving randomly around
in �,  increasing or decreasing xi by � while keeping all other
parameters constant. This way a trajectory is ‘followed’ trough �
with the index i being selected at random from [1, 2, . . .,  k]. Each

realisation of the input vector X should differ from previous real-
isations. The algorithm continues until all parameters have been
evaluated at two  different values creating k + 1 model evaluations
in the trajectory using input vector X(1), X(2), . . .,  X(k+1).

Morris suggested evaluating the influence of the individual
input parameters using a so-called elementary effect (EE) for each
parameter. The elementary effect, which can be seen as a global
extension of a local derivative-based method, is defined as:

EEi = y (x1, . . .,  xi−1, xi + �,  . . .,  xk) − y (x1, . . .,  xk)
�

(B.2)

By following r different trajectories (indexed t), providing r
estimates of the elementary effects for each input parameter, the
individual parameter influence is evaluated by the mean value, �i,
and standard deviation, �i, of the population of elementary effects
for each parameter:

�i = 1
r

r∑

t=1

∣∣EEi,t

∣∣ (B.3)

�i =

√√√√ 1
r − 1

r∑

t=1

∣∣EEi,t − �i

∣∣2 (B.4)

The mean value, �i, is an estimation of the influence of the i-th
input parameter, xi, while the standard deviation, �i, is a measure of
the interactions with other parameters and any non-linear effects
that the parameter takes part in. The mean value is used for ranking
the parameters in order of importance.

The expressions in ((B.3)-(B.4)) are revisions by Saltelli et al.
[11] of the original work by Morris, as Morris did not make use
of the absolute values, which can lead to underestimations of the
parameter influence as values of opposite sign may cancel out each
other. Using absolute values as in ((B.3)-(B.4)) is sometimes referred
to as the Revised Morris method.

At a combined computation cost of r · (k + 1) simulations, the
Morris method is practically inexpensive compared to the local
method (Table A.5). In Heiselberg et al. [4] it is advised to use a min-
imum sampling number r = 4 to reasonably cover the parameters
and r = 10 to obtain very reliable results. In this study, however, the
elementary effects were approximated using r = 250 random trajec-
tories through the input space resulting in 6,250 model evaluations
in order to obtain stable mean values of the elementary effects, �i,
without changing the ranking of the parameters. 95% confidence
bounds of �i were derived using 500 bootstrapping samples. All
input assumptions are summarised in Table A.5.

Appendix C. Sobol’ method

The global variance-based method by Sobol’ [19] was the most
complex SA method included in the investigation. The governing
idea of this method is that the total unconditional variance of the
model output, V (Y),  can be written as a sum of terms describ-
ing the variance contribution of first-order effects for each input
parameter alone, Vi, second-order interaction effects between two
parameters, Vij, third-order effects, and so on [11]:

V (Y) =
∑

i

Vi +
∑

i

∑

j>i

Vi,j + V1,2,...,k (C.1)

The total model variance is thus attributed to individual input
parameters and interactions between parameters. The expression
in (C.1) can be written as:

V (Y) = VXi

(
EX∼i

(Y | Xi)
)

+ EXi

(
VX∼i

(Y | Xi)
)

(C.2)

The total unconditional model variance, V (Y),  is divided into
variance explained by fixation of input parameter Xi (first term
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Table  A.5
Input assumptions for the different sensitivity analysis methods.

Sensitivity analysis method

Local Morris Sobol’

Points used from PDF 0.01 (x(1)
i

) and 0.99 (x(2)
i

) 0.01 (x−
i

) and 0.99 (x+
i

), p = 5 (levels) Entire PDF
Sample  size 1 r = 250 (trajectories) N = 10, 000 (LHS)
No.  of model evaluations 2k + 1 =49 r(k + 1) = 6, 250 N(k + 2) = 260, 000
Convergence measure N/A �i ≈ constant a STi ≈ 1

a Parameter ranking does not change with increasing sample size.

in (C.2)) and residual variance (last term in (C.2)). The first term,
VXi

(
EX∼i

(Y | Xi)
)

, express model variance conditional on Xi and
thus represents the first-order (e.g. additive) effect of Xi, which is
a measure of sensitivity varying between zero and V (Y).  The inner
expectation operator EX∼i

is the mean of Y taken over all possible
values of the input matrix X while keeping Xi fixed. The outer vari-
ance VXi

is taken over all possible values of Xi. By normalising with
the total unconditional variance V (Y),  the following first-order sen-
sitivity index is established for the i-th input parameter [7]:

Si =
VXi

(
EX∼i

(Y | Xi)
)

V (Y)
(C.3)

Likewise, it is possible to establish expressions from (C.1) for the
higher order effects, where input parameters interact with each
other. However, it is often enough to account for the combined
interaction effects of each input parameter by assessing the so-
called total-order effect sensitivity index [7]:

STi = 1 −
VX∼i

(
EXi

(Y | X∼i)
)

V (Y)
(C.4)

where VX∼i

(
EXi

(Y | X∼i)
)

is the expected variance reduction that
would be obtained if all parameters but Xi could be fixed, i.e. the
model variance is attributable to the combined variation of all other
input parameters than Xi. Subtracting this value from 1 leaves only
the total variance contribution from Xi. The sum of the total-order
effects of all input parameters equals one.

In this study, the Sobol’ sensitivity indices Si and STi have been
estimated according to the methods formulated by Sobol’ [19]
and Homma  and Saltelli [32] as summarised in Saltelli et al. [11].
A Monte Carlo (MC) framework was used for the computational
scheme in which the estimators for Si and STi were approximated
in the same set of simulations. From the probability distributions
of each input parameter, two independent global input matrices A
(sample matrix) and B (re-sample matrix) were generated, each
containing N samples of the k input distributions. For this, we
applied LHS using N = 10, 000.

By evaluating the sample matrix, A, a distribution of N model
outputs f was  obtained with a total unconditional expectation, f0,
and variance, V (Y):

f0 = E (Y) = 1
N

N∑

j=1

f (A)j (C.5)

V (Y) = 1
N

N∑

j=1

f 2(A)j − f 2
0 (C.6)

Two new matrices A(i)
B and B(i)

A were introduced where in A(i)
B

all columns were from the sample matrix, A, except the i-th,
which was from the re-sample matrix, B. This was opposite in B(i)

A .

The conditional variances necessary for the computation of the
sensitivity indices were then estimated in the same MC loop:

VXi

(
EX∼i

(Y | Xi)
)

= 1
N

N∑

j=1

f (A)jf
(

B(i)
A

)
j
− f 2

0 (C.7)

VX∼i

(
EXi

(Y | X∼i)
)

= 1
N

N∑

j=1

f (A)jf
(

A(i)
B

)
j
− f 2

0 (C.8)

This scheme allows the computation of the first-order and total-
order indices using a total of N · (k  + 2) model evaluations with
N being the number of samples used in the MC framework and k
being the number of input parameters. In this study, the total-order
effects were approximated using N = 10, 000 Latin hypercube sam-
ples at which point convergence was ensured, resulting in 350,000
model evaluations (Table A.5). 95% confidence bounds of the total-
order effects were derived using 500 bootstrapping samples.
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a b s t r a c t 

Sensitivity analysis (SA) can be applied to building energy models (BEM) to identify which input param- 

eters that drive the majority of the model output variation. The screening-based Morris method is often 

applied for this purpose; however, consideration regarding the effect of the user-defined number of levels 

( p ) and trajectories ( r ) on the obtained results are rare. This paper investigates how the choice of p and r 

affects the outcome of a SA using the Morris method on a high fidelity BEM. The results indicates that the 

Morris method was not able to replicate the ranking from the variance-based Sobol’ method no matter 

the choice of r and p . It was, however, able to identify groups of input parameters (parameter clusters) 

most sensitive to the model output variability, but it required significantly more r than usually applied 

in studies featuring the Morris method. The reason is that marginal differences in absolute values of ele- 

mentary effects (the sensitivity indices of the Morris method) for some input parameters may lead to a 

change in ranking position several times as the number of r increases. Users of the Morris method must 

therefore not be predetermined on the size of the parameter cluster; instead, they must make a visual 

assessment of the convergence of the parameter ranking to qualitatively determine the appropriate size 

of parameter cluster. The final recommendation for future studies deploying the Morris method for SA 

applied to a high fidelity BEM is to choose p ≥ 4 as it seems to lead the analysis towards a more truthful 

ranking, and then run simulations in steps of r = 100 when making the visual assessment to determine 

convergence and the size of parameter cluster. The identified need for more r questions the general no- 

tion that the Morris method is a computationally efficient screening method in terms of absolute time 

use. However, the Morris method is still much more computational efficient than a Sobol’-based analysis 

if the purpose of the SA is to identify a cluster of input parameters most sensitive to the model output 

variability. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Building designers may find it informative to employ a sensi- 

tivity analysis (SA) to a building energy model (BEM) to identify 

which design variables that drive the majority of the model output 

variation in terms of indoor climate and energy use. SA methods 

for this purpose can in general be categorised as either local sen- 

sitivity analysis (LSA) or global sensitivity analysis (GSA) [1] . 

LSA methods rely on a one-parameter-at-a-time (OAT) tech- 

nique where all parameter values have equal probability of oc- 

currence. The OAT technique means that LSA methods do not ac- 

count for any effects from correlated input parameters. However, 

LSA methods are easy to implement and fast to conduct as they 

require only few model evaluations. 

∗ Corresponding author. 

E-mail address: stp@eng.au.dk (S. Petersen). 

The GSA category covers a range of methods applying different 

techniques. Common for the methods in the GSA category is that 

they evaluate the effect of an input parameter on the output by 

varying not only the parameter in question, but all other input pa- 

rameters chosen for analysis as well. GSA methods are therefore 

able to include effects from correlated input parameters as well as 

non-linear and non-additive model behavior. The outcome of a GSA 

may therefore be more reliable than the outcome from a LSA but 

GSA methods are more complicated to implement and are signifi- 

cantly slower to conduct as they require many model evaluations. 

A specific group of GSA methods are the so-called screening 

methods [2] . Screening-based SA methods are often considered 

useful for qualitative identification of design variables to which 

the model output variability is most sensitive, whereas more ad- 

vanced GSA methods, such as a variance-based method, must be 

applied if a quantitative ranking of parameters is desirable. The 

screening method initially described by Morris [3] , and since re- 

fined and expanded by different authors [4,5] , seems to be widely 

https://doi.org/10.1016/j.enbuild.2018.10.035 

0378-7788/© 2018 Published by Elsevier B.V. 
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Table 1 

List of studies reported in literature using the Morris method for BEM-based analysis. Year: year of publication, Purpose: the purpose of using the Morris method, BEM: 

the building energy model(s) used, Levels and Trajectories: the reported settings used, Arguments: the arguments used for choosing p and r (respectively). N/A means “no 

argument”. 

Reference Year Purpose Building energy model Levels Trajectories Arguments 

(BEM) ( p ) ( r ) 

de Wit and Augenbroe [17] 2002 Ranking input 

parameters 

ESP-r and BFEP N/A 5 p : N/A, r : a crude uncertainty 

analysis was desired. 

Corrado and Mechri [18] 2009 ISO 13790 (quasi-steady 

state) 

N/A N/A p : N/A, r : N/A 

Heiselberg et al. [10] 2009 ISO 13790 (quasi-steady 

state) 

4 4 p : N/A, r : minimum according to 

literature [31] . 

Sanchez et al. [19] 2014 ESP-r 10 10 p : N/A, r : N/A 

Hemsath and Bandhosseini 

[20] 

2015 N/A 4 16 p : To enable building orientation in 

steps of 45 ° in the sampling, r : 

N/A 

Østergaard et al. [21] 2015 ISO 13790 (quasi-steady 

state) 

8 10 (100) ∗ p : N/A, r : N/A 

Yang et al. [22] 2016 EnergyPlus N/A 5 p : N/A, r : N/A 

Faggianelli et al. [29] 2017 EnergyPlus 4 20 (200) ∗ Greater than the recommendations 

by Saltelli et al. [9] 

de Wit [23] 1997 Identifying influential 

input parameters for 

more detailed 

analysis 

BFEP 2 3 p : N/A, r : N/A 

Brohus et al. [24] 2009 ISO 13790 (quasi-steady 

state) 

N/A N/A p : N/A, r : N/A 

Booth et al. [25] 2012 ISO 13790 (quasi-steady 

state) 

N/A N/A p : N/A, r : N/A 

Kim et al. [16] 2013 ISO 13790 (quasi-steady 

state) and EnergyPlus 

4 4 p and r : minimum values according 

to literature [14,16] . 

Le Drau and Heiselberg 

[26] 

2014 Bottom-up heat balance 8 90 p : N/A, r : N/A 

Yang and Becerik-Gerber 

[27] 

2015 EnergyPlus N/A 5 p : N/A, r : to make the analysis 

efficient. 

Østergaard et al. [28] 2015 ISO 13790 (hourly, but 

simplified) 

8 500 p : N/A, r : to obtain consistent 

ranking. 

Nguyen and Reiter [13] 2015 How ranking of input 

parameters is 

affected by SA 

method 

EnergyPlus 4/6/8 49/70 Investigates the effect of 

combinations of level and 

samples on BEM outcome. 

Kristensen and Petersen [7] 2016 ISO 13790 (quasi-steady 

state) ISO 13790 (hourly) 

5 250 p : N/A, r : to obtain consistent 

ranking 

Menberg et al. [11] 2016 TRNSYS N/A 150 p : N/A, r : to obtain consistent 

ranking 

Kristensen and Petersen 

[30] 

2018 ISO 13790 (quasi-steady 

state) ISO 13790 (hourly) 

4 300 p : N/A, r : N/A 

∗ This study used the modified sampling method proposed by Campolongo et al. [5] where an initial set of trajectories is reduced prior to simulation. 

used for BEM-based analysis; see Table 1 for an overview of BEM- 

based studies featuring the Morris method. A compelling argument 

for applying the Morris method, instead of a more comprehensive 

variance-based GSA method, is that it is a computational efficient 

alternative if only a rough ranking of the parameters is desired [6] . 

However, the analysis provided by Kristensen and Petersen [7] sug- 

gested that the Morris method is able to come up with an identi- 

cal ranking of the input parameters most sensitive to the output 

of simplified BEMs, as the variance-based GSA method of Sobol’ 

[8] using less computational time, but only when the probability 

density functions (PDF) of the input parameters are uniformly dis- 

tributed. The Morris method could therefore be a computational 

efficient alternative to a global SA method e.g. in the early de- 

sign stage. However, there are still issues to be investigated to fully 

understand the possibilities and limitations of the Morris method 

when used for SA of BEM. To explain these issues, the follow- 

ing sections provides a short description of the Morris method 

( Section 1.1 ), a literature review on the use of the Morris method 

for BEM-based analysis ( Section 1.2 ), before finally outlining the 

specific contribution of this paper to the existing knowledge base 

( Section 1.3 ). 

1.1. The Morris method 

This section provides a short description of the Morris method, 

which is intended to serve as background for the motivation of the 

investigation presented in this paper; see ref. [3–5] for more de- 

tailed descriptions of the method. 

The user of the Morris method needs to define a model input 

space ( Ω ) of interest to be explored by the SA. This k -dimensional 

input space Ω is comprised by user-defined input parameters x i for 

i = 1 , 2 , . . . , k , where k is the number of chosen input parameters 

to be investigated. For each parameter x i , the user must define a 

range of possible values, i.e. a minimum value ( x −
i 

) and a maxi- 

mum value ( x + 
i 

), to be explored by the SA. The ranges are subdi- 

vided in a user-defined p number of points, denoted levels , with 

a distance � between them. Using uniform input distributions, �

is obtained by dividing the interval in which each input parameter 

varies (i.e. from x −
i 

to x + 
i 

) into equally large parts. However, the user 

can also let input parameters follow non-uniform distributions by 

manually selecting the levels e.g. as the quantiles of the distribu- 

tion [9] . Once the user has defined Ω , the Morris method employs 

a random one-at-a-time (OAT) sampling procedure to generate tra- 

jectories through Ω with each trajectory comprising k + 1 random 

model realisations from Ω . This sampling procedure is repeated r 

times, each with randomly dispersed starting points for the trajec- 

tories, creating a global set of r • ( k + 1) building energy models to 

be simulated. The so-called elementary effect ( EE i ) for each input 

parameter x i is then calculated from the BEM output for every r set 

of k + 1 models consequently providing r independent and iden- 

tically distributed estimates of the EE s for each input parameter 

( Eq. 1 ). 
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Fig. 1. Internal dimensions and boundary conditions for the office building zone. Left: vertical section of the zone. Right: front elevation of the façade. The walls facing 

neighbour rooms are assumed adiabatic. 

E E i ( x ) = 

y ( x 1 , . . . , x i −1 , x i + �, x i +1 , . . . , x k ) − y ( x 1 , . . . , x k ) 

�
(1) 

A central assumption in the Morris method is that the distri- 

bution of EE s is Gaussian for each input parameter independently, 

E E i ∼ N( μi , σ
2 
i 
) . The model output sensitivity to the input param- 

eters can be assessed using the mean of the absolute value of 

the elementary effects, μ∗
i , for an r set of trajectories (indexed 

t = 1,2,…,r ) is used for ranking the parameters in order of impor- 

tance ( Eq. 2 ) , 1 while the standard deviation σ i is used as a mea- 

sure of the interactions with other parameters and any non-linear 

effects that the parameter takes part in ( Eq. 3 ). 

μ∗
i = 

1 

r 

∑ r 

t=1 
| E E i,t | (2) 

σi = 

√ 

1 

( r − 1 ) 

∑ r 

t=1 
( E E i,t − μi ) 

2 (3) 

1.2. Literature review 

As described in the previous section, the Morris method relies 

on the ranking of μ∗ and σ as measures of input parameter 

sensitivity. This immediately raised the question: what is the 

sensitivity of the value of μ∗ and σ to the user-defined number of 

levels ( p ) and trajectories ( r )? A review of the literature where the 

Morris method has been applied for BEM-based analysis indicated 

that this concern seems to be rare in existing studies using the 

Morris method for BEM-based analysis. Table 1 indicates that only 

very few have arguments for choosing values for p and r ; in fact, 

some authors do not even state the value for p and r used in their 

analysis. Especially information about p is absent. Heiselberg et al. 

[10] state that literature recommends a minimum value of r = 4 to 

make sure that the region of variation is reasonably covered for 

all input parameters, while a value of r = 10 is recommended to 

obtain very reliable results. No considerations regarding the choice 

of p are provided. More recent studies includes much larger values 

of r ( > 100) to a fixed value of p arguing that this is necessary to 

gain a consistent parameter ranking [7,11,12] . Nguyen and Reiter 

[13] was the only study found that investigated the sensitivity 

of their results to different values for p and r . They found that 

different sets of p and r could result in different parameter rank- 

ings, possibly because the random sampling sometimes led to an 

uneven distribution of input vectors on the designed levels of 

input parameters. A similar issue related to the random sampling 

was reported by Menberg et al. [11] who found that the parameter 

ranking can be biased by the occurrence (or absence) of outliers 

1 Eq. (2 ) is a revision of the original expressions by Morris [3] , see Saltelli et al. 

[9] for details. 

in individual Morris method runs as a consequence of the low 

number of r in combination with a comparably large parameter 

space (number of p is unknown). The findings of Nguyen and 

Reiter [13] and Menberg et al. [11] is aligned with Saltelli et al. 

[9] who from a general point of view note that the choice of p is 

strictly linked to the choice of r . More specifically, Saltelli et al. 

[9] state that an increase of r increases the probability that all 

levels are explored at least once, and that while a high value of 

p only appears to augment the accuracy of the sampling, it must 

be coupled with the choice of a high value of r ; otherwise, many 

possible levels will remain unexplored. They indirectly suggests 

the use of p = 4 and r = 10 as it has produced good results in pre- 

vious experiments involving chemical and environmental models 

[2,14–15] . BEM-based studies like Heiselberg et al. [10] and Kim 

et al. [16] refers to the experiences of such studies as argument 

for choosing p and r for BEM-based analysis. However, the study 

by Kristensen and Petersen [7] indicates that the ranking of input 

parameters using the Morris method can be influenced by the 

choice of BEM. This suggests that the appropriate choice of p and 

r may also depend on the model to which the Morris method is 

applied. 

1.3. Scope of this paper 

Based on the findings from the review of current literature, we 

found it necessary to conduct a study on how the choice of p and 

r affects the outcome of a SA using the Morris method on a high 

fidelity BEM. 2 The intention of the study is to provide a guideline 

for future studies to select the minimum values of r for a certain p 

needed for the Morris method to consistently rank input parame- 

ters according to their influence on the model output variability of 

a high fidelity BEM. 

2. Method 

A one-storey office building illustrated in Fig. 1 was modelled 

as one thermal zone in EnergyPlus (EP) [32] using the inputs listed 

in Table 2 . This model was then subject to a SA using the Sobol’ 

method [8] , the Morris method [3] , and a One-At-the-Time (OAT) 

method [33] , respectively. The quantities of interest for the SA was 

the energy use per year (kWh/year) for heating, cooling and me- 

chanical ventilation, respectively. The annual simulations were per- 

formed using the Danish design reference year [37] and with a 

simulation time step of two minutes. Execution of the multiple 

2 The term ‘high fidelity BEM’ is used to differentiate tools that attempts to model 

physical behavior with a high level of detail (e.g. EnergyPlus and TRNSYS) from tools 

relying on more simplified representations of the physics (e.g. linearised hourly 

models and monthly quasi-steady state models). 
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Table 2 

Description of input data to the EP model. Model parameters are defined by fixed and/or variable inputs where variable inputs are subject to SA. The numeric values of 

the variable inputs are provided in Table 3 . The far right column explains the EP modelling assumptions for the model parameter. The heat transfer algorithm used in all 

simulations is “conduction transfer functions” and a time step of 2 minutes. 

Model parameter Fixed input Variable input Modelling assumptions 

Building North axis – Orientation –

Windows Area – Window-to-façade area ratio –

Frame – U-value; area fraction of 

window hole 

“Simpleglazing” is used in favour of a more 

detailed option. It is noted that this 

method can lead to a minor error in 

absolute energy use compared to the full 

spectral method [34] . The total U-value of 

windows is calculated according to EN ISO 

10077-1 [35] . 

Glazing LT is assumed to be a function of 

glazing SHGC; 

LT = 0.5 ∗SHGC + 0.45 

U-value; glazing SHGC; 

frame width; �-value of 

spacer profile 

Overhang - Length perpendicular out 

from the facade 

The overhang always has the same width as 

the window, and is always flush with the 

top of the window. 

Constructions External façade Bricks: 0.108 m; λ= 0.034 W/(mK); 

ρ = 1600 kg/m 

3 ; c = 840 J/(kg K) 

– –

Mineral wool: λ= 0.037 W/(mK); 

ρ = 200 kg/m3; c = 700 J/(kg K) 

Thickness of insulation layer –

Concrete: 0.1 m Heat conduction ( λ); density 

( ρ); specific heat capacity 

( c ) 

Density ρ is a variable; λ= 0.0015 ρ−1.5 and 

c = 0.043 ρ + 830 (derived from DS 418 

[36] ). 

Floor construction Mineral wool: λ= 0.034 W/(m K); 

ρ = 200 kg/m 

3 ; c = 700 J/(kg K) 

Thickness of insulation layer Ground modelled as ground-coupled slab 

model (GroundDomain). 

Concrete: 0.1 m; λ= 2.1 W/(m K); 

ρ = 2400 kg/m 

3 ; c = 1000 J/(kg K) 

– –

Wood floor: 0.02 m; λ= 0.12 W/(m 

K); ρ = 850 kg/m 

3 ; c = 800 J/(kg K) 

– –

Roof Mineral wool: λ= 0.034 W/(m K); 

ρ = 200 kg/m 

3 ; c = 700 J/(kg K) 

Thickness of insulation layer –

Concrete: 0.1 m; λ= 2.1 W/(m K); 

ρ = 2400 kg/m 

3 ; c = 1000 J/(kg K) 

– –

Air gap: R = 0.17 (m 

2 K)/K – –

Gypsum: 0.013 m; λ= 0.16 W/(m K); 

ρ = 800 kg/m 

3 ; c = 1090 J/(kg K) 

– –

Internal walls Concrete: 0.1 m Heat conduction ( λ); density 

( ρ); specific heat capacity 

(c) 

Density ρ is a variable; λ= 0.0015 ρ-1.5 and 

c = 0.043 ρ + 830 (derived from DS418 

[36] ). 

Ventilation Infiltration Coefficients: A = 0.606; B = 0.03636; 

C = 0.117; D = 0 

Infiltration rate Infiltration rate is set to vary with air 

velocity in the meteorological data, and 

temperature difference between inside 

and outside. 

Ventilation rate, in-use – Ventilation rate (m 

3 /s) Constant air volume with a constant inlet 

air temperature of 18 °C. 

Ventilation rate, out-of-use - Ventilation rate (m 

3 /s) Only available in the months Jun-Aug 

(summer). 

Heat recovery rate – Sensible heat recovery 

effectiveness 

–

Heating set point, in-use – Set point Added directly to the zone air (radiator). 

Cooling set point, in-use – Set point Removed directly from the zone air (chilled 

beam). 

Heating set point, out-of-use – Set point Added directly to the zone air (radiator). 

Cooling set point, out-of-use – – Cooling not available in out-of-use periods. 

Specific fan power, 

ventilation 

Motor efficiency = 0.9; Motor in air 

stream fraction = 0; Fan total 

efficiency = 0.7 

Pressure rise (Pa) The pressure rise is varied to express how 

different SFP (kJ/m 

3 ) affects inlet 

temperature and thereby heating and 

cooling load. We derive the pressure rise 

from the sampled SFP (see Table 3 ); SFP is 

fan total efficiency (-) divided by pressure 

rise (Pa). 

COP, mechanical cooling – COP (-) –

Schedule In-use, out-of-use periods In-use: 8:0 0–17:0 0, weekdays – –

Out-of-use: remaining hours 

Weather data Danish Design reference year [37] – –

Internal loads People load Six persons – Auto-calculated sensible heat fraction 

Heat load from appliances, 

time-in-use 

– W/m 

2 –

Standby heat load from 

appliances, out-of-use 

– W/m 

2 –

Lighting (daylight controlled) – – The heat load from daylight controlled 

lighting systems is omitted from the 

analysis. However, a fraction of the ‘heat 

load from appliances’ could be regarded as 

a simple representation of this heat load. 
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Table 3 

The PDFs of the 24 variable input parameters in the EP model. 

Input parameters Unit Uniform PDF [Min;Max] 

Building orientation Degrees [0;360] 

Room height m [2.5;3.5] 

Insulation thickness, external walls m [0.1;0.35] 

Insulation thickness, roof m [0.1;0.45] 

Insulation thickness, floor m [0.1;0.35] 

Window-to-façade area ratio – [0.15;0.95] 

Glazing U-value W/(m 

2 K) [0.5;1.0] 

Glazing SHGC – [0.15;0.6] 

Glazing linear loss ( �) W/(m K) [0.03;0.2] 

Window frame U-value W/(m 

2 K) [0.8;2.0] 

Window frame fraction – [0.05;0.25] 

Overhang ∗ m [0;1] 

Ventilation rate, in-use l/s/person [4;10] 

Infiltration rate l/s/m 

2 @50 Pa [0.5;1.5] 

Heat recovery rate – [0.65;0.9] 

Heat load from appliances, in-use W/m 

2 [2;10] 

Standby heat load from appliances, out-of-use ∗ – [0.05;1] 

Thermal capacity, inner layer of walls KJ/ m2 K [120 0;240 0] 

Heating set point, in-use °C [20;24] 

Cooling set point, in-use °C [25;27] 

Heating set point, out-of-use °C [16;20] 

Night ventilation rate, summer l/s m 

2 [0;2] 

Specific fan power (ventilation) kJ/m 

3 [0.5;2] 

COP (mechanical cooling) – [1;5] 

∗ Fraction of ‘Heat load from appliances, in-use’. 

model evaluations in EP needed for the SA analyses was handled 

using the ‘multidirrun’ file provided in the EP program folder. The 

following sections provides further details on these methods and 

why they are applied in the study. 

2.1. Sobol’ analysis 

The purpose of conducting an SA using Sobol’ method was to 

establish a benchmark for assessing the minimum values of trajec- 

tories r for a certain level p needed for the Morris method to con- 

sistently rank input parameters according to their sensitivity to the 

model output variability. The SA method by Sobol’ [8] is a global 

variance-based method which is able to attribute the total model 

variance to individual input parameters. The contribution of each 

parameter in explaining total model variance is often assessed us- 

ing the so-called first-order effects ( S i ) that describe the immedi- 

ate effect of variations of the parameters independently, and so- 

called total-order effects ( S Ti ) that take into account all possible 

interactions and non-linear effects that the parameters take part 

in. In this study, the Sobol’ sensitivity indices S i and S Ti was ob- 

tained the same way as described by Kristensen and Petersen [7] . 

We used S Ti to rank input parameters because SA methods which 

includes higher order interactions in complex models is known to 

alter parameter rankings based on S i or μ∗
i [38] . It therefore also 

seems reasonable to use ranking according to S Ti as benchmark for 

the performance of the Morris method. 

A significant benefit from using Sobol’ method for SA is its 

ability to take into account non-uniform distributions – a feature 

that the standard Morris method is incapable of by definition. We 

therefore make use of uniformly distributed PDFs in the Sobol’ 

method to make a fair benchmark for the Morris method. The PDFs 

for the input parameters are listed in Table 3 . A total of N • (k + 2 ) 

model evaluations in EP needs to be calculated where N is the 

number of samples and k being the number of input parameters. 

The appropriate number of N relies on user-defined convergence 

criteria for S i and S Ti . We found it difficult to formulate a suit- 

able convergence criteria for the quantities of interest in this study 

(energy use), which is why we decided to generate an immediate 

large quantity of models using N = 10,0 0 0 Latin hypercube samples 

from the PDFs of the k = 24 input parameter listed in Table 3 re- 

sulting in 260,0 0 0 model evaluations, and then make a qualitative 

assessment of the convergence issue. The 95% confidence bounds 

of S Ti were derived using 20 0 0 bootstrapping samples. 

2.2. Morris analysis 

The principle of the Morris method has been described in 

Section 1.1 ; this section describes the assumptions used for the 

Morris analysis in this study. The model input space Ω for the Mor- 

ris method was defined by the uniformly distributed PDFs of the 

24 input parameters listed in Table 3 . The original Morris sampling 

method [3] was applied using r = 10 0 0 for six different values of p 

(2;4;6;8;10;12), resulting in 25,0 0 0 building zone models per level 

(150,0 0 0 simulations in total) for evaluation in EP. This way we 

are able to assess how an incrementally increasing number of r 

affects parameter ranking (i.e. μ∗
i listed in descending order) and, 

consequently, determine the minimum number of r needed for a 

consistent parameter ranking for different p . The reason repeating 

the Morris SA for various p is to investigate whether the choice 

of p affects the outcome of a Morris SA; the chosen p adds p = 12 

to the range of typical values of p applied in previous studies (see 

Table 1 ). It is noted that μ∗
i cannot be used for quantification of 

the magnitude of parameter influence as one can do based on the 

S Ti obtained in the Sobol’ method. 

2.3. One-At-the-Time method 

The purpose of conducting an OAT analysis was to investigate 

whether this much less computationally demanding method com- 

pared to Sobol’ and Morris is able to come up with the same rank- 

ing. If so, the use of OAT analysis for SA would be preferable as 

it is much more computationally efficient; only 49 simulations are 

required for the case used in this paper. The OAT method used for 

the analysis reported in this paper was based on partial derivatives 

where parameters are ranked according to a dimensionless sensi- 

tivity index SI i ; see e.g. refs. [7,32] for further details regarding this 

OAT method. 
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Fig. 2. Normalised total-order effects ( S Ti ) of the total energy use as a function of model evaluations in steps of 13,0 0 0. The order of the legend corresponds to the order of 

the lines in the graph. 

Fig. 3. Normalised total-order effects ( S Ti ) of the heating energy use only as a function of model evaluations in steps of 13,0 0 0. The order of the legend corresponds to the 

order of the lines in the graph. 

3. Results 

For the Sobol’ method, Figs. 2–4 depict the normalised S Ti 

for the total energy use, heating only, and cooling only, respec- 

tively, as a function of model evaluations in steps of 13,0 0 0 (see 

Appendix A for further details). The figures show no clear sign of 

convergence even after 260,0 0 0 model evaluations. The reason is 

that the absolute difference between normalised S Ti of some pa- 

rameters is marginal (e.g. between the input parameters “Insula- 

tion, roof” and “Appliances heat load, in-use” in Fig. 2 ) leading to 

many shifts in relative ranking as a function of model evaluations. 

For the Morris method, Figs. 5–7 show the ranking of the 24 

input parameters according to their μ∗
i after r = 10 0 0 for all inves- 

tigated p alongside the ranking obtained using the Sobol’ method 

for the total energy use, heating only and cooling only, respectively 

(see Appendix B for further details). From these figures it is evident 

that no matter the value of p , the Morris method using r = 10 0 0 

was never able to rank the parameters according to the ranking 
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Fig. 4. Normalised total-order effects ( S Ti ) of the cooling energy use only as a function of model evaluations in steps of 13,0 0 0. The order of the legend corresponds to the 

order of the lines in the graph. 

Fig. 5. Values of μ∗
i and relative ranking of the 24 input parameters according to their μ∗

i with respect to the total energy use after r = 10 0 0 for all investigated p alongside 

the ranking obtained using S Ti from the Sobol’ method after 260,0 0 0 model evaluations. The order of the legend corresponds to the order of the lines in the graph. 

based on S Ti from the Sobol’ method. However, it seems like the 

Morris method at some point during increasing r was able to con- 

sistently identify similar clusters of input parameters most influ- 

ential to the variability of the model output as the Sobol’ method. 

Our definition of such a ‘cluster’ is when the Morris method has 

identified the same group of input parameters as most influential 

to the variability of the model output as the Sobol’ method but not 

ranked them in the same order. It is also noted that there seems 

to be a significant rearrangement of the parameter ranking when 

going from p = 2 to p ≥ 4. 

Table 4 shows the minimum values of trajectories r for all lev- 

els p needed for the Morris method to identify the same cluster 

of x i that the Sobol’ method identified as most influential to the 

variability of the model output. The influence of p on the num- 

ber of r needed for a consistent identification varies depending on 

the type of energy consumption (total, heating, or cooling), and the 

number parameters included in the cluster of parameters most in- 

fluential to the variability of the model output (top 1–11). Special 

for p = 2 is that μ∗
i of the parameter ‘orientation’ was always zero, 

and consequently never appeared in the top 11 parameters. The 

reason is that p = 2 leads to no actual variation of the orientation 

as the two levels are the minimum and maximum parameter val- 

ues, 0 ° or 360 °, respectively, which is both due south by definition. 

All calculations with p = 2 are therefore ignored in further inter- 

pretations of the results in Table 4 . There is no clear tendency that 

the number of p has any effect on the needed number of r for a 

consistent identification of clusters of parameters most sensitive to 

the output variability in terms of the total energy use. For heat- 
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Fig. 6. Values of μ∗
i and relative ranking of the 24 input parameters according to their μ∗

i with respect to the heating energy use only after r = 10 0 0 for all investigated p 

alongside the ranking obtained using S Ti from the Sobol’ method after 260,0 0 0 model evaluations. The order of the legend corresponds to the order of the lines in the graph. 

Fig. 7. Values of μ∗
i and relative ranking of the 24 input parameters according to their μ∗

i with respect to the cooling energy use only after r = 10 0 0 for all investigated p 

alongside the ranking obtained using S Ti from the Sobol’ method after 260,0 0 0 model evaluations. The order of the legend corresponds to the order of the lines in the graph. 

ing energy only, there is a tendency that the identification of top 

3 input parameters became better with increasing number of p . 

For cooling energy only, there seems to be a slight benefit from 

choosing p > 4. This is probably because the cooling system has 

non-linear behavior. For all three energy consumptions, the num- 

ber of r needed to consistently identify top 1–11 input parameters 

for each p depends on the absolute difference between μ∗
i for all 

x i . For example, the reason that the number of r for p = 4 for total 

energy use (see Table 4 ) increases from nine to 476 when screen- 

ing for top 6 and top 7, respectively, is that the value of μ∗
i of the 

seventh and eighth parameter in top 8 are only marginally differ- 

ent up until approx. r = 476. Prior to r = 476, the two parameters 

changes ranking position several times, and thereby the content of 

the top 7 cluster (see Appendix B ). 

The result of the OAT analysis is also listed in Table 4 and shows 

that the OAT method was rarely able to identify the same clus- 

ter of input parameters to which the model output variability was 

most sensitive as the Sobol’ method (the full outcome of the OAT 

method is shown in Appendix C ). 

4. Discussion 

As stated in the introduction, the aim of this study was to pro- 

vide a guideline for future studies to select the minimum values 

of r for a certain p needed for the Morris method to consistently 

rank input parameters that has most influence on the model out- 

put variability. This aim was partly based on the findings by Kris- 

tensen and Petersen [7] , which suggested that the Morris method 

is able to identify the same ranking of the input parameters most 

sensitive to the output of simplified BEMs as the Sobol’ method 

provided that the PDFs of the input parameters are uniformly dis- 

tributed. However, results of this study suggests that this is not 

true for high fidelity BEMs, but it seems to be able to identify 

clusters of input parameters to which the model output variability 

is most sensitive. Some overall guidelines for applying the Morris 

method to identify clusters of input parameters are provided in the 

following. 3 

3 The guidelines are only considered valid for a Morris analysis using uniform 

PDFs and sophisticated BEMs. 
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Table 4 

The number of trajectories needed for the Morris method to consistently identify the same top 1–11 of x i that the Sobol’ method identified as most influential to the 

variability of the model output. The term ‘never’ means that the Morris method was not able to identify the parameters after r = 10 0 0 trajectories. The number in brackets 

in the heading of the columns is the cumulative sum of normalised S Ti according to the Sobol’ method. The OAT rows indicate whether the OAT method was able to identify 

the same top 1–11 as the Sobol’ method (Yes/No). 

Total 

energy use 

Top 1 

(14.1%) 

Top 2 

(27.5%) 

Top 3 

(38.4%) 

Top 4 

(49.2%) 

Top 5 

(59.8%) 

Top 6 

(69.0%) 

Top 7 

(75.7%) 

Top 8 

(80.8%) 

Top 9 

(84.2%) 

Top 10 

(86.9%) 

Top 11 

(89.4%) 

p = 2 21 Never Never Never Never Never Never Never Never Never Never 

p = 4 108 Never 283 137 Never 9 476 5 44 15 46 

p = 6 22 Never Never 301 Never 27 155 33 97 24 26 

p = 8 27 286 Never 379 Never 20 29 44 72 11 11 

p = 10 29 46 373 634 Never 39 113 16 13 572 68 

p = 12 70 458 Never 71 Never 56 14 13 9 907 226 

OAT No No Yes No No No No No Yes No No 

Heating 

energy use 

Top 1 

(16.9%) 

Top 2 

(32.6%) 

Top 3 

(47.8%) 

Top 4 

(59.7%) 

Top 5 

(68.9%) 

Top 6 

(74.8%) 

Top 7 

(80.6%) 

Top 8 

(86.0%) 

Top 9 

(90.0%) 

Top 10 

(93.1%) 

Top 11 

(94.4%) 

p = 2 Never Never Never Never Never Never Never Never Never Never Never 

p = 4 Never Never Never 11 60 Never 8 5 4 6 69 

p = 6 Never Never Never 12 25 881 25 Never 48 5 11 

p = 8 Never Never 12 91 43 538 6 334 91 10 6 

p = 10 Never Never 113 28 5 31 76 Never 86 6 29 

p = 12 Never 417 128 19 17 13 307 Never 3 4 46 

OAT No No No No No No No No Yes No No 

Cooling 

energy use 

Top 1 

(26.9%) 

Top 2 

(43.9%) 

Top 3 

(59.5%) 

Top 4 

(74.0%) 

Top 5 

(83.4%) 

Top 6 

(88.9%) 

Top 7 

(91.5%) 

Top 8 

(93.6%) 

Top 9 

(95.7%) 

Top 10 

(97.4%) 

Top 11 

(98.7%) 

p = 2 Never Never Never Never Never Never Never Never Never Never Never 

p = 4 1 726 Never Never Never Never Never Never Never 100 21 

p = 6 42 Never Never Never 11 34 Never 33 Never 57 12 

p = 8 30 25 Never Never 18 Never 308 Never Never 30 64 

p = 10 12 101 Never Never 5 32 Never Never Never Never Never 

p = 12 21 93 Never Never 24 5 Never Never Never Never Never 

OAT Yes No No No No No No No No No No 

First of all, choosing p ≥ 4 seems to lead the analysis towards a 

more truthful ranking and, consequently, a more reliable identifi- 

cation of most important parameter clusters – especially if orienta- 

tion of window areas is included in the same way as in this paper. 

Note that an even higher value of p (closer to p = 12) seems to be 

beneficial if only cooling energy is of interest. 

It is difficult to provide an exact recommendation of the num- 

ber of r needed for an outcome of the Morris analysis similar to 

the Sobol’ method. The reason is that any marginal differences in 

values of μ∗
i between two parameters means that an excessive 

number of r is needed for the ranking to converge (see result sec- 

tion). This reason also makes it difficult to predetermine the ap- 

propriate size of the cluster of most influential parameters. For ex- 

ample, for total energy use ( Table 4 ) no matter the choice of p > 2, 

it would make sense to have top 6, 8 or 9 in the cluster contain- 

ing the most important parameters—but e.g. not top 5 as μ∗
i of the 

sixth parameter is always close to the fifth, and not top 7 as it is 

difficult to determine which parameters are actually belonging to 

this cluster. It is noted that this is not only an issue for the Morris 

method; the ranking according to the Sobol’ method is also sensi- 

tive to the absolute difference between indices ( S Ti ). The value of 

the individual S Ti should therefore also be listed to enable a qual- 

itative assessment on how many of the ranked input parameters 

that would be appropriate to highlight as most sensitive to the 

model output variability according to the Sobol’ method. 

The uncertainty of parameter ranking from the Sobol’ method 

seem to defeat the whole purpose of using the Sobol’ method to 

benchmark the ranking from Morris method. This is why it seems 

more reasonable to use the Morris method—and even the Sobol’ 

method—to identify a certain clusters of most influential input pa- 

rameters rather than attempting to obtain a true ranking of the 

input parameters. Based on the results of this study, the recom- 

mended approach for the identification of a cluster of most influ- 

ential input parameters using the Morris method is to (1) gener- 

ate models for r = 10 0 0 (or more) but start by simulating only a 

fraction of the models, e.g. for the first r = 100 models, (2) calcu- 

late and plot μ∗
i for the quantity of interest for all x i as a func- 

tion of r like in Appendix B , and (3) make a qualitative (visual) 

assessment of whether the values of μ∗
i have converged to a de- 

gree where it seems possible to determine a cluster for the most 

influential parameters. It is noted that one should not have a pre- 

determined cluster size for the most influential parameters prior 

to this qualitative assessment but decide how many parameters to 

include during the qualitative assessment. If μ∗
i seems not to be 

converged, then simulate the performance of the next e.g. r = 100 

models, update the plot of μ∗
i for the quantity of interest for all x i 

as a function of r , and make a new qualitative assessment. Repeat 

this process until μ∗
i seems converged. A similar approach could 

also be used for the Sobol’ method to investigate convergence of 

S Ti and appropriate cluster size. 

The above recommendation for the Morris method suggests a 

step of r = 100 in the attempt to obtain convergence of μ∗
i . This is 

far from what is commonly used for similar analyses using high 

fidelity BEMs (see Table 1 ); here r between five and ten is often 

used, which corresponds to the recommendations provided in the 

fundamental literature describing the Morris method [2,14,15] . This 

may change the notion of Morris being a computationally efficient 

method for parameter screening. One model evaluation of the EP 

model used in this study takes approx. 1 minute, which leads to a 

total calculation time of approx. 42 hours for a model with 24 vari- 

able input parameters and r = 10 0 (250 0 model evaluations). It is 

therefore of practical interest to reduce the number of r needed for 

a reliable Morris SA as this also would reduce computational time. 

One option that could be investigated in future studies is to rank 

the input parameters according to the median value of EE s, as find- 

ings by Menberg et al. [11] indicated that ranking based on median 
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values converges after fewer numbers of r compared to ranking 

based on mean values. Another option could be to use the mod- 

ified sampling method suggested by Campolongo et al. [5] who 

claims that this method is always to be preferred over the orig- 

inal Morris sampling method as it reduces the number of model 

executions needed for a reliable analysis. 

We acknowledge that the use of different weather data, a dif- 

ferent set of input parameters and/or different PDF ranges may 

lead to different rankings than the ones observed in this study, but 

the above recommendations is in this regard considered to be on 

the safe side. Furthermore, this study made use of EnergyPlus for 

model evaluations but it seems like many prefer to use more sim- 

plified BEMs ( Table 1 ). A future study could be to repeat the study 

of this paper using simplified BEMs for model evaluations. In this 

relation, it would also be relevant to analyse the consequence of 

different BEM approaches on input parameter ranking as the study 

by Kristensen and Petersen [7] indicates that it can be influenced 

by the choice of BEM. 

5. Conclusion 

The intention of this study was to provide a guideline for future 

studies to select the minimum values of trajectories ( r ) for a cer- 

tain level ( p ) needed for the Morris method to consistently rank 

input parameters according to their influence on the model out- 

put variability of a high fidelity BEM when compared to parameter 

ranking using the Sobol’ method. Results indicate that the Morris 

method is not able to replicate the ranking from Sobol’ method no 

matter the choice of r and p . The reason is that ranking according 

to the Morris method as well as the Sobol’ method is quite sensi- 

tive to marginal absolute differences in the metric used for rank- 

ing. Consequently, it is not possible to provide guidelines for future 

studies with precise values for r and p as intended. However, the 

study enables us to provide some guidance on how to produce a 

reliable SA using the Morris method. 

The Morris method may not be able to generate a reliable rank- 

ing of input parameters but it is able to identify the same cluster of 

input parameters—i.e. groups of unranked input parameters—most 

sensitive to the model output variability as the Sobol’ method. 

However, reliable identification of such clusters seems to require 

significantly more r than usually applied in studies featuring the 

Morris method. Furthermore, users must not be predetermined on 

the size of the parameter cluster prior to the analysis; instead, one 

must make a visual assessment of the convergence of the parame- 

ter ranking to qualitatively determine the size of parameter cluster. 

The need for more r may question the general notion that the 

Morris method is a computationally efficient screening method in 

terms of absolute time use, but it is still much more computa- 

tional efficient than a Sobol’-based analysis. A simple One-At-the- 

Time method, which can be regarded the best sensitivity analysis 

method in terms of computational efficiency, was also tested; how- 

ever, it did not produce clusters comparable to the outcome of the 

Sobol’ or Morris method. 
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Appendix A. Sobol’ method 

The Figs. A .1–A .3 below depict the outcome of the Sobol’ analy- 

sis, i.e. the total-order effects ( S Ti ) for each input parameter for the 

total energy need (heating + cooling + ventilation), heating energy 

only, and cooling energy only, respectively. S Ti for energy for ven- 

tilation only is not displayed because it only is linearly affected by 

the input parameter ‘Ventilation, in-use’, ‘Ventilation, out-of-use’, 

and ‘Specific fan power’. 

Fig. A.1. Total-order effects ( S Ti ) for each input parameter for the total energy need (heating + cooling + ventilation) after 260,0 0 0 model evaluations. Boxes indicate the 95% 

confidence intervals around the mean value (black line). 
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Fig. A.2. Total-order effects ( S Ti ) for each input parameter for the heating energy only after 260,0 0 0 model evaluations. Boxes indicate the 95% confidence intervals around 

the mean value (black line). 

Fig. A.3. Total-order effects ( S Ti ) for each input parameter for the cooling energy only after 260,0 0 0 model evaluations. Boxes indicate the 95% confidence intervals around 

the mean value (black line). 
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Appendix B. Morris method 

Figs. B.1–B.3 illustrate for every p the evolution of μi on the to- 

tal energy need (heating + cooling + ventilation), heating only, and 

cooling only, respectively, for all x i as a function of r . The evo- 

lution of μ∗
i on ventilation is not displayed because the value 

of μ∗
i for all of the 24 input parameters is not affected by 

r > 1. 

Fig. B.1. The evolution of mean elementary effect ( μ∗
i ) on the total energy need (heating + cooling + ventilation) for all measures ( x i ) as a function of the number of trajec- 

tories ( r ) for six different levels ( p ). The order of the legend corresponds to the order of the lines in the graph. 
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Fig. B.2. The evolution of mean elementary effect ( μ∗
i ) on the heating energy need for all measures ( x i ) as a function of the number of trajectories ( r ) for six different levels 

( p ). The order of the legend corresponds to the order of the lines in the graph. 

PAPER [S2]

141



14 S. Petersen, M.H. Kristensen and M.D. Knudsen / Energy & Buildings 183 (2019) 1–16 

Fig. B.3. The evolution of mean elementary effect ( μ∗
i ) on the cooling energy need for all measures ( x i ) as a function of the number of trajectories ( r ) for six different levels 

( p ). The order of the legend corresponds to the order of the lines in the graph. 
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Table C.1 

Ranked sensitivity indexes (SI i ) for all input parameters calculated OAT based on the partial derivative of the model output. 

Total energy Heating energy only Cooling energy only 

Input parameter SI i Input parameter SI i Input parameter SI i 

Window area 1.064 Window area 0.932 Window area 4.127 

Roof insulation 0.622 Roof insulation 0.858 Cooling set point, in-use 1.607 

Heating set point, in-use 0.553 Heating set point, in-use 0.765 SHGC 1.364 

Equipment, out-of-use 0.388 Equipment, out-of-use 0.614 COP, mech. cooling 1.333 

Infiltration 0.300 Infiltration 0.428 Ventilation rate, out-of-use 1.333 

Specific fan power 0.290 Building orientation 0.413 Overhang 0.628 

Building orientation 0.262 Equipment, in-use 0.375 Specific fan power 0.597 

Ventilation rate, in-use 0.244 Ventilation rate, in-use 0.238 Equipment, in-use 0.488 

Equipment, in-use 0.216 SHGC 0.238 Equipment, out-of-use 0.483 

Wall insulation 0.160 Linear loss, glazing 0.226 Building orientation 0.324 

Linear loss, glazing 0.152 Wall insulation 0.224 Window frame width 0.315 

Cooling set point, in-use 0.136 Glazing U-value 0.191 Floor insulation 0.299 

Glazing U-value 0.128 Floor insulation 0.180 Thermal mass 0.228 

Floor insulation 0.096 Ventilation heat recovery 0.127 Roof insulation 0.129 

Ventilation heat recovery 0.092 Room height 0.119 Linear loss, glazing 0.080 

COP, mech. cooling 0.085 Heating set point, out-of-use 0.116 Glazing U-value 0.071 

Heating set point, out-of-use 0.084 Window frame width 0.096 Infiltration 0.059 

Room height 0.079 Window frame U-value 0.080 Ventilation rate, in-use 0.048 

Window frame U-value 0.054 Overhang 0.045 Room height 0.046 

Ventilation rate, out-of-use 0.036 Thermal mass 0.026 Window frame U-value 0.030 

Window frame width 0.035 Specific fan power 0.020 Wall insulation 0.019 

Overhang 0.031 Ventilation rate, out-of-use 0.009 Ventilation heat recovery 0.006 

SHGC 0.028 Cooling set point, in-use 0.0 0 0 Heating set point, in-use 0.003 

Thermal mass 0.002 COP, mech. cooling 0.0 0 0 Heating set point, out-of-use 0.0 0 0 

Appendix C. Local method 

Table C.1 lists all input parameters ranked according to 

the sensitivity index, SI i , calculated OAT based on the par- 

tial derivative of the model output for total energy use (heat- 

ing + cooling + ventilation), heating only, and cooling only. 
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Abstract 
When using building energy models (BEM) for building 
design, it is often valuable to conduct a sensitivity 
analysis (SA) to help designers to focus their efforts on 
design variables that drive the majority of the building 
performance indicators such as energy use.  
In this study, three different SA methods (Local, Morris 
and Sobol’) were applied to two different BEMs (hourly 
dynamic and monthly quasi-steady-state) for SA analysis 
in two different stages of the building design process. The 
finding is that the choice of appropriate SA method 
depends on the purpose of the SA; whether it is a 
screening of equally probable design options, or a more 
thorough quantification and ranking of parameter 
uncertainty. 

Introduction 
Sensitivity analysis (SA) can be used to explore the 
behaviour of building energy models (BEM) and thereby 
identify which input parameters that drive the majority of 
the model output variation. Such an analysis is valuable 
as it enables building designers and contractors to focus 
their efforts on designing and obtaining the functional 
requirements of parameters most critical to the energy 
performance. 
There are many examples in the literature on how to apply 
SA for BEM-based design, e.g. Heiselberg et al. (2009), 
Mechri et al. (2010) , Spitz et al. (2012), and Østergaard 
et al. (2015) to mention a few. However, a sound 
argumentation that vouches for the reliability, validity and 
necessary complexity of the chosen SA is rare. Kristensen 
and Petersen (2016) used a model of an existing 
residential building stock in a temperate climate (i.e. 
energy need was predominantly space heating) as case to 
demonstrate that the choice of SA method affects the 
identification and ranking of the input parameters most 
sensitive to the model output. The overall conclusion was 
that it is essential not to interpret the outcome of SA in a 
way that lies beyond the capabilities of the used SA 
method, as this may lead to suboptimal design decisions 
and wrong focus areas in the construction phase. 
Furthermore, the study also showed that the SA outcome 
– to some extend – is affected by the chosen BEM 
method; in this case, the simple hourly and monthly 
methods in ISO 13790:2008. Practitioners must therefore 
be careful to choose an appropriate combination of SA 
method and BEM that fits the purpose of the SA.  

In practice, SA can be used for various purposes. In the 
early design stage, SA can help designer to identify which 
critical design variables to focus on. Prior to initiating the 
construction phase, SA can be used to identify which 
functional requirement to have special focus on obtaining 
during construction. The objective of this paper is to 
investigate the performance of three different SA methods 
combined with two different BEMs for the two above-
mentioned SA purposes using an office building in a 
temperate climate as case. The intention is to provide an 
example to guide building designers in selecting the 
appropriate SA method depending on the purpose of the 
analysis and the type of BEM applied. 

Method 
An office case building was modelled using two different 
BEMs to calculate the annual energy need for space 
heating and cooling. Using three different SA methods of 
increasing capability and complexity, the sensitivity of 
the two BEMs was investigated and analysed for two 
different phases in the design of the case building;  
1. the early design phase  (Case 1) with uncertainty 

embedded in the free choice of model parameter 
values, and  

2. the detailed design phase (Case 2) where uncertainty 
is embedded in the fixed parameter values chosen in 
the early design stage due to e.g. imperfections in 
building materials, construction errors, and 
stochastic occupant behaviour. 

Description of case 
The case consisted of a 24 m2 (6x4 m) south-facing two-
person office room in a single-story building (Figure 1); 
the window façade and roof faced the outdoor while the 
floor faced the ground. The remaining surfaces were 
assumed adiabatic.  
 

 
Figure 1: Case office room.  
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The room was assumed occupied weekdays between 8 am 
and 5 pm in which period a constant-air-volume system 
ventilated the room. Heating and cooling was supplied by 
separate systems. During the weekend, ventilation was 
turned off and no internal heat loads were assumed. The 
installed capacity of the heating and cooling systems was 
assumed able to always meet their respective set points. 
Internal heat loads, airflow rates and set points are given 
in Table 1.  
In Case 1 (early design phase), seven model parameters 
were open for design decisions: room height, U-values of 
external wall, roof and floor, %-window area of the 
external wall area, and the SHGC of the window. These 
seven unselected model parameters were all assigned a 
uniformly distributed probability range (Table 1) to 
reflect the uncertainty faced by building designers in the 
early design stage. The purpose of this analysis was to 
help building designers focus on the model parameters of 
most influence to the model output (energy need). 
In Case 2 (uncertainty related to the realisation of values 
chosen in the early design stage), all parameter values 
were assumed fixed at satisfying levels by the building 
designers. However, due to e.g. imperfections in building 
materials, construction errors, and stochastic occupant 
behaviour, these selected values are subject to 
uncertainty. In Case 2, the sensitivity of the model output 
to this kind of uncertainty was investigated. This 
information can be regarded as advice on which 
parameters that demands special attention in the detailed 
design and construction phase to reduce the risk of not 
realising the design intentions. 

Building energy modelling 
The two BEMs used to calculate the annual energy need 
for space heating and cooling were 1) the quasi-steady-
state calculation method with monthly time steps, and 2) 
the simple dynamic calculation method based on hourly 
time steps. Both model are described in ISO 13790:2008. 

Only energy need for space heating and cooling were 
considered; thus, COP coefficients of chillers etc. were 
not considered. Weather conditions were modelled using 
the Danish design reference year (DRY) dataset, 
containing hourly values of the necessary weather 
parameters (air temperature, normal solar radiation and 
diffuse solar radiation) (Jensen and Lund, 1995). Total 
solar radiation perpendicular to the building facades was 
calculated in both BEMs using the solar algorithm 
described by Bourges (1992). 

Sensitivity analysis methods 
Three SA methods were applied: a local partial 
derivative-based method (Lam and Hui, 1996), the global 
screening-based method of Morris (Morris, 1991), and the 
global variance-based method of Sobol’ (Sobol’, 1993). 
All three methods and how they were implemented for the 
analysis in this paper are described in detail in Kristensen 
and Petersen (2016). Information about the setup of the 
SA methods is given in Table 2. 

Overall, the capabilities of the three SA methods can be 
contrasted in terms of their ability to take into account  
1. the range and shape of input parameter distributions,  
2. multi-dimensional parameter influence on the 

outcome when all input parameters are varied 
simultaneously, and  

3. non-linear and non-additive effects when input 
parameter interactions are taken into account (model 
independency). 

The only SA method featured in this paper that 
encompasses all three of the above-mentioned abilities is 
the global variance-based method of Sobol’. The Sobol’ 
method makes a complete decomposition of the output 
variance by searching across the entire input space, 
simultaneously taking into account range and shape of 
parameter distributions and correlated effects.

 

Table 1: Probability density functions assigned to model input parameters for Case 1 and Case 2. 

Input parameters Unit Case 1 Case 2  

Room width  [m] 6.0 6.0 
Room depth [m] 4.0 4.0 
Room height  [m] Uniform (3.0;4.0) 3.5 
U-value (ext. wall)  [W/m2K] Uniform (0.10;0.30) Lognormal (-1.966;0.0202) 
U-value (roof)  [W/m2K] Uniform (0.08;0.20) Lognormal (-2.303;0.0392) 
U-value (floor) [W/m2K] Uniform (0.10;0.20) Lognormal (-2.121;0.0272) 
Adjustment factor (ground) [-] 0.7 Beta (15;3.75) 
Window-% [-] Uniform (30%; 60%) 40% 
Window frame fraction  [-] 20% 20% 
U-value (window)  [W/m2K] 0.8 0.8 
SHGC [-] Uniform (0.3;0.6) 0.3 
Ventilation rate (CAV) [l/s/m2] 0.83 Uniform (0.75;0.92) 
Infiltration rate @ 50Pa [l/s/m2] 0.50 Lognormal (-0.240; 0.6932) 
Heat recovery efficiency [-] 0.85 Beta (100;21.95) 
Internal heat loads (people, light, appliances) [W/m2] 17 Lognormal (6.073; 0.2692) 
Internal heat capacity [KJ/m2K] Uniform (110;260) Lognormal (5.102; 0.0882) 
Heating set point [˚C] 20 Normal (21.5;12) 
Cooling set point [˚C] 26 Normal (26;0.42) 
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Table 2: Input assumptions for the SA methods. 

 Local Morris Sobol’ 

Points used 
from PDF 

1% and 99% 
quantiles 

1% and 
99% 

quantiles, 
p = 4 

(levels) 

Entire PDF 

Sample size 1 r = 300 
(trajectories) 

N = 10,000 
(LHS) 

No. model 
evaluations 2k+1 r(k+1) N(k+2) 

Convergence 
measure N/A Σ(µ) ≈ 

constant 
Σ (ST) ≈ 
constant 

 

The resulting total-order sensitivity indices are bounded 
to sum to one which makes it physically meaningful to 
use them for identifying and ranking input parameters that 
drive the majority of the model output variation. 
The method of Morris applies the absolute mean of a 
population of local elementary effects to quantify the 
global influence of a given input parameter. The method 
is to some extend able to take into account non-linear and 
non-additive effects (ability 3), but is not able to account 
for non-uniform distributions of model input parameters 
(ability 1) using the traditional Morris sampling technique 
(factorial sampling) applied in this study. Furthermore, 
the Morris method is potentially neglecting correlated 
effects (ability 2) because each parameter is varied locally 
one-at-a-time (OAT). Another disadvantage of the Morris 
method is the dubious interpretation of the mean 
elementary effect as a measure of global sensitivity. One 
should be careful with interpreting a large absolute value 
of the mean elementary effect from the Morris method as 
a sign of great parameter influence as such values vary 
from one model to another. Only the internal ranking of 
the means can be used to quantify the influence of the 
parameters and sort them in clusters of importance. 
The Local method uses inputs and outputs from OAT 
parameter variations (one sample) to calculate a 
dimensionless sensitivity index expressing the elasticity 
of variation around the mean value as percentage change 
in output per percentage change in input. This SI-index is 
then used for identifying and ranking the input parameters 
most sensitive to the output. The Local method implies a 
strictly linear model (not fulfilling ability 3), it does not 
allow any quantification of correlated parameter effects 
(not fulfilling ability 2), and does not allow any utilisation 
of knowledge about the shape of the parameter 
distributions (not fulfilling ability 1). One should 
therefore be careful interpreting the identification and 
ranking if the model is not 100% linear, have interacting 
input parameters, and anything but uniformly distributed 
input parameters. 

Model input parameters 
In order to carry out the sensitivity analyses, input spaces 
had to be specified for the uncertain input parameters in 

both cases to reflect the a-priori uncertainty of their value. 
To do so, different continuous probability density 
functions (PDFs) were applied to set the probability of a 
given parameter value over a range of variation (Figure 
2).  

 
Figure 2: Probability density functions suitable for 

sensitivity analysis of building energy models. 
 

The uncertainty of a parameter can be uniformly 
distributed across its defined range of variation 
Uniform(A;B); doing so, the probability of all values 
within the parameter range are equal. This was 
appropriate for Case 1, as the purpose was to explore the 
effects of equally possible design options in the early 
design stage prior to any design decisions. The uniform 
PDF is often refered to as a non-informative PDF as no 
information can be extracted from it besides the range of 
variation.  
A parameter can also be non-uniformly distributed if a-
priori information allows it, e.g. expert judgements, 
historical data, or measurement error specifications. Such 
distributions were appropriate for Case 2, as the purpose 
was to explore the effects of uncertainty of the true value 
of an already decided parameter, i.e. error related to the 
practical implementation of the design. For this end, the 
normal distribution Normal(µ;σ2) was applied to input 
parameters with an equally probable chance of variation 
around a most probable mean value (e.g. set point 
temperatures). The lognormal distribution 
Lognormal(µ;σ2) was applied to positively defined 
parameters where higher values were more probable than 
lower values (e.g. U-values and infiltration rate). The beta 
distribution Beta(a;b) was applied to specify factors 
defined between 0 and 1 (e.g. heat recovery efficiency). 
The lognormal distribution is always skewed to the right 
(positive skew; right-tailed), but the shape will imitate the 
normal distribution for distributions with large variance. 
The beta distribution may assume almost any shape and 
skewness; thus, it is likewise possible to make it imitate 
the normal distribution if wanted (Figure 2). 
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Results 
Partitioning heating and cooling need 
A monthly partitioning of the energy need for space 
heating and cooling, calculated using the two BEMs 
respectively, is shown in Figure 3, applying the mean 
values of the inputs for Case 1 (Table 1). 
 

 
Figure 3: Monthly partitioning of energy need for space 
heating and cooling. Mean input values for Case 1 was 

applied. 
 

The annually agregated energy need for space heating and 
cooling of the office room is dominated by the need for 
cooling (heating share of 20%; cooling share of 80%). 
The deviation between the annually agregated energy 
need for space heating and cooling of the hourly dynamic 
and the monthly quasi-steady-state BEMs is 4% (8% for 
heating; 2% for cooling). A larger internal deviation is 
present on the monthly scale.  

Case 1: Early design decisions 
Given the uniformly defined uncertainty specification for 
Case 1 (Table 1), the probable outcome of the annual 
energy need for space heating and cooling of the office 
room is shown in Figure 4A. Even though the BEMs were 
not calibrated prior to simulation, and thus were not 
expected to be consistent, their output distributions 
exhibit the same variation and shape. Their mean values 
are 1,890 kWh/year (hourly dynamic) and 1,810 
kWh/year (monthly quasi-steady-state), respectively.  
The amount of variation caused by each of the seven 
uncertain parameters is quantified by the three SA 
methods and depicted in Figure 5, and ranked in order of 
influence in Table 3. 
 

Table 3: Ranking of input parameters for Case 1 (1 is 
most influential; 7 is least influential). L = local method; 

M = Morris method; S = Sobol’ method. 

Input 
Hourly  

dynamic 
Monthly quasi-

steady-state 
L M S L M S 

Window-%  3 1 1 2 1 1 
SHGC 2 2 2 3 2 2 
Room height  1 3 3 1 3 3 
Internal heat capacity 4 4 4 4 4 4 
U-value (roof)  5 5 5 5 5 5 
U-value (ext. wall)  7 6 6 6 6 6 
U-value (floor) 6 7 7 7 7 7 

 

The parameter ranking based on the Morris and Sobol’ 
analysis is identical for both BEMs, whereas the result of 
the Local method deviates a bit. The Morris and Sobol’ 
methods identified the window-% as the single most 
influential parameter (approx. 45%-51% of the output 
variability in the two BEMs, respectively, can be ascribed 
the window-% cf. the Sobol’ analysis), then SHGC as 2nd 
and room height as 3rd most influential.  The Local 
method, on the other hand, identified room height to be 
most influential in both BEMs with the SHGC coming in 
as 2nd and the window-% as 3rd most influential.  
In both BEMs, all three SA methods find the U-values 
(ext. wall, floor and roof) to be the least influential 
parameters given the input distributions of Case 1. 

Case 2: Uncertainty of practical implementation 
Given the mixed uncertainty specification for Case 2 
(Table 1), the probable outcome of the annual energy need 
for space heating of the office room is shown in Figure 
4B. The mean values are 1,410 kWh/year (hourly 
dynamic) and 1,300 kWh/year (monthly quasi-steady-
state), respectively. In contrast to the output distribution 
of Case 1, the distribution of Case 2 has a lower variance 
(uncertainty).   
The amount of variation caused by each of the 11 
uncertain parameters is quantified by the three SA 
methods and shown in Figure 5, and ranked in order of 
influence in Table 4. 
 

Table 4: Ranking of input parameters for Case 2 (1 is 
most influential; 11 is least influential). L = local 
method; M = Morris method; S = Sobol’ method. 

Input 
Hourly  

dynamic 
Monthly quasi-

steady-state 
L M S L M S 

Internal heat loads 3 2 1 4 2 1 
Heating set point 2 1 2 2 1 3 
Infiltration rate 5 4 3 6 3 2 
Cooling set point 1 3 4 1 4 4 
Internal heat capacity 4 5 5 3 5 5 
Heat recovery efficiency 10 6 6 5 7 7 
Adj. factor (ground) 8 7 7 9 6 6 
U-value (roof)  6 8 8 7 8 8 
Ventilation rate  11 9 9 11 10 9 
U-value (floor) 7 10 10 8 9 10 
U-value (ext. wall)  9 11 11 10 11 11 
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Figure 4: Probability distributions of annual energy need for space heating and cooling for Case 1 and Case 2. Latin 

Hypercube sampling was used to generate 10,000 simulation runs. 

In general, the rankings are different for all three methods; 
however, the Morris and Sobol’ methods tends to agree 
more with each other than with the Local method. 
Moreover, as opposed to the parameter ranking of Case 1, 
larger differences in the ranking are seen between the two 
BEMs for the same SA method.  
According to the variance decomposition of the Sobol’ 
method, the highest ranked parameter is the internal heat 
loads (people, lighting and appliances) in both BEMs, 
which accounts for 44%-47% of the output variability in 
the two BEMs, respectively. In total, the top-3 ranked 
parameters (internal heat loads, heating set point and 
infiltration rate) make up approx. 90%-92% of the output 
variability in both BEMs.  
The Morris method identified the same top-3 for the 
quasi-steady-state BEM as the Sobol’ method, but in 
different order. For the hourly dynamic BEM, the Morris 
method only identified top-2 from the Sobol’ method, also 
in a different order. The 3rd most influential parameter was 
found to be the cooling set point instead of infiltration 
rate.  
The Local method deviates from the Sobol’ method by 
identifying the cooling set point as the most influential 
parameter in both BEMs. The heating set point is 2nd 
highest ranked in both BEMs while internal heat loads is 
only in top-3 for the hourly dynamic BEM; the quasi-
steady-state BEM has instead the internal heat capacity in 
top-3. The infiltration rate (which was in top-3 for the 
Sobol’ method in both BEMs) was on 5th and 6th place in 
the hourly and quasi-steady-state BEM, respectively. 

Discussion 
For Case 1, i.e. an early design phase with uniformly 
distributed probabilities, the differences in parameter 
ranking based on the different SA methods are very 
limited. The Morris and Sobol’ methods tend to agree to 

a large extend. Assuming that the Sobol’ method is 
correct, the Local method is in principle leading to a 
wrong identification of the most important input 
parameter; however, Figure 5 shows that this is only due 
to a marginal difference between the top-3 parameters. 
This is a good example of how the visual presentation of 
SA results might be more informative to building 
designers in an early design phase than discrete rankings, 
as the focus seems to be on parameter screening rather 
than precise uncertainty quantification. 
For Case 2, i.e. the detailed design stage with the option 
of non-uniform PDFs to represent the modellers 
information about the parameter uncertainty, the Sobol’ 
and Morris method by definition outperforms the Local 
method in terms of parameter ranking. The Local method 
does not respect the range and shape of the input 
distributions (ability 1); it assumes the same effect for all 
possible values of the parameters, which is why it 
identifies the cooling set point as very important. In 
reality, the plausible range of the cooling set point is very 
limited, and thus not that influential in the overall picture. 
The Morris method does respect the range of the 
distributions, but not the shape as in the Sobol’ method, 
which makes the result of the Morris method approach the 
result from the Sobol’ method somewhat better than the 
Local method. From a theoretical point of view, the 
Sobol’ method would thus a-priori be regarded the most 
appropriate method for Case 2, as it has the ability to take 
into account the varying and somewhat skewed input 
distributions that were applied. Nonetheless, the Morris 
method showed to be appropriate for identifying the 
unranked cluster of the top-3 most important parameters, 
which together account for approx. 90% of the uncertainty 
in the energy need. Thus, if the purpose of the sensitivity 
analysis is to identify a group of most 
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Figure 5: Result of sensitivity analysis of Case 1 and Case 2, using the Local, Morris and Sobol’ method, respectively.  

important parameters, one might apply the 
computationally efficient Morris method in favour of the 
by far more complex and computationally heavy Sobol’ 
method. However, if the purpose is a detailed 
quantification of the uncertainty contribution of each 
parameter, and how these interact and affect each other, 
there is no way around a variance-based method like the 
one by Sobol’. For practical reasons though, the 
application of the Sobol’ method seems infeasible in 
ordinary building design.  The Local method fell short by 
only identifying one and two out of top-3 most important 
parameters, for the monthly quasi-steady-state and hourly 
dynamic BEMs, respectively; hence, it is most suitable for 
the simple screening-based analyses in the earliest stages 
of a building design process.  
In general, uncertainty in the inputs was propagated 
similarly through the two BEMs resulting in approx. equal 
output distributions. However, some differences in the 
influence of the inputs were found due differences in 
model behaviour and dynamics. Thus, one should be 
careful interpreting the outcome of a sensitivity analysis 
of one BEM as generally applicable for all BEMs; besides 
the applied SA method itself, the outcome of a sensitivity 
analysis is influenced by model behaviour, the exact 

selection of input parameters, and their investigated 
distributions (range and shape).  

Conclusion 
From the results of this study, it is evident that the 
applicability of the different SA methods used depends on 
the purpose of the SA. If the purpose is to identify which 
parameters – all with uniformly distributed probability – 
affects the model output, then a simple Local method 
seems to suffice from a practical point of view. This is 
especially true if an exact ranking of parameters is of 
minor importance, and if the building physics is 
represented using linear equations. However, the Local 
method can only be used to identify an unranked cluster 
of maybe the upper half most important parameters if the 
probability distributions of the input parameters for some 
reason are non-uniformly distributed. In such cases, the 
Morris method is preferred as long as the probability 
distributions are well defined without any long tails; if the 
majority of the parameters are normal or lognormal 
distributed with large variance and/or beta distributed, 
then the Sobol’ method is preferred.  
In addition to the choice of SA method itself, the results 
indicate that the ranking of important input parameters – 
and thus the proper selection of SA method – is influenced 
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by the applied BEM. This aspect of SA performance is 
relatively unexplored and ought to be further investigated 
in future work.   
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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Typologically identical buildings may exhibit large differences in energy use due to various stochastic phenomena. In this paper, 
we present a study on how these phenomena can be explained by analyzing 1,050 observations of metered district heating energy 
use from a sample of 350 similar detached single-family dwellings located in 37 city districts (urban areas) in the city of Aarhus, 
Denmark. The results indicate that annual variations within the same buildings due to e.g. weather conditions account for only a 
minor proportion of the overall data variance (approx. 10%-20%). A larger proportion (approx. 25%-51%) is capsulated and 
explained by phenomena between the typologically identical buildings, probably due to the stochastic nature of occupant behavior. 
The largest proportion (approx. 30%-65%) of the data variance is explained by the district location, which suggests the presence 
of a socio-economic effect influencing the level of energy use between city districts. 

© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of the 11th Nordic Symposium on Building Physics. 

Keywords: Metered building energy use; Data variability; Hierarchical modeling; Bayesian inference; Socio-economic effect 

1. Introduction 

It is rather obvious that actual energy use for building operation varies with the type of building (office, homes, 
retail, etc.), but even typologically identical buildings that share the same energy ratings exhibit large differences in 
energy use, as was shown in a recent data visualization video of approx. 28,000 Danish single-family dwellings [1]. 

 

 
* Corresponding author. Tel.: +45  23 73 77 18. 

E-mail address: mhk@eng.au.dk 

PAPER [S4]

153



898 Martin Heine Kristensen  et al. / Energy Procedia 132 (2017) 897–902
2 Author name / Energy Procedia 00 (2017) 000–000 

The influence of occupant behavior is often ascribed considerable effect [2], but in reality, we know only very little 
about the mechanisms and phenomena that drive differences in energy use. 

In this paper, we present a study showing how occupant behavior and other stochastic phenomena seem to manifest 
themselves on different aggregated levels, i.e. variations in energy use within the same buildings and between buildings 
of similar typology, as well as variations driven by the building location within the same city. The study is based on 
an analysis of metered district heating energy use for a large sample of similar detached single-family dwellings, all 
constructed within the same city in a period characterized by uniform building regulations. The data variance is 
modeled and decomposed in a hierarchical structure whereby the prevalence of the above-mentioned phenomena is 
analyzed. To do so, we employ a probabilistic approach using Bayesian mixed-effects modeling and regression 
including information about building energy use, age, location and floor area.   

 
Nomenclature 

y Metered building energy use for heating [kWh/year]. 
x  Heated building floor area [m2]. 
µ Mean building energy use [kWh/year]. 
σ Standard deviation of building energy use [kWh/year]. 
φ Mean district energy use [kWh/year]. 
τ  Standard deviation of district energy use [kWh/year]. 
α Intercept (const. effect) of district model [kWh/year]. 
β Slope of district model [kWh/m2/year]. 
θ Mean of intercept value [kWh/year]. 
ω Standard deviation of intercept value [kWh/year]. 
i Indexing the observations from 1 to Nj. 
j Indexing the buildings from 1 to Mk. 
k  Indexing the districts from 1 to L. 
Nj Number of metered data points from building j.  
Mk  Number of buildings in district k. 
L  Number of districts in dataset. 

2. Method 

2.1. Data 

A random sample of 350 detached single-family dwellings, all constructed between 2008 and 2010 in the 
municipality of Aarhus, Denmark, and supplied by the public district heating network, was selected for analysis. All 
buildings in this construction period are expected to fulfill identical energy requirements given by the Danish Building 
Regulation (BR08) in force at the time of construction. The buildings were thus assumed to exhibit similar building 
physical properties with between-building variations being driven mainly by other factors than the building physical 
properties.  

For each building, information about the construction year, heated floor area and location of the building within 
the city (urban area code) was collected from the publically available Building and Dwelling Register (BDR) that 
contains information about the Danish building stock. In total, 37 city districts (urban areas) were represented, each 
featuring between one and 60 of the 350 sampled buildings. Furthermore, the annual district heating energy use for 
the last three years was collected for all buildings yielding three observations per building – in total comprising 1050 
observations. The district heating energy use consists of energy use for hydronic space heating in e.g. radiators and 
underfloor heating, and energy use for on-site domestic hot water (DHW) preparation.  
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2.2. Hierarchical regression model 

A three-level mixed-effects model was assumed for the metered annual district heating energy use data, yijk, by 
fitting a hierarchical structure to observations i = 1,..,Nj for each building j = 1,..,Mk within the k = 1,..,L city district 
groups: 

Level one (Observations): 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖) ~ 𝑁𝑁(𝜇𝜇𝑖𝑖𝑖𝑖, 𝜎𝜎2). (1) 

Level two (Buildings): 

 𝜇𝜇𝑖𝑖𝑖𝑖 ~ 𝑁𝑁(𝜑𝜑𝑖𝑖, 𝜏𝜏2). (2) 

 𝜑𝜑𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖, (3) 

Level three (Districts): 

 𝛼𝛼𝑖𝑖 ~ 𝑁𝑁(𝜃𝜃, 𝜔𝜔2). (4) 

At level one, the logarithm of the observed annual district heating energy use, log(yijk), was assumed to be 
independent and identically distributed (i.i.d.) random samples from a Gaussian distribution with unknown mean 
building energy use µjk and standard deviation σ. For simplicity, homoscedasticity was assumed across buildings such 
that 𝑉𝑉𝑎𝑎𝑟𝑟 (𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖)) = 𝜎𝜎2∀𝑗𝑗. At level two, the building mean energy use, µjk, was likewise assumed i.i.d. randomly 
sampled from a Gaussian distribution with unknown district means φk and homoscedastic district variations, i.e. 
𝑉𝑉𝑎𝑎𝑟𝑟(𝜇𝜇𝑖𝑖𝑖𝑖) = 𝜏𝜏2∀𝑘𝑘.  By modeling the district means, φk, as a linear function (in the logarithmic domain) of the building 
floor area, xjk, with a constant slope, β, and district-specific intercept, αk, the effect of the individual districts can be 
inferred as the posterior variations in αk. At level three, the intercept, αk, was i.i.d. sampled at random from a Gaussian 
distribution with an unknown grand mean θ and standard deviation ω. To complete the hierarchical model and ensure 
data-driven posterior inference, noninformative Uniform prior distributions were assigned to all the hyperparameters 
(σ, β, τ, θ, ω) based on recommendations by Gelman et al. [3]. 

2.3. Model pooling 

Given a belief of exchangeability among the district group-level intercept parameters (4), the hierarchical model 
allows districts with less information to borrow strength from groups with more information through their shared 
parent distribution, N(θ,ω2), hereby presenting a compromise between two alternative models: a “no pooling” model 
and a “complete pooling” model. The no pooling model is the limiting case where the between-group variance 
parameter ω = ∞, i.e. asserting that there is no information hidden in the between-group distribution of αk, hereby 
abandoning the hierarchical modeling of αk and reducing the model to (1)-(3), generating a separate fit for each district. 
The complete pooling model represents the opposite limiting case where ω = 0, which arises when separation in the 
district-level is believed to be irrelevant, imposing the restriction that 𝛼𝛼𝑖𝑖 = 𝜃𝜃∀𝑘𝑘, i.e. all districts share the same 
intercept eliminating the effect of the districts in explaining differences in energy use. All three models – the no 
pooling model, the hierarchical model and the complete pooling model – were fitted to investigate whether information 
was hidden in the location of the buildings (effect of district grouping). 

2.4. MCMC algorithm for posterior inference 

The multi-dimensional joint posterior distribution cannot be obtained analytically; hence, a numerical approach 
was employed based on Hamiltonian Monte Carlo (HMC), a hybrid Markov Chain Monte Carlo (MCMC) algorithm 
whose equilibrium distribution is indeed an approximation of the joint posterior distribution [4]. Four chains were run 
in parallel with randomly dispersed starting points in the parameter space to draw samples from the posterior 
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distribution. For each chain, 2,000 MCMC samples were drawn with the first 1,000 samples being considered cool, 
meaning that information about the starting point might still prevail. Samples from this cold period were thus discarded 
leaving only the warm part of the chains for analysis. 

Convergence in the warm chains was monitored in terms of the potential scale reduction factor, �̂�𝑅, for which �̂�𝑅 ∈
ℝ|1 < �̂�𝑅 < ∞. It is an estimate of the scale with which the variations in the inferred parameter distributions might be 
reduced if the simulations were continued in the limit 𝑛𝑛 → ∞ ( lim

𝑛𝑛→∞
�̂�𝑅 → 1) [4]. �̂�𝑅 accounts for the within-chain and 

between-chain variance in the warm chains, simultaneously evaluating both the mixing and stationarity of it. For �̂�𝑅 <
1.1, a stable and converged estimation was considered for each parameter, respectively. 

3. Results 

3.1. Model selection 

The ability of the three models to fit the data was assessed by means of their expected predictive accuracy in terms 
of the Watanabe-Akaike information criterion (WAIC), a state-of-the-art fully Bayesian measure of model fit [5]. 
Compared to non-Bayesian measures like the AIC [6] and BIC [7], and the somewhat Bayesian measure DIC [8], 
WAIC has the desirable property of averaging over the posterior distributions rather than conditioning on point 
estimates, making WAIC a fully Bayesian approach for estimating the out-of-sample expectation [9]. As might be 
expected, the hierarchical model shows to have the lowest WAIC value and thus constitutes the best fit to data (Table 
1).  

Table 1. Predictive accuracy of the three fitted models.  
Lower values of WAIC imply higher predictive accuracy. 

 
No pooling 

(ω = ∞) 
Hierarchical 

(ω estimated) 
Complete pooling 

(ω = 0) 
WAIC -487 -495 -486 

3.2. Explained variance by groups 

The hierarchical structure allowed the unknown data variance to be decomposed and fitted to the standard deviation 
hyperparameters at the three levels of the hierarchical model (σ, τ, ω). The proportion of variance explained at each 
level of the model was assessed in terms of the intraclass correlation coefficient (ICC), here shown for the first level 
(variation between annual measurements of the same building): 

 𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 = 𝜎𝜎2

𝜎𝜎2+𝜏𝜏2+𝜔𝜔2. (5) 

The ICC measures (Table 2) indicate that approx. 30%-65% (95% central posterior probability) of the overall data 
variance can be explained by phenomena between city districts (level three). Adding information about which 
particular building within a given district the data originates from can explain an additional 25%-51% of the data 
variance (level two). The remaining data variance is explained by phenomena between the annual measurements of 
the buildings (level one).  

Table 2. Intraclass correlation coefficient (ICC) of groups.  

ICC Posterior quantiles 
2.5% 25% Median 75% 97.5% 

Within buildings/between years (level one) 0.10 0.13 0.15 0.17 0.20 
Within districts/between buildings (level two) 0.25 0.34 0.38 0.43 0.51 
Within dataset/between districts (level three) 0.30 0.41 0.47 0.53 0.65 

 
A one-way analysis of variance (ANOVA) was used to test the null-hypothesis that all the district mean energy use 

distributions, φk, were equal (𝐻𝐻0:  𝜑𝜑1 = 𝜑𝜑2 = ⋯ = 𝜑𝜑𝐿𝐿) against the alternative hypothesis that at least one of the 
districts had a different mean energy use (𝐻𝐻𝐴𝐴:  𝜑𝜑1 ≠ 𝜑𝜑2 = ⋯ = 𝜑𝜑𝐿𝐿). The null-hypothesis was rejected (p < 1e-10) 
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indicating the presence of a significant effect of the district location on the annual district heating energy use of 
buildings. 

A model prediction of each district group is shown in Figure 1 using the 37 individual district sub-models (3) of 
the hierarchical model with individual intercept parameters, αk. Ignoring the differences in the district groups (ω = 0), 
the grand mean model is overlaid using the mean intercept, θ. 

 

Figure 1. Predictions using the 37 individual district sub-models and the overall mean model. 

4. Discussion 

4.1. Variability in energy use 

The results indicate that energy consuming mechanisms and phenomena between district locations account for 
30%-65% (95% central posterior probability) of the overall data variance. This suggests the presence of an additional 
socio-economic effect causing buildings from different city areas to behave and, to some extent, consume energy 
differently. Similar conclusions are drawn in another study of the Danish residential building stock [10], where 
considerable variation in how people consume heat is attributed to various socio-cultural factors. It would be 
interesting, in future work, to include information about the household income of the different districts to test whether 
there is indeed a socio-economic correlation between energy use and income. However, district-level variations could 
also be caused by local regulations on the architecture, environmental exposure, e.g. local wind patterns, shading, etc., 
and/or because buildings in certain areas are systematically designed as low-energy construction. 

The fact that an additional 25%-51% (95% central posterior probability) of the data variance is capsulated and 
explained by phenomena between buildings within the individual districts is particularly interesting. Bearing in mind 
that the investigated buildings were all detached single-family houses constructed during a period of unchanged 
building regulations, such phenomena can hardly be ascribed to any major building-physical or geometrical 
differences. Instead, it seems legitimate to expect this variation to be caused mainly by the very stochastic nature of 
occupant behavior. However, to more accurately account for the influence of occupant behavior, additional 
information about the buildings would have to be included in the model, e.g. number of occupants living in each 
building, presence of basements and heated attics, energy label ratings, etc.  

The remaining 10%-20% (95% central posterior probability) data variance is attributed to energy consuming 
mechanisms and phenomena between annual measurements within individual buildings. This annual variation is 
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probably caused by natural variations in the weather. However, strictly speaking, this number contains any residual 
variability that cannot be decomposed with the proposed hierarchical structure, e.g. observation error. 

4.2. Perspectives on future model expansion 

Expanding the hierarchical model to include also other building typologies and vintages, e.g. terraced houses and 
apartment blocks, would allow for a more exhaustive investigation of the mechanisms behind energy use, and for 
additional research questions to be asked and answered. Bearing in mind that the hierarchical structure allows 
information to be borrowed from the different sub-groups, such an extended model could potentially provide a more 
precise and profound estimate of common effects, e.g. occupant behavior. From a more practical point of view, an 
expanded model could serve as a city-scale prediction tool for e.g. urban planners and municipality managers and 
would be beneficial for e.g. assessing the capacity of existing public supply systems when expanding building areas 
within the city, and for assessing the impact of different retrofit scenarios.  

5. Conclusion 

Significant information about annual heating energy use is contained in knowing the location within a city from 
which the measurements are obtained. It is proposed that this phenomenon is caused by a socio-economic effect. The 
effect is not, however, equally profound for all investigated city districts as the energy use in some districts is more 
similar than in others. In addition, what seems to be a natural variation in occupant behavior between typologically 
identical buildings explains the majority of variation within city districts, leaving only a minor variance proportion to 
be explained by weather phenomena. 
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Abstract 

Several studies have indicated a potential to exploit the thermal inertia of individual residential 

buildings for demand response purposes using model predictive control and time-varying prices. 

However, studies that investigate the response obtained from applying these techniques to larger 

groups of buildings, and how this response affects the aggregated load profile, are needed. In this 

study, we propose a methodology for modelling residential buildings that enables bottom-up 

modelling of entire urban areas. The methodology is based on the thermal model described in ISO 

13790, which was extended to a second order model to improve its capability to describe the 

thermodynamic behaviour of buildings under dynamic conditions, and a Bayesian statistical 

framework used for the inference of model parameters. The methodology utilizes three sources 

of information for model calibration, namely public building registers, weather measurements, 

and hourly smart-meter consumption data. The methodology was tested through the modelling of 

a residential neighbourhood consisting of 159 single-family houses in the city of Aarhus, 

Denmark. The aggregated model was capable of predicting the aggregated district heating 

consumption in a previously unseen validation period with high accuracy: CVRMSE of 5.58% 

and NMBE of -1.39%. The model was then used to investigate the effectiveness of a DR scheme 

with the objective of reducing the daily fluctuations in the district heating consumption due to 

periods with increased domestic hot water consumption. The results showed that a commonly 

applied price-based demand response scheme incentivizing consumers through time-of-use 

energy prices would lead to the formation of new, undesirable peaks. To avoid this, a requirement 

for a more distributed response from the individual consumers was added to the DR scheme. This 

significantly improved effectiveness of the DR scheme as the size of two investigated peaks was 

reduced by 6.3% and 4.3%, respectively, without generating new peaks. This suggests that future 

research exploring and comparing various DR schemes on their effectiveness and efficiency at 

addressing various system performance objectives is needed. The methodology presented in this 

paper seems well-suited for such analysis.  

Keywords: Bayesian calibration; Urban scale bottom-up modelling; Demand response; 

Space heating; Domestic hot water; Smart meter data
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1 Introduction 

The increasing availability of various high-resolution monitoring data from energy systems in 

operation leads to new opportunities for maintaining the balance between supply and demand 

while increasing the efficiency of energy systems as a whole. One of these opportunities is 

improved demand side management initiatives, i.e. attempts to adapt demand to supply. The 

conventional notion of demand side management covers both initiatives that seek to reduce the 

overall demand as well as initiatives that seek to optimize the temporal distribution of demand. 

The latter is often referred to as demand response (DR); an approach which is increasingly being 

considered a viable tool for supporting the transition to an energy system based on renewable 

energy sources (RES) [1, 2], in which an inherent challenge is to establish an instantaneous match 

between demand and fluctuating energy production. Here, the availability of high-resolution 

monitoring data is an important prerequisite for enabling DR in practice.  

The energy use in residential buildings constitutes a significant potential for DR as they account 

for 25% of the total energy consumption in the EU, whereof 67% is used for space heating in the 

North and West regions of EU [3, 4]. Several simulation-based studies have demonstrated that 

DR schemes for residential space heating may be used to achieve societal objectives such as 

reductions of peak demand [5, 6], but also cost savings for consumers through strategic 

consumption [7–9]. These studies exploit the thermal inertia of the buildings to shift the energy 

consumption used for space heating to achieve economic or societal benefits while ensuring 

acceptable thermal conditions inside the buildings. While most of these studies focus on the DR 

potential with respect to the electrical grid, the same type of DR initiatives could in principle also 

be used for generating benefits for other parts of the energy system such as district heating (DH) 

networks, e.g. as it was done for production of domestic hot water by Knudsen and Petersen [10]. 

Furthermore, previous studies have primarily focused on investigating the DR potential of 

individual buildings or apartments, see e.g. [5–9,11–14]. O’Connell et al. [15] argue that, while 

such studies provide great insights on the DR for the specific scenarios considered, such isolated 

cases may not describe the behaviour of DR on the larger scale. To develop the current body of 

research on the potential for DR in space heating of residential buildings, it therefore seems 

reasonable to investigate the DR potential of buildings on an aggregated level using techniques 

inspired by the emerging field of urban building energy modelling (UBEM) [16]. Research within 

this field has modelled the aggregated consumption of groups of buildings through a variety of 

methods, see e.g. [17–21]. Previous studies have applied these methods to investigate various 

topics, including the performance-gap between theoretical and actual energy consumption [22] 

and the potential for energy retrofitting on city-scale [23]. Currently, studies on how the 

aggregated DR from several individual buildings affects operational challenges in urban district 

heating systems are rare; the only identified studies are those of Dominkovic et al. [24] and Cai 

et al. [25]. Dominkovic et al. used archetype building models calibrated with data from 54 

households to extract performance characteristics of typical DR events, i.e. approaches for 

shifting consumption. This condensed representation of the building stock and the use of 

predefined set of example DR events allowed the authors to evaluate the potential for utilizing 

the thermal mass of buildings for generating flexible consumption in an energy system level 
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optimization. The authors demonstrated that the flexible demand generated by buildings in their 

case accounted for 5.5-7.7% of the total demand. Cai et al. used first order models to represent 

the space heating requirements and hot water tanks of 20 residential apartment buildings as well 

as a commercial consumer. These models were used in optimization to reduce the operational 

costs of the supply side through utilization of flexible consumption, while ensuring consumer 

comfort. The optimization resulted in achieved savings of up to 11% when compared to a baseline.  

While both of these studies indicate a potential for utilization of passive thermal storage, both 

studies used simplified representations of buildings in their analysis, either through the use of 

archetype models which neglect diversity, or first order models which neglect the thermodynamic 

phenomena that are involved with exploiting the thermal inertia of buildings for storage purposes. 

In this paper, we propose a different take on the evaluation of residential DR utilizing passive 

thermal storage, which rely on statistical calibration of physics-based second order models of 

individual single-family houses. We then validate the ability of the second order model to describe 

dynamical conditions in building through experimental and field data, before demonstrating the 

modelling approach by calibrating a bottom-up model of a neighbourhood consisting of individual 

building models each with their own thermal characteristics and domestic hot water draw profiles. 

The model enables detailed investigations on how to design and evaluate the performance of DR 

schemes which utilizes the flexibility potential in residential space heating to avoid certain 

operational challenges e.g. in urban district heating systems.  

The paper is structured as follows: Section 2 describes the proposed UBEM methodology in terms 

of the established statistical framework and the physics-based model structure. In section 3, we 

apply the methodology in a case study where we model the consumption of 159 detached single-

family houses. The obtained UBEM model is validated both on the scale of the individual building 

and on the aggregated level before it is applied in a case study on residential DR potential using 

model predictive control (MPC). Finally, we draw our final conclusions and outline future work 

in section 4. 

2 Method 

The current field of UBEM consists of a variety of methods for modelling of the energy use of 

groups of buildings. In general, UBEM models can be categorized as either top-down or bottom-

up models. Top-down models tend to rely on socio-economic factors such as energy prices, 

population size and weather conditions for modelling energy use [26]. The use of aggregated data 

for obtaining top-down models leads to little emphasis on ensuring accurate representation of the 

energy-consuming processes themselves, thus rendering them ill-suited for evaluating the DR 

potential of utilizing building thermal mass as passive thermal storage. Bottom-up models, on the 

other hand, does not suffer from this issue, since they model the physical processes and 

phenomena of the energy-consuming processes themselves before aggregating the results [27, 

28]. These models may be rooted in either statistical methods, physical principles or a 

combination thereof. Statistical methods include regression analysis, support vector machines and 

artificial neural networks, whereas physics-based models rely on the first principles to model the 

energy consuming process [26]. These two modelling paradigms differ significantly in the 
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prerequisites needed to obtain the model. Statistical methods rely on measurement data describing 

input-output relationships of the process, whereas physics-based methods rely on knowledge 

about the process itself. While both modelling approaches have advantages and disadvantages, it 

is the combination of them that truly makes them useful in practical applications. Combining the 

two paradigms typically involves setting up an initial model based on thermodynamic principles 

and any available information regarding the buildings, and then calibrating said model using 

measured input-output data. This significantly improves the accuracy of the resulting models 

compared to those derived from the purely physics-based approach, while at the same time 

lowering the requirements for both the quality and quantity of the data needed in the statistical 

approach [29, 30]. Examples of studies combining the physics-based and data driven modelling 

approaches to model individual buildings are plentiful – studies that have modelled buildings on 

the larger scale include Kristensen et al. [31], who calibrated a UBEM for prediction of the annual 

energy use in Danish detached single-family-houses, and Gianniou et al. [32], who used ordinary-

least-squares linear regression and the degree-day method to derive estimates of the indoor set 

point temperature and overall heat losses of over 15,000 residential buildings from similar smart-

meter data. More recently, Kristensen et al. [33] used smart-meter data in a 3-hourly resolution 

and a hierarchical modelling approach to construct archetype models capable of predicting the 

aggregated consumption of out-of-sample groups of buildings.   

Taking experiences from previous UBEM studies in literature into account, it seems reasonable 

to use a modelling approach which relies on bottom-up physics-based models calibrated with 

measured data to explore the DR potential of flexible space heating consumption through 

exploitation of the thermal inertia that is inherent to buildings. We therefore propose a modelling 

methodology which relies on Bayesian calibration methods to derive physics-based models of 

individual houses. The proposed methodology is unfolded in the following sections. First, the 

Bayesian statistical framework used for the inference of model parameters is described. Then 

details on the building modelling including the physics-based model structure; assumptions used 

for modelling building geometries; and venting and internal loads are provided. Finally, a novel 

method for separating measurements of the total district heating consumption into its space 

heating and domestic hot water components is proposed.  

2.1 Statistical framework 

The statistical calibration of the physical models is based on the Bayesian paradigm, which 

enables incorporation of a-priori information in an otherwise measurement data-driven model 

calibration - not in the form of best-guesses, but as arbitrary probability distributions reflecting 

the uncertainty of the information. This coupling of measurement data and expert knowledge in 

form of priors is particularly useful in applications where the data alone may not be sufficiently 

informative to identify the most likely value of a given model parameter. In the context of 

buildings, priors may therefore be used to guide the inference of parameters which are only 

vaguely described by the data towards regions of high prior probability. Another benefit of the 

Bayesian modelling approach is that the resulting models contain full approximations of the 

parameter posterior distributions, thus allowing all the uncertainty indicated by the inference to 
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be included in future analysis. These posteriors may be reduced to point estimates such as the 

maximum a posteriori (MAP) estimate to be used in applications where the full Bayesian model 

description including the uncertainties are of less relevance. 

A key assumption made in the Bayesian inference of the proposed method was that measurements 

of district heating consumption ΦDH in a residential building can be modelled as the sum of an 

energy-consuming process, Φsim, and a stochastic component, 𝜖𝑡. Furthermore, the output of the 

energy-consuming process was assumed to consist of two components: energy used for space 

heating (Φh) and for preparation of domestic hot water (ΦDHW).  Time is denoted by 𝑡 throughout 

Eq. (1a-1e). In Eq. (1e), ℎ𝑟 refers to the hour number within a day while 𝑑 is a categorical variable 

denoting the current type of day (“workday” or “weekend day”). 𝑛𝑡 denotes the length of a 

simulation. The relationship between a time series of district heating measurements ΦDH,t for 𝑡 = 

[1, 2, …, 𝑛t] and the vector containing the output of the model, Φsim,𝑡 are described by Eq. (1a-

1c). As indicated by the index, Φsim,𝑡 is the simulated prediction, thus implying that the 

calibration applies the infinite-step-ahead error criterion.  

ΦDH,𝑡 = Φsim,𝑡 + 𝜖𝑡 (1a) 

Φsim,𝑡 = Φh,𝑡 + ΦDHW,𝑡 (1b) 

𝜖𝑡  ~ N(0, 𝜎2)  (1c) 

Φh,𝑡 = F(𝑿, 𝜽B,𝑾, 𝑡) (1d) 

ΦDHW,𝑡 = F(𝜃occ, 𝜽DHW, 𝑑, ℎ𝑟) (1e) 

The input arguments used in the individual models for space heating and domestic hot water 

preparation are listed in Eq. (1d-1e).  Here, 𝜽B and 𝜽DHW are vectors containing the calibrated 

parameters of the building model and DHW model, respectively, while 𝑿 is a vector containing 

the fixed parameters of the thermal model not subject to calibration, see Appendix 1 of this paper.  

The matrix 𝑾 of height 𝑛𝑡 contains columns with measurements of relevant weather conditions. 

Finally, the scalar 𝜃occ ∈ 𝜽B denotes the inferred number of occupants of the building.  

The stochastic component 𝜖𝑡 in Eq. (1a) governs any unpredictable variation caused by potentially 

noisy measurements of both weather and district heating consumption, process noise (occupancy) 

as well as the inevitable mismatch between the chosen model-structure and the true energy-

consuming process. Here, a key assumption in the inference is that the residuals of the model 

output on the measurement data, 𝜖𝑡, are realizations of a normally distributed random variable 

with zero-mean and homoscedastic variance 𝜎2. The likelihood of the data conditional on all free 

model parameters (𝜽B, 𝜽DHW and 𝜎) is then:  

p(𝚽DH|𝜽B, 𝜽DHW, 𝜎) =
1

√2π𝜎2
e
−

1
2𝜎2  ∑ 𝜖𝑡

2𝑛𝑡
𝑡=1  (1f) 

PAPER [S5]

163



6 

Assuming that the model accurately describes the measured phenomenon, Bayes’ theorem states 

that the joint posterior probability of the parameters conditional on the measurement data, 

p(𝜽B, 𝜽DHW, 𝜎|𝚽DH), is proportional to the RHS of Eq. (1g), where p(𝚽DH|𝜽B, 𝜽DHW, 𝜎) is the 

likehood of the data while p(𝜽B), p(𝜽DHW) and p(𝜎) denote the probability of the building model 

parameters under their respective priors.  

p(𝜽B, 𝜽DHW, 𝜎|𝚽DH) ∝ p(𝚽DH|𝜽B, 𝜽DHW, 𝜎) ⋅ p(𝜽B) ⋅ p(𝜽DHW) ⋅ p(𝜎) (1g) 

The objective of the Bayesian inference was to obtain an approximation of the joint posterior 

distribution of the parameters of the model chosen for calibration. There are several algorithms 

that are capable of this through iterative sampling from the joint posterior probability function of 

Eq. (1g). This study relies on the Metropolis algorithm [34] to do so – further details are given in 

section 3.1. The following section provides details on the physics-based model structure chosen 

to describe the energy-consuming process (Φsim) of Eq. (1a).  

2.1 Model structure and assumptions 

The physics-based model structure used in the proposed method is a modified version of the 

“simple hourly method” presented in ISO 13790 [35]. This simple model structure is a so-called 

reduced order model, which is suited for implementation in model predictive control schemes – 

the state-of-the-art control method most frequently used for studies on smart buildings [36]. An 

initial model of a given building in the urban area is established using information available in 

the publicly available Danish Buildings and Dwellings Register [37] regarding the year of 

construction, footprint area, number of stories and the areas of any conditioned attic and/or 

basement. The information on areas were used for establishing a geometric model of the building, 

while the year of construction was used for the specification of the prior probability of insulation 

levels used in the Bayesian inference. During the inference, the model was simulated under the 

assumption of a constant heating temperature set point to obtain the model output, Φsim,t for 𝑡 =

[1, 2, … , 𝑛𝑡], with 𝑛𝑡 depending on the length of the time series used for calibration.  

2.1.1 Building energy model structure 

The resistance-capacitance model described in ISO 13790 is based on the principles of 

thermodynamics and consists of five thermal resistances as well as a single thermal capacity 

describing the inertia of the building’s thermal mass (in short: 5R1C). Several reports have 

documented detailed tests on the ability of the model to describe the energy consumption of 

buildings accurately – often by comparing the model to more complex modelling approaches such 

as the EnergyPlus or TRNSYS Type-56 building models [38, 39]. In addition to the state 

governing the temperature of the thermal mass (𝐶m), the model features two massless temperature 

nodes describing the air (𝑇i) and mean surface temperatures (𝑇s), respectively.  

The fact that the ISO 13790 model is a first order model enables the discretization of the model 

to rely on the Crank Nicholson scheme while avoiding the need for solving a system of equations. 

This ensures fast and numerically stable solutions of the model during simulation. However, the 
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low model order comes at the cost of a rather crude representation of the dynamic behaviour of 

buildings. While the simplification of representing the indoor environment without thermal inertia 

does not impact simulations under stationary conditions (i.e. in the intended use of the model), it 

results in the 5R1C-model being ill-suited to represent buildings under dynamic operational 

conditions. This issue is especially problematic in the context of using the model for evaluating 

demand response based on exploiting the thermal characteristics of the building. Since the 

majority of Danish residential buildings have radiator or convector-based systems for space 

heating, it is primarily the interior of the building which is acted upon by the heating system. 

Since the process of storing energy in the heavy building components requires energy to flow 

through the thermally light interior environment, it is necessary to model both the fast and slower 

dynamics of the building. This claim is supported by previous studies: Reynders et al. [29] 

suggested using high-quality data including heat flux measurements from the building envelope 

to calibrate fourth and fifth order models, but argued that models of lower orders could suffice 

for control applications. Hedegaard and Petersen [40] compared second and third order models 

on the physical meaningfulness of their parameters and concluded that the second order model 

performed well. Harb et al. [41] tested RC-models of orders one to three and concluded that the 

second order model provided the best compromise between good predictive capabilities and 

interpretability of model parameters. Finally, Vivian et al. [39] concluded second order models to 

be preferable over first order models. As the ISO 13790 model is well-suited in terms of all other 

aspects of the intended application, we opted for a modification of the original model structure 

instead of replacing it with a different structure. The modification was to model the thermal inertia 

of the interior (room air, furniture etc.) by turning the previously mass-less air temperature node 

into a temperature state with an associated thermal capacity (𝐶i), thereby expanding the 

previously first order model to a second order model. In order to keep the model simple and 

relatively robust to the quality of the data used in the calibration, we did not introduce further 

modifications. A resistance-capacitance network of the proposed 5R2C-model including the 

modification (in green) is shown in Figure 1. Since the air change in the residential buildings are 

assumed maintained through natural ventilation, the ventilation supply temperature indicated on 

the figure (𝑇supply) is assumed to be equal to the exterior air temperature (𝑇exterior).  
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Figure 1 Modified RC-network of the model used in ISO 13790's hourly method for calculating heat 

consumption. Green: modification, red: thermal loads. 

In addition to the improved representation of the fast dynamics of buildings, the introduction of 

the second state of the model allowed us to remove the feedthrough component of the ISO 13790 

model. Feedthrough happens when inputs (in this case heating power Φh and solar gains in Φia) 

act directly on the output of the model, and not only indirectly by affecting the states of the model. 

Removing the feedthrough and adding thermal inertia to the interior (𝐶i) eliminates unrealistic 

changes in the temperature output of the model caused by e.g. fluctuations in heating power. This 

tendency of large fluctuations was also found by Bruno et al. [42], who compared the ISO 13790 

5R1C model to the more complex TRNSYS type 56 building model. The full continuous-time 

state-space representation of the modified model structure is given in Appendix 2 of this paper.  

To evaluate the impact of the modification on the ability of the model to describe buildings under 

dynamic conditions, both the original (5R1C) and modified model (5R2C) structure were initially 

calibrated using two datasets of hourly time resolution: 1) experimental data from laboratory tests 

where a pseudo-random binary sequence was used to control a hydronic heating system and 

impose temperature fluctuations on the test room, and 2) field data measured in an unfurnished 

terraced house where electrical heaters were used to excite the building by modulating the 

temperature set point. Both datasets included measurements of the internal air temperature (𝑇i), 

heating power (Φh) and weather conditions (solar irradiance and air temperature). The calibration 

of the two model structures relied on an algorithm similar to the one described in section 3.1, 

which was used for establishing the bottom-up UBEM model.  

Five parameters present in both the original (5R1C) and the modified (5R2C) model were 

calibrated along with the thermal capacity of the interior that is only a part of the modified model 

structure. Since both datasets were captured under controlled conditions, the assumptions related 
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to the distribution of windows and the presence of occupants where adjusted to match the actual 

conditions. Figure 2 shows the model output of both model structures after calibration. The mean 

absolute percentage error (MAPE) calculated for each model is provided in the legend.  

 

Figure 2 Impact of the modification of the ISO 13790 model. The upper and lower graphs show model 

performance when calibrated with experimental data and field data, respectively. The depicted models 

are parameterized with the maximum likelihood-estimates of the calibration parameters. 

The modified model structure generally shows better predictive capabilities on both datasets – 

especially during periods characterized by temperature fluctuations. The calibration was carried 

out without the use of priors in order to remove any impact of our a-priori beliefs on the result of 

the model evaluation. As such, the depicted models are parameterized with the maximum 

likelihood estimates from the calibration.  

Despite the indicated benefits of calibrating the thermal capacity of the interior, it is considered 

infeasible to estimate this model parameter as our measured data does not include measurements 

of the indoor air temperatures. Therefore, we chose to fix the value of the thermal capacity. By 

default, EnergyPlus models the thermal capacity of the interior as that of the air volume inside 

the building alone [43]. We do not consider this an option in the context of low-order resistance-

capacitance models used in simulations of hourly temporal resolution. Instead, we find it likely 

that contributions from interior (e.g. furniture), the heat delivery system itself, and even the inner-

most layers of construction elements are all lumped into the interior thermal capacity (𝐶i). 
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Therefore, it seemed reasonable to draw on the inference of the parameter indicated by the 

calibration of the unfurnished terraced house (“Field data” in Figure 2). The obtained empirical 

posterior distribution of the thermal capacity of the interior resembled a Normal distribution with 

a mean of 56.6 
kJ

m2K
, std. dev. of 2.46 

kJ

m2K
, and a minimum-maximum from approximately 45 to 

65
kJ

m2K
. In the context of exploiting the dynamic behaviour of buildings for realizing flexible 

consumption, choosing a lower estimate of the available thermal capacity would be on the safe 

side.  Therefore, we chose the minimum value from the obtained posterior, i.e. 𝐶i = 45
kJ

m2K
. This 

value is considered to be conservative, especially as the terraced house was unfurnished. The 

posteriors of the calibrated parameters obtained in this model validation are depicted in Appendix 

3 together with insights related to the identifiability of the other parameters inferred in this model 

validation. 

2.1.2 Geometric model 

The geometric model shown in Figure 3 was used to translate the geometrical information from 

the Buildings and Dwellings Register (see section 2.1) into surface areas of the building envelope 

of the individual buildings. The approach is similar to the one presented in [31] and [33]. The 

geometric model used an assumed length-to-width ratio and room height to transform footprint 

areas to do so. Furthermore, the geometric model assumed each facade of a building to be facing 

one of the four cardinal directions. Appendix 1 lists the assumed values of parameters both in the 

geometric model but also the ISO 13790 model.  In addition to the assumed relationships related 

to the overall geometry of the dwellings, a simplified representation of the window-distribution 

was assumed. This was done primarily to reduce the number of parameters governing the solar 

heat gains of the model. The assumed distribution was equal to that of the distribution used in the 

Danish window energy balance calculation methodology (𝐸ref [44]) North = 26%, West = 16.5%, 

East = 16.5% and South = 41%. 

 

Figure 3 Geometric model used for approximating the areas of the building envelope from the building’s 

floor area. The model assumes a length/width ratio of 0.5, a room height of 2.6 meters, and distribution 

of windows as depicted.  
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2.1.3 Venting and internal loads 

The vast majority of existing Danish detached single-family houses are naturally ventilated. The 

air change in each building was therefore modelled as an intentional component (venting) and 

infiltration, respectively. Since occupants are expected to vent less in colder periods, a model for 

the intentional venting reflecting this relationship was introduced. The model for venting was 

based on Rijal et al. [45] who proposed the use of a logistic model for describing the nonlinear 

relationship between the external temperature and the fraction of open windows in office 

buildings based on field surveys. In our study, we adapted the coefficients of this model so that it 

describes the effective amount of natural ventilation as a fraction of a design flowrate. Figure 4 

depicts the relation between the external air temperature and the venting factor 𝑏 used to scale a 

base venting rate fixed at 0.4 
𝑙

𝑠⋅𝑚2 used in the model. Here, the whole design air change rate is in 

effect at external temperatures equal to the internal temperature (20 °C), while all venting seized 

at external temperatures of -20 °C. 

 

Figure 4 Model for external temperature-dependent manual venting.  

The internal heat gains included in the models were gains from household appliances (Φapp) and 

from the occupants themselves (Φocc). Each occupants were assumed to each generate 80 W of 

sensible heat and occupy the dwelling two-thirds of the time, see Eq. (2). The internal heat gains 

from appliances were modelled as the electricity consumption of a typical Danish household - an 

assumption considered appropriate in Danish dwellings where cooking is predominantly done 

using electricity. Gram-Hanssen [46] derived the empirical regression in Eq. (3) for the annual 

electricity consumption in detached single-family houses (𝐸app) based on data from 8500 

dwellings. The regression relies on the area of the building and the number of occupants as 

predictors for the annual consumption in kWh. Since no information was available on the specific 

use-times of each dwelling, we assumed flat profiles for all internal heat gains - i.e. Eq. (2) and 

Eq. (4).  
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Φocc =
2

3
⋅ 80  (2) 

𝐸app = 530 + 12 ⋅ 𝐴footprint + 690 ⋅ 𝜃occ  (3) 

Φapp =
𝐸app ⋅ 1000

8760
  (4) 

2.1.4 Domestic hot water 

The smart meters that measure district heating consumption featured in this study are primarily 

intended for billing purposes. As such, they are not designed in a way that allows them to separate 

the consumption related with space heating and preparation of DHW. It is therefore necessary to 

introduce a model of the daily DHW consumption profiles in order to 1) improve the predictive 

performance of the model, 2) avoid neglecting variation in the DHW component of the district 

heating measurements which could potentially affect the estimates of the remaining building-

specific parameters, and 3) to distinguish between inflexible and flexible demand. While hot water 

tanks can be charged in a flexible manner as demonstrated in [10], the DHW production in the 

dwellings of this study is handled with a flow heat exchanger, thus rendering the DHW 

consumption inflexible. By separating consumption for DHW and space heating, the model 

thereby also distinguishes between potentially flexible and inflexible consumption.  

Previous studies have proposed various methods for separating the two components. Bacher et al. 

[47] separated DHW and space heating by using a kernel smoother to identify peaks in 10 minute 

measurements. However, this method would not work using the hourly smart-meter data available 

for this study, since the volatility of the DHW consumption is essentially averaged out to an extent 

where distinguishing between space heating and DHW consumption is infeasible. Burzynski et 

al. [48] interpreted district heating consumption measured outside the heating season (during 

summer months) as domestic hot water consumption alone and assumed this consumption pattern 

to apply throughout the year. While this approach in principle would work despite the low 

temporal resolution of the smart meter measurements, using data collected during the summer 

months makes the process of inferring DHW consumption prone to any errors caused by 

differences in consumption levels between the warmer summer period and the rest of the year – 

e.g. due to holidays or an increased frequency of showering due to the generally warmer weather.  

Because of the above-mentioned limitations of the existing methods, we chose to model the DHW 

consumption for each building directly and infer it in parallel with the inference of the building-

specific parameters. Assuming significant differences in use patterns between weekdays and 

weekends, two distinct DHW daily profiles of 24 hourly values were inferred for each building; 

one profile for weekdays and one profile for weekend days, respectively. The model relies on two 

elements to describe the DHW consumption of a given house on a given day: a normalized shape-

profile (𝜃DHW,𝑑) and a scaling factor (𝐸DHW) denoting the average daily district heating 

consumption for preparation of domestic hot water. The underlying assumption was that the 
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average annual DHW consumption per occupant (𝑉occ) amounted to 15 m3 hot water [49], which 

was assumed evenly distributed across all days of the year. The daily energy consumption for 

preparation of DHW (𝐸DHW) is given in kWh by Eq. (5).  

𝐸DHW =
𝑐𝑝,water𝜌water𝑉occ𝜃occ(𝑇DHW − 𝑇mains)

365
  (5) 

where 𝜃occ denotes the inferred number of occupants in the building, while 𝑐𝑝,water and 𝜌water 

denote the thermal capacity and density of water at 30°C, respectively. Finally, a mains water 

temperature (𝑇mains) of 10 °C and a DHW draw-temperature (𝑇DHW) of 55 °C were assumed. 

𝐸DHW was distributed onto each hour within a day by the inferred DHW profile (𝜽DHW,𝑑) 

associated with that type of day in accordance with Eq. (6):   

ΦDHW,𝑡 = 𝐸DHW𝜃DHW,𝑑,ℎ𝑟  (6) 

where 𝜃DHW,𝑑,ℎ𝑟 describes the share of 𝐸DHW within a particular hour (ℎ𝑟) on either a working 

day or weekend day (𝑑). There are two main factors contributing to the inferred shape of the 

DHW profiles (𝜽DHW,𝑑), namely the prior information introduced by us, and the repeated daily 

patterns observed in the measurement data. This use of repeated patterns may result in other 

phenomena than DHW consumption being absorbed by the DHW model. Examples of these are 

routine venting (e.g. each morning) or heating set points which are scheduled through home 

automation systems. The latter violates one of the core assumptions of the statistical calibration 

framework (a constant temperature set point), and buildings whose consumption data is 

characterized by strongly repetitive consumption patterns should either be excluded from the 

analysis or calibrated under other assumptions. Phenomena such as routine venting, which may 

be more difficult to identify due to their relatively limited impact, are absorbed by the DHW 

model in its current implementation. However, this is not considered a critical issue since one of 

the main purposes of the DHW model is to distinguish potentially flexible and inflexible demand. 

Since increased space heating consumption due to venting is not considered flexible, it is a desired 

behaviour of the calibration to assign this consumption to the DHW model.   
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3 Case study  

The urban residential neighbourhood selected for the case-study is depicted in Figure 5. The 

neighbourhood consists of 206 detached single-family houses in Aarhus, Denmark, all located in 

a hydraulically well-defined area in the city district heating network, i.e. all consumers are 

supplied from the same point in the distribution grid located in the lower left corner of the figure.  

 

Figure 5 The urban neighbourhood used as case-study. All buildings within the neighbourhood are 

supplied with district heating from the same point in the grid.  

Each building has a smart meter providing measurements of district heating consumption in a 

truncated hourly kWh-resolution, i.e. in an unrounded state and without decimal points. However, 

a total of 47 out of the 203 dwellings in the neighbourhood (marked in red in Figure 5) were 

excluded from the case study due to one of the following three issues: 1) some/all consumption 

data was missing (12 buildings), 2) data indicated night setback heating control (16 buildings), 

and finally 3) odd heating patterns perhaps caused by the presence of secondary heating systems 

(e.g. wood-fired stoves) or frequent occupant intervention of temperature set points (19 

buildings). The reason why buildings with the second and third issues was excluded was because 

they violate the assumption of static set points that is made in the calibration of building models 

(see section 2.1). Figure 6 depicts the aggregated consumption of the remaining 159 houses for 

the months of January and February 2017 (along with the weather conditions for the same period) 

and, as such, serves as an example of the available consumption data used for generating the 
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UBEM. It is evident that the heating profile is characterized by relatively fast daily fluctuations 

as well as slower fluctuations exhibiting a large dependency on especially the external air 

temperature.  

  

Figure 6 Aggregated DH-consumption of urban district (only the 159 buildings marked in green on 

Figure 5) and weather data for the training period (January, 2017) and the validation period (February, 

2017) 

In the following sections we apply the proposed modelling methodology outlined in section 2 to 

obtain a UBEM model of the urban residential neighbourhood. Section 3.1 presents the choices 

made in relation to setting up the calibration algorithm (inference), the selection of calibration 

parameters, and specification of their respective priors. Section 3.2 presents an evaluation of the 

obtained UBEM model both on individual building level and urban level. Finally, the model is 

applied in a DR scheme in section 3.3.  

3.1 Inference 

An approximation of the joint posterior probability distribution for all model parameters given 

the data can be obtained using one of several Markov Chain Monte Carlo (MCMC) based 

methods. These methods are characterized by their ability to sample from particularly high-

dimensional parameter spaces. The methodology presented in this paper relies on an 

implementation based on the Metropolis algorithm [34], which  from a randomly selected starting 

point in the parameter space walks randomly through (i.e. samples from) a multi-dimensional 

Markov chain – a stochastic process satisfying the Markov property – to approximate the joint 

posterior distribution. When converged, the Metropolis algorithm produces an unbiased mapping 

of the posterior probability density distribution. The part of the algorithm which allows it to focus 

on the regions of the parameter space of high probability, and eventually converge to a stationary 

estimate the posterior density function, is the fact that not all steps of the random walk are 

successful. Whether a step is rejected or accepted is determined by the ratio between the joint 

posterior probability of the current draw and the newly proposed draw, respectively. The 
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computation of probabilities are often carried out in the log-domain to ensure numerical stability. 

Each proposed step of the random walk in the parameter space is done by drawing from a so-

called proposal distribution. For this, the Metropolis algorithm apply marginal normal distribution 

(or a multivariate normal distribution) centred at the algorithm’s current position in the parameter 

space. It is essential to tune the parameters of the proposal distribution (i.e. the variance for one-

dimensional sampling, and the covariance matrix for multi-dimensional sampling) in order to 

ensure a fast convergence and efficient sampling from the posterior [50].  

The building model parameters (𝜽B in Eq. (1d)) and the DHW model parameters (𝜽DHW in Eq. 

(1e)) were kept separate in the implementation of the Metropolis algorithm, and therefore each 

had their own proposal distributions. Due to differences in how the building-specific parameters 

and the DHW-related parameters acted upon the model, the tuning of the two jumping 

distributions were carried out in slightly different ways. The building model parameters were all 

proposed from a multivariate normal distribution with zero-mean and covariance matrix 𝚺B. The 

tuning of this jumping distribution included a full covariance adaptation including the correlation 

between parameters [50]. Since the parameters of the building models may be significantly 

correlated, the tuning of the parameter-correlation entries of 𝚺B ensured a much more efficient 

sampling and quicker convergence than using a jumping distribution which neglects parameter 

correlation. In spite of this, tuning of the covariance matrix of the DHW model’s jumping 

distribution (𝚺DHW) did not involve tuning of the off-diagonal elements of the matrix. The reason 

for neglecting the correlation was that the DHW model describes a normalized consumption 

profile, which after each proposed change required a post-processing of the proposal in the form 

of a renormalization of the entire profile. This post-processing violated the assumptions made in 

the covariance tuning used for the building model parameters.   

After a number of iterations (jumps) the algorithm converges to a stationary state in the high-

probability region of the parameter space. Until this happens the algorithm is considered cold, 

and all samples are discarded since they may still be influenced by the random point in the 

parameter space where the algorithm was initialized.  The algorithm is considered warm once the 

marginal Markov chains of all parameters have converged – after which further sampling 

contributes to the approximation of the posterior distributions. The potential scale reduction factor 

(PSRF) was used to indicate convergence (further elaborated on later) [51]. For each building, 

three separate instances of the algorithm were run for 10,000 iterations – out of which the first 

8,000 iterations where discarded. The three remaining batches of 2,000 samples where joined and 

used to form an empirically based posterior distribution. For further details on the Metropolis 

algorithm we refer to the original work by Metropolis et al. [34]. The following sections present 

the chosen calibration parameters and their associated prior distributions.  

3.1.1 Calibration parameters 

Using physics-based building energy models (BEM) to represent performance of an existing 

building requires calibration of a range of user-defined input parameters. Standard practice for 

this task is to assume fixed values for input parameters for which prior knowledge are less 

characterized by uncertainty, while only calibrating values of the most uncertain parameters. This 
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reduces issues related to the identifiability of the parameters – especially in cases where available 

data is of limited quantity or quality. Table 1 lists five building-related parameters (𝜽B) that were 

chosen for calibration in this study, while the rest were fixed at values considered suitable for the 

type of dwelling used in the case study (see Appendix 1 for details). The selection of these specific 

five parameters for calibration was based on a compromise between the sensitivity of the model 

output variability to the specific parameter (and thus the identifiability of the parameter), and the 

relevance of the parameter in light of the intended application of the model (see [33] for further 

details on parameter selection).  

Table 1 Model parameters selected for Bayesian inference (𝜽𝐵) 

 Abbreviation Description Unit 

1 𝑊𝐹𝑅 Window-to-floor ratio [−]  

2 𝑞inf Infiltration rate (at 50Pa) [
l

s⋅m2
]  

3 𝑈envelope U-value for roof and façade walls (assumed equal) [
W

K
]  

4 𝑂𝑐𝑐 Occupant density [
m2

occupant
]  

5 𝐶m Thermal capacity of construction elements [
kJ

m2⋅K
]  

The first three parameters in Table 1 are related to how weather conditions (external temperature 

and solar radiance) affect the heat balance of the building. The occupant density (used to derive 

𝜃occ) determines the impact of occupants on internal heat gains and scales the DHW consumption. 

Finally, the effect of the thermal mass in the ISO 13790 standard models is governed by two 

parameters; the effective thermal capacity (𝐶m) and the effective mass area (𝐴m). ISO 13790 

proposes five classes of thermal mass in buildings ranging from very light to very heavy - each 

class with its respective values for the thermal capacity and effective mass area. To avoid 

calibrating both of these parameters, we chose to couple them by a simple piecewise linear 

relationship for the effective mass area as a function of the thermal mass as depicted on Figure 7, 

and only calibrate the thermal capacity (𝐶m).  

 

Figure 7 Regression used to couple the thermal capacity (𝐶𝑚) and the effective mass area (𝐴𝑚) of ISO 

13790. 
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3.1.2 Specification of priors 

The marginal prior for the WFR was specified as a beta-distribution according to Eq. (7), while 

the priors for the remaining parameters were specified as gamma-distributions according to Eq. 

(8).  

𝑊𝐹𝑅 ∼ 𝐵𝑒𝑡𝑎(5,25) (7) 

[𝑞inf, 𝑈envelope, 𝑂𝑐𝑐, 𝐶m, 𝜽DHW] ∼ 𝐺𝑎𝑚𝑚𝑎(𝜶, 𝜷) (8) 

In Eq. (8), the vectors 𝜶 and 𝜷 contain the shape and scale parameters for each parameters prior 

gamma distribution. The specific values for each parameter prior distribution are listed in 

Appendix 1 while Figure 8 depicts the distributions for the BEM parameters.  

  

Figure 8 Prior-specification of building-specific parameters (𝜽𝐵). The prior of the WFR (top graph) is 

specified as a Beta distribution, while all other priors where specified as Gamma distributions. 

The prior describing the insulation level of a given building to be modelled (envelope U-value) 

was determined by the construction year according to the Danish archetypes identified in the 

TABULA-project [52]. The priors for the other parameters were assumed identical across all 

buildings no matter construction year. The prior for the infiltration rate was based on air tightness 

measurements of multiple dwellings [53]. It is likely that some of the case buildings to be 

modelled have undergone minor refurbishments since they were built, but we have no reliable 

information on this. To account for this uncertainty, we specified fairly broad prior distributions 

for both the envelope U-values and the airtightness of the building. The prior for the occupant 
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density was based on statistical estimates [54], while the prior on the thermal capacity was 

specified to reflect the construction classes of ISO 13790 [35].  

The shape of the priors for the two DHW profiles (𝜽DHW) was based on the average measured 

DHW consumption for a sample of 107 British dwellings [55]. The prior for each hour was 

specified as a gamma-distribution parameterized in a way such that the mean value of the 

distribution coincided with the (normalized) profile from [55]. Since the hourly priors are 

specified for the normalized profiles, they describe the probability of a given share of the daily 

consumption falling inside each given hour. Since [55] does not provide separate results for 

weekends and weekdays, the same prior specification was used for both of the profiles. Figure 9 

shows a contour of the prior distributions for each hour of the day, where the intensity of the 

contour indicates the probability, while the x and y-coordinates indicate the hour number and 

share of daily consumption, respectively. Here, it should be noted that, despite the continuous 

appearance of the contours visualizing the distributions, the contour at a given x-coordinate (hour) 

describes the marginal distribution of that specific hour. The distribution related to a given hour 

of the day, say 𝑥 = 19 (depicted), is totally separate from the marginal distribution specified for 

the 18th hour of the day (𝑥 = 18). 

 

Figure 9 Contours of marginal prior distributions for both DHW profiles (workdays/weekends). The 

contour at each x-coordinate depicts the marginal distribution for that specific hour of the day – see 

highlighted hour.  

Finally, the last parameter of the statistical framework outlined in section 2.1 is the prior 

distribution of the standard deviation 𝜎 describing the residual errors (𝜖) of Eq. (1a). Here, the 

prior distribution was chosen as the half-Cauchy distribution with mode 0 and a scale value of 

0.25, thus producing a distribution that favours small values of 𝜎.  
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3.2 Model performance 

While the intended application of the obtained UBEM model is analysis on an aggregated level, 

the phenomena that enables utilization of flexible consumption require the individual BEM to 

describe the involved energy consuming processes with sufficient accuracy. Therefore, an 

evaluation of the performance of individual BEMs is a necessary part of interpreting the validity 

of the bottom-up UBEM model. Section 3.2.1 evaluates the UBEM model on the scale of the 

individual BEM before the aggregated scale is evaluated in section 3.2.2.  

3.2.1 Individual buildings 

The output of the MCMC-based parameter inference are approximations of the posterior 

distributions for the calibration parameters. The validity of these posterior distributions rely 

heavily on the convergence of the MCMC algorithm to a stationary state within the solution space 

of high probability. A method for quantifying the convergence of MCMC algorithms is to run the 

algorithm multiple times and use the part of each chain which is assumed to have converged to 

compute the Potential Scale Reduction Factor (PSRF) [51]. The PSRF estimates the reduction of 

the scale (uncertainty) of the posterior distribution achievable if the number of MCMC draws 

were increased to infinity. As such, PSRF values near 1.0 indicate that the algorithm has 

converged to a stationary distribution. PRSF values below 1.2 can generally be interpreted as an 

approximate convergence [56]. The PSRF was calculated for all of the obtained marginal 

distributions for the parameters of each individual BEM. The model parameter posterior estimates 

achieved PSRF values below 1.1 (highly converged) for all but two BEMs that achieved values 

below 1.2 (approximate convergence).  Convergence alone, however, does not imply that the 

resulting models have good predictive performance. The predictive performance was therefore 

evaluated using the normalized mean bias error (NMBE) and the coefficient of variation of the 

root mean square error (CVRMSE) as proposed by ASHRAE guideline 14 [57]. The NMBE 

indicates whether the model is accurate on average by describing the bias of the model output as 

a percentage of the mean value of the measurements. The CVRMSE gives the sample standard 

deviation of the prediction errors, also normalized by the mean of the dataset, which (contrary to 

the NMBE) can be interpreted as the ability of the model to correctly predict variation in the data. 

The CVRMSE assumes only positive values, whereas the NMBE may be both negative and 

positive. Both metrics indicate higher performance as the value of the metric approaches zero. 

For calibration data of hourly resolution, the maximum values recommended by ASHRAE [57] 

are ±10% for the NMBE metric and 30% for the CVRMSE metric. The two metrics were 

computed by comparing the output of a model parameterized with the MAP parameter estimates 

to measurements from the training and validation periods indicated on Figure 6. Figure 10 

presents the performance of the remaining 159 models to measurements from the training and 

validation periods indicated on Figure 6. The performance of the five buildings highlighted in red 

and denoted with letters A–D are further investigated and depicted in Figure 11. 
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Figure 10 Performance metrics CVRMSE and NMBE for each building model parameterized with the 

MAP parameter estimates. Time series of the five highlighted buildings (A-E) are presented in Figure 11. 

The vast majority of building models achieve an NMBE within the limits suggested by ASHRAE: 

All models pass on the training period while only five models (3%) were not able to pass on the 

validation data set. It is noted that a significant number of models actually had higher CVRMSE 

values than the recommended 30%: 31 models (19%) when evaluating on the training period and 

43 models (27%) for the validation period. However, inspection of measurements time series and 

model predictions revealed that the metrics alone were not suited for deciding whether or not a 

given model should be discarded. In some cases, high CVRMSE values were caused by extreme 

consumption peaks that were relatively far-in-between, and thus not represented well by the 

inferred DHW profiles that describe the average daily DHW-consumption. In other cases it would 

seem that the building had been vacant for extended periods of time, which were characterized by 

a lack of DHW consumption and sometimes also a reduced consumption for space heating 

(lowered temperature set points). Finally, the truncated nature of the smart-meter data used for 

the comparison is also a cause of discrepancies between measurements and model output.  

Figure 11 depicts time series of the five buildings (A-E) highlighted as red bars in Figure 10. 

These buildings serve as examples of the conditions that in many cases resulted in violation of 

one or both of the two ASHRAE metrics. While both the calibration and the computation of the 

two metrics were carried out using hourly values, we present the time series in a 3-hourly 

resolution for readability. Parts of the time series where the consumption deviated from the 
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expected level have been highlighted and (even though we do not know the exact causes) labelled 

with plausible explanations of the observed deviation. 

 

Figure 11 Evaluation of individual building models that performed poorly in terms of CVRMSE/NMBE 

through comparison of time series. The dashed line separates the training and validation period. Time 

series of 3-hourly averages were used for readability. The NMBE and CVRMSE metrics are indicated 

next to the time series. 

In addition to the various phenomena indicated in Figure 11, a recurring cause of mismatch 

between the predicted and measured consumption was peaks that are likely related to DHW 

consumption. Only a small number of the buildings (e.g. B in Figure 11) did not feature such 

peaks – a likely explanation being that they are fitted with domestic hot water tanks that spread 

out this consumption.  
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Even though separate weekday and weekend DHW profiles were inferred for each dwelling, the 

DHW model assumes these profiles to apply equally to all of the days for which they were defined 

(i.e. weekdays or weekend days). Therefore, in cases where large peaks (presumably showering) 

are spaced randomly with one or multiple days in-between, the inferred DHW profile tend to 

indicate peaks of average size on all days. While this discrepancy contributes significantly to the 

value of CVRMSE, we do not consider it critical to the validity of the model in the context of 

groups of buildings, where the stochastic behaviour of occupants from many different buildings 

to some degree is averaged out. Therefore, although many building models did fulfil the ASHRAE 

recommendation, the suggested limits proved perhaps too strict to act as a hard requirement for 

this application, where the measurements were both truncated and heavily influenced by effects 

of stochastic occupancy. The inferred DHW profiles for all 159 buildings are shown in Figure 12. 

Both normalized and absolute profiles are presented as the former is useful for comparing the 

distribution of DHW consumption between buildings with varying overall consumption, while 

the absolute profiles describe the actual impact on the grid. 

 

Figure 12 Inferred DHW profiles in absolute and normalized terms along with the average profile of the 

entire sample. First row presents weekday profiles while the second row presents the profiles of weekend 

days. In the normalized profiles, each entry represent the share of daily consumption associated with that 

hour.  
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Not surprisingly, comparison of the mean profiles indicate that the largest difference between 

weekdays and weekends is the pickup in consumption in the morning hours: On weekdays, the 

consumption has a steep incline starting at 06:00 before it peaks in the hour 07:00-08:00. 

Weekend days are characterized by a smoother pickup in consumption and a peak which happens 

two hours later than the weekday peak in the 09:00-10:00. Although there currently is no way of 

evaluating the validity of the inferred DHW-profiles, the profiles are considered plausible since 

the observed differences (obtained despite the use of identical prior information) between 

weekend and weekday profiles match both our own expectations and agree with previous research 

findings [58].  

3.2.2 Urban scale performance 

The performance of the UBEM of the 159 case-buildings is depicted in Figure 13, where the 

predicted consumption is compared to measurements. The aggregation of data from the entire 

pool of buildings improves the readability, thus allowing us to show these results in hourly 

resolution.  

 

Figure 13 Performance evaluation of the aggregated UBEM (159 buildings) on the dataset used for 

training (top) and on a previously unseen validation dataset (bottom). Both datasets are in hourly 

temporal resolution. CVRMSE and NMBE metrics for each period are indicated on each graph.  
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Visual inspection of the time series suggest an overall good performance of the model in both 

periods which is supported by the CVRMSE and NMBE metrics. Furthermore, it is clear that the 

UBEM is able to accurately describe the majority of the daily peaks in consumption, thus 

indicating that the aggregation of multiple buildings have indeed lowered the issues related to 

DHW peaks that were seen on the scale of individual building in the previous section. A drop in 

consumption followed by a pick-up in consumption in the hours afterwards is seen on January 25. 

This coincides with the highlighted drop in the consumption of “dwelling A” in Figure 11, and 

may therefore suggest that multiple buildings were taken off the grid temporarily possibly due to 

pipe maintenance.  

While top-down UBEMs may achieve similar performance when calibrated with the aggregated 

data directly, the advantage of the bottom-up approach is that the diversity of the buildings 

producing the aggregated consumption profile is preserved. This characteristic of the bottom-up 

UBEM that allows it to be used as a basis for more detailed analyses e.g. investigating the 

combined response of the building stock to proposed DR initiatives. The following section 

provides an example of how the UBEM may be utilized for analysis of DR initiatives on the urban 

level.  

3.3 Utilizing space heating for flexibility  

As indicated by previous studies (see the introduction of this paper), the thermal inertia inherent 

to buildings can be exploited to allow the consumption dedicated towards space heating to be 

shifted in time without significantly impacting the indoor thermal climate in the buildings. In this 

case study we evaluate whether the utilisation of this phenomenon can be exploited in a DR 

scheme tailored to achieve peak reductions in the aggregated consumption profile of an urban 

neighbourhood. Strategic peak reductions benefit utility companies by allowing them to optimize 

the daily operation, e.g. by preventing firing up cold boiler plants during peak hours. An even 

larger potential may be associated with the ability to address congestion issues in distribution 

networks and reduce the needed standby generation capacity. A way to incentivize building 

owners to engage in DR is through time-varying energy prices, e.g. by offering cheaper prices at 

off-peak times than during peak-times. This approach to demand response is generally referred to 

as indirect price-based DR [59] due to the fact that the decision process lies entirely with the 

consumers themselves while the incentive (i.e. the time-varying prices) is determined by the 

utility company. Figure 14 presents the principles of price-based DR schemes in the context 

buildings; A) and B) indicate the fluctuating demand targeted by the DR scheme and the resulting 

price increase during a specified peak period, respectively, while C) and D) depict the actions 

made by e.g. a building energy management system in order to minimize the economic expenses 

of the house owner. Here, the thermal mass of the building is charged by raising the room 

temperature prior to the peak, thus allowing the building to become autonomous for the whole or 

part of the duration of the peak.  
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Figure 14 Principle of the price-based demand response scheme evaluated in this study. 

One of the approaches for implementing price-based DR is the use of model predictive control, 

which rely on a model of the building to predict the optimal way of operating the building, given 

a certain objective function [12]. This objective function could reflect a wish to minimize 

economical expenses of the home owner, maximize utilization of renewable energy, or minimize 

the impact of the building on the performance of the grid. The advantage of MPC schemes is that 

they use a model of the building to identify the exact course of actions that yields the best result 

in terms of the specified objective (assuming that the model is a sufficiently accurate 

representation of the building). In practice, MPC schemes do this by solving a control 

optimization problem which incorporates the dynamic behaviour of the building and relevant 

external factors such as weather conditions. These control problems may include a variety of 

constraints which are relevant for the operation of the building such as the allowed range of indoor 

air temperatures, maximum air temperature  rate of change, as well as system-related constraints 

such as maximum available heating output. An example of a simple MPC optimization problem 

is presented in Eq. (9a-9e):  
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minimize
𝑢

      ∑c𝑡 ∙ 𝑢𝑡

𝑛𝑡

𝑡=1

 (9a) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑥𝑡+1     = 𝑨𝑡𝑥𝑡 + 𝑩𝑢𝑡 + 𝑬𝑡𝑑𝑡  
(9b) 

 𝑇i,𝑡       . = 𝑪𝑥𝑡  
(9c) 

 0 ≤ 𝑢𝑡 ≤ 𝑃max  
(9d) 

 𝑇min ≤ 𝑇i,𝑡 ≤ 𝑇max  
(9e) 

where Eq. (9a) specifies an economically based objective function describing the objective of 

minimizing the product of a vector of time-varying energy costs (𝑐𝑡) and a vector of the energy 

consumption for each control unit time step (𝑢𝑡). The latter is the decision variable of the control 

problem – i.e. the variable that may be manipulated by the control scheme. Since DHW 

consumption is considered inflexible, 𝑢𝑡 corresponds to the consumption aimed towards space 

heating only. Eq. (9b-9e) are the constraints of the optimization problem solved by the control 

unit. Here, (9b) describes the dynamic behaviour of the building through the building model and 

(9c) relates the internal states of the building model (𝑥𝑡), to the indoor temperature output of the 

model (𝑇i). The remaining equations are used to specify constraints relevant for the operation of 

the building; (9d) describes the maximum heating rate the heating system can deliver and (9e) 

limits the indoor temperature to be within some user-specified threshold.  

In our case, the range of acceptable indoor temperature for the MPC was chosen to be between 

𝑇min = 20°C and 𝑇max = 24°C.  The maximum power output achievable for each building 𝑃max 

was assumed to follow the Danish design conditions, where the heating system should be able to 

maintain an indoor temperature of 𝑇i = 20°C at outdoor temperatures of 𝑇exterior = −12°C. This 

design load was approximated by comparing the indoor-outdoor temperature difference (ΔT) of 

the coldest hour of the measurement data and then scaling the corresponding (inferred) space 

heating consumption (disregarding DHW component) for that hour to match the Δ𝑇 = 32°C 

temperature difference used for determining the needed size of the heating system in Danish 

residential buildings. Here, we disregard the discrepancy between the dynamic data used for this 

extrapolation and the stationary conditions assumed in design calculations. This approach 

suggests that buildings which have undergone retrofits also have downgraded the capacity of the 

installed heating system which is considered very unlikely. Both of these factors contribute to a 

pessimistic estimate of the power output 𝑃max  available in the buildings. 

A reference scenario was defined in which the buildings were operated in the most energy 

efficient way, meaning that the indoor temperature was maintained at 𝑇min throughout the 

simulations to minimize heat loss. Figure 15 (top) depicts the aggregated heating consumption of 

the 159 houses in the reference scenario for the period 3-8 January with external air temperatures 

as depicted in Figure 15 (middle). The marked consumption peaks (peak 1 and peak 2) occurring 

on January 4 and January 6, respectively, were chosen as targets for a DR scheme seeking to 

lower the daily fluctuation. The two DR events were 48 hours apart from one another to avoid 
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“spill over” from one DR event to the next, since such interaction complicates the task of 

determining the prices that yields a suitable response from a larger pool of buildings. The 

incentive for DR was the time-varying energy prices (𝑐𝑡) which was increased with different rates 

during predefined peak periods as depicted in Figure 14B. The duration of the peak periods with 

increased prices was set to four hours as marked in Figure 15 (bottom). The same part of the figure 

depicts the response from the building stock to the seven different peak period price scenarios.  

 

Figure 15 Top: Aggregated heating consumption from the UBEM. Middle: External air temperature for 

the period. Bottom: The response of the UBEM obtained by solving the optimization problem of Eq. (9a-

9e) with different peak prices during the four hours of the peak period. 

Figure 15 (bottom) indicates critical issues associated with the charging and discharging as a 

result of the DR scheme. During “Peak 1”, where external temperatures between 2°C and 5°C 

meant that over 50% of the heating system capacity in each building was available for charging, 

the amount of load shifting increased quickly as the incentive (i.e. the energy price during the 

peak) increased. Since the efficiency associated with load shifting decreases as the length of the 

load shift increases, the majority of the load shifting occurred in the hour just before the peak of 

the reference scenario.  While the same behaviour would be expected from “Peak 2”, the effect 

in this DR event was less evident due to colder external temperatures ranging from -8°C to -4°C 

(the coldest day of the dataset used for model calibration and validation), which meant that less 

than 10% of the heating system capacity was available for charging. While a high efficiency is 
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desirable, the simulations indicates that concentrated charging as a consequence of the DR scheme 

leads to the formation of new peaks in the hours prior to the peaks in the reference scenario. These 

new peaks increased in size as the peak price increased because it then becomes economically 

viable for more buildings to engage in the DR scheme. Another critical issue indicated by the 

figure is that the majority of the stored energy is discharged at an early stage of the reference case 

peak period, thus resulting in a much lower effect in the last hours of the peak period. This is 

problematic since the size of the peak seen over the four hour period is then hardly reduced. 

Finally, the relatively fast charging and discharging of the thermal mass would result in a fast rise 

and drop in indoor air temperature which may be uncomfortable to the occupants of the buildings.  

The critical issues that arises as a consequence of the current DR scheme suggests that 

modifications are necessary to achieve a more suitable response from the case buildings if the 

objective is to reduce peaks in the overall DH system.  The MPC optimization problem was 

therefore expanded with the constraints shown in Eq. (10a-10b). This expansion was an attempt 

to avoid steep indoor air temperature fluctuations while also preventing the creation of new peaks 

during the charging period. The latter was obtained by ensuring that charging and discharging 

was evenly distributed throughout their respective time windows.  

 ΦDR,𝑡 = Φref,𝑡 + ΔΦcharge ∀ 𝑡 ∈ 𝑃prepeak   
(10a) 

 ΦDR,𝑡 = Φref,𝑡 + ΔΦdischarge ∀ 𝑡 ∈ 𝑃onpeak    
(10b) 

In Eq. (10a-10b), ΦDR,𝑡 denotes the consumption during the hour 𝑡 resulting from DR activities 

while Φref,𝑡 refers to the consumption in the reference scenario without DR. The scalars ΔΦcharge 

and ΔΦdischarge denote the pre-peak increase and on-peak decrease in consumption; for instance, 

a value of ΔΦcharge = 100 indicates that a given building consumes an extra 100 W intended for 

storing energy in the thermal mass throughout the designated charging period.  

The price which yields the optimal response from the building stock may be determined by 

solving a series of optimization problems. Here, we introduce the Peak-to-Valley Ratio (PVR) 

which serves as a performance metric for the DR resulting from a given incentive. The PVR is 

derived from the consumption of the entire DR event (i.e. both the charging period and the 

following discharging period, denoted ΦDR,event). The PVR is defined by Eq. (11) and describes 

the relationship between the peak and the valley of the period and approaches zero as the 

consumption profile is flattened out through DR.  

 𝑃𝑉𝑅 =
max(ΦDR,event)−min(ΦDR,event)

min(ΦDR,event)
⋅ 100  (11) 

In addition to the ability of the DR scheme to reduce the daily fluctuations in demand, it is also 

relevant to evaluate the costs in terms of the energy losses associated with redistributing demand. 

Eq. (12) formalizes the load shifting efficiency used in this study, 𝜂DR, which was inspired by the 

formulation in [6] but modified slightly to make it consistent with the economic incentive that 

can be generated through load shifting. The index label “peak” refers to hours inside the peak 

period, while the label “offpeak” refer to hours on both sides of the peak. As such, ΦDR,offpeak 
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includes both the period prior to the peak with increased consumption (charging), and the period 

following the peak with reduced consumption due to leftover thermal energy still being 

discharged.  

 𝜂DR =
−∑Φref,peak−ΦDR,peak

∑Φref,peak−ΦDR,offpeak
⋅ 100  (12) 

Figure 16 depicts various metrics describing the response of the case buildings as a function of 

the price-increase imposed on them during the two peaks for new simulations featuring the 

constraints in Eq. (10a-10b). The response is presented in terms of the two ΔΦ variables of Eq. 

(10a-10b) aggregated across all buildings (top), shifting efficiency (𝜂DR) and the participation 

rate (middle), and PVR metric (bottom) along with the price that yielded the optimal value of the 

metric (red crosses). The PVRs to the left of this optimum indicate that prices are still too low to 

achieve the optimal amount of load shifting (if the objective is to lower the PVR), while values 

to the right of the optimum indicate the creation of new peaks due to excessive load shifting.  

 

Figure 16 Metrics describing the aggregated response of the buildings of the urban neighbourhood as a 

function of the increase in peak energy price. Top: Pre-peak increase and on-peak reduction in 

consumption. Middle: the efficiency and participation rate. Bottom: Peak-to-Valley Ratio (PVR) 

APPENDIX. SECONDARY PUBLICATIONS

188



31 

 

Figure 16 indicates several differences in how the case buildings responded to the two DR events. 

The main driver behind these differences was the significantly colder weather conditions in the 

period surrounding the second DR event. The aggregated amount of DR during Peak 1, i.e. both 

the positive (ΔΦcharge) and the negative (ΔΦdischarge), quickly grows to larger values as the peak 

price increases. During the second peak, the response of the case buildings was limited due to the 

lack of reserve heating capacity. Furthermore, the second row of graphs in Figure 16 indicate that 

the DR event during peak 2 was characterized by a higher efficiency than that of peak 1. This is 

also reflected in the different prices which caused the first building to engage in DR during each 

peak; 40% and 29%, respectively. The cause of the increased efficiency during the colder weather 

is tied to the venting model described in section 2.1.3, which assume increased natural ventilation 

in periods of milder weather. The higher air change rates associated with increased natural 

ventilation results in increased energy losses during the charging period, where indoor 

temperature levels are elevated to enable the flow of heat into the thermal mass of the building.  

Finally, the differences between the two peaks indicated on the two upper graphs are also reflected 

on the PVR metric depicted on the two lower graphs. The left side of the figure indicate that there 

is a serious risk of generating new peaks during the first DR event if the peak prices imposed on 

the buildings are too high, whereas the lack of reserve capacity eliminates this risk for the second 

DR event. Implementing the two prices which yielded optimal PVR values for each respective 

peak (marked with red crosses in Figure 16) produces the aggregated demand profile depicted in 

Figure 17.  

 

Figure 17 The response of the case buildings obtained by solving the optimization problem of Eq. (9a-9e) 

including the constraints of Eq. (10a-10b), and imposing the optimal increase in price indicated on 

Figure 16 during peak periods. 
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The demand profile shows that the case buildings were able to reduce their aggregated demand 

during the peak periods by engaging in the DR scheme. For Peak 1, the PVR was reduced from 

24.5% (122 kW) to 7.8% (43 kW) while the consumption in the peak hours was reduced by 6.3%. 

For Peak 2, the PVR was reduced from 17.6% (138 kW) to 5.9% (50 kW), while consumption in 

the peak period was reduced by 4.3%. The increase in price needed to incentivize the response 

from the case buildings were relatively high; 58% and 68% for Peak 1 and 2, respectively. This 

is due to the relatively low efficiencies (𝜂DR) at which load from the two peaks were shifted; 

66.1% and 65.2%, respectively, which imply that approximately a third of the energy dedicated 

towards load shifting is lost in the process. Here, one should note that these percentages are 

derived taking the reduced consumption following the end of the peak period (see Figure 17) into 

account. Comparison between the response depicted in Figure 17 and the responses occurring at 

much lower peak prices depicted in Figure 15 suggests that especially the requirement for evenly 

distributed DR affected the shifting efficiency and thus the size of the economic incentive needed 

to ensure economically feasible DR from the consumer point of view. This relationship agrees 

with the analysis of Reynders [60], who found that increasing the duration of a DR event 

significantly reduced the storage efficiency.  

The need to introduce constraints related to the way that the buildings conduct DR seems to be 

counter-intuitive to the concept of indirect DR. However, such constraints seem to be necessary 

due to the conflict of interest described by O׳Connell et al. [15] where the supply-side has a set 

of objectives related to ensuring efficient production and distribution of DH, while the objective 

of consumers is to minimize expenses. If constraints on the DR behaviour of consumers cannot 

be implemented, this conflict of interest may reduce the effectiveness of price-based DR. Another 

challenge related to price-based DR is the task of identifying the price signal that yields a suitable 

response from the consumers. Corradi et al. [61] investigated how models for predicting the 

response of consumers to time-varying prices in a power-systems context. The authors concluded 

that the assumption of a linear relationship between price and consumption in the presented 

models is an aspect in which the models could be improved, as the models currently could not 

describe saturations in the response of consumer. The differences in the responses seen in the case 

study of the present paper suggests that such capabilities would indeed be necessary. Furthermore, 

for thermostatic loads, such models should for obvious reasons account for the weather 

dependency of the price responsiveness of consumers.  

Given the conflicting objectives of the supply and demand sides, a relevant topic of future 

research is a comparative study of the efficiencies obtained through indirect price-based DR 

schemes and direct incentive-based DR schemes, respectively. An advantage of the latter is that 

the behaviour of the consumers is not tied to variation in a broadcasted price signal, but may 

instead be determined through centralized optimization and coordination of participants to ensure 

that the DR is carried out with the supply side objectives and efficiency in mind. In this case, the 

incentive would not be provided through time-varying prices, but e.g. directly through energy bill 

discounts. Finally, the analysis of this study indicated relatively high losses associated with load 

shifting, which may render the use of DR unfit for optimization of daily operation of district 

heating networks. Therefore, another topic of future research is to evaluate the DR potential in 
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the type of scenarios that are used for sizing of generation and distribution infrastructure, where 

even modest reductions may be associated with significant investment cost savings.  

4 Conclusion 

This paper describes a methodology for bottom-up energy modelling of the buildings in urban 

neighbourhoods with the purpose of investigating the aggregated demand response (DR) potential 

in model predictive control (MPC) of residential space heating. The methodology uses Bayesian 

calibration to identify both domestic hot water draw profiles and a second order building model 

describing the thermodynamics characteristics of each individual building. The methodology was 

applied for a case study featuring an urban area in the city of Aarhus, Denmark, consisting of 159 

single-family houses. The aggregated profile of hourly consumption for the neighbourhood 

simulated for an unseen one-month validation period indicated a high accuracy: A CVRMSE of 

5.58% and an NMBE of -1.39%. The calibrated urban building energy model was then used to 

investigate the efficiency at which MPC of space heating for larger groups of buildings may be 

used for DR purposes which are beneficial to the district heating production and distribution. In 

this case study, the objective was to lower the daily morning peaks in the demand profile caused 

by domestic hot water consumption. An indirect price-based DR scheme which involved elevated 

energy prices during peak hours were used to incentivize the buildings to participate in DR events. 

MPC was used to enable individual buildings to engage in DR by exploiting the inherent thermal 

mass of the buildings while maintaining the indoor temperature at comfortable levels. The DR 

scheme was found to be unfit for the peak reduction application since it resulted in the formation 

of new and larger peaks prior to the original peak. To prevent this, additional constraints were 

then introduced in the DR scheme, which ensured a more evenly distributed response from the 

participating buildings. This modified DR scheme allowed the buildings to reduce two 

investigated peaks by 6.3% and 4.3%, respectively. The introduction of additional constraints 

related to the distribution of DR efforts significantly affected the efficiency at which the buildings 

where able to shift consumption away from peak periods. This suggests that future research 

exploring and comparing various DR schemes on their effectiveness and efficiency at addressing 

various system performance objectives is needed. The modelling methodology presented in this 

paper seems well-suited for such analysis.  

The authors acknowledge that there are several aspects of the presented methodology which could 

be further improved upon. One issue to investigate is whether idealized assumptions such as a 

fully mixed air temperature distribution or an ideal heating system has a significant influence on 

the model outcome. Another issue is that data used for the calibration of individual buildings was 

captured under normal operating conditions, and may therefore not contain sufficient information 

for a trustworthy identification of all input parameters subject to calibrated. This is especially 

critical to the identification of the thermal capacity of the buildings. Future work is therefore 

recommended to investigate whether the proposed approach of using priors to reduce this issue 

yields models that are sufficiently accurate representations of the actual buildings. Finally, it 

would be interesting to investigate the effect of including indoor temperature measurements in 

the model calibration as well as the possibility of improving the quality of the calibration data by 
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imposing subtle excitation of the thermal dynamics of the buildings - e.g. through night setback 

strategies.  
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6 Nomenclature 

Abbreviations 

DR Demand response MAPE Mean absolute percentage error 

DH District heating MCMC Markov Chain Monte Carlo 

UBEM Urban building energy modelling PSRF Post scale reduction factor 

MPC Model predictive control NMBE Normalized mean biased error 

DHW Domestic hot water CVRMSE Coefficient of variance of the root mean squared error 

MAP Maximum a posteriori PVR Peak-to-Valley ratio 

Symbols and variables 

𝚽DH  Consumption rate: Vector of district heating measurements Φocc  Rate of heat gains from occupant metabolism 

Φsim  Consumption rate: Simulated energy consuming process Φapp  Rate of heat gains from appliances 

Φb  Consumption rate: Space heating component 𝐸app  Energy quantity: Annual electricity consumption for appliances 

ΦDHW  Consumption rate: Domestic hot water component 𝐴footprint  Building footprint area obtain from Building and Dwelling Register 

(see section 2.2) 

𝜖  Stochastic component (assumed normally distributed and 

i.i.d.)  
𝐸DHW  Energy quantity: Annual DHW consumption of a household 

𝜎  Standard deviation of normal distribution 𝑐𝑝,water  Specific thermal heat under constant pressure of water 

𝑿  Vector containing values for fixed parameters (see 

Appendix 1) 
𝜌water  Density of water 

𝜽b  Vector of calibrated building-specific parameters  𝑉occ  Annual consumption of hot water [𝑚3] 

𝜽DHW  Vector of calibrated DHW-specific parameters 𝑇DHW  Assumed temperature of tapping water 

𝑾  Matrix containing relevant weather measurements 𝑇mains  Assumed temperature of mains water 

𝑡  Time (in hours) in simulation 𝜃occ  Number of occupants of the household (calibrated) 

𝑛t  Duration of simulation (in hours) 𝚺B  Covariance matrix of Metropolis proposal distribution of building-

specific parameters 

𝑑  Categorical value describing the type of day 

(workday/weekend day) 
𝚺DHW  Covariance matrix of Metropolis proposal distribution of DHW 

parameters 

𝐶i  Thermal capacity of interior 𝜶  Vector of shape parameters for specification of prior Gamma 

distributions 

𝐶m  Thermal capacity of thermal mass (heavy building 

elements) 
𝜷  Vector of scale parameters for specification of prior Gamma 

distributions 

𝑇i  Temperature of interior 𝒄  Optimization problem: Vector of energy costs  

𝑇s  Surface temperature 𝒖  Optimization problem: Vector of control inputs (heating power) 
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𝑇m  Temperature of thermal mass 𝒅  Optimization problem: Vector of disturbances (weather conditions, 

internal gains) 

𝑇exterior  Outdoor air temperature 𝒙  Optimization problem: States of the state space models 

𝑇supply  Temperature of ventilation supply air 𝑨, 𝑩, 𝑪 and 𝑬 Matrices of state space representation of the building energy model 

(see Appendix 2) 

Φia  Internal gains affecting room air (interior node) 𝑃max   Optimization problem: Maximum available heating power  

Φst  Internal gains affecting internal surfaces 𝑇min, 𝑇max Optimization problem: Boundaries of allowed temperature interval 

during DR events 

Φm  Internal gains affecting thermal mass 𝚽DR  Vector of combined consumption rate of case-buildings in the DR 

scenario 

𝐴m  Effective surface area of thermal mass 𝚽ref  Vector of combined consumption rate of case-buildings in the 

reference scenario 

𝐻v  Ventilation and infiltration heat transfer coefficient (HTF) 𝚫𝚽charge  Vector containing the rates at which each case-building stores 

energy before peak 

𝐻w  HTF for transmission loss through windows (massless) 𝚫𝚽discharge  Vector containing the reduction in consumption of each building 

during peak 

𝐻em  HTF for transmission loss through opaque building 

envelope elements 
𝑃prepeak  Vector of hours in which charging is allowed of Eq. (10a) 

𝐻is  HTF between interior and internal surfaces 𝑃onpeak  Vector of hours in which discharging is allowed of Eq. (10b) 

𝐻ms  HTF between thermal mass and internal surfaces 𝑃𝑉𝑅  Peak-to-valley ratio of Eq. 11 

𝑏  Venting factor for scaling design air change rate 𝜂DR  Demand response efficiency as defined by Eq. 12 

 

Appendix 1: Parameters values and priors 

Table 2 lists the parameters used to parameterize the 5R2C reduced-order model used to describe 

the energy consumption of residential buildings in this study. Each parameter was either attributed 

a fixed value or given a prior distribution describing our a-priori beliefs related to the likelihood 

of the parameter value.  

Table 2 Fixed parameter values and priors of the building energy model. * indicates value defined by ISO 

13790:2008. 

 Model parameter Selected value Prior  

(where 

applicable)  Geometry   

1 Length-width ratio, LWR [-] 0.50  

2 Room height [m] 2.60  

3 Window-to-floor ratio, WFR [-] Calibrated 1961-78: 𝐵𝑒𝑡𝑎(5,25) 

4 Window frame fraction [-] 0.25  

5 Shading factor (overhang, surroundings) 0.5  

6 Internal surface-to-floor ratio 4.5*  

 Transmission & capacity   

7 Temp. adjustment factor (ground) [-] 0.70  

8 U-value (floors) [W/(m2K)] 0.5  

9 U-value (basement-walls) [W/(m2K)] 0.6  
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10 U-value (walls/roof) [W/(m2K)] Calibrated 
1961-72: 𝐺𝑎𝑚𝑚𝑎 (5,

0.6

5
)  

1973-78: 𝐺𝑎𝑚𝑚𝑎 (5,
0.3

5
) 

11 U-value (windows) [W/(m2K)] 1.6  

12 g-value (windows) [-] 0.60  

13 

Thermal capacity of interior [kJ/(m2K)] 

Assumed from experimental 

calibration: 

𝟒𝟓
𝒌𝑱

𝒎𝟐𝑲
  

 

14 Thermal capacity of heavy mass 

[kJ/(m2K)] 
Calibrated 1961-78: 𝐺𝑎𝑚𝑚𝑎(10,20) 

15 Effective mass area [m2/ m2] Regression, 𝑓(𝐶𝑚)  

16 Heat transfer coef. (mass-surf.) [W/(m2K)] 9.10*  

17 Heat transfer coef. (surf.-air) [W/(m2K)] 3.45*  

 Ventilation   

18 Infiltration airflow @ 50 Pa [l/s/m2] Calibrated 1961-78: 𝐺𝑎𝑚𝑚𝑎(5,
3

5
) 

19 Design airflow (nat. ventilation) [l/s/m2] 0.4  

 Occupancy   

20 Occupant density [m2 /pers.] Calibrated 1961-78: 𝐺𝑎𝑚𝑚𝑎(10,6) 

21 Occupant heat load [W/pers.] 80  

22 Room heating set point [oC] 20  

23 Appliances heat load [W/m2] Regression, 𝑓(𝐴𝑓 , 𝑛𝑂𝑐𝑐)  

 Domestic hot water   

24 DHW flow temperature [oC] 55.0  

25 Mains temperature [oC] 10.0  

26 Hot water consumption [m3/pers./year] 15  

 

The prior for the DHW model parameters were specified as Gamma distributions. The same prior 

was specified for the “workday” and the “weekend” profiles, respectively. The priors describe the 

probability distribution of DHW consumption in a given hour as a share of the daily consumption 

in percent. 

Table 3 lists the shape parameter and the mean associated with each hour, which may be expressed 

as 𝜇 = 𝛼𝛽. The values correspond to the contours of Figure 9. 

Table 3 Prior specification for DHW profiles. Based on data from 107 British residential buildings [55]. 

hour, i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

α 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

μ = α β 1.8 1.1 0.8 0.7 1.4 1.7 4.4 8.9 7.5 6.0 5.6 5.0 4.3 3.5 3.0 3.1 3.6 5.3 7.6 7.1 6.0 6.0 4.1 2.5 
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Appendix 2: State space model representation 

This appendix presents a continuous-time state space representation of the modified ISO 13790 

building model. For readability, the state space model is presented in a version relying only on a 

single input for solar, and thus deviates slightly from the version used in the case study, where 

four solar inputs were used (north/east/south/west). If representation of solar from all four cardinal 

directions is needed, the model may readily be adapted by replacing the second column 

(aggregated solar contribution) of the matrix 𝐵 with four individual columns – one for each 

cardinal direction.  

𝑨(𝑘) =

[
 
 
 
 
−𝐻𝑣𝑒(𝑇𝑎)+𝐻𝑖𝑠⋅(

𝐻𝑖𝑠
𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠

−1)

𝐶𝑎

𝐻𝑚𝑠⋅𝐻𝑖𝑠

(𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠)⋅𝐶𝑎

𝐻𝑚𝑠⋅𝐻𝑖𝑠

(𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠)⋅𝐶𝑚

𝐻𝑚𝑠⋅(
𝐻𝑚𝑠

𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠
−1)−𝐻𝑒𝑚

𝐶𝑚 ]
 
 
 
 

  

𝑩(𝑘) =

[
 
 
 
 
 (𝐻𝑣𝑒(𝑇𝑎) +

𝐻𝑖𝑠⋅𝐻𝑤

𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠
) ⋅

1

𝐶𝑎
(

𝐻𝑖𝑠⋅(1−
𝐴𝑚
𝐴𝑡

−
𝐻𝑤

ℎ𝑚𝑠⋅𝐴𝑡
)

(𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠)
) ⋅

𝐴𝑤

𝐶𝑎
(

𝐻𝑖𝑠⋅(0.5−
0.5⋅𝐴𝑚

𝐴𝑡
−

0.5⋅𝐻𝑤
ℎ𝑚𝑠⋅𝐴𝑡

)

𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠
+ 0.5) ⋅

1

𝐶𝑎

1

𝐶𝑎

(
𝐻𝑚𝑠⋅𝐻𝑤

𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠
+ 𝐻𝑒𝑚) ⋅

1

𝐶𝑚
(

𝐻𝑚𝑠⋅ (1−
𝐴𝑚
𝐴𝑡

−
𝐻𝑤

ℎ𝑚𝑠⋅𝐴𝑡
)

𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠
+

𝐴𝑚

𝐴𝑡
) ⋅

𝐴𝑤

𝐶𝑚
(

𝐻𝑚𝑠⋅(0.5−
0.5⋅𝐴𝑚

𝐴𝑡
−

0.5⋅𝐻𝑤
ℎ𝑚𝑠⋅𝐴𝑡

)

𝐻𝑤+𝐻𝑖𝑠+𝐻𝑚𝑠
+

0.5⋅𝐴𝑚

𝐴𝑡
) ⋅

1

𝐶𝑚
0
]
 
 
 
 
 

  

𝐶 = [1 0]  

𝐷 = [0 0 0 0]  

The matrix describing how inputs act on the model, 𝑩(𝑘), are organized such that the columns 

refer to the following four inputs: 𝑢 = [𝑇exterior, Φsolar, Φint, Φh]. Here, Φsolar is the solar heat 

gains per window area (in 𝑚2), while Φint denote the internal loads, respectively. In the context 

of the optimization problem of Eq. (9a-9e), the matrices 𝑩 and 𝑬 of Eq. (9b) are obtained by 

separating out the first three columns of the 𝑩(𝑘) matrix listed here and forming the disturbance 

matrix, 𝑬. The last remaining column (the new 𝑩) describes the effect of our control variable (Φh) 

on the model. The time-varying parameter, 𝐻ve depends on the external temperature, 𝑇a in the 

following way:  

𝐻𝑣𝑒(𝑇𝑎) =  𝑐𝑝,air ⋅ 𝜌air . (𝑞infiltration  +  𝑞venting(𝑇a)) ⋅ 𝐴footprint 

Where 𝑞infiltration is a specified infiltration air flow per square-meter, while the air change from 

venting is given by:  

𝑞venting(𝑇a) = 𝑏(𝑇a) ⋅ 𝑞designflow 

In this study, the design air changes (𝑞designflow) was fixed at 0.4 
𝑙

𝑠⋅𝑚2 and the scaling factor for 

venting, 𝑏, was defined as:  

𝑏 =
𝑒0.25𝑇a−0.25

1 + 𝑒0.25𝑇a−0.25
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Appendix 3: Model validation 

Figure 18 shows the obtained estimates of model parameter posterior distributions, which were 

approximated using non-informative priors to remove any influence of our own beliefs related to 

the likeliness of parameter-values.  

 

Figure 18 Estimates of model parameter posterior distributions for the modified model structure. The 

estimates were obtained from the calibration using measurement data from a terraced house. Red 

markers indicate the ML-estimate of model parameters of the modified model used for the model-

comparison of Figure 2 (lower graph). 

The estimates of the thermal capacity of the heavy building components is seen to be higher than 

the values attributed to any of the building classes of the 13790 standard. Whether this difference 

can be attributed to the increased excitation of the buildings thermal mass during the dynamic 

measurement experiments was not investigated further.  

The broad posteriors of the infiltration rate and envelope U-value indicate that distinguishing 

between these two heat loss phenomena using the measurements of this dataset alone is difficult, 

thus agreeing with the conclusions drawn in [40]. A strong correlation was found between the two 

heat loss parameters (-0.99), thus indicating that whenever a high estimate the heat loss through 

transmission (Envelope U-value) appeared in the posterior, this added heat loss was compensated 
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for through a lower infiltration heat loss (Infiltration rate) and vice versa. This effect is clear if 

we add the heat losses of each of the two components together, thus obtaining a much more 

confined estimate of the posterior distribution for the overall heat loss, as depicted on the lower-

right histogram of Figure 18.  

Typically, such a strong correlation between two parameters would suggest that changes should 

be made - either to the set of calibrated parameters or to the model structure itself. Such a change 

could be to infer the combined heat loss coefficient instead of its components which, as indicated 

by Figure 18, is much easier to identify. While this would remove the issue with strongly 

correlated parameters, it would introduce a need for assumptions regarding the distribution of the 

total heat loss – this without even ensuring a better performance of the resulting model. Because 

of this, and because the objective of this work is not necessarily to obtain the “true” parameter 

estimates, we opted to keep the initially proposed structure and set of calibration parameters.  
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