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Abstract
Agricultural vehicles such as tractors and harvesters have for decades been able to navigate

automatically and more efficiently using commercially available products such as auto-steering

and tractor-guidance systems. However, a human operator is still required inside the vehicle

to ensure the safety of vehicle and especially surroundings such as humans and animals. To

get fully autonomous vehicles certified for farming, computer vision algorithms and sensor

technologies must detect obstacles with equivalent or better than human-level performance.

Furthermore, detections must run in real-time to allow vehicles to actuate and avoid collision.

This thesis proposes a detection system (TractorEYE), a dataset (FieldSAFE), and procedures to

fuse information from multiple sensor technologies to improve detection of obstacles and to

generate a map.

TractorEYE is a multi-sensor detection system for autonomous vehicles in agriculture. The

multi-sensor system consists of three hardware synchronized and registered sensors (stereo

camera, thermal camera and multi-beam lidar) mounted on/in a ruggedized and water-resistant

casing. Algorithms have been developed to run a total of six detection algorithms (four for

rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection in-

formation in a common format using either 3D positions or Inverse Sensor Models. A GPU

powered computational platform is able to run detection algorithms online. For the rgb camera,

a deep learning algorithm is proposed DeepAnomaly to perform real-time anomaly detection of

distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is – compared

to a state-of-the-art object detector Faster R-CNN – for an agricultural use-case able to detect

humans better and at longer ranges (45-90m) using a smaller memory footprint and 7.3-times

faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for

real-time applications running on an embedded GPU.

FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture.

The dataset includes synchronized recordings from a rgb camera, stereo camera, thermal cam-

era, 360-degree camera, lidar and radar. Precise localization and pose is provided using IMU and

GPS. Ground truth of static and moving obstacles (humans, mannequin dolls, barrels, buildings,

vehicles, and vegetation) are available as an annotated orthophoto and GPS coordinates for
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moving obstacles.

Fusion and Mapping. Detection information from multiple detection algorithms and sensors

are fused into a map using Inverse Sensor Models and occupancy grid maps.

This thesis presented many scientific contribution and state-of-the-art within perception for

autonomous tractors, this includes a dataset, sensor platform, detection algorithms and proce-

dures to perform multi-sensor fusion. Furthermore, important engineering contributions to

autonomous farming vehicles are presented such as easily applicable, open-source software

packages and algorithms that have been demonstrated in an end-to-end real-time detection

system. The contributions of this thesis have demonstrated, addressed and solved critical issues

to utilize camera-based perception systems that are essential to make autonomous vehicles in

agriculture a reality.
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Resumé
Landbrugsmaskiner, såsom traktorer og mejetærskere, har i årtier navigeret automatisk og

effektivt med kommercielt tilgængelige produkter (auto-steering og tractor-guidance). Det

kræver dog en operatør for at sikre såvel landbrugsmaskinen og specielt sikkerheden af omgi-

velserne såsom mennesker og dyr. For at få autonome køretøjer certificeret til landbrug, skal

computeralgoritmer og sensorteknologier udføre detektion af forhindringer på et niveau der er

tilsvarende eller bedre end menneskers. Endvidere, skal detektionsalgoritmer afvikles i realtid,

så køretøjet kan handle og undgå kollision.

Bidraget af denne afhandlingen er et system til detektion af forhindringer (TractorEYE), et

datasæt (FieldSAFE), og procedurer til at sammenkoble og udnytte information fra forskellige

sensorteknologier/algoritmer for at forbedre både detektion og genereringen af kort.

TractorEYE er et system bestående af tre sensorer (stereokamera, termisk kamera og multi-

beam lidar) til detektion af forhindringer for autonome køretøjer i landbrug. TractorEYE består

af synkroniserede og registrerede sensorer monteret i en mekanisk robust og vandafvisende

kasse. Enheden består af seks algoritmer til detektion (fire til rgb kamera, én til termisk kamera

og én til multi-beam lidar) og omdanner information fra forskellige algoritmer til et fælles

format med enten 3D positioner eller med Inverse Sensor Models. En GPU accelereret bereg-

ningsplatform er i stand til at afvikle algoritmerne i realtid. Et bidrag i denne afhandling er en

kamerabaseret deep learning algoritme, DeepAnomaly, til at udføre realtidsdetektion af anor-

maliteter, der i en landbrugssammenhæng ofte er fjerne, tildækkede eller ukendte forhindring

eller elementer. DeepAnomaly er – sammenlignet med den førende algoritme til detektion af

objekter Faster R-CNN – i et landbrugsscenario i stand til at detektere mennesker bedre og på

længere afstand (45-90m) med et lille hukommelsesforbrug og 7.3 gange hurtigere behandling.

Det lave hukommelsesforbrug og den korte processeringstid gør DeepAnomaly egnet som et

realtidssystem på en indlejret GPU til landbrug.

FieldSAFE er et multi-sensor datasæt til detektion af statiske og dynamiske forhindringer i land-

brug. Datasættet består af optagelser fra webcam, stereo kamera, 360-graders kamera, lidar og

en radar. Præcis lokalisering og orientering er beregnet med IMU og GPS. For at kunne evaluere

algoritmer til detektion er den sande placering af alle statiske elementer i marken (menne-
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sker, mannequindukker, tønder, bygninger, veje, køretøjer, læhegn og vegetation) tilgængelige

som et annoteret ortofoto, og forhindringer i bevægelse er angivet med GPS koordinater over tid.

Fusion and Mapping Detektionsinformation fra mange algoritmer og sensorer fusioneres til et

kort med Inverse Sensor Models.

Denne afhandling præsenterer mange videnskabelige bidrag og førende forskning inden for

perception til autonome køretøjer i landbrug. Dette inkluderer et datasæt, en sensorplatform,

algoritmer til detektion og procedurer til at sammenkoble og udnytte information fra et multi-

sensorsystem. Ydermere, præsenteres mange ingeniørrelaterede og realiserbare bidrag til au-

tonome landbrugsmaskiner, såsom nemt anvendelig og frit tilgængelig software-pakker og

algoritmer der er blevet demonstreret i et komplet perceptionssystem til detektion af forhin-

dringer. I denne afhandling er der demonstreret, adresseret og løst kritiske problemer for

kamerabaserede perceptionssystemer der er afgørende for at autonome køretøjer i landbrug

kan blive en realitet.
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Preface
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Denmark (Project No. 16-2014-0) called Safer Autonomous Farming Equipment (SAFE) with the

goal of improving safety for both traditional and autonomous vehicles in the agricultural domain

(Figure 1). The project is a collaboration between AgroIntelli, Claas Agrosystems, Conpleks

Innovation, Key Research, Aarhus University (AU) and University of Southern Denmark (SDU).

Traditional tractors

Autonomous 
machines

STOP

SLOW

Figure 1: Illustration of the SAFE project. Traditional tractors: Perception to warn the farmer of
potential hazards. Autonomous machines: Perception to enable the machine to act
according to surroundings.
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1 Introduction

Our senses are essential in our daily lives. They allow us to perceive our surroundings and act

accordingly. By working together, our senses enable us to do advanced tasks like driving a car,

doing sport, or being social. Similarly, autonomous systems are required to sense and perceive

surroundings to perform intelligent tasks and complete a given purpose.

Sensing is a basic ability of humans, and we are able to interpret visual information and sound

in the blink of the eye [20]. Researchers have for decades struggled to give similar abilities to

computers. However, a recent breakthrough – defined as Deep learning – have given computers

human-level capabilities for interpreting visual information [21–25], sound/sequential data

[26, 27] and learning to control a system from previous experiments (reinforcement learning)

[28]. The sudden improvement of computers to interpret and act on sensor information has

created a new potential for autonomous systems to perform more complicated actions - such

as driving a vehicle.

Large funds are invested into self-driving cars by automotive companies, mega-corporations

and startups1, among which many have demonstrated autonomous vehicles as both proto-

types and commercial products. Recently, agricultural companies have also demonstrated

autonomous farming vehicles [29–31].

Agricultural vehicles such as tractors and harvesters have for decades been able to navigate

automatically and more efficiently using commercially available auto-steering and tractor-

guidance systems. The crucial deficiency of these systems is that a human operator is still

required inside the vehicle to ensure the safety of the vehicle itself, humans, animals, and

other surroundings. In order for an autonomous vehicle to operate safely and to be certified

for unsupervised operation, it must perform high-accuracy real-time risk assessment and

accidence avoidance in the field with high reliability.

1Tesla, Google/Waymo, Uber/Otto, Apple, Nvidia, Ford, Audi, Mercedes, Mapillary and Intel/Mobileye
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Chapter 1. Introduction

Autonomous vehicles in the automotive industry and agriculture share a set of similar disci-

plines such as obstacle detection, sensor fusion, localization, mapping, planning, control and

navigation. Specific to a self-driving car is higher speeds, which require lower latency processing

and detection at longer range. Additionally, interacting with other cars, pedestrian and bicycles

makes planning and navigation far more challenging.

However, obstacle detection in agriculture introduces a set of specific challenges. In the auto-

motive industry, a depth-based sensor such as a lidar can exploit that all obstacles protrude or

reside on the road surface. This simple heuristic enables depth-based algorithms to detect both

known and unknown obstacles. In agriculture, obstacles may not protrude the crop surface and

may reside below or just above an uneven surface. This introduces heavy occlusion of obstacles

and depth-based sensors are less reliable for detecting both known and unknown obstacles.

Furthermore, self-driving cars are also able to detect obstacles by finding elements that do not

conform to pre-generated and detailed 3D map. Maps are useful in the context of agriculture,

but a detail 3D map cannot similarly be used for obstacle detection, simply because crops and

fields are constantly changing in appearance and extend. High performance real-time obstacle

detection algorithms for agriculture are therefore an important criteria for improving safety and

ultimately realizing autonomous farming machines.

The automotive industry can easily exploit the vast amount of existing and labelled datasets

such as Kitti [32] and Cityscapes [33] to perform evaluation and push forward the development

of detection algorithms. Similar high-quality datasets are not available in agriculture. A multi-

modal dataset for object detection in agriculture is therefore important to evaluate detection

algorithms and to push forward development of autonomous vehicles in agriculture.

1.1 Contributions

This thesis proposes a multi-modal data set for agriculture FieldSAFE, a multi-sensor obstacle

detection system TractorEYE and procedures for fusing detection information into a map. Re-

search contributions are presented in Figure 1.1 and divided in five subjects; Sensor Platform,

Data Collection, Obstacle Detection, Sensor Registration & Detection Alignment and Localiza-

tion, Fusion and Mapping. The dissertation and sections complete the pipeline and flow of

information for a multi-modal perception system. As represented in Figure 1.1, sensor data or

images are processed by a detection algorithm. Detections from various algorithms and sensors

are transformed into a common format as either 3D detections or a local grid maps defined as

Inverse Sensor Models. Finally, various detections algorithms and sensors can with – an ISM

representation – be fused in a map.

Sensor Platform The sensor platform is a multi-sensor tractor-mountable platform with six

exteroceptive sensors (rgb camera, rgb 360-degree, stereo camera, thermal camera, radar, and

lidar) and two localization/odometry sensors (RTK GPS, and IMU). Procedures for calibrating,

synchronizing and registering sensors are performed. A thermal calibration panel is proposed

to calibrate and determine extrinsic parameters of thermal and rgb cameras.

Data Collection Data has been gathered from a tractor to get realistic data in terms of me-

chanical vibrations and to capture natural elements for an agricultural field (field, houses,

roads, shelterbelts, trees and vehicles). To also simulate hazard situations mannequins, barrels,

2



1.1. Contributions
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Figure 1.1: Summarizing contributions of the thesis. FieldSAFE is the outcome of Sensor Plat-
form and Data Collection. TractorEYE is the outcome of Sensor Platform, Data
Collection, Obstacle Detection, Sensor Registration & Detection Alignment. Images
are captured by the sensor platform. Obstacle detections are performed on image
and other sensor data. These detections are represented in a common format (3D
detections or inverse sensor models). Detection information is finally fused in a
map.

hydrants and wells are placed and humans are lying, sitting, standing and walking in the field.

Drones are used before, under and after data collection to gather ground truth of static elements

and moving humans in the field .

Obstacle Detection State-of-the-art detection algorithms have been investigated for autonomous

vehicles in agriculture. Namely, a pedestrian detector "Local Decorrelation For Improved De-

tection" (LDCF), three deep learning object detectors (YOLO, YOLOv2 and faster R-CNN),

a fully convolutional neural network for semantic segmentation (FCN) and DeepAnomaly.

DeepAnomaly is real-time deep learning-based anomaly detector for detecting distant, heavy

occluded and unknown obstacles in the field. For a human use case in agriculture, it performs

better than state-of-the-art (YOLO, Faster R-CNN, FCN). Additional two algorithms have been

proposed. One for detecting a specific ISO-specified barrel "Using Deep Learning to Challenge

Safety Standard" and one for detecting wildlife from an UAV "Detection and Recognition of

Wildlife using Thermal Camera".

Sensor Registration & Detection Alignment The purpose is twofold. Sensor registration in-

volves determining extrinsic and intrinsic parameters for all sensors. A thermal calibration

panel is proposed to calibrate thermal camera and rgb camera. Detection alignment is pro-
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cedures to map detection information from various sensors and algorithms into a common

format. This is done either by representing detections as 3D coordinates – defined by the safe

protocol GH8 – or Inverse Sensor Models to later enable detections to be fused into a map

Localization, Fusion and Mapping Localization, fusion and mapping is a set of procedures to

fuse information from seven detection algorithms – across four sensors – into a map2

FieldSAFE is the outcome of contributions in Sensor Platform and Data Collection. FieldSAFE is

a multi-modal dataset for detection of static and moving obstacles in agriculture. Ground truth

of static and moving obstacles are available as an annotated orthophoto and GPS coordinates

through time for moving obstacles.

TractorEYE is the outcome of contributions in Sensor Platform, Data Collection, Obstacle Detec-

tion, Sensor Registration & Detection Alignment. TractorEYE is a multi-sensor detection system

for autonomous vehicles in agricultural. ROS-packages have been developed to run a total of six

detection algorithms (LDCF, YOLOv2, FCN, DeepAnomaly, dynamic heat detection and a SVM

classifier for lidar[34]3) and additional algorithms to transform detection information into a

common format by either mapping detections to 3D positions or with an Inverse Sensor Model.

1.2 Organisation of Dissertation

The thesis is organized into three parts.

Part III: A Survey of deep learning algorithms for image recognition. Survey is divided into

five headings; Convolutional Neural Networks (CNN) for Image Classification, Object

Detection, Semantic Segmentation and Efficient Deep Learning

Part III: Summary of thesis work and contributions presented in Figure 1.1. Research contribu-

tions are divided in five subjects; Sensor Platform, Data Collection, Obstacle Detection,

Sensor Registration & Detection Alignment and Localization, Fusion and Mapping

Part III: Attachment of 10 selected papers.

2Fusion and mapping have been developed in collaboration with Timo Korthals from Bielefeld University
3This was developed by Mikkel Fly Kragh and is not covered in thesis summary.
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2 Deep Learning for Image
Recognition

Deep learning and image recognition have been a main research area of this thesis. This section

is dedicated to a survey on deep learning for image recognition.

2.1 Deep Learning

Deep learning have dramatically improved multiple state-of-the-art tasks [35] in image data

(such as image classification [36], object detection [37], semantic segmentation [19], face detec-

tion [38], face recognition [25]) and sequential data (speech recognition [39], detection Cardiac

Arrhythmia [27]). Deep learning methods consist of multiple layers of simple and non-linear

operations that for each layer, transform the current layer into a higher representation/abstrac-

tion. Using typically a batch of samples, the backpropagation algorithm specifies how to update

the internal model parameters to optimize for a given task [35]. Ideally, the model will iterate

and converge to some generalizable, local minimum solution.

Multiple aspects separate deep learning from many previous conventional/classic machine

learning methods.

One important aspect is that Deep learning models are able to be trained end-to-end. This

powerful concept, allows a single model to map high dimensional (and potentially raw) data

to a desired output. This avoids the time consuming task of engineering specific handcrafted

features and combining subsequent steps of processing to solve a specific case. The model

is simply optimized to automatically create optimal processing steps and high abstraction

features [40] to solve a given task. This is illustrated in Figure 2.1.

The modular structure and end-to-end training, makes deep learning generic/general purpose,

allowing the same language, modules, optimization procedures and frameworks to be shared
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Feature 
extraction

Preprocessing

Classic Machine Learning

Classification Classification/
Optimization

Deep learning
End-to-end training

Preprocessing/
Augmentation

Figure 2.1: Classic machine learning vs Deep learning. Classic machine learning requires a
preprocessing and a feature extraction step before optimizing a classifier. Deep
learning is trained end-to-end.

across multiple machine learning discipline (image, time-series/audio and natural language

processing) in many domains (agriculture, medicine, automotive, economics).

Another key aspect of Deep learning models is the high capacity and that a model may con-

tain millions of parameters without overfitting [41] - even above 100 million parameters [42].

This enables them to consistently learn from new data as demonstrated in Figure 2.2. This

assumption has recently been confirmed by Google using 300M images to train a model [43].

Classic Machine 
learning

Deep learning

P
er

fo
rm

a
n

ce

Amount of data

Figure 2.2: Deep learning learns from more data. Inspired by Andrew Ng

In image detection, high capacity enables models to classify many object types and to model

intra-class variation of a specific class caused by occlusion, deformation, camera viewpoint

variation, illumination variation and scale variation. Most importantly, deep learning based

methods achieve state-of-the-art performance in many benchmarks [32, 33, 44–47] and deliver

human-level or professional-level performance in a range of new areas such as traffic sign

classification [24], image classification [23], speech recognition [48], conversational speech

recognition [26], lip reading [21], skin cancer classification [22], cardiac arrhythmia detection

[27].

A drawback of CNN-based models is the requirement of enough data to generalize for a given

task. Transfer learning [49, 50] is the concept of fine-tuning an already trained model to a

new task with significantly less samples. However, the task and data of the pre-trained model
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should for especially high abstraction layers be similar to the new task. Another drawback

is the hierarchical structure of deep learning models that causes the processing load to grow.

Utilization of GPU, low cost of computing, deep learning accelerated libraries (cuDNN) and

model improvements have reduced the processing time.

Especially two powerful neural network structures have pushed improvements of deep learning.

Recurrent Nets (LSTM [51] and GRU [52]) for processing of sequential data and natural language

processing and Convolutional Nets [53, 54] in images. Especially a combination of the network

structures is able to shape powerful applications for speech recognition [39, 48], video activity

recognition, image captioning, video description [55], object tracking in video [56], lip reading

[21], head pose, facial landmark localization [57]. Finally, Generative Adversarial Networks

(GAN) [58] and reinforcement learning [28] have presented interesting results for deep learning

based methods.

Convolutional Neural Network (CNN) have demonstrated great performance for supervised

image recognition. The following section covers, CNN-based networks for supervised im-

age recognition with the following headings; image classification, object detection, semantic

segmentation and efficient deep learning.

2.2 Convolutional Neural Networks (CNN) for Image Classifi-

cation

Image classification is the task of providing object class or a set of object classes that are

presented in an image. ImageNet [44] includes an image classification benchmark with a large

dataset of more than 1 million images and 1000 object classes. The benchmark has played

a key role for CNN-based methods and became a prestige competition for both universities

and mega-corporations (Google, Microsoft and Baidu) to publish and improve on existing

results/methods.

The breakthrough of deep learning is often credited to AlexNet [36] in 2012 for winning ImageNet

by a large margin using a CNN consisting of convolutional layers [53, 54], a Rectified Linear unit

(ReLU) [59] as activation function, max-pooling for subsampling and two fully connected layers

with dropout [60] before the final softmax layer. The network is trained using backpropagation

[61–64] and Stochastic Gradient Descent (SGD).

Core concepts of AlexNet [36] such as convolutional layers, SGD, and backpropagation have

been introduced decades ago [? ] and used in LeNet [54, 65]. The sudden improvement of

CNN in 2012 can be explained by the existence of large annotated datasets, utilization of GPU

hardware (with sufficient memory) and network improvements such as dropout and ReLU that

enables a model to converge on natural images.

In 2013 the image classification competition was won with a ZFNet [40] network by adding only

minor adjustments to AlexNet. More interestingly, they managed to visualize high abstraction

features and to demonstrate the power of an ImageNet pre-trained model on other small image

datasets. In 2014, the best single model performance was achieved with a VGG network [42].

VGG uses a simple network structure with only 3×3 kernels in 16 convolutional layers. Though
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the best single model was VGG, the winning team of 2014 used an ensemble of GoogLeNet [66]

networks. The main component of GoogLeNet is an inception module using 1×1 convolutions

[67] to reduced computations and parameters of the network. Global average pooling [67] is

used prior to the first FC-layer to dramatically reduce the number of parameters in the first

FC-layer compared to e.g. AlexNet and VGG. GoogLeNet has improved multiple times [68–70].

In following years, network improvements were derived from the concept, that more layers are

better – also stated by GoogLeNet “We need to go deeper”. However, training a deeper network

is not as simple as adding more layers [71, 72], and training becomes difficult for more than five

layers [73]. In GoogLeNet more layers are successfully stacked by adding auxiliary classifiers in

intermediate layers. In VGG, depth is increased by first training a moderate model and then

iteratively concatenate more layers and retrain.

The degradation problem [72], states that the accuracy performance of deep CNNs will even-

tually saturate and degrade rapidly if more layers are constantly added. In training, the input

and gradients must flow through the whole network without vanishing or exploding. Careful

initialization has proven to avoid the issue of vanishing gradients. He Kaiming demonstrated

the importance of weights initialization in [23] to match ReLU / PReLU activation functions,

which enabled networks with up to 30 weight layers to be trained from scratch. Further research

was presented in [74] to demonstrate the consequence of too small or too large weights for an

increasing number of layers. Batch normalization [68] makes weight initialization less critical

by normalizing the output of each convolutional layers before activation. Batch normalization

is now commonly used in CNNs to improve accuracy and train using fewer epochs. A remaining

problem of traditionally stacked networks is that low-level features and output gradients are

forced to propagate through all intermediate layers in the network.

To get beyond 100 layers in a network, information must be able to flow unobstructed both

forward and backwards through the network. Forward to allow useful low level features to be

used in higher layers or directly in the classification layer. Backwards to have gradients train

directly on low level layers and to avoid vanishing gradients. Highway networks [71] are first to

address the information flow problem using gating units to stack 100 layers. Gating units allow

information to jump multiple layers using information highways. The information problem is

also handled in ResNet network [72]. ResNet is the winner of the ImageNet competition in 2015

with 152 stacked layers. A parametric free identity mapping between layers allows information

to always be passed through the network. In Highway network information is potentially gated

from the “highway”. ResNet is improved in [75] by moving the ReLU activation outside the skip

connection. This ensures that the flow of information is not constrained to only positive values

and 200 layers are successfully stacked for image classification on ImageNet.

DenseNet [76] improves information flow by densely connecting all layers of the network by

concatenating feature maps of all previous layers. This would presumably cause the number

of feature maps, parameters and computations to explode for an increasing number of layers.

Somehow counter-intuitively, DenseNet introduces only a small set of kernels for each layer

and requires in practice less parameters and computations than a ResNet-based architecture

with similar classification accuracy. The reason for this is that low level features / states are

concatenated in a separate lane in DenseNet. The number of newly introduced kernels for each

layer should only represent new features and are not required to also represent features from all

previous layers.
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The pursuit of extreme depth (>1000 layers) is computationally inefficient and designs with

wider architectures are starting to emerge such as ResNeXt [77] and Wide ResNets [78]. Merging

calculation into fewer large layers runs more efficiently and provides similar results as extremely

deep networks.

2.3 Object Detection

An object detection algorithm must both recognize and localize instances of one or more

specific object classes in an image or a video.

The first real-time applicable object detection algorithm was introduced by Viola and Jones

[79, 80] using haar features, sliding window and AdaBoost [81]. Accuracy is improved in [82]

using Histogram of Oriented Gradients (HOG) and a SVM classifier for pedestrian detection.

A better and faster pedestrian detection was later introduced by Dollar [83] and improved in

multiple publications [17, 83, 84]. All of the above methods uses a fixed aspect ratio bounding

box to detect only one object type. Various aspect ratios and object types are detectable by

Deformable Parts Model (DPM) [85, 86]. DPM have been popular in the late 2000s for object

classification tasks such as the PASCAL VOC object detection competition with 20 object classes.

The performance is, however, not near the performance of recent deep learning based object

detection methods.

Deep learning algorithms have dramatically improved state-of-the-art on object detection [35].

Deep learning object detection was – similar to image classification – kick-started by ImageNet

in 2013, when the benchmark was extended with an object detection task with 200 object

classes across 400,000 images. The possibility to constantly evaluate and compare results has

shifted the research community to other benchmarks. Especially the older PASCAL VOC [45]

benchmark with 20 object classes in 11,000 images and MS COCO [87] with more than 300.000

images across 80 object classes is frequently updated with the recent state-of-the-art. Many

automotive-related dataset with associated online benchmarks are popular such as Kitti [32]

and CityScapes [33].

CNN-based object detectors consist of typically a fully convolutional network (feature extractor)

followed by a task-specific recognition part used for e.g. image classification, object detection,

semantic segmentation or instance segmentation. Adapting the terminology from [88], the

feature extractor is defined as the backbone part of the network and the task specific recognition

is defined as the head of a network. In the survey of object detection, we will only describe

the network head as this can be used with any backbone architecture (LeNet, AlexNet, VGG,

GoogLeNet, ResNet, DenseNet, ResNeXt).

A naive CNN-based object detector can use an image classification network to perform sliding

window across the image at multiple scales. This can be implemented more efficiently by

reshaping fully connected layers to convolutions as described in [19, 38, 89]. Sermanet won

with OverFeat [89] the ImageNet localization challenge in 2013 using a sliding window approach

combined with four regression outputs to improve localization.

Ross Girshick proposes in [37] to combine Regional proposals with a CNN (R-CNN) to win the

2014 ImageNet detection benchmark with a large margin over OverFeat. A region proposal
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algorithm such as Selective Search [90] or later the faster EdgeBox [91] is used for generating

many potential object regions. Each region is squeezed to a fixed size, forwarded through a

network and classified using a Support Vector Machine (SVM). Region proposal methods have

improved in several iterations [88, 92–94] to a more unified end-to-end system that delivers

state-of-the-art accuracy for object detector [88, 95]. Kaiming He proposes in [92] to use Selective

Search in combination with a Spatial Pyramid Pooling (SPP)-module. Unlike R-CNN, the image

is only forwarded through the convolutional layers once, and the SPP-module extracts features

from a region and performs classification. A Region-Of-Interest (ROI) module is introduced in

Fast R-CNN [93] to pool features for each region to a feature vector. The feature vector is used in

a multi-task loss function to classify objects and improve localization of region using regression.

A Region Proposal Network (RPN) was introduced in Faster R-CNN [94] to make a complete

end-to-end system of close to real-time performance. The RPN is a convolutional module

that provides k bounding boxes (potential objects) at each position. Each bounding box is

defined by an anchor – a prior bounding box shape with predefined scale and aspect ratio – and

two outputs; a box-classification output of 2×k values (box or not box) and a box-regression

output of 4×k to specify the location relative to an anchor. Faster R-CNN is in Mask R-CNN

[88] extended with a new instance segmentation branch to win the MS COCO 2016 challenge in

object detection and instance segmentation.

Region-based detectors such as Faster R-CNN provide state-of-the-art accuracy performance

and are in fact also fast. However, the underlying concept of Region-based methods is that

the detectors require a second stage to do per-proposal classification [95]. Another branch of

CNN-based detectors seek to improve efficiency of networks by only running a single forward

pass [18, 96–100] as stated in papers titled “You Only Look Once” (YOLO) [18] and “Single Shot

MultiBox Detectors” (SSD) [100]. Recently, single forward or fully convolutional networks have

adapted anchor boxes [99–101]. Demonstrating that the concept of anchor boxes currently is

preferable for object detection. A Feature Pyramid Network (FPN) is a generic concept adapted

by state-of-the-art detectors to scales up feature maps to better detect small instances [102]

and to become more invariant to scale. FPN upscales intermediate feature maps and merges

them using addition. This enables the same object detector to be used at multiple scales of the

feature pyramid.

2.4 Semantic Segmentation

Semantic segmentation provides richer information than object detection by classifying all

pixels in an image.

Similar to image classification and object detection, the performance of semantic segmentation

networks have been pushed forward by public benchmarks such as Pascal VOC [45]. New and

interesting datasets for semantic segmentation are MS COCO [87] with instance segmentations

and CityScapes [33] in the automotive domain. Pascal Context [103], and MIT Scene Parsing

Benchmark [47] with whole scene annotations.

CNN-based semantic segmentation networks can be separated in backbone and head - also

defined as encoder and decoder for semantic segmentation. The backbone uses a CNN-based

model that potentially has been trained for image classification, and the head network is
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responsible for upsampling feature maps to provide more fine-grained predictions and better

boundaries.

A Fully Convolutional Network (FCN) is presented in [19] for semantic segmentation. A CNN

network (VGG [42]) is first trained for image classification using ImageNet. The CNN is con-

verted to a fully convolutional network by discarding the final classification layer and reshaping

fully connected layers to convolutional layers. The output feature maps are upsampled us-

ing deconvolutions or backward convolutions and merged with intermediate feature maps to

provide fine-grained predictions.

DeepLap [104–106] has demonstrated state-of-the-art detection performance on Pascal VOC

by combining a CNN for semantic segmentation with Fully Connected Conditional Random

Fields (CRF) to better classify object boundaries. DeepLap uses atrous convolutions (dilation

factor > 1) instead of upsampling. In [107] a CRF is modelled with a Recurrent Neural Network

to enable end-to-end training. Recently, the CRF post-processing step has been removed by

state-of-art algorithms - also by DeepLap [106].

Another semantic segmentation architecture is SegNet [108]. SegNet is symmetric in the sense

that each encoder layer has a corresponding decoder layer. SegNet uses indices from encoder

max-pooling layers in the decoder upsampling layers. A symmetric architecture has also been

used in U-Net [109] for Biomedical Image Segmentation. As for U-Net, intermediate feature

maps are forwarded to similar level feature maps in the decoder. Also interesting for U-Net is

that only valid convolutions are used to avoid artefacts from zero-padding.

2.5 Efficient Deep Learning

Deep learning methods are computationally expensive and procedures are required to make

systems more cost efficient. Especially in the automotive industry, the requirement for real-

time operation on embedded platforms have made power consumption, memory usage and

processing time important network parameters. Efficient algorithms can be optimized with

hardware, software libraries, and network architecture.

Concepts for providing more efficient deep learning models in compute, power and memory

have often been introduced or used by state-of-the-art accuracy performance networks. In

AlexNet [36], the highly compute efficient ReLU [59, 110] activation function is able to execute

and converge models faster than the sigmoid function commonly used previously in neural

networks. GoogLeNet [66] uses two important concepts initially introduced in [67]; global

average pooling and 1×1 kernel convolutions. In initial CNN models (LeNet, AlexNet, ZFNet,

VGG), the final convolutional layer is connected to an FC-layer. In e.g. VGG the first FC layer

uses 103 million parameters, corresponding to 74% of all weight in the network. Global average

pooling will average across each channel in the feature map before connecting to an FC-layer

and reduce the number of parameters dramatically in the first FC layer e.g. by a factor of 49

for VGG. The use of 1×1 convolutional kernels became popular with GoogLeNet to reduce

the number of computation and have been a key component in many efficient models to –

depending on publication – flatten, factorize, compress, branch or decompose feature maps

[66, 72, 76, 77, 111, 112]. In GoogLeNet, feature maps are compressed to especially reduce
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computations of expensive 3×3 and 5×5 convolutions. In ResNet, the bottleneck architecture

is introduced by substituting a pair of 3×3 convolutions to a module of 1×1, 3×3 and 1×1

convolutions. The first 1×1 convolution reduces the number of channels and the final 1×1

restores the number of channels. This allows a small number of 3×3 kernels to be run on

a feature map with only a few channels while still maintaining a high number of input and

output features / channels. In ResNeXt [77], 1×1 convolutions create up to 32 branches of 3×3

convolutions that are concatenated and again expanded using 1×1 convolutions. DenseNet uses

1×1 to implement both bottleneck and compression. However, the most important concept

to both improve convergence, accuracy and computations is that initial feature states can be

passed directly to any layer. Batch normalization makes inference slower and requires more

parameters, but is important to train models more efficiently. Models are able to converge more

easily, require far less iterations and obtain better accuracy.

Models have also been developed to improve efficiency with similar or insignificant drop

in accuracy [113]. SqeezeNet [114] combines fire-modules and global average pooling with

DeepCompression techniques – this is covered in the next text section. The Fire-module is

related to the Inception-module by using 1x1 kernels to squeeze feature map into two branches

(1×1 and 3×3 kernel convolutions) that are afterwards concatenated. Compared to AlexNet,

SqueezeNet is able to obtain similar classification accuracy using 50× fewer model parameters

without DeepCompression and 510× less with DeepCompression. Results are remarkable.

However, a comparison to a network with inception-modules and global average pooling is

more comparable to state-of-the-art in terms of accuracy. Furthermore, the aim of the paper

is to reduce the number of model parameters. However, the number of model parameters

should not be confused with the actual model memory usage. Memory usage is a more critical

GPU hardware constraint for state-of-the-art networks. An improved SqeezeNet model has

been released (1.1) with 2.4× fewer computations and provides also a speedup compared to

AlexNet. In MobileNet [112] an efficient architecture is presented by exchanging traditional

3×3 convolutions with a micro-architecture of depth-wise separable filters [115] and a 1×1

convolution. This simple concept is able to improve processing speed and reduce the number

of model parameters. MobileNet-based networks are able to obtain similar classification

accuracies as AlexNet, SqueezeNet, VGG and GoogLeNet with respectively a factor of 9.5×,

22.3× ,26.9× and 2.7× less Mult-Add operations.

A set of tools defined as DeepCompression have been presented by Song Han [116] which

includes network pruning [117], quantization, and Huffman coding. DeepCompression demon-

strates that networks are highly overrepresented and many connections are in fact redundant.

In [117] it is demonstrated that 92.5% of all weights or connections are redundant. Quantization

and huffman coding reduces the required bits to represents weights thereby increasing the

compression rate from 19 to 49. The overall drawback of DeepCompression is that pruning,

quantization and huffman coding are hardly parallelizable on a GPU. Claims of 3× to 4× layers-

wise speed up is slightly misleading as this is only true for fully connected layers with a batch

sizes of 1. Similar improvements are not to be expected for convolutional layers where “only”

roughly 1/3 of all weights are redundant and sparsity is harder to parallelize for convolutional

layers. Furthermore FC-layers runs very efficient for large batches and typically only a small

fraction of processing time is used on FC [118] - especially for networks using global average

pooling after the last convolutional layer. The work of Song Han is theoretically very interesting

and even an ASIC chip have been developed in [119] by Song Han to demonstrate incredible
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speed performance and power savings. However, the concepts presented in DeepCompression

are to my knowledge not efficiently applicable on GPU using common software libraries.

In hardware, the reduction of cost per flop and utilization of GPU for deep learning have been

essential in the breakthrough of deep learning in general. Traditionally, GPUs used in research

have required double precision floating-point format (64 bit). Deep learning models are less

dependent on bit precision and similar accuracy can be obtained by using 32 bits or 16 bits.

The Pascal GPU architecture by Nvidia allows 16-bit floating point operations (half precision)

to be executed twice the rate of single precision. The software package TensorRT by Nvidia

also provides 8 bit integer precision. Even binary networks have been demonstrated in [120] to

theoretically reduce memory usage by roughly a factor of 32 and computations by a factor of

58. Lately, more dedicated deep learning hardware has been introduced in the very fast and

energy efficient Tensor Processing Unit (TPU) by Google [121] and a Deep Learning Acceler-

ator (DLA) by Nvidia in the Volta architecture. Nvidia have been the key hardware supplier

to deep learning due to high performance, fast adaption and because many deep learning

frameworks primarily support software libraries that runs on Nvidia GPUs (cuda and cuDNN).

However, hardware competitors are starting to challenge the monopoly of Nvidia. Looking

strictly on hardware, AMD has recently become competitive to Nvidia. The new AMD Radeon

Vega GPU is cheaper with slightly higher brute force performance than Nvidia Titan Xp and the

new Ryzen Threadripper CPU with 64 PCI 3.0 lanes can be connected to four Vega or Titan GPUs.
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3 Overview of Summary

Figure 3.1 presents thesis contributions divided in chapters and as processes/modules. The

output of each module is visualized by an example, showing the raw sensor data (image),

detections in the image (image detections), detections in world coordinates (3D detections) and

registered detections using a Camera Inverse Sensor Model (ISM). Finally, fusing and mapping

is performed to generate a final output map (Map).

Chapter 4: Multi-sensor platform with exteroceptive sensors (rgb, thermal, stereo, radar and

lidar) and proprioceptive sensors (IMU and GPS).

Chapter 5: Overview of all field trials and generation of ground truth data.

Chapter 6: Multiple detection algorithms for RGB and thermal cameras. Five of the seven

algorithms are applicable for TractorEYE. The remaining two modules; "Using Deep

Learning to Challenge Safety Standards" and "Detection and Recognition of Wildlife

using Thermal Camera" are standalone contributions not used by TractorEYE.

Chapter 7: Sensor registration and detection alignment. Calibration and registration of rg-

b/stereo camera, thermal camera and lidar. Detections information is aligned by

mapping detections from multiple algorithms and sensors to either 3D position or

inverse sensor models (ISM)

Chapter 8: Describes how ISMs from TractorEYE are fused. Localization is used for estimating

tractor pose and fusing information into maps.

Chapter 9: Presents a concise overview of all contributions.
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Figure 3.1: Summarizing contributions of the thesis. FieldSAFE is the outcome of Sensor Plat-
form and Data Collection. TractorEYE is the outcome of Sensor Platform, Data
Collection, Obstacle Detection, Sensor Registration & Detection Alignment. Images
are captured by the sensor platform. Obstacle detections are performed on image
and other sensor data. These detections are represented in a common format (3D
detections or inverse sensor models). Detection information is finally fused in a
map.
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4 Sensor Platform

A single sensor technology is unlikely to guarantee safe operation of autonomous vehicles in

agriculture. Depth-based sensors such as stereo cameras and lidars are popular in robotics to

map surroundings and detect obstacles. Depth-based sensors may use generalizable detection

heuristics by e.g. simply avoiding elements that obstruct the field-of-view of the sensor or

by detecting obstacles that protrude the ground surface. Similar heuristics are also useful in

agriculture to detect large elements that protrude either ground or crop surface. However, in

agriculture a vehicle must be able to traverse areas with crops and obstacles may reside inside

crops. This will make depth-bases sensors less reliable for detecting especially small obstacles

that resides below or just above an uneven crop surface such as a kid, an animal or a sitting / an

unconscious human. A depth-based sensor such as a multi-beam Velodyne lidar is very reliable

and provide excellent perception capabilities when obstacles are protruding. A stereo camera

provides both depth and color point clouds but are less reliable.

Humans rely mainly on visual information to perceive surroundings and navigate a vehicle.

Rgb cameras record visual information and should in principle provide sufficient information

to perceive surrounding. However, problems for rgb cameras are the limited accuracy in

localizing obstacles precisely, high vulnerability to weather/lighting conditions and they will

hardly recognize animals that by nature are visually camouflaged. Thermal cameras have a

potential for detecting animals in the field. Though, a thermal camera is very dependent on

weather conditions or temperatures of obstacles and surroundings.

Advantages and disadvantages of each sensor modality is further addressed in P[6, 8]. This

includes a comparison between sensors in terms of range, resolution, cost, robustness to light &

weather changes and the ability to detect camouflaged, protruding/non-protruding and various

obstacles.
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Chapter 4. Sensor Platform

Multiple sensor technologies must be combined to increase detection performance and to

introduce redundancy. This chapter proposes a multi-sensor platform for capturing such data.

The sensor platform is presented in P[3, 6, 8] and used for data acquisition in P[1, 4, 5, 7, 10, 11].

The platform has been under constant development in the thesis and iterated into two sensor

platforms: The SuperSensorKit for large field trials and the more compact design MiniSensorKit

used in TractorEYE. The platform runs on Linux (Ubuntu) as operating system and Robot

Operating System (ROS) as middleware to record and connect sensors. Contributions are

presented in Figure 4.1.

Sensor platform

Stereo

Lidar

IMU

RTK GPS

Radar

     Proposed in P[3, 6, 8]
     Used P[1,4,5,7,10,11]
     SuperSensorkit
     MiniSensorKit
     Time Synchronization

Rgb Camera

Thermal camera

SuperSensorKit

MiniSensorKit

+Time Synchronization

Figure 4.1: Contributions of Chapter 4. A sensor platform with multiple sensor technologies
have been proposed in P[3, 6, 8] and used in P[1, 4, 5, 7, 10, 11]. The sensor platform
is arranged in two platforms; SuperSensorKit and MiniSensorKit. The MiniSensorKit
uses a micro controller to synchronize stereo camera, thermal camera and lidar.

4.1 Sensors

We have selected a broad range of sensor modalities including rgb, stereo, thermal, multi-beam

lidar and radar (Figure 4.2) to compare and evaluate the performance of each modality for au-

tonomous vehicles in agriculture. The platform has been described in P[3, 6, 8], and modalities

are evaluated qualitatively. In P[4, 10] sensor modalities have been evaluated and compared

individually and in pairs. Exteroceptive sensors (GPS and IMU) are used for localization to

estimate pose and position of the sensor platform.
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4.1. Sensors

(a) (b)

(c) (d)

(e)

Figure 4.2: Selected modalities (a) rgb camera (color image) (b) thermal camera (thermal image)
(c) stereo matching (color point cloud) (d) visualization of robot pose (GPS and IMU)
(e) multi-beam lidar (point cloud)
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Chapter 4. Sensor Platform

The modalities have remained constant in the SAFE project, however the actual sensor models

have changed as new experience and sensors have been acquired. The sensors that have

remained since P[6] is presented in Figure 4.3 (a)-(d) and listed below:

a) Rgb camera: HD Pro C920 Webcam from Logitech (Silicon Valley, USA) with 1920 x 1080

pixels at 30fps

b) Multi-beam lidar: HDL-32E lidar from Velodyne (Morgan Hill, USA) a 32-beam laser

scanner providing 70,000 points at 10 Hz with 1–100 m range.

c) Radar: Automotive Delphi ESR 64-target radar from Delphi (Washington, DC, USA)

d) IMU: VN-100 from Vectornav (Dallas, USA) providing synchronized three-axis accelerom-

eters, gyros, magnetometers and a barometric pressure sensor

Later a 360-degree rgb camera was added to the sensor kit. Which is presented in Figure 4.3 (e)

e) 360 degree rgb camera: HD Giroptic 360-degrees from Giroptic (San Francisco, USA)

providing 2048 x 1024 at 30 fps.

(a) (b) (c) (d) (e)

Figure 4.3: Sensors used throughout the SAFE project. (a) Logitech Webcam, (b) Velodyne Lidar,
(c) Delphi Radar, (d) Vectornav IMU, (e) Giroptic 360 degree camera
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4.1. Sensors

4.1.1 Thermal Camera

Three different thermal cameras have been tested on the platform. The cameras are presented

in Figure 4.4 and listed below and denoted T1, T2 and T3:

T1: FLIR A320 by FLIR systems (Wilsonville, USA) with a resolution of 380 x 240 pixels at 9 fps.

T2: HawkVision by Tonbo Imaging Inc (East Palo Alto, USA) analog IR camera providing 640

x 480 pixels at 25 fps. A 3D printed casing provided by DAS (Copenhagen, Denmark) to

hold thermal camera and a analog-to-GigE converter by Pleora (Ottawa, Canada).

T3: FLIR A65 by FLIR systems (Wilsonville, USA) with a resolution of 640 x 512 pixels at 30 fps.

The first thermal camera (FLIR A320) was used in P[2] – published prior to the sensor platform –

and also in the initial sensor setup in P[8]. The camera requires an additional computer with

windows installed (software was developed in C# and .NET) and provided low resolution and

framerate. Secondly, a higher framerate is desired to reduce the latency of a detection and better

resolution to detect objects at further distances and to get a more fine-grained representation of

obstacles. The second camera (HawkVision) provides higher resolution and framerate. Pleora

analog-to-GigE is used for connecting to ROS using existing ROS packages. The output format

of HawkVision is intensities and not absolute temperatures like FLIR A320. Additional funding

enabled us to finally get FLIR A65. The FLIR A65 provides high resolution, high framerate, GigE

for connecting to ROS and absolute temperatures.

Pleora Converter

Figure 4.4: Thermal cameras used in the SAFE project. FLIR A320, HawkVision and FLIR A65
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Chapter 4. Sensor Platform

4.1.2 Stereo Camera

The three stereo cameras are presented in Figure 4.5 and listed below:

S1: New Imaging Technology (Paris, France) using NSC1003 CMOS sensors and providing

1280×1024 pixels at 25 fps. The camera uses global shutter and sensors are dynamic range

(logarithmic). The sensors are separated by a narrow baseline of 5 cm.

S2: Two Flea3/FL3-GE-28S4C-C cameras from Point Grey (Richmond, Canada) are mounted

to a solid metal frame with a baseline of 24 cm. The camera uses global shutter and

provides 1928 x 1448 pixels at 15 fps. A small circuit board ensures that the cameras are

hardware synchronized

S3: MultiSense S21 is a global shutter camera from Carnegie Robotics (Pittsburgh, USA) with

a baseline of 21 cm. Stereo-matching is performed online and provides disparity maps at

2, 1 or 0.5 megapixels for 7.5, 15 or 30 fps respectively.

The first camera by New Imaging Technology is a logarithmic dynamic range camera used in

P[8]. Dynamic range – is in principle – favorable for autonomous vehicles to capture the large

intensity differences. Unfortunately, the image quality is too noisy and the narrow baseline of 5

cm makes distance estimations imprecise at far distances. These issues are handled with the

Point Grey-based stereo camera with a much wider baseline and better image quality. Point

Grey is used in P[6] and formed a satisfying solution for research, where stereo matching was

performed offline after data collection. The third camera MultiSense S21 performs stereo match-

ing online using an FPGA. The camera is plug-and-play and comes with good documentation

and a well-functioning ROS package. MultiSense S21 is used in P[4].

Point Grey 
Camera

Hardware 
Synchronization

Figure 4.5: Stereo cameras used on the platform. New Imaging Technology, Point Grey and
MultiSense S21
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4.2. SuperSensorKit

4.1.3 RTK GPS

Two Real Time Kinematic (RTK) GPS solutions have been used on the platform and are listed

below:

- Single RTK GPS (AG GPS361) from Trimble (Sunnyvale, California, USA). Enhancing

precision of GPS with up to centimeter-level accuracy

- Differential RTK GPS: Dual Antennas system from Trimble (Sunnyvale, California, USA).

A BD982 receiver for determining heading vector between two antennas.

A single RTK GPS provides high accuracy localization information and have been used in a

majority of publications of this thesis. A differential RTK GPS with dual antenna was used in

FieldSAFE to also provide a heading vector.

4.2 SuperSensorKit

The multi-sensor platform defined as the SuperSensorKit is presented in Figure 4.6. The Su-

perSensorKit is a metal rack with two proprioceptive sensors (double RTK GPS and IMU) and

the six exteroceptive sensors (webcam, 360 degrees camera, stereo camera, thermal camera,

lidar and radar). Adjustable angle-parts allow sensors to be tilted for a desired angling. Sensors

Absorption rubber 

Robotech 
Controller 701A-frame

Adjustable
hinge

Generator

360 Camera

IMU

Double GPS antennas

Webcam

Thermal camera

Lidar

Stereo camera

Radar
Mower

Figure 4.6: SuperSensorKit

and computer are powered by a generator in the experiments. A large metal cabinet capsulates

adaptors, a ruggedized computer Robotech Controller 701 (Struer, Danmark) and GPS modules

from the harsh environment. An A-frame allows the SuperSensorKit to be mounted to multiple

setups as presented in Figure 4.7. To avoid mechanical noise from disturbing sensor measure-

ments, rubber parts connect A-frame and rack to physically separate tractor and sensors by

rubber.
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Chapter 4. Sensor Platform

Figure 4.7: SuperSensorKit mounted on a tractor, implement, ATV and our lab mount.

4.2.1 Web GUI

A JavaScript-based web-GUI was been developed1 to through WiFi easily monitor status of

sensors, start/stop recordings and watch live camera feeds using e.g. a smartphone or computer.

Though similar features are possible using ROS, the interfaces have proven to be very useful and

convenient when running experiments and recordings in the field. The web-GUI is presented

in Figure 4.8.

Figure 4.8: Web GUI for data collection

1Web-GUI was developed by grad students and Mikkel Fly Kragh
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4.3. MiniSensorKit

4.3 MiniSensorKit

The SuperSensorKit has proven to be useful for data collection in large experiments. For small

experiments, the SuperSensorKit is costly and bulky as it requires a large truck and at least

two people to lift/mount it. A new sensor kit was developed with three sensors (FLIR A65,

MultiSense S21 and Velodyne lidar). Stereo and lidar is mounted to the metal casing. The metal

casing encapsulates the thermal camera, stereo camera and lidar wiring, a microcontroller

for synchronizing sensors, a Velodyne lidar module and a DC-DC converter. Synchronization

of sensors – meaning that data is captured in the same position in time – is important when

sensors are calibrated / registered and in sensor fusion. The micro controller is responsible for

signaling the stereo camera and the thermal camera simultaneously. The length of a second

is precisely defined from a PPS signal provided by the Velodyne GPS. The design provides a

ruggedized, portable and more water resistant setup for smaller experiments and robots. The

sensors are firmly fixed to better maintain calibration. The MiniSensorKit is easy to mount and

easily connected with three Ethernet ports – one for each sensor – and requires only one power

source of 9V to 36V.

A CAD model was created in SolidWorks, see Figure 4.9. For data collection in field experiments,

the MiniSensorKit is mounted to the SuperSensorKit frame as in P[4], see Figure 4.10. In Figure

4.11, the MiniSensorKit (aka TractorEYE) has been used on an actual robot called BallBot for

online obstacle detection. View YouTube demo2

Figure 4.9: CAD model of front, back and inside MiniSensorKit

4.4 Concluding Remarks

A broad selection of modalities and sensors have been used. This includes mechanically mount-

ing and setting up interfaces to one webcam, one 360-degrees camera, three stereo cameras,

three thermal cameras, one multi-beam lidar, one radar, one imu and two gps’. The MiniSen-

sorKit is a ruggedized and water-resistant casing which includes a thermal camera (FLIR A65),

a stereo camera (MultiSense S21) and a multi-beam lidar (Velodyne 32E). A micro controller

is used for hardware synchronizing sensors in time. The MiniSensorKit addresses important

issues for a sensor platform to be used for autonomous farming vehicles. The platform is

able to handle the rough environment in agriculture and mountable to relatively small au-

tonomous vehicles. This have been demonstrated with BallBot (Figure 4.11) in a video demo2.

2Video demo is available at YouTube https://youtu.be/KDa_y-RfkhM?t=109
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Chapter 4. Sensor Platform

(a) (b) (c)

Figure 4.10: MiniSensorKit. (a) MiniSensorKit mounted on SuperSensorKit rack, (b) MiniSen-
sorKit front, (c) MiniSensorKit back

Figure 4.11: MiniSensorKit mounted on BallBot

The MiniSensorKit is the sensor platform used by TractorEYE. The SuperSensorKit is developed

for research and includes the MiniSensorKit, a radar, a 360-degrees camera, localization and

pose sensors (GPS and IMU). Sensors are mounted on a tractor mountable metal rack. The

SuperSensorKit is used for creating the FieldSAFE dataset.
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5 Data Collection

High quality and publicly available multi-modal datasets for detection in agriculture is needed

to evaluate detection algorithm and push forward the development of autonomous vehicles

in agriculture. This chapter describes field trials used for data collection in the thesis. A total

of six field trials have been conducted and used in P[1, 3–11]. The six field trials are denoted

D1-D6. The main contribution of this chapter is the final field trial D6 called FarmSAFE P[3] - A

Agricultural Dataset with Static and Moving Obstacles.

5.1 Field Trials - Overview

Table 5.1 presents an overview of the area covered, publications, sensors and obstacles of each

field trail. Figure 5.1 presents locations, sizes and shapes of fields.

5.2 Field Trials

5.2.1 Field Trial 1 - Børnebondegården

The aim of the first field trial is to test an early version of the SuperSensorKit and to get a first

impression of sensor outputs in an agricultural context. Data was used in P[8].

Data were recorded on a small grass area at Børnebondegården near Horsens in November

2014. The SuperSensorKit was mounted to an ATV and most data was recorded statically or by

slowly moving the ATV around. Data samples of animals and humans were collected in a broad

set of scenarios including different walk patterns, age, clothing and posture.
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Chapter 5. Data Collection

D1 - Børnebondegården

D6 - Ringkøbing - FieldSAFE

100m

D3 - Foulum - Grass (Static)

D4 - Foulum - Row crop

D5 - Tjele - Detect Bambi

D2 - Lem - Grass mowing 1

100m

100m

100m

100m

Sensor platform

Stereo

Lidar

IMU

RTK GPS

Radar

      Proposed P[3, 6, 8]
      Used P[1,4,5,7,10,11]
      SuperSensorkit
      MiniSensorKit
      Time Synchronization

Rgb Camera

Thermal camera

Realistic Data
D1,D2,D3,
D4,D5,D6

Ground truth
D5, D6

Figure 5.1: Contributions of chapter 5. Data collection through a total of six field trials (D1-D6)
including ground truth for field trail D5 and D6. Location and size of each field is
illustrated with field boundaries. Sensor platform and data have been presented in
P[3, 6, 8] and used in P[1, 4, 5, 7, 10, 11].

Table 5.1: Overview of data including area, publications, used vehicle, used sensors, if the
MiniSensorKit (MSK) is used and used obstacles

Sensors Obstacles

ID Date: Place Area Publi- Vehicle Stereo Thermal MSK Human Doll + Ground
(ha) cations Camera Camera barrel truth

D1 2014-11: Børne- 0.1 P[6, 8] ATV S1 T1, T2 X
bondegården

D2 2015-06: Lem - 7.5 P[1, 5], Tractor + S2 T2 X X
Grass mowing P[6, 7] Implement

P[11]

D3 2015-06: Foulum 1.1 P[10] Tractor S2 T2 X X X
- Grass (Static)

D4 2015-09: Foulum 0.2 [5, 7] Tractor S2 T2 X
- Row crop

D5 2016-06: Tjele - 3.5 Tractor + S3 T3 X
Detect Bambi Implement

D6 2016-10: Ring- 3.1 [3, 4] Tractor + S3 T3 X X X X++
købing FieldSAFE Implement
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5.2. Field Trials

Figure 5.2: (Not so water-resistant, early edition) SuperSensorKit mounted on an ATV facing a
kindergarten

A few issues made the platform inconvenient for data collection in an agricultural environment.

The ATV and the SuperSensorKit was hardly able to traverse high grass, run at high speeds

or suited for wet conditions, see Figure 5.2. The thermal camera (T1) also required an extra

computer running on windows.

5.2.2 Field Trial 2 - Grass mowing

The aim is to capture realistic data of natural obstacles and obstacles in dangerous situations

for a grass-harvesting use case. Data is used in five publications P[1, 5–7, 11].

The second field trial was recorded in a 7.5ha grass field near Lem in the beginning of June

2015. The SuperSensorKit was mounted to the implement of a grass harvesting tractor, which

is shown in Figure 5.3. Data samples of natural elements in and around a field (shelterbelts,

grass, ground, houses and wells) are captured. To also simulate hazard situations, obstacles

were placed in the tractor trajectory. For each obstacle, the tractor breaks just before colliding

with obstacles. Adult and child mannequins were used instead of real humans to ensure that no

humans were harmed in the experiments. The ISO-barrel was also introduced to incorporate

safety standards – the ISO-barrel is covered in 6.6 Using Deep Learning to Challenge Safety

Standards. To also get more authentic data, the mower was turned off for a few laps to capture

“real” human samples. Obstacles used in the trial are presented in Figure 5.4. Field, tractor

trajectories and obstacle positions are presented in Figure 5.5.
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Chapter 5. Data Collection

Figure 5.3: Tractor with implement and SuperSensorKit. From P[5]

Figure 5.4: Obstacles. Mannequins, barrel and humans. From P[6]

Figure 5.5: Obstacle position and lap trajectories. From P[6]

34



5.2. Field Trials

A set of improvements to the SuperSensorKit was implemented since the first field trial, D1.

- Angle-parts allow sensors to be titled in a desired pitch.

- The A-frame for easy mounting to tractor or implement.

- Rubber parts are separating A-frame and sensor rack to absorb mechanical noise from

tractor.

- The Hawkvision thermal camera (T2) is placed in a 3D printed housing.

- The stereo camera has been upgraded from S1 to S2.

The second field trial, D2, provides realistic data for a grass-harvesting tractor running at real

speeds. Obstacles are placed in hazard situations with various postures (lying, sitting and

standing) and occluded by the high grass.

5.2.3 Field Trial 3 - Grass (Static obstacles)

The aim is to capture samples of a static environment and provide the ground truth as a static

map. Data is used in P[10].

The third field trial D3 was recorded in a grass field of 1.1ha near Research Center Foulum in

June 2015. The SuperSensorKit was mounted on the front-mount of a tractor traversing the

field. The data contains natural elements in a field (shelterbelt, grass, ground and wells) and

static obstacle (a car, barrels, and adult and kid mannequin dolls) were placed and positions

were measured using RTK GPS, see Figure 5.6.

An orthophoto was generated using a Phantom 2 drone by DJI (Shenzhen, China). Ground truth

was obtained by manually labelling the whole orthophoto, see Figure 5.7.

5.2.4 Field Trial 4 - Row crop (Static obstacles)

The aim is to capture samples of static obstacles in also row crops and to cover the same field

under varying lighting conditions. Data is used in P[5, 7].

The fourth field trial D4 was recorded in a small row crop maize field of 0.2 ha near Research

Center Foulum in September 2015. The SuperSensorKit was mounted on the front-mount of

a tractor and static obstacles are placed in the field, see Figure 5.8. At roughly 9:30, 11:00 and

12:30, the tractor travels back-forth once to capture different light conditions across the same

day.
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Chapter 5. Data Collection

Figure 5.6: Static obstacles used.

Figure 5.7: Orthophoto with static objects, tractor trajectory (black line) and human walk path
(yellow line). An overlay shows the ground truth of shelterbelts (blue), ground (green)
and non-traversable ground (red). From P[10]

Figure 5.8: Static obstacles (barrels, teddy hare, teddy pheasant and mannequins) in row crops.
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5.2. Field Trials

5.2.5 Field Trial 5 - Detect Bambi

The aim is to test the new MiniSensorKit mounted on the SuperSensorKit to get multi-modal

samples of roe deer fawns. Data has not been used in any publications.

The fifth field trial was recorded in a grass field of 3.5ha in Tjele in June 2016. The SuperSensorKit

was mounted to the implement of a grass-harvesting tractor. The field trial failed to deliver a

complete and useful dataset. No roe deer fawns were detected and stereo camera, lidar, IMU

and webcam failed to record at all time. However, the field trial became a valuable test for next

field trial (D6 - FieldSAFE).

5.2.6 Field Trial 6 - FieldSAFE

The aim is to capture realistic data in a grass-harvesting use case and to get samples of both

static and moving obstacles. A dynamic map is generated to provide ground truth of both static

and dynamic obstacle. The dataset is published in P[3] and made publicly available.

Recordings
The field trial was recorded in a grass field of 3.1ha near Ringkøbing in October 2016. The

SuperSensorKit and MiniSensorKit were mounted to the implement of a grass-harvesting

tractor. Natural elements in and around the field are grass, ground, shelterbelts, trees, houses

and roads. Static objects (barrel, mannequin kid and adult and GPS markers) were placed in

the field. See Figure 5.9.

Figure 5.9: Static obstacles in the field. The position of GPS markers are measured using RTK
GPS.

The data is divided in two field trials; a static and a dynamic field trial. The tractor performs

harvesting for both static and dynamic recordings. In static recordings, humans are not allowed

in or around the field. In dynamic recordings, the tractor and a group of up to seven people

move in a pre-specified area. Figure 5.10 (left) presents tractor trajectory for static and dynamic

field trials.

Ground truth - Static
The ground truth map of all static elements in the field is generated using drone recordings

covering the field. An orthophoto was generated from the recording using structure-from-

motion software by Pix4D (Lausanne, Switzerland). The positions of GPS markers are measured
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Vegatation
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Ground
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Figure 5.10: (left) Orthophoto shows static and dynamic areas of the field (right) Ground truth
map showing static obstacles, tractor trajectory and field labels.

using RTK GPS to improve and align orthophoto with world coordinates. The ground truth map

of static elements is obtained by manually labelling the orthophoto. Figure 5.10 b) presents

ground truth of static obstacles (markers) and elements in the field (color). Not all data is used

or accessible in P[3, 4]. Figure 5.10 b) shows unused data (gray), static (red) and dynamic (blue)

tractor trajectories.

Ground truth - Dynamic
In the dynamic field trial used in P[3, 4], four humans (Figure 5.11) act as dynamic obstacles

moving in areas close to the tractor. The challenge is obtaining the ground truth trajectory of

dynamic obstacles in the orthophoto as presented in Figure 5.12.

Figure 5.11: Dynamic obstacles from stereo camera. Person 1, 2, 3 and 4 (lying and sitting)
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5.2. Field Trials

Figure 5.12: Human trajectories in individual plots

Ground truth of dynamic obstacles was estimated from gimbal stabilized footage recorded by a

hovering drone. Assuming a flat surface and a pinhole camera model, there is a perspective

transformation that maps drone images to the orthophoto as illustrated in Figure 5.13. First the

drone camera is calibrated and images are rectified. Secondly, the perspective transformation

is determined by matching static points that are recognizable in both the orthophoto and the

drone image (GPS markers and mannequins). A small script was developed to automatically

track the recognizable points in the drone recording using simple template matching. A user

will only need to point out recognizable points in the first frame and these points are tracked

throughout the whole recording.

The vatic annotation tool [122] was used for annotating dynamic obstacles in the transformed

video. This enables us to draw human trajectories in the orthophoto as presented in the previous

Figure 5.12. Drone and sensor platform was synchronized in time by a human clap visible to

cameras on both drone and sensor kit, which allowed us to estimate the position of dynamic

obstacles at a specific point in time.

Improvements of D6 FieldSAFE compared to previous field trials (D2-D4) are:

- Synchronization of thermal and stereo data

- Thermal camera provides absolute temperatures

- Stereo camera provides disparity maps online

- Better registration using thermal calibration panel – the thermal calibration panel is

described in 7.1.1 Thermal-visual Calibration Panel

- Localization and heading have improved using a differential GPS.

- Static and dynamic ground truth
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Figure 5.13: (left) Drone images (right) Drone image after transformation

5.3 Concluding Remarks

A total of six large scale field trials have been conducted with a multi-sensor system. The

dataset includes many obstacles that naturally resides in or around an agricultural field such as

shelterbelt/trees, building, road, grass and the field itself. Furthermore, hazard situations are

simulated by placing static obstacle and instructing humans to act moving obstacles in and

around the trajectory of the tractor. To comply with recent safety standards within agriculture,

an olive-green barrel have been used and created according to the ISO/FDIS 18497 standard

"Agricultural machinery and tractors — Safety of Highly Automated Agricultural Machines".

Drones are used before, under and after the final field trial FieldSAFE to capture ground truth

data of static and moving obstacles in the field. Datasets such as FieldSAFE are an important step

to improve and evaluate detection algorithms and to ultimately realize autonomous farming

vehicles.

5.3.1 Challenges and Future Work

Providing data of sufficient quality in the agricultural domain is costly and time-consuming.

One thing is the development of a robust sensor platform that is suited for agricultural vehicles.

The other is planning realistic field trials and to acquire agricultural vehicles, grass mowing

implements, people to operate them, volunteers to act moving obstacles and patient farmers

to make their field available. Furthermore, static obstacles must be acquired, transported and

placed and move in the field. Finally data collection must match the routines of the farmer and

can only be conducted on harvesting days. To improve errors or bad recordings you will either

need to find a new field or wait another season.
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5.3. Concluding Remarks

Originally, data was recorded for training multi-modal detection algorithms in the agricultural

domain. However, especially for camera-based detection algorithms, this requires training data

of a broad set of scenarios with multiple objects in various postures and weather conditions

to avoid overfitting. Compared to e.g. the Kitti benchmark in a suburban environment, the

incidence of obstacles are low in an agricultural field, making the process comprehensive in

terms of data and the subsequent annotation of data. The large and high-quality data available

for image recognitions in other domains have in this thesis been used to demonstrate that

such data is – to some extend – able to generalize to agriculture. The purpose of field trials

have, therefore, become more a dataset for testing detection algorithms, and the training of

algorithms is done using datasets from other domains.

A benchmark for multi-modal object recognition with labels in sensor frame would eventually be

valuable for autonomous vehicles in agriculture and the MiniSensorKit was originally developed

to enable a single person to capture multi-modal data in environments and of objects related to

agriculture. This task was eventually dropped because of the limited time frame of this thesis.

Future work is the generation of sensor frame annotation of FieldSAFE and new data to provide

training data in agricultural context.
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6 Obstacle Detection

To get fully autonomous vehicles certified for farming, computer vision algorithms and sensor

technologies must detect obstacles with equivalent or better than human-level performance.

Furthermore, detections must run in real-time to enable vehicles to actuate and avoid collision.

This section describes detection algorithms for the thermal and rgb camera. Figure 6.1 illustrates

contributions and information flow - input image and output detections.

The five detection modules used in TractorEYE are LDCF [17], YOLOv2 [99], FCN [19], Deep-

Anomaly P[1] and DynamicHeat P[4]. All five algorithms have been implemented in this thesis

as ROS package GH1, GH2, GH3, GH4 and GH5 to be used in TractorEYE. DeepAnomaly P[1],

DynamicHeat P[4] are proposed in this thesis. LDFC, YOLOv2 and FCN have been investigated

and evaluated in an agricultural context P[1, 4, 7, 10]. Finally, the algorithms in P[2, 5] have

been proposed but not used in TractorEYE.

6.1 Pedestrian Detector: LDCF

The Local Decorrelated Channel Features (LDCF) [17] by Piotr Dollar as the main contributor

have been evaluated for agriculture in the following publications P[1, 4, 10]. MATLAB code

was converted to C++ and a ROS package, GH1, to comply with SAFE deliverables. The used

model is trained on the INRIA Person Dataset [123]. Initial publications of LCDF were proposed

in 2009 [83] and 2010 [124] and were – prior to deep learning methods – state-of-the-art for

fast pedestrian detector. LDCF is public available in a detector framework [125] by Piotr Dollar.

The detector is first trained on pedestrians (positives) and non-pedestrians (negatives) using

AdaBoost as classifier and aggregated decorrelated channel features.

In the detection phase, channel features are calculated on the whole image and pedestrians are

detected at multiple scales and positions in the image with a sliding window approach. The
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6.1. Pedestrian Detector: LDCF

     Used in P[1,4,10]
 GH1: ped_detector_ros

Object detector: YOLOv2 [18]

     Used in P[1,4,10]
 GH2: yolo_v2_ros

Semantic Segm.: FCN [19]

     Investigated in P[7]
     Used in P[4,10]

 GH3: fcn8_ros

Anomaly: DeepAnomaly P[1]

     Proposed in P[1]
     Used in P[4]

 GH4: deepanomaly

Thermal: DynamicHeat P[4]

     Used in P[2,4]
              GH5: dynamic_heat_ros

     Proposed in P[5]

     Proposed in P[2]

Pedestrian Det.: LDCF [17]

Using Deep Learning to 
Challenge Safety Standard...

Detection and recognition of 
wildlife using thermal camera

thermal

rgb

rgb

rgb

rgb

thermal

rgb

TractorEYE

Thermal mage

rgb image
rgb 

detections

thermal 
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Figure 6.1: Contributions of chapter 6. Five detection algoritms are used in TractorEYE (LDCF
[17], YOLOv2 [99], FCN [19], DeepAnomaly P[1], DynamicHeat P[4]) and imple-
mented as ROS package GH1, GH2, GH3, GH4 and GH5. LDFC, YOLOv2 and FCN
have been evaluated in an agricultural context P[1, 4, 7, 10]. DeepAnomaly P[1],
DynamicHeat and P[2, 5] are proposed in this thesis.

Figure 6.2: (Left) ACF without ground plane assumption (Right) ACF with ground plane assump-
tion.
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Chapter 6. Obstacle Detection

algorithm is optimized for speed by estimating features at multiple scales instead of calculating

them explicitly. The detector has improved through multiple publications [17, 83, 84, 126, 127].

I have an unpublished paper using Aggregated Channel Feature [126] (ACF) combined with

ground plane assumption. Figure 6.2 presents the algorithm with and without a ground plane

assumption.

LDCF and Viola Jones based detectors have for a decade [128] been developed and used for

assisted driver/safety systems in the automotive industry. Mobileye was founded for solving

this issue (hardware and software) and is now a $15.3 billion company, though their systems

have become far more intelligent. Viola Jones based algorithms are fast and applicable for

up-right pedestrians and faces, where a bounding box of fixed aspect ratio is able to capture the

object of interest. However, the limited capacity of Viola Jones based detectors and the fixed

aspect ratio is conceptually not suited for detecting multiple object types or a single object

class with variable postures. In agricultural and urban environments, people will often be in

an upright posture as a pedestrian. However, detection of other human postures are crucial to

autonomous vehicles as especially a lying, sitting or unconscious person have reduced mobility

to actively avoid a dangerous situation. This was also experienced in the D1 data using the

LDCF detector, see Figure 6.3. Furthermore, a single detector should preferably detect multiple

object classes such as e.g. humans, animals and agricultural vehicles.

Figure 6.3: Hazard situation, showing that LDCF detects all humans but the failing kid

Object detection is broader defined and is conceptually able to detect multiple object classes

and variable postures. Deformable parts model (DPM) [85, 86] have been popular in the late

2000s for object classification tasks such as in the PASCAL VOC object detection competition

with 20 object classes. The performance is however not near the performance of recent CNN-

based models.
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6.2. Object detection: YOLOv2

6.2 Object detection: YOLOv2

The object detection module uses a CNN-based single forward pass object detector called

YOLO [18, 99] by Joseph Redmon as the main contributor. YOLO is implemented in Darknet

[129] – a deep learning framework written in C – also maintained by Joseph Redmon. Thesis

contributions are two ROS packages GH2 to enable YOLO [18] and YOLOv2 [99] to be used in

P[1, 4, 10]. Compared to LDCF, YOLOv2 is able to detect multiple object classes with variable

postures of much higher accuracy and is able to run real-time using a middle range GPU.

The same hazard situation from Figure 6.3 using the LDCF detector is presented again in Figure

6.4 using YOLOv2 as detector. YOLOv2 is able to detect all persons including the falling kid.

Figure 6.4: Hazard situation with YOLOv2. YOLOv2 is able to capable of detecting all persons
including a falling kid.

For autonomous vehicles in the agriculture, many obstacles or elements are imprecisely local-

ized with a bounding box such as roads, building, shelterbelts and fencing. This have been

demonstrated in Figure 6.5 with simulated annotations. Detections of such elements are critical

in agriculture and to operate the vehicle safely.

Traditionally, multiple detection algorithms or sensor modalities have been used for detecting

such semantics. A rapidly growing image recognition task defined as semantic segmentation

enables the detection and precise delimitation of both obstacles and elements in the image by

classifying each pixel.

6.3 Semantic Segmentation: FCN

The semantic segmentation module uses a Fully Convolutional Network (FCN) for semantic

segmentation [19] developed by Jonathan Long using the Caffe framework [130]. The contri-

bution of this thesis is a preliminary study of FCN for autonomous tractors in a standalone

paper P[7]. Additionally FCN is evaluated, combined and compared to other CNN-based rgb
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Chapter 6. Obstacle Detection

Figure 6.5: Demonstrations of how annotations for field, road and shelterbelt are imprecisely
delimited with a bounding box

algorithms (YOLO [18], LDCF [17]) and sensor modalities for mapping static obstacles in P[10]

and in P[4] for mapping both static and dynamic obstacles. A ROS package (GH3) is made for

executing a pre-trained model.

The contribution of P[7] is a preliminary study of FCN for autonomous farming vehicles in two

use cases; grass mowing and row crop operation. The study uses predictions from a model

[19] trained for whole scene per-pixel classification on the 59 most frequent classes of Pascal

Context [103]. Pascal Context provides per-pixel annotations of whole scenes in 10,103 images

of 407 object classes. Not to be confused with Pascal VOC, where only 20 object classes have

been annotated. Predictions for the 59 most frequent classes are remapped to 11 agricultural

super-categories; animal, building, field, ground, obstacle, person, shelterbelt, sky, vehicle,

water, and unknown. An image example for grass and row crops is presented in Figure 6.6 and

Figure 6.7, respectively.

Figure 6.6: Semantic segmentation of remapped classes in grass. From P[7]

Ground truth is annotated for five grass and five row crop images and evaluated to a classifica-

tion accuracy of 95.25% and 70.54%, respectively. The simple remapping of a pre-trained model

demonstrates the potential of semantic segmentation in an agricultural use case. Still, better

data is required to better classify a class like row crops, as it is not uniquely defined in the Pascal

Context data set.

Semantic segmentation provides powerful detection capabilities to a regular rgb camera, allow-

ing it to detect objects and elements that are not precisely delimited by a bounding box.
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6.4. Anomaly detection: DeepAnomaly

Figure 6.7: Semantic segmentation of remapped classes in row crop. From P[7]

Conceptually, supervised algorithms such as semantic segmentation and object detection are

only able to detect a set of predefined classes and require images samples for each object

class. Secondly, agricultural productions fields are covered by single crop species making a

field visually homogeneous in texture and color. Elements that do not conform to the visual

appearance of the field are potential obstacles. Figure 6.8 presents a set of obstacles that are

difficult for a supervised algorithm. Because objects are heavy occluded, unexpected or rare in

an agricultural field.

Figure 6.8: Image examples of heavy occluded or rare obstacles in an agricultural context.

6.4 Anomaly detection: DeepAnomaly

The DeepAnomaly module in TractorEye uses the anomaly detector proposed in P[1], entitled

“DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles

and Anomalies in an Agricultural Field”. Additionally, DeepAnomaly is evaluated, combined

and compared to other CNN-based rgb algorithms and sensor modalities in P[4] for mapping

both static and dynamic obstacles. A ROS package has been developed but is currently not

publically available (GH4). The algorithm is demonstrated in Figure 6.9 and Figure 6.10.

DeepAnomaly uses high level features from a pre-trained CNN-model to detect anomalies that

do not conform to an agricultural context, see Figure 6.11.

A broad set of configurations (460 settings) have been evaluated for detection accuracy and

compute time. A single setting with a high detection accuracy and low compute time is selected

and denoted DeepAnomaly. DeepAnomaly uses the output feature map generated by the last

convolutional layer of a modified AlexNet-model trained for image classification on ImageNet.

A set of images of an agricultural field with no obstacles is propagated through the network.
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Chapter 6. Obstacle Detection

Figure 6.9: DeepAnomaly on anomaly image examples (from Figure 6.8)

Figure 6.10: DeepAnomaly on kindergarden image. Same image have also been tested with
LDCF in Figure 6.3 and YOLOv2 in Figure 6.4
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classes. DeepAnomaly uses high abstraction features from AlexNet to create a low
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6.4. Anomaly detection: DeepAnomaly

An outlier detector is generated by modelling the normal statistics of the output feature maps

(Figure 6.11) using a single variate Gaussian distribution model. The outlier detector, measures

the Mahalanobis distance between the normal statistics and a new feature map entry. A

feature map entry is defined as an anomaly if the Mahalanobis distance excessed a pre-defined

threshold. Anomaly detections are presented in Figure 6.13.

A human detection accuracy metric is used to compared Deep anomaly to four other detection

algorithms YOLO (version 1) [18], Faster R-CNN [94], FCN [19] and LDCF [17]. A human

detection use case is defined to quantitatively demonstrate that DeepAnomaly is a state-of-

the-art real-time detector in an agricultural context for detecting distant, heavily occluded and

unknown obstacles (anomalies). Figure 6.12 (a) demonstrates that DeepAnomaly provides

better detection accuracy (F1-score) and Figure 6.12 (b) shows that DeepAnomaly is generally

better – especially for longer distance intervals.
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Figure 6.12: (a) Detection accuracy (F1-score) for variable thresholds. (b) Detection accuracy
(F1-score) for a variable distance intervals P[1].

Image examples present detections for all algorithms in Figure 6.14.

A large and slightly edited section is taken from P[1] “Deep learning-based object detection

and semantic segmentation have recently showed state-of-the-art results in detecting specific

objects. However, in an agricultural context, they have difficulty in detecting heavily occluded

and distant objects, and methods are, by definition, trained to recognize a predefined set of object

types. DeepAnomaly can exploit the very homogeneous characteristics of an agricultural field to

detect distant, heavy occluded and unknown objects. Qualitatively, this is illustrated in Figure

6.13, where DeepAnomaly detects a distant and occluded mannequin kid, a human showing

only his arm, a heavy occluded olive-green barrel (with similar color as the field), a well cover

and detections of obstacles with a size of less than 16 × 16 pixels. By using DeepAnomaly in

junction with other deep learning algorithms, it can save computations by using convolutional

features from other networks. DeepAnomaly also spares the time-consuming task of providing

domain- or algorithm-specific annotated data. An evaluation metric for detecting humans

is defined to compare DeepAnomaly with four state-of-the-art algorithms. The comparison

shows that DeepAnomaly is better at detecting humans at longer ranges (45–90 m). R-CNN has

similar performance at short range (0–30 m). However, with much fewer model parameters and
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Figure 6.13: Anomaly detection by DeepAnomaly. From P[1]
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a (182ms/25ms =) 7.28-times faster processing time per image, DeepAnomaly is more suitable

for real-time applications running on an embedded GPU. The used detection metric copes with

dissimilar outputs of the evaluated algorithm and will not favor a precise localization/position of

a detection. However, in the context of autonomous vehicles in agriculture, the exact bounding

box position or semantic segmentation at pixel-level precision is not of critical importance. Rough

localization markings (±12 pixel) are sufficient and more important are the detector’s ability

to, in real time, detect obstacles even when they are heavily occluded, distant and potentially

unknown. However, it is important to state that the object type is unknown to DeepAnomaly, and

it requires specific conditions in terms of visually-homogenous surrounding and a low incidence

of anomalies. YOLO, R-CNN, FCN and LDCF provide also object type and are more generalizable.”

6.5 Thermal heat detection: DynamicHeat

A simple heat detection module is developed in P[2] and modified and tested in P[4]. The

implementation is available on GitHub (GH5). Hot elements are detected using a slightly

modified dynamic threshold P[2]. The median temperature is determined for all image pixels in

a bottom region of the image. The bottom region is visualized by a yellow line crossing the image

in Figure 6.15 (a). The median temperature and a constant value is subtracted from the image

and all negative values are set to zero as in Figure 6.15 (b). A connected components-algorithm

is used for merging elements in the image and assigning them to the maximum value of each

component as presented in Figure 6.15 (c). Values are normalized according to a maximum

value to represent hot elements with some pseudo probability measure.

(a) (b) (c)

Figure 6.15: (a) Thermal image. (b) Thermal image subtracted by the median temperature. (c)
Connected components are set to the maximum value of each component and
normalized according to a specified value.

6.6 Using Deep Learning to Challenge Safety Standards

The publication “Using Deep Learning to Challenge Safety Standard for Highly Autonomous

Machines in Agriculture” P[5] is a response to the emerging Safety Standard ISO/DIS 18497

called “Agricultural machinery and tractors – Safety of highly automated agricultural machines”.

A section in the ISO describes how to meet requirements for obstacle detection. A standardized

object is defined to mimic a human seated with a visible torso and head, see Figure 6.16.
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6.6. Using Deep Learning to Challenge Safety Standards

Figure 6.16: Standardized obstacle

For distance and depth sensors (ultrasonic, lidar and Time-of-Flight) such an obstacle or barrel

would resemble a kid or a sitting human. However, for an imaging rgb camera, a barrel will

obviously not resembles a human and an rgb-based object detector trained on barrel images

would not generalize to humans.

A simple use case and detector was designed to demonstrate that a CNN-based detector would

with high detection accuracy be able to detect barrels and no mannequins, humans or (stuffed)

animals.

Firstly, 437 barrel images were extracted from five small video sequences, see Figure 6.17.

Figure 6.17: Barrel images are extracted from 5 video sequences. From P[5]

The evaluation is performed in a grass field (D2) and row crops (D4) as presented in Figure 6.18.

Figure 6.18: Test data is from grass and row crops. From P[5]

Following the steps in [38], a pre-trained AlexNet model was fine-tuned for image classification

of barrel images. The fully connected layers are reshaped to convolutional layers allowing the

model to be process larger images at multiple scales to create a heat map for each scale, see

Figure 6.19.

Heat maps are then converted to bounding boxes and non-maximum suppression removes

bounding box duplicates. The tractor drives by the barrel 14 times and is able to detect it for

each run. More on procedure and results can be found in the paper.
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Figure 6.19: Presents heat map of the barrel class for a particular scaled input image. From P[5]

6.7 Wildlife Detection using Thermal Camera

The publication “Automated Detection and Recognition of Wildlife Using Thermal Cameras” P[2]

is an early standalone publication to be used by an Unmanned Aerial Vehicle (UAV). The data is

recorded from a telescopic boom and includes a molehill, a rabbit and a chicken to simulate

data from an UAV. Elements are detected by thresholding objects warmer than a dynamic

temperature, which is defined as a small constant (2 degrees) above the median temperature

of all pixels in the current image. The contribution of this paper is a translational, rotational

and partly scale invariant feature descriptor - defined as the thermal signature. The thermal

signature measures the temperature from boundary to object center by iteratively shrinking the

object by its own boundary, see Figure 6.20. For each iteration the mean contour temperature is

measured and stored in a vector as presented in Figure 6.21.

(a) (b) (c)

Figure 6.20: Detected object is iterative shrunk by the contour. From P[2]

To normalize and to use a fixed sized vector, vectors are subtracted by the first contour value

and approximated by a Discrete Cosine Transform with a fixed number of coefficients. Seven

coefficients are used as these are able to describe 95% of the signature information for 95%

of the provided data. Temporal information was incorporated using a simple tracker and the

Bayes rule to obtain a balanced classification accuracy of 93.5% in the altitude range 3-10m and

77.7% in the altitude range of 10-20m. More on procedure and results can be found in the paper

P[2].
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Figure 6.21: Thermal signature for molehill, chicken and rabbit. From P[2]

6.8 Concluding Remarks

A broad set of state-of-the-art real-time detection algorithms have been investigated such as

LDCF, Faster R-CNN, YOLO, YOLOv2, FCN and DeepAnomaly to detect obstacles in agriculture.

A total of five algorithms (LDCF, YOLO/YOLOv2, FCN, DeepAnomaly and HeatDetection) have

been implemented as ROS-packages to enable autonomous farming machines and TractorEYE

to execute algorithms in an actual application. DeepAnomaly, HeatDetection and P[2, 4]

have been proposed in this thesis. DeepAnomaly is especially a valuable contribution to

autonomous vehicle in agriculture to detect distant, heavy occluded and unknown obstacles.

For an agricultural use-case it is – compared to a state-of-the-art object detector Faster R-

CNN – able to detect humans better and at longer ranges (45-90m) using a smaller memory

footprint and 7.3-times faster processing. Low memory footprint and real-time processing

makes DeepAnomaly suitable for an embedded GPU and for autonomous farming vehicle.

Another advantage of DeepAnomaly is its application for potentially other domains and how

easily it can be adapted for a new use case. Deep Learning algorithms are often dependent on

a large amount of annotated data. Using a pre-trained network, DeepAnomaly have in P[1]

achieved state-of-the-art performs using only 56 images. The selected images are only weakly

supervised in the sense that selected images should simply not contain obstacles or anomalies.

6.8.1 Challenges and Future Work

State-of-the-art image recognition have dramatically improved through the course of this

thesis. The development of hardware, libraries, frameworks and algorithms for deep learning

have been a great advantage, but also required my work to rapidly adapt according to new

methods and research. The rapid development have also introduced many new concepts to

run algorithms more efficiently, obtain better accuracy and turn predictions into probabilities.

Bayesian Deep Learning A disadvantage of deep learning model predictions is that values

do not represent actual probabilities. Bayesian deep learning seeks to quantify and predict

uncertainties to basically understand what a model does not know [131–133]. This is especially

important for detection algorithms in robotics and autonomous systems where the environment
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and measurements are modeled using probabilistic robotics [134]. Bayesian beep learning is

applied to represent two types of uncertainties for both regression and classification networks

in [132]; epistemic for describing model uncertainties and aleatoric describing uncertainty of

predictions because such information is simply not represented in the data e.g. areas that are

overexposed in an image.

Multi-task Learning Recently, many deep learning networks are trained for multiple tasks

(multi-task learning) [135] to predict e.g. semantic segmentation, instance segmentation and

depth/disparity image [133] using a single backbone network. The advantage is shared compu-

tations (one model instead of three) and that the accuracy of each tasks is potentially improved

compared to a single task learning setup [133, 135]. Distance to objects is for TractorEYE esti-

mated using a stereo camera/stereo matching and detection algorithms are using individual

models. Using multi-task learning to execute obstacle detection, semantic segmentation and

estimate the distance to objects would reduce the computational requirements of TractorEYE

and avoid the cost of a stereo camera.

Improvements in Accuracy and Compute Compute efficiency is expected to improve using

the concepts of MobileNet [112] for both object detection, semantic segmentation and anomaly

detection. Improvements in accuracy are also expected by using concepts from other network

architectures such as Wide ResNet, ResNeXt and DenseNet. Object detection are expected

to improved using Feature Pyramid Networks. Recently, datasets for whole scene semantic

segmentation have been introduced such as MIT Scene Parsing Benchmark with 20,000 images

and a new stuff segmentation challenge in MS COCO with 40,000 images. Such data is expected

to improve on the less common challenge of whole scene annotations. Whole scene semantic

segmentation is especially important in agriculture to also detect shelterbelts, grass, field, crop,

roads and buildings that are imprecisely delimited with a bounding box.

Training algorithms in an agricultural context TractorEYE detection algorithms have been

trained mostly using existing datasets in general context images. In an actual application,

detection algorithms need to be fine-tuned on data from an agricultural environment to exploit

context.

Object tracking High-level fusion of temporal information have been incorporated using occu-

pancy grids and mapping – more on fusion and mapping in 8.2 Fusion and Mapping. However,

more low level multi-object tracking procedures are yet to be explored for moving obstacles

in either image frame (2D) [136] / world (3D) coordinates using visual cues [137]. RNN based

networks have also been combined to track facial landmarks [57].
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7 Sensor Registration & Detec-
tion Alignment

Multiple sensor technologies and detection algorithms will output information in various

formats. To utilize the advantages of a multi-modal system in agriculture, the output format

should be mapped to a common representation/format that is interpretable by a robot. The

purpose of this chapter is to represent detection information from cameras in a common

representation as either 3D position or as Inverse Sensor Models. The chapter is divided in

sensor registration and detection alignment. Chapter contributions are presented in Figure 7.1

7.1 Sensor Registration

7.1.1 Thermal-visual Calibration Panel

A thermal calibration panel is proposed in P[6] for calibrating both thermal and rgb cameras

(intrinsic parameters) and determining the registration between them (extrinsic parameters)

using a single calibration panel. Two thermal calibration panels were tested for calibration and

registration. The core property of a calibration element is that similar points are detectable in

both modalities.

Figure 7.2 shows the first thermal calibration panel version used in D2. A heat pillow was used

for heating a blue metal plate and a white reflective surface with carved squares is placed on

top. Heat from the heat pillow ensures that blue squares are distinguishable from the white

front panel both in thermal and rgb images. A script was developed to automatically detect

corner candidates using color transformations and a Harris corner detector. An annotation tool

was developed to manual adjust incorrect or missing corners. The calibration board created an

inefficient and imprecise solution. The manual adjustment of square corners was tedious and

poor carvings made annotations imprecise.
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     Proposed and used in P[4,9,10]
GH6: image_bb_to_3D
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Figure 7.1: Contributions of Chapter 7 is divided in two subsections Sensor Registration and
Detection Alignment. In Sensor registration, stereo camera, thermal camera and
lidar are registrated. A thermal calibration panel is proposed to do rgb-thermal
calibration and registration. In Detection Alignment, detections are transformed
to a common format as either 3D detection or image ISM. Software contributions
is GH6 for transforming detection in to 3D positions, GH7 for generating ISMs and
GH8 is the safe protocol.

Figure 7.2: First version of the thermal calibration panel

A second thermal calibration panel was proposed. Figure 7.3 a) and b) presents front and back.

An A4 sized circuit board was printed to precisely create cobber squares in a checkerboard

pattern. The low emissivity coefficient of the cobber coding makes cobber squares act as

reflectors for the thermal camera. A metal plate was mounted on the back with 60 power

resistors to deliver 216 W using a 12V car battery.

Non-cobber squares will emit heat from power resistors and cobber squares will reflect the

(colder) surrounding environment to create a distinct transition between the two surface

materials. The advantage of a checkerboard pattern is that existing toolboxes are able to
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(a) (b)

Figure 7.3: Front and back of thermal calibration panel. From P[6]

automatically detect checkerboards in the images. Unfortunately, the checkerboard detection

function from MATLAB was unable to detect the not so distinct color transitions between

squares in the rgb images. A procedure to emphasize checkerboards are described in P[6] and

improved in P[4]. A script is developed to manually segment an area inside the checkerboard.

Thermal images are normalized (shifted and scaled) according to the selected area. The MATLAB

checkerboard detection algorithm is evaluated for four color transformations of the image to

improve chances of detection. First, the input image is transformed to the LAB-color space.

Four image transformations are generated from the L- and A-channels by both normalizing

and histogram equalizing according to the selected area. Figure 7.4 presents a raw rgb image, a

processed rgb image and the normalized thermal image.

Extrinsic parameters (the displacement between thermal and rgb cameras) are estimated as

for a stereo camera using hardware synchronized thermal and rgb images. Registration results

are presented in Figure 7.5 showing detected checkerboards and displacement between the

thermal and left rgb camera.

7.1.2 Stereo to lidar Registration

To complete registration, the extrinsic parameters between the lidar and the cameras (thermal

and stereo) needs to be determined. Extrinsic parameters are found using the Iterative Closest

Point (ICP) [138] algorithm by determining the transformation that aligns stereo and lidar point

clouds. To improve the registration, a static scene with distinct 3D structures and many “3D

corners” should be used to ensure a unique/convex solution. Scenes of only a flat surface or

an edge between two surfaces have an infinite number of solutions. Figure 7.6 (b) presents

registration between lidar and stereo camera.

7.2 Detection Alignment

The purpose of detection alignment is to map detection information from multiple detection

algorithms and sensors with different “output formats” into a common format / representation

by either estimating the 3D bounding boxes of 2D image detections or by generating Inverse

Sensor Models for each algorithm and sensor.
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Chapter 7. Sensor Registration & Detection Alignment

Figure 7.4: Thermal calibration panel as rgb, processed rgb and normalized thermal
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Figure 7.5: Detected checkerboards and displacement of thermal and left rgb camera.
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Figure 7.6: (a) Image from the stereo camera (b) Registration between the lidar and the stereo
point cloud.
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7.2. Detection Alignment

7.2.1 Mapping of image detections to 3D bounding boxes

An image detection can be mapped to a 3D bounding box by first estimating the distance to

an object (Figure 7.7). A ROS package (GH6) have been developed for converting an image 2D

bounding box to 3D by estimating the distance of a detection using either information of the

static camera position (tf-tree) or stereo disparity.

2D to 3D bouding boxes

2D Bounding box 3D detections

2D bounding box 3D bbox

Figure 7.7: Estimating 3D bounding box from 2D image detection.

The distance is used for mapping the four 2D bounding box corners to world coordinates. The

bounding box position and extend is derived in 3D and represented as a cylinder (position,

height and width) as shown in Figure 7.7.

Heuristics to estimating the distance of a bounding box is listed below.

- Using a static ground plane assumption The camera is mounted statically above a flat

surface with a fixed angling. The row position of a detection (lower bar) can be mapped

to a distance on the ground plane, see Figure 7.8.

- Using a dynamic ground plane assumption is similar to a static ground plane assump-

tion. However, the camera angling is constantly updated using an IMU. A tf-tree is

specified in the ROS-package.

- Using stereo matching In a stereo setup where the disparity map is aligned with the

bounding box detections, the disparity map can be used for estimating the distance.

The average, median or percentile distance inside the bounding box can be used. The

median or the closest 5-10% percentile will avoid being influenced by very distant depth

measurements or a few very close points.

- Using other depth sensors Depth measurements from sensors that are not directly

aligned with the image such as the lidar. The intrinsic camera parameters and the extrinsic

(displacement between sensors) can be used for projecting depth measurements from

a depth sensor to the image frame. After projecting depth information to the camera

image frame, the distance to a detection can be estimated as for a stereo camera setup.

Furthermore, the stereo point cloud or the lidar depth measurements can be projected

onto the thermal camera image frame to estimate distances for the thermal camera.

Unfortunately, projection of depth measurements between sensors has not yet been

implemented in (GH6).
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Row 
position

Horizon

Image frame

Ground plane

(a)

Ground plane

Angling
Horizon

h

(b)

Figure 7.8: A row position in an image maps to a specific distance for a statically mounted
camera on a flat surface a) Image frame with detection b) Static camera angling to
flat ground surface

7.2.2 Inverse Sensor Models

The purpose of Inverse Sensor Models (ISM) is to convert detections from multiple sensors

and algorithms with different “output formats” into a common grid-based format. The format

allows information from multiple sensors and algorithms to be registered and fused.

Contributions related to the Image inverse sensor model (ISM) module is

- One publication P[9] describing heuristics for generating ISMs.

- In two publications P[4, 10], ISMs have been used for fusing detection information from

multiple algorithms in a multi-modal system.

- A ROS package (GH7) for mapping a detection into an ISM. One function converts 3D

detection to an ISM. The second function converts images to an ISM using an Inverse

Perspective Mapping (IPM).

Occupancy grid maps are evenly spaced grid maps commonly used in probabilistic robotics

[134]. The purpose of an occupancy grid maps is to generate a map by estimating the posterior

probability over maps given a sensor measurement. Each grid cell contains a probabilistic

measure of occupancy using a real valued number in the interval [0, 1]. A value of 0 represents

unoccupied, a value of 1 represents occupied and 0.5 represents unknown.

An Inverse Sensor Model (ISM) is a local grid map representation generated from typically

a range sensor as presented in Figure 7.9 (a). This local map is then merged with a global

occupancy grid map. The image inverse sensor model comprises both a detection algorithm

and the generation of a local grid map from detections, see Figure 7.9 (b). This section only

deals with the step of converting detections to local grid maps.

7.2.3 Image ISM - Inverse Perspective Mapping

Inverse Perspective Mapping (IPM) is a geometrical transformation that projects image to

ground plane surface [139, 140]. For a flat surface, the perspective effect is removed by trans-

forming the viewpoint from camera to bird’s eye view. In GH7, the camera configuration is

specified explicitly (height and angle relative to ground surface) or by a tf-tree. The homography

for mapping image coordinates to surface is defined by intrinsic camera parameters, camera
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(a)

Image ISM
Image

detections

(b)

Figure 7.9: (a) Range inverse sensor model, from [134] (b) Image detection are generated into
an image inverse sensor model.

to surface transformation and surface to ISM transformation. Figure 7.10, presents rgb image

before and after Inverse Perspective mapping.

Figure 7.10: Inverse Perspective Mapping of RGB image. From P[9]

Similar to an rgb image, a detection image can be mapped to an ISM using an IPM. Figure 7.11

presents FCN semantic segmentation predictions for human and grass before and after IPM.

Values of ISM are the probability of a grid cell being occupied for a giving obstacle. As presented

in Figure 7.11, the area that are not visible by the camera is set to 0.5 - representing that no

information is provided for areas that are not visible to the camera. Visible areas with no

detections are set below 0.5 to indicate that the area is not expected to be occupied by the given

class. Values above 0.5 indicate that the area is expected to be occupied by the given class. For

detecting flat elements such as road lane markings or the grass class, the IPM algorithm is able

to provide good approximations of the actual inverse perspective mapping. Tall element violate

the IPM ground plane assumption and will stretched elements unnaturally/incorrectly across

large areas as presented for the human class predictions.
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Chapter 7. Sensor Registration & Detection Alignment

Figure 7.11: (Left) Grass and human predictions by the FCN for semantic segmentation (Right)
Using Inverse Perspective Mapping to generate ISMs grass and human class. P[9]

7.2.4 ISM from 3D Bounding Boxes

To avoid “stretching artifacts” of tall objects a second approach is used. An ISM can be generated

using 3D bounding boxes as presented in Figure 7.12.

ISM3D detections

3D to ISM
3D bbox

Figure 7.12: 3D Bounding box detection to ISM

Heuristics for mapping 3D detections to an ISM is listed below.

- Areas that are outside the camera FOV is mapped to 0.5. Representing that no information

is provided for these areas.

- Areas with no detections inside the FOV are set below 0.5. Values below 0.5, indicate that

the algorithm by some certainty is able to reject the existence of an obstacle in a visible

areas.
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7.2. Detection Alignment

- Most detection algorithms will degrade by the distance. This is incorporated by cropping

the ISM beyond a certain distance and by linearly reducing the certainty of not detecting

obstacles by the distance. In Figure 7.12, the area inside the FOV increases from 0.4 to 0.5.

- Detections are mapped to values above 0.5 with a Gaussian distribution to indicate that

the position of an obstacle is uncertain. The localization uncertainty for a camera is inde-

pendent for the radial coordinate (distance to the object) and angular coordinate (angle

to object). To incorporate this, the polar coordinate (distance and angle) is modelled with

two independent uncertainties as in Figure 7.12, where the localization uncertainty of

the radial coordinate is larger than the angular coordinate.

- Localization accuracy degrades by the distance. Two uncertainties can be specified for

each component of the polar coordinate to allow the uncertainty of each component to

increase linearly by the distance.

7.2.5 The mapping of all detection algorithms to an ISM

The pipeline for mapping all detection algorithm into ISMs is presented in Figure 7.13. The

overall principle is that objects are be mapped to ISMs using 3D detections and other elements

such as grass, water and ground are mapped to ISMs using an IPM. The bounding box based

algorithms (YOLOv2 and LDCF) are converted to an ISM using 3D bounding boxes. HeatDetec-

tions and five FCN8 classes (Ground, Field, Water, Shelterbelt and Building) are mapped using

IPM. Detections from DeepAnomaly and two FCN8 classes (Human and OtherObstacles) are

rearranged into connected components and then bounding boxes. These bounding boxes are

then mapped first to 3D and then ISMs. Finally, all classes from multiple algorithms have been

mapped into ISMs.

IPM to ISM

3D to ISM2D bounding 
boxes to 3D

Detections (bbox)
HumanYolo
OtherObstaclesYolo
UnknownYolo

Detections (bbox)
HumanLDCF

Detections (image)
Anomaly

Detections (image)
Heat

Detections (image)
Ground
Field
Water
Shelterbelt
Building

Detections (3d_bbox)
HumanYolo
OtherObstaclesYolo
UnknownYolo
HumanFCN
OtherObstaclesFCN
Anomaly

Detections (image)
HumanFCN
OtherObstaclesFCN

Detections (bbox)
Anomaly
HumanFCN
OtherObstaclesFCN

YOLOv2

LDCF

FCN8

Deep-
Anomaly

Heat-
Detection

Detections (ISM)
HumanYolo
OtherObstaclesYolo
UnknownYolo
HumanFCN
OtherObstaclesFCN
Anomaly
Ground
Field
Water
Shelterbelt
Building
Heat

Connect 
Components

Figure 7.13: The flow from detections to ISM for all camera algorithms
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7.3 Concluding Remarks

Multiple sensor technologies and detection algorithms will output information in various

formats. To utilize the advantages of a multi-modal system in agriculture, the output format

should be mapped to a common representation/format that is interpretable by a robot. The

procedure for doing this is twofold. First, Sensor Registration procedures have been presented

to calibrate and register thermal camera, stereo camera and lidar. Specifically, a thermal-visual

calibration panel have been proposed in P[6] to calibrate and register thermal and rgb cameras.

Secondly, procedures have been proposed to map camera detections into a common format as

either 3D detections or an ISM representation. Various heuristics have been used to map image

detections in 2D to 3D detections using either a static camera assumption or depth from a

stereo matching algorithm. Finally, two procedures have been proposed in [9] to generate ISMs

using either 3D detections or inverse perspective mapping. The ISM representation is used for

fusing multiple sensor technologies and algorithms in P[4]. The 3D detection representation

have been used in the SAFE protocol (GH8) and by the BallBot robot presented in Figure 4.11

and a video demo1. To be used in an actual autonomous robot application, ROS-package have

been implemented (GH6 and GH7) to respectively map detection to 3D and generate ISMs.

7.3.1 Challenges and Future Work

The proposed generation of ISMs from detection algorithms involves many heuristics. Currently,

the output of algorithms does not represent actual probabilities. Bayesian deep learning -

shortly described in 6.8 Concluding Remarks - would enable this. Furthermore, procedures for

better estimating the actual localization uncertainties should be used. Different procedures

for generating ISMs from detection have been presented. It would be relevant to compare

and evaluate these procedures using quantitative measures. Finally, the ros package (GH7) for

generating ISMs can be improved and extended. It is possible to estimate distance to objects

using other depth sensors. This would allow the rgb camera to use lidar data to estimate distance

of detections and the thermal camera to use stereo or lidar data to estimate the distance to

detections.

1Video demo is available at YouTube https://youtu.be/KDa_y-RfkhM?t=109
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8 Localization, Fusion and
Mapping

The final processing step is to fuse information from multiple sensors and algorithms into maps.

Grid-based maps are an important representation for autonomous systems to represent its

surroundings and navigate accordingly. Maps are in this thesis created using occupancy grid

maps using information (ISMs) provided by TractorEYE.

Occupancy grid maps [141] are evenly spaced grid maps commonly used in probabilistic

robotics [134]. Each grid cell is a stochastic variable representing the probability of an area

being occupied. The purpose of an occupancy grid maps is to generate a map by estimating the

posterior probability over maps given a sensor measurement - an ISM - and the robot pose. In

other words, fusion and mapping will iteratively build up maps using the robot pose and ISMs

from multiple sensors and algorithms. Contributions of this chapter is described in P[4, 10] and

provide a quantitative evaluation of sensor modalities and algorithms. Occupancy grid maps

are a valuable tool to incorporate uncertainty, fuse multiple detections algorithms and sensor

models on decision level.

8.1 Localization

To build occupancy grid maps the robot pose is estimated. Localization is performed by the

ROS robot_localization package [142] using the extended kalman filter node

(ekf_localization_node) and the navsat_transform_node to integrate GPS coordinates. The

kalman filter estimates tractor pose based on the VectorNav IMU and heading and position

provided by the differential RTK GPS.
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Chapter 8. Localization, Fusion and Mapping

Figure 8.1: Algorithms for one sensor is fused competitively (maximum). Multiple sensors are
fused using complementary fusion.

8.2 Fusion and Mapping

Fusion and mapping into occupancy grid maps is achieved using the mapserver ROS package

[143] developed by Timo Korthals a collaborator and co-author of P[4, 9, 10]. The mapserver

is a occupancy grid server framework with a generic sensor interface. In P[10] sensors use the

maximum method to get a competitive fusion across all algorithms from a particular sensor.

Each sensor is then fused using a Superbayesian method to get a complementary fusion across

all sensors. This is presented in Figure 8.1.

The algorithm is evaluated on dataset D3 using a binary representation (occupied or not

occupied). Algorithms and sensors are compared quantitatively. Results are presented in P[10].

The work in P[4] is an elaborated extension to P[10] and summarizes most contributions of

this dissertation. Unfortunately, it has not been possible to complete the work of P[4] prior

to dissertation submission and only a draft of P[4] has been attached in the dissertation –

submission date is 13.10.2017. P[4] will comprises all implemented ROS packages (LDCF,

YOLOv2, FCN, DeepAnomaly, dynamic thermal detection) with better and synchronized sensors

(SuperSensorKit+MiniSensorKit). A more complicated scheme for better ISM generation is used

as presented in Figure 7.13. Finally, the setup is evaluated on the FieldSAFE (D6) dataset which

both includes ground truth for static and moving obstacles. An important contribution is the

quantitative evaluation and comparison between sensor modalities and algorithms.

68



9 Contribution Overview

Figure 9.1 presents an overview of all major contributions in the thesis. The Figure is an extended

version of Figure 1.1 and 3.1 by representing published papers , engineering products

and developed ROS packages with small icons. Though, the details presented in the

figure are overwhelming, the Figure is able to compactly capture the covered areas and all major

contributions.

Chapter 3 and 4 presents sensor platform and data collections. The sensor platform is devel-

oped and described in three publications P[3, 6, 8]. The sensor platforms and collected data

is used in multiple papers P[1, 4, 5, 7, 10, 11]. Engineering contributions are SuperSensorKit

and MiniSensorKit, field trials (D1-D6) and ground truth of (D5 and D6). Ground truth of D5

is annotations of static obstacles in an orthophoto. Ground truth of D6 (FieldSAFE) is ground

truth of both static and moving obstacles using an annotated orthophoto and annotations of

footage from a hovering drone.

Chapter 5 presents all detection algorithms. A total of five detection algorithms (LDCF [17],

YOLOv2 [99], FCN[19], P[1] and DynamicHeat) have been implemented as ROS packages

(GH1, GH2, GH3, GH4 and GH5) and used by TractorEYE. DeepAnomaly and DynamicHeat is

proposed in this thesis. Additionally, two detection algorithms – not used in TractorEYE – have

been proposed in P[2, 5].

Chapter 6 presents registration of sensors and detections. Stereo camera, thermal camera and

lidar are calibrated and registered in P[3, 4, 6, 10]. A thermal calibration board is proposed to

perform thermal-visual calibration and registration P[6]. Information from multiple sensors are

registered using an ISM representation P[4, 9, 10]. ROS packages for converting 2D bounding

boxes to 3D (GH6), converting detection to image ISMs (GH7) and SAFE message types (GH8).

Chapter 7 presents sensor fusion and mapping in P[4, 10]
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Figure 9.1: Algorithms for one sensor is fused competitively (maximum). Multiple sensors are
fused using complementary fusion.
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10 Conclusion

Three core contributions of the dissertation is a real-time detection system for autonomous

vehicles in agriculture (TractorEYE), a dataset for object detection in agriculture (FieldSAFE)

and procedures to fuse information from multiple detection algorithms.

TractorEYE is a complete multi-sensor detection system - comprising thermal camera, stereo

camera and multi-beam lidar. Sensors are mounted in a water-resistant and ruggedized chasing

suited for agriculture and to ensures stable registration between sensors. A total of six fast

detection algorithms have been implemented1 as ROS packages to run real-time on a GPU

platform. Calibration, registration and synchronization procedures have been proposed to

ensure that detection information can be registered in a common grid map representation. Two

of the six TractorEYE detection algorithms are proposed in this work. A simple dynamic heat

detection algorithm for thermal camera and DeepAnomaly. DeepAnomaly is a fast CNN-based

anomaly detection algorithm for rgb camera. DeepAnomaly have for an agricultural use case

demonstrated high detection accuracy and is able to detect unknown, distant and very occluded

objects in an agricultural field. For a specific human detection use case, DeepAnomaly is faster

and provides better detection accuracy than the state-of-the-art detection algorithms (Faster

R-CNN, YOLO, FCN). Additional two papers have been published on detection. One paper for

using a thermal heat signature to automatically detect and recognize wildlife from a drone. The

second paper uses a CNN-based object detector to challenging a safety standard.

FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture.

The dataset includes webcam, stereo camera, thermal camera, 360-degree camera, lidar and

radar. Precise localization and pose is provided using IMU and GPS. Ground truth of static and

moving obstacles (humans, mannequin dolls, rocks, barrels, buildings, vehicles, and vegetation)

are available as static annotated orthophoto and GPS coordinates for moving obstacles.

1The detection algorithm for Velodyne is developed by Mikkel Fly Kragh
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Chapter 10. Conclusion

Localization, Fusion and Mapping Finally, the detection algorithms from TractorEYE are fused

into a map. Sensor recordings and ground truth data from FieldSAFE allows the individual

algorithms and sensors to be evaluated and compared for object detection in agriculture.

This thesis have made many scientific contribution and is state-of-the-art within perception for

autonomous tractors. The whole pipeline for a perception system have been developed which

includes a dataset FieldSAFE, sensor platforms SuperSensorKit & MiniSensorKit, detection

algorithms such as DeepAnomaly and procedures to perform multi-sensor fusion.

A critical deficiency for autonomous farming vehicles and state-of-the-art algorithms is the

detection of hardly visible and unknown obstacles that reside inside the crop. DeepAnomaly

solves exactly this critical issue by detecting very distance, heavy occluded and unknown

obstacles.

Furthermore, important engineering contributions to autonomous farming vehicles have been

developed such as easily applicable, open-source software packages and algorithms. These

contributions have been demonstrated in an end-to-end real-time detection system TractorEYE

and used on an actual robot BallBot. The contributions of this thesis have demonstrated,

addressed and solved critical issues to utilize camera-based perception systems in a multi-

sensor setup that are essential to make autonomous vehicles in agriculture a reality.
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Abstract: Convolutional neural network (CNN)-based systems are increasingly used in autonomous
vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic
segmentation) algorithms are trained for detecting and classifying a predefined set of object
types. These algorithms have difficulties in detecting distant and heavily occluded objects and
are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual
characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and
other obstacles, occur rarely and are of distinct appearance compared to the field. This paper
introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the
homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly
as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown.
DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks” (RCNN). In a human detector test
case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m) than RCNN.
RCNN has a similar performance at a short range (0–30 m). However, DeepAnomaly has much fewer
model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most
CNN-based methods, the high accuracy, the low computation time and the low memory footprint
make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit).

Keywords: anomaly detection; obstacle detection; autonomous farming; precision agriculture;
camera; background subtraction; change detection; DeepAnomaly

1. Introduction

Anomaly detection refers to the problem of finding patterns in data that do not conform to
normal or expected behavior [1]. Using anomaly detection for obstacle detection will, instead
of learning/classifying all object types or behavior, model the normal patterns and detects
outliers. In an agricultural context, these outliers represent elements that are unnatural to the
surrounding environment.

Conventional background subtraction (BS) algorithms are related to anomaly detection, as these
methods subtract the background from the image, leaving behind only the foreground, which is an
outlier to the background. Traditionally, BS methods model the background using color, intensity
or gradients for each pixel using mixture of Gaussians [2], k-nearest neighbor or other classifiers to
become invariant to small changes in illumination and moving shadows [3–5]. BS is intended for
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static cameras and for detecting moving or appearing objects in a video sequence. For a moving
camera, the low level features used by conventional BS struggle to model a moving background [5],
and many moving camera applications detect obstacles using general object detection algorithms or
depth sensors.

Google Car (Google, San Jose, CA, USA) uses a Velodyne LiDAR as a depth sensor to
perform convincing obstacle detection, and this is also a valuable sensor for obstacle detection in
agriculture [6–8]. The drawbacks of using this sensor is the very high cost and that a depth sensor,
especially in the automotive industry, exploits that an obstacle will protrude from the ground surface.
In an agricultural context, obstacles may not protrude from the crop surface, introducing the risk of
not detecting, e.g., kids, lying humans, hydrants, well covers and animals.

A camera-based system is much less expensive and, in principle, only requires obstacles to
be visible and not necessarily protruding. In general, camera-based systems are less applicable for
autonomous vehicles in terms of accuracy, range and computation time.

Mobileye is a company developing camera-based real-time systems for the automotive industry
that are used in commercially available semi-autonomous vehicles, such as Tesla’s Model S. However,
solutions by Mobileye are neither accessible to most researchers or trained for agriculture.

In research, deep learning perception algorithms and especially convolutional neural
networks (CNN) [9–13] have improved the area of object detection [14–18] and semantic
segmentation [19–22]. However, the training is performed on a predefined set of object types, and a
large amount of annotated data is required for each object type.

To detect predefined object types, such as humans and some types of animals, data from various
benchmarks [23–25] can be used in training. These benchmarks are not intended for agriculture and
lack important object classes, such as tractors, fencing, shelter belts, water, etc. Most importantly,
if such data were available, the algorithms would, by definition, not be able to detect other unspecified
object types or unusual scenarios, e.g., a tent, a large red metal plate or a crashed road vehicle in the
field. Secondly, in the context of agriculture, the object detection algorithm and semantic segmentation
algorithms struggle to detect objects that are distant and heavily occluded by the crops.

In agriculture, the homogeneous characteristics of an agricultural production field and the fact
that obstacles occur rarely and are of distinct appearance compared to the field should be exploited to
detect non-predefined obstacles [26–28]. In [29], both distinct appearance (spacial analysis) and motion
(temporal analysis) are used for detecting foreground elements.

In this work, the combination of background subtraction algorithms and high level features from
a CNN is explored. Low level features used in conventional background subtraction algorithms are
replaced with high abstraction features from a CNN. High abstraction features are less invariant
to changes in pixel intensities caused by a moving camera and more dependent on actual image
content. The intuition is that feature activations are nearly constant for grass, shelter belt or sky for a
moving camera until completely new content is introduced in the image. A network trained for image
classification on the ImageNet data [25] with 1000 different object types, targets the network features
to activate especially on objects. The background model will more easily model the passive features of
the background and detect feature activations from foreground objects. Secondly, the method exploits
that images taken from a camera in motion (e.g., a tractor) have similar visual characteristics along
image rows, as illustrated in Figure 1.

To our knowledge, limited research has combined deep learning with background subtraction
or anomaly detection for obstacle detection in agriculture. In [30], a non-convolutional autoencoder
has been used to dynamically reconstruct the background and detect foreground elements. In [31],
the concept is similar to this work, as high level convolutional features are used in detecting foreground
elements. The method is dependent on either human annotations or a simple background subtraction
algorithm to initially generate training data. A critical drawback of both [30,31] for a tractor mounted
camera is that they are developed for a static camera.
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Sky

Field

Shelterbelts

(a) (b)

Figure 1. The visually homogenous characteristics of an agricultural field. (a) Shows agricultural field
from tractor implement. (b) Illustration of the few visual components in an agricultural field.

More deep learning research has been dedicated to an area related to anomaly detection called
visual saliency [32]. The critical point of the visual-saliency is that it will always find a salient element
no matter the image content. In agriculture, obstacles occur rarely, and an image is expected to mostly
not contain an anomaly.

An elaborated investigation on combining background subtraction and deep learning is
performed. We define a top performing configuration as DeepAnomaly, an anomaly detector that
exploits the homogenous characteristics of an agricultural field. As an object detector, it is fast and has
high accuracy, compared to the state-of-the-art. DeepAnomaly is intended to assist and not replace
CNN-based object detection and semantic segmentation algorithms, when objects are distant, very
occluded or unknown. Another property when used in conjunction with other CNN-based methods
is that DeepAnomaly will only add little computational cost, as it may use features from another
CNN-based obstacle detector.

2. Materials

Images are recorded using a stereo camera composed of two Flea 3 GigE color cameras (Model:
FL3-GE-28S4C-C, Point Grey Research Inc, Richmond, Canada) with a global shutter, a resolution
of 1920 × 1080, a baseline of 24 cm and a frame rate of 15 Hz. The stereo camera is mounted on a
sensor platform [33,34] roughly 2 m above the ground; see Figure 2. The algorithm uses images taken
from the left camera, and the data from the right camera are only used for estimating the distance to
obstacles when evaluating the proposed algorithm.

Controller

Standard 
A-frame

Adjustable 
height and angle

Mower

GPS
antennas

IMU

Radar

LiDAR

Stereo
camera

RGB 
camera

Thermal 
camera

(a) (b)

Figure 2. Sensor frame including the controller (a). Sensors on the sensor platform (b). Figure taken
from [34].
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Images were recorded during a grass mowing operation in a 7.5-ha grass field near Lem, Denmark,
in June 2015 on a sunny and partly cloudy day. To simulate potential obstacles humans, green
barrels [35], kid and adult mannequins were placed in the trajectory of the tractor. Image examples
are presented in Figure 3. Two datasets are used in this work; background data for generating the
background model and test data for evaluating anomaly detection configurations. The background
data consist of 56 images recorded in a single crossing of the field from one end to the other. The test
data are a selection of 48 images from 12 scenarios with per-pixel annotations of humans, houses,
mannequins, barrels and wells. Each scenario contains 3–5 image samples taken in a range of 2–20 m
to the obstacle as the tractor approaches. The obstacles and the tractor positions are estimated using
GPS measurements and depicted in Figure 4. Other obstacles visible by the camera, such as humans
watching the experiment, shelter belt and a house, are not depicted in the figure.

Figure 3. Two mannequins, a barrel, a well and three people, one only showing his arm, in the field.

8.3665 8.367 8.3675 8.368 8.3685 8.369 8.3695 8.37 8.3705

56.0585

56.059

56.0595

56.06

56.0605

Mannequin adult

Barrel

Mannequin kid

Well

Human

field

bg. data

fg. data

Figure 4. Obstacles and tractor image positions for background data (blue) and test data (red).
Orthophoto from Google Maps.

3. Methods

The anomaly detection framework combines BS methods with high-level features, extracted from
convolutional layers in a CNN. The high-level features make the BS robust to changes caused by
camera motion and sensitive to new content or elements that are unnatural in an agricultural field.

3.1. CNN Features for Anomaly Detection

Figure 5 depicts how the anomaly detection framework uses features from a CNN. The Caffe
reference [36] model, a variation of AlexNet [9], forward passes a fixed sized image through the
network, generating intermediate features maps, depicted by cubes. The final feature map (6× 6× 256)
is forwarded through multiple fully-connected neural networks (FC) and a softmax layer generating a
prediction vector (1 × 1000). For a CNN trained on ImageNet, the prediction vector contains a value
for each of the 1000 object types, which is standard in the ImageNet classification task [25]. A feature
map describes the characteristics of the input image, where each channel corresponds to a specific
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feature. In the first convolutional layer, channels will activate on low level features, such as edges,
blobs and colors. In deeper layers, channels will activate on high level features with more abstract
characteristics, such as faces, text or vehicles [37].
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Figure 5. Caffe reference model [36] and the anomaly detection module. The notations of,
e.g., “Conv1—96, 11 × 11 s4” mean that convolutional layer Conv1 has 96 kernels with a receptive
field of 11 × 11 and a stride of four.

The figure illustrates how feature map dimensions decrease through the network going from an
input image of 227× 227 to a 6× 6 feature map. Each entry in the 6× 6 features map contains 256 high
level features describing an area (receptive field) of 195 × 195 in the original image for every 32 pixels.

The anomaly detection module uses feature maps from a sequence of images to model the
background. With a background model, it is possible to describe the distance from a feature map entry
to the background model. As depicted in Figure 5, a feature map of 13 × 13 entries will generate an
anomaly map of 13 × 13.

Many state-of-the-art deep learning-based detectors generate feature maps that can be used by an
anomaly detection module. Thus, existing CNN based detector are able, to add the anomaly detection
module for a small computational cost, to detect anomalies.
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Normal
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Figure 6. Representation of the background subtraction module for only a single feature map entry
and two features.

Figure 6 illustrates the intuition behind the background subtraction module. At the left,
feature maps are calculated for a sequence of images. The feature map for an image is represented with
a grid, where each feature map entry describes an area in the original image with, e.g., 256 features
for the Caffe reference model. For simplicity, only a single feature map entry (marked with a blue
cross) and two features are used in this illustration. At the middle and right, the feature map entry
is modeled with a Gaussian distribution for respectively a grass-like and a human-like feature and
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shows that the normality model generally expects high values for grass-like features and low values
for human-like features. The normality model is then based on some threshold able to detect an outlier
or anomaly.

3.1.1. Mapping of Feature Maps back to the Input Image

To determine what a feature map or an anomaly map entry corresponds to in the input image,
the network stride, network receptive field and image boundary must be determined as illustrated
in Figure 7. The network stride is the pixel spacing between network predictions. The network
receptive field is the area a feature map entry describes in the original image. Valid convolutions will
create an undefined area along the image border. In Figure 7, this is defined as the image boundary.
The receptive field of a prediction may use the image boundary to provide some implicit description
of the undefined area as illustrated in Figure 7. To compare anomaly detection with the ground truth,
ground truth images are cropped by the image boundary, and the anomaly detection map is resized by
the network stride using nearest neighbor interpolation.

Receptive field

Feature map
Input image

Image boundary

Network stride

Figure 7. Mapping of a feature map entry (marked with dark green) back to the input image. A feature
map entry describes an area of similar size as the network stride in the input image. A feature is
determined by the information captured in the receptive field. Image boundary areas are not explicitly
described by a feature map entry; only implicitly by the receptive field of nearby feature map entries.

3.1.2. Network Modifications

To target the network for anomaly detection, a few modifications of the Caffe reference CNN
architecture is performed. The low 6 × 6 resolution of the final feature map provides poor spatial
resolution in the resulting anomaly map. The nature of convolutional and subsampling layers allows
larger (in height and width) images to be forwarded through the network and generates higher
resolution feature maps. However, unlike convolutional and max-pooling layers, the FC and softmax
layers require a fixed sized image. By removing the softmax, the three FC and the final max-pooling
layer, the network is able to double the feature map resolution and process larger images. Additional
advantages of removing the final layers are a faster forward time and a much lower memory footprint,
that is critical for an embedded GPU with limited memory and computation power. For VGG16 on a
Titan X GPU, the forward pass drops 39.5% from 20.5 ms to 12.4 ms, and the memory footprint drops
74.6% from 1485 MB to 376 MB. For the Caffe reference model, the forward pass drops 36.8% from
3.75 ms to 2.37 ms, and the memory footprint drops 78.9% from 303 MB to 64 MB.
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An unwanted effect of zero-padded convolutions is that feature maps get corrupted or become
invalid along the image border. In image classification, this is not critical, as the object of interest
is placed in the image center. In anomaly detection, features are required to be valid in all image
positions. This is handled by only using valid convolutions or no zero-padding for all layers in a
network. Changing between valid and invalid convolutions will, for a network with no FC-layers,
not require a network to be retrained.

3.1.3. Network Feature Map Investigation

A range of feature configurations are tested.

1. Use features from both the Caffe reference model (AlexNet) and the VGG architecture.
2. Use features from different layers in a network. Earlier layers are more general [38,39], require

less computation and provide higher feature map resolution.
3. Use features before the activation function ReLU (Rectified Linear Unit). A Gaussian distribution

will more accurately resemble the output of a convolutional layer before the ReLU, as depicted in
Figure 8.
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Figure 8. Histogram of a neural network unit before (a) and after (b) a ReLU (Rectified Linear Unit).

4. Use dilated convolutions as described in [40] to double the feature map resolution for a given
input image without doubling the input image size. The feature map is increased by removing
max-pooling layers and doubling the dilation factor in subsequent layers.

5. Append an 1 × 1 convolutional layer before the final max-pooling layer to perform feature
compression or dimension reduction as in GoogLeNet [11]. The high number of features provided
by a CNN, e.g., 256 by AlexNet in the final convolutional layer, makes the computational
complexity of the background model high. To avoid retraining a network from scratch with
fewer features, a 1 × 1 convolutional layer is appended to an ImageNet pre-trained network.
Three network architectures are created with respectively 128, 64 and 32 kernels for the appended
1 × 1 layer and fine-tuned on ImageNet.

3.2. Image Model Geometry

In conventional background subtraction algorithms [41], each pixel is classified as either
foreground or background using a model of the background. As illustrated in Figure 6, a normality
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model is typically generated for each feature map entry over a sequence of images using only features
from the same image position. For a front-facing camera in an agricultural field, the image is expected
to have a specific geometry as depicted in Figure 1. We investigate various image modeling geometries:

1. Single model: Models the whole image using a single model. The model uses all feature map
entries in the image over a sequence of images. As illustrated in Figure 9a, a single model is
generated for a 4 × 5 feature map.

2. Row model: Models each row in the image. Each model uses feature map entries from the current
row over a sequence of images. As illustrated in Figure 9b, four models are generated for a
4 × 5 feature map.

3. Extended row model: Models each row in the image. Each model uses feature map entries
from the current and neighboring rows over a sequence of images. As illustrated in Figure 9c,
four models are generated for a 4 × 5 feature map.

4. Traditional BS model: Models each entry in a feature map. Each model uses only the
current feature map entry over a sequence of images as the traditional background subtraction
algorithm [41]. As illustrated in Figure 9d, 20 models are generated for a 4 × 5 feature map.

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

1 1 1 1 1
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(a) (b) (c) (d)

Figure 9. Image model geometries. (a) Geometry 1; (b) Geometry 2; (c) Geometry 3; (d) Geometry 4.

3.3. Normality Model Types

An outlier detector uses a background model or a normality model to model the background data.
Outliers are defined as a sample outside the normal area. The normal area is defined by the normality
model, background data and a threshold; see Figure 10 for two-dimensional examples.

x1

x2 Outlier

Normal area

Figure 10. Outlier detection.

A feature sample is defined as an entry from a feature map with D features. A normality model is
generated from N feature samples. We denote background feature samples for generating a normality
model by X; hence, X is a D× N matrix with N samples with D features. The column j of X, defined
as xj, is all of the features for a sample j.

Feature samples are gathered over a sequence of images. However, depending on the model
geometry, background samples are gathered from either the whole image, feature map rows or only
specific feature map entries. In a conventional background subtraction, a “traditional BS model”,



Sensors 2016, 16, 1904 9 of 21

a model uses only samples from a specific image position over a sequence of images. In image model
Geometry 1, a model uses all samples in all positions in a sequence of images. The origin of feature
samples, in terms of the feature map entry and image, are ignored in the following section and simply
denoted by X.

The aim of an outlier detector is to determine an anomaly measure, denoted by M (x̃ | θ).
M (x̃ | θ) measures the distance between a sample, x̃, with an unknown class and the normality
model with parameters θ. The model parameters are dependent on the normality model type
and background samples. When M (x̃ | θ) is larger than a specified threshold, x̃ is classified as
an outlier/abnormality. The threshold value is selected based on the annotated test data. We address
this issue in the result sections.

3.3.1. Mean and Median

The mean parameters θmean = µ are the mean value of each feature i over all background samples
µ = [µ1 . . . µi . . . µD]

T . For a sample, x̃, the anomaly measure is defined as the Euclidean distance
between the mean value of a feature to a sample feature.

Mmean (x̃ | µ) = ‖µ− x̃‖ =

√√√√ D

∑
i=1

(µi − x̃i)
2 (1)

For a median model, the median value m is used instead of the mean value.

Mmedian (x̃ | m) = ‖m− x̃‖ (2)

3.3.2. k-NN

The kNN model [4] parameters θkNN = X consist of all background samples, X. The anomaly
measure is the Euclidean distance from the k-nearest neighbor sample xkNN to a sample x̃.

MkNN (x̃ | X) = ‖xkNN − x̃‖ (3)

3.3.3. Single Variate Gaussian

The single variate Gaussian (SVG) [41] model parameters θSVG =
(
µ, σ2) comprise the

mean value, µ, and the variation for each feature i taken over all samples in the training data
σ2 = [σ2

1 . . . σ2
i . . . σ2

D]
T . The anomaly measure is defined as the Mahalanobis distance between a feature

sample and the single variate Gaussian distribution along each dimension.

MSVG

(
x̃ | µ, σ2

)
=

∥∥∥∥(x̃− µ)� 1
σ

∥∥∥∥ =

√√√√ D

∑
i=1

(x̃i − µi)
2

σ2
i

(4)

Unlike the multivariate Gaussian model described in the next sections, feature dimensions are
treated independently (Σ is a diagonal matrix).

3.3.4. Multivariate Gaussian

The multivariate Gaussian (MVG) [41] parameters θMVG = (µ, Σ) comprise the mean value, µ,
and the covariance matrix, Σ.

Σ =
1

N − 1

N

∑
j=1

(
xj − µ

) (
xj − µ

)T (5)

The anomaly measure is defined as the Mahalanobis distance between a sample x̃ and the
Gaussian distribution.
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MMVG

(
x̃ | µ, σ2

)
=

√
(x̃− µ)T Σ−1 (x̃− µ) (6)

3.3.5. Gaussian Mixture Model

The Gaussian mixture model (GMM) [3] parameters θGMM = (µ1 . . . µM, Σ1 . . . ΣM) comprise M
Gaussian models with a mean value, µi, and the covariance matrix, Σi, for each model i. Models are
determined using expectation-maximization [42]. The anomaly measure is defined as the Mahalanobis
distance between a sample and the nearest neighbor Gaussian model, θNN = (µNN, ΣNN).

MMVG (x̃ | µNN, ΣNN) =
√
(x̃− µNN)

T Σ−1
NN (x̃− µNN) (7)

3.4. Implementation Details

CNN models are executed using Caffe, a framework for deep learning [36] and the Caffe-MATLAB
interface allowing MATLAB to use CNN features from network layers. The background models and
the evaluation of various configurations are implemented in MATLAB. The original images with a
resolution of 1080 × 1920 are cropped by 700 pixels to remove the tractor from the left side of the
image. Images are resized by a factor of 0.75 and cropped slightly again to form valid dimensions for a
CNN network.

4. Results

Results are divided into three subsections. The first subsection shows trends across many network
configurations. A specific configuration is not optimal across any image geometric modeling, normality
model or output layer, e.g., the optimal normality model type depends on the network layer and
the geometric modeling. The first sections are intended to show configuration trends across the vast
number of configurations. The second subsection is targeted directly at reaching the most optimal
configuration in terms of accuracy and computation time. The third subsection compares a top
performing configuration with state-of-the-art object detection algorithms.
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Figure 11. Illustration of an ROC curve (a), a precision/recall curve (b) and f1 scores (c) for
four configurations.

We use the background data to create a normality model for all configurations. Each configuration
is evaluated against the per-pixel annotated test data. In total, 460 configurations are evaluated.
For each configuration, a receiver operating characteristic (ROC) [43] curve, precision/recall (PR) [44]
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curve and the f1 score [45] are generated with 200 distributed thresholds. Four configurations
are presented in Figure 11 using, respectively, an ROC, precision/recall and an f1 score curve.
The advantage of precision/recall and the f1 score is that true negatives are not included in the
metric. As the data mostly contain negative samples (field samples), the (zoomed) ROC plot shows
curves that are squeezed together.

To get a single valued accuracy measure, for each configuration and metric, the maximum f1 score,
area under the curve for an ROC (AUC_ROC) curve and the area under the curve for a precision/recall
(AUC_PR) curve are used in the following sections.

4.1. Trends Across Configurations

This sections provides an overview of the 460 configurations by using the maximum f1 score and
boxplot presentations. In Figure 12, a boxplot presents the accuracy variation (maximum f1 score)
for all configurations using a specific output layer. There are, e.g., 56 different configurations for the
CaffeRef—Relu5 output layer. Generally, the accuracy degrades for lower feature layers; dilated layers
are not preferable, and ReLU layers are mostly preferred over convolutional (Conv) layers. Generally,
feature compression using 1 × 1 convolutional layers (Relu6_X and Conv6_X) does not significantly
reduce performance. Compression of features will reduce the processing time for an anomaly module
and will for some classifiers also improve accuracy.
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Figure 12. Accuracy (f1 score) for a given output layer across all model normality types and image
model geometries.

In Figure 13a, a boxplot presents the accuracy variation for all configurations using a specific
image model geometry. It shows that a single model or the model per-row performance is better
than the traditional background subtraction geometry with one model per entry. In Figure 13b,
a boxplot presents the accuracy variation for all configurations using a specific normality model type.
GMM 2 and GMM 3 is a GMM model with respectively 2 (M = 2) and 3 (M = 3) Gaussian models.
The kNN-based model is of highest performance followed by the Gaussian-based models. Mean and
median models are inferior to other model types.
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Figure 13. Accuracy for model geometries (a) and normality models (b). (a) Accuracy (f1 score) for all
image model geometries; (b) accuracy (f1 score) for all normality model types.

4.2. Determining the Best Set of Configuration

The optimal configuration is a combination of high accuracy and speed performance, e.g., the kNN
classifier generally has a high accuracy performance. However, even the fastest kNN configuration
has a computation time of more than 200 ms for a single image. Figure 14a shows the computation
time for a single image versus the f1 score accuracy performance. Two lines draw a top configuration
rectangle with the fastest (<100 ms) and the highest accuracy (top 10%) anomaly detectors. Figure 14b
(a top performing SVG in the bottom plot of Figure 14b is ignored as the SVG just below has identical
accuracy) presents the top configuration rectangle for respectively AUC_ROC, AUC_PR and the
maximum f1 score. Feature calculations are performed on a GTX Titan X 12GB Maxwell architecture,
and the anomaly detection module is executed on a Intel Xeon 2.1 GHz six-core CPU (E5-2620V2).
The three configurations with the highest accuracy of each plot are marked with a red circle.
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Figure 14. Accuracy and computation time. (a) Accuracy is measured using the f1 score; (b) top
configurations rectangle of AUC_ROC, AUC_PR and the max f1 score.

The seven unique top performing configurations have been listed in Table 1; two of the nine
configurations have a duplicate. The computation time is listed for a prediction of a single image
including feature calculations (Total Pred.), a prediction of a single image without feature calculations
(Model Pred.) and for updating the background model (Model Update). The model update is not
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expected to be performed for every image and is therefore not considered as time critical as the total
prediction time for an image. The anomaly detection module can use features from another CNN-based
detector and avoid the computational cost of computing its own features. The model prediction time
is listed to show the computation cost of adding anomaly detection to an existing CNN-based detector.
Apart from Number 2, the top configurations are very similar in accuracy. Generally, the table includes
only Gaussian-based normality models and single model-based image model geometry. The slightly faster
and simpler Configuration 6 is in this paper defined as DeepAnomaly and used in future experiments.
DeepAnomaly has a total prediction time of 25 ms (40 FPS), a model prediction time of only 4 ms and a
model update time of 834 ms. The performance of DeepAnomaly is presented in a set of image examples
in Figure 15. The pixel accuracy on the annotated test data is used for selecting a threshold.
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Figure 15. DeepAnomaly detections. No false positives are present in the images.



Sensors 2016, 16, 1904 14 of 21

Table 1. Shows seven top performing configurations in terms of computation time and three
accuracy measures.

Computation Time (ms)

Nr Classifier Metric Model Layer ROC PR F1 Total Model ModelArea Output AUC AUC Score Pred. Pred. Update

1 MVG ROC/PR Single Conv6_128 0.980 0.523 0.560 29 8 1,219
2 MVG ROC Single Conv6_64 0.979 0.476 0.537 23 4 438
3 MVG ROC/f1 Single Relu5 0.978 0.520 0.564 35 14 6,360
4 MVG PR Single Relu4 0.970 0.529 0.544 42 21 12,169
5 GMM2 PR Single Relu4 0.969 0.529 0.536 66 42 142,727
6 SVG f1 Single Relu5 0.977 0.522 0.564 25 4 834
7 GMM2 f1 Single Relu5 0.978 0.520 0.564 40 19 5,325

4.3. Object Detection vs. Anomaly Detection

The accuracy of anomaly configurations has been reported using the f1 score and AUC measures,
allowing anomaly configurations to be compared mutually. However, such accuracy measures
provide only an indication of the performance of DeepAnomaly compared to other state-of-the-art
detectors. In this section, a quantitative evaluation metric is defined to evaluate DeepAnomaly with
state-of-the-art detection algorithms.

The comparison is challenged by the inconsistent outputs of the selected algorithms. Algorithms may
either detect one or multiple object types, and the location of objects are marked with either a bounding
box or per-pixel predictions. To solve this inconsistency problem, a detector is only evaluated for its
ability to detect them (other annotated obstacles are ignored). Humans are used as test objects, as all
algorithms are able to detect humans. Ground truth annotations, which are per-pixel annotations of
obstacles, are converted to bounding boxes and extended by 12 pixels on all sides. A detection is true
(true positive) when the detection area overlaps an annotated human by more than 50%. An overlap of
less than 50% is a false detection (false positive), unless the detection overlaps an annotated non-human
obstacle by more than 50%. A false negative is defined as a human annotation that has not been detected.

Four object detection algorithms have been selected: a pedestrian detector “local decorrelated
channel features” [46–48] (LDCF) trained on INRIA (Institut national de recherche en informatique et
en automatique) Person Dataset ; two deep learning multi object detection algorithms “you only look
once” [18] (YOLO) and “faster R-CNN” [16] (RCNN), trained on ImageNet and Pascal VOC (Visual
Object Classes)[24]; one semantic segmentation algorithm “fully convolutional neural networks for
semantic segmentation” [19,49] (SS) trained on ImageNet and Pascal Context [50]. Figure 16a shows
the f1 score for each algorithm sweeping over a set of thresholds. The highest f1 score is achieved by
DeepAnomaly (0.720) followed by RCNN (0.562), YOLO (0.385), SS (0.357) and LDCF (0.113).

The normality model of DeepAnomaly is sensitive to the used background samples; meaning that
the optimal threshold may change for each model update. However, DeepAnomaly forms a little
plateau of top accuracies in the range of 150–250 (0.15–0.25 normalized), showing that the threshold is
partly robust to model updates.

Figure 16b shows the f1-score at different distances using the optimal threshold for each algorithm.
DeepAnomaly is able to detect humans at longer distances and is either of similar or better performance
on short ranges using a smaller CNN model than RCNN, YOLO and SS. Table 2 compares the
algorithms’ accuracy, computation time, the number of model parameters (# Model Params) and its
ability to classify obstacles (Class.) and detect unknown obstacles (Unk. Types). (The number of
model parameters of RCNN, YOLO and LDCF is not directly specified in the respective publications.
The number for RCNN only includes parameters of convolutional layers (regression and classification
modules parameters are ignored). The number for YOLO is based on the described model. The number
for LDCF is a rough estimate.). DeepAnomaly detects humans with better accuracy at longer distances
in real time. RCNN shows similar performance on shorter distances. However, the computation time
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of RCNN is unsuited for real-time applications. A qualitative test is presented in Appendix A, showing
detections from all algorithms in 30 images containing humans. A key feature of DeepAnomaly is the
ability to detect unknown objects/anomalies and not just a set of predefined objects. Secondly,
DeepAnomaly uses only a pre-trained network and does not require the time-consuming task
of making algorithm/object-specific training data. The high accuracy, the low number of model
parameters and the low compute time make DeepAnomaly suited for a real-time detection system on
an embedded GPU. The drawback of DeepAnomaly is that no label or classification is provided for
each detection.
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Figure 16. Accuracy performance (f1 score) of DeepAnomaly and four state-of-the-art object detection
algorithms. (a) Accuracy relative to thresholds; (b) accuracy relative to distance intervals.

Table 2. Comparison of of DeepAnomaly with four state-of-the-art algorithms for obstacle detection.
YOLO, you only look once; SS, semantic segmentation; LDCF, local decorrelated channel features.

Name F1 Compute Compute Class. Range Unk. Object Specific # Model
Score Time (ms) Unit Types Training Data Params.

DeepAnomaly 0.720 25 GPU + CPU No Far Yes No 3.7 M
RCNN 0.562 182 GPU Yes Mid No Yes 14.7 M
YOLO 0.385 23 GPU Yes Low No Yes 262 M
SS 0.357 237 GPU Yes Low Yes Yes 134 M
LDCF 0.113 348 CPU Yes Low No Yes <0.01 M

5. Discussion

Deep learning-based object detection and semantic segmentation have recently showed
state-of-the-art results in detecting specific objects. However, in an agricultural context, they have
difficulty in detecting heavily occluded and distant objects, and methods are, by definition, trained
to recognize a predefined set of object types. DeepAnomaly can exploit the very homogeneous
characteristics of an agricultural field to detect distant, heavy occluded and unknown objects.
Qualitatively, this is illustrated in Figure 15, where DeepAnomaly detects a distant and occluded
mannequin kid, a human showing only his arm, a heavy occluded olive-green barrel (with similar
color as the field), a well cover and detections of obstacles with a size of less than 16 × 16 pixels.
By using DeepAnomaly in junction with other deep learning algorithms, it can save computations by
using convolutional features from other networks. DeepAnomaly also spares the time-consuming task
of providing domain- or algorithm-specific annotated data.

A detection metric for detecting humans is defined to compare DeepAnomaly with four
state-of-the-art algorithms. The comparison shows that DeepAnomaly is better at detecting humans
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at longer ranges (45–90 m). RCNN has similar performance at short range (0–30 m). However,
with much fewer model parameters and a (182 ms/25 ms=) 7.28-times faster processing time per
image, DeepAnomaly is more suitable for real-time applications running on an embedded GPU.
The used detection metric copes with dissimilar outputs of the evaluated algorithm and will not favor
a precise localization/position of a detection. However, in the context of autonomous vehicles in
agriculture, the exact bounding box position or semantic segmentation at pixel-level precision is not
of critical importance. Rough localization markings (±12 pixel) are sufficient, and more important is
the detector’s ability to, in real time, detect obstacles even when they are heavily occluded, distant
and potentially unknown. However, it is important to state that DeepAnomaly requires specific
conditions in terms of visually-homogenous surrounding and a low incidence of anomalies. This is
not a limitation for YOLO, RCNN, SS and LDCF.

Evaluating algorithms that are trained on different data is basically unfair; especially for LDCF,
which uses a much smaller dataset. However, YOLO, RCNN, SS and DeepAnomaly use parameters
from a network trained on ImageNet, including one additional dataset with algorithm-specific
annotations (bounding boxes, per-pixel annotations, background data). One may argue that
DeepAnomaly has an (unfair) advantage, as it learns a background model from data recorded in
the same field as the test. This is true for a classification problem where test and training must
be uncorrelated. However, for background subtraction algorithms, it is a basic concept that an
algorithm learns the characteristics of a specific setting to better detect foreground elements. Similar for
DeepAnomaly, the algorithm is intended to exploit and learn the characteristics of a particular field to
better detect anomalies.

DeepAnomaly does not provide labels as an obstacle detection algorithm. However, by using
DeepAnomaly as a region proposal algorithm, labels can be given by forwarding anomalies
through a classification network. This is related to RCNN and other deep learning object detection
algorithms [14–17] that initially use a region proposal algorithm providing between 300 and
2000 regions per images. Each region is then forwarded through a classification network providing a
label for each region. DeepAnomaly can be used as an effective region proposal algorithm providing
only a few or no regions per image.

The normality model must be updated regularly without including foreground elements.
This difficulty is partly solved in an agricultural context where the incidence of anomalies is very
low. Secondly, the experiment shows that the initial model generalizes to many positions in the field,
meaning that the model does not require very frequent updates. Furthermore, foreground elements can
be filtered out by other obstacle detections algorithms. For, e.g., RCNN, the anomaly algorithm should
not include feature map entries in the background model that is inside an RCNN bounding box detection.
In future work, we are interested in extending the anomaly framework to other sensor modalities.
Depth sensors are able to detect obstacles that protrude from the crop surface, and a thermal sensor
can detect outlier heat radiations in the field. The advantage of combining visual, depth and thermal
modalities is that anomalies are more independent and described by physically different characteristics,
making it unlikely for foreground/non-field obstacles to be included in the background model (unless
the foreground element has similar visual appearance, height and temperature as the crop).

The robustness of threshold values and procedures for doing model updates are addressed, but
not implemented in actual experiments. This paper is focused on practical considerations for using
deep learning features and elaborated investigations. The investigation comprises a total of 460 settings
that are evaluated in terms of processing time and accuracy, using three different accuracy metrics.
A top performing configuration is then compared to state-of-the-art detection algorithms for their
ability to detect humans in general and at different range intervals.

6. Conclusions

This work illustrates that a background subtraction algorithm can be used successfully for a
non-static camera in agriculture by using high level features from a deep convolutional neural network.
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An elaborated investigation has been conducted on a broad set of configuration to determine a high
performing setting for an anomaly detection system. This configuration is named DeepAnomaly. It is a
simple algorithm that exploits the homogenous characteristics of an agricultural field, i.e., detect heavily
occluded, distant and unknown objects without the time-consuming task of providing algorithm-
and object-specific training data. DeepAnomaly is foremost an anomaly detector. However, it has
shown comparable or better results for obstacle detection in an agricultural context. It is able to detect
humans better and at longer distances than state-of-art networks with 40 FPS using less training
data and a smaller network. The low computation time and low memory footprint make it suited
as a real-time system and for embedded GPUs. DeepAnomaly is also able to assist an existing deep
learning detection system by using the existing feature maps. Thus, for only a small computational
cost, 4 ms on a CPU, a CNN-based detector can be extended to also detect distant, heavily occluded
and unknown obstacles.
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Appendix A

Figures A1 and A2 show detections by DeepAnomaly, RCNN, SS, YOLO and LDCF for 30 image
samples containing humans. Each detector is presented with a specific color. Detections by RCNN, YOLO
and LDCF are presented with a bounding box. Detections by SS and DeepAnomaly are presented with
respectively green and red coloring. Overlapping detections by SS and DeepAnomaly become yellow.
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Abstract: In agricultural mowing operations, thousands of animals are injured or killed each
year, due to the increased working widths and speeds of agricultural machinery. Detection
and recognition of wildlife within the agricultural fields is important to reduce wildlife
mortality and, thereby, promote wildlife-friendly farming. The work presented in this paper
contributes to the automated detection and classification of animals in thermal imaging. The
methods and results are based on top-view images taken manually from a lift to motivate
work towards unmanned aerial vehicle-based detection and recognition. Hot objects are
detected based on a threshold dynamically adjusted to each frame. For the classification of
animals, we propose a novel thermal feature extraction algorithm. For each detected object,
a thermal signature is calculated using morphological operations. The thermal signature
describes heat characteristics of objects and is partly invariant to translation, rotation, scale
and posture. The discrete cosine transform (DCT) is used to parameterize the thermal
signature and, thereby, calculate a feature vector, which is used for subsequent classification.
Using a k-nearest-neighbor (kNN) classifier, animals are discriminated from non-animals
with a balanced classification accuracy of 84.7% in an altitude range of 3–10 m and an
accuracy of 75.2% for an altitude range of 10–20 m. To incorporate temporal information
in the classification, a tracking algorithm is proposed. Using temporal information improves
the balanced classification accuracy to 93.3% in an altitude range 3–10 of meters and 77.7%
in an altitude range of 10–20 m

Keywords: thermal imaging; feature extraction; kNN; DCT; pattern recognition
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1. Introduction

In agricultural mowing operations, thousands of animals are injured or killed each year, due to
the increased working widths and speeds of agricultural machinery. Several methods and approaches
have been used to reduce this wildlife mortality. Delayed mowing date, altered mowing patterns (e.g.,
mowing from the center outwards [1]) or strategy (e.g., leaving edge strips), longer mowing intervals,
the reduction of speed or higher cutting height [1] have been suggested to reduce wildlife mortality rates.
Likewise, searches with trained dogs prior to mowing may enable the farmer to remove, e.g., leverets
and fawns to safety, whereas areas with bird nests can be marked and avoided. Alternatively, various
scaring devices, such as flushing bars [1] or plastic sacks set out on poles before mowing [2], have
been reported to reduce wildlife mortality. However, wildlife-friendly farming often results in lower
efficiency. Therefore, attempts have been made to develop automatic systems capable of detecting wild
animals in the crop without unnecessary cessation of the farming operation. For example, a detection
system based on infrared sensors has been reported to reduce wildlife mortality in Germany [3]. The
disadvantage of the system proposed in [3] is its low efficiency, as the maximum search power is around
3 ha/h, when the weather conditions are fit.

In the [4], principles from [3] were further developed and tested. They conclude that vision systems
are not a viable solution when the cameras are mounted on the agricultural machinery, as image quality is
highly affected by the speed and vibrations of the machine. Instead a UAV-based system is utilized [5].
Using this solution, the movement of the tractor does not affect the image quality, and it is possible
to manually scan large areas. The authors show that thermal imaging can be used to detect roe deer
fawns based on aerial footage. However, the detection is performed manually and should be automated
to increase efficiency. They conclude that the thermal imaging strategy is sensitive to the detection of
false positives, meaning that objects that are heated by the Sun are falsely labeled (manually) as roe
deer fawns.

UAVs are an emerging technology, and in modern agriculture, it can be utilized for many purposes.
The UAV technology is capable of performing advanced and high precision tasks, due to the flight
capabilities and the possibility to equip the aerial vehicle with computers and sensors, including
thermal cameras. During the last two decades, thermal imaging has gained more and more attention in
computer vision and digital image processing research and applications. Thermal imaging has become an
interesting technology in outdoor surveillance, pedestrian detection and agriculture, due to the invariance
to illumination and the lowered price of thermal cameras [6].

In [7,8], thermal imaging is used for person detection. The authors present thermal images of people
at different times of the day and during summer and winter. Here, it is clear that the object of interest
(people) does not always appear brighter (higher temperature) than the background. They propose
background subtraction techniques, followed by a contour-based approach to detect people in the thermal
images. Background subtraction is also utilized in [9–11]. However, this approach is not suitable for our
UAV-based application with non-stationary cameras, as the background changes rapidly over time, and it
is not possible to construct a background image. Another approach is the detection of hot spots based on
a fixed temperature threshold [12–15]. In [16], a probabilistic approach for defining the threshold value
is presented; however, it is still a fixed value.
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There is little research within the automatic detection and recognition of animals in thermal images.
Most research with thermal cameras involve static cameras, where background subtraction has been
used for robust people detection in thermal images. In [5], a UAV, equipped with a thermal camera,
is used for the detection of roe deer fawns in agricultural fields. Detection is based on manual visual
inspection, and the author utilizes automatic gain control to enhance the appearance of living objects.
An algorithm for the classification of roe deer fawns in thermal images is presented in [17]. They utilize
normalized compression distance as the features followed by a clustering algorithm for classification.
The dataset consists of 103 images, with 26 containing fawns hidden in grass. The same dataset is used
in [18], where fast compression distance is applied in the feature extraction step and a nearest neighbor
classifier is used for classification. In both papers, the features are derived from a dictionary, generated
by a compression algorithm. These features are scale invariant; however, they are not rotation invariant,
and they rely on absolute temperature measurements, which could be invalidated if animals are heated
by the Sun. An algorithm for automatic detection of wildlife in agricultural fields is presented in [19].
However, the distinction between animals and other hot objects is not a part of the results presented. An
algorithm for the identification of deer, to avoid deer-vehicle crashes, is presented in [20]. The histogram
of oriented gradient (HOG) is used for feature extraction, and support vector machines are utilized in the
classification step. Their method relies on occlusion-free side-view images and performs poorly if these
criteria are not met.

This paper presents a method for detecting and recognizing animals in thermal images. The method is
based on a threshold, dynamically fitted for each frame, and a novel feature extraction algorithm, which
is invariant to rotation, scaling and, partly, posture. Detected objects are tracked in subsequent images to
include temporal information within the recognition part of the algorithm. The algorithm has been tested
in a controlled experiment, using real animals, in the context of wildlife-friendly farming.

2. Materials and Methods

A telescopic boom is used to capture top-view images above a stationary scene, as shown in Figure 1.
By using a telescopic boom lift, images can be captured at different altitudes, thus simulating the UAV.
Unlike, using a UAV, the captured images are not affected by wind or vibrations within the UAV, which
could affect image quality. Furthermore, the setup also avoids the compression of data, which might
degrade data quality with respect to classification.

Figure 1. The setup used for capturing visual RGB and thermal images.
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2.1. Data

A rig with a thermal and a regular RGB camera is mounted on the lift, recording 9 frames per
second with a resolution of 320 × 240 and 1624 × 1234, respectively. Animals and four halogen
spotlights (used as reference points) were manually placed below the lift within the field-of-view of the
two imaging sensors. The altitude of the cameras was measured with a GPS. A total of six recordings
were made through two days with temperatures of 15–19 ◦C and 16–23 ◦ C respectively. The recordings
were captured using different areas around the scene shown in Figure 1.

Each recording starts at three meters followed by an increase in height of up to 25–35 m and then
back again. The telescopic boom alternates the height position of the camera, while keeping the scene
within the image frame. The use of a lift instead of an actual UAV results in less motion blur. The data
used in this paper consist of a total of 3987 frames with the presence of animals (rabbit and chicken),
together with other hot objects (halogen spotlights, molehills, wooden poles, etc.). Animals were able to
move within in a certain area due to fixation by a 30-cm leash. In Figure 2 the same scene is captured
from 5 m, 15 m and 30 m. All thermal images are rescaled to the same size as the RGB images.

Figure 2. Visual RGB and thermal images capture the same scene from 5 m (a), 15 m (b) and
30 m (c). The scene consists of four halogen spotlights, a molehill, a rabbit and a chicken.
The halogen spotlights are easily visible in all images. In (d) a molehill, a rabbit, a chicken
and three halogen spotlights are marked.

(a) RGB image from 5 m. (b) RGB image from 15 m. (c) RGB image from 30 m.

(d) Thermal image from 5 m. (e) Thermal image from 15 m. (f) Thermal image from 30 m.
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2.2. Detection

The measured temperature is not the actual body temperature of the animal, as the measurement is
also dependent on heating from the Sun, the insulative properties of the fur, or feather coat, and the
distance between the animal and the camera [21]. These factors may vary in outdoor environments;
hence, the segmentation and subsequent blob detection needs to adapt to this environment.

We use a threshold dynamically adjusted to each frame by using the median temperature t̃ in the
image, to exclude outliers. The threshold value is set by:

th = t̃+ c (1)

where the constant c ensures that only objects that are significantly warmer than the background
are detected.

2.3. Feature Extraction: Thermal Signatures

We propose a novel feature, extracted from the thermal images, that is invariant to translation, rotation,
scale and, partly, posture.

Based on the detected object as in Figure 3a, the perimeter contour is extracted using a four-connected
neighborhood structuring element. An example of an extracted contour is shown in Figure 3b. For
each iteration, the mean value of the contour is determined, and the object is shrinked by the contour.
The procedure continues to iterate, until no more contours can be extracted from the object (e.g., in
Figure 3b,c, the first and seventh contour are shown).

Figure 3. The process of extracting the thermal signature. (a) Thermal image of the
detected object; (b) the first contour of the detected object; (c) the seventh contour of the
detected object.

(a) (b) (c)

The thermal signature of an object is defined as the mean thermal value of the contour in each iteration
i and denoted as cm(i) for i = −1, . . . ,M , where M is the maximum number of iterations possible for
the given object. The first iteration is defined as i = −1, as the object is initially dilated once to get
edge information just outside the object. In Figure 4, cm(i) is shown for different objects. In our
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dataset, a typical animal signature has a greater temperature increase close to the object boundary than a
non-animal object.

Figure 4. Thermal signatures extracted from shrinking thermal contours at a height of 4.9 m.
Contour number −1 is not part of the object, but used for edge feature extraction.
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2.3.1. Parameterization of Thermal Signatures

The thermal signature describes certain characteristics of the objects. The signature is normalized
by subtracting it with the mean temperature of the first contour. To make it invariant to the maximum
number of contours, the signature can be approximated by resampling or by matching it to a high order
polynomial. However, as the signature has sinusoidal characteristics, a Fourier-related transform is
applicable. The discrete cosine transform (DCT) is chosen for is sinusoidal basis functions and its
decorrelation properties. A fixed number of DCT coefficients will provide an approximation of the
thermal signature and a set of features to be used in the classification. These feature vectors are then
classified as either animal or non-animal, based on the k-nearest-neighbor (kNN) algorithm, which is
briefly described in the next section.

2.4. Classification

The kNN algorithm is a supervised learning algorithm, which can be used for both classification and
clustering [22]. When used for classification, the algorithm is based on labeled training data. We extract
140 animal-feature vectors and 359 non-animal feature vectors as training data for the kNN classifier.
More non-animal data are used, as the non-animal class contains more objects with different thermal
characteristics. Thus, more training data is required to model this. Based on empirical experiments, the
k parameter was set to 11, thereby including the nearest 11 training points during classification, which is
based on majority voting.

2.5. Classification Using Temporal Information

A classification based on only a single frame using, e.g., a kNN classifier, discards the important
temporal information provided in a recording. A lightweight tracking algorithm is used to link similarly
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positioned objects through consecutive images in the recordings. As the experiment has been done with
a lift in a controlled setting, the tracking algorithm is not designed to compensate for movements of a
potential UAV. To end or start new tracks, each track predicts a region defined as a guess region, where
a new object needs to be positioned. An object is added to a track if it is within the guess region.
A new track is created if a newly detected hot object is outside the guess region of any current tracks.
A track is terminated when it fails to include any new objects for a defined number of frames. The guess
region is described by a center point and a radius, where the center point is extended by the movement
between the two previous objects included in the specific track. An example of the algorithm is provided
in Figure 5, where tracks one, two and three are marked with5 ,' andH, respectively.

• In Frame 1, a single object has been detected inside the frame. As no tracks have been registered,
the newly detected point creates the first track,5.
• In Frame 2 two objects are detected. One point is within the guess region of the first track and is

added to the first track. The second point is outside the guess region, and a new track is created,'.
• In Frame 3, new points are added to the second track. Notice that a new guess region is predicted

by the previous movement, but as no animal has been detected within the guess region, no point is
added to the track.
• In Frame 4, three objects are detected. Two points are added to the current two tracks, and the

third point creates a new track,H.

Figure 5. Tracking procedure.

frame 1 frame 2 frame 4frame 3

Every time an object is being assigned to a certain track, the belief is updated to identify the tracked
object as either animal or non-animal. The belief of track m is defined as the posterior probability and
formulated as the probability of a detected element being an animal A given the newly observed data Dn

in frame n.
BelA,m(n) = P (A |Dn ) =

P (A) · P (Dn |A)

P (Dn)
(2)

The term P (Dn) describes the evidence of the observed data. The evidence is a scale factor
that ensures that the posterior probability sums to one and can be rewritten by using the law of
total probability:

P (Dn) = P (A) · P (Dn |A) + P (Ac) · P (Dn |Ac ) (3)

where Ac defines the non-animal objects. The term P (A) is the prior probability and describes the belief
of an object being an animal before the data Dn have been observed, also defined as the belief at n− 1.

P (A) = BelA,m(n− 1) (4)
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The probability P (Dn |A) is described as the likelihood and defined as the discriminant function
gA(Dn) of kNN given by the ratio of kA and k.

P (Dn |A) = gA(Dn) =
kA
k

(5)

where kA is the number of kNN samples that are animals, e.g., if kA = 6 (majority vote), the probability
is P (D|A) = 6

11
≈ 0.55.

Substituting Equations (3)–(5) into Equation (2) yields an updating scheme for every newly
detected object.

BelA,m (n) =
BelA,m (n− 1) · gA (Dn)

BelA,m (n− 1) · gA (Dn) +BelAc,m (n− 1) · gAc (Dn)
(6)

The belief updates every time an object is added to the track, but the track is finally identified as an
animal if the belief exceeds 0.5. The prior probability of the first object in a track (n = 1) is set to
BelA,m(0) = 0.5. The belief has a high chance of getting stuck in zero or one if the classifier
returns, respectively, zero and one. To avoid this, the classifier will, as a minimum, return 0.05 and
maximum 0.95.

The algorithm for tracking objects and building belief is fit for detecting animals in large fields using
a UAV. The scenario is as follows: The UAV detects hot objects at high altitudes, thus allowing the UAV
to cover large areas in a short time. Due to limited resolution, the detected objects are both small and
almost uniform in thermal signature at high altitudes. As presented in the results section, this affects
detection and recognition performance.

Therefore, the UAV should approach the objects to increase thermal image quality with respect to
classification. By using the tracking algorithm, the belief is constantly calculated. Based on this temporal
update of the belief, the algorithm can classify a detected object as an animal or a non-animal.

In Figure 6, the uppermost plot presents the kNN ratio from Equation (5) and the belief from
Equation (6), which should be read as 1 = animal and 0 = non-animal. The bottom plot shows
the altitude of the recording rig. The example shows how the belief of an object evolves as the altitude
decreases. In the example, it is seen that the algorithm believes that the detected object is non-animal.
However, as the belief updates, the algorithm discards this when the altitude decreases.

Figure 6. Building a belief for decreasing altitudes.
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3. Results

3.1. Detection

Objects are detected using the threshold set by Equation (1). The parameter c is set to c = 5 ◦C based
on empirical experiments. The detection performance is defined as the ratio between the number of
objects detected by the algorithm ldetected and the actual number of animals l found by manual labeling.

Dperformance =
ldetected

l

Figure 7 shows how the detection performance rapidly degrades until it reaches zero for
increasing altitude.

Figure 7. Detection performance for animals relative to altitude.
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3.2. Feature Extraction and Classification

The thermal signature is approximated using seven DCT coefficients, as this describes 95% of the
signature information for more than 95% of the provided data. Figure 8 presents an approximation of
the thermal signature for two objects using seven DCT coefficients.

The classification accuracy is a common measure for classifier performance, but as presented in
Figure 9a, fewer animals are detected by the segmentation algorithm for increasing altitudes. The loss
of detected animals will make the data unbalanced, as it becomes dominated by non-animal samples in
high altitudes.

To adjust the unbalanced data, a balanced classification accuracy is used to evaluate the classifier
performance:

Caccuracy.balanced =
sensitivity + specificity

2
=

TP/ (TP + FN) + TN/ (FP + TN)

2

where TP, FN, TN and FP are, respectively, true positive, false negative, true negative and false positive.
Figure 9b shows the balanced accuracy and how performance degrades for increasing altitudes. The
figure also shows that the algorithm is not able to provide satisfactory results for altitudes above 22 m,
as the balanced accuracy drops below or around 0.5.
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Figure 8. Thermal images and approximations of the thermal signature of a rabbit and
chicken. (a) Thermal image of a rabbit; (b) thermal image of a chicken; (c) thermal signature
and its seven discrete cosine transform coefficient approximation.
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Figure 9. Evaluation of the classifier relative to altitude. (a) The number of detected
objects, animals and non-animals relative to altitude; (b) the classifier performance using
classification accuracy and balanced accuracy relative to altitude.
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As the segmentation and classification are highly dependent on altitude, the classification is evaluated
in the two different altitude ranges of 3–10 m and 10–20 m, defined as, respectively, the short- and
far-range altitudes.

3.3. Tracking

The tracking algorithm has been setup to allow tracking of an object with three missing points and a
maximum uncertainty of 190 pixels. The tracks are identified and labeled as animal or non-animal based
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on the updating scheme from Equation (6). After a track has been identified, all other objects in the track
are changed to the similar label.

3.3.1. Short Range Altitudes (3–10 m)

In the altitude range of 3–10 m, the tracker distributes 4173 out of 4381 objects (95.3%) into tracks
containing more than five points, where 4104 out of 4173 objects (98.3%) are placed in a track with
the majority of the same label, meaning that 1.7% objects are placed in the wrong track. The balanced
classification accuracy is 84.8% before the tracks have been identified, e.g., only kNN classification is
performed. Combining the classification results from each frame with the temporal information in terms
of tracks, the balanced accuracy is improved by 8.7 percentage points to 93.5%. The confusion matrix
before and after tracking is provided in Tables 1 and 2. Table 3 shows different performance measures
with and without tracking. Sensitivity or the true positive rate (TPR) describes the classifiers ability to
identify an animal object correctly. Specificity or the true negative rate (TNR) describes the classifiers
ability to identify a non-animal object correctly. After tracking, the TPR and TNR are 90.8% and 96.2%,
respectively, indicating that the classifier has an advantage when classifying non-animal objects.

Table 1. Confusion matrix before track identification in the close-range altitudes (3–10 m).

Animal Non-animal

Animal 2056 332

Non-animal 330 1663

Observation
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Table 2. Confusion matrix after track identification in close-range altitudes (3–10 m).

Animal Non-animal

Animal 2167 76

Non-animal 219 1919

Observation
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d
ic

ti
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n

Table 3. Performance measure in close-range altitudes (3–10 m).

Performance measure No tracking Tracking

Classification accuracy 0.849 0.933

Balanced classification accuracy 0.848 0.935

Sensitivity, True positive rate 0.862 0.908

Specificity, True negative rate 0.834 0.962R
a
n
g
e 

3
-1

0
m
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3.3.2. Far-Range Altitudes (10–20 m)

At an altitude of 10 to 20 m, the tracker distributes 8024 out of 8456 objects (94.9%) into tracks
containing more than five points, where 7673 out of 8024 objects (95.6%) are placed in a track with the
majority of the same label, meaning that 4.4% are placed in the wrong track.

The balanced classification accuracy is 75.2% before the tracks have been identified, while the
balanced accuracy improves by 2.5 percentage points to 77.7%, when tracks are being identified. The
confusion matrix before and after tracking is provided in Tables 4 and 5. Table 6 shows different
performance measures with and without tracking. After tracking, the TPR and TNR are 63.4% and
90.2%, respectively, indicating that the classifier especially has difficulties classifying animal objects
correctly in far-range altitudes.

Table 4. Confusion matrix before track identification in far-range altitudes 10–20 m.

Animal Non-animal

Animal 2735 515

Non-animal 1606 3600

P
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n

Observation

Table 5. Confusion matrix after track identification in far-range altitudes 10–20 m.

Animal Non-animal

Animal 2753 331

Non-animal 1588 3784

Observation
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Table 6. Performance measure in far-range altitudes 10–20 m.

Performance measure No tracking Tracking

Classification accuracy 0.749 0.773

Balanced classification accuracy 0.752 0.777

Sensitivity, True positive rate 0.630 0.634

Specificity, True negative rate 0.875 0.920R
a
n
g
e 

1
0
-2

0
m

The results show that information from consecutive frames in terms of determining and identifying
tracks will improve performance by 8.7 and 2.5 percentage points for the short- and far-range altitudes,
respectively. The system performs best in close-range altitudes with an accuracy of 93.5%, providing a
lead of 15.8 percentage points compared to the far altitude range. The system maintains, though, a low
number of FP or a high TNR of, respectively, 96.2% and 92.0% for short and far altitudes, meaning that
the system preserves the ability to classify non-animals correctly in both ranges. Conversely, the TPR
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drops from 90.8% to 63.5%, meaning that the classifier especially has difficulties in recognizing animal
objects correctly in far-range altitudes.

4. Discussion

The presented feature extraction and classification scheme shows good detection and classification
performance for recording heights under 10 m with a balanced classification accuracy of 84.8%. In the
altitude range of 10–20 m, the performance drops, having a balanced classification accuracy of 75.2%.
The procedure becomes unfit for altitudes above 20–22 m, as detection performance decreases, but the
altitude limit is ultimately set by a bad recognition, as the balanced classification accuracy drops below
or around 0.5. Multiple arguments demonstrate that the application degrades for increasing altitudes,
ultimately making it unfit for detecting and classifying small animals in altitudes above 20 m. The
decreased detection relative to altitude is explained by the following reasons:

(1) The thermal radiation received by the sensor decreases as the distance to animal increases.
(2) The size of an animal is decreased for increasing altitudes, allowing the animal to be dominated

by its colder surroundings.
(3) For a given image resolution and FOV, the spatial resolution or ground sample distance will,

above a certain altitude, exceed the size of the animal, making it undetectable for the thermal
imaging sensor.

The drop in classifier performance for increasing altitudes is explained by the increasing ground
sample distance, causing the object to be presented in lower resolution or by less information, e.g., the
area of a chicken (around 0.05 m2) will, from an altitude of 5 m, theoretically be presented by 305 pixels,
while the same chicken is presented by only 19 pixels from an altitude of 20 m. Figure 10 shows how the
pixel area of a chicken theoretically decreases relative to altitude and how a chicken, in practice, ends up
losing characteristics.

Performance can, though, be improved in high altitudes for both detection and classification by
using a higher resolution camera, a more narrow FOV or optical zoom. The decrease in performance
for increasing altitudes fits well with observations from [5], where the authors were able to manually
detect row deer fawns at 30 m, but had problems at 50 m with a thermal camera with a resolution of
640× 512 pixels. The animals used in this paper are smaller than roe deer fawns, which results in fewer
thermal pixels, compared to the roe deer fawns.

Tracking objects in subsequent images enables us to exploit the temporal information in the recording
and improve performance. The proposed tracking algorithm improves the balanced accuracy by
8.7 percentage points to 93.5% in short-range altitudes and by 2.5 percentage points to 77.7% in far-range
altitudes. A lightweight tracking algorithm has been applied to simply prove how performance can
be improved by exploiting the temporal data. Tracking should, in a real application, handle larger
movements in the horizontal plane and could be combined with a gimbal to stabilize the camera,
independent of yaw, roll and pitch.
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Figure 10. The pixel area relative to the distance for a ground area of 0.05 m2. Thermal
images of a rescaled chicken from different altitudes.

The manually-extracted training data is based on two types of animals: rabbits and chickens.
However, other animals are of interest within the scope of wildlife-friendly agriculture. More
experiments, including different weather conditions, vegetation, animals and more non-animal
candidates to extend the variation of our somewhat limited dataset, should be conducted. These
experiments could help improve the existing algorithm or increase our knowledge of using thermal
cameras for automatic detection and recognition of wildlife. Furthermore, the applicability of the used
methods should be evaluated using footage taken from an actual UAV in motion to include the effects of
wind, UAV movements, moving animals and to more easily extend the variety of the dataset.

The set used for the testing and training of the classifier has no overlapping data. However, as the
training data have been selected from, e.g., every 50th frame in a recording, the data used for testing and
training are correlated to some extent.

This paper focuses on thermal imaging and the proposed feature extraction method. However, sensor
fusion, using the RGB camera, could potentially increase classification performance. Therefore, sensor
fusion methods should be investigated to accomplish this.

5. Conclusion

We have introduced a method for the automatic detection and recognition of wildlife using thermal
cameras for UAV technology. Based on a dynamic threshold, hot objects are detected and subsequent
feature extraction is performed. The novel feature extraction method, presented in this paper, consist of
an extraction of thermal signatures for each detected object and a parameterization of this based on DCT.

Methods for classification using measurements from both single and multiple frames is presented.
Combining measurements from multiple frames achieves the best performance, with a balanced
classification accuracy of 93.5% in the altitude range of 3–10 m and 77.7% in the altitude range of
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10–20 m, thus demonstrating a clear relationship between the performance of detection and classification
relative to altitude. The simulated and limited dataset is favorable in terms of performance for the given
algorithms. The actual applicability of the system should therefore be determined using footage from an
actual UAV. The proposed detection and classification scheme is based on top-view images of wildlife,
as seen by a UAV. The use of UAV-technology for automatic detection and recognition of wildlife is
currently part of ongoing research towards wildlife-friendly agriculture.
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Abstract
In this paper, we present a novel multi-modal
dataset for obstacle detection in agriculture. The
dataset comprises approximately 2 hours of raw sen-
sor data from a tractor-mounted recording system in
a grass mowing scenario in Denmark, October 2016.
Sensing modalities include stereo camera, thermal
camera, web camera, 360-degree camera, lidar, and
radar, while precise localization is available from
fused IMU and GPS. Both static and moving obsta-
cles are present including humans, mannequin dolls,
rocks, barrels, buildings, vehicles, and vegetation.
All obstacles have ground truth object labels and
GPS coordinates.

Keywords — dataset, agriculture, obstacle
detection, computer vision, cameras, stereo,
thermal, lidar, radar, tracking

I. Introduction

For the past few decades, precision agriculture
has revolutionized agricultural production sys-
tems. Part of the development has focused
on robotic automation, to optimize workflow
and minimize manual labor. Today, technol-
ogy is available to automatically steer farming
vehicles such as tractors and harvesters along
predefined paths utilizing accurate global nav-
igation systems. However, a human is still
needed to monitor the surroundings and act
upon potential obstacles in front of the vehicle
to ensure safety.

In order to completely eliminate the need for
a human operator, autonomous farming vehi-
cles need to operate both efficiently and safely

∗{mkha,pech}@eng.au.dk
Both authors contributed equally.

Figure 1: Recording platform surrounded by static and
moving obstacles. Multiple drone views record
the exact position of obstacles, while the record-
ing platform records local sensor data.

without any human intervention. A safety sys-
tem must perform robust obstacle detection
and avoidance in real-time with high reliability.
And multiple sensing modalities must com-
plement each other in order to handle a wide
range of changes in illumination and weather
conditions.

A technological advancement like this re-
quires extensive research and experiments to
investigate combinations of sensors, detection
algorithms, and fusion strategies. Currently, a
few R&D projects exist within companies that

1
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seek to commercialize the concept [4, 2, 12].
However, no public platforms or datasets are
available that address the important issues
of obstacle detection in agricultural environ-
ments.

Within urban autonomous driving, a number
of datasets have recently been made publicly
available. Udacity’s Self-Driving Car Engineer
Nanodegree program has given rise to multi-
ple challenge datasets including stereo camera,
lidar, and localization data [1, 19, 18]. A few
research institutions such as the University of
Surrey [7], Linköping University [11], Oxford
[13], and Virginia Tech [10] have published sim-
ilar datasets. Most of the above cases, however,
only address behavioural cloning, such that
ground truth data are only available for con-
trol actions of the vehicles. No information is
thus available for potential obstacles and their
location in front of the vehicles.

The KITTI dataset [9], however, addresses
these issues with object annotations in both 2D
and 3D. Today, it is the de facto standard for
benchmarking both single- and multi-modality
object detection and recognition systems for
autonomous driving. The dataset includes a
high-resolution stereo camera, a 360-degree
camera, a lidar, and fused GPS/IMU sensor
data.

Focusing specifically on image data, an even
larger selection of datasets is available with an-
notations of typical object categories such as
cars, pedestrians, and bicycles. Annotations of
cars are often represented by bounding boxes
[14, 3]. However, pixel-level annotation or se-
mantic segmentation has the advantage of be-
ing able to capture all objects, regardless of
their shape and orientation. Some of these are
synthetically generated images using computer
graphic engines that are automatically anno-
tated [17, 8], whereas others are natural images
that are manually labeled [6, 15].

In agriculture, currently no similar datasets
are publicly available. While some similari-
ties between autonomous urban driving and
autonomous farming are present, essential dif-
ferences exist. An agricultural environment
is often unstructured, whereas urban driving

involves planar surfaces, often accompanied
by lane lines and traffic signs. Further, distinc-
tion between traversable, non-traversable and
processable terrain is often necessary in an agri-
cultural context such as grass mowing, weed
spraying, or harvesting. Here, tall grass or high
crops protruding from the ground may actually
be traversable and processable, whereas ordi-
nary object categories such as humans, animals,
and vehicles are not. In urban driving, how-
ever, a simplified traversable/non-traversable
representation is common, as all protruding ob-
jects are typically regarded as obstacles. There-
fore, sensing modalities and detection algo-
rithms that work well in urban driving, do not
necessarily work well in an agricultural set-
ting. Ground plane assumptions common for
3D sensors may break down when applied on
rough terrain or high grass. And vision-based
detection algorithms may fail when faced with
visually camouflaged objects such as animals
and vegetation typical in a natural environ-
ment.

In this paper, we present a flexible, multi-
modal sensing platform and a dataset for
obstacle detection in agriculture. The plat-
form is mounted on a tractor and includes
a stereo camera, a thermal camera, a web
camera, a 360-degree camera, a lidar, and a
radar, while precise localization is available
from fused IMU and GPS. The dataset includes
approximately 2 hours of recordings from a
grass mowing scenario in Denmark, October
2016. Both static and moving obstacles are
present including humans, mannequin dolls,
rocks, barrels, buildings, vehicles, and vege-
tation. Ground truth positions of all obsta-
cles were recorded with a drone during op-
eration and have subsequently been manu-
ally labeled and synchronized with all sensor
data. The dataset can be downloaded from
https://vision.eng.au.dk/fieldsafe/.

II. Sensor Setup

Figure 2 shows the recording platform
mounted on a tractor during grass mowing.
The platform consists of the exteroceptive
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Figure 2: Recording platform.

Table 1: Exteroceptive sensors.

Sensor Model Resolution FOV Range Data rate

Stereo camera
Multisense S21
CMV2000

1024 x 544 85◦x 50◦ 1.5-50m 10 fps

Web camera Logitech HD Pro C920 1920 x 1080 70◦x 43◦ - 20 fps
360-degree camera Giroptic 360cam 2048 x 833 360◦x 292◦ - 30 fps
Thermal camera Flir A65, 13 mm lens 640 x 512 45◦x 37◦ - 30 fps
Lidar Velodyne HDL-32E 2172 x 32 360◦x 40◦ 1-100 m 10 fps

Radar Delphi ESR 64 targets/frame
90◦x 4.2◦

20◦x 4.2◦
0-60 m
0-174 m

20 fps

Table 2: Proprioceptive sensors.

Sensor Model Description
GPS Trimble BD982 GNSS Dual antenna RTK GPS system. Measures po-

sition and horizontal heading of the platform.
IMU Vectornav VN-100 Measures acceleration, angular velocity, mag-

netic field, and barometric pressure.

sensors listed in Table 1, the proprioceptive
sensors listed in Table 2, and a controller used
for data collection with the Robot Operating
System (ROS). Figure 3 illustrates a synchro-
nized pair of frames from the stereo camera,
the 360-degree camera, the web camera, the
thermal camera, and the lidar.

Synchronization. Trigger signals for the
stereo and thermal cameras were synchronized
and generated from a PPS signal from the
lidar, which allowed exact GPS timestamps for

all three sensors. The remaining sensors were
synchronized in software using ROS.

Registration. The lidar and the stereo
camera were registered with ICP as an average
over multiple static scenes. The stereo and
thermal cameras were registered using a cus-
tom made visual-thermal checker board. The
remaining sensors were registered by hand,
by estimating extrinsic parameters of their
positions. For a more detailed description, we
refer the reader to [5].

3



FieldSAFE

(a) Stereo image (b) Stereo pointcloud

(c) 360-degree camera image (cropped)

(d) Web camera image (e) Thermal camera image (cropped)

(f) Lidar point cloud (cropped and colored by height)

Figure 3: Example frames from the FieldSAFE dataset.
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III. Dataset

The dataset consists of approximately 2 hours
of recordings during grass mowing in Den-
mark, October 25th 2016. Figure 4a shows a
map of the field with tractor tracks overlaid.
The field is 3.3 ha and surrounded by roads,
shelterbelts, and a private property.

A number of static obstacles exemplified
in Figure 5 were placed on the field prior to
recording. They included mannequin dolls
(adults and children), rocks, barrels, buildings,
vehicles, and vegetation. Figure 4b shows the
placement of static obstacles on the field over-
laid on a ground truth map colored by object
classes.

Additionally, a session with moving obsta-
cles was recorded where four humans were
told to walk in random patterns. Figure 6
shows the four subjects and their respective
paths on a subset of the field. The subset cor-
responds to the white tractor tracks in Figure
4a. The humans crossed the path of the tractor
a number of times, thus emulating dangerous
situations that must be detected by a safety
system. Along the way, various poses such as
standing, sitting, and lying were represented.

During the entire traversal and mowing of
the field, data from all sensors were recorded.
Along with video from a hovering drone, a
static orthophoto from another drone, and cor-
responding manually annotated class labels,
these are all available from the FieldSAFE web-
site.

IV. Ground Truth

Ground truth information on object location
and class labels for both static and moving
obstacles is available as timestamped GPS co-
ordinates. By transforming local sensor data
from the tractor into global GPS coordinates, a
simple look-up of class label into the annotated
ground truth map is possible.

Prior to traversing and mowing the field, a
number of custom-made GPS markers were
distributed on the ground and measured with
exact GPS coordinates using a handheld RTK

(a) Orthophoto with tractor tracks overlaid. Black
tracks include only static obstacles, whereas red
and white tracks also have moving obstacles. Cur-
rently, red tracks have no ground truth for moving
obstacles annotated.

(b) Labeled orthophoto

Figure 4: Colored and labeled orthophotos.
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Figure 5: Examples of static obstacles.

(a) Human 1 (b) Human 2 (c) Human 3 (d) Human 4

Figure 6: Examples of moving obstacles (from the stereo camera) and their paths (black) overlaid on tractor path (grey).

GPS. A DJI Phantom 4 drone was used to take
overlapping bird’s-eye view images of an area
covering the field and its surroundings. Pix4D
[16] was then used to stitch the images and
generate a high-resolution orthophoto (Figure

4a) with a ground sampling distance (GSD) of
2 cm. The orthophoto was manually labeled
pixel-wise as either grass, ground, road, vegeta-
tion, building, GPS marker, barrel, human, or other
(Figure 4b). Using the GPS coordinates of the
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markers and their corresponding positions in
the orthophoto, a mapping between GPS coor-
dinates and pixel coordinates was estimated.

For annotating the location of moving obsta-
cles, a DJI Matrice 100 was used to hover ap-
proximately 75 m above the ground while the
tractor traversed the field. The drone recorded
video at 25 fps with a resolution of 1920x1080.
Due to limited battery capacity, the recording
was split into two sessions of each 20 minutes.
The videos were manually synchronized with
sensor data from the tractor by introducing
physical synchronization events in front of the
tractor in the beginning and end of each ses-
sion. Using the 7 GPS markers that were visible
within field of view of the drone, the videos
were stabilized and warped to a bird’s-eye view
of a subset of the field. As described above for
the static orthophoto, GPS coordinates of the
markers and their corresponding positions in
the videos were then used to generate a map-
ping between GPS coordinates and pixel co-
ordinates. Finally, the moving obstacles were
manually annotated in each frame of one of
the videos using the vatic video annotation
tool [20]. Figure 6 shows the path of each ob-
ject overlaid on a subset of the orthophoto. The
second video is yet to be annotated.

V. Summary and Future Work

In this paper, we have presented a calibrated
and synchronized multi-modal dataset for ob-
stacle detection in agriculture. We envision
the dataset to facilitate a wide range of future
research within autonomous agriculture and
obstacle detection for farming vehicles.

In future work, we plan on annotating the
remaining session with moving obstacles.
Additionally, we would like to extend the
dataset with more scenarios from various
agricultural environments while widening
the range of encountered illumination and
weather conditions.
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ABSTRACT2

In recent years, autonomous robots and systems have been proposed for automating a number3
of agricultural tasks. Robots can improve workflow, minimize manual labor, and optimize yield.4
However, for unmanned autonomous vehicles to be certified, not only their specific agricultural5
tasks must be automated. An accurate and robust perception system automatically detecting and6
avoiding all obstacles must be in place in order to ensure safety of humans, animals, and other7
machines. In this paper, we present a multi-modal obstacle detection and recognition approach8
for process evaluation in agricultural fields. Obstacle detection algorithms are introduced for a9
variety of sensing modalities including lidar, radar, stereo camera, and thermal camera. Object10
information is fused across sensors and mapped globally, resulting in accurate traversability11
assessment and semantical mapping of process-relevant object categories (e.g. grass, ground,12
and object for mowing operations). Finally, a decoding step extracts relevant process-specific13
parameters along the trajectory of the vehicle, thus informing a potential control system of14
unexpected structures in the planned path. The method is evaluated on a public dataset for15
multi-modal obstacle detection in agricultural fields. Results show that a combination of multiple16
sensor modalities increases detection performance, and that different fusion strategies must be17
applied between inter- and intra-class detection algorithms.18

Keywords: Occupancy grid maps, Obstacle detection, Precision Agriculture, Sensor Fusion, Multi-Modal Processing, Multi-Modal19
Perception, Inverse models20

1 INTRODUCTION

Autonomous vehicles and robots operating in agricultural fields or orchards are emerging in both research21
and commercialized projects. The driverless systems must ensure safe operation by perceiving the environ-22
ment and detecting and avoiding potential obstacles in their way. No sensor can single-handedly guarantee23
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this safety, and thus a heterogeneous and redundant set of perception sensors and algorithms are needed for24
the purpose.25

Contrary to self-driving cars whose primary purpose is to travel from A to B, an autonomous farming26
vehicle must also process the traversed area along its way. Common agricultural tasks are harvesting,27
mowing, pruning, seeding, and spraying. For these tasks, a simple representation of the environment into28
traversable and non-traversable areas is insufficient. Instead, an agricultural vehicle requires distinction29
between e.g. traversable areas like road and soil, and processable areas like grass, crops, and plants.30
Therefore, obstacle detection in an agricultural context does not simplify to purely identifying objects that31
protrude from a common ground plane. High grass or crop may appear non-traversable while actually32
being processable, whereas flat obstacles such as plant seedlings may appear traversable while being33
non-traversable. A need therefore exists for a system that can detect and recognize a large variety of object34
categories, while at the same time combine the extensive and perhaps unmanageable amount of information35
into process-specific parameters relevant for either the driver or an autonomous controller.36

This paper presents a multi-modal obstacle detection and recognition approach for process evaluation37
in agricultural fields. Object detection algorithms are presented for lidar, radar, stereo camera, and38
thermal camera, individually. Object information from all sensors is mapped into a global 2D grid-based39
representation of the environment and fused across object categories, detection algorithms, and sensor40
modalities. Finally, relevant properties for processing the field such as traversability and yield information41
along planned trajectories are decoded. The proposed method is evaluated on a public grass mowing dataset42
recorded in Lem, Denmark, October 2016. The dataset includes both static and dynamic (moving) obstacles43
such as humans, vehicles, vegetation, barrels, and buildings.44

The proposed architecture is depicted in Figure 1. A sensor platform is mounted on a tractor traversing a45
field along a preplanned trajectory. A number of exteroceptive sensors collect synchronized perception data46
used for object detection, whereas proprioceptive sensors are used for global localization of the vehicle. For47
each sensor modality, an inverse sensor model (ISM) includes an algorithm for detecting a number of object48
categories (e.g. human, vegetation, and building) and a mapping from raw sensor data to a 2D occupancy49
grid map (OGM) in the local sensor frame. In the fusion and mapping step, OGMs for all sensors and50
object categories are first localized globally and then updated temporally with the occupancy grid map51
algorithm. Finally, they are fused spatially to extract a global map of the environment. We present both52
binary (occupied/unoccupied) and semantical (object category-specific) maps, allowing further processing53
in subsequent algorithms. A final decoding step operates on the fused semantical maps to extract relevant54
process-specific (e.g. harvesting, mowing, or weed-spraying) parameters along the predefined trajectory of55
the vehicle. The final output could be used to alert a driver with human-understandable information, or56
directly by a control system for completely autonomous operation.57

The paper is divided into 6 sections. Section 2 introduces related work on obstacle detection in agricultural58
applications. Section 3 presents the proposed method consisting of each of the four building blocks from59
Figure 1. Section 4 presents the experimental dataset and results for static and dynamic obstacle detection60
as well as decoding of process-relevant parameters. Section 5 provides a discussion of the overall approach,61
while section 6 concludes the paper and suggests future work.62

2 RELATED WORK

Robotic automation is emerging for numerous agricultural tasks. The main objective is to reduce production63
costs and manual labour, while increasing yield and raising product quality (Luettel et al., 2012; Bechar and64

This is a provisional file, not the final typeset article 2



DRAFT

Sample et al. Obstacle Detection in Agriculture for Process Evaluation

Figure 1. System architecture including information flow.

Vigneault, 2017). A significant milestone is to make robots navigate autonomously in dynamic, rough and65
unstructured environments, such as agricultural fields or orchards. To some extent, this has been possible66
for around two decades with automated steering systems utilizing global navigation systems (Abidine et al.,67
2004). To eliminate the need for a human operator, however, strict safety precautions are required including68
accurate and robust risk detection and obstacle avoidance.69

Today, only small and harmless robots are commercially available that incorporate obstacle avoidance70
and operate fully autonomously in various agricultural domains (Lely, 2016; Harvest Automation, 2012).71
Commercialized self-driving tractors or harvesters, however, currently only exist as R&D projects (Case72
IH, 2016; ASI, 2016; Kubota, 2017).73

In the literature, the concept of an autonomous farming vehicle with obstacle avoidance dates back to74
1997 where a camera was used as an anomaly detector to identify structures different from crop (Ollis and75
Stentz, 1997). Since then, several systems have been proposed for detecting and avoiding obstacles (Cho76
and Lee, 2000; Stentz et al., 2002; Griepentrog et al., 2009; Moorehead et al., 2012; Emmi et al., 2014;77
Ball et al., 2016).78

A simplified representation of the environment into traversable and non-traversable regions is common79
for autonomous navigation (Papadakis, 2013). A path may be non-traversable if it is blocked by obstacles,80
or if the terrain is too rough or steep. Similarly, anomaly or novelty detection is used to find anything81
that does not comply with normal appearance, and thus used to detect obstacles (Sofman et al., 2010;82
Ross et al., 2015; Christiansen et al., 2016a). However, for many agricultural tasks such as harvesting,83
mowing and weed spraying, further distinction between obstacles and traversable vegetation is necessary.84
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In one application, apparent obstacles such as crops or high grass may be traversable, whereas in another,85
small plants at ground level may represent obstacles and thus be non-traversable. Distinction into object,86
vegetation, and ground is common (Wellington and Stentz, 2004; Lalonde et al., 2006; Bradley et al., 2007;87
Kragh et al., 2015), whereas a few approaches explicitly recognize classes such as humans, vehicles and88
buildings (Yang and Noguchi, 2012; Christiansen et al., 2016b).89

In the literature, obstacle detection systems often rely on a single sensor modality (Rovira-Mas et al.,90
2005; Reina and Milella, 2012; Fleischmann and Berns, 2015). These systems, however, are easily affected91
by varying weather and lighting conditions and thus present single points of failure. Therefore, a safety92
system must have a heterogeneous sensor suite with multiple sensing modalities that both overlap and93
complement each other in terms of detection capabilities and robustness. Sensor fusion is the concept of94
combining information from multiple sources to reduce uncertainty. Low-level fusion combines raw data95
from different sensors, whereas high-level fusion integrates information at decision level. In both cases,96
sensor data need to be compatible.97
Lidar, radar, and stereo cameras are all range sensors providing metric 3D coordinates. Lidar and radar98
have been fused at low level using a joint extrinsic calibration procedure (Underwood et al., 2010) and99
at high level for augmented traversability assessment (Ahtiainen et al., 2015). Similarly, lidar and stereo100
camera have been fused at high level for traversability assessment (Reina et al., 2016). Often, a grid-based101
representation such as occupancy grid maps (Elfes, 1990) is used, allowing simple probabilistic fusion and102
subsequent path planning.103
Monocular cameras operate in a non-metric pixel space and can be fused directly under assumption of104
negligible parallax errors. Examples are available of color and thermal camera fusion for object detection105
at both low level (Davis and Sharma, 2007) and high level (Apatean et al., 2010).106
Fusion across domains is possible only when a well-defined transformation between them exists. By107
projecting 3D points onto corresponding 2D images, range sensors can be fused with cameras. With this108
approach, lidar and color cameras have been combined for semantic segmentation and object recognition109
both at low level (Dima et al., 2004; Wellington et al., 2005; Häselich et al., 2013) and high level (Laible110
et al., 2013; Kragh and Underwood, 2017). Similarly, image data in pixel-space have been transformed to111
metric 3D coordinates with inverse perspective mapping (Bertozzi and Broggi, 1998; Konrad et al., 2012).112
Here, a ground plane assumption is used to invert the perspective effect applied during image acquisition,113
such that image data are compatible with e.g. lidar and radar data.114

In this paper, sensor data from both lidar, radar, stereo camera, and thermal camera are fused with115
a probabilistic 2D occupancy grid map. This data representation has been chosen, as it simplifies path116
planning and is already a standard in the automotive industry.117

3 METHOD

In the following, each of the steps from the system architecture in Figure 1 are explained in detail.118

3.1 Sensor Platform119

The sensor suite presented by Kragh et al. (2017) was used to record multi-modal perception data. The120
dataset has recently been made publicly available. It includes lidar, radar, stereo camera, thermal camera,121
IMU, and GNSS1. The sensors were fixed to a common platform and interfaced to the Robot Operating122

1Global Navigation Satellite System

This is a provisional file, not the final typeset article 4
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Figure 2. Recording platform. Reprinted from “FieldSAFE: Dataset for Obstacle Detection in Agriculture”
by M. Kragh et al., 2017, arXiv preprint arXiv:1709.03526. Reprinted with permission.

System (ROS) (Quigley et al., 2009). A tractor-mounted setup and a close-up of the platform are shown in123
Figure 2.124

The exteroceptive sensors and their properties are listed in Table 1. Proprioceptive sensors used for125
localization included a Vectornav VN-100 IMU and a Trimble BD982 dual antenna GNSS system.126

Table 1. Sensors. Adapted from “FieldSAFE: Dataset for Obstacle Detection in Agriculture” by M. Kragh
et al., 2017, arXiv preprint arXiv:1709.03526. Adapted with permission.

Sensor Model Resolution FOV Range Data rate
Stereo camera Multisense S21

CMV2000 1024 x 544 85◦x 50◦ 1.5-50m 10 fps
Web camera Logitech HD Pro C920 1920 x 1080 70◦x 43◦ - 20 fps
360-degree camera Giroptic 360cam 2048 x 833 360◦x 292◦ - 30 fps
Thermal camera Flir A65, 13 mm lens 640 x 512 45◦x 37◦ - 30 fps
Lidar Velodyne HDL-32E 2172 x 32 360◦x 40◦ 1-100 m 10 fps

Radar Delphi ESR 32 targets/frame 90◦x 4.2◦
20◦x 4.2◦

0-60 m
0-174 m 20 fps

All sensors were synchronized in ROS using a best effort approach. Lidar, stereo camera, and thermal127
camera were registered before recording in a semi-automatic calibration procedure (Christiansen et al.,128
2017). All remaining sensors were registered by hand, by estimating extrinsic parameters of their positions.129

Global localization from fused IMU and GNSS was obtained with the robot localization package (Moore130
and Stouch, 2014) in the Robot Operating System (ROS) (Quigley et al., 2009).131

3.2 Fusion and Mapping132

Occupancy grid maps are used in static obstacle detection for robotic systems, which is a well-known133
and a commonly studied scientific field (Hähnel, 2004; Thrun et al., 2005; Stachniss, 2009). They are134
a component of almost all navigation and collision avoidance systems designed to maneuver through135
cluttered environments. Another important application is the creation of obstacle maps for traversing136
unknown areas and the recognizing known obstacles, thereby supporting localization. Recently, occupancy137
grid maps have been applied to combine LiDAR and RADAR in automotive applications with the goal of138
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creating a harmonious, consistent, and complete representation of the vehicle’s environment as a basis for139
advanced driver assistance systems (Garcia et al., 2008; Bouzouraa and Hofmann, 2010; Winner, 2015).140

3.2.1 Occupancy Grid Mapping141

Two-dimensional occupancy grid maps (OGM) were originally introduced by Elfes (1990). In this142
representation, the environment is subdivided into a regular array or a grid of quadratic cells. The resolution143
of the environment representation directly depends on the size of the cells. In addition to this compart-144
mentalization of space, a probabilistic measure of occupancy is associated with each cell. This measure145
takes any real number in the interval [0, 1] and describes one of the two possible cell states: unoccupied or146
occupied. An occupancy probability of 0 represents a space that is definitely unoccupied, and a probability147
of 1 represents a space that is definitely occupied. A value of 0.5 refers to an unknown state of occupancy.148

An occupancy grid is an efficient approach for representing uncertainty, combining multiple sensor149
measurements at the decision level, and for incorporating different sensor models (Winner, 2015). To learn150
an occupancy grid M given sensor information z, different update rules exist (Hähnel, 2004). For the151
authors’ approach, a Bayesian update rule is applied to every cell m ∈ M at position (w, h) as follows:152
Given the position xt of a vehicle at time t, let x1:t = x1, . . . , xt be the positions of the vehicle’s individual153
steps until t, and z1:t = z1, . . . , zt the environmental perceptions. For each cell m of the occupancy154
probability grid represents the probability that this cell is occupied by an obstacle. Thus, occupancy155
probability grids seek to estimate156

Odd (P (m|zt, xt)) =
P (m|zt, xt)

1− P (m|zt, xt)
, P (m|z1:t, x1:t) = Odd−1

(
T∏

t=1

Odd (P (m|zt, xt))
)

(1)

This equation already describes the online capable, recursive update rule that populates the current157
measurement zt to the grid, where P (m|z1:t, x1:t) is the so called inverse sensor model (ISM). The ISM158
is used to update the OGM in a Bayesian framework, which deduces the occupancy probability of a cell,159
given the sensor information.160

3.2.2 Extension to Agricultural Applications161

The adaptation of OGM techniques to agricultural applications appears to be merely a matter of time162
but is not that obvious and intuitive to apply on the second sight. Robotic and automotive applications163
have in common that they both want to detect non-traversable areas or objects occupying their paths. Such164
unambiguous information is used to quantify the whole environment sufficiently for all derivable tasks165
such as path planning or obstacle avoidance. When assumptions like a flat operational plane or minimum166
obstacle heights are made, sensor frustums oriented parallel to the ground are sufficient for all tasks.167

In agricultural applications, the crucial task is the quantification of the environment as the machines168
act on and process it. Therefore, quantification of the environment involves features such as processed169
areas, processability, crop quality, density, and maturity level in addition to traversability. In order to map170
these features, single occupancy grid maps are no longer sufficient. Instead, semantic occupancy grid171
maps that allow different classification results to be mapped are used. Furthermore, sensor frustums are no172
longer oriented parallel to the ground, but rather oriented at an angle to gather necessary crop information173
(Korthals et al., 2017b).174
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Figure 3. Semantical occupancy grid mapping framework

The extension to semantic occupancy grid maps (SOGM) or inference grids is straightforward and defined175
by an OGM M with W cells in width, H cells in height, and N semantic layers (see Figure 3):176

M : {1, . . . ,W} × {1, . . . , H} → m = (0, . . . , 1)N (2)

Compared to a single layer OGM which allows the classification into three states
{

occupied, occupied,177
unknown}, the SOGM supports a maximum of 3N different states allowing much higher differentiability178
in environment and object recognition. The corresponding ISMs are fused by means of the occupancy grid179
algorithm to their nth associated semantical occupancy grid.180

The location of information in the maps is required to be completed by mapping under known poses181
approaches (Thrun et al., 2005). As proposed by REP-1052 and realized by Korthals et al. (2017b),182
information is mapped locally. The maps themselves are globally referenced which enables consistent183
storing and loading of information. Further, it allows smooth local mapping in the short term without184
discrete jumps caused by global positioning systems using a Global Navigation Satellite System (GNSS).185

3.2.3 Mapping Capabilities186

Requesting preprocessed SOGMs is beneficial for applications only requiring one kind of information187
which can be derived from a set of SOGMs. Therefore, besides the raw access of SOGMs, the two188
following fusion techniques among layers are mainly used for evaluation. The first approach is based on a189
super Bayesian independent opinion pooling PB (Pathak et al., 2007). It is applicable for the case when190
separate SOGMs with identical feature representations (same object classes) are maintained. Second, a191
non-Bayesian maximum pooling fusion method PM is applied to heterogeneous feature representations192
(varying object classes) (Liggins et al., 2001). The fusion techniques are cell-wise and therefore do not193
introduce any clustering.194

PB(m) =
1

1 +
∏

N
1−P (mn)
P (mn)

, PM(m) = max
n

P (mn) (3)

2http://www.ros.org/reps/rep-0105.html
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Clustering on SOGMs was introduced by (Korthals et al., 2017a), using a Supercell Extracted Variance195
Driven Sampling (SEVDS) algorithm, which tends to find clusters that consist of mainly non-contradicting196
cells. Unlike single-layer OGM approaches, an SOGM incorporates multiple OGMs with varying classes197
residing in the map storage. For further applications, respecting every grid cell is not a feasible approach198
due to noise, sparse data, and potential offsets between layers. Even worse, requesting raw SOGMs would199
require impractical high bandwidths. To transform the SOGM into a parametrized form by clustering200
e.g. via Gaussians is unfeasible as well, due to the risk of lacking objects. The authors’ approach is201
therefore a superpixel-like clustering method inspired by computer vision to find homogeneous regions202
and assign a feature vector for these. This leads to a topometric map, which is derived from the centroids203
of the superpixels as shown in Figure 5. Utilizing the Superpixels Extracted via Energy-Driven Sampling204
(SEEDS) algorithm from Stutz et al. (2016), we revise the formulation:205

H(c) = D(c) + γG(c) with D(c) =
N∑

n=1

en(var(h(c))) (4)

to respect the nature, which is the probability and locality of information of SOGMs, more precisely. In206
Equation 4, c is the supercell of interest and G is the contour function which can be smoothed via the scalar207
factor γ. The distribution term D of a supercell c is defined as the sum of Eigenvalues e of the covariance208
matrix C of the probability histogram h(c) (see Figure 4 and Figure 5).209

As depicted in Figure 5, for every found supercell a tripel C = (Tc,Lc,Pc) consisting of its centroid210
location Tc, a list of adjunct supercell Lc, and a feature vector Pc is calculated211

Odd (Pc) =

( ∏

m∈c1
Odd(P (m)), . . . ,

∏

m∈cN
Odd(P (m))

)T

(5)

212

3.3 Inverse Sensor Models213

In the following, individual inverse sensor models (ISM) are introduced and explained in detail for each214
of the sensors. An ISM consists of an algorithm for detecting a number of object categories and a mapping215
from raw sensor data to a 2D occupancy grid map (OGM) in the local sensor frame.216
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3.3.1 Camera217

A Camera Inverse Sensor model comprises both a detection algorithm and a mapping of detections into a218
local grid map.219

3.3.1.1 Detection algorithms220

This section needs image examples of each algorithm A total of four detection algorithms for color221
camera have been used; Locally Decorrelated Channel Feature (LDCF) for pedestrian detection (Nam et al.,222
2014), an improved version of You Only Look Once (YOLOv2) (Redmon and Farhadi, 2016; Redmon223
et al., 2016) for object detection, a Fully Convolutional Neural Network (FCN) for semantic segmentation224
(Long et al., 2015) and DeepAnomaly (Christiansen et al., 2016a) for anomaly detection. Thermal camera225
uses a dynamic heat detection algorithm (HeatDetection) to detect hot objects based on a concept from226
(Christiansen et al., 2014).227

LDCF is a pedestrian detection algorithm delimiting instances by a bounding box of a fixed aspect ratio.228
The detector is public available in a MATLAB-based framework (Dollar, 2015) by Piotr Dollár. The model229
from (Nam et al., 2014) is trained on the INRIA Person Dataset (?). In (Hansen et al., ????) the detector230
have been converted to C++ and wrapped in a ROS-package3.231

YOLOv2 is a deep learning based object detector delimiting instances by a bounding box of variable232
aspect ratio. The detector is developed in the deep learning framework Darknet (Redmon, 2013) and233
trained on ImageNet (Berg and Deng, 2015) and Microsoft COCO (Lin et al., 2014) for detecting 80 object234
categories. The contribution is a ROS-package4 to run the algorithm in ROS and to perform a simple235
remapping of the 80 object classes into three classes (human, other and unknown).236

FCN uses the backbone of VGG (Simonyan and Zisserman, 2014) to make a fully convolutional semantic237
segmentation algorithm that classifies all pixels in an image. The model developed in Caffe (Jia et al.,238
2014) and is publicly available5. One model is trained on the 59 most frequent classes of the Pascal Context239
dataset (Mottaghi et al., 2014). Unlike the more popular Pascal VOC dataset (Everingham et al., 2013)240
with only 20 object classes, Pascal Context provides full image annotations of 407 classes. In (Christiansen241
et al., 2016b) the 59 object classes are remapped to only 11 classes to investigate the semantic segmentation242
in an agricultural context. In (Hansen et al., ????) the detector have been wrapped in a ROS-package6 and243
remapped. In this work, predictions are remapped to eight classes (human, Other, unknown, building, grass,244
ground, shelterbelt and water).245

DeepAnomaly is a deep learning based detection algorithm for detecting anomalies (Christiansen et al.,246
2016a). The backbone is AlexNet (Krizhevsky et al., 2012) trained on ImageNet and the anomaly detector247
is modeled using 150 images from another field Christiansen et al. (2017). The output is coarse predictions248
of the whole image.249

This section needs image examples of the heat detection algorithm HeatDetection is a simple heat250
detection principle from (Christiansen et al., 2014) for detecting hot objects using a thermal camera.251
The median temperature is determined for all image pixels, and the dynamic threshold is defined by252
some constant value above the median temperature. For a front facing camera on a tractor, the median253
temperature is determined for some bottom section of the image roughly corresponding to the ground254

3ROS package available at https://github.com/PeteHeine/pedestrian detector ros.git
4ROS package available at https://github.com/PeteHeine/yolo v2 ros
5Model is available at https://github.com/shelhamer/fcn.berkeleyvision.org
6ROS package available at https://github.com/PeteHeine/fcn8 ros
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surface. Subtracting the image by the dynamic threshold and clipping values below zero, results in a heat255
map of how much each pixel have exceeded the dynamic threshold. Procedure is presented in Figure XX.256
A ROS-package is publicly available 7.257

3.3.1.2 Camera Grid Mapping258

Two methods have been used to transform detection information from camera-based algorithms using259
Occupancy grid maps also described in reference to ’Towards Inverse Sensor Mapping in Agriculture’. The260
code for transforming detection into local grid maps has been made publicly available as ROS packages8,9.261
Inverse Perspective Mapping (IPM) projects image from camera frame to the ground plane surface262
using a geometrical transformation (Bertozzi and Broggi, 1998; Konrad et al., 2012). The purpose of IPM263
is to remove/inverse the perspective effect by changing the viewpoint from camera to bird’s eye view.264
The geometrical transformation for mapping image coordinates to surface is defined by intrinsic camera265
parameters, camera to surface transformation and surface to OGM transformation. The raw color image is266
transformed using an IPM in Figure 6. To generate an ISM, the IPM is used for transforming per-pixel267
predictions into an OGM. Figure 7 presents the predictions from FCN for the human and grass class before268
and after IPM.269

Figure 6. Inverse Perspective mapping of color image.

Areas outside the camera FOV is set to 0.5. Areas inside FOV with no detections are set below 0.5.270
Detections are given values above 0.5 to indicate that the area is expected to be occupied. As demonstrated271
for the grass class, the IPM algorithm approximates the actual inverse perspective mapping for flat elements272
on the surface. However, elements that are protruding or positioned above the ground surface are imprecisely273
mapped as demonstrated by the human detection in the bottom of Figure 7.274

To handle protruding objects and bounding box outputs a second procedure is used, see Figure 8. Image275
bounding box detections are converted into 3D detections and projected to the ground surface with some276
localization uncertainty. Image bounding boxes are converted to 3D positions by estimating the distance277
and convention camera geometry. This work uses depth estimates from stereo matching. However, the278
distance can also be estimated by other depth sensors or by assuming a statically mounted camera above a279
flat surface.280

Similar to the OGM from Figure 7, areas outside the FOV is set to 0.5 and areas inside the FOV with281
no detections are set below 0.5. Most detection algorithms degrade by the distance. To model this, the282

7ROS package available at https://github.com/PeteHeine/dynamic heat detection
8ROS package available at https://github.com/PeteHeine/image inverse sensor model2
9ROS package available at https://github.com/PeteHeine/image boundingbox to 3d

This is a provisional file, not the final typeset article 10



DRAFT

Sample et al. Obstacle Detection in Agriculture for Process Evaluation

Figure 7. Inverse Perspective mapping of grass (top) and human detections (bottom).

uncertainty of detection is reduced linearly by the distance. In Figure 8 the probability increases from283
0.4 to 0.5. Imprecise localization of a detection is modeled by a Gaussian distribution. For a camera the284
uncertainty of distance (radial coordinate) and angle (angular coordinate) to the object are independent.285
This is incorporated by modeling each polar coordinate (radial and angular) with independent uncertainties.286
In Figure 8 the localization uncertainty of the radial coordinate is larger than the angular coordinate.287

2D to 3D bouding boxes

OGM2D Bounding box 3D detections

3D to ISM
2D bounding box 3D bbox

Figure 8. Converting detection to ISM

Human and Other predictions from FCN and the DeepAnomaly output is converted to bounding boxes288
using a connected components module 9. An IPM289

Bounding boxes from YOLOv2 and LDCF is directly passed through the ’2D bounding boxes to290
3D’-module to estimate 3D positions of obstacles. These 3D positions are then converted to an OGM as291
illustrated. The localization uncertainty is modeled by an Gaussian distribution. The output of DeepAnomaly292
and FCN detection is converted to bounding boxes using the ’Connected Component’-module before being293
passed through the ’2D bounding boxes to 3D’-module.294
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Figure 9. Converting detection to ISM

3.3.2 Lidar295

The inverse sensor model for the lidar sensor consists of a detection algorithm and a mapping from raw296
sensor data to a local 2D grid in the vehicle frame.297

The detection algorithm operates directly on 3D point clouds with approximately 70,000 points/frame298
generated at 10 fps by the Velodyne HDL-32E lidar. First, 13 features are calculated per point using299
neighborhood statistics that depend on local point densities (Kragh et al., 2015). Second, a Support Vector300
Machine (SVM) classifies each point as either ground, vegetation, or object. It further assigns probability301
estimates (Wu et al., 2004) to each class to describe the certainty of each classification. The SVM classifier302
was trained on the same data used in (Kragh et al., 2015).303
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Figure 10. Left: point cloud with pseudo-colored probability estimates of the object class. Blue and red
denote low and high probabilities, respectively. Right: corresponding OGM for the object class illustrating
low (bright) and high (dark) probabilities.

Figure 11. Left: radar detection example with confirmed (green) and unconfirmed (red) radar tracks
overlaid on point cloud. Right: resulting radar OGM.

The mapping from detection probabilities to a local 2D grid is handled by projecting and resampling 3D304
points into 2D grid cells. For each 2D grid cell, class probabilities of all 3D points whose xy-projection305
lies inside are averaged and normalized such that the three class probabilities sum to 1. This results in three306
2D probability grids: P ∗object, P

∗
vegetation, and P ∗ground.307

The three classes are combined into two OGMs by incorporating the ground probabilities into the object
and vegetation classes probabilistically. For each grid cell m in an OGM, the log odds ratio of e.g. the
object class is:

logOdds
(
Pobject (m)

)
= logOdds

(
P ∗object (m)

)
+ logOdds

(
1− P ∗ground (m)

)
(6)

= log
(
P ∗object (m)

)
− log

(
1− P ∗object (m)

)

+ log
(
P ∗ground (m)

)
− log

(
1− P ∗ground (m)

)

Figure 10 shows an example of a point cloud colored by object probabilities from the SVM classifier, and308
the corresponding object OGM.309
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3.3.3 Radar310

The Delphi ESR automotive radar provides a list of up to 32 targets for each frame. Each target is311
represented by an angle, a range, and an amplitude. Most targets, however, represent internal noise in the312
radar and have low amplitudes. Simply filtering out these targets with a threshold eliminates radar returns313
from low-reflective objects such as humans and animals. Therefore, instead we use the approach from314
our previous paper (Kragh et al., 2016) and apply apply a tracking algorithm between subsequent frames315
known as the Kuhn-Munkres assignment algorithm (Munkres, 1957). Only radar targets that are less than316
2m apart between two consecutive frames are associated. A track i is described by its current position and317
its track length Li. It is confirmed when Li > Lmin = 3 and converted to a detection probability by:318

Pradar,i =
Li − Lmin

Li
(7)

The mapping from detection probabilities to a local 2D grid is handled by converting from polar (angle319
and range) to cartesian (x, y) coordinates and resampling into 2D grid cells. For each 2D grid cell, class320
probabilities of all detections lying inside are averaged. This results in a 2D probability grid P ∗radar. Finally,321
the log odds ratio for each grid cell m in the radar OGM can be expressed as:322

logOdds (Pradar (m)) = log (P ∗radar (m))− log (1− P ∗radar (m)) (8)

Figure 11 shows an example of confirmed (green) and unconfirmed (red) radar tracks overlaid on the323
corresponding point cloud, as well as the resulting radar OGM.324

3.4 Property Decoding along Trajectories325

In preparation326

4 EVALUATION

4.1 Data Set327

The publicly available FieldSAFE dataset (Kragh et al., 2017) for multi-modal obstacle detection in328
agricultural fields is used for the evaluation.329

4.2 Static Scenario330

To quantify the detection of static obstacles and to compare it against the ground truth (GT) data from331
subsection 4.1, the mapserver maps all sensor information as ISMs at their corresponding global position.332
Afterwards, the resulting maps are stitched together as shown in Figure 12.333

Two different evaluations have been performed: evaluation A for detecting occupied areas with respect to334
traverability and evaluation B for detecting process-relevant classes exclusively.335

For evaluation A, GT labels were grouped into three different properties (occupied, occupied, and336
unknown) according to their traversability. The labels Vegetation, Mannequin, Barrel, GPS Marker, and337
Other were combined to the occupied property. The labels Water and Building were combined to the338
unknown property, as these categories where not visible during the used data sequence. All remaining339
classes were combined to the occupied property.340
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Figure 12. Evaluation pipeline from static recording to evaluation with stitching

For evaluation B, GT labels were grouped into four different process-relevant classes (Vulnerable341
obstacles, Processable, Traversable, and Non-traversable). The Vulnerable obstacles class included GT342
label Mannequin and covers regions with which a collision needs to be avoided under any circumstance.343
The Processable class included GT label grass and represents the goods. The Traversable class included344
GT labels Grass, Road, and Ground and represents areas that can be traversed by the vehicle. Finally, the345
Non-traversable class included GT label Vegetation and represents areas that must be avoided to not harm346
the vehicle. For evaluating the process-relevant detection, each of the four classes was considered in its347
own property map. Included GT classes were marked as occupied, whereas all other classes were treated as348
unknown.349

The resulting tri-state maps from GT data and mapping were compared tile-wise against each other, such350
that for the whole recorded map the true-positives (TP), false-positives (FP), and false-negatives (FN) could351
be calculated:352

• TP =
∑

m∈tiles mGT = occupied ∧mMapped = occupied353

• FP =
∑

m∈tiles mGT = occupied ∧mMapped = occupied354

• FN =
∑

m∈tiles mGT = occupied ∧mMapped = occupied355

The Precision, Recall, F1 score, and entropy H were calculated as follows:

Precision =
TP

FP + TP
, Recall =

TP
FN + TP

, F1 = 2
Recall× Precision
Recall + Precision

, (9)

H(P (M)) = −
∑

c∈M
P (c) logP (c) + (1− P (c) log(1− P (c)). (10)

Table 2 show the results of evaluation A, i.e. detecting occupied areas with respect to traversability. The356
first column shows individual detection results for each of the algorithms. These are grouped by object357
categories such that different algorithms from different sensors that detect similar classes are grouped358
together. In the second column, algorithms from each group of categories are fused with competitive,359
Bayesian fusion. For classifiers detecting the same object classes, competitive fusion increases the precision360
while maintaining information gain (entropy). In the third column, detections from all sensors (and361
algorithms) are fused with complementary, max-pooling fusion. For classifier detecting different object362
classes, complementary fusion increases recall while maintaining precision. In practice, this results in a363
more complete detection of the environment.364

Table 3 shows the results of evaluation B, i.e. detecting process-relevant classes exclusively. Here, both365
competitive, Bayesian fusion and complementary, max-pooling fusion were applied for all fusion scenarios.366
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Figure 13. Examples for different mapping results in the different cases

Table 2. Evaluation A. Traversability assessment of static obstacles for single classifiers, classifier
combinations, and sensor combinations.

Single evaluation Bayesion fusion among classifiers Max-pooling among classifiers
Classifier F1 Prec. Rec. Ent. F1 Prec. Rec. Ent. F1 Prec. Rec. Ent.
Cam-FCN-human 3.8 25.3 2.1 75.6

13.0 67.38 7.2 89.2

88.8 88.3 89.4 92.5

Cam-ped-human 0.7 3.7 0.4 83.2
Cam-yolo-human 1.2 6.8 0.7 75.5
RADAR-tracking 2.6 3.5 2.1 15.9
thermal-detection 7.3 16.6 4.7 88.6
LiDAR-SVM-object 7.8 66.8 4.1 89.7

Cam-FCN-other 4.1 30.8 2.2 76.3

22.3 72.3 13.2 89.5Cam-yolo-other 2.0 3.9 1.3 75.6
Cam-deepanomaly 2.0 3.8 1.4 75.6
RADAR-tracking ·
LiDAR-SVM-object ·

LiDAR-SVM-vegetation 83.5 81.4 85.8 87.9 84.6 88.3 81.6 92.3Cam-FCN-shelterbelt 46.7 32.2 84.4 81.2

4.3 Dynamic Scenario367

4.3.1 Evaluation Implementation368

To quantify the tracking of dynamic obstacles and to compare it against the GT data from subsection 4.1,369
the mapserver is commonly applied, but for available time stamp in the ground truth data, the content is370
extracted. In the ongoing evaluation steps, the content is then processed, such that different fusion and371
clustering parameters are applied which results are compared to the corresponding GT human positions, as372
illustrated in Figure 14.373

4.3.2 Two-Class Prediction Measure Evaluation374

To quantify the detection rate and quality, first the different mapserver layer are fused. The resulting375
tri-state (s.t. occupied, non-occupied, unknown) likelihood map is first processed, such that the occupied376
classified cells are clustered via 8-connected clustering. The resulting clusters which are under a specific377
minimum size are sorted out to prune noisy readings. At last, the GT positions were applied for every time378
stamp t as follows to calculate the true-positives (TP), false-positives (FP), and false-negatives (FN):379

• TPt = TPt + 1 if a GT position is inside any cluster380

• FPt = FPt + 1 if a cluster does not contain any GT position381

• FNt = FNt + 1 if a GT position is inside the detection range, but not in any cluster382
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Table 3. Evaluation B. Process-relevant object detection for single classifiers, classifier combinations, and
sensor combinations.

Single evaluation Fusion among classifiers Fusion among sensors
Classifier F1 Prec. Rec. Fusion F1 Prec. Rec. Fusion F1 Prec. Rec.

Vulnerable Obstacles (Manuequin)
Cam-ped-human 1.3 0.7 25.9 max.

bay.
3.2

12.6
1.6
7.1

73.4
57.4Cam-FCN-human 3.4 1.7 73.6

Cam-yolo-human 11.7 6.9 36.1

Processable (Grass)
Cam-FCN-grass 85.2 94.2 77.8

Traversable (Grass & Road & Ground)
Cam-FCN-grass 83.4 96.3 73.6 max. 84.6 96.0 75.6 max.

bay.
90.1
87.7

89.2
90.8

91.0
84.8Cam-FCN-ground 24.0 96.8 13.7 bay. 82.0 97.2 71.0

LiDAR-SVM-ground 89.7 89.4 90.1
Non-Traversable (Vegetation)

LiDAR-SVM-vegetation 83.6 81.4 86.0 max. 51.0 35.2 92.5
Cam-FCN-shelterbelt 46.6 32.2 84.7 bay. 53.1 37.5 91.0

Figure 14. Evaluation pipeline which gets the drone video and recorded data as input to process the results.

True-negatives (TN) cannot be sufficiently measured while these can only alter between 0 and 1 for every383
step. This comes from the fact that the fused area is consistently detected like shown in Figure 15. Thus,384
only the two states “no GT position is inside the non-occupied area” or “any GT position is inside the385
non-occupied area” can be evaluated. Therefore, the F1 score calculated as a quantitative measure as386
follows:387

Recall =
∑

t TPt∑
t FNt + TPt

, Precision =

∑
t TPt∑

t FPt + TPt
, F1 = 2

Recall Precision
Recall + Precision

(11)
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Figure 15. Evaluation example for true-positive (TP), false-positive (FP), and false-negative (FN)
acquisition. True-negative (TN) cannot be measured sufficiently.

4.3.3 Results388

For comparison results the best sensor/classifier/parameter setup is evaluated in a greedy fashion.389
Parameters to probe are:390

• Sensors/classifiers combinations391

• Fusion techniques among classifiers392

• Forgetting rate and amplitude393

• Minimum cluster size threshold (suppressing noise)394

• Dilating factors (to see if at least a person was in the range of a detection)395

The different sensor setups are listed in Table 4 from which every unique setup was chosen as initial396
evaluation. Further, to have a quite independent evaluation of the mapping capabilities, a high forgetting397
rate (6) and low forgetting value (0.2) was chosen, to evaluate the F-Score over minimal valid cluster sizes398
(cf. Figure 16). A minimal cluster size needs to be evaluated so that on one hand noisy sensor readings are399
filtered out but on the other hand, small detection footprints of a person are still valid detections for further400
evaluation. With robotic navigation and planning algorithms in mind, every valid cluster was dilated by the401
vehicles radius to ensure safe environmental traversal. Consequently, dilation leads to better scores, since402
detection and mapping may always be a bit off. Therefore, it can be assumed that a false-negative detection403
is at least in the range of a false-positive detection. The fact that the F-Score increases for no dilation, and404
decreases with dilation over the minimal cluster size confirms that statement even more. An already exact405
sensor like the LiDAR is qualitatively independent of dilation. Setup 5 and 6, which are FCN and PED406
performing so bad, that they are excluded from further evaluation to not taint the results407

Table 5 depicts the result of the fused sensor setup at a certain minimal cluster size. It reveals that for setup408
2 (camera-based detection) Bayesian fusion performs best, while on the overall setup, the max pooling409
surpasses. This behavior becomes obvious when looking at the actual modalities of the sensors. While410
using just the camera, competitive fusion in terms of the Bayesian formulation leads to a more precise411
and accurate detection. On the other hand, acquiring information from all different kind of sensors, a412
complementary fusion in terms of the max pooling results in a more complete detection of the environment.413
This can be pointed out by investigating the Precision and Recall of Table 5. For setup 1, almost no414
false-negative (which is a non-detected person in the sensors frustrum) detections were counted, which415
results in nearly perfect Recall, while on the other hand, the Precision is just as good as in setup 1.416
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Figure 16. F-Score over increasing minimum cluster size. Left: No dilation. Right: Dilation by vehicle
radius of 2.5m

.

Evaluating dynamic detection problems is actually not satisfied by occupancy grid mapping techniques.417
This issue is faced with a forgetting technique which is salable in two conditioning ways: First, the418
ForgetValue indicates the steadiness of the fused maps. A value of 1 indicates no forgetting, such that all419
information remains on the map like in the static case and can only be altered by the detections themselves.420
On the other hand, 0 indicates total forgetting, so that the maps are cleared immediately. All values in421
between impact the information accordingly. Second, the ForgetRate indicates how often per second the422
ForgetValue is applied to the maps. Figure 17 shows the impact of different forgetting rates (1 – 6) over an423
increasing forgetting value (0.1 – 0.9). It can be seen that the all scores are drastically influenced by the424
value and rate. On the first sight, the scores develop counter-intuitive, while everything becomes better425
with increasing forgetting (low ForgetValue). But in fact, the fusion becomes agiler due to this, and thus426
new temporary information can be taken into account much better. Further, the figure reveals an increase in427
Precision with increasing ForgetRate. This can be explained by the fact, that less false-positive detections428
occur. The Recall remains almost constant, due to max pooling which results in a very comprehensive429
detection of the surrounding. The ForgetValue limits indicate for all rates a bad progress. For high rates and430
low values, the score becomes even worse because more and more detections are going to be pruned before431
they are evaluated. For high values, the overall setup approaches the static mapping case.432

Table 4. Listing of setups and the detection algorithms they comprise.
Class object heat object objects/human human human anomaly
Algorithm detection dynamic heat SVM fcn8 ped yolo deep anomaly

9 (Radar) 3 (IR) 4 (LiDAR) 5 6 7 8
Setup 2 (Camera)

1
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Table 5. Sensor fusion of setup 1 and 2 for minimal cluster size equals 0.5m
Setup Fusion F (%) Precision (%) Recall (%)

1 Max 70.81 57.23 92.86
Bayes 42.58 39.76 45.83

2 Max 57.32 51.14 65.22
Bayes 61.22 56.96 66.18

Figure 17. F-Score over increasing ForgetValue with different ForgetRate.

4.4 Trajectory Decoding433

In preparation434

5 DISCUSSION

The proposed architecture describes a sensor data processing pipeline from the acquisition to the process435
relevant detection of properties along the path. Since there exists no compatible baseline architecture known436
to the authors, this work describes a novelty in the field of research concerning multi-modal acquisition,437
mapping, and evaluation in agriculture of unstructured environments like grass or corn fields which target438
high yield throughput. However, approaches in structured environments for sweet pepper or cabbage do439
exist but are still not applicable to the marked due to impracticability, high setup up costs, or missing440
infrastructure. Our approach extends agriculture technology without replacing current work habits, but yet441
allows the incorporation of state-of-the-art algorithms for a very differentiated environment detection via442
an efficient mapping approach. Furthermore, it allows the easy changeability and extendability which is443
actually wanted and needed in a daily agriculture scenario.444

In comparison to model-based or parametrized approaches, our non-parametric 2-dimensional occupancy445
grid mapping represents an optimal approach in agriculture scenarios, where mainly the vegetated area446
is of interest. We have applied analytically solutions as well as several heuristics to build the inverse447
sensor models (ISM) which incorporate the sensor information as well as its localization. We mostly have448
respected sensor and localization noise in these models, but taking the whole error chain into account,449
which reaches from detection and localization noise over sensor registration up until to ground-truth errors,450
makes the quantification of error propagation practically unfeasible. However, the extraction of human451
hypotheses based on the fusion of multiple semantical occupancy grid layers reaches an F1 score of over452
70% which comprises the detection as well as the localization of humans. The recall of over 92%, as well453
as the high F1 scores for single classifiers in the dilated case, reveals the actual classifiers capabilities, so454
that either an optimized localization, model-based approach, or tracking could increase our results.455
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The semantic occupancy mapping technique itself has been widely discussed. However, it still demands456
the proper combination of information between different layers. It is worth noticing that the hierarchical457
fusion of first the competitive combination of modalities which are similar to each other, and secondly a458
complementary combination among these is the only reasonable strategy which leads to an increase of the459
F1 score. While with each additive layer this hierarchical combination needs to be redefined and therefore,460
a trained combination via, for instance boosting, could lead to adaptive and better results. Furthermore,461
our mapping technique is very prone to miss-classification, which was for example caused by sun blinded462
cameras, and systematic errors. To address the second case, we have for instance applied blind spots463
at the location of the tractor so that the mapping of self-classification, heavily caused by the RADAR,464
could be overcome. However, with our proposed architecture pipeline and information processing we465
have shown that with each combination of classifiers, an overall increase of the F1 score can be reached466
With up to 88.8% in a 10 cm cell-wise, globally mapped evaluation for obstacle scenarios, as well as467
comparable results for semantical classes which are meaningful in for the grass mowing process, our468
approach represents a state-of-the-art solution for environment classification in agriculture scenarios.469

6 CONCLUSION AND FUTURE WORK

In this work, we have presented an information processing architecture for global mapping and process470
evaluation in an agricultural grass mowing scenario. The introduced architecture consists of four relevant471
processing steps: First, the sensor platform which comprises all applied sensors for localization and472
environment data acquisition, such as a stereo vision camera, a RADAR, a LIDAR, and a thermal camera.473
Second, the inverse sensor models (ISMs) that describe the sensor’ data processing for detecting and474
localizing of process relevant properties and objects in the environment, like “Grass”, “Vegetation”, and475
“Humans”. The ISMs are 2D grid-based, parametric free representations of the detections’ outputs, which476
were referenced and fused, based on the occupancy grid mapping algorithm into a semantical occupancy477
grid map (SOGM) stack, in the third step. In the fourth step, we applied a Hidden Markov Model based478
approach to first train and then quantify the environment along the vehicle’s trajectory to reveal process479
relevant information out of the SOGMs.480

To evaluate the capabilities of the mapping approach, we have compared the mapping and fusion of ISMs481
in a static and dynamic scenario against the FieldSAFE dataset. For the fusion among SOGMs in the static482
case, we have achieved improving results in detection and localization of environmental properties through483
a first stage of competitive fusion among similar modalities, and a second stage of complementary fusion484
among different ones. For detecting humans in the dynamic evaluation, we only have taken classifiers485
into account that were able to detect corresponding modalities which were fused accordingly. Further,486
we have improved the SOGMs with a forgetting capability to adapt the mapping approach to a dynamic487
environment on which we have applied a grid cell clustering to get consistent human hypotheses. All steps488
were evaluated and improved to get a sufficient score where again, a combination of multiple sensors leads489
to an overall improvement in detection.490

In our future work, we want to incorporate geodata acquired by satellites, drones, or planes from which491
we directly derive process relevant information into the detection pipeline. This approach will overcome492
issues like complex sensor registration, weather conditions, or false detection for all static properties and493
objects in the environment and will, therefore improve and harden our setup.494
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Abstract: In this paper, an algorithm for obstacle detection in agricultural fields is presented.
The algorithm is based on an existing deep convolutional neural net, which is fine-tuned for detection
of a specific obstacle. In ISO/DIS 18497, which is an emerging standard for safety of highly automated
machinery in agriculture, a barrel-shaped obstacle is defined as the obstacle which should be robustly
detected to comply with the standard. We show that our fine-tuned deep convolutional net is capable
of detecting this obstacle with a precision of 99.9% in row crops and 90.8% in grass mowing, while
simultaneously not detecting people and other very distinct obstacles in the image frame. As such,
this short note argues that the obstacle defined in the emerging standard is not capable of ensuring
safe operations when imaging sensors are part of the safety system.

Keywords: deep learning; obstacle detection; autonomous; ISO

1. Introduction

In order for an autonomous vehicle to operate safely and be accepted for unsupervised operation,
it must perform automatic real-time risk detection and avoidance in the field with high reliability [1].
This property is currently being described in an ISO/DIS standard [2], which contains a short
description of how to meet requirements for obstacle detection performance. The requirements
for tests and the test object are described in Section 5 in the standard. The standard uses a standardized
object, shown in Figure 1 which is meant to mimic a human seated (torso and head). This standardized
object makes sense for non-imaging sensors such as ultrasonic sensors, LiDARs or Time-of-Flight
cameras, which measures the geometrical properties of the objects or distance to the objects. However,
for an imaging sensor such as an RGB camera, the definition of this standardized object does not
guarantee safety. In this short note, we will present how deep learning methods can be used to design
an algorithm that robustly detects the standardized object in various situations, including high levels
of occlusion. Based on this, the algorithm is able to comply with the standard, but at the same time, it
is not detecting people and animals, as they are not part of the trained model.

Deep convolutional neural networks have demonstrated outstanding performance in various
vision tasks such as image classification [3], object classification [4,5], and object detection [4–6]. LeCun
et al. formalized the idea of the deep convolutional architecture [7], and Krizhevsky et al. introduced a
paradigm shift in image classification with the AlexNet [3]. In recent years the AlexNet has been used
in various deep learning related publications.

J. Imaging 2016, 2, 6; doi:10.3390/jimaging2010006 www.mdpi.com/journal/jimaging
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Figure 1. Standardized obstacle.

2. Materials and Methods

In this section, we present the data used for this paper, together with a short description of how
the deep learning algorithm was trained and implemented.

2.1. Data Collection

The results in this paper are based on recordings performed in both row-crop fields and grass
fields. The recordings were part of a research project aimed at improving safety for semi-autonomous
and autonomous agricultural machines [1]. The recordings contain various kinds of obstacles, such as
people, animals, well covers and the ISO standardized obstacle. All obstacles are stationary and the
data is recorded while driving towards and past them. The sensor kit (seen in Figure 2a) used for the
experiments includes a number of imaging devices: a thermal camera, a 3D LiDAR, an HD-webcam
and a stereo camera. In this paper, we only focus on the RGB-images. Images from the experiments
and recordings are seen in Figure 2.

(a) (b) (c)

Figure 2. Images from experiments and recordings. (a) The sensor kit mounted on a mower;
(b) An example image from the recordings in grass; (c) An example image from the recordings
in row crops.

2.1.1. Training Data

An iPhone 6 was used to record five short videos of the ISO standardized obstacle. The recordings
include various rotations, scales, and intensity of the object. A total of 437 frames from the videos were
extracted and bounding boxes of the object were created. Example frames from the videos can be seen
in Figure 3.
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Figure 3. Examples of training data.

2.2. Training of Deep Convolutional Network

Deep learning is utilized for barrel detection using a sliding window approach similar to [6].
We start by fine-tuning AlexNet (Available at the Caffe model zoo [8]), which is pre-trained on data
from the image-net competition [9] for ISO standardized obstacle detection. By fine-tuning the neural
network to images of the ISO obstacle, which has a specific shape, texture and color, the algorithm
will be very good at detecting the occurance of this specific object in the image. At the same time, the
algorithm will also be very good at rejecting other objects in the image (animals, people, etc.), thereby
meeting the standard with respect to performance, but not with respect to safety.

To increase the number of training examples (both positive and negative), we randomly sampled
sub-windows of the extracted training images. A sub-window was labeled as positive (containing
an object) if it had over 50% intersection over union with the labeled bounding boxes. To include
additional negatives, non-face sub-windows are collected from Annotated Facial Landmarks in the Wild
database [10] in a similar approach. A total of 1925 positive and 11, 550 negative samples have been
used in this paper. These examples were then resized to 114 × 114 pixels and used to fine-tune
a pre-trained AlexNet model. The original AlexNet model outputs a vector of 1000 units, each
representing the probability of the 1000 different classes. In our case, we only want to detect if an image
patch contains an ISO object or not. Hence, the last layer is changed to output a two-dimensional vector.
For fine-tuning, we used 14K iterations and batch size of 100 images, where each batch contained 67
positive and 33 negative examples. During fine-tuning, the learning rate for the convolutional layers
was 10 times smaller than the learning rate of the fully connected layers.

After fine-tuning, the fully-connected layers of the AlexNet model can be converted into
convolutional layers by reshaping layer parameters [11]. This makes it possible to efficiently run
the network on images of any size and obtain a heatmap of the ISO obstacle classifier. Each pixel in a
heatmap shows the network response, which is the likelihood of having an ISO obstacle, corresponding
to the 114 pixel ×114 pixel region in the original image. In order to detect ISO obstacles of different
sizes, the input images can be scaled up or down. The chosen training image resolution is half the
resolution used in the original AlexNet. Reducing the resolution of the training images allows us to
reduce the input image by half, thus reducing processing time, while maintaining the resolution of the
resulting heatmaps. An example of a resulting heatmap is illustrated in Figure 4.

(a)
0

0.2

0.4

0.6

0.8

1

(b)

Figure 4. Illustration of ISO obstacle and resulting heatmap. (a) RGB image from the row crop field;
(b) Resulting heatmap.
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The model was trained using the Caffe framework [12] using a single GPU (4 GB Quadro K2100M).
The training time was approximately 1–2 h.

2.3. Detection of ISO Obstacle using Deep Convolutional Network

When the deep convolutional network has been trained, it can be used to detect the ISO obstacle
in color images. In order to detect the obstacle at multiple distances, the input image needs to be scaled
accordingly. In this paper, we use 13 scales, which are all processed by the same network structure.
We use 13 scales to be able to detect the barrel when it is far away (57 pixel × 57 pixel in the original
image) and up close (908 pixel × 908 pixel). As described in the previous section, the output is a
heatmap, where the intensity reflects the likelihood of an ISO obstacle.

Based on the heatmap, one can detect the obstacle and draw a bounding box. Each pixel in the
heatmap corresponds to a 114 pixel × 114 pixel sub-window in the input image. To remove redundant
overlapping detection boxes, we use non-maximum suppression [6] with 50% overlap threshold.

3. Results

The results are based on data collected in two different cases, at three different dates. The data has
been collected at different times during the days to ensure different lighting conditions. In both cases,
we use the model trained on the data presented in Section 2.1.1. Despite this, the results in this paper
are of a preliminary nature, as various weather conditions and scenarios are not included in the data.

3.1. Row Crops

Based on the presented algorithm, a total of 7 recordings have been evaluated with respect to
detection of the ISO obstacle in row crops. The recordings also contain other kinds of obstacles such as
people and animals. The recordings contain a total of 14, 153 frames with 20, 414 annotated obstacles
(8126 of those are the ISO obstacle).

In the ISO standard, the obstacles needs to be detected within a defined safety distance. The safety
distance is a product of the expected working speed and machine type. Hence, there is no fixed value
for this. In Figure 5, a histogram of the achieved detection distances is shown. It is seen that the
algorithm is able to detect the obstacle both at close range (3–6 m) and also at far range (over 15 m).
The ISO obstacle is present in front of the machine a total of 14 times and the algorithm is able to detect
the obstacle everytime. The detection distance, which is the distance of the first positive detection, for
these 14 times, ranges from 10 m to 20 m, with an average of 14.56 m.

Evaluating all frames, at frame level with all annotated objects, we achieve TP (true positive) = 2851,
FP (false positive) = 1, TN (true negative) = 7105 and FN (false negative) = 4919. The high number of
false negatives is a result of annotations, where the ISO obstacle is located more than 20 m away, which
is more than the achieved detection range. Based on this, we achieve a hit rate of 36.7% Equation (1),
which is the ratio between positive detections and all annotations of the ISO obstacle, and a precision of
99.9% Equation (2) (As there are less than 10, 000 datapoints, we are not able to present the last decimal
as a result). In the standard, it is stated that the system must achieve a success rate of 99.99%, however,
it is unclear how this should be tested. As stated above, the algorithm is able to detect the ISO obstacle
when the ISO obstacle is within 10 m of the machine at a precision of almost 100%.

hit rate =
TP

TP + FN
=

2851
2851 + 4919

= 0.3669 (1)

precision =
TP

TP + FP
=

2851
2851 + 1

= 0.9996 (2)
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Figure 5. Histogram of detection distances.

In Figure 6, the achieved hit rate for different distance ranges is shown. It is seen that the algorithm
is not able to detect the obstacle in all frames (the hit rate is below 1). However, with a precision close
to 100%, a single detection is reliable enough to be considered a detection of the ISO obstacle present
in the recordings. Hence, the success rate is 99.9%, estimated at frame level, within an average safety
distance of 14.56 m.
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Figure 6. Hit rate, evaluated at frame level, for different distance ranges (e.g. 0.97 is the mean hit rate
for all frames in range 4–7 m). Red: hit rate for the 7 recordings, and blue: average hit rate.

3.2. Grass Mowing

We also evaluated the algorithm in a much more difficult case; grass mowing. In grass mowing,
the obstacles are often highly occluded (a scenario that is not described in detail in the standard).
The recording contains the ISO obstacle and people. The recordings contain a total of 19, 390 frames
with 936 annotated ISO obstacles.

As with the row crops case, we evaluate the achieved detection distance. In the recording, the
ISO obstacle is detected when the ISO obstacle is within approximately 6 m of the machine. The ISO
obstacle is present in front of the machine a total of 8 times and the algorithm is able to detect the
obstacle everytime.

Evaluating all frames at frame level, we achieve TP = 307, FP = 31, TN = 18,337 and FN = 787.
The high number of false negatives is a result of annotations, where the ISO obstacle is located more
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than 6 m away, which is more than the achieved detection range. Based on this, we achieve a hit rate
of 28.1% Equation (3)

hit rate =
TP

TP + FN
=

307
307 + 787

= 0.281 (3)

precision =
TP

TP + FP
=

307
307 + 31

= 0.908 (4)

and a precision of 90.8% Equation (4). Again, the ISO obstacle is successfully detected everytime we
are driving towards it, however, the achieved precision is lower than 99.99% which is stated in the
standard. As seen in Figure 7, the ISO obstacle is highly occluded. In the standard, it is noted that
the obstacle must appear unobscured to ensure high levels of system confidence and if the obstacle
is obscured, the manufacturer must understand how this affects performance. In the grass case, we
show how the system is affected by this. The precision drops from 99.9% to 90.8% and the achieved
detection distance drops from an average of 14.56 m to 6 m. The lower precision is due to a higher
number of false positives. Most of these false positives are the tractor in the image. The tractor will
always be present in the same position in the image and further developments could remove this in
post-processing or by including tractor images as negatives in the training data.

Figure 7. Detections in grass mowing case. Notice that people are not detected.

4. Discussion

The results show that we are able to robustly detect the presence of the ISO obstacle in various
conditions including different lighting and heavy occlusion. The results also show that the algorithm
is not able to detect the presence of the other obstacles within the image frame—even people. This is
not a surprise, as the model has been trained on the ISO obstacle and not on other types of obstacles.

We are using a large deep learning model to detect a simple object and it might seem like we
are overdoing it. However, by using deep learning and pre-trained networks, we have been able to
design a robust classifier for detecting the ISO obstacle in various scenarios, using only a few minutes
of training video. This shows the power of these models and how they can be exploited.

In this paper, we have implemented the algorithm using Caffe and the corresponding MATLAB
interface, which means that it does not run in real-time. However, CNN implementations ready for
real-time applications exist in literature [13]. Furthermore, deep learning algorithms are also being
utilized in detection systems for the car industry, where deep learning models are able to classify
between a number of different obstacles. This is powered by high-end embedded boards from NVIDIA,
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which has recently launched a 300 USD board [14], enabling real-time deep neural nets on UAVs and
UGVs. These observations make it fair to assume that agricultural machines could also benefit from
that computing power.

The ISO standard states that the system must have a success rate of 99.99% in various weather
conditions, however, it is unclear how this success rate should be measured. We are not able to detect
the ISO obstacle in all frames, however, we achieve a precision of 99.9%, and are able to detect the
ISO obstacle at an average distance of 14.56 m in row crops. In the grass mowing case, the obstacle
was highly occluded which affected the achieved detection distance. Furthermore, the presence of the
tractor within the image frame resulted in more false positives. These should be removed to ensure
higher precision. We have not been able to test the performance in various weather conditions, hence,
the results obtained in this paper is of a preliminary nature.

The most important result in this paper is that we are able to show that an imaging system
can be designed to comply with the ISO standard and completely miss important obstacles such as
people—both kids and adults. We argue that the standardized obstacle presented in the standard is not
fully adequate to ensure safe operations with highly autonomous machines in agriculture. The design
of the obstacle is based on a human head and torso (human sitting down), but we show that we can
detect this type of obstacle and at the same time completely miss the people in front of the machines.
As the ISO standard aims to represent a human sitting down, we suggest that the standardized obstacle
should resemble a more life-like person, if a standardized object is required. In our experiments, we
have used mannequins for this task. It is important that the life-like obstacles have the same properties
as the current ISO obstacles with respect to color, material, and temperature (hot water). The life-like
obstacle could be used to test different possible postures, such as standing, lying and sitting. However,
other kinds of obstacles could also be present in the fields. Including other types of obstacles, such
as animals, in the requirements, could potentially increase safety overall. However, even doing this,
there is no guarantee that the methods will be able to detect real obstacles in the fields, as they might
not be perfectly described by the trained algorithm. Deep learning methods have achieved very good
performance in very difficult image and object recognition tasks. This is accomplished through access
to a vast amount of image training data, where objects like people, animals and cars are depicted in
thousands of different postures, sizes, colors and situations. The deep learning framework is able
to encapsulate this great amount of variability and thereby produce beyond-human performance in
object recognition tasks. This is being exploited in the work towards autonomous cars and could also
be done in agriculture.

5. Conclusions

In an emerging standard for safety of highly automated machinery in agriculture, a barrel-shaped
obstacle is defined as the obstacle which should be robustly detected to comply with the standard.
In this paper, we show that by using deep learning techniques, we are able to achieve a high level
of precision in two different cases in agricultural operations, with one of the cases concerning highly
occluded obstacles. The algorithm detects the ISO specified obstacle in every test run, but it completely
misses important obstacles such as people.

Therefore, we argue that the standardized obstacle presented in the standard is not fully adequate
to ensure safe operations with highly autonomous machines in agriculture and further work should be
conducted to describe an adequate procedure for testing the obstacle detection performance of highly
autonomous machines in agriculture.

Acknowledgments: This research is sponsored by the Innovation Fund Denmark as part of the project "SAFE -
Safer Autonomous Farming Equipment" (Project No. 16-2014-0) and "Multi-sensor system for ensuring ethical and
efficient crop production" (Project No. 155-2013-6). We would also like to thank Ole Green from Agro Intelligence
ApS for his contributions to the projects.



J. Imaging 2016, 2, 6 8 of 8

Author Contributions: Kim Arild Steen and Peter Christiansen contributed to the data aquisition, algorithm
development, algorithm testing and writing of the manuscript. Henrik Karstoft has contributed with internal
review of the manuscript, and Rasmus Nyholm Jørgensen has contributed with formalizing the hypothesis of this
contribution, field experiment planning, algorithm testing and internal review of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Christiansen, P.; Hansen, M.; Steen, K.; Karstoft, H.; Jørgensen, R. Advanced sensor platform for human
detection and protection in autonomous farming. In Precision Agriculture’15; Wageningen Academic
Publishers: Wageningen, The Netherlands, 2015; pp. 1330–1334.

2. ISO/DIS 18497. Available online: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.
htm?csnumber=62659 (accessed on 17 December 2015).

3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.

4. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich,
A. Going deeper with convolutions. Available online: http://arxiv.org/pdf/1409.4842v1.pdf (accessed on
18 December 2015).

5. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition.
Available online: http://arxiv.org/pdf/1409.1556v6.pdf (accessed on 18 December 2015).

6. Farfade, S.S.; Saberian, M.; Li, L.J. Multi-view Face Detection Using Deep Convolutional Neural Networks.
Available online: http://arxiv.org/pdf/1502.02766v3.pdf (accessed on 18 December 2015).

7. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324.

8. AlexNet. Available online: http://caffe.berkeleyvision. org/model_zoo.html (accessed on 10 October 2015).
9. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;

Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2014, 115, 1–42.
10. Koestinger, M.; Wohlhart, P.; Roth, P.M.; Bischof, H. Annotated facial landmarks in the wild: A large-scale,

real-world database for facial landmark localization. In Proceedings of the First IEEE International Workshop
on Benchmarking Facial Image Analysis Technologies, Barcelona, Spain, 6–13 Novenber 2011.

11. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. Available online:
http://arxiv.org/pdf/1411.4038v2.pdf (accessed on 18 December 2015).

12. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

13. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
Available online: http://arxiv.org/pdf/1506.02640v4.pdf (accessed on 18 December 2015).

14. Nvidia Jetson TX1. Available online: http://www.nvidia.com/object/jetson-tx1-dev-kit.html (accessed on
1 December 2015).

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).



Paper 6

(Not open-access) Platform for evaluating sensors and human detection in autonomous
mowing operations
Peter Christiansen, Mikkel Kragh, Kim A. Steen, Henrik Karstoft, Rasmus N. Jørgensen

Peer reviewed

Paper published in Precision Agriculture, June 2017

172



Platform for evaluating sensors and human detection
in autonomous mowing operations

P. Christiansen1 • M. Kragh1 • K. A. Steen1 •

H. Karstoft1 • R. N. Jørgensen1

Published online: 13 January 2017
� Springer Science+Business Media New York 2017

Abstract The concept of autonomous farming concerns automatic agricultural machines

operating safely and efficiently without human intervention. In order to ensure safe

autonomous operation, real-time risk detection and avoidance must be undertaken. This

paper presents a flexible vehicle-mounted sensor system for recording positional and

imaging data with a total of six sensors, and a full procedure for calibrating and registering

all sensors. Authentic data were recorded for a case study on grass-harvesting and human

safety. The paper incorporates parts of ISO 18497 (an emerging standard for safety of

highly automated machinery in agriculture) related to human detection and safety. The

case study investigates four different sensing technologies and is intended as a dataset to

validate human safety or a human detection system in grass-harvesting. The study presents

common algorithms that are able to detect humans, but struggle to handle lying or occluded

humans in high grass.

Keywords Safe farming � Sensor platform � Object detection � Computer vision � ISO
18497 � Autonomous farming

Introduction

Current technology is capable of automatically navigating and operating agricultural

machinery, such as tractors and harvesters, efficiently and more precisely compared to

manual operation. However, a crucial deficiency in this technology concerns the safety

aspects. In order for an autonomous vehicle to operate safely and be certified for
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unsupervised operation, it must perform automatic real-time risk detection and avoidance

of humans in the field with high reliability (ISO 18497 2015).

Robust risk detection imposes a number of challenges for the sensor system. Varying

weather and lighting conditions influence the image quality of sensing technologies in

different ways, and thus no sensor is single-handedly capable of detecting objects reliably

under all conditions. Active sensors such as LiDAR, and passive sensors such as RGB

camera, stereo camera and thermal camera have different strengths and weaknesses con-

cerning weather, lighting, range and resolution, and therefore a variety of these sensors are

needed to cover all scenarios (Rasshofer and Gresser 2005). In addition, attitude estimation

sensors such as accelerometers, gyroscopes and GPS are needed for estimating the vehicle

position, velocity and orientation and for synchronizing and registering subsequent frames

acquired from the imaging sensors.

Today, driver assistance systems are available for a large number of modern passenger

cars, and completely autonomous vehicles operating in urban and sub-urban environments

are emerging for experimental usage (Paden et al. 2016).

In the agricultural sector, a variety of machines have been operating autonomously for a

decade using either precise GPS co-ordinates and/or cameras detecting structures in the

field (CLAAS Steering Systems 2011; Pilarski et al. 2002). Efforts have been made to fully

automate the process in a driverless solution, but safety aspects currently prevent autho-

rization for this. In Freitas et al. (2012), Yang and Noguchi (2012) and Wei et al. (2005),

human detection was performed using only a single sensor (laser scanner or stereo camera).

However, multiple sensor modalities should be investigated to evaluate their ability to

detect humans. For instance, the QUAD-AV project has investigated microwave radar,

stereo vision, LiDAR and thermography for detecting obstacles in an agricultural context

(Rouveure et al. 2012). Within the project, a detailed study of stereo vision has shown

promising results on ground/non-ground classification (Reina and Milella 2012).

In urban environments, autonomous vehicles can exploit obstacles protruding from the

surface. In farming operations, obstacles are commonly placed below or just above an

uneven surface of crops introducing specific challenges for autonomous vehicles in agri-

culture. The likelihood of a human being one of these obstacles is small. However, a child

or a fallen, injured or unconscious human provides a risk as these non-protruding objects

have reduced mobility. To investigate these challenges, data from agricultural fields and

algorithms are needed.

Human safety is addressed in ISO 18497 (an emerging standard for safety of highly

automated machinery in agriculture) by defining a minimum obstacle that must be detected

with an accuracy of 99.99% (ISO 18497 2015). The minimum obstacle is specified as an

olive green barrel shaped object that resembles a small or seated human in green clothing

(in this paper defined as an ISO-barrel).

This paper describes a flexible vehicle-mounted sensor platform targeting agricultural

fields. The sensor platform records imaging data and vehicle position for a moving vehicle

using three passive imaging sensors, one active sensor and two attitude/position estimation

sensors. The sensor platform is designed to record simultaneous data from all sensors, thus

preparing for subsequent offline processing. Offline processing and visualization of sensor

data is presented to investigate the object detection potential for the different sensors. The

current paper is an extended version of Christiansen et al. (2015) providing more authentic

data in grass-harvesting operations and addressing human safety in more detail. An ISO-

barrel was produced under the specification defined in ISO 18497. The ISO-barrel as well

as humans and mannequins were placed in standing and lying positions in front of the setup

to create recordings that could be used in an actual validation of a human detection system
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during grass-harvesting. The extended edition also presents a full procedure for calibrating

and registering all sensors using a single calibration thermal checkerboard.

Materials and methods

Sensors

An overview of the strengths and weaknesses of the selected imaging and active sensors

are presented in Table 1. The qualities are evaluated individually and under various

conditions. A weakness is marked with ‘-’ and a strength is marked with ‘?’.

Sensor modalities refer to the information a sensor measures. In this paper, a sensor

modality is either visual light, depth or heat radiation.

An RGB camera captures the modality of visible light. The sensor is useful for iden-

tifying the perceived objects as it provides visual characteristics such as texture, color and

shape in high resolution at low cost. It is invariant to protrusion, meaning that non-

protruding objects such as small animals, a fallen human or humans/animals in high crops

are still visible. However, visual characteristics are affected by occlusion from crops,

weather conditions (rain, fog and snow) and illumination such as dim light (night) or direct

light (causing shadows). An RGB camera is not able to exploit depth information to

emphasize protruded objects and the lack of depth makes the positioning of objects in 3D

space difficult.

A stereo camera enables 3D imaging data (depth and color information). Depth and

color information are registered and the sensor is thus able to exploit the advantages of

both modalities. Depth information can be used to see protruded objects and visually

camouflaged animals easily while determining the position of an object relative to the

vehicle. In this way, depth-aware algorithms can abstract from the very different visual

characteristics of objects (shape, color and texture) creating simple detection algorithms.

Like the RGB camera, the stereo camera is sensitive to illumination and weather condi-

tions, although the depth information is in some cases still retrievable.

Table 1 Strengths and weaknesses of sensors (Christiansen et al. 2015)

Names RGB RGB stereo Thermal LiDAR

Specification

Range Medium Medium Medium Long

Resolution ? ? - -

Depth information - ? - ?

Heat information - - ? -

Color information ? ? - -

Cost Low Medium Medium High

Robustness

Light changes - - ? ?

Weather changes - - - ?

Camouflaged objects - ? ? ?

Protruding objects - ? - ?

Non-protruding objects ? - ? -
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A thermal camera is an imaging sensor that captures heat radiation represented by

intensities (temperatures) to form a monochromatic image. A thermal camera perceives

objects of distinct temperatures, making it ideal for detecting living objects in temperate

and colder climates, and even in foggy weather (Serrano-Cuerda et al. 2014). A key ability

is that the sensed data are unaffected by non-protruded or visually camouflaged animals

and that the distinctness of living objects becomes more apparent at night. However, these

capabilities are much affected by the ambient temperature as living objects become

indistinct when the temperature difference between the objects and background becomes

small (Serrano-Cuerda et al. 2014). The cost of a well-performing and high resolution

thermal camera is very high, but low cost cameras are emerging. Object recognition

capabilities are low due to a limited resolution and limited visual characteristics.

A LiDAR measures range data to a set of surrounding points and generates a point cloud

where each point is represented by a 3D position and reflection intensity. The LiDAR is a

high cost sensor, but has dropped significantly in price in recent years. Compared to a

stereo camera, the LiDAR provides very exact depth information at greater range and some

models can capture in 360� horizontally. It is invariant to illumination, temperature and

camouflage. The lack of visual and thermal information makes recognition of objects

difficult and non-protruding objects are almost or fully undetectable.

Physical design

The sensor platform consisted of seven sensors and a controller mounted on a common

rack of 2 m by 0.8 m in size. The left side of Fig. 1 shows the rack mounted on a tractor

and the right side shows the physical placement of sensors. A standard A-frame was

mounted at the bottom of the rack to enable easy mounting on tractors. The category 1

A-frame was mounted with dampers for absorbing internal engine vibrations from the

vehicle to reduce the amount of mechanical noise acting on the sensors. The horizontal

profile in the middle was adjustable in height and angle such that the imaging sensors could

be oriented in a downward angle depending on the vehicle height. The LiDAR was placed

above the sensor frame to minimize view obstructions for the sensor. The rack allowed

sensors to be placed roughly 2 m above ground to provide a more downward view into the

crop to better detect hidden obstacles. Placing sensors on top of the tractor would provide a

similar downward view. However, the tall rack and the A-frame allowed the sensors to be

Fig. 1 Left sensor frame including controller. Right sensors on the sensor platform
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easily swapped to another tractor, an all-terrain vehicle or directly on a ground socket

while keeping the downward view under data acquisition.

A Logitech HD Pro C920 from Logitech (Silicon Valley, USA) webcam providing

1 920 9 1 080 pixels at 30 fps was used as the RGB camera. The stereo camera was

composed of two hardware synchronized Flea3/FL3-GE-28S4C-C cameras from Point

Grey (Richmond, Canada) with global shutter and 1 928 9 1 448 pixels at 15 fps. The

thermal camera was a shutterless HawkVision analog thermal camera from Tonbo Imaging

(Bangalore, India) providing 640 9 480 pixels at 25 fps (interlaced). The HDL-32E

LiDAR from Velodyne (Morgan Hill, USA) was a 32-beam laser scanner providing 70 000

points at 10 Hz with 1–100 m range. Figure 1 shows an automotive Delphi ESR 64-target

radar from Delphi (Washington, DC, USA) not addressed in the current paper as it was

intended for detecting pieces of metal and not humans. The GPS was an AG GPS361 real

time kinematic (RTK) GPS from Trimble (Sunnyvale, USA) enhancing the precision of

GPS up to centimeter-level accuracy. The IMU was a VN-100 from Vectornav (Dallas,

USA) providing synchronized three-axis accelerometers, gyros, magnetometers and a

barometric pressure sensor. The data-collecting controller was an Innovation Robotech

Controller 701 from Conpleks (Struer, Denmark). It is an embedded computer with

external interfaces for all sensors that using ROS-middleware (robot operating system) to

easily integrate them into a common framework.

System architecture

Figure 2 further illustrates the connections between the sensors and the controller. In ROS,

each sensor was given its own node (an executable file) that was responsible for publishing

one or more topics. For instance, the IMU had its own node including hardware-specific

drivers, and it published different topics related to the readings of the accelerometer, the

gyroscopes and the magnetometers. For each topic, the node could send messages con-

taining sensor data whenever a new sensor-reading was available. Each node was con-

nected to the ROS Master which handled interactions between nodes and supplied all

messages with exact timestamps. Using the rosbag package, a recording of all desired

topics (and all associated messages) to a single rosbag data-file could be obtained.

A JavaScript browser interface was developed to easily monitor and record specific sen-

sors, and enabled the platform to be controlled through Wi-Fi using a mobile phone, tablet

or computer.

Fig. 2 System overview illustrating bandwidths and interfaces for sensors
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Data

Data were collected on a grass field of roughly 7.5 ha near Lem in Denmark (latitude

56.059679� N, longitude 8.368701� E) in the beginning of June 2015. To get authentic

data, sensors were mounted to a tractor working in a normal grass-harvesting operation. In

operation, obstacles were placed in the trajectory of the tractor to simulate collision haz-

ards. For each obstacle, the tractor approached the object and stopped just before collision.

To enable some form of reproducibility and to ensure safety, standing/lying adult and child

mannequins were used instead of real humans in the field. To incorporate safety standards,

the ISO-barrel was also used. Finally, the mower was turned off and two recordings with

real humans were captured. Obstacles from the data are presented in Fig. 3.

In Fig. 4, obstacle positions and the tractor route (divided into laps) are presented,

where lap 17 and 18 contained real human obstacles.

Fig. 3 Two real humans, three mannequins and the ISO-barrel

Fig. 4 Tractor route (lines), barrel (circles), kid mannequin (diamonds), adult mannequin (squares), well
(stars) and lap starting point (small dots)
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Registration of sensors

Registration or sensor fusion is essential for a multi-sensor system to merge and exploit

information from all sensors. Registration in multiple modalities is non-trivial and can be

handled in different ways (Bahnsen 2013; Zhao and Cheung 2014; Krotosky and Trivedi

2007). In particular, Bahnsen (2013) provided a coherent description of registration

methods and the complications for registering different modalities, when objects are not

positioned at the same distance.

In this work, common camera and sensor view geometry combined with depth infor-

mation from the stereo camera were used to project points between sensor frames (Johnson

and Bajcsy 2008). Such projections require the intrinsic parameters to calibrate cameras

individually and extrinsic parameters—describing the inter-displacement of sensors—to

finalize registration. The inter-displacement between LiDAR and stereo camera was found

by matching the two point clouds using the iterative closest point algorithm (Zhang 1994).

The stereo camera and the webcam was calibrated individually using a normal

checkerboard and MATLABs computer vision: calibration tool (2015). The calibration tool

was able to detect checkerboards, calibrate cameras, map checkerboard to 3D position

automatically and, for the stereo camera, find the inter-displacement between the left and

right camera. For the webcam, the extrinsic parameters was determined by finding the

transformation that matched corresponding 3D checkerboards to, in this setup, the left

stereo camera. However, to calibrate and find inter-displacement between thermal and

RGB cameras using a traditional and automated calibration tool, the checkerboard must be

visible in both modalities. Therefore, a custom-made visual–thermal checkerboard is

proposed.

Visual–thermal registration

A normal checkerboard exposed to sunlight can be used to perform thermal–visual reg-

istration as black absorbs more energy than white areas. However, the quality of the

thermal calibration is dependent on weather conditions, and heat/energy is transferred in

the material between black and white areas making square transitions indistinct.

A registration/calibration board was therefore developed using a circuit board with

copper squares as shown in Fig. 5 (left).

The circuit board was heated by attaching an aluminum plate mounted with impact

resistors on the backside of the board as in Fig. 5 (right). The 60 resistors delivered 216 W

of heat using a 12 V car battery. Copper has a low emissivity coefficient, which effectively

made the material work as a reflector. Thus, the non-copper squares emitted heat radiation

Fig. 5 Front and back side of registration board
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from the heated circuit board, and the copper areas reflected heat of the surroundings,

giving a distinct transition between copper and non-copper squares.

The thermal checkerboard would, in a normalized thermal image, resemble a traditional

black and white checkerboard as presented in Fig. 6 (right). The thermal camera was then

calibrated using traditional and automated calibration tools.

The thermal checkerboard did not, for RGB images, resemble a traditional black and

white checkerboard as depicted in Fig. 6 (left). Thus, calibrations tools could not be

applied directly. To use RGB images, a MATLAB script was developed to enable a user to

mark an area inside the checkerboard. This area was then cropped and converted to the

LAB color space. Automatically, the A and B channels were modeled into two clusters

using a Gaussian mixture model (McLachlan and Basford 1988). Copper and non-copper

areas were separated into two individual clusters. The posterior probability of each pixel

belonging to a specific cluster generated a gray-scaled image that made the registration

board resemble a traditional black and white checkerboard, see Fig. 6 (mid).

Converting RGB images, enabled all camera sensors to be calibrated and registered

using only the proposed registration board. However, the procedure required the user to

place a rectangular area inside the checkerboard for each image. In Fig. 7, the detected

boards and the inter-displacement of sensors are visualized.

In Fig. 8 (middle left), two humans are annotated in the left stereo camera and projected

to the stereo point cloud in Fig. 8 (top). The distance to objects inside the annotation was

determined using the median distance of pixels inside the bounding box. The bounding box

was then defined as four points in the stereo point cloud that could be projected to other

Fig. 6 The registration board (left) is transformed into a ‘‘classic’’ checkerboard (mid) using a Gaussian
mixture model. Thermal image of the registration board (right)

Fig. 7 Registration board placements (numbered 1–25) and inter-displacement of sensors
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sensor frames as in Fig. 8. To make a more exact registration of sensors, the registration

board should be placed at a broader range of distances from the cameras.

A more quantitative evaluation of the visual–thermal registration is presented in

‘‘Appendix: Thermal–visual registration and evaluation’’ section.

Signal processing

To provide an initial qualitative validation of detection performance of the different sen-

sors in an agricultural environment, preliminary tests using different object detection

algorithms have been carried out on the sensors.

Using only an RGB camera for detecting all possible obstacles in the field is complex

and difficult and requires a very large dataset with many representations of each object.

Constraining detection to only humans provided a more realistic case in this preliminary

study. The RGB camera images were therefore processed using a state-of-the-art pedes-

trian detection algorithm (Dollar et al. 2010).

After stereo camera calibration (Zhang 2000), a point cloud could be generated for each

stereo image pair. For both stereo and LiDAR, the same algorithm was used to better

compare sensors. A ground plane was estimated on the acquired point cloud using the

RANSAC algorithm (Fischler and Bolles 1981). Protruding objects were visualized by

determining the height of points relative to the estimated ground plane.

Fig. 8 Annotations in the left image are projected onto the stereo point cloud (top). These annotations are
then projected to the right and left stereo camera (middle left and right), the webcam (bottom left) and the
thermal camera (bottom right)
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The thermal camera images were processed by thresholding the (temperature-related)

intensities by a constant value above the median intensity of the image (Christiansen et al.

2014). Subsequent connected components analysis was used for extracting only compo-

nents that exceeded a certain area.

Results and discussion

An initial validation of detection algorithms is presented in four scenarios. The first sce-

nario is humans of different sizes, appearances and postures similar to Christiansen et al.

(2015) in low grass. Scenarios 2–4 are, respectively, a barrel, a lying child mannequin and

a sitting human in high-grass taken from the above described data.

Figure 9 depicts the human detection performance evaluated at single, synchronized

frames for the RGB camera, the stereo camera and the LiDAR. At the top left, the RGB

camera is shown with bounding boxes indicating results of the pedestrian detection algo-

rithm. In the top middle, the disparity map of the stereo camera is shown and, at the top right,

a protrusion map indicating objects that protrude from the ground plane is visualized. At the

bottom left, the thermal camera is shown with overlaid thresholded components and, at the

bottom right, the LiDAR data are visualized with a ground plane and protruding points.

Using only single frames, pedestrian detection applied to the RGB camera failed to

detect all humans in the image. Problems concerning occlusion and humans seen from the

side or from behind have been observed. However, utilizing a sequence of frames would

greatly improve detection performance, as the algorithm most often failed for just a single

frame and not for an entire sequence of frames. The stereo camera performed well for

detecting humans that protruded from the ground plane. However, the algorithm assumed a

certain level of protrusion in order to detect an object. The thermal camera detected all

humans when their faces were visible. However, potential problems concern well-insulated

clothes that cover an entire body and warm weather where temperature differences are

much smaller than in the present recording. The LiDAR detected most humans robustly

when they protruded significantly from the ground.

Fig. 9 Human detection. RGB (top left), stereo camera disparity map (top middle), stereo camera
protrusion map (top right), thermal camera (bottom left), LiDAR (bottom right; Christiansen et al. 2015)
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Figure 10 depicts three cropped scenarios in high grass with respectively a barrel, a

lying child mannequin and a sitting human. The pedestrian detector was able to detect the

sitting human as the face and torso were upright and visible. To detect the lying

Fig. 10 The three rows show respectively a barrel, a lying child mannequin and a sitting human. The
columns show respectively pedestrian detections, a disparity map from stereo imaging, an object height map
based on this, the thermal signature, thermal signature after subtracting the median temperature of the
bottom half of the image, and the LiDAR projected onto the left stereo camera, where points protruding from
the surface by more than 0.25 m are visualized
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mannequin, the detector needs to be trained on new data showing humans in similar

scenarios. However, the given detector had limited capacity in terms of detecting objects

with huge inter-class variation. In the high-grass case, there was a limited reliability of the

stereo point cloud which impacted detection performance such that only the sitting human

and not the barrel were visible. Exploiting also visual information from the stereo camera

should be utilized to improve performance. The LiDAR was more reliable and was able to

visualize that both the sitting human and the barrel protruded. The thermal camera

achieved robust and reliable detection performance. In scenarios 2–4, all sensors apart

from the thermal camera had problems with high grass/crop, presenting a specific chal-

lenge that should be addressed in agriculture. The thermal camera will undoubtedly be

significantly worse on a warm and sunny day as experienced by Steen et al. (2012) and

Serrano-Cuerda et al. (2014). A single sensor is therefore insufficient for detecting all

objects reliably, invariant of temperature and lighting changes.

Conclusions

A flexible vehicle-mounted sensor platform was developed for capturing time-stamped

data in the agricultural domain using imaging sensors (RGB, thermal and stereo camera),

an active sensor (LiDAR) and attitude estimation sensors (RTK GPS and IMU). A reg-

istration board was proposed to provide a simple tool for calibrating and registering all

sensors in the setup using a single registration board. Authentic data in an actual high grass

harvesting operation with a specific focus on human detection were recorded, and an initial

evaluation of the potential of different sensor modalities for detecting standing and lying

humans including an ISO-barrel was given. Using a common pedestrian detection algo-

rithm, an RGB camera was able to detect upright humans, but degraded rapidly in per-

formance for more complex scenarios. The depth aware sensors (LiDAR and stereo

camera) were efficient for detecting objects that protruded significantly above the ground.

The LiDAR was invariant towards changing weather and lighting conditions, whereas the

stereo camera had the highest resolution making it useful for classifying objects. The

thermal camera showed great capabilities in the captured dataset as it was able to detect

objects of distinct temperature using a simple procedure that worked well for humans

regardless of posture. However, the detection would be much more complicated in envi-

ronments of higher temperature, where the heat signatures of living objects become

indistinct.

The authenticity of the data enabled an initial validation of a human detection system

using multiple sensors in a high grass harvesting operation. However, the above arguments

and the case study concludes that the use of multiple modalities, more complicated pro-

cedures and a fusion of the different modalities is required to achieve robust human

detection in high grass harvesting.
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Appendix: Thermal–visual registration and evaluation

First a total of 47 thermal and stereo synchronized images were selected from a single

calibration recording. For each image, a rectangle area inside the checkerboard was marked

manually to specify an image cropping, see Fig. 11. For RGB images, the cropped image

was converted to the LAB color space and a Gaussian mixture model separated the pixels

into two clusters (copper and non-copper areas). The posterior probability of belonging to

one of the Gaussian clusters was determined for all pixels in the original image, see

Fig. 12. For thermal images, the cropped image was normalized—transforming pixel

Fig. 11 Image example and a manually marked rectangle

Fig. 12 Posterior probability of belonging to one of the Gaussian clusters for all pixels in the image
example. Checkerboard detection is marked with blue crosses (Color figure online)
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values in the range [0 1] by shifting and scaling. The same normalization was applied to the

whole thermal image, see Fig. 13. The MATLAB calibration toolbox was able to auto-

matically detect checkerboards of the transformed RGB and thermal images. The cali-

bration toolbox was able to detect the checkerboard in 27 and 43 out of the 45 images for

respectively stereo and thermal images. The 27 stereo images were used for calibrating the

intrinsic and extrinsic parameters of the stereo camera. The 43 thermal images were used

for determining the intrinsic parameters of the thermal camera.

In 25 out of 47 synchronized images, the checkerboard was successfully detected by the

MATLAB calibration toolbox for both RGB and thermal images. The toolbox estimated the

3D position of the checkerboard in all 25 images for each camera. The extrinsic parameters

of the thermal camera were determined as the least square rigid transformation that mapped

the estimated checkerboards from the left RGB camera to the thermal camera (in 3D).

The registration was evaluated on the 25 images to provide a quantitative evaluation of

the thermal–visual registration. The camera calibration for the left stereo camera

Fig. 13 Thermal image is normalized relative to the checkerboard. Checkerboard detection is marked with
blue crosses (Color figure online)

Fig. 14 Zoomed images. Blue crosses mark corners detected by the MATLAB calibration toolbox for both
an RGB image (left) and a thermal image (right). The red crosses (left) show how 3D points are projected to
the thermal camera (Color figure online)
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estimated—as already described—the checkerboard positions in 3D. These positions were

then projected to the thermal image using the estimated extrinsic and intrinsic parameters

of the thermal camera, see Fig. 4 (right).

The error was determined as the distance between the detected checkerboard and the

projected 3D positions. Figure 15 shows the mean pixel error for each of the 25 images and

the mean pixel error across all images on 4.66 pixels. The image example used in Figs. 11,

12, 13, and 14 is image 21 with a mean pixel error close to the mean pixel error across all

images.
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Abstract 

In order for autonomous agricultural vehicles to operate cost efficiently and to be able to operate unsupervised, they                                   
must adhere to current EU legislation, and be able to perform automatic real­time path­planning, risk detection and                                 
obstacle avoidance. In this context, sensor technologies must be utilized to perceive surroundings and allow autonomous                               
machines to act accordingly.  

This paper investigates the perception capabilities of a deep learning approach called “fully convolutional neural                             
network for semantic segmentation” (pixel level classification) in agriculture using an rgb camera sensor. Training a                               
network for semantic segmentation requires the comprehensive task of providing whole scene per­pixel labelling on a                               
large data set. To avoid the task of creating per­pixel labelled data we investigate using a network trained on two already                                         
existing databases (ImageNet and Pascal­context) with mostly non­agricultural specific images and classes. A pre­trained                           
network performs pixel wise classification on 59 classes and by remapping the 59 classes to agricultural specific classes                                   
(e.g. sky, field, shelterbelts, animal, human and obstacles), we are able to test the network's ability to generalize to                                     
agriculture in two case studies: grass mowing and row crop operations.  

Based on a small set of 10 per­pixel labelled test images, we show that the network is able to generalize to a grass                                             
mowing use cases with an pixel classification accuracy of 95.25%. In the row crop case, the network is less reliable with                                         
a classification accuracy of 70.54%. By showing detections of state­of­the­art object detection algorithms (a pedestrian                             
detector and a deep learning object detector), a small qualitative comparison between object detection methods and the                                 
semantic segmentation algorithm is made.  

Keywords:​ Deep learning, Autonomous Tractors, Semantic Segmentation, Per­Pixel labelling, Agriculture 
 

1. Introduction 
In order for autonomous agricultural vehicles to operate cost efficiently and to be able to operate unsupervised, they                                   

must adhere to current EU legislation, and be able to perform automatic real­time path­planning, risk detection and                                 
obstacle avoidance. In this context, sensor technologies must be utilized to perceive surroundings and allow autonomous                               
machines to act accordingly.  

In the automotive industry, a range of companies (Google, Ford, Uber, Tesla etc.) have demonstrated autonomous                               
vehicles in both prototype and commercial products. Autonomous vehicles in agriculture uses sensor technologies and                             
algorithms found in the automotive industry. However, certain challenges in perception (and path­planning) is specific to                               
agriculture.  

For perception, Google Car is highly dependent on both a very detailed static 3D map and under operation expensive                                     
laser scanners (Velodyne LiDAR) to get an immediate measurement of its surroundings. A static 3D map is not as                                     
feasible in agriculture as the crop is under constant transformation and laser scanners are currently too expensive for                                   
farmers. Secondly, depth sensor will hardly detect obstacles that are not protruding the crop surface such as kids, lying                                     
humans, hydrants, wells and animals.  

Conventional automotive companies evolve from semi­ to fully­autonomous by adding affordable features and sensor.                           
Relying on detailed 3D maps is problematic as the car must operate on roads without maps and rely on sensors affordable                                         
to consumers and car manufacturers. Mobileye is a leading company in delivering real­time camera­based solution for                               
automotive companies including Audi, Ford and Tesla. However, solutions by Mobileye are not all suited, accessible or                                 
trained for agriculture, and algorithms are mostly unpublished. The unpublished results by Mobileye and the limited                               
access for non­automotive industries, makes the actual accuracy performance of Mobileye solutions unclear to                           
researchers, and also if the perception capabilities are comparable to recent deep learning perception algorithms.  

Deep learning is an emerging field in Artificial Intelligence/Machine Learning that recently moved the boundary of a                                 
computer intelligence and perception. In 2015 deep learning was able to reach human performance in image classification                                 
(He, Zhang, and Sun 2015) and speech recognition ​(Amodei et al. 2015)​. Especially Convolutional Neural Networks                               
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(CNN) ​(LeCun et al. 1998) have recently outperformed traditional image recognition methods used for traffic sign                               
recognition​(Ciresan, Meier, and Schmidhuber 2012)​, face detection ​(Farfade, Saberian, and Li 2015)​, face recognition                           
(Taigman et al. 2014)​, image classification​(Krizhevsky, Sutskever, and Hinton 2012; Simonyan and Zisserman 2014; He,                               
Zhang, and Sun 2015)​, general object detection​(Ren et al. 2015; Redmon et al. 2016; Girshick et al. 2014; He et al. 2014)                                             
and semantic segmentation ​(Long, Shelhamer, and Darrell 8 Mar, 2015; Chen et al. 2015; Torr 2014)​. Fast and high                                     
accuracy CNN­based object detection algorithms have recently been published and open­sourced ​(Ren et al. 2015;                             
Redmon et al. 2016)​. Especially YOLO ​(Redmon et al. 2016) is able to process images at real­time speeds using a                                       
high­end GPU on the 20 object types from Pascal VOC ​(Everingham, Eslami, and Gool 2013)​. A drawback of object                                     
detection algorithms in the context of agriculture, is that not all elements or “stuff” are precisely delimited with a                                     
bounding box such as shelterbelt, ground, crop and water. Secondly, object detection algorithms are challenged in                               
agriculture, where obstacles are likely to be heavily or partly occluded by the crop.  

Semantic segmentation is an image recognition method that classifies each pixel in the image. In​(Long, Shelhamer,                                 
and Darrell 8 Mar, 2015) a CNN is converted and modified to a Fully Convolutional Neural Network for Semantic                                     
Segmentation (FCS). In ​(Chen et al. 2015; Torr 2014) Conditional Random Fields are appended to a modified CNN to                                     
improve accuracy, though with additional computational cost.  

In relation to object detection algorithms, semantic segmentation performs pixel classification and is therefore more                             
suited to detect both obstacles and “stuff” and is presumably less challenged by occlusion.  

A drawback of training a semantic segmentation model sufficiently is the requirement for a lot of data with per­pixel                                     
level annotations. Transferring the algorithm to agriculture is therefore obstructed by the comprehensive task of making                               
per­pixel level annotations on new data.  

This work is a preliminary study demonstrating the perception capabilities of semantic segmentation in agricultural by                               
remapping the 59 predictions from the model in ​(Long, Shelhamer, and Darrell 8 Mar, 2015) to 11 agriculture specific                                     
classes (animal, building, field, ground, obstacle, person, shelterbelt, sky, vehicle, water and unknown). The perception                             
capability is presented by two measures: the classification per­pixel accuracy on 10 test images and a qualitative                                 
comparison (by examples) of semantic segmentation and object detection. 

The purpose of the publication is to emphasize the powerful perception capability of deep learning semantic                               
segmentation. Traditionally, image recognition algorithms fail to generalize on data not similar to the training data. We                                 
show that the comprehensive task of creating training data can in some cases be avoided and that a network trained on                                         
general images (PASCAL­Context) is able to generalize to a different context. 
 

2. Materials and Methods 
In this section the data used for training and testing FCNN is first presented followed by a description of FCN and the                                           

simple remapping approach.  
 
2.1. Data ­ For training 
ImageNet ​(Berg and Deng 2015) is a image recognition benchmark for image classification, object localization and                               

object detection. The ImageNet benchmark have since 2012 pushed the performance of CNNs and provided a common                                 
ground for leading research teams to compete (Google, Microsoft, Baidu). Especially the image classification challenge                             
with an incredible amount of 1.400.000 images with image notation of 1000 different object types.  

PASCAL Visual Object Classes (VOC) ​(Everingham, Eslami, and Gool 2013) is another image recognition                           
benchmark. The benchmark includes a semantic segmentation competition on 20 object classes. In PASCAL­Context                           
(Mottaghi et al. 2014) six in­house annotators have used three months to extend PASCAL VOC with whole scene                                   
annotation on 10,103 images, extending the number of object classes from 20 to 407. Figure 1 shows the difference                                     
between PASCAL VOC and PASCAL­Context. Note especially annotations of “stuff” such as road, grass and trees is                                 
also provided. 
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Figure 1. Shows the much denser pixel­annotations provided in PASCAL­Context. 

 
2.2. Data ­ For testing 
A rolling shutter Logitech C920 webcam with a resolution of 1920x1080 and a framerate of 30Hz have been used to                                       

record image data. The webcam is placed on a sensor platform including other sensors as described in​(Christiansen et al.                                       
2015a; Christiansen et al. 2015b)​. The sensor platform includes a metal frame with a standard A­frame in the bottom. The                                       
A­frame is easily mountable to a tractor and places the camera roughly 2.0m from the ground. 

The grass mowing use case is recorded in a 7.5ha grass field near Lem, Denmark in June 2015 under an actual                                         
mowing operation. Obstacles are placed in the trajectory of the tractor to simulate collision situations​(Christiansen et al.                                   
2015a)​. The row crop operation use case is recorded in mid­September 2015 in a low row crop maize field in Foulum,                                         
Denmark. Unlike the moving use case, objects are placed just outside the tractor trajectory allowing them to remain static.                                     
A total of 10 images ­ 5 from each use case ­ have been selected and roughly annotated.  

 
2.3. Methods 
Semantic segmentation is described in the first section followed by a section describing remapping of model                               

predictions. 
2.3.1.  Fully Convolutional Neural Network for Semantic Segmentation 
A traditional CNN performs image classification, thus it can only take a fixed sized input image and output a single                                       

prediction/label. A CNN trained on e.g. faces can only tell if there is a face or not in the image as shown in Figure 2. A                                                   
CNN can be transformed into a fully convolutional neural network (FCNN) by converting the fully connected layers into                                   
convolutions. A FCNN is able to forward larger images through the network and output a grid of prediction, thus                                     
providing information on both the object type and object location in the image. Converting a CNN to a FCNN for e.g.                                         
face image classification, will provide a coarse heat map as presented in Figure 3, showing the position of a specific sized                                         
face in the image. Training the CNN to recognize other objects will provide multiple heat maps one for each object type. 

 

 

Figure 2. CNN training examples for face image classification. Respectively a negative and positive sample.  
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Figure 3. A fully convolutional neural network provides a grid of predictions or a heat map as output.  

 
The above described principle is used in ​(Long, Shelhamer, and Darrell 8 Mar, 2015) to perform semantic                                 

segmentation with FCNN. The network is based on a very deep CNN ​(Simonyan and Zisserman 2014) (VGG) with                                   
16­layers trained for image classification on ImageNet ​(Berg and Deng 2015)​. The CNN network is transformed into a                                   
FCNN by discarding the classification layer of VGG and converting the fully connected layers to convolutional layers. A                                   
1x1 convolution is appended with a channel for each object type. The specific structure of VGG allows it to provide                                       
classifications for every 32 pixels. By adding a deconvolutional layer, the network will upsample the heatmap to the size                                     
of the original image. The network is now able to perform end­to­end training on semantic segmented images. This is                                     
defined as a FCN­32 network. To get denser spatial predictions, a 1x1 convolution with a channel for each object is                                       
appended to the output of two previous pooling layers with respectively a stride of 16 and 8. The output of earlier pooling                                           
layers will provide weaker predictions, but better spatial precision. By fusing the output layers with respectively a stride                                   
of 32, 16 and 8, the combination of strong predictions and the refined spatial precision, is found to improve the overall                                         
network accuracy. This network is defined as a FCN­8 network. Three FCN­8 models are provided by​(Long, Shelhamer,                                   
and Darrell 8 Mar, 2015) one trained on 21 classes (PASCAL Voc object including a background class) and two models                                       
on PASCAL­Context for both the 33 and 59 most frequent classes. As described in​(Long, Shelhamer, and Darrell 8 Mar,                                       
2015)​, the algorithm is able to roughly process images with 4Hz using a high­end GPU. Using the principles from​(Han,                                       
Mao, and Dally 2015)​, the memory footprint and the processing requirements can be reduced for a CNN without                                   
damaging accuracy, thus making it suitable for real­time applications.  

 
2.3.2.  Prediction mappings 
Preferably a network is retrained only on PASCAL­Context classes relevant to agriculture. Alternatively, all object                             

classes from PASCAL­Context are mapped to a few agriculture super­categories and retrained. E.g. dog, cat, cow and                                 
horse are all mapped to animal, or road, ground, sand, floor is all mapped to ground. However, as a preliminary study we                                           
perform simple mapping of predictions provided by a FCN­8 network to the following 11 agricultural super­categories;                               
animal, building, field, ground, obstacle, person, shelterbelt, sky, vehicle, water, and unknown​. The result of a prediction                                 
and remapping is presented in the Figure 4. 

 
Figure 4. Left: Input image. Right: Result after remapping FCN­8 predictions to agriculture specific classes.  
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3. Results and Discussion 

3.1. Results 
Using the ground truth annotations for the 10 test images, the overall classification accuracy is 82.81%. Evaluating the                                   

the grass and row crop individually shows ­ with a classification accuracy of respectively 95.25% and 70.54% ­ a                                     
significant spread between the two use cases. The spread is also clearly demonstrated in Figure 5­9, where the grass and                                       
the row crop cases are presented in respectively Figure 5­6 and Figure 7­9. To make a qualitative comparison between                                     
semantic segmentation and object detection algorithms the left images in each figure show the input image to the FCN­8                                     
algorithm including detections performed by YOLO ​(Redmon et al. 2016) and a pedestrian detector ​(Nam, Dollár, and                                 
Han 2014)​. Both object detection algorithms are close to real­time performance.  

   
Figure 5. Test image in grass. Semantic segmentation detects field, road, building, shelterbelt, sky, bits of vehicle. 
However, the tractor is classified as both vehicle, obstacle and bits of unknown. A bit of high grass to the right is 

classified as shelterbelt. The vehicle right next to house is mostly detected as an obstacle. YOLO is able to detect both 
tractor and vehicle.  

 
Figure 6. Test image in grass. Semantic segmentation detects field, tractor, sky, shelterbelt and person. However, bits 

of the field are classified as shelterbelt, a section of the distant shelterbelt is classified as sky and the distant human is 
classified as field. YOLO detects only the first person. The pedestrian detector detects the close and distant human, but 

provides also a false positive on the wheel.  

 
Figure 7. Test image in row crop. Semantic segmentation detects ground, shelterbelt, animal, field, building and just a 
bit of person. However, a large section of the field and shelterbelt is classified as sky and the dark area in the top left 

corner is classified as building. The top left corner ­ with very low contrast ­ is presumably classified as building as many 
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images in PASCAL­Context are taken inside houses with low contrast walls. Finally, the pedestrian detector and not 
YOLO detects a human.  

 
Figure 8. Test image in row crop. Large areas of shelterbelt and ground is classified correctly and the green barrels are 
classified as unknown or obstacles. The shelterbelt to the left is ­ as a reasonable guess ­ classified as field. However, 
large areas of ground are classified as obstacle, building and sky. The distant person is only detected by the pedestrian 

detector. 
 

 
Figure 9. Test image in row crop. Large areas of shelterbelt and ground are classified correctly. The shelterbelt to the 

left is ­ as reasonable guess ­ again classified as field. However, large areas of ground are classified as obstacle, water, 
sky and person.  

 
3.1.1. Discussion  
This preliminary study uses a simple remapping to show the application of deep learning semantic segmentation for                                 

autonomous vehicles in agriculture. For an algorithm trained on a completely different data set, a classification accuracy                                 
of 95.25% and the presented image examples, show very convincing perceptive capabilities for a grass mowing use case.                                   
The row crop use case is less reliable with a classification accuracy of 70.54%. However, the inferior performance in row                                       
crops can be explained by the data from PASCAL­Context that do not contain a row crops class. However, we have                                       
showed that deep learning semantic segmentation trained on PASCAL­Context is able to generalize to a grass mowing                                 
use case, thus allowing us to avoid the comprehensive task of making per­pixel labelling. The preliminary study                                 
encourages us to train a new network only on agriculture specific classes from the PASCAL­Context data or alternatively                                   
remap all 407 classes to a few agricultural specific classes prior to training. Finally, whole scene annotations of                                   
agricultural images would provide even better results.  

The image examples show that the object detection algorithms provide fewer misclassifications compared to semantic                             
segmentation. The pedestrian detector is better at detecting people at further distances. However, the YOLO detector is                                 
able to detect multiple object types.  

Semantic segmentation is able to detect animal, human and vehicle obstacles ­ as an object detector. However, the                                   
benefit of semantic segmentation is both its ability to classify elements that are not precisely delimited with a bounding                                     
box and that it provides much denser information of the environment. This information can be used to detect                                   
non­traversable areas such as shelterbelts, water, buildings and even unknown obstacles as the barrel. However, a                               
classification of traversable areas such as road, ground or field is also favorable to autonomous farming vehicles when                                   
performing navigation and path­planning. To deploy semantic segmentation in a real application, the processing                           
requirements must be evaluated. The current algorithm runs with 4 Hz using a high­end GPU. A smaller CNN network                                     
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with lower resolution input images and the principles described in ​(Han, Mao, and Dally 2015)​, is able to improve its                                       
real­time performance.  

Semantic segmentation is as well as most visual camera based solutions not fully reliable and struggles to detect far                                     
away elements. A visual camera is also sensitive to weather conditions (rain, fog and snow) and illumination such as                                     
direct or dim light (night) ​(Christiansen et al. 2015b)​. In the context of agriculture with obstacles below the crop surface,                                       
an advantage for a monocular camera is that objects only needs to be visible and not necessarily protruding. 

An autonomous vehicle in agriculture should ­ as in the automotive industry ­ rely on multiple algorithms and sensor                                     
technologies to get more reliable perception of especially visually hidden or camouflaged obstacles and obstacles at far                                 
ranges ​(Christiansen et al. 2015b)​. However, the low cost of a camera and the power of deep learning perceptive                                     
algorithms makes it consumer affordable for unsupervised autonomous vehicles in agriculture. In ​(Hansen et al. 2016) ­                                 
also presented at the CIGR conference ­ the outcome of this work is fused with other sensor technologies and algorithms                                       
using occupancy grid maps to detect static obstacles in an agricultural grass field.  
 

4. Conclusions 
This preliminary study uses a simple remapping to show the application of deep learning semantic segmentation for                                 

autonomous vehicles in agriculture. For an algorithm trained on a completely different data set, a classification accuracy                                 
of 95.25% and the presented image examples, show very convincing perceptive capabilities for a grass mowing use case.                                   
The row crop use case is less reliable with a classification accuracy of 70.54%. The perception benefits of semantic                                     
segmentation compared to object detection has been described and demonstrated using image examples.  

  

Acknowledgements 
To Timo Korthals from Bielefeld University for providing a segmentation labelling tool. This research is sponsored                               

by the Innovation Fund Denmark as part of the project “SAFE ­ Safer Autonomous Farming Equipment” (project no.                                   
16­2014­0).  

 

References 

Amodei, Dario, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, 
et al. 2015. “Deep Speech 2: End­to­End Speech Recognition in English and Mandarin.” ​arXiv [cs.CL]​. 
arXiv. ​http://arxiv.org/abs/1512.02595​. 

Berg, Alex, and J. Deng. 2015. “Imagenet Large Scale Visual Recognition Challenge 2015.” ​Challenge ​. 
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Large+Scale+Visual+Recognition+Ch
allenge+2010#2​. 

Chen, Liang­Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. 2015. 
“Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs.” ​Iclr​, 1–12. 
http://arxiv.org/abs/1412.7062​. 

Christiansen, P., Mikkel Kragh Hansen, Kim Steen, Henrik Karstoft, and Rasmus Nyholm Jørgensen. 2015a. 
“Platform for Evaluating Sensors and Human Detection in Autonomous Mowing Operations.” ​(Only 
Submitted) Precision Agriculture, Special Issue ECPA​. 

Christiansen, P., M. K. Hansen, K. A. Steen, H. Karstoft, and R. N. Jørgensen. 2015b. “Advanced Sensor 
Platform for Human Detection and Protection in Autonomous Farming.” In ​Precision Agriculture ’15​, 
291–98. doi:​10.3920/978­90­8686­814­8_35​. 

Ciresan, D., U. Meier, and J. Schmidhuber. 2012. “Multi­Column Deep Neural Networks for Image 
Classification.” ​2012 IEEE Conference on Computer Vision and Pattern Recognition​, 3642–49. 
doi:​10.1109/CVPR.2012.6248110​. 

Everingham, Mark, Sma Eslami, and Luc Van Gool. 2013. “The Pascal Visual Object Classes Challenge–a 
Retrospective.” ​Homepages.Inf.Ed.Ac.Uk​. doi:​10.1007/s11263­014­0733­5​. 

Farfade, Sachin Sudhakar, Mohammad Saberian, and Li­Jia Li. 2015. “Multi­View Face Detection Using 
Deep Convolutional Neural Networks.” ​Cornell University Library​. ​http://arxiv.org/abs/1502.02766v2​. 

Girshick, Ross, Jeff Donahue, Trevor Darrell, U. C. Berkeley, and Jitendra Malik. 2014. “Rich Feature 
Hierarchies for Accurate Object Detection and Semantic Segmentation.” ​Cvpr’14​, 2–9. 

∙ 7 ∙  

 



CIGR­AgEng conference  Jun. 26–29, 2016, Aarhus, Denmark 
 

doi:​10.1109/CVPR.2014.81​. 
Hansen, Mikkel Kragh, Peter Christiansen, Timo Korthals, Thorsten Jungeblut, Henrik Karstoft, and Rasmus 

Nyholm Jørgensen. 2016. “Multi­Modal Obstacle Detection and Evaluation of Evidence Grid Mapping in 
Agriculture.” In . Aarhus University. 

Han, Song, Huizi Mao, and William J. Dally. 2015. “Deep Compression: Compressing Deep Neural Networks 
with Pruning, Trained Quantization and Huffman Coding.” 
http://adsabs.harvard.edu/abs/2015arXiv151000149H​. 

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2014. “Spatial Pyramid Pooling in Deep 
Convolutional Networks for Visual Recognition.” ​arXiv Preprint arXiv …​ cs.CV: 1–14. 
doi:​10.1109/TPAMI.2015.2389824​. 

He, Kaiming, Xiangyu Zhang, and Jian Sun. 2015. “Deep Residual Learning for Image Recognition.” ​arXiv 
[cs.CV]​. arXiv. ​http://arxiv.org/abs/1512.03385​. 

Krizhevsky, A., I. Sutskever, and Ge Hinton. 2012. “Imagenet Classification with Deep Convolutional Neural 
Networks.” ​Advances in Neural Information Processing Systems​, 1097–1105. 

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient Based Learning Applied to Document 
Recognition.” ​Proceedings of the IEEE​ 86 (11): 2278–2324. 

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. 8 Mar, 2015. “Fully Convolutional Networks for 
Semantic Segmentation” 

Mottaghi, Roozbeh, Xianjie Chen, Xiaobai Liu, Nam­Gyu Cho, Seong­Whan Lee, Sanja Fidler, Raquel 
Urtasun, and Alan Yuille. 2014. “The Role of Context for Object Detection and Semantic Segmentation 
in the Wild.” In ​2014 IEEE Conference on Computer Vision and Pattern Recognition​, 891–98. IEEE. 
doi:​10.1109/CVPR.2014.119​. 

Nam, Woonhyun, Piotr Dollár, and Joon Hee Han. 2014. “Local Decorrelation For Improved Detection.” 
Advances in Neural Information Processing Systems​, 1–9. 
http://papers.nips.cc/paper/5419­local­decorrelation­for­improved­pedestrian­detection​. 

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. “You Only Look Once: Unified, 
Real­Time Object Detection.” ​http://arxiv.org/abs/1506.02640v3​. 

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. 2015. “Faster R­CNN: Towards Real­Time Object 
Detection with Region Proposal Networks.” ​arXiv [cs.CV]​. arXiv. ​http://arxiv.org/abs/1506.01497​. 

Simonyan, Karen, and Andrew Zisserman. 2014. “Very Deep Convolutional Networks for Large­Scale Image 
Recognition.” ​arXiv [cs.CV]​. arXiv. ​http://arxiv.org/abs/1409.1556​. 

Taigman, Yaniv, Marc Aurelio Ranzato, Tel Aviv, and Menlo Park. 2014. “DeepFace : Closing the Gap to 
Human­Level Performance in Face Verification,” June. 

Torr, Philip H. S. 2014. “Conditional Random Fields as Recurrent Neural Networks.” ​arXiv Preprint​. 
http://arxiv.org/abs/1502.03240v1​. 

 
 

∙ 8 ∙  

 



Paper 8

(Not open-access) Advanced Sensor Platform for Human Detection and Protection in Au-
tonomous Farming

Peer reviewed

Paper presented at the 10th European Conference on Precision Agriculture (ECPA), 2015 July,

Tel Aviv, Israel

198



Advanced sensor platform for human detection and protection in autonomous 

farming 

P. Christiansen
1
, M. Kragh

1,†
, K. A. Steen

1
, H. Karstoft

1
, R. N. Jørgensen

1
 

1
Department of Engineering – Signal Processing, Faculty of Science and Technology, 

Aarhus University, Finlandsgade 22, 8200 Aarhus N, Denmark 
†Corresponding author: mkha@eng.au.dk 

Abstract 

The concept of autonomous farming concerns automatic agricultural machines 

operating safely and efficiently without human intervention. In order to ensure safe 

autonomous operation, real-time risk detection and avoidance must be performed. This 

paper presents a flexible vehicle-mounted sensor platform for recording positional and 

imaging data with a total of seven sensors. Different imaging modalities are chosen for 

robust detection performances in a variety of weather and lighting conditions. Different 

algorithms applied to recordings from a grass-harvesting case study show that it is 

possible to detect humans, whereas small animals located in front of the vehicle 

represent a much greater challenge. 

Keywords: safe farming, sensor platform, object detection, computer vision 

Introduction 

Current technology is capable of automatically navigating and operating agricultural 

machinery, such as tractors and harvesters, efficiently and more precisely compared to 

manual operation. However, a crucial deficiency in this technology concerns the safety 

aspects. In order for an autonomous vehicle to operate safely and be certified for 

unsupervised operation, it must perform automatic real-time risk detection and 

avoidance in the field with high reliability.  

Robust risk detection imposes a number of challenges for the sensor platform. 

Varying weather and lighting conditions influence the image quality of sensor 

modalities in different ways, and thus no sensor is single-handedly capable of detecting 

objects reliably under all conditions. Active sensors such as radar and LiDAR, and 

passive sensors such as RGB camera, stereo camera and thermal camera have different 

strengths and weaknesses concerning weather, lighting, range and resolution, and 

therefore a variety of these sensors are needed to cover all scenarios (Rasshofer & 

Gresser 2005). In addition, pose estimation sensors such as accelerometers, gyroscopes 

and GPS are needed for estimating the vehicle position, velocity and orientation and for 

synchronizing and registering subsequent frames acquired from the imaging sensors.  

Today, driver assistance systems are available for a large number of modern 

passenger cars, and completely autonomous vehicles operating in urban and sub-urban 

environments are emerging for experimental usage (Luettel et al. 2012). In the 

agricultural sector, a variety of machines have been operating autonomously for a 

decade using either precise GPS coordinates and/or cameras detecting structures in the 

field (CLAAS Steering Systems 2011). Efforts are made to fully automate the process 

in a driverless solution, but safety aspects currently prevent authorization for this. For 

instance the QUAD-AV project has investigated microwave radar, stereo vision, 



LiDAR and thermography for detecting obstacles in an agricultural context (Rouveure 

et al. 2012). Within the project, a detailed study of stereo vision has shown promising 

results on ground/non-ground classification (Reina & Milella 2012). 

 

The paper describes a flexible vehicle-mounted sensor platform. The sensor platform 

records imaging data and vehicle position for a moving vehicle using three passive 

imaging sensors, two active sensors and two pose/position estimation sensors. The 

sensor platform is designed to record simultaneous data from all sensors, thus preparing 

for subsequent offline processing. Recordings from a grass-harvesting case study are 

documented. In the study, different objects including humans of different sizes, 

appearances and postures, as well as different animals are placed in front of the setup 

and detected automatically. Based on different object detection algorithms carried out 

on the imaging sensors, an initial evaluation of the different sensors is given. 

Sensors 

An overview of the strengths and weaknesses of the selected imaging and active sensors 

are presented in Table 1. The qualities are evaluated individually and under various 

conditions.  

Table 1. Strengths and weaknesses of sensors. 

 Name RGB Stereo Thermal LiDAR UWB Radar 

S
p

ec
if

ic
a
ti

o
n

 Range medium medium medium long medium 

Resolution + + - - - 

Depth information - + - + + 

Heat information - - + - - 

Color information + + - - - 

Cost low medium medium high medium 

R
o
b

u
st

n
es

s Light changes - - + + + 

Weather changes - - - + + 

Camouflaged objects - + + + + 

Protruding objects - + - + + 

Non-protruding objects + - + - - 

 

An RGB camera captures the modality of visible light. The sensor is useful for 

identifying the perceived objects as it provides visual characteristics such as texture, 

color and shape in high resolution at low cost. It is invariant to protrusion, meaning that 

non-protruding objects such as small animals, a fallen human or humans/animals in high 

crops are still visible. However, visual characteristics are affected by weather conditions 

(rain, fog and snow) and illumination such as dim light (night) or direct light (causing 

shadows). An RGB camera is not able to exploit depth information to emphasize 

protruded objects and the lack of depth makes the positioning of objects in 3D space 

difficult.   

A stereo camera enables 3D imaging data (depth and color information). Depth 

and color information are registered and the sensor is thus able to exploit the advantages 

of both modalities. Depth information can be used to see protruding objects and visually 

camouflaged animals easily while determining the position of an object relative to the 



vehicle. In this way, depth-aware algorithms can abstract from the very different visual 

characteristics of objects (shape, color and texture) creating simple detection algorithms. 

Like the RGB camera, the stereo camera is sensitive to illumination and weather 

conditions, although the depth information is in some cases still retrievable. 

A thermal camera is an imaging sensor that captures heat radiation represented 

by intensities (temperatures) to form a monochromatic image. A thermal camera 

perceives objects of distinct temperatures, making it ideal for detecting living objects in 

temperate and colder climates, and even in foggy weather (Serrano-Cuerda et al. 2014). 

A key ability is that the sensed data are unaffected by non-protruding or visually 

camouflaged animals and that the distinctness of living objects becomes more apparent 

at night. However, these capabilities are much affected by the ambient temperature as 

living objects become indistinct when the temperature difference between the objects 

and the background becomes small (Serrano-Cuerda et al. 2014). The cost of a well-

performing and high resolution thermal camera is very high, but low cost cameras are 

emerging. Object recognition capabilities are low due to a limited resolution and limited 

visual characteristics.  

A LiDAR measures range data to a set of surrounding points and generates a 

point cloud where each point is represented by a 3D position and a reflection intensity. 

The LiDAR is a high cost sensor, but has dropped significantly in price in recent years. 

Compared to a stereo camera the LiDAR provides very exact depth information at 

further range and captures up to 360° horizontally. It is invariant to illumination, 

temperature and camouflage. The lack of visual and thermal information makes 

recognition of objects difficult and non-protruding objects are almost or fully 

undetectable.   

A radar measures range and/or velocity information of objects by transmitting 

radio waves and measuring object reflections. A variety of radar technologies exist with 

both low and high costs. Depending on object materials and sizes, different radar 

frequencies are optimized for different applications. For human detection applications, 

ultra-wideband (UWB) short range radar operating at a few GHz is common. Radar is 

invariant towards changing temperature and light conditions. 

Physical design 

The sensor platform consists of seven sensors and a controller mounted on a common 

rack. The left side of Figure 1 shows the rack mounted on a tractor and the right side 

shows the physical placement with antennas and inertial measurement unit (IMU) at the 

top, sensors in the middle and the controller at the bottom. The horizontal profile in the 

middle is adjustable in height and angle such that the imaging and active sensors can be 

oriented at a downward angle depending on the vehicle height. A standard A-frame is 

mounted at the bottom of the rack to enable easy mounting on tractors. The A-frame is 

mounted with dampers for absorbing internal engine vibrations from the vehicle to 

reduce the amount of mechanical noise acting on the sensors. The LiDAR protrudes 

from the other sensors such that it has an unobstructed 180° forward field of view. 

 



 

Figure 1. Sensor frame including controller. 

Figure 2 presents the specific sensors and the controller used in the setup. A Logitech 

(Newark, California, USA) C920 webcam providing 1920×1080 pixels at 30 fps is used 

as the RGB camera. The stereo camera is a high dynamic range camera with 

logarithmic, global shutter New Imaging Technology (Paris, France) NSC1003 CMOS 

sensors providing 1280×1024 pixels at 25 fps. The camera uses 12-bit GRBG Bayer 

pixel format. The thermal camera is a shutterless Tonbo Imaging Inc (East Palo Alto, 

California, USA) HawkVision analog IR camera providing 640×480 pixels at 25 fps. 

The LiDAR is a 32-beam Velodyne (Morgan Hill, California, USA) HDL-32E laser 

scanner providing 70,000 points at 10 Hz with 1-100 m range. The radar is a 76 GHz 

Delphi ESR radar with 0.5-80 m range. The GPS is a Trimble (Sunnyvale, California, 

USA) AG GPS361 Real Time Kinematic (RTK) GPS enhancing the precision of GPS 

up to centrimetre-level accuracy. The IMU is a Vectornav (Dalla, Texas, USA) VN-100 

providing synchronized 3-axis accelerometers, gyros, magnetometers and a barometric 

pressure sensor. The data-collecting controller is a Conpleks Robotech Controller 701. 

It is an embedded computer with external interfaces for all sensors that uses ROS-

middleware (Robot Operating System) to easily integrate all sensors in a common 

framework. 

System architecture 

Figure 2 further illustrates the connections and bandwidths between the sensors and the 

controller. In ROS, each sensor is given its own node (an executable file) that is 

responsible for publishing one or more topics. For instance, the IMU has its own node 

including hardware specific drivers, and it publishes different topics related to the 

readings of the accelerometer, the gyroscopes and the magnetometers. For each topic, 

the node can send messages containing sensor data whenever a new sensor-reading is 

available. Each node is connected to the ROS Master which handles interactions 

between nodes and supplies all messages with exact timestamps. Using the rosbag 

package (Dirk n.d.), a recording of all desired topics (and all associated messages) to a 

single rosbag data-file can be obtained. 
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Figure 2. System overview illustrating bandwidths and interfaces between sensors, 

converters and the controller. 

Signal processing 

In order to experimentally evaluate detection performances of the different sensors in an 

agricultural environment, preliminary tests using different object detection algorithms 

have been carried out on the different imaging and active sensors. 

Using only an RGB camera for detecting all possible obstacles in the field is 

complex and difficult and requires a very large dataset with many representations of 

each object. Constraining detection to only humans provides a more realistic case in this 

preliminary study. The RGB camera is therefore processed using a state-of-the-art 

pedestrian detection algorithm (Dollar et al. 2010). The stereo camera has been 

calibrated with a stereo calibration algorithm using a checkerboard pattern (Zhang 

2000). Subsequently, a ground plane is estimated on the acquired point cloud using the 

RANSAC algorithm (Fischler & Bolles 1981), and points that lie above this ground 

plane with a certain threshold are clustered. The LiDAR data is processed using ground 

plane estimation and clustering of points not belonging to the ground (Moosmann et al. 

2009). Clusters with more than 30 points are detected as objects. The thermal camera is 

processed by thresholding the (temperature-related) intensities by a constant value 

above the median intensity of the image (Christiansen et al. 2014). Subsequent 

connected components analysis is used for extracting only components that exceed a 

certain area. The radar was unfortunately malfunctioning during the data acquisition. 

Therefore no radar data is available for processing and evaluation. 

Results and discussion 

Data from six sensors have been recorded in a grass-harvesting case study performed in 

Denmark in early November. These comprise an RGB camera, a stereo camera, a 

thermal camera, a LiDAR, a GPS and an IMU. The radar sensor described above 

unfortunately malfunctioned during the recordings and is therefore omitted in the 

experimental evaluation. 

In the following, two recordings are evaluated including 1) humans of different sizes, 

appearances and postures and 2) small animals placed in front of the setup. 
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Figure 3. Detection of humans. RGB camera (top left), stereo camera disparity map (top 

middle), stereo camera protrusion map (top right), thermal camera (bottom left), LiDAR 

(bottom right). 

Figure 3 depicts the human detection performances evaluated at single, synchronized 

frames for the RGB camera, the stereo camera, the thermal camera and the LiDAR. At 

the top left, the RGB camera is shown with bounding boxes indicating results of the 

pedestrian detection algorithm. In the top middle, the disparity map of the stereo camera 

is shown and, at the top right, a protrusion map indicating objects that protrude from the 

ground plane is visualized. At the bottom left, the thermal camera is shown with 

overlaid thresholded components and, at the bottom right, the LiDAR data is visualized 

with a ground plane and clustered objects (white).  

Using only single frames, pedestrian detection applied on the RGB camera fails to 

detect all humans in the image. Problems concerning occlusion and humans seen from 

the side or from behind have been observed. However, utilizing a sequence of frames 

would greatly improve detection performance, as the algorithm most often fails for just 

a single frame and not for an entire sequence of frames. The stereo camera performs 

well for detecting humans that protrude from the ground plane. However, the algorithm 

assumes a certain level of protrusion and a flat surface in order to detect an object. The 

thermal camera detects all humans when their faces are visible. However, potential 

problems concern well insulated clothes that cover an entire body and warm weather 

where temperature differences are much smaller than in the present recording. Using the 

LiDAR clustering algorithm, most humans are detected robustly when they protrude 

significantly from the ground. However, problems concerning noise near the sensor due 

to a higher point density must be solved to avoid false alarms.  

Figure 4 depicts animal detection capabilities of a rabbit and a hen. In this 

scenario, only the thermal camera was capable of detecting the animals. Obviously 

pedestrian detection applied to the RGB camera is incapable of detecting animals, and 

since both the algorithms of the stereo camera and LiDAR rely on significantly 

protruded objects, these modalities both fail to detect small animals. It is therefore clear 

that more advanced and task-specific algorithms must be investigated for the RGB  



 

Figure 4. Detection of animals (rabbit and hen). RGB camera (top left), stereo camera 

disparity map (top middle), stereo camera protrusion map (top right), thermal camera 

(bottom left), LiDAR (bottom right). 

camera, the stereo camera and the LiDAR. Although the thermal camera achieves robust 

and reliable detection performance for both humans and animals in this study, the 

results would undoubtedly be significantly worse on a warm and sunny day as reported 

by (Steen et al. 2012) and (Serrano-Cuerda et al. 2014). A single sensor is therefore 

insufficient for detecting all objects reliably invariant of temperature and lighting 

changes.  

Conclusion 

A flexible vehicle-mounted sensor platform has been developed for capturing time 

stamped data in the agricultural domain using imaging sensors (RGB, thermal and 

stereo camera), active sensors (LiDAR and radar) and pose estimations sensors (RTK 

GPS and IMU). Based on a case study in grass fields, an initial evaluation of the 

potential of different sensor modalities for detecting humans and animals is given. 

Using a common pedestrian detection algorithm, an RGB camera is able to detect 

upright pedestrians, but degrades in performance for more complex poses. The depth-

aware sensors (LiDAR and stereo camera) are efficient for detecting objects that 

protrude significantly above the ground. The LiDAR is invariant towards changing 

weather and lighting conditions, whereas the stereo camera has the highest resolution 

making it useful for classifying objects. The thermal camera shows great capabilities in 

the captured dataset as it is able to detect objects of distinct temperature using a simple 

procedure that works both for humans and living obstacles. However, the detection 

would be remarkably more complicated in higher temperature environments, where 

living objects become indistinct in their heat signatures.  

The above arguments and the case study concludes that the use of multiple modalities, 

more complicated procedures and a fusion of the different modalities is required to 

achieve a robust detection of obstacles under variable conditions. To provide a thorough 

evaluation of the algorithms and procedures, the dataset must be expanded to represent 



more scenarios including more variable lighting and weather conditions and more 

representations of more objects.  
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Towards Inverse Sensor Mapping in Agriculture

Timo Korthals1, Mikkel Kragh2, Peter Christiansen2, and Ulrich Rückert1

Abstract— In recent years, the drive of the Industry 4.0 initia-
tive has enriched industrial and scientific approaches to build
self-driving cars or smart factories. Agricultural applications
benefit from both advances, as they are in reality mobile driving
factories which process the environment. Therefore, acurate
perception of the surrounding is a crucial task as it involves
the goods to be processed, in contrast to standard indoor
production lines. Environmental processing requires accurate
and robust quantification in order to correctly adjust processing
parameters and detect hazardous risks during the processing.
While today approaches still implement functional elements
based on a single particular set of sensors, it may become
apparent that a unified representation of the environment
compiled from all available information sources would be
more versatile, sufficient, and cost effective. The key to this
approach is the means of developing a common information
language from the data provided. In this paper, we introduce
and discuss techniques to build so called inverse sensor models
that create a common information language among different,
but typically agricultural, information providers. These can be
current live sensor data, farm management systems, or long
term information generated from previous processing, static
drone images, or satellites. In the context of Industry 4.0, this
enables the interoperability of different agricultural systems
and allows information transparency.

I. INTRODUCTION

Agricultural vehicles are complex, mobile processors of
biological products that operate in unstructured and con-
stantly changing environment. While the operation of these
vehicles was initially relatively simple, today their setup and
use requires trained specialists due to the requirement of
increasing efficiency and lowering overall costs. However,
without automation and the augmenting of parameter op-
timization in the process chain, throughputs, and farming
yields would be much smaller than usual. For instance, auto-
mated steering systems employed in harvesting use LiDAR
systems to scan the area between the crop and stubble in
order to automatically guide the harvester along the edge;
and seed drills save GPS data and the machine parameters
of sowing which are used later to minimize the utilization
of fertilizer spreaders.

Focusing the automation and in particular its implemen-
tation, all applications follow the same paradigm of having
a distinctive set of sensors, a processing unit, and an ac-
tuator interface to steer the vehicle or manipulate process
parameters. While this approach allows simple, distributed

1Bielefeld University, Cluster of Excellence Cognitive Interaction Tech-
nologies, Cognitronics & Sensor Systems, Inspiration 1, 33619 Bielefeld,
Germany, http://www.ks.cit-ec.uni-bielefeld.de/,
{tkorthals, rueckert} @cit-ec.uni-bielefeld.de

2Aarhus University, Department of Engineering, Finlandsgade 22, DK-
8200 Aarhus N, Denmark http://eng.au.dk/, {mkha, pech}
@eng.au.dk

and modular modification, with increases in automated func-
tionality its installation and maintenance becomes unfeasible
due to the sheer number of sensors and processing units
required. Furthermore, the potential for sensor fusion is
completely squandered. An alternative approach is pursued
by the authors, that of building a common inner semantical
representation of the environment based on occupancy grid
maps, from which all further automation is derived [1], [2].
These grid maps are arranged in multiple overlapping layers,
where each one is occupied by localized classifications.

While the authors have already provided a proof-of-
concept of semantical grid mapping approaches in agriculture
[3], requisite information and instructions for building sensor
models based on sensors and other data sources is still
lacking. In contrast to robotic and automotive approaches,
where grid mapping based applications are well known,
agricultural environments and applications especially vary
greatly and therefore have to be treated accordingly. With
respect to Fig. 1 and [4], this contribution focuses on the
Inverse Sensor Modeling component.

The paper is organized as follows: Section II presents a
brief introduction to occupancy grid maps, their extension to
the semantical representation. Section III presents the gath-
ered experience and approaches to building sensor models
derived from previous agricultural research projects. Finally,
Section IV presents further ideas and points to next steps in
agricultural applications in Industry 4.0.

II. RELATED WORK

Occupancy grid maps are used in static obstacle detection
for robotic systems, which are a well-known and a commonly
studied scientific field [5], [6], [7]. They are a component
of almost all navigation and collision avoidance systems de-
signed to maneuver through cluttered environments. Another
important application is the creation of obstacle maps for
traversing an unknown area and the recognition of known
obstacles, so supporting the localization. Recently, occu-
pancy grid maps have been applied to combine LiDAR and
RADAR in automotive applications, with the goal of creating
a harmonious, consistent and complete representation of
the vehicle’s environment as a basis for advanced driver
assistance systems [8], [9], [10].

A. Occupancy Grid Mapping

Two-dimensional occupancy grid maps (OGM) were orig-
inally introduced by Elfes [11]. In this representation, the
environment is subdivided into a regular array or a grid of
quadratic cells. The resolution of the environment represen-
tation directly depends on the size of the cells. In addition to
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Fig. 1: Semantic occupancy grid mapping framework

this compartmentalization of space, a probabilistic measure
of occupancy is associated with each cell. This measure
takes any real number in the interval [0, 1] and describes
one of the two possible cell states: unoccupied or occupied.
An occupancy probability of 0 represents a space that is
definitely unoccupied, and a probability of 1 represents a
space that is definitely occupied. A value of 0.5 refers to an
unknown state of occupancy.

An occupancy grid is an efficient approach to representing
uncertainty, combining multiple sensor measurements at the
decision level, and to incorporating different sensor models
[10]. To learn an occupancy grid M given sensor information
z, different update rules exist [5]. For the authors’ approach,
a Bayesian update rule is applied to every cell m ∈ M
at position (w, h) as follows: Given the position xt of a
vehicle at time t, let x1:t = x1, . . . , xt be the positions of
the vehicle’s individual steps until t, and z1:t = z1, . . . , zt the
environmental perceptions. For each cell m of the occupancy
probability grid the probability that this cell is occupied by an
obstacle. Thus, occupancy probability grids seek to estimate

P (m|z1:t, x1:t) = Odds−1




T∏

t=1

P (m|zt, xt)
1− P (m|zt, xt)︸ ︷︷ ︸
Odds(P (m|zt,xt))


 (1)

This equation already describes the online capable, recursive
update rule that populates the current measurement zt to
the grid, where P (m|z1:t, x1:t) is the so called inverse
sensor model (ISM). The ISM is used to update the OGM
in a Bayesian framework, which deduces the occupancy
probability of a cell, given the sensor information.

B. Extension to Agriculture Applications

The adaptation of OGM techniques to agricultural appli-
cations appears to be merely a matter of time but is not that
obvious and intuitive to apply on the second sight. Robotic
and automotive applications have in common that they both
want to detect non-traversable areas or objects occupying
their path. Such unambiguous information is used to quantify
the whole environment sufficiently for all derivable tasks,
such as path planning or obstacle avoidance, to be completed.
When assumptions like a flat operational plane or minimum

obstacle heights are made, sensors frustums oriented parallel
to the ground are sufficient for all tasks

In agricultural applications, obstacle recognition is not
essential as they act on and process their environment. There-
fore, quantification of the environment involves features such
as processed areas, processability, crop quality, density, and
maturity level in addition to traversability. In order to map
these features, single occupancy grid maps are no longer
sufficient and therefore, semantic occupancy grid maps that
allow different classification results to be mapped are used.
Furthermore, sensor frustums are no longer oriented parallel
to the ground, but rather oriented at an angle to gather
necessary crop information (cf. Fig. 2).

The extension to semantic occupancy grid maps (SOGM)
or inference grids is straightforward and is defined by an
OGM M with W cells in width, H cells in height, and N
semantic layers (c.f. Fig. 1):

M : {1, . . . ,W} × {1, . . . ,H} → m = {0, . . . , 1}N (2)

Compared to a single layer OGM which
allows the classification into three classes{

occupied, occupied, unknown
}

, the SOGM supports a
maximum of

∣∣{occupied, occupied, unknown
}∣∣N = 3N

different classes allowing much higher differentiability in
environment and object recognition. The corresponding
ISMs are fused by means of the occupancy grid algorithm
to their nth associated semantical occupancy grid.

The location of information in the maps is required to
be completed by mapping under known poses approaches
[6]. As proposed by REP-1051 and realized by the authors
in [4], information is mapped locally via Kalman filtered
odometry and inertial navigation measurement. The maps
themselves are globally referenced which on the one side
allows smooth local mapping in the short term without the
discrete jumps caused by global positioning systems using a
Global Navigation Satellite System (GNSS), but also allows
global consistent storing and loading of information.

While the actual features are very diverse of agriculture
applications, this publication does not primarily focus on
classification, but rather on geographical interpretation and
sensor building.

1http://www.ros.org/reps/rep-0105.html
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III. EXPLICIT ISM GENERATION FOR SPECIFIC SENSORS

A. Local Sensor Based ISM

1) LiDAR based Mapping: LiDAR sensors measure the
distance to an object and depending on their capabilities,
also the reflectance. The distance can directly be used to
deduce free (s.t. the area between the measured distance and
the sensor) and occupied space (s.t. the location of measured
distance) in a planar environment. This is commonly utilized
for robotic and automotive tasks, where a well-known inverse
sensor modelling technique directly derives the correspond-
ing ISM. In agriculture, however, it is common for LiDAR
sensors to face downwards as shown in Fig. 2, in order to
detect the soil or crop that needs to be processed. This results
in the circumstance that the measurement can only be taken
at the corresponding target point, and no implications can be
done along the measurement.

Naively mapping the related classification in the point
of measurement in the vehicles coordinate frame would
result in scattered maps from which further applications are
hardly derivable (c.f. Fig. 3). Therefore, the actual Gaussian
measurement uncertainty σS needs to be introduced as in
the common planar model, but with its appropriate error
propagation. Assuming σφ, σξ, σγ beeing gaussian noise
in the angular positioning caused by vehicle’s steering, and
σx, σy , σz to be the positioning caused by vibrations of the
vehicle it is possible to calculate the resulting full covariance
matrix

∑
XS

at the point of interest as follows: First, the
transformation of the scalar distance measurement S in the
LiDAR frame to the euclidean point XS in the vehicle frame
is

XS =




cφcγ
cξsγ + cγsφsξ
sξsγ − cγsφcξ


S +T(x, y, z) (3)

where T is the translation between the sensor and the
vehicle frame. For error propagation, the functions need to
be linearized by calculating the Jacobian:

JT =



cφcγ cξsγ + cγsφsξ sξsγ − cγsφcξ
−Ssφcγ Scγcφsξ −Scγcφcξ
−Scφsγ Scξcγ − Ssγsφsξ Ssξcγ + Ssγsφcξ

0 −Ssξsγ + Scγsφcξ Scξsγ + Scγsφsξ




T

(4)

Fig. 3: Harvesting scenario (left), resulting SOGM from crop
classification ISM with (middle) and without (right) error
propagation

∑

XS

= J diag(σ2
s , σ

2
φ, σ

2
γ , σ

2
ξ )J

T + diag(σ2
x, σ

2
y, σ

2
z) (5)

The Jacobian is a function of its arguments J(S, φ, γ, ξ),
which means that it is required to be evaluated for every new
sensor measurement. Equation 5 describes the full covariance
matrix which can be applied to calculate the uncertainty
distribution for every measurement.

Two assumptions have been made in this model to make
the error model tractable: first, that the uncertainty in angular
movements resides in the coordinate frame of the laser
scanner and second, that the uncertainty in translation is
uncorrelated from the angular ones. The assumptions do not
fully hold, due to the fact that rolling, pitching and yawing
do not occure in the laser scanner frame, but in some other
arbitrary frame, depending on the current ground conditions
and vehicle’s steering. To simplify the model even more, the
uncertainty in z can be omitted, because in the later sensor
modeling component, only the projection into the xy-plane
is important. Further, rolling is omitted as it is negligible in
comparison to the other influences [12]:

X ′S =




cφcγ
sγ
−cγsφ


S +T(x, y, z)

J ′ =

(
cφcγ −Ssφcγ −Scφsγ
sγ 0 Scγ

)

∑

X′
S

= J ′ diag(σ2
s , σ

2
φ, σ

2
γ)J
′T + diag(σ2

x, σ
2
y)

(6)

The influences of error propagation are depicted in Fig. 3
where a two class classifier for crop derives the ISMs
which are mapped to the global coordinate system. The
resulting map without error propagation is very sparse which
makes further functionality derivation without heuristical
post processing unfeasible. Introducing error propagation and
respecting the model uncertainties, on the other hand, results
in a much more sufficient and consistent map where further
classification can easily be applied.

Further improvements in classification can be achieved by
first mapping the raw LiDAR data to a globally referenced
representation from which further ISMs with much higher
quality can be derived. More advanced LiDAR systems
scanning in multiple planes bypass the raw mapping and
directly enable rich classifiers like Support Vector Machines
to process the data as proposed by [3].



Fig. 4: Inverse Perspective Mapping of RGB image

Fig. 5: (Left) Grass and human predictions in a mowing
application classified by a fully convolutional network for
semantic segmentation [15] and the corresponding ISMs
generated by IPM (right)

2) Inverse Perspective Mapping: Inverse Perspective
Mapping (IPM) is a geometrical transformation that projects
an image to a ground plane surface as shown in Fig. 4. For a
flat surface, the perspective effect is removed by transforming
the viewpoint from a camera view to a birds eye view.
This technique has been used in automotive applications
where assumptions about camera pose and a flat world with
respect to the street are sufficient [13], [12]. However, even
slight deviations in camera inclination and height result in
large errors, more advanced, adaptive techniques have been
developed which calculate the camera pose online by using
the borders of the road or lane markers [14].

However, an unstructured agricultural environments does
permit such dynamic techniques and thus, they are either
treated as a static scenario, where the camera pose relative
to ground surface does not change, or the transformation
between the extrinsic and flat plane is calculated dynami-
cally with support of an inertial measurement unit (IMU).
The whole IPM for mapping image coordinates xP|px =

(u, v, 1)
T to surface xFP|m = (x, y, z ≡ 0, 1)

T is defined
by three parameter transformations: the intrinsic PTC from
the camera perspective to the camera frame, the extrinsic
CTV from the camera frame to the vehicle frame, and VTFP
which transforms from the vehicle frame to the flat plane
(FP) frame. This leads to

xP|px = PTC · CTV · VTFP · xFP|m (7)

To build the actual ISM, the image first needs to be classified
and then transformed to the flat plane by means of Equation 7
(c.f. Fig. 5).

Values of an ISM are the probability of a grid cell being
occupied by a giving classification. As indicated in Fig. 5,
the area that is not visible by the camera is set to 0.5 to
represent the fact no information is provided for areas that
are not visible to the camera. Visible areas with no detections
are set below 0.5 to indicate that the area is not expected to

Fig. 6: Input image (left), classification based on semantic
segmentation (middle) and corresponding ISM with detection
cut-off after class occurrence along the focal axis

Fig. 7: Bounding box detection to ISM

be occupied by the given class. Values above 0.5 indicate
that the area is expected to be occupied by the given class.

For detecting flat class elements such as road-lane mark-
ings or grass, the IPM algorithm is able to provide good
approximations of the actual inverse perspective mapping.
Elevated elements violate the IPM ground plane assumption
and will stretch elements unnaturally and incorrectly across
large areas as indicated in Fig. 4.

To avoid the stretching artifacts of tall objects, different
approaches are proposed. A naive approach for pixel based
classifiers states that all objects classified as being other than
ground are standing perpendicular on the ground. Therefore,
one can perform a ray trace along the focal axis and mark
all cells behind a detected object as unknown (c.f. Fig. 6)
[16], [3].

Another approach generates three dimensional object lo-
cation hypotheses by first estimating the distance to the
corresponding detection. This can be achieved by either using
the abovementioned naive approach or using a depth sensor
like a stereo camera or LiDAR which is registered to the
camera.

Second, when using classifiers like YOLO [17] which of-
fers classified bounding boxes, the four bounding box corners
are mapped to real world coordinates using the estimated
distance to a detection and the intrinsic camera parameters.
The bounding box position and extent are derived in 3D and
is represented as depicted in Fig. 7 by cylinder specified by
a center, height, and width.

Detections are mapped to values above 0.5 with a Gaussian
distribution to indicate the existence of an obstacle with
corresponding localization uncertainties. The localization un-
certainty for the camera depends on the radial coordinate
(distance to the object) and angular coordinate (angle to
object), where accuracy degrades with increasing distance
and angle. The procedure for converting a 2D bounding box
to an ISM using distance estimates is presented in Fig. 7.
Using the estimated distance of a detected object and the
intrinsic camera parameters, the four bounding box corners
are mapped to world coordinates.

Lastly, the concept of contradicting IPM is introduced
for crop processing in harvesting scenarios. In comparison
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Fig. 8: Simplified error assumption in flat plane assumption
according to height

Fig. 9: RGB input image and scanline based classification
for crop plane (left), inverse perspective mapping of classifi-
cation for crop and ground plane (middle) and corresponding
fused contradicting ISM (right)

with the abovementioned IPM scenarios, this discrimination
is necessary as the camera rectifies no common ground in
the lower areas of the image as depicted in Fig. 9 which
refutes former assumptions. Neglecting this fact would result
in drastically wrong localization of detections, as visualized
in Fig. 8, which indicates that the localization error σd in
depth d depends on the error σh of height h as follows:

σd =
d

h
σh. (8)

If this simple error propagation is applied to a hypothetical
example of small crop with for example a height of 0.5
meters and a camera installation height of 1.5 meters where a
feature 10 meters away should be mapped, the resultant error
is one of 3 meters. Therefore, two flat plane assumptions are
calculated, one for the ground and one for the crop height
resulting in two different ISMs. These can then be combined
by Dempsters rule of combination leading to contradictions
[18], which is visualized in Fig. 9. From the emerging
contradictions in Fig. 9 (right), it can be seen that vehicle
traces appear which are actually the contradicting occlusion
in both IPMs.

3) Ambiguous Sensor Mapping: Ambiguous sensor read-
ings originate from sensors with very bad angular or distance
resolution by definition of the authors. As depicted in Fig. 10
LiDAR systems can achieve very accurate positioning and
are therefore the preferred sensors for mapping. However,
they are by far the most cost- and power intensive systems.
Other sensing techniques are more cost and power efficient
but are commonly neglected due to their high noise or
inaccuracy. Nevertheless, the authors have demonstrated that
even with poorly embedded sensors, sufficient environment
detection can be achieved [19] by designing an inverse
particle filter which samples from the sensors uncertainty
distribution. At present, this technique has only been ap-
plied in laboratory conditions and therefore, real agricultural
applications remain pending.

(a) LiDAR (b) SONAR (c) Proximity

Fig. 10: Standard error contour of qualitative sensor cones
(·: Sensor position, x: Obstacle, -)

Fig. 11: Top view of crop field with an applied inverse sensor
model for the cutter bar: gray shaded area being of high
probability that the cutter bar has been applied on that region

B. Application Models

Application models are straight forward to implement and
only depends on the localizing accuracy. Building such a
model is only dependent on the geometrical shape of the
agricultural implement. That means on the other hand, that
ISM is a static and primitive shape in the local frame of
the vehicle which leaves a probabilistic footprint where
the implement has been applied to the crop as depicted
in Fig. 11. When incorporating inaccurate localization, the
shape needs to be transformed accordingly.

C. Map Services

Geodata acquired by satellites, drones, or planes with high
recording frequencies as well as its partially free availability,
make this information increasingly attractive for agriculture.
In this context worth mentioning are the Sentinel program2,
the hyperspectral system EnMap3, the RapidEye constella-
tion4 as well as the start-up companies Skybox Imaging5 and
Planet Labs6. In addition, the release of the long-standing
Landsat archive now offers many opportunities for agricul-
tural applications, such as the generation of profit potential
maps. There is a trend towards direct access to such data
and towards appropriate image excerpts using web servers or
APIs. As part of spatial data infrastructures, data (e.g. land
and terrain data) are published interoperably and often free
of charge via web services. In particular, Annex III of the
INSPIRE Directive7 requires EU member states to provide
data. However, for a precision farming service or a precision
farming application further different data sources have to be

2http://www.esa.int/Our_Activities/Observing_the_
Earth/Copernicus/Overview4/

3http://www.enmap.org/
4http://blackbridge.com/rapideye/
5http://www.skyboximaging.com/
6https://www.planet.com/
7http://inspire.ec.europa.eu/
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linked (for example, weather data play a crucial role in most
agricultural processes), or complex procedures and algo-
rithms are required to derive the desired information from the
data. Subsequent downstream services will continue to play
an increasingly important role in agriculture. The European
Union, for example, specifically supports the development
of such services based on Copernicus data by SMEs. At the
endpoint of the downstream services, information products
(such as humidity maps, biomass maps and yield forecast
maps) are often available, which can be integrated into other
applications or devices. The combination and the inclusion
of all the information sources and their derivation for the
identification of machine parameters is one essential part
which can be handled by ISMs. As an example, a static and
classified drone image can be easily transferred to a semantic
ISM by decomposing all classes and loading the appropriate
area during operation (c.f. Fig. 12).

IV. CONCLUSION AND OUTLOOK

The authors have presented an information representation
as semantic grids which can be maintained among different
modalities and sources. It utilizes the idea of the ISOBUS
standard, which was designed with machinery interoperabil-
ity in mind, and allows every sensory source to publish or
access its information in a general grid format. The main
aspect of this contribution focused on different techniques,
originating from literature, practical experiments, and expe-
rience, of actually building these representations.

As the acquisition and localization of data are sufficiently
solved, further research will concentrate on planning and
control of such diverse data. Furthermore, learning ap-
proaches have not been confronted in this application which
directly maps a sensor reading to the appropriate locality and
probability. These techniques were introduced by Thrun [6]
and have been applied by the authors. However, following
the engineering path of building inverse sensor models is far
more robust and intuitive. At present, only a few approaches
are known to the authors and therefore, more applications
extending from direct control architectures up to holistic
farm management systems are of great interest. Approaching
rich control architectures in agricultural environments allows
an interesting area of overlap between robotics and Industry

4.0 to emerge, s.t. simultaneously planning and processing.
Mathematical frameworks exist, where in agriculture the
particular issue will driven by the information representation
and how it is incorporated into environmental processing.
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Abstract 

In recent years, mapping and automation has been increasingly investigated and applied in precision agriculture. The                               
ultimate goal of this development is to apply autonomous vehicles operating efficiently without any human intervention.                               
Such autonomous operation imposes severe safety hazards, demanding accurate and robust risk detection, and avoidance                             
systems. It is unlikely that one sensor can single­handedly guarantee this, and therefore multiple sensing modalities are                                 
often combined in order to increase detection performance and introduce redundancy. In this paper, we present a global                                   
mapping approach utilizing diverse sensor technologies to achieve a uniform obstacle interpretation of the environment.                             
Using occupancy grid maps, we fuse information from a monocular color camera, a RADAR, and a LIDAR in                                   
combination with IMU­assisted GPS­positioning. For each sensor, we present detection algorithms, mapping from raw                           
sensor data to a 2D grid­based obstacle interpretation of the environment. These are then fused temporally with the                                   
occupancy grid algorithm, and afterwards spatially in a competitive and complementary way to produce a combined                               
global obstacle map. The method is evaluated on an extensive dataset recorded at Research Centre Foulum, Denmark, in                                   
June 2015. The dataset comprises sensor data from a tractor­mounted recording system in a grass mowing scenario with                                   
various obstacles. A ground truth map has been obtained with a mapping drone. Results show promising obstacle                                 
detection capabilities and an increase in performance when fusing information across sensor modalities and layers. The                               
proposed mapping framework is able to fuse a vast amount of information across a diverse sensor set, using an efficient                                       
and novel approach for obstacle detection in agriculture. 
Keywords:  Multi­modal Sensor Fusion, Obstacle Detection, Occupancy Grid Mapping, Precision Farming, Agriculture 
 

1. Introduction 
The application of robots or vehicles operating autonomously in agricultural fields demands extreme perception                           

capabilities of the safety system. It is unlikely that a single perception sensor is capable of ensuring this safety alone, and                                         
thus multiple sensor technologies must be combined to provide accurate and robust risk detection and avoidance. These                                 
sensors might operate in different coordinate systems with different representations. For instance, a LIDAR operates in                               
3D cartesian coordinates, an automotive RADAR operates in 2D polar coordinates, and cameras operate in projective                               
spaces of 2D pixel coordinates. Sensor fusion can be handled on various abstraction levels such as data­, feature­ or                                     
decision­level, but all methods require a mapping to a common representation. One such fusion algorithm on                               
feature­level is occupancy grid maps  (Elfes 1990) . In 2D, they represent a global map of the environment and are                                     
generated from inverse sensor models (ISMs). An ISM is associated with a specific sensor and includes a detection                                   
algorithm of a certain feature (e.g. “vehicle”, “human”, “field”, “ground”) and a mapping from sensor data to a local 2D                                       
grid in the vehicle frame. 

In research on automotive vehicles, 2D grid mapping is widely applied for fusing information across sensing                               
modalities, providing a simple yet efficient framework  (Winner 2015) . In agricultural environments, a few applications                             
with grid mapping have been proposed as well  (Reina and Milella 2012; Ahtiainen et al. 2015) . However, these only use                                       
a single or two sensing modalities, and thus do not provide a full evaluation of the potential of occupancy grid mapping.  

In this paper, we present a global mapping approach utilizing simultaneous information from a monocular color                               
camera, a thermal camera, a RADAR, and a LIDAR in combination with IMU­assisted GPS­positioning. For each of the                                   
sensors, we present detection algorithms, mapping from raw sensor data to a 2D grid­based obstacle interpretation of the                                   
environment. These grids represent multiple obstacle layers (“human”, “object”, “vegetation”, etc.) and are updated                           
temporally using the occupancy grid algorithm. Finally, they are fused spatially across layers and sensor modalities using                                 
competitive and complementary fusion. 

 

2. Materials and Methods  
2.1. Setup 

A variety of sensor modalities and corresponding detection algorithms are used to ensure detection and provide                               
redundancy for all relevant obstacle types. A Velodyne HDL­32E LIDAR (laser range scanner) is used for long range                                   
depth estimation and is robust towards changes in illumination and weather. A Delphi ESR automotive RADAR is used                                   
for mid and long range depth and velocity estimation, and is even more robust towards changes in illumination and                                     
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weather than the LIDAR. A Logitech C920 color camera is used to detect and distinguish between different obstacle                                   
types, but is significantly more sensitive towards changes in illumination. Finally, a thermal camera is useful for                                 
capturing heat radiation from humans and animals. However, since only static, non­living obstacles are present in the                                 
dataset, this sensor is excluded from the paper. Together, the sensors both complement and overlap each other in terms of                                       
detection capabilities and robustness. A Vectornav VN­100 Inertial Measurement Unit (IMU) and a Trimble AG GPS361                               
Real Time Kinematic (RTK) GPS unit are used for pose estimation. Offline calibration is performed by hand by                                   
estimating extrinsic parameters of sensor positions. The specific sensor platform used for the experiments is presented                               
and explained in detail in a previous paper  (Christiansen et al. 2015) . 
2.2. Detection Algorithms 

In the following sections, the algorithms used to produce classifications and their conversions to ISMs are described. 
2.2.1. LIDAR 

A single LIDAR scan provides a 3D point cloud consisting of depth measurements distributed 360° horizontally                               
around the vehicle. For each point, we calculate 13 features using statistics from a local neighborhood  (Kragh, Jørgensen,                                   
and Pedersen 2015) . These features describe the height, shape, orientation and reflectance of the structure and help                                 
distinguish between points representing three classes: “ground”, “vegetation”, and “object”. A Support Vector Machine                           
(SVM) classifier with probability estimates  (Wu, Lin, and Weng 2004) is then trained to classify individual points into                                   
these classes. Figure 1 (left) shows an example of pseudo­colored probability estimates of the “object” class.  

 
Figure 1. Left: Point cloud with pseudo­colored probability estimates of “object” class illustrating low (blue) and high 
(red) probabilities. Right: RADAR tracks overlaid on point cloud. Green are confirmed tracks and red are unconfirmed. 
2.2.2 RADAR 

The automotive RADAR combines mid­ and long­range functionality simultaneously, so that it can detect                           
close­distance objects with a horizontal field of view (FOV) of ±45° and far­distance objects with a narrow FOV of ±10°.                                       
The RADAR itself provides a processed list of up to 32 tracked objects, each with an angle and a range. However, most                                           
of these represent internal noise in the RADAR and therefore need to be processed further. For that, we apply the                                       
Kuhn­Munkres assignment algorithm (KMA), tracking detections from subsequent frames  (Munkres 1957) . Only                       
detections that are less than 2 m apart from one frame to the next are associated. A track is described by its current                                    i            
position and its track length and is confirmed when . All confirmed tracks are then converted to          Li           Li ≥ Lmin = 3                
detection probabilities: 

P radar,i = Li
L −Li min  

2.2.3 Color Camera 
For the color camera, we apply three detection algorithms; Locally Decorrelated Channel Features for Pedestrian                             

detection (PED)  (Nam, Dollár, and Han 2014) , You Only Look Once (YOLO)  (Redmon et al. 2016) , and Fully                                   
Convolutional Network for Semantic Segmentation (SS)  (Long et al. 2015) . 

PED is a state­of­the­art pedestrian detector trained on the INRIA dataset  (Dalal and Triggs 2005) . PED uses three                                   
color and seven edge feature channels followed by a local decorrelation step creating 40 decorrelated feature channels.                                 
The algorithm uses an AdaBoost  (Freund and Schapire 1996) based classifier and detects humans at multiple locations                                 
and scales using a speed efficient multiscale sliding window approach.  

YOLO is a deep convolutional neural network (CNN) for object detection trained on 20 object classes on the Pascal                                     
Visual Object Classes (VOC) dataset  (Everingham, Eslami, and Gool 2013) . In this work, the 20 objects are mapped to                                     
three object classes: “human”, “vehicle”, and “unknown”.  

In agriculture, elements such as the field and shelterbelts cannot naturally be delimited by a bounding box as normally                                     
provided by object detection algorithms. SS is a semantic segmentation method, meaning that each pixel in the image is                                     
classified as an object class. The algorithm is trained to recognize 60 object classes in the PASCAL­Context dataset                                   
(Mottaghi et al. 2014) . As described in  (Christiansen et al. 2016) , these element classes can be remapped to a few                                       
agricultural classes. In this work, the classes are remapped to “unknown”, “grass”, “ground”, “human”, “shelterbelt”,                             
“vehicle”, and “water”. An example of the outputs from the algorithms described above is presented in two cropped                                   
images in Figure 2. 
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Figure 2. Example output of camera algorithms. PED detects both humans. YOLO is able to detect the vehicle and a 
human, but fails to detect the more distant human. SS detects both humans, the car, sky, ground and most of the 

shelterbelt. However, SS fails to detect the shelterbelt at far distance and around the human. 
PED and YOLO algorithms output bounding box coordinates that are converted to a new image for each object class                                     

with a rectangle filled with a confidence measure of a detection. SS outputs an image for each object class, where each                                         
pixel contains a confidence measure of classification. 
2.3. Mapping 

Within this publication, two challenges are faced by mapping the algorithms’ detections into a map representation of                                 
the vehicle’s environment: First, by locating and mapping the detections into a map, evaluation against a ground truth                                   
map is easily applicable. Second, the map representation serves as the common way of fusing detections of a single                                     
algorithm temporally, and spatially across different modalities. A technique which suits these requirements is the                             
Occupancy Grid Mapping (OGM). 
2.3.1. Occupancy Grid Mapping 

Two­dimensional occupancy grids were originally introduced by Elfes  (Elfes 1990) . In this representation, the                           
environment is subdivided into a regular array or a grid of rectangular cells. The resolution of the environment                                   
representation directly depends on the size of the cells. In addition to this discretization of space, a probabilistic measure                                     
of occupancy is associated with each cell. This measure takes on any real number in the interval [0, 1] and describes one                                           
of the two possible cell states: occupied or unoccupied. An occupancy probability of 0 means definitely unoccupied                                 
space, and a probability of 1 means definitely occupied space. A value of 0.5 refers to an unknown state of occupancy. 

The occupancy grid is an efficient approach for representing uncertainty, fusing multiple sensor measurements, and to                               
incorporate different sensor models  (Winner 2015) . To learn an occupancy grid given sensor information , different                     M         z    
update rules exist  (Hähnel 2004) . For our approach, we use the Bayesian update rule which is applied to every cell                                       

as follows: Given the positions of the vehicle at each point in time , suppose are them ∈ M             xt                   t     , ..,x1:t = x1 . xt      
positions of the vehicle at the individual steps in time, and are the perceptions of the environment.                      , ..,z1:t = z1 . zt              
Occupancy probability grids determine for each cell of the grid the probability that this cell is occupied by an obstacle.              c                            
Thus, occupancy probability grids seek to estimate  

.dds(m|z , )P (m|z , )1:T x1:T = ∏
T

t=1

P (m|z ,x )t t
1−P (m|z ,x )t t

= ∏
T

t=1
O t xt  

This equation already describes the online capable, recursive update rule that populates the current measurement to                              zt    
the grid, where is the so called inverse sensor model (ISM). The ISM is used to update the OGM in a      P (m|z , )t xt                                      
Bayesian framework, which deduces the occupancy probability of a cell, given the sensor information. 
2.3.2. Inverse Sensor Modelling 

The ISM implements the inverse measurement model, which deduces from the sensor measurement to the occupancy                               
probability at the particular cell. It is commonly used for sensors with a planar sensor lobe oriented parallel to the ground.                                         
In that case, a quite simplistic model can be applied, e.g. for a laser range finder. Each cell that is covered by the beam                                   m              
of the observation and whose distance to the sensor is shorter than the measured one, is supposed to be unoccupied.      z                                    
The cell in which the beam ends (the measurement point) is supposed to be occupied, and everything behind is unknown                                       
(Stachniss 2009) . For our implementation, however, the cameras, LIDAR, and RADAR are non­planar, as their sensor                               
lobes are tilted. Every non­planar sensor, compared to planar operating sensors, can only be evaluated at the measurement                                   
point, and thus do not provide any information in front of the measurement. Each sensor­algorithm combination requires                                 
its own ISM, converting from the algorithm's output to a 2D measurement grid representation. For this, a geometric                                   
interpretation is needed in order to transform features from the sensor frame to the vehicle frame. 
2.3.2.1 ISM for LIDAR 

From the SVM classifier, a 3D point cloud with class probabilities is provided for each class: “ground”, “vegetation”,                                   
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and “object”. A 2D class probability grid is created for each class by projecting all points onto a locally estimated plane                                         
and averaging over class probabilities of points lying within a grid cell. From these class probability grids , two                                  P *

class    
ISM obstacle layers are produced: “object” and “vegetation”. Figure 4 (left) illustrates an example of the “object” layer.                                   
The calculation of the log odds ratio of “object” combines the probability of the cell being an object and the cell not                              m                
being ground: 

      ogOdds(P ) ogOdds(P ) ogOdds(1 )l object (m) = l *
object (m) + l − P *

ground (m)  

                        og(P ) og(1 ) og(1 ) og(P )= l *
object (m) − l − P *

object (m) + l − P *
ground (m) − l *

ground (m)  

2.3.2.2 ISM for RADAR 
An ISM obstacle layer “radar” is produced by converting all confirmed detections from polar to cartesian coordinates                                 

and averaging over detection probabilities of tracks lying within a grid cell. This provides a probability grid .                                 P *
ground (m)  

The calculation of the log odds ratio of “radar” for cell   is then given by:m  
ogOdds ogOdds og ogl (P )radar (m) = l (P )*

radar (m) = l (P )*
radar (m) − l (1 )− P *

radar (m)  

2.3.2.3 ISM for Camera ­ Inverse Perspective Mapping 
Within this chapter, the projection of a camera image onto a planar ground map is described. We assume a pinhole                                       

model for the camera, a constant transformation between the camera frame and the vehicle’s footprint, and a flat world.                                     
To calculate the pixel­wise transformation from the camera frame into the vehicle frame, the inverse perspective mapping                                 
introduced by  (Bertozzi and Broggi 1996)  is applied. 
Because of the flat world assumption, the projection is ill­defined for any detection that does not reside on the ground                                       
level. Kohlbrecher bypasses this problem by assuming every detected object to be grounded  (Kohlbrecher 2011) . In this                                 
way, an occupancy grid is generated by traversing through every column of a detection image starting from the bottom.                                     
This creates a ray in the occupancy grid, starting at the sensor position towards the horizon. When a detection ( )                                      .5P > 0  
occurs along this ray, the given cell is mapped accordingly and all subsequent cells are mapped as unknown ( )..5P = 0   

In this work, a positive detection pixel is extended by the estimated depth of a given obstacle before mapping                                     
unknown pixels. Figure 3 illustrates an example of this procedure. In the center image, a positive detection (white blob)                                     
of a vehicle seen by the SS algorithm is shown along with the estimated horizon. At the right, the same image converted                                           
through inverse perspective mapping to an occupancy grid is visualized, showing how the vehicle is assumed to have a                                     
depth of 2 meters. 

 
Figure 3. Left: Input image. Center: Horizon and detection of vehicle with semantic segmentation. Right: Inverse 
perspective mapping showing vehicle, FOV and unknown areas both behind the vehicle and outside the FOV.  

2.3.3 Grid Map Representation 
Different approaches exist for handling the residency of a map. For spatially limited applications, commonly one                               

global map is used. To reduce the memory consumption, so called topo­metric maps are used as well, where the map size                                         
is reduced to e.g. rooms which are interconnected by a graph  (Hähnel 2004) . For automotive applications, temporary                                 
maps have proven their worth. They are build up by different sensors for a short time scenery of the environment  (Winner                                         
2015) . This paper formulates an independent and global coordinate system which holds multiple two­dimensional grid                             
maps for small areas. The whole area is divided into patches, and for each timestep only one patch, namely the                                       
Region­Of­Interest (ROI) is loaded. As depicted in Figure 4 (center and right), the patches overlap at the point where the                                       
vehicle crosses the border from the inner to outer ROI to the outer margin. If the vehicle passes this border, a new patch                                             
map is loaded. This provides two advantages: First, the memory consumption is reduced to a minimum and second, drift                                     
over multiple maps can be reduced by realigning all maps subsequently. Our solution can be compared to the patch map                                       
approach by  (Konrad et al. 2011) . Konrad aligns all maps vertically and horizontally with an overlap at their margins.                                     
Compared to this, our approach is able to respect former recorded data by transforming it into the upcoming ROI. 
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Figure 4. Left: Inverse sensor model as measurement grid of LIDAR for class “object”. Center: Current patch as 

Region­Of­Interest. Right: Overlaid patches along a vehicle’s trajectory 
2.3.4 Mapping Uncertainty 

Every ISM is influenced by the vehicle’s pose uncertainty. This includes the latitude and longitude and the                                 
roll/pitch/yaw angles. Furthermore, because of the flat­plane assumption, the error caused by the assumed sensor height                               
above the ground is respected as well. All uncertainties of every grid cell are modeled by a two­dimensional Gaussian                                     
function. To respect all Gaussian uncertainties in the ISM, all cell neighbours have to be taken into account. Thus, first an                                         
ISM without position uncertainties is created and then convolved by a Gaussian kernel . To respect the fact                          F ∈ ℜIxJ          
that we deal with probabilities inside the ISM, we define the convolution function for a single probability of a cell                         P *          P        

 at point   in the grid   as follows:mx,y (x, )y M  

ogOdds ogOdds(F P (m ) .5) .5)P * (m )x,y = l −1 ∑
x+I/2

i=x−I/2
  ∑
y+J /2

j=y−J /2
l (i, )j ( i,j − 0 + 0  

 

3. Results and Discussion 
3.1. Dataset 

The evaluation of the grid mapping is performed on a dataset recorded at Research Centre Foulum, Denmark, in June                                     
2015. The sensor platform described in section 2.1 is mounted in front of a tractor in a grass mowing scenario, recording                                         
over a 15 minute traversal in the field. Apart from naturally occurring elements in the field (shelterbelts, grass, ground,                                     
and water flooding), static obstacles (wells, a car, barrels, and adult and kid mannequin dolls) are placed and measured                                     
with precise GPS positions. The dataset also includes a single moving object (walking pedestrian). A ground truth map is                                     
generated by recording the field and obstacles with a Phantom 2 drone and manually annotating with per­pixel labeling.                                   
Figure 5 shows the orthophoto of the field with overlaid ground truth annotations. 

 
Figure 5. Orthophoto with static objects, tractor trajectory (black line) and human walk path (yellow line). An overlay 

shows the ground truth of vegetation (blue), ground (green) and non­traversable ground (red).  
3.2. Evaluation and Results 

To obtain the mapping results, the ISM methods are applied to their specific sensors to extract the measurement grids.                                     
To locate the measurement grid inside the current patch and globally, the extended Kalman filter by  (Moore and Stouch                                     
2016) is used, taking GPS, IMU, and GPS carrier measurements  (Bevly and Cobb 2010) into account. As proposed in                                     
(Korthals, Skiba, and Krause 2016) , multiple layers of maps are needed to respect a diverse and heterogeneous sensor             N                        
setup. This is used to overcome the drawback of the Bayesian update equation, which does not respect different sensor                                     
impacts or update rates. Thus, across each of the sensor­algorithm­class sets, fusion is performed at a later stage                  5N = 1                    
by composing cell probabilities. In our implementation, two different fusion techniques are applied: First, the fusion                               
based on a Superbayesian Independent Opinion Pool formula  (Pathak et al. 2007) . It is applicable for the case when                P B                        
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separate occupancy grids with identical feature representations (e.g. set of maps for class “obstacle”) are maintained.                               
Second, a non­Bayesian fusion methods by taking the maximum is applied to heterogeneous feature representations                 PM              
(e.g. set of maps for “vehicle” and “human”). It is worth mentioning that these fusion techniques are again cell­wise and                                       
therefore online applicable. 

,P B (m) =
(m)∏

 

N
P n

(m)+ (1−P (m))∏
 

N
P n ∏

 

N
n

ax  PPM (m) = m n n (m)  

As evaluation metrics, precision, recall, F1 score, accuracy, True­Positive­Rate (TPR) and False­Positive­Rate (FPR) 
of the Receiver­Operator­Characteristic (ROC), and normalized entropy are calculated for all detected cells. For the given 
algorithms and sensors, the fusion and evaluation scores are not directly applicable. Even if the Bayesian framework 
allows the representation of the presence and absence of a feature, some algorithms do not make use of it. To name two 
examples, the LIDAR allows the deduction of free or occupied space based on its physical measurement principle. On the 
other hand, a camera based algorithm is fairly good for detecting the presence of a class, but easily fails in detecting the 
absence, due to e.g. a possible lack in the training set. Thus, the metrics recall, F1 score, TPR, and FPR can be calculated 
for LIDAR based detections, but not for camera and RADAR based detections. To give a better interpretation, the 
normalized entropy  of all true negative and true positive classified cells is used to calculate the remaining uncertaintyHN  
normalized by a completely unknown map: 

og ogH (P )(M ) =   − ∑
 

c∈M
P (c) l (P )(c) + (1 )− P (c) l (1 )− P (c) , HHN (P )(M ) = H (P )(M ) / (P .5)(M ) ≡ 0  

This gives a quantitative value of the information gain among different setups where the range of the normalized entropy 
reaches from 0, meaning that there is no unknown space left, to 1, meaning the map is completely unknown.  

Layers produced by the same sensor are fused by the maximum method to get a competitive fusion across algorithms, 
and the outcome of these layers is fused by the Superbayesian method to get a complementary fusion across different 
sensors as shown in Figure 6.  

 
Figure 6. Fusion framework 

 
Table 1. List of sensor setups. 1­3 use competitive fusion across classes, whereas 4­7 use complementary fusion. 

Setup  Fusion  Sensors  Detection Algorithm  Input Classes  Output Classes 

1  Competitive 
Camera  SS  shelterbelt, human, vehicle 

obstacle_C Camera  YOLO  human, vehicle 
Camera  PED  human 

2  Competitive  LIDAR  SVM  object, vegetation  obstacle_L 
3  Competitive  RADAR  KMA  radar  obstacle_R 
4  Complementary  Camera, LIDAR  ­  obstacle_C, obstacle_L  obstacle 
5  Complementary  LIDAR, RADAR  ­  obstacle_L, obstacle_R  obstacle 
6  Complementary  Camera, RADAR  ­  obstacle_C, obstacle_R  obstacle 
7  Complementary  Camera, LIDAR, RADAR  ­  obstacle_C, obstacle_L, obstacle_R  obstacle 

 
Table 2. Evaluation scores for the different sensor setups (ill­defined scores omitted by “­”) 

Setup  Fusion  Precision  Recall  F1 score  Accuracy  TPR  FPR  Entropy 
1  Maximum  0.889  ­  ­  0.889  ­  ­  0.984 
2  Maximum  0.897  0.922  0.910  0.957  0.922  0.0320  0.821 
3  Maximum  0.789  ­  ­  0.789  ­  ­  0.991 
4  Superbayes  0.896  0.941  0.918  0.960  0.941  0.0342  0.819 
5  Superbayes  0.889  0.944  0.916  0.960  0.944  0.0357  0.820 
6  Superbayes  0.827  ­  ­  0.827  ­  ­  0.979 
7  Superbayes  0.889  0.958  0.922  0.961  0.958  0.0376  0.818 
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For the evaluation, a constant map resolution of 10 cm per cell is used. To measure the impact of each sensor, all 

permutations of the sensors (camera, LIDAR, and RADAR) are performed as shown in Table 1. Particularly for the 
camera based detection, only classes representing objects are taken into account. For setup 1, 2, and 3, the fusion   isPM  
applied competitively, outputting “obstacle_C”, “obstacle_L” and “obstacle_R” for camera, LIDAR, and RADAR 
respectively. These outputs are then fed into the complementary fusion  , outputting “obstacle”. The results for allP B  
different setups are shown in Table 2. The first noticeable fact is the decrease of entropy for every complementary fusion. 
This shows, that with the introduction of new sources of information, the unknown area is reduced. Thus, the lowest 
entropy is evaluated for setup 7. The same is the case for the other scores, where setup 7 performs the best. The only 
exceptions arise for precision and FPR. For precision, the LIDAR performs better, but also has a bad recall resulting in 
the worst F1 score. This coincides with the FPR, as the number of misclassifications may rise with more sensors coming 
into play due to the fact, that in the evaluation scenario the sensor lobes do not fully overlap at all positions. Therefore, 
wrong classifications can not be corrected by sensor fusion. 

As can be seen in Figure 7, misclassifications occur mainly at object borders. Due to the fact that the errors are evenly                                           
distributed around them, it can be assumed that they are caused by statistical errors from the sensors, the detection                                     
algorithm, or the vehicle’s position uncertainty. To quantify this error, the standard deviations of all distinctive                               
misclassified regions across obstacle borders are averaged with the result of m. In Figure 8, the final fused                      .332σ = 0              
detection of all obstacle layers can be seen. To highlight one example, the car is almost perfectly detected with the only                                         
exception of the tail. Having in mind that the upper right edge of the car has not been seen by any sensor, the result of the                                                   
fusion concept is even more convincing. 

 
Figure 7. Binary mask created by setup 7 of false (left) and correct (right) classifications 

 
Figure 8. Left: Ground truth (black) with overlaid obstacle detection (white) by setup 7. Right: Magnified area of the car 

 

4. Conclusions 
In this work, we have presented a global mapping approach fusing information from a monocular color camera, a                                   

RADAR, and a LIDAR. For each sensor, we have introduced detection algorithms, mapping from raw sensor data to a                                     
number of 2D grid­based obstacle interpretations of the environment, such as “human”, “vehicle”, and “vegetation”.                             
These representations are first fused competitively for each sensor to provide a sensor­specific obstacle representation.                             
Then, complementary fusion is used to fuse across sensor modalities, providing a final combined obstacle interpretation. 

Based on data from a grass mowing scenario with various static obstacles, we have evaluated the proposed mapping                                   
approach for all combinations of sensors. We have shown that any combination of sensors performs better than the same                                     
sensors individually, and that we achieve a mapping accuracy for detected cells of 96% and an F1 score of 92%, when                                         
combining information across all three sensors. Future work will focus on introducing dynamic obstacles and training the                                 
fusion algorithm to weigh information from sensors and algorithms individually. Also, a more comprehensive evaluation                             
from different fields and sensor setups is planned, investigating generalization performance of the proposed method. 
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