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Résumé

This dissertation is a collection of research articles that assess economic and
operational risk in production planning of district heating. District heating
systems are typically coupled to the electricity system through cogeneration
and power-to-heat technologies, and production planners must account for
uncertainty stemming from changing weather, demands and prices. Years of
high-resolution data from the district heating system in Aarhus, Denmark have
been used throughout the project to model the system and estimate uncertainties.
Risk management tools have been developed to aid district heating operators
and investment decision makers in short-, medium- and long-term production
planning.

Short-term production planning involves commitment of production units
and trading on the electricity markets and relies on forecasts of the heat load.
Weather predictions are a significant source of uncertainty for heat load forecasts,
because the heat load is highly weather-dependent. I introduce the method of
ensemble weather predictions from meteorology to heat load forecasting and
create a probabilistic load forecast to estimate the weather-based uncertainty.
Better estimates of the weather-based uncertainty can be applied to optimize
supply temperature control and reduce heat losses without compromising security
of supply in heat distribution systems.

Consumer behavior is another substantial, but difficult to capture, source of
uncertainty in short-term heat load forecasts. I include local holiday data in
state-of-the-art load forecasts to improve accuracy and capture how load patterns
change depending on the behavior of the consumers. A small overall improvement
in forecast accuracy is observed. The improvement is more significant on holidays
and special occasions that are difficult to forecast accurately.

In medium-term production planning, there can be substantial economic
potential in performing summer shutdown of certain production units. The
shutdown decision carries significant risk, due to changing seasonal weather
patterns. Based on 38 years of weather data, the uncertainty on the timing of
the optimal decision is estimated. This information is used to develop practical
decision rules that are robust to rare weather events and capable of realizing
more than 90% of the potential savings from summer shutdown.

Long-term production planning decisions regarding investments in future
district heating production systems are affected by uncertainty from changing
electricity prices, fuel prices and investment cost for technology. The effects of
these uncertainties on a cost-optimal heat production system are explored, using
well-established production and storage technologies and extensive multivariate
sensitivity analysis. The optimal technology choices are highly stable and,
taxes aside, large heat pumps and heat storages dominate the cost-optimal heat
production systems. However, the uncertainty on the exact capacity allocation
is substantial. Excluding heat production based on fossil fuels increases the
uncertainty on the system cost, but drastically reduces the uncertainty on the
optimal capacity allocation.
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Resume

Denne afhandling er en samling af forskningsartikler om økonomisk og ope-
rationel risikovurdering i forbindelse med produktionsplanlægning i fjernvar-
mesystemer. Fjernvarmesystemer er typisk koblet til elsystemet via kraftvar-
meproduktion og el-til-varme-teknologier, og produktionsplanlæggere er udsat
for usikkerheder fra skiftende vejr, varmebehov og priser. I projektet anvendes
adskillige års højtopløst data fra Aarhus’ fjernvarmesystem til at modellere
systemet og estimere usikkerheder. En række værktøjer til risikohåndtering er
blevet udviklet til at hjælpe fjernvarmeoperatører og energiplanlæggere med
kort-, mellemlang- og langsigtet produktionsplanlægning.

Produktionsplanlægning på kort sigt indebærer daglig lastfordeling og handel
på elmarkederne og er afhængig af varmelastprognoser. En væsentlig kilde til
usikkerhed i varmelastprognoser er vejrudsigter, idet varmelasten afhænger af
vejret. Jeg introducerer den meteorologiske metode ensemble-prognoser til brug
i varmelastprognoser og estimerer den vejrafhængige usikkerhed ved hjælp af
en ensemble-varmelastprognose. Bedre estimater af den vejrafhængige progno-
seusikkerhed kan anvendes til at optimere styringen af fremløbstemperaturen
i varmedistributionssystemer og mindske varmetab uden at gå på kompromis
med forsyningssikkerheden.

Forbrugeradfærd er en anden væsentlig kilde til usikkerhed i kortsigtede fjern-
varmeprognoser, men svær at modellere. For at forbedre prognosepræcisionen
og bedre afspejle ændringer i varmelastmønstre afhængigt af varmeforbrugernes
opførsel, inkluderer jeg data om lokale ferier og helligdage i varmelastprognoser.
Det resulterer i en lille generel forbedring i prognosepræcision. Forbedringerne i
prognosepræcision er mere markante i skoleferier og på helligdage, der typisk er
særligt svære at prognosticere præcist.

I forbindelse med produktionsplanlægning på mellemlangt sigt, kan der være
stort økonomisk potential i at lukke visse produktionsenheder ned sommeren
over. Beslutningen om sommerlukning indebærer en væsentlig økonomisk risiko
på grund af sæsonbetonede skift i vejret. På baggrund af 38 års vejrdata
estimeres usikkerheden på den optimale lukkedato. Resultaterne af denne analyse
benyttes til at designe praktiske beslutningsregler, der er robuste over for sjældne
vejrbegivenheder og i stand til at realisere mere end 90% af de potentielle
besparelser i forbindelse med sommerlukning.

Langsigtede beslutninger angående investeringer i fremtidige fjernvarme-
produktionssystemer bliver påvirket af usikkerheder fra ændringer i elpriser,
brændselspriser og investeringsomkostninger for teknologi. Konsekvenserne af
disse usikkerheder for et omkostningsoptimeret varmeproduktionssystem un-
dersøges ved hjælp af veletablerede produktions- og lagerteknologier og en
omfattende multivariat følsomhedsanalyse. Det optimale valg af teknologi er
yderst stabilt og domineres af store varmepumper og varmelagre, hvis man
ser bort fra skatter og afgifter. Der er dog en væsentlig usikkerhed på den
nøjagtige fordeling af produktionskapacitet. Ekskluderes varmeproduktion fra
fossile brændsler, så stiger usikkerheden på de totale systemomkostninger, men
usikkerheden på den optimale kapacitetsfordeling falder drastisk.
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Preface

This dissertation is the result of three years’ work in a research collaboration
between Aarhus University and AffaldVarme Aarhus. AffaldVarme Aarhus is
the municipal district heating company in Aarhus, and it is where I have spent
about 80% of my time during this industrial PhD fellowship.

Doing research in production planning of district heating, while embedded in
the day-to-day operations of a district heating company has been both invaluable
and highly challenging. I have been given a rare chance to perform a reality check
on my research, both in grand concepts and ideas and in practical complications
that may arise at the implementation stage.

Being a part of both the business development department (Forretningsud-
vikling) and the operations department (Drift) at AffaldVarme Aarhus, I have
had a chance to closely follow how a modern district heating company works
with strategic long-term production planning and optimization of the daily
operations.

Balancing the rigor, reproducibility and novelty required in academic research
against the practical needs of an operational organisation has been challenging
at times. But I am convinced that this potential conflict has qualified my
academic output and made the research more applicable while also benefiting
the industrial contribution of my work.

Industrial contribution

Although the majority of my work these past years has been academic, I have
delivered some lasting contributions to AffaldVarme Aarhus.

In 2017 a new straw-fired combined heat and power (CHP) plant opened in
Lisbjerg north of Aarhus. This plant significantly changed the operation of the
production system, especially during summer. I assisted the engineers in the
Operations department by programming a number of heat storage simulations
to assess the need for storage in this new configuration of the production system.
This work also brought my attention to another interesting production planning
issue and research topic: summer shutdown of production units. Chapter 5
covers this extensively and includes a research article I had published in Applied
Energy about managing risk when shutting down CHP plants over the summer.

My most significant and lasting industrial contribution was the development
of an automatic heat load forecasting system. The system predicts the hourly
heat load with a horizon of 46 h, based on weather forecasts and data from
the heat production system. A machine learning model called support vector
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regression performs the load prediction and its performance is competitive with
commercial alternatives.

The final version of the system produces an updated forecast every 15
minutes and runs on a server controlled by AffaldVarme Aarhus. My load
forecast is intended to supplement a commercial production planning system
and assist the system operators in the daily production planning.

I entered a similar load forecasting system into a competition hosted by
another large Danish district heating company, Fjernvarme Fyn. My load
forecast performed very well, both in accuracy and reliability and won second
place in the competition against six other commercial load forecast providers.

Academic contribution

The remainder of this dissertation is dedicated to my academic output, the core
of which is four academic journal articles. I am the first author of these four
articles, and they have a chapter each in the dissertation. In each chapter, the
main research questions, methods and results are outlined and the research is
related to the rest of the project. Besides publishing journal articles I have also
presented my research at conferences and written popular outreach articles. A
short summary of my academic output follows.

Journal articles

In order of appearance in the dissertation:

• Using ensemble weather predictions in district heating opera-
tion and load forecasting by Magnus Dahl, Adam Brun and Gorm B.
Andresen. Published in Applied Energy (Dahl et al., 2017b).

• Improving Short-Term Heat Load Forecasts with Calendar and
Holiday Data by Magnus Dahl, Adam Brun, Oliver S. Kirsebom and
Gorm B. Andresen. Published in Energies (Dahl et al., 2018).

• Decision rules for economic summer-shutdown of production
units in large district heating systems by Magnus Dahl, Adam Brun
and Gorm B. Andresen. Published in Applied Energy (Dahl et al., 2017a).

• Cost sensitivity of optimal sector-coupled district heating pro-
duction systems by Magnus Dahl, Adam Brun and Gorm B. Andresen.
Submitted to Energy.

For all of these articles, I have performed all calculations, mathematical
derivations and coding, produced all illustrations and written more than 95%
of the text. No part of this dissertation has previously been considered in
preparation for obtaining an academic degree.
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Conference presentations

• Applications of a heat load forecast with dynamic uncertainties.
Presented at the 2nd International Conference on Smart Energy Systems
and 4th Generation District Heating. 2016 Aalborg, Denmark. This
presentation won the prize for Best PhD presentation.

• Long-term production planning in large district heating systems.
Presented at the 3rd International Conference on Smart Energy Systems
and 4th Generation District Heating. 2017 Copenhagen, Denmark.

• Machine learning techniques for district heating load forecast-
ing incorporating human behaviour. Proceeding presented at the
12th Conference on Sustainable Development of Energy, Water and Envi-
ronment Systems. 2017 Dubrovnik, Croatia.

Public outreach

I have communicated my research in Danish and in English in magazines that
are widely read in the district heating sector, and contributed to the Profile of
the Department of Engineering at Aarhus University:

• Towards realistic production planning by Magnus Dahl. Published
in Hot Cool – International Magazine on District Heating and Cooling,
no. 1 2017.

• Realisér værdien i at lukke anlæg ned om sommeren. Published
in Fjernvarmen, Dansk Fjernvarme’s magazine, no. 1 2018.

• Forecasts for cheap and sustainable district heating. Profile 2016,
Department of Engineering, Aarhus University.

Other work

Finally, I have published a book chapter based on my master’s thesis, co-
authored a journal article and written a few internal technical reports and
briefs for AffaldVarme Aarhus. None of these manuscripts are a part of the
dissertation.

• Infrastructure Estimates for a Highly Renewable Global Elec-
tricity Grid by Magnus Dahl, Rolando A. Rodriguez, Anders A. Sønder-
gaard, Timo Zeyer, Gorm B. Andresen and Martin Greiner. Published in
the book New Horizons in Fundamental Physics (Dahl et al., 2017).

• Multi-criteria analysis of storages integration and operation so-
lutions into the district heating network of Aarhus – a Simu-
lation Case Study by Charlotte Marguerite, Gorm B. Andresen and
Magnus Dahl. Published in Energy (Marguerite et al., 2018).

• Simulering af sommerdrift med BKVV, SSV og akkumulator-
tanke. March 2017, AffaldVarme Aarhus.
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• Værdien af SSV-VAK i sommerdrift uden Blok 3. June 2017,
AffaldVarme Aarhus.

• Dokumentation for online varmeprognosesystem. March 2018. Af-
faldVarme Aarhus.
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This PhD project is part of the READY project (Resource Efficient cities
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research/fp7/index_en.cfm).

viii

https://ec.europa.eu/research/fp7/index_en.cfm
https://ec.europa.eu/research/fp7/index_en.cfm


Acknowledgements

I would like to thank Gorm B. Andresen for his scientific vision and excellent
supervision. Thanks to him, Adam Brun and Steffen Petersen for making this
project possible in the first place.

Thanks to all my colleagues at AffaldVarme Aarhus for making it a great
place to work. Thanks in particular to Allan Lundfald, Kim Therkildsen, Grethe
Føns Hjortbak and Jeanette Thøgersen for the insight they provided and for
teaching me everything I know about district heating.

Thanks to my fellow PhD students at Aarhus University’s Department of
Engineering for sharing the ups and downs of PhD life. Special thanks to Smail
Kozarcanin, Bo Tranberg, Rasmus Høst Pedersen and Hailiang Liu for sparring
about the project and giving helpful feedback on manuscripts and presentations.

Thanks to Tom Brown for his part in developing PyPSA and for fruitful
discussions about energy systems modeling.

Finally, thanks to my friends and family for believing in me and cheering for
me in good times and bad. Especially thanks to my wife Kate Dahl for giving
me strength when I needed it and for her unrelenting love and support.

ix





Chapter 1

Introduction

The threat of global climate change due to anthropogenic emissions of greenhouse
gasses has created a pressure on politicians and energy planners worldwide to
transform our energy systems away from fossil fuels. In the European electricity
sector, great strides are already being made with large installations of wind
and solar power generation, and from 2010 to 2017 electricity generation from
fossil fuels was reduced by 17% (Jones et al., 2018). But, there is still a long
way to go if any hope is to be retained of limiting global warming to 2 ◦C by
the end of the century. Decarbonizing energy systems is a good starting point,
since electricity and heat production account for 25% of global greenhouse
gas emissions. However, it is crucial that other economic sectors follow suit,
particularly the transportation sector and agriculture & forestry, as these
sectors are responsible for 14% and 24% of global greenhouse gas emissions
(Intergovernmental Panel on Climate Change, 2015).

The electricity sector is currently being decarbonized, primarily through
the installation of wind, solar and biomass generation. Wind and solar power
generation are variable renewable energy sources, which means that the gen-
eration depends on the weather and is not directly controllable by operators.
Therefore, electricity systems with large shares of wind and solar generation
need a certain amount of dispatchable backup generation, e.g. combined heat
and power (CHP) generation. Balancing the supply and demand in a highly
renewable electricity system can also be done with large electricity storages, but
the technology is not yet mature and cost-competitive on the necessary scale
(Schmidt et al., 2017).

The heating sector in the European Union (EU) is responsible for about 40%
of the primary energy consumption in the electricity and heating sector (Connolly
et al., 2014). Decarbonizing the heating sector and facilitating synergies between
renewable power generation and district heating should therefore be a high
priority in the planning of future energy systems.

The title of this dissertation is Production planning of energy systems – cost
and risk assessment for district heating. District heating systems are the topic of
the project, and the main focus is planning the production of heat on horizons
from a few days to several years. Closer coupling between the electricity and
the heating sector introduces new uncertainties for production planners, and
planning decisions can carry severe economic and operational risk. In this
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1. Introduction

project, I not only estimate the cost of a given system or operational scheme, I
estimate the uncertainty on the cost and provide tools that production planners
can use to quantify and manage operational and economic risk.

1.1 District heating: past, present and future

In (Lund et al., 2014), the authors argue that district heating has an important
role to play in future energy systems and provide an overview of the history of
district heating and a vision for its future. District heating systems will have to
be developed further to play a role in highly renewable energy systems of the
future, and Lund et al. introduce the concept 4th Generation District Heating
to specify how.

The first generation of district heating used steam as the heat carrier and
the first systems were built in the USA in the 1880s. Almost all district heating
systems built in Europe and the USA until the 1930s used this technology.
District heating was introduced in many cities to replace individual boilers and
reduce the risk of boiler explosions. As such, district heating was introduced to
provide consumers with safe and convenient heating.

The second generation of district heating used pressurized hot water above
100 ◦C as the heat carrier. Pipes were often constructed in situ and the grid
and valves were material heavy. This technology dominated district heating
systems built between the 1930s and 1970s, allowed distribution grids to grow
larger and improved energy efficiency.

In the third generation, sometimes referred to as Scandinavian district
heating technology, supply temperatures were decreased to below 100 ◦C. Pipes
for the grid were increasingly prefabricated and pre-insulated, and valve and
grid technologies became more material lean. Following the oil crises of the
1970s, oil was replaced with other fuels to a large extent. Third generation
district heating technology is predominant in modern district heating systems.

Following the historical overview, Lund et al. proceed to outline the chal-
lenges that future district heating systems are faced with in the transition
towards more sustainable future energy systems. A fourth generation of district
heating will need to operate at lower temperatures. Lower temperatures reduce
heat losses from the grid and facilitate better integration of renewable energy
sources and industrial waste heat. In addition, the electricity consumption for
heat pumps can be drastically reduced by decreasing supply temperatures.

In chapter Chapter 3, I present a scheme for temperature control in heat
distribution grids. The control scheme is designed to reduce the supply tem-
perature, without compromising the security of supply. This is achieved by
linking the temperature control to a probabilistic heat load forecast, allowing
for more aggressive temperature control when the load forecast is very certain.
My control scheme is not as ambitious with respect to temperature reductions
as the very low temperature grids proposed in (Lund et al., 2014). However,
the purpose of the control scheme is the same: to improve energy efficiency by
reducing heat losses from the grid.

Besides very low grid temperatures, the fourth generation of district heating
must also be able to integrate with a low-energy building environment. Building

2



1.1. District heating: past, present and future

modeling and demand side control is beyond the scope of this project, but there
is a large potential in combining building retrofit with expansions of district
heating grids. Combining lower supply temperatures and lower residential
heating demands it becomes possible to supply heat to more consumers using the
same pipes. This is especially relevant in urban areas with growing population
density, because expanding grid infrastructure is quite costly (Frederiksen and
Werner, 2013).

Finally, it is imperative that future district heating systems integrate well
with the electricity sector (Lund et al., 2014). CHP generation can provide
backup generation for a highly renewable electricity system, but lower electricity
prices due to surplus wind generation risk undermining the economy of CHP
plants (Traber and Kemfert, 2011).

Large-scale power-to-heat

Power-to-heat technologies such as electric boilers and heat pumps can be used
to absorb surplus electricity generation into heating systems, and provide much
needed flexibility for the electricity sector.

Large-scale deployment of power-to-heat technologies is not unrealistic, as
demonstrated in (Averfalk et al., 2017), where the authors review the operational
experience with large heat pumps for district heating in Sweden. Since the
1980s, Sweden has installed the world’s biggest fleet of heat pumps and electric
boilers. Initially, this power-to-heat capacity was built to absorb a national
surplus of electricity from nuclear power that could not be exported due to weak
international transmission lines. Most of these heat pumps are still in operation,
and most of the heat is supplied from sewage water and ambient water, i.e. sea
water, lake and river water and ground water. Industrial waste heat constitutes
a smaller amount of the heat supply, and its capacity utilization has gone down
significantly since the 1980s. Averfalk et al. conclude that sewage water and
ambient water are more stable long-term heat sources for heat pumps compared
to industrial waste heat.

Large heat pumps still play an important role in Swedish district heating
systems, but their capacity utilization has decreased somewhat, because of
increased competition from biomass and waste incineration CHP. The heat sup-
plied from power-to-heat technologies in Swedish district heating systems peaked
in 1990. Taxes on electricity also has potential to decrease the competitiveness
of power-to-heat technologies.

Besides taxes on electricity, there are other potential technical and envi-
ronmental roadblocks for large-scale implementation of heat pumps in district
heating systems globally. For many years, chlorofluorocarbons (CFCs) and hy-
drochlorofluorocarbons (HCFCs) were used as refrigerants in large heat pumps.
Due to their depleting effect on the ozone layer CFCs and HCFCs were banned
as refrigerant in the Montreal Protocol in 1989. In the large Swedish heat
pumps, these refrigerants have been replaced with hydrofluorocarbons (HFCs),
which do not deplete the ozone layer of the atmosphere. However, HFCs are
extremely potent greenhouse gasses, and may contribute to global warming. The
use of HFCs is therefore discouraged or banned for large-scale applications in
many countries. Natural refrigerants do exist as alternatives, e.g. hydrocarbons,
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1. Introduction

ammonia or carbon dioxide. These alternative refrigerants each have their issues,
but Averfalk et al. expect HFCs to be replaced by natural refrigerants in the
future.

Despite potential problems, power-to-heat technologies, especially large heat
pumps, have a significant role to play in the future’s district heating systems.
They are a robust and well-established technology, with potential to provide
flexibility to the electricity system and provide heat at a competitive cost. It
is emphasized that power-to-heat technologies are best used in energy systems
with continuous surplus of electricity generation. This surplus can stem from
variable wind and solar power, or from base load nuclear and hydro power
(Averfalk et al., 2017). Periodical electricity surplus is exactly the state of the
current and near future European electricity system, due to large expansions in
wind and solar power generation (Jones et al., 2018).

In chapter Chapter 6, I propose a cost-optimal heat production system for
a city. Power-to-heat technologies, specifically large heat pumps, play a very
important role in the cost-optimal system, regardless of whether or not a fossil
free policy is adopted. Large heat storages help the heat pumps provide the
necessary heat while maintaining a good economy with respect to the electricity
market. Taxes and tariffs aside, I recommend massive investments in large heat
pumps and heat storages, when constructing new production infrastructure.

The future potential of district heating

As mentioned, the heating sector is responsible for about 40% of the total
primary energy consumption for heat and electricity in the EU. District heating
only has a market share of 13% of the heating sector. However, it is demonstrated
in (Connolly et al., 2014) that there is significant potential for expanding the
use of district heating in the EU.

In the EU’s heating and electricity system, almost half of the primary energy
is lost before being delivered to the end user (Connolly et al., 2014). Most of
this loss occurs in the conversion to electricity, and district heating systems can
utilize much of the wasted energy through CHP generation. Although losses in
heating grids are not negligible, expanding the coverage of district heating and
integrating the heating and electricity sectors further can dramatically increase
the energy efficiency of the whole energy system. This is what makes district
heating economically competitive.

Connolly et al. map out the district heating potential in the EU using
geographic information systems (GIS) combined with energy system modeling.
The geographical density of heat demand is estimated from national statistics
and population densities with a resolution of 1 km2. District heating is only
economically viable in areas with high population density, because heating grids
require large investments, and heat losses become too large in dispersed grids
with low heat consumption.

The proposal for the future EU heating sector put forward in (Connolly et al.,
2014) is compared to a reference scenario proposed by the European Commission
in the report Energy Roadmap 2050 (European Commission, 2011). The Euro-
pean Commission’s scenario reduces greenhouse gas emissions by 80% compared
the 1990 levels through a combination of energy savings and electrification of the
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1.2. Risk assessment on different horizons

heating sector. Connolly et al. demonstrate that implementing the necessary
large-scale savings on electricity and heat will not be cost-effective. Instead,
they propose massive a expansion of district heating in densely populated areas
as a means to improve the overall energy efficiency of the electricity and heating
sector. The district heating market share is increased to 30% in 2030 and to
50% in 2050, and the proposed solution meets the same ambitious emission
target, but is approximately 15% cheaper (Connolly et al., 2014).

In rural areas, where the heat demand density is insufficient for district
heating, individual heat pumps are suggested as an alternative. Large-scale
heat pumps for district heating have several advantages over individual heat
pumps. Large-scale heat pumps benefit from the economy of size and can be
used to balance the electricity grid, due to the central control and large capacity
(Averfalk et al., 2017). Individual heat pumps, however, do have a role to play
in the future heating sector in rural areas, especially as a way to limit the
consumption of biomass in a 100% renewable energy system (Mathiesen et al.,
2012).

Summing up, district heating is an important player in future renewable
energy systems. While district heating systems have come a long way during the
last century, there are still improvements that can be done. This dissertation
is focused on improving operation and production planning through better
modeling of uncertainties and risks.

1.2 Risk assessment on different horizons

The International Organization for Standardization defines risk as "the effect of
uncertainty on objectives" (ISO, 2009). District heating providers face many
different uncertainties in the daily operation and production planning. Relevant
sources of uncertainty include: the weather, consumer behavior, changing heat
and electricity demands as well as the near and far future cost of electricity,
fuels and relevant technologies.

The objectives, that these uncertainties affect, fall mainly in two categories.
The first objective of most modern district heating providers is to always
deliver heat to cover the consumer demand, i.e. security of supply. The second
objective is to minimize the total cost of producing and distributing heat,
without compromising security of supply. Often, there are other tertiary or
competing objectives, most notably environmental protection and climate goals,
but the risk assessment in this project is primarily focused on the two main
objectives. The effect of uncertainties on security of supply I call operational
risk, and the effect of uncertainties on operational or investment cost I call
economic risk.

Risk assessment of production planning in district heating systems can be
divided according to the planning horizon into short-term, medium-term and
long-term planning.

Short-term production planning, on horizons up to a few days, primarily
deals with commitment of production units and planning of the operation of
heat storage tanks. Short-term planning in systems with cogeneration or power-
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to-heat technologies must account for changing electricity prices as well as the
heat demand in the days to come.

Medium-term or seasonal production planning takes place on horizons up
to several months. Decisions, concerning e.g complete shutdown of larger
production units for maintenance or economic reasons, fall in this category and
are influenced by large seasonal variations in the heat load.

Long-term production planning, on horizons of several years, deals with
investment decisions. Sizing of new production systems and expansion of
existing systems requires planning with long time horizons. Long-term planning
decisions are impacted by changing demands of heat and electricity, variations
in electricity and fuel prices and in the cost of relevant technologies.

In (Carpaneto et al., 2011a), the authors address short- and medium-term
planning in cogeneration systems under uncertainty. Carpaneto et al. present an
ambitious framework for planning of cogeneration on multiple time scales under
uncertainty from electricity price variations and changing energy loads. Under
three different operational strategies, the authors characterize the operation of a
single CHP unit using nonsequential Monte Carlo simulation. The correlations
between different random input variables are captured, but the autocorrelations
are lost. The nonsequential nature of the framework makes it unsuitable for
incorporating storage operation, which is highly relevant when planning the
production in larger district heating systems.

In a companion paper to (Carpaneto et al., 2011a), the authors address the
problem of long-term planning of cogeneration systems using decision theory
(Carpaneto et al., 2011b). Carpaneto et al. argue that the uncertainties on
planning horizons as long as 10-20 years are so large that decision theoretical
approaches are more suitable for characterizing the variety of possible solutions
compared to traditional statistical approaches. Using decision criteria such as
minimizing the expected value of a financial objective or minimizing the impact
of the worst case scenario, the paper presents more than just one right choice for
decision makers. However, such a framework is only useful to decision makers
who are very clear on their priorities, values and risk tolerance.

In (DeCarolis, 2011), the author provides an interesting alternative way
to handle uncertainty in long-term production planning of energy systems.
DeCarolis argues that many energy system modelers address future uncertainties
by creating vast elaborate models and running a few scenarios with different
input assumptions. This approach is inflexible and provides little insight.
DeCarolis proposes a technique from operations research called modeling to
generate alternatives (MGA), as way to address future uncertainties. The
proposed approach explores near-optimal solutions that are maximally different
in decision space. This is a systematic way to generate alternatives and highlight
plausible alternatives in the future constitution of the energy system.

The research in this project assesses both economic and operational risk in
short- medium- and long-term production planning.

In Chapter 3, a strategy is presented to manage operational risk with respect
to control of supply temperatures for area substations. By reducing supply
temperatures, heat losses from the grid can be limited, but if the temperature is
too low, there is a risk that the demand cannot be met. The proposed control
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strategy uses an estimate of the weather-based uncertainty on the forecasted
demand to reduce supply the temperature while maintaining security of supply.
This is operational risk management on the distribution side of the district
heating system. Moreover, the estimated forecast uncertainties are a valuable
tool for short-term production planning.

In Chapter 5, the operational risk related to the production side of the
district heating system is assessed. It is demonstrated that there are large
potential savings associated with shutting down certain production units during
the summer. However, the optimal dates for shutdown in the spring and start-up
in the fall vary greatly depending on seasonal weather patterns. If a plant is
shut down too early and another unit falls out, the production system may be
incapable of delivering the necessary heat. This is a weather-based operational
risk, that I assess using 38 years of hourly weather data. On this very solid
data foundation, I create decision rules that can help production planners make
good medium-term planning decisions while managing the operational risk in a
cost-effective way.

In addition to operational risk, the decision rules in Chapter 5 were also
designed to manage economic risk related to seasonal production planning
decisions. Shutting down a plant too early or too late is costly, and the developed
decision rules can assist production planners in managing the economic risk
related to the decision.

The topic of Chapter 6 is the cost-optimal installation of production ca-
pacities in a city-wide district heating system. Long-term investment decisions
are impacted by many uncertainties, regarding future demands and prices of
fuels, electricity and production technologies. The economic risk related to
the investment in new district heating systems is assessed through extensive
multivariate sensitivity analysis.

Summarizing, the research in this project covers both operational and
economic risk assessment for production planning on time horizons from a few
days to several years.

1.3 Heat load forecasting

In the daily operation and production planning of modern district heating
systems, one of the most important tools for managing operational and economic
risk is reliable forecasts of the heat load on the system. The heat production
of the following day is planned while accounting for bids in the day-ahead
electricity market. Short-term heat load forecasts with horizons up to 48 h are
particularly relevant in the daily production planning.

An important part of the research in this dissertation is devoted to improving
short-term heat load forecasts and quantifying their uncertainties. I therefore
digress slightly in this section and dive into a few of the technicalities of load
forecasting. Long-term heat load forecasts, with horizons of several years, are
used for sizing of district heating grids and production systems, and are often
created based on population growth models. While long-term forecasts are
relevant for planning of future systems, my work is focused on short-term heat
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load forecasts, and the term heat load forecast throughout this dissertation refers
to short-term forecasts.

The process of creating a load forecast can be divided into three elements:
input, model and output.

The input is the data that is used to train the model and predict the load.
Typical input data for heat load forecasts include weather variables such as
outside temperature, wind speed and solar irradiance. It is also common to use
the time-lagged load as input to forecast models.

The model is a mathematical mapping from input to output. Usually,
parameters in the model are adjusted by training the model (fitting), in order
to minimize the deviation between the output from the model and the desired
output. In the research literature, statistical time series models and machine
learning models are most predominant for forecasting load in district heating
systems (see e.g. (Kato et al., 2008; Grosswindhager et al., 2011; Idowu et al.,
2014; Fang and Lahdelma, 2016)). Bottom up physical models are difficult to
build for district heating systems due the high complexity of the system, but
knowledge about the physics of the system can be used to improve statistical
models (Nielsen and Madsen, 2006). In civil engineering, there is a strong
tradition for building energy models (BEMs). These models can achieve accurate
predictions of the energy consumption of a single building, but require detailed
input about geometry, exact location, materials etc. This data is typically not
available for all the dwellings in a district heating system, making BEMs hard
to use for district heating load forecasting. There are, however, new advances
using Bayesian calibration of BEMs on clusters of buildings, which may be a
first step towards more elaborate district load forecasts (Kristensen et al., 2017).

Finally, the last element of a load forecast is the output. The output is simply
the prediction of the load, given a model and a set of input data. Comparing
the output of the model to the actual heat load is the most common way to
measure the performance of the forecast.

Building a good load forecast is an iterative procedure of selecting the input
data, selecting, tuning and training the model and evaluating the performance.
It is crucial that this procedure is carried out in a structured way to ensure that
the forecast has good generalization performance. This means that the forecast
model performs well on previously unseen data. A common pitfall is overfitting,
a condition in which the model fits known data very well, but performs poorly in
out-of-sample predictions. By evaluating forecast performance on blind test data
that was not used for training the model, it is possible to get a better estimate
of the generalization performance of the forecast. A more sophisticated version
of this procedure is cross-validation, which better utilizes the data (Hyndman
and Athanasopoulos, 2014). It is important to stress that good forecasting
practices, especially regarding performance evaluation, are indispensable in the
process of creating high quality load forecasts.

It is difficult to compare performance fairly between different studies on
district heating load forecasting. Studies are often system-specific, and there is
not a tradition of benchmarking forecast models on a standard dataset as in e.g.
image recognition studies. In my work with creating heat load forecasts, I have
primarily used weather variables and time-lagged load data as input. I have
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observed a performance increase when moving from very simple linear models,
to more complex machine learning model such as support vector regression and
simple neural networks. However, these models perform similarly on the same
input data, and it has not been possible for me to improve performance further,
by using more advanced models. Given the same input data, there seems to be
a plateau in performance.

I believe that the next big advancement in heat load forecasting performance
will come from incorporating new types of input data and not just from employing
more sophisticated models. District heating load is driven by consumer demand
and being able to more accurately predict the behavior of consumers could lead
to better forecast performance. In Chapter 4, I use local holiday data as a proxy
to model human behavior in the forecast models. The performance improvements
were minor, but not insignificant on special days that are traditionally difficult
to forecast accurately (i.e. New Year’s Eve). Similar approaches and creative
use of new data sources may lead to better heat load forecasts in the future.

Data availability is higher than ever, also in district heating systems. Wireless
gathering of heat meter data for billing and control purposes is becoming
increasingly available. Hydraulic data that was previously estimated through
elaborate mathematical models (e.g. (Madsen et al., 1994; Arvastson, 2001)),
can be measured at a reasonable cost today. Weather data, both measurements
and forecasts are also becoming easier to obtain. The Norwegian Meteorological
Institute already provides free weather data, and the Danish Meteorological
Institute has been announced to follow suit between 2019 and 2023.

The improved availability of weather data is good news for heat load fore-
casters. It is important to remember, that the real test of a load forecast is
the performance that can be achieved in actual live operation. An good live
system has to produce a load forecast without human interference, even if data
feeds are missing or corrupted. Throughout this project, I have implemented
several live load forecasting systems, and sometimes practicalities, such as a lack
of real-time data, can make a more sophisticated model useless. Adding more
data sources may substantially increase the technical debt of the system and
make it more vulnerable (Sculley et al., 2015). Reliability is just as important
as accuracy when creating tools for the everyday production planning in district
heating systems.

1.4 About this dissertation

Energy systems are changing rapidly with extensive installation of power gen-
eration from variable renewable energy sources. District heating can play an
important role in future sustainable energy systems, but the sector must adapt
to the new reality. Increased integration between the heating and electricity
sectors introduces new uncertainties for district heating planners and makes
risk assessment more important than ever.

The body of research presented in this dissertation provides tools and insight
relevant to risk assessment for both short-, medium- and long-term production
planning of district heating. Chapters 3 and 4 are focused on heat load forecasts,
that are valuable tools for short-term production planning. Chapter 5 deals
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with medium-term seasonal planning decisions, and Chapter 6 treats economic
risk regarding long-term investments in future district heating systems.

Each of the four Chapters 3-6 are built around a research article with a
small introduction to the motivation, methods and main findings of the article.

Chapter 2, The Aarhus district heating system is a brief introduction to the
Aarhus district heating system which served as the primary study case and data
provider for the project. Key parts of the project’s data foundation are also
presented here.

Chapter 3, Weather-based forecast uncertainties, addresses the problem of
weather-based uncertainties in short-term load forecasts. The technique of
ensemble weather prediction is borrowed from meteorology and applied to create
a probabilistic load forecast. The weather-based forecast uncertainties are
applied to a temperature control scheme, capable of reducing heat losses without
compromising security of supply.

Chapter 4, The human factor, treats the problem of including the behavior
of the heat consumers in load forecasts. The potential of improving heat load
forecasts using local holiday data to better capture the human component is
assessed. In addition, this chapter quantifies how much load forecasts can be
improved by improving weather forecasts.

Chapter 5, Seasonal production planning, is about assessing and managing
the risk related to performing seasonal shutdown of a large production unit in a
district heating system. The uncertainty on the optimal decision stems from
variations in seasonal weather patterns from year to year and is estimated using
an extensive weather dataset. Decision rules are developed to aid production
planners in taking the best decisions in the face of uncertainty.

Finally, Chapter 6, Production system planning, addresses the economic
risk on cost-optimal investment decisions for future district heating systems.
Variations in electricity and fuel prices and developments in investment costs
are uncertainties that affect cost-optimal allocation of production capacities.
The effects of these uncertainties on cost-optimal heat production systems are
estimated by means of extensive multivariate sensitivity analysis.
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Chapter 2

The Aarhus district heating
system

This chapter is intended as a brief introduction to the district heating system of
Aarhus, Denmark and a presentation of a key part of the data foundation for
the project: seven years of hourly heat load paired with historical weather data.
The Aarhus district heating system serves as a case study and data provider
throughout the project.

2.1 District heating in Aarhus

Aarhus is the second-largest city in Denmark, with a population of about 340,000
people as of January 2018 (Aarhus Kommune, 2018), and about 95% of the
population have district heating.

The seed of the modern Aarhus district heating system was planted in the
early 1980s, when it was decided to join a number of local heat distribution
grids together by building a large transmission grid, owned by the municipality.
Heat production was transformed from local oil boilers to large centralized CHP
production fueled by coal. The centralization was motivated by the oil crises
in the 1970s and became the foundation of one of the largest district heating
systems in Denmark.

Today, the Aarhus district heating system consists of a transmission system
and a distribution system. The transmission system receives heat from most of
the production units and operates at high supply temperatures with large pipe
diameters. Temperatures in the transmission system vary over the year, but
typical values are about 105 ◦C for supply and 45 ◦C for return temperature.
The transmission system spans 38 km from north to south, and consists of more
than 136 km pipes. A map of the transmission system as of 2010 is shown in
Figure 2.1. The distribution system delivers the heat to the end users and
comprises a number of smaller grids. The distribution system is coupled to the
transmission system through about 50 area substations with heat exchangers.
The distribution grids consist of more than 2,000 km pipes and operate at lower
temperatures compared to the transmission grid, typically 75 ◦C for supply and
45 ◦C for return temperature.
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2. The Aarhus district heating system

Figure 2.1: The Aarhus transmission system as of 2010 is drawn in red. Some of the
heat production units in the system are shown, with V denoting heat only boilers and
KV denoting CHP production. The dotted transmission line was planned at the time
and has since been completed.

The division between transmission and distribution grids only exist in the
largest few district heating systems in Denmark. A vast majority of Danish
district heating systems are smaller and operate without a transmission system,
and with fewer production units.

Since the 1980s, the Aarhus heat production system has incorporated an
increasing amount of heat from waste incineration CHP, and in 2015 it covered
25% of the annual heat load. A large CHP plant located in Studstrup north of
Aarhus has been providing a majority of the heat since the 1980s. The plant,
Studstrupværket, was expanded in the 1980s and burned coal until 2016, when
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it was converted to wood pellets. The primary heat production from coal and
waste incineration has been supplemented by oil boilers in peak load situations,
and in the last few years, an electric boiler, has been able to provide heat when
electricity prices are low. Finally, a number of production units using biomass
and industrial waste heat supplement the base load with a small combined
capacity. With the completion of a large straw fired CHP plant in Lisbjerg in
2017, Aarhus reached the goal of providing fossil free district heating.

Summing up, the heat production system of Aarhus has been through a
transformation from decentralized oil boilers, over centralized coal CHP to
biomass CHP and waste incineration. Although the heat production is now
entirely fossil free, new challenges arise in the horizon. The large Studstrup
CHP plant, now fired by wood pellets, is coming to the end of its lifetime around
2030, and it will be necessary to decide on a replacement. Given the time scale
of planning large-scale production infrastructure, this work must begin soon.

Detailed technical and economic data about the heat production units in
Aarhus are used for realistic production simulations in Chapters 5 and 6.

2.2 The heat load data

Throughout this dissertation, heat load refers to the load on the heat production
system. At all times, the production system must deliver an amount of heat
equal to the consumer demand plus the heat that is lost in the system. The
heat loss in Aarhus is approximately 15-20%, and most of the heat is lost in
the distribution grids. I measure the total heat load on the system as the total
output from all the heat production units.

All the studies in this project are based on heat load from the Aarhus system.
Seven years of hourly heat load data from 2009 to 2016, except 2011, has been
provided by AffaldVarme Aarhus, the municipal district heating company. I
chose not to include data from 2017, due to many data errors and fallouts in
connection with the opening of the new straw fired CHP plant in Lisbjerg.

In Figure 2.2(a-b), the hourly heat load time series for the seven years are
plotted. Inspecting the plots, it is clear that although the heat load is different
from year to year, there are some common characteristics between the years.
Unsurprisingly, the heat load is high in winter and low in summer. The daily
variations in the load are also significantly larger in the winter.

A few data errors appear to have been corrected, e.g. in November of 2012,
but overall this is a high quality dataset that can provide good insight into the
variations in the heat load over several years.

The heat demand in Danish district heating systems can be divided into
heat for space heating and heat for hot water consumption. The demand for
space heating is the main cause of the difference between summer and winter
loads, as it is highly dependent on the weather. The heat demand for hot water
consumption changes little over the year, although the water that is heated for
consumption may initially be colder during winter. The summer base load is
dominated by hot water consumption.

The heat load time series from Figure 2.2(a-b) are summarized in Tables 2.1
and 2.2. The monthly means of the heat load of Aarhus are shown in Table 2.1.
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Figure 2.2: (a) Hourly heat load for Aarhus, in 2009, 2010, 2012 and 2013.
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Figure 2.2: (b) Hourly heat load for Aarhus, in 2014, 2015 and 2016.
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July and August tend to have the lowest mean loads and January and February
tend to have the highest loads. Most of the months with the highest load (in
bold) fall in the years 2010 and 2012, and 2010 has the highest annual mean
load with 418MW. This is 95MW higher than the mean load of 2014, the year
with the lowest load. Thus, while there are clear patterns in the monthly mean
load, there are also significant variations in the load from year to year.

Table 2.1: Estimated mean of the heat load by month. The maximum value within
each month is highlighted. The last row shows the mean load over the entire year.

Mean heat load [MW]
2009 2010 2012 2013 2014 2015 2016

January 630 743 621 637 636 578 647
February 617 712 689 656 540 590 576
March 502 533 444 625 430 467 488
April 250 368 401 402 320 345 395
May 226 293 244 213 207 253 201
June 176 173 208 148 137 184 146
July 144 131 155 128 124 155 147
August 144 158 151 139 147 139 146
September 186 223 224 182 155 179 141
October 355 364 374 269 245 301 331
November 433 561 486 450 394 414 513
December 605 772 674 510 558 473 522

Annual 355 418 388 362 323 338 354

Table 2.2: Estimated standard deviation of the heat load by month. The maximum
value within each month is highlighted. The last row shows the standard deviation of
the load estimated for the entire year.

Standard deviation of heat load [MW]
2009 2010 2012 2013 2014 2015 2016

January 71 63 89 124 131 68 106
February 75 73 150 68 76 79 72
March 78 119 100 95 75 72 95
April 58 79 72 103 86 83 63
May 38 75 73 60 57 39 57
June 33 31 30 19 14 32 22
July 29 12 17 16 13 20 18
August 21 22 16 16 31 14 20
September 33 42 57 43 35 36 22
October 66 82 80 48 49 56 66
November 60 123 57 89 84 103 85
December 99 103 91 62 73 80 70

Annual 194 240 204 211 189 168 195
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Table 2.2 summarizes the standard deviation of the heat load estimated
within each month, a measure of the magnitude of the load variations. The
variations tend to be smallest in the summer months and largest the cold months
from November to April, although the picture is not as clear as for the mean
loads. Again, many of the months with the highest standard deviation fall in
2010, but the highest monthly standard deviation is observed in 2012. February
of 2012 displays loads as high as 1,080MW and as low as 386MW, resulting in
a standard deviation of 150MW for the month.

The periodic patterns in the heat load can be explored in several ways,
but since forecasting is an important part of this project, the autocorrelation
function is used here. The autocorrelation of a time series is the Pearson
correlation of the time series with a time-lagged copy of itself, as a function
function of the time lag. Figure 2.3 shows the autocorrelation function of
the heat load, estimated from the seven years of hourly data. The top figure
shows the long-term structure of the autocorrelation and illustrates the annual
periodicity of the heat load. The time lag is shown in hours and 4,380 h is one
half year and 8,760 h is one year. The negative peak at half a year and the
positive peak at a whole year indicate a strong annual pattern in the load, a
pattern that reflects the annual variations in the weather.

Zooming in, the bottom panel of Figure 2.3 shows the short-term structure
in the autocorrelation. There are peaks at every multiple of 24 h, revealing
a distinct daily periodicity in the load. The daily pattern in the load stems
from the human component in the district heating system: heat consumers who
follow a daily schedule and shape the consumption pattern. When setting out
to create a forecast of a time series, it is helpful to familiarize oneself with the
timewise structure of the data. In Chapters 3 and 4, the strong correlation with
loads lagged by 24 h and 48 h is exploited to create heat load forecasts with
horizons up to two days.

2.3 Heat load and the weather

The load in a district heating system is highly dependent on the weather. In
Scandinavian heating systems, the load primarily depends on the outside tem-
perature and, to a lesser degree, the wind speed and solar irradiance (Frederiksen
and Werner, 2013; Arvastson, 2001).

To illustrate the weather dependence of the heat load, I use data from
the National Centers for Environmental Prediction (NCEP) under the United
States National Weather Service. Data about air temperature, wind speed and
solar radiation is sourced from two high-resolution global reanalysis datasets
CFSR and CFSv2 (Saha et al., 2010, 2011). This data is used to train the
machine learning forecast models in Chapter 4 and to simulate the heat load
in Chapter 5. Where available, measurements from local weather stations may
be more accurate, but the quality of the CFSR and CFSv2 data is high, and it
is available for all years from 1979 to 2018. Using data from such a long time
period can help capture rare weather events and their impact on district heating
systems.
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Figure 2.3: The autocorrelation function for the heat load of Aarhus estimated from
seven years of hourly data. The top figure shows the long-term correlations, with
8,760 h constituting one year. The bottom figure is a zoom to show the short-term
correlations up to nine days. 95% confidence intervals are shown in light blue.
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In Figure 2.4, the heat load is plotted against the outside temperature for
each hour in the seven years: 2009-2016, excluding 2011. The load versus
temperature forms a hockey stick shape, with a linear relationship at low
temperatures and a constant load at higher temperatures. The hockey stick
shape is well-known in district heating literature and reflects the fact that
the temperature dependence of the load subsides as the weather gets warmer
(Frederiksen and Werner, 2013). The linear relationship during the cold period
is strong, and the Pearson correlation coefficient is −0.90 between the hourly
load and the outside temperature.

Figure 2.4: Scatter plot of the hourly heat load versus the outside temperature
over seven years. The histograms in the side panels illustrate how the variables are
distributed. The Pearson correlation coefficient is −0.90 between heat load and outside
temperature.

In the side panels of Figure 2.4, histograms illustrate how the heat load and
the temperature are distributed individually. While the temperature distribution
is fairly symmetric, the heat load distribution is heavily skewed towards low
loads, with a long tail of high loads. This is another reflection of the nonlinearity
in the load-temperature relationship.
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While there is a strong relationship between the heat load and the outside
temperature, the point cloud has a substantial vertical width. Therefore, the
outside temperature is insufficient in itself to accurately model the heat load on
an hourly basis. It is necessary to incorporate more data to accurately forecast
hourly heat loads, e.g. information about the autocorrelation of the load or
other external variables such as wind speed and solar irradiance.

Figure 2.5: Scatter plot of the hourly heat load versus the wind speed over seven
years. The histograms in the side panels illustrate the distribution of the variables.
The Pearson correlation coefficient is 0.27 between heat load and wind speed.

Figure 2.5 depicts the relationship between the average hourly wind speed
and the heat load. The relationship is not nearly as well defined as was the
case with the temperature, but there is a positive correlation coefficient of 0.27.
Previously, wind chill has been shown to affect the heat load mainly at high
loads, and with relatively small effect (Frederiksen and Werner, 2013). In this
work, wind components are found to be statistically significant, albeit small in
load forecasting models.

Finally, Figure 2.6 shows the relation between the heat load an the solar
irradiance. Again, no clear relationship can be observed, although there is a
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Figure 2.6: Scatter plot of the hourly heat load versus the solar irradiance over seven
years. The histograms in the side panels illustrate how the variables are distributed.
The Pearson correlation coefficient is −0.32 between heat load and solar irradiance.

negative correlation of −0.32. Much of the correlation may be explained by
the temperature dependence on the load and the low solar gains during winter.
Heat load reductions due to solar gains have previously been found to be small
(Werner, 1984), but most significant during the spring and fall (Frederiksen and
Werner, 2013).

Among district heating operators, however, it is well known that the heat
load can shift significantly due to changing cloud cover, and it is worth exploring
whether solar irradiance can improve heat load forecasts. Including solar gains
in heat load forecasts is challenged by the fact that cloud cover is difficult to
forecast accurately, especially on very local scale with high temporal resolution.

In the next chapter, I dive into weather-based uncertainties, their influence
on heat load forecasts and how better knowledge of these uncertainties can
improve operation of district heating systems.
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Chapter 3

Weather-based forecast
uncertainties

3.1 Motivation

Operation and planning of energy systems are highly dependent on the weather.
In energy systems with large penetrations of wind and solar generation, the
supply side of the system is dominated by the fluctuations in wind speeds
and cloud cover. On the demand side, especially the heating load, but also
the electricity load on the system is highly temperature dependent. The close
connection between weather conditions and the operation of energy systems, is
bound to pose challenges for system operators and production planners in the
electricity and district heating sectors. In this first study, I explore the potential
for optimizing system operations through better knowledge of the weather-based
risk profile.

Weather prediction is challenging, because it depends on highly complex
atmospheric systems. Fortunately, the tremendous societal values of weather
predictions have ensured that significant research effort and funding have been
devoted to improving weather forecast throughout the 20th century (Inness and
Dorling, 2012). Accurately forecasting the weather using numerical weather
prediction (NWP) models requires good knowledge about initial conditions as
well as accurate numerical representation of the atmosphere. By running NWP
models multiple times with perturbed initial conditions and model physics,
meteorologists can create a probabilistic forecast called an ensemble forecast.
Ensemble forecasts usually consist of 5-100 point forecasts, and can be trans-
formed to probability densities through statistical post-processing (Gneiting
and Raftery, 2005).

Today, energy systems researchers can stand on the shoulders of giants,
and use the meteorological estimates of the uncertainties of weather forecasts
to explore the impact of imperfect knowledge on energy systems. Electricity
load forecasts have been extended using ensemble weather prediction to create
probabilistic load forecasts (Taylor and Buizza, 2002, 2003). Ensemble weather
predictions have also been used to estimate the uncertainty of wind (Möhrlen
and Jørgensen, 2006; Taylor et al., 2009) and solar (Alessandrini et al., 2015)
power forecasts. However, ensemble weather predictions have not previously
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been applied to district heating load forecasting.
The following article, published in the Elsevier journal Applied Energy,

demonstrates the value of using ensemble weather predictions for heat load
forecasting. This first use-case is focused on the distribution part of a district
heating system and how better knowledge of the forecast uncertainties can save
energy by reducing the heat losses to the ground.

3.2 Methods

The methodology of the study can be divided into two parts. In the first part, I
apply ensemble weather predictions to heat load forecasting. In the second part
I simulate how the information about the forecast uncertainty can be applied to
improve the control of the distribution of heat to consumers.

Ensemble heat load forecast

The heat load in district heating systems has a strong 24 h autocorrelation.
Starting from this point, and correcting for the changes in the weather, I have
constructed a simple autoregressive model to forecast the heat load, based on
the outside temperature, wind speed and solar irradiance. The model reads

P̂t|t−24 =aPt−24 + b (T̂ out
t|t−24 − T out

t−24)

+ c (v̂wind
t|t−24 − vwind

t−24) + d (Îsun
t|t−24 − Isun

t−24) , (3.1)

where P is the heat load and t denotes the hourly time steps. The weather
parameters outside temperature, wind speed and solar irradiance are denoted
by T out, vwind and Isun. Predicted values of load and weather variables are
accented by ·̂ and a, b, c and d are model parameters. The predicted heat load
is dominated by the outside temperature and the 24 h-lagged value of the heat
load. The intuitive interpretation of the model is that the heat load is forecasted
as the 24 h-lagged heat load corrected for the change in weather conditions over
the past 24 h.

In order to create an ensemble of heat load forecasts, the model (3.1) has
been fed with an ensemble of weather forecasts. The Danish Meteorological
Institute (DMI) has kindly provided me with ensemble forecasts consisting of 25
instances of weather forecast for the city of Aarhus. Feeding these 25 ensemble
members through the heat load forecast model resulted in an ensemble of 25
heat load forecasts, as illustrated in Figure 3.1. From the spread of the load
forecast ensemble, the time-dependent weather-based forecast uncertainty can
be estimated. The higher the spread of the ensemble forecast, the higher the
uncertainty.

Uncertainty-based temperature control

In large district heating systems, the heat is distributed to the consumers
through a number of area substations equipped with heat exchangers. The heat
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3.2. Methods

Figure 3.1: Example of how ensemble weather predictions are combined to create
an ensemble heat load forecast. The forecast for January 23 2016 is shown, and it is
calculated at midnight using the model in (3.1).

delivered across a heat exchanger per unit time P is given as

P = cwρwQ (Tsup − Tret) , (3.2)

where Tsup and Tret are the supply and return temperatures. Q is the volume
flow rate and cw and ρw are the specific heat and density of water.

The delivered heat can be increased in two ways. The first is by raising the
supply temperature, and thus increasing the gap between supply and return
temperatures, since the return temperature is largely outside of the control of
the operator. The second way is by increasing the volume flow rate.

Raising the supply temperature increases the amount of heat that is lost
to the ground. A rule of thumb among operators says that this heat loss is an
economical order of magnitude larger than the extra pumping power required
when increasing the volume flow rate instead. Thus, it is worthwhile to keep
the supply temperature as low as possible, but this can cause problems in a
peak load situation. If the system runs out of pumping capacity, because the
supply temperature is too low, severe operational problems follow.

Therefore, it is customary to build a security margin into the supply tem-
perature control. The security margin accounts for the uncertainty in the load
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3. Weather-based forecast uncertainties

forecast, which means that it can be narrower when the forecast uncertainty is
small and wider when the forecast is very certain.

In the paper, I compare the performance of an optimized temperature control
scheme in three situations: The current operation of the substations, security
margins based on constants forecast uncertainties and security margins based
on time-dependent weather-based uncertainties.

3.3 Main findings

For the first time, I demonstrated that probabilistic heat load forecasts can be
created in a straight-forward way based on ensemble-weather predictions. This
technique can provide operators and production planners of district heating
systems with valuable knowledge about the time-dependence of the forecast
uncertainty. With this in hand, operators know when to play it safe, and when
they can push the system.

As a first application of ensemble heat load forecasts, I explored the supply
temperature control of area substations. Controlling the supply temperature
according to time-dependent weather based forecast uncertainties had a small
potential to reduce heat losses and save energy. However, in systems with
under-dimensioned, or limited pumping capacity, more significant benefits could
be observed.

The low-level operation of district heating systems can benefit, not only from
better predictions of load, but from better knowledge about the uncertainty of
those predictions.
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a b s t r a c t

Ensemble weather predictions are introduced in the operation of district heating systems to create a heat
load forecast with dynamic uncertainties. These provide a new and valuable tool for time-dependent risk
assessment related to e.g. security of supply and the energy markets. As such, it is useful in both the pro-
duction planning and the online operation of a modern district heating system, in particular in light of the
low-temperature operation, integration of renewable energy and close interaction with the electricity
markets. In this paper, a simple autoregressive forecast model with weather prediction input is used
to showcase the new concept. On the study period, its performance is comparable to more complex fore-
cast models. The total uncertainty of the heat load forecast is divided into a constant model uncertainty
plus a time-dependent weather-based uncertainty. The latter varies by as much as a factor of 18 depend-
ing on the ensemble spread. As a consequence, the total forecast uncertainty varies significantly. The fore-
cast model is applied to the operation of three heat exchanger stations. Applying an optimized
temperature control can significantly lower supply temperatures compared to current operation.
Improving the temperature control with dynamic time-dependent weather-based uncertainties can
lower the supply temperature further and reduce heat losses to the ground. The potential benefit of using
dynamic uncertainties is larger for systems with relatively smaller pumping capacities.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

District heating systems exist in most countries in the Northern
Hemisphere but are most widespread in the Nordic countries and
in the former Soviet Union [1]. In the EU, district heating covers
about 13% (2010) of the total domestic heating demand. It has been
estimated that this could potentially be increased to 50% by 2050
[2]. Unlike individual house heating, district heating requires

investment in city-wide distribution networks. As a consequence,
district heating is not competitive in low density areas, but has a
significant potential in many high heat density urban areas, despite
reduced heat demand from future building energy retrofit solu-
tions [3].

District heating can limit the use of high exergy fuels such as oil
and gas for heat-only applications. This is due to its ability to uti-
lize low-quality energy sources such as municipal waste and
excess heat from heavy industrial processes and electricity produc-
tion. Increasing the use of biomass and solar thermal energy in the
district heating sector is useful in the process of decarbonizing the
energy sector. Combined use of large-scale heat pumps and electric
boilers allows district heating systems to utilize electricity

http://dx.doi.org/10.1016/j.apenergy.2017.02.066
0306-2619/� 2017 Elsevier Ltd. All rights reserved.
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generated fromwind and solar power for heating in situations with
surplus generation [4,5].

Forecasting of both production and demand is becoming
increasingly important in the energy sector due to: (i) the growing
share of wind and solar energy and (ii) the focus on coupling the
electricity, heating and transportation sectors in smart energy net-
works [6]. In this context, a good forecast can be used to plan the
operation of flexible assets to minimize costs and environmental
impact. The uncertainty of the forecast can be used to quantify
financial risk in the energy market or operational risk related to
security of supply [7]. Forecast uncertainty can be estimated using
the technique of ensemble forecasting. Ensemble forecasting has
previously been used for electricity load forecasting, both in a lin-
ear [8] and in a neural networks context [9]. It has also been
applied to wind [10,11] and solar power forecasting [12] to esti-
mate the forecast uncertainty. In this paper, the technique of
ensemble forecasting is adapted to district heating load forecasting
for the first time. We are also the first to demonstrate how
dynamic forecast uncertainty could be applied to operate existing
heat exchanger stations with increased efficiency while retaining
security of supply.

1.1. Heat load forecast uncertainty

District heating production planning and operation involve
decision making under uncertain conditions. Hence, accurate fore-
casts of daily variations in the heat load are needed in the district
heating sector.

Variations in the heat load are caused by changing weather and
consumer behavior [13], and forecasting district heating demand
or heat load has been studied in a multitude of papers. A number
of commercial tools for this purpose also exist. Within academic
studies, machine learning approaches to top-down forecasting of
district heating demand have gained popularity in recent years.
Multilayered neural networks are used to predict heat load in
[14,15], and to predict cooling load in a district heating and cooling
system in [16]. In [17], the authors compare a number of different
supervised machine learning algorithms and conclude that support
vector regression performs best. Other studies such as [18] take a
more traditional statistical approach. In [18], physical knowledge
is used to limit the model space and statistical analysis is used to
refine the model and estimate the parameters. Stochastic time ser-
ies methods have also been successfully applied to heat load fore-
casting. This includes general transfer function models [19] and

seasonal autoregressive integrated moving average models (SAR-
IMA) [20,21]. The paper [22] demonstrated that decent forecast
performance can be achieved by simple autoregressive methods
with weather input. In [21], a comparison between a number of
linear regression models and a SARIMA model with exogenous
input favors a simple linear regression model using weekly heat
demand patterns. On the building level, [23] presents a heat
demand forecast that is a hybrid model using both physical,
autoregressive integrated moving average models (ARIMA) and
singular value decomposition methods.

While all of these studies benchmark the performance of their
models by some standard measure, not all of them address the
forecast uncertainty directly, e.g. through the use of prediction
intervals. In [20,23], prediction intervals are provided for the fore-
cast models, but these are estimated from the statistical uncer-
tainty on the model parameters only, and they do not take the
unpredictability of the weather input into account. In [21,22], for
instance, a perfect weather forecast is assumed when benchmark-
ing the model. However, weather forecasts are never perfect, and a
heat load forecast model that depends on a weather forecast is
bound to propagate some of the uncertainty in the weather fore-
cast into an uncertainty on the heat load forecast. The authors of
[15] estimate weather-based prediction intervals for one of their
forecast models. These prediction intervals are constant in time
and are estimated by simply adding Gaussian noise with mean 0
and standard deviation 1 to each of the weather variables in a
Monte Carlo simulation.

In this paper, we present a heat load forecast model with pre-
diction intervals that vary in time, due to the time variation in
the uncertainty of an ensemble weather forecast. An ensemble
weather forecast consists of multiple independent forecasts that
ideally cover the full range of possible weather conditions in a
given period. It can be used to estimate the most likely scenario
and quantify the time-dependent uncertainty of the weather vari-
ables. Each ensemble member represents an internally consistent
weather configuration based on a sophisticated meteorological
model which means that cross-correlations between different
weather variables are naturally captured.

A heat load forecast with dynamic prediction intervals is a new
and valuable tool for the district heating sector. Augmented with
cost estimates, it will allow production planners to take calculated
risk in unit commitment situations or when trading on the electric-
ity market. From an operational perspective, knowing the dynamic
uncertainties of a forecast enables operators to knowwhen to push

Nomenclature

dbP uncertainty on the heat demand forecast P̂ [MW]bP forecasted heat load, production or consumption [MW]
L likelihood function
qw density of water [kg/m3]
r standard deviation of forecast errors [MW]
rm standard deviation of model-based errors [MW]
rw
t standard deviation of the ensemble of heat demand

forecasts in time step t [MW]
rtot
t combined standard deviation, based on rw

t and rm in
time step t [MW]

a; b; c; d heat load model parameters
cw specific heat of water [MW h/kg��C]
Isun solar irradiance [W/m2]
k number of model parameters, used when evaluating AIC
P heat load, production or consumption [MW]
Q volume flow rate [m3/h]

Q ref reference volume flow rate for security of supply [m3/h]
Qmax water flow capacity of a heat exchanger station [m3/h]
rh relative humidity [%]
t subscript denoting hourly time steps
Tout outside temperature [�C]
Tret return temperature [�C]
Tsup supply temperature [�C]
Tmin
sup minimum supply temperature as a function of outside

temperature [�C]
vwind wind speed [m/s]
AIC Akaike Information Criterion
MAE mean absolute error [MW]
MAPE mean absolute percentage error [MW]
RMSE root mean square error [MW]
Sc.i superscript denoting Scenario i
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the equipment and when to exercise caution in uncertain weather
situations.

1.2. Application case

The potential savings of lowering the supply temperature are
significant as heat losses to the ground are reduced. In a district
heating system such as Aarhus’ the total annual losses amount to
approximately 15–20% of the produced heat, and reducing it is
very costly. In smaller systems, the relative heat losses can be even
larger. Heat losses from district heating systems to the ground
have been studied thoroughly in the literature both from a steady
state [24,25] and from a transient perspective [26]. Additional ben-
efits of lowering the supply temperature are widely known, and it
is a key element in the future’s 4th generation district heating
(4GDH) [27]. Other important benefits of lowering supply temper-
ature include: more electricity generated from CHP plants at the
same heat demand, higher COP value for large heat pumps and
more heat to recover from flue gas condensation [28].

A number of studies focus on dynamic optimization of different
district heating systems. In an early study [29], a model intended
for online unit commitment and temperature control is described.
More sophisticated hydraulic calculations are included in a num-
ber of similar, later studies. The most recent include [30] which
focuses on optimal pump control and computational speed, [31]
where a number of renewable heat sources are included in addi-
tion to traditional heat plants and [32] where a circular network
topology and a new mass flow control scheme is investigated. In
all cases, a central constraint in the optimization is a fixed maxi-
mum volume flow. In real systems, however, a safety margin is
imposed on the maximum flow by the operator to be able to react
to unforeseen increases in consumption. The magnitude of such
events depends on the heat load forecast error, part of which orig-
inates from uncertainties in the weather forecast. In the second
part of this paper, we demonstrate how heat exchanger stations
with dynamic security margins corresponding to the dynamic
uncertainties of the ensemble based heat load forecast can be oper-
ated to lower the supply temperature in peak load situations. This
coupling between forecast uncertainty and operational risk assess-
ment in district heating has not previously been studied.

The paper is structured as follows. Section 2 introduces the
ensemble weather data and describes and validates a heat load
forecast model. In this section we apply ensemble predictions to
provide a heat load forecast with dynamic prediction intervals.
Section 3 deals with the application case and describes the benefits
of operating heat exchanger stations according to ensemble fore-
casts. Section 4 concludes the paper.

2. Heat load forecast with weather ensemble input

The foundation of this analysis is an ensemble of 25 weather
forecasts for a geographical point in Aarhus. These weather fore-
casts are used as input to a simple model for the total production
of heat needed in Aarhus. The output is an ensemble of 25 produc-
tion time series, allowing us to estimate the uncertainty of the heat
load forecast. This uncertainty is composed of a weather-based
uncertainty and a model uncertainty.

2.1. Ensemble weather forecast data

The forecast ensemble consists of 25 ensemble members with
hourly values of outside temperature, wind speed, solar irradiance
and relative humidity. The forecasts are based on the HIRLAM
numerical weather prediction (NWP) model [33] and provided by
the Danish Meteorological Institute (DMI). The ensemble members

are generated by perturbing the initial conditions of the NWP
model with the purpose of estimating the probability distribution
of the forecasted weather [8]. Each forecast has a horizon of 54 h
and a new forecast becomes available every 6 h. The spatial resolu-
tion of the forecast is about 5:5 km� 5:5 km. In this study, the
ensembles for a geographical point in the western part of Aarhus
are used (N 56�10022.600, E 10�802.200). Forecast data ranging from
December 16th 2015 to March 1st 2016 has been available for this
analysis.

For simplicity, the many overlapping ensemble time series have
been reduced to a single ensemble of time series of outside tem-
perature, wind speed and solar irradiance. The value of the most
recent forecasts was assigned to each hour. Due to a 5 h delay in
the availability of the most recent forecast, the hours 5–11 from
each set of ensembles are used to resemble the most recent data
that would be available in real time operation. Fig. 1 shows the
resulting 25 time series for outside temperature, wind speed and
solar irradiance for a period in January and February 2016. Due

Fig. 1. Time series for the most recent available forecast for 25 ensemble members.
Outside temperature, wind speed and solar irradiance are shown with hourly
resolution for the period January 20th to February 5th 2016. Relative humidity is
not shown, as it proved irrelevant in the heat load modeling.
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to the short forecast horizons, many of the ensemble members are
fairly close to each other, thus making it difficult to see how many
there are. However, it is evident that the ensemble spread is not
constant, and this variation is crucial to the subsequent analysis,
e.g. notice how the temperature ensemble divides into two clusters
between January 24th and 26th.

2.2. Heat load forecast model

The heat load of Aarhus is the total heat production from all the
heat producing plants in the Aarhus district heating system. We
have used measured hourly production data for the period Decem-
ber 16th 2015 to March 1st 2016, except for January 15th to 20th
2016, due to a data outage in the SCADA system. To forecast the
heat demand, we used weather forecasts from DMI, available at
the time of prediction, as opposed to historical weather data.

For this paper, a simple and intuitive class of production fore-
cast models has been selected to high-light the new concept of
ensemble forecasting in district heating applications. The produc-
tion in a given hour is predicted as the production 24 h before,
adjusted by the change in weather conditions. This is a special case
of an autoregressive model with exogenous input (ARX). Mathe-
matically it reads:

bPtjt�24 ¼ aPt�24 þ b ðbT out
tjt�24 � Tout

t�24Þ
þ c ðbvwind

tjt�24 � vwind
t�24Þ þ d ðbIsuntjt�24 � Isunt�24Þ: ð1Þ

Here P is the total production of heat per unit time and �̂ denotes the
predicted value. The subscripts denote hourly time steps and
Tout; vwind and Isun denote outside temperature, wind speed and
solar irradiance respectively. a; b; c and d are model parameters.
Note that a has no physical interpretation and depends on the time
series only. In order to ease the notation, we suppress the prediction

horizon and let bPt denote predicted heat load in time step t based
on the most recent available weather forecasts.

2.2.1. Model selection
The ensemble weather forecast included the following weather

variables: outside temperature, wind speed, solar irradiance and
relative humidity. For model selection and fitting the model the
ensemble mean of each of the weather variables was used. This
technique often provides a better weather forecast compared to
using a single run of a numerical weather model [34]. The appro-
priate model structure (1) was determined in the following way:

we began with the simple assumption that bPt ¼ aPt�24. This
assumption was motivated by the fact that the production time
series has a clear daily pattern and a strong 24 h autocorrelation.
Then we constructed a multitude of models by adding all the pos-
sible combinations of 24 h differenced weather terms such as

b ðbT out
t � Tout

t�24Þ, correcting for the weather changes during the past
24 h. This process yielded 16 different model structures. The mod-
els were fitted and cross-validated on the period December 17th to
February 5th (except January 15th to 20th due to an outage in the
SCADA system). In the model selection and benchmarking process
we used 10-fold cross-validation. Two criteria were used for model
selection. The first was the root mean square error. It is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
t

ðbPt � PtÞ
2

s
; ð2Þ

where N is the number of time steps and bPt and Pt are the predicted
and actual production in time step t. The root mean square error
was calculated for all the validation periods and averaged. Of all
the 16 models, the one described in (1) yielded the lowest root

mean square error. The second model selection criterion was the
Akaike Information Criterion (AIC), defined as

AIC ¼ 2k� ln Lð Þ; ð3Þ
where k is the number of free parameters in the model, andL is the
likelihood function [35]. The AIC is a measure of the information
that is lost when representing a signal with a statistical model;
therefore the lower the AIC-value is, the better is the model. The
AIC rewards goodness of fit, but punishes the number of variables,
and is a good criterion for avoiding overfitting.

Models including both temperature b ðbT out
t � Tout

t�24Þ and wind
c ðv̂wind

t � vwind
t�24Þ yielded reasonable results. Adding either a solar

term dðbIsunt � Isunt�24Þ or a humidity term e ðr̂ht � rht�24Þ improved
the model slightly, but the one with the solar term performed best.
These two models and the one with all four weather differenced
terms had very similar AIC-values. Thus, we settled on the model
in (1) with no humidity term as, it had the lowest RMSE and a very
low AIC-value in the cross-validation. Another problem with the
model including all the weather terms was that the p-value for
the humidity terms was often so high that the null hypothesis that
the coefficient was 0 could not be rejected at the 5% confidence
level.

The model parameters for (1) estimated from the cross-
validation period are shown in Table 1. Fig. 2, shows an example
of the prediction of the model along with the historical production
for the period January 20th to February 5th. The black curve is the
historical production and the red curve is the model. The predic-
tion intervals shown in blue and gray will be discussed in
Section 2.3.

2.2.2. Model performance
Three standard error measures were used to benchmark the

performance. Besides the root mean square error we used the
mean absolute error defined as

MAE ¼ 1
N

X
t

jbPt � Ptj; ð4Þ

and the mean absolute percentage error given by

MAPE ¼ 1
N

X
t

bPt � Pt

Pt

�����
�����: ð5Þ

The model’s performance was evaluated through 10-fold cross-
validation on the cross-validation period. We also evaluated the
model’s forecast performance in an out-of-sample test using the
period from February 5th to March 1st. Note that this data has
not been used for fitting or model selection and is completely
blind.

The model’s performance in the cross-validation is comparable
to the performance on the blind test period. Furthermore, its per-
formance is comparable to that of a commercial forecasting system
utilized by the district heating company of Aarhus on a forecast
horizon of 0–24 h. The performance of our model in the cross-
validation and test period is summarized in Table 2. For compar-
ison, we also show the performance of the commercial forecasting

Table 1
Parameter estimates from the model (1) fitted to production data from December
17th 2015 to February 5th 2016.

Estimate Standard deviation Unit

a 0.999 0.002 –
b �20:0 0.5 MW/�C
c 6.1 0.4 MW/m/s
d �0:21 0.03 MW/W/m2
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system on the test period. Fig. 3 is a scatter plot of the predicted
versus the realized heat load in the blind test period. It is clear that
the model predicts the heat demand reasonably well without over-
fitting. From the histograms we also see that the main structure of
the distribution of the heat load is captured as well.

For the application of ensemble forecasting to the operation of
heat exchanger stations, the model has been used to forecast heat
consumption in three different area substations in the Aarhus
Area: Holme, Rundhøj and Hørning. The model was fitted, cross-
validated and benchmarked as described above. Naturally, this
resulted in parameter estimates different from those shown in
Table 1 where the model was fitted to the total production, but a
was always very close to 1, indicating a stable model. The forecast
performance on each of the different areas is summarized in
Table 3. It is clear that the model performance is reasonable and
similar across the three different substations.

It is worth noting that the model performs decently, despite its
simplicity. This model was chosen for its simplicity and trans-
parency. For online forecasting purposes it is possible to achieve
better performance. This can be done by using more complex mod-
els such as support vector regression with non-linear kernels and
by continuously refitting the model to account for the newest

available data. However, such an approach would be less transpar-
ent and reproducible for the present proof-of-concept application.
We emphasize that this model is valid for the winter period only
and is intended for demonstration purposes. Due to the limited
data period, certain seasonal dynamics in the relationship between
the heat demand and the weather may not be captured. We there-
fore recommend that district heating operators who wish to use
ensemble based uncertainties in the operation augment their

Fig. 2. The production model on the period from January 20th to February 5th along with the actual production. The width of the gray band shows the weather-based 95%
confidence bounds. The combined width of the gray and the blue band indicates the total 95% prediction interval, including both weather-based uncertainties and model
uncertainties. On the bottom the prediction interval is shown. The pure model uncertainty 1:9599rm is drawn as a fine yellow line. The very fine colored curves in the top
figure are the production ensemble members used to estimate the weather-based uncertainty. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Root mean square error, mean absolute error and mean absolute percentage error in
the cross-validation and on the test period for the presented model (1) and the
commercial system used in the production planning of the Aarhus district heating
system.

RMSE (MW) MAE (MW) MAPE (%)

Cross-validation 41 32 5.7
Blind test period 41 31 5.4
Commercial system,
blind test period 41 32 5.4

Fig. 3. Scatter plot of the predicted heat load versus the realized heat load on the
blind testing period.
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own heat load prediction model with ensemble weather forecasts.
The methodology we apply in the following section can be applied
to any heat load prediction model that is based on weather
forecasts.

2.3. Uncertainties in the heat load model

The production model has uncertainties stemming from two
sources: From statistical uncertainty of the model and from uncer-
tainty on the weather input.

Feeding the 25 weather ensemble members through the pro-
duction model yields an ensemble of possible heat load outcomes.
The weather-based uncertainty has been estimated by taking the
standard deviation of the production ensemble for each time step
and scaling it up to a 95% confidence interval under an assumption
of normality. This time-varying confidence interval is shown in
Fig. 2 as a gray band around the red model curve. If one looks clo-
sely, the production ensemble members can be seen as very fine
colored curves.

This means that the symmetric, weather-based confidence
bounds arebPt � 1:9599rw

t ; ð6Þ
where rw

t is the standard deviation of the ensemble of production
models in time step t and 1.9599 is the 97.5% quantile of the stan-
dard normal distribution Nðl ¼ 0; r ¼ 1Þ.

The combined time-varying 95% prediction interval, including
both weather-based uncertainty and statistical model uncertainty
has been estimated under the assumption that the weather-
based errors and modeling based errors are independent and nor-
mally distributed. This means that the combined standard devia-
tion rtot

t in time step t, can be found as

rtot
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rw

tð Þ2 þ rmð Þ2
q

; ð7Þ
where rm is the standard deviation of errors stemming from the
statistical model uncertainty. It has been estimated such that the
number of time steps in which the forecast error exceeds rtot

t

matches the expected quantile under assumption of normality.
In the bottom part of Fig. 2, the time-variation of the prediction

interval is shown. The weather-based part of the prediction inter-
val (in gray) varies between 3:5 MW and 64:9 MW – a variation of
more than a factor of 18. This results in a variation of the combined
prediction interval between 74:4 MW in the best case and
98:7 MW in the worst case. The constant model uncertainty, plot-
ted as a fine yellow line, is estimated to 74.3 MW. Note that the
quadratic summation of the uncertainties makes the model uncer-
tainty dominate completely when the weather-based uncertainty
is small.

Applying the combined prediction interval to the period from
January 20th to February 5th, we find that 3:1� 0:1% of the actual
historical load lies above the upper bound and 3:6� 0:1% lies
below. Since the upper bound is the most important, and the upper
bound is supposed to be a 97.5% quantile, we conclude that this is a
reasonable method for estimating the dynamic prediction intervals
on the heat load forecast.

In the following section, the procedure outlined above will be
applied to estimate the time-dependent weather-based uncertain-
ties on forecasts of the heat consumption on the three heat exchan-
ger stations Holme, Hørning and Rundhøj.

3. Application case: heat exchanger operation

The Aarhus district heating system consists of a transmission
system and a distribution system. This is a common division in lar-
ger district heating systems and is also found in e.g. Copenhagen
and Stockholm. The transmission network consists of larger pipes
and operates at a high supply temperature compared to the distri-
bution system. Most production units supply their heat into the
transmission network. The distribution system is a number of net-
works that supply heat all the way to the end consumers. The
transmission system and the distribution system are connected
in a number of area substations or heat exchanger stations where
heat is delivered from the transmission side to the distribution
side. This is illustrated in Fig. 4. There are around 50 such area sub-
stations in the Aarhus area and we have chosen three for this anal-
ysis, specifically Holme, Rundhøj and Hørning in the southern part
of Aarhus.

In the following sections, the focus is on the distribution side,
immediately after the heat exchanger station.

A simple energy consideration shows that the heat delivered
per unit time P across a heat exchanger is

P ¼ cwqwQ Tsup � Tret
� �

: ð8Þ

Here, cw and qw are the specific heat and density of water at the
appropriate temperature, Q is the water volume flow rate and Tsup

and Tret are the supply and return temperatures. This energy bal-
ance is true on both sides of the heat exchanger and forms the back-
bone of the following analysis.

The heat demand on the distribution side is determined by
weather and consumer behavior and must be met in all time steps
by proper control of the heat exchanger station. The amount of
heat delivered to the consumers can be controlled by changing
the volume flow rate Q or the supply temperature Tsup on the dis-
tribution side. The return temperature Tret is largely beyond the
control of the substation operators and mainly determined by
the quality of consumer installations.

From (8) it is clear that the supply temperature can be lowered
at the expense of increasing the water flow rate which increases
the power consumptions of the pumps. However, this extra cost
is small compared to the savings that can be achieved from
lowering the supply temperature and will not be considered
further.

Fig. 4. The transmission system is connected with the distribution system by a
number of area substations or heat exchanger stations. The heat consumption from
the heat exchanger station is given by (8) in terms of water flow rate Q and supply
and return temperatures Tsup and Tret on the distribution side. The house represents
the consumers as well as additional substations on the consumers’ premises.

Table 3
Mean absolute percentage error for the cross-validation and on the test period for the
model (1) applied to the heat load of the area substations Holme, Hørning and
Rundhøj.

Substation

MAPE

Holme (%) Hørning (%) Rundhøj (%)

Cross-validation 5.6 4.6 5.3
Blind test period 5.3 6.5 6.2
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3.1. Control scenarios

In the present analysis, we outline and compare three different
scenarios for the control and operation of heat exchanger stations.
Scenario 1 is the actual historical operation of the stations. Sce-
nario 2 is a control scheme that minimizes the supply temperature
while ensuring security of supply. Scenario 3 is the same as Sce-
nario 2 but improved with information about the dynamic
weather-based uncertainties of the demand forecast.

Scenario 1 is a reference scenario. It represents the actual his-
torical operation of the heat exchanger stations in the period from
December 17th 2015 to March 1st 2016. The three stations are
operated differently. Holme and Rundhøj seem to follow a similar
scheme in which a supply temperature is set manually to a con-
stant set point and the set point is changed rarely. Hørning is oper-
ated by an online installation of the software product Termis1 and
exercises a more aggressive temperature control.

Scenario 2 is an optimized temperature control scenario. It is
inspired by the software system PRESS2 that controls a number dis-
trict heating systems in Denmark.

The idea is to deliver the demanded amount of heat while min-
imizing the supply temperature. This must be done under two con-
straints: (1) The supply temperature must be above a certain level
determined by the outside temperature, and (2) security of supply
must be ensured.

The minimum allowable supply temperature at a certain out-
door temperature is ultimately an agreement between the con-
sumers and the district heating provider. We determine this

function Tmin
sup ðToutÞ as in [19,36]. This is illustrated in Fig. 5, where

the supply temperature during each hour over a year is plotted
against the low-pass filtered outdoor temperature as in [36].

Tmin
sup ðToutÞ (shown in orange) is then chosen such that there is a

small (0.5%) chance of falling below this line. Fig. 5 shows data
from the Holme station, but similar profiles have been estimated
for Hørning and Rundhøj.

Security of supply is ensured by implementing a supply temper-
ature control of the form:

Tsup
tþ1 ¼ max Tmin

sup ðbT out
tþ1Þ; bT ret

tþ1 þ
bPtþ1

cwqwQ
ref
tþ1

( )
: ð9Þ

Here, bPtþ1 denotes the forecasted heat demand for time step t þ 1

and �^ denotes forecasted values. The return temperature is very

stable, therefore a reasonable one-step forecast is bT ret
tþ1 ¼ Tret

t . Q ref
tþ1

is a reference flow rate, determined such that the risk of the water
flow exceeding the maximum capacity of the pump Qmax

3 is very
small. When the forecast undershoots, the flow rate becomes higher
than expected, and it is important to keep the flow rate below Qmax.

If we let dbP be the uncertainty on the heat demand forecast at the 3r
level, there is only a risk of 0.135% of the realized heat demand being

larger than bP þ dbP: This is assuming normality of the forecast errors.
We calculate Q ref such that the risk of Q exceeding Qmax is at this
level or smaller. Mathematically, this can be achieved by solving
the following minimization:

Q ref
tþ1 ¼ argmin

Q 0
ref

Qmax �
bPtþ1 þ dbP

cwqw Tsup
tþ1ðQ 0

refÞ � Tret
t

� ������
�����: ð10Þ

Here, Tsup
tþ1ðQ 0

refÞ is the supply temperature from (9) with Q ref
tþ1 ¼ Q 0

ref .
This is the optimized temperature control scenario (Scenario 2),

where the supply temperature is controlled as in (9) with a refer-
ence water flow from (10) and a constant forecast uncertainty of

dbP ¼ 3r: ð11Þ
r is the standard deviation estimated from the forecast errors.

Scenario 3 is almost identical to Scenario 2, but with the impor-
tant difference that a time-varying forecast uncertainty is used. In
Scenario 3 we set

dbPtþ1 ¼ 3rtot
tþ1; ð12Þ

where rtot
tþ1 is the dynamic weather-based forecast uncertainty as

estimated in (7).

3.2. Results

In the following sections, we present the potential benefits of
using dynamic uncertainties in the operation of heat exchanger
stations. The simulation period runs from December 17th 2015
to March 1st 2016 and includes the coldest period in the Danish
winter.

3.2.1. Benefit of switch: Scenario 1 ! Scenario 2
First, we investigate the potential benefit of switching from

today’s operation to a scheme with optimized temperature control.
Scenario 1 represents actual operational data from the three area
substations Holme, Hørning and Rundhøj. Scenario 2 is based on
a simulation where the supply temperature is controlled as out-
lined above while the heat demand of the consumers is the same
as in Scenario 1. Discrepancies between the forecasted heat
demand and the realized heat demand are covered by adjusting
the water flow rate accordingly.

The simulation period covers 1680 h. We use the integrated
reduction in supply temperature over the simulation period to
evaluate the benefit of switching between scenarios:Z

ðTSc:1
sup � TSc:2

sup Þdt: ð13Þ

Fig. 5. Supply temperature versus low-pass filtered outside temperature for the
Holme station. Each dot represents an hour and one year of data is shown, from
March 1st 2015 to March 1st 2016. The minimum supply temperature, as a function
of outside temperature is shown in orange.

1 http://www.schneider-electric.com/en/product-range/61418-termis-software/.
2 http://www.enfor.dk/products/press.aspx.
3 In many cases the maximum capacity is given in terms of a maximum water

pressure at a certain point in the system. However, this maximum pressure can be
mapped uniquely to a maximum water flow Qmax with knowledge of the pump and
system characteristics.
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We define the sign convention such that a positive temperature
reduction means that the supply temperature can be lowered when
switching scenario.

Thus, an integrated temperature reduction of 1680 �C h corre-
sponds to an average supply temperature reduction of 1 �C. In
the middle column of Table 4, the benefit of switching from Sce-
nario 1 to Scenario 2 is summarized. Especially the Holme and
Rundhøj stations could potentially benefit from an optimized tem-
perature control, with more than 4 �C saved on the average supply
temperature. This corresponds to reductions of the heat losses to
the ground of 6–7%. For the Hørning station, the benefit of switch-
ing to the optimized temperature control of Scenario 2 is smaller,
but still significant. This can be explained by the fact that Hørning
is already operated by an online Termis installation. Thus, it is
expected that the operation of the Hørning station is already some-
what optimized.

Summing up, supply temperatures can be reduced significantly
by switching from the current operation to an optimized tempera-
ture control.

3.2.2. Benefit of switch: Scenario 2 ! Scenario 3
We now proceed to investigate the benefit of improving the

optimized temperature control with information about the
weather-based uncertainties on the demand forecast.

Fig. 6 shows the operational time series of the Holme station
during the second half of the simulation period. The top panel
shows the heat consumption in black and the forecast of the heat
consumption in red. It is clear that the forecast captures the
time-like structure of the demand well, and its performance is
decent, as summarized in Table 3. The middle panel shows the sup-
ply temperature determined by the temperature control (9) in Sce-
nario 2 and Scenario 3. In the bottom panel, the resulting volume
flow rate is illustrated. It is obvious that most of the quick fluctu-
ations in demand are covered by similar changes in the water flow.
This corresponds well to the fact that the water flow can be chan-
ged quicker than the supply temperature. Additionally, very
aggressive temperature control can cause mechanical strain on
the distribution system.

It is evident that the supply temperature and hence the volume
flow rate in many hours are identical in the two scenarios. Utilizing
the dynamic weather-based uncertainties, Scenario 3 results in a
lower supply temperature in certain peak load hours only. This is
more clearly illustrated in Fig. 7. In Fig. 7, the supply temperature
reduction TSc:2

sup � TSc:3
sup , that is achieved when switching from Sce-

nario 2 to Scenario 3 is shown for the second half of the simulation
period. The three area substations Holme, Hørning and Rundhøj are
shown in a panel each. In Holme and Rundhøj, the supply temper-
ature can be reduced by approximately 0.5 �C in a number of peak
load hours. In Hørning, the potential benefit of using the dynamic
weather-based uncertainties of Scenario 3 is more substantial. The
supply temperature can be reduced by about 1.2 �C during most
hours in the simulation periods and up to 1.5 �C in peak load hours.

The integrated supply temperature reduction in the three areas
stations is shown in the right column of Table 4. In terms of supply

temperature reduction, the benefit that can be achieved by switch-
ing from Scenario 2 to Scenario 3 is small compared to what can be
achieved by the switch from Scenario 1 to Scenario 2. Also, the
potential benefit of improving the control with weather-based
uncertainties varies greatly from station to station, depending on
consumption patterns and the capacity of the pump. However,
since Scenario 3 is an improvement of the optimized control in Sce-
nario 2, the benefit of switching to Scenario 3 should be viewed as
an extra gain on top of what can be achieved by implementing Sce-
nario 2 alone.

In conclusion, supply temperatures can be reduced additionally
by improving an optimized temperature control with dynamic
weather-based forecast uncertainties.

3.2.3. Sensitivity to pump capacity
The benefit of using dynamic (Scenario 3) versus static (Sce-

nario 2) uncertainties can be divided into two aspects: (1) The
number of events in which the two scenarios result in different
supply temperatures and (2) the quantity of the supply tempera-
ture reduction in individual hours.

The difference between Scenario 2 and Scenario 3 lies in con-
stant versus time-varying forecast uncertainties. Therefore, the
only time steps where the two control scenarios result in different
supply temperatures are those where the supply temperature
depends on the forecast uncertainty and the uncertainty is differ-
ent between the two scenarios. It can be derived from (9) and
(10) that the time steps where the supply temperature depends
on the forecast uncertainty are exactly those for which the follow-
ing condition is fulfilled:

bP þ dbP > qwcwQmax Tmin
sup ðbT outÞ � bT ret

h i
: ð14Þ

This simple inequality can provide some insight into which heat
exchanger systems could potentially benefit from operating with
dynamic weather-based uncertainties as in Scenario 3. If the

uncertainty margin dbP is very large, i.e. if the operator want to
use a very high level of security, it is clear that the condition is ful-
filled more often. For system operators who want an extremely
small risk of the water flow rate exceeding Qmax this means that
there is a larger potential benefit in using dynamic weather-
based uncertainties in the operation.

Another crucial variable for the potential benefit of Scenario 3
versus Scenario 2 is the system pump capacity Qmax. The smaller
the system capacity is, the greater the chance that (14) is fulfilled.
This results in more hours in which the forecast uncertainty
impacts the supply temperature. The magnitude of Qmax also
impacts the other aspect of the size of the benefit: the quantity
of the temperature reduction. Differentiating the supply tempera-
ture (9) with respect to the forecast uncertainty in the cases where
(14) is true yields:

@Tsup

@dbP ¼ 1
cwqwQmax

: ð15Þ

Thus, the supply temperature is a linear function of the magnitude

of the uncertainty margin dbP and the slope is inversely proportional
to Qmax. Therefore, a system with a smaller pump capacity will see
larger absolute temperature differences when switching between
constant and dynamic uncertainty margins.

To investigate the magnitude of this effect, a simulation has
been performed in which the actual maximum capacities for the
three heat exchanger stations were scaled down by factors
between 1 and 0.5. Fig. 8 depicts the results of this simulation.
The number of degree hours of temperature reduction going from
Scenario 2 to Scenario 3 is shown as a function of the reduction of
the pump capacity. The simulation verifies that the benefit of

Table 4
Benefit of switching between the 3 scenarios shown in terms of integrated supply
temperature reduction (13) – the number of degree hours saved on the supply
temperature. The simulation period spans 1680 h.

Tsup reduction [�C h]

Sc.1 ! Sc.2 Sc.2 ! Sc.3

Holme 7699 73
Hørning 1606 1333
Rundhøj 7295 27
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switching to Scenario 3 is highly dependent on the maximum
pump capacity of the stations. Stations with lower capacity will
potentially benefit much more from the application of dynamic
weather-based uncertainties. Hørning stands out from the two
other stations again. This is most likely due to the fact that already

today Hørning is much more pressed for pumping capacity, com-
pared to the other two stations. When dimensioning an area sub-
station, it is important to choose a pump with the correct
capacity. If the pump is too large, it will be an unnecessarily large
capital investment, and it will operate at a suboptimal efficiency

Fig. 6. Scenario 2 and Scenario 3 operational time series for the Holme station in the second half of the simulation period. On the top: Realized heat consumption P from the
station and the forecasted heat consumption bP used in the simulation. In the middle: Supply temperature Tsup from the heat exchanger in Scenario 2 and 3. On the bottom:
Water flow rate Q across the heat exchanger in the two scenarios.

Fig. 7. Supply temperature reduction when switching from Scenario 2 to Scenario 3: TSc:2
sup � TSc:3

sup . This is shown for the three area substations Holme, Hørning and Rundhøj for
the second half of the simulation period. For Hørning, the supply temperature in Scenario 3 is higher in a few time steps. This results in negative spikes in mid February
reaching values down to �0.5 �C to �1.6 �C.
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for a majority of the time. If the pump is too small, the supply tem-
perature must generally be higher. Therefore, the operational cost
of the under-dimensioned systems in the left part of Fig. 8 will gen-
erally be higher in terms of heat losses. Thus, switching control
scenario cannot be a substitute for correct dimensioning. However,
existing under-dimensioned systems can benefit from utilizing
dynamic weather-based uncertainties in the operation, as opposed
to operation with constant security margins. Using weather-based
uncertainties in the operation can limit the added cost of under-
dimensioning.

Summing up, the benefit of improving an optimized tempera-
ture control with information about dynamic weather-based
uncertainties is sensitive to the capacity of the pumping system
of the area substation. The smaller the capacity is, the larger the
potential benefit is.

4. Conclusion

This paper has introduced the use of ensemble weather predic-
tions in district heating operation by creating a heat load forecast
model with time-varying weather-based uncertainties. It has fur-
ther been demonstrated that information about the time-varying
uncertainties can be used to improve an optimized control scheme
for heat exchanger stations and lower supply temperatures in the
distribution grid. Lowering the supply temperature reduces the
amount of heat that is lost from the piping system to the ground.

Based on data from three area substations, it has been found
that significant reductions in supply temperature can be achieved
by optimizing the current operation of the system with an opti-
mized temperature control. Further but smaller reductions can
be achieved by improving the optimized temperature control with
dynamic weather-based uncertainties. The potential benefit of
using dynamic uncertainties is highly dependent on the pumping
capacity of the systems, and systems with smaller capacity can
benefit more.

The proposed application case is based on the commercial
PRESS software system that is already implemented in a number
of district heating systems in Denmark. Improving such an optimal
control system or a similar one with dynamic weather-based
uncertainties is just a matter of replacing a constant uncertainty

bound dbP with a dynamic one dbPt . The dynamic uncertainty is
easily obtained from a heat load forecast when ensemble weather
forecasts are provided from the local weather service.

In conclusion, it has been shown how ensemble weather predic-
tions can be used to improve supply temperature control in district
heating area substations.
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Chapter 4

The human factor

4.1 Motivation

As engineers and energy system researchers, it is easy to neglect or to forget
the factors we cannot control. The previous chapter dealt primarily with how
uncertainty about the weather propagates into uncertainty about the load in a
district heating system. The weather is one factor that is beyond the control of
system operators, human behavior is another such factor.

The load in both electricity and district heating systems has a strong
component stemming from the behavior of the consumers. Among district
heating operators and production planners, it is well known, that the load
on special days such as Christmas or New Year’s Eve is difficult to forecast,
because people behave differently on these days. On New Year’s Eve in Denmark,
it is common to go in and out of the house many times during the evening
to look at the fireworks. This makes the heat load unusually high, and the
consumption pattern notably different from most other days. Human behavior
has a significant impact on the operation of energy systems, but this effect has
not been covered extensively in energy systems research literature.

This chapter is built around an article published in the special issue of the
MDPI1 journal Energies: Short-Term Load Forecasting by Artificial Intelligent
Technologies. An earlier version of the paper has appeared in the proceedings
for the 12th SDEWES2 conference.

The article explores the value of including local holiday data in heat load
forecasts, taking a first step towards incorporating human behavior into energy
systems research.

4.2 Methods

In the previous chapter, methods from meteorology were used to quantify the
weather-based uncertainty of heat load forecasts. In this chapter, I use methods
from machine learning to capture the human component of the heat load. In
addition, the present study is based on a much larger data foundation, where

1Multidisciplinary Digital Publishing Institute.
2Sustainable Development of Energy Water and Environment Systems. The 12th confer-

ence was held in Dubrovnik.
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six years of hourly data was used for training and model selection and one
additional year was used for a testing and benchmarking. Finally, this study
tests the forecast performance on the time horizons that are necessary for trading
decisions on day-ahead electricity markets. This property is highly valuable
in modern energy systems where cogeneration and power-to-heat technologies
couple the heating and electricity sectors.

Data scenarios

I grouped the input data, used for load prediction into scenarios. In the
first scenario, relevant lags of the heat load as well as the weather variables
outside temperature, wind speed and solar irradiance were used for predicting
the heat load. In a second scenario, I augmented the lagged heat load and
weather variables with data about the hour of day, day of week, weekend and
month of the year. Comparison between these two scenarios shows the value
of including generic calendar data in the heat load forecasts. In the third
scenario, I added data about local national holidays, observances and school
holidays. A performance increase, due to the addition of local holiday data,
can be attributed to the forecast model better capturing complex consumer
behavior around holidays and special occasions.

Machine learning models

In the paper, I test the forecasting performance of three different machine
learning models: ordinary least squares regression (OLS), multilayer perceptron
(MLP) and support vector regression (SVR). All three models are well-established
in the field of machine learning and have been proven efficient for load forecasting
in energy systems. The OLS model is linear, cheap in computation time and a
good starting point and reference when comparing with more complex model
types. MLP is a simple type of feedforward neural network, and can be extremely
powerful at capturing complex input-output relationships. The MLP model,
however, requires careful tuning of a number of hyperparameters, such as the
number of hidden layers, number of neurons and activation function. The SVR
model is a generalization of support vector classification to regression-type
problems, and it is capable of modeling nonlinear relationships, through the
use of a kernel function. The SVR model also has hyperparameters to tune,
although fewer than the MLP model. (Bishop, 2006)

The heat load in district heating systems in temperate climates has a non-
linear dependence on the outside temperature (Frederiksen and Werner, 2013),
it is therefore likely that the nonlinear models will show the best performance if
they are tuned correctly.

The hyperparameters of the MLP and SVR models have been tuned using
k-fold cross-validation on six years of data. The folds were chosen so each fold
contained an entire year, and thus represented the entire annual variation in the
input and output variables. Carefully tuning the hyperparameters through cross-
validations reduces the risk of overfitting and helps ensure good generalization
abilities of the models (Alpaydin, 2014).
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4.3 Main findings

All the forecast models tested in this study performed comparably to or better
than commercial forecast alternatives.

When comparing the different model types, the two nonlinear models clearly
outperformed the linear OLS model. The SVR and MLP models performed
similarly, but the SVR won on accuracy by a small margin. The predictive
power of the SVR model is not surprising, since SVR models have shown strong
performance for heat load forecasting in the past (Idowu et al., 2014; Izadyar
et al., 2015).

The performance of the models was highly dependent on which input vari-
ables were chosen. Augmenting the weather and lagged heat load variables
with generic calendar data about time of day, month of the year etc., lead to
significant performance boosts. This is because the generic calendar information
helps the models better learn the daily profile of the heat load. The daily
heat load profile is a result of consumer behavior and is different on different
types of days. Providing the models with information about national holidays,
observances and school holidays increased the forecasting accuracy slightly on
average. However, the performance increase was most notable on holidays and
on weekends.

Incorporating human behavior through the use of local holiday data has
potential to improve energy system operations. In district heating systems,
operators could expect a better performance of their load forecasts on days that
are traditionally difficult to forecast well.
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Abstract: The heat load in district heating systems is affected by the weather and by human behavior,
and special consumption patterns are observed around holidays. This study employs a top-down
approach to heat load forecasting using meteorological data and new untraditional data types such
as school holidays. Three different machine learning models are benchmarked for forecasting the
aggregated heat load of the large district heating system of Aarhus, Denmark. The models are trained
on six years of measured hourly heat load data and a blind year of test data is withheld until the
final testing of the forecasting capabilities of the models. In this final test, weather forecasts from
the Danish Meteorological Institute are used to measure the performance of the heat load forecasts
under realistic operational conditions. We demonstrate models with forecasting performance that
can match state-of-the-art commercial software and explore the benefit of including local holiday
data to improve forecasting accuracy. The best forecasting performance is achieved with a support
vector regression on weather, calendar, and holiday data, yielding a mean absolute percentage error
of 6.4% on the 15–38 h horizon. On average, the forecasts could be improved slightly by including
local holiday data. On holidays, this performance improvement was more significant.

Keywords: district heating; load forecasting; machine learning; weather data; consumer behavior;
neural networks; support vector machines

1. Introduction

Energy systems are changing throughout the world, and heat load forecasting is gaining importance
in modern district heating systems [1]. The growing penetration of renewable energy sources makes
energy production fluctuate beyond human control and increases the volatility in electricity markets.
Stronger coupling between the heating and electricity sectors means that production planners in
systems with combined heat and power generation need accurate heat load forecasts in order to
optimize the production.

It is not trivial to forecast district heating demand on time scales that are relevant for trading
on the day-ahead electricity market. The total heat load in a district heating system is influenced by
several factors—most importantly, the weather, the building mass of the city, and the behavior of the
heat consumers. Cold and windy weather increases the heat demand, and warm and sunny weather
decreases it. The constitution of the building mass influences how the heat load responds to changes
in the weather [2]. Human behavior is an often overlooked factor, and, especially in summer, the heat
demand is dominated by hot water consumption rather than space heating. Consumer behavior
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can vary considerably from day to day, and the heat load on special occasions, e.g., New Year’s Eve,
is notoriously difficult to forecast accurately.

Heat load forecasting has been studied extensively in the scientific literature. The successful
application of simple linear models in [3,4] has inspired us to use an ordinary least squares
(OLS) model as a simple benchmarking model. Statistical time-series models, such as SARIMA
(seasonal autoregressive integrated moving average) models [4,5] and grey-box models combining
physical insight with statistical modeling [6], are natural ways of handling the temporal nature of
load forecasting. These models are usually linear and struggle with multiple seasonality. In [7],
the authors compared a number of machine learning algorithms, including a simple feed forward
neural network, support vector regression (SVR), and OLS. They concluded that the SVR model
performs best. The strong forecasting capabilities of SVR models have also been demonstrated in [8],
where heat demand was forecasted based on natural gas consumption. Neural networks have been
widely applied in load forecasting. Several studies apply simple feed forward networks with one
hidden layer such as the multilayer perceptron (MLP) [7,9,10]. A recurrent neural network is used
in [11] to better handle non-stationarities in the heat load. A comprehensive review of load forecasting
in districts can be found in [1].

In the present study, we chose to compare three different machine learning models: OLS, MLP,
and SVR, as they have all proven effective for heat load forecasting. Some studies attempt to include
the different consumer behavior on weekdays and weekends. Working days and non-working days
are modeled with distinct profiles in [12], and in [4] mid-week holidays were treated as Saturdays or
Sundays. In [13], the correlation between electric load and weather variables was exploited to forecast
the aggregated load using MLP models, and the authors explored the different autocorrelations of the
load on weekdays and weekends. In this study, we include generic calendar data such as the day of
the week, as well as local holiday data to account for observances, national holidays, and city-specific
holidays, i.e., school holidays.

School holidays are often planned locally, and some religious holidays, e.g., Easter, fall on
different dates each year. Therefore, generic calendar data is insufficient for modeling events that
depend on local holidays. Heat consumers behave differently on holidays and change the pattern of
consumption, so including local holiday data in heat load forecast models has the potential to improve
forecast accuracy.

The novelty of this work lies in the application of new data sources, specifically local holiday data,
to create heat load forecasting models that more accurately capture consumer behavior. To the best of
our knowledge, school holiday data has not previously been used for heat load forecasting. We isolate
the effect of using local holiday data by employing machine learning models that have proven effective
for heat load forecasting in the past. Moreover, we base our modeling on a very large amount of data.
Seven years of hourly heat load and weather data supplemented with data about national holidays,
observances, and school holidays help the forecast models capture rare load events.

The remainder of the paper is structured as follows. The Methodology section describes the data
foundation, the machine learning models, and the validation and testing procedure. In the Results
section, the forecasting models are benchmarked and compared, and the potential of using new data
sources is evaluated. The paper is wrapped up in the Conclusion section.

2. Methodology

In this section, we describe the data foundation and how the heat load forecasting models were
built, validated and tested.

The focus of this paper is to create heat load forecasts that are relevant on the time horizon of the
day-ahead electricity market. Therefore, a forecast must be produced each morning at 10:00 for each
hour of the following day. This timeline, illustrated in Figure 1, allows time for communication between
different actors in a production system and for planning of the following day’s heat production in
accordance with the bids in the day-ahead electricity market.
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Figure 1. Timeline for the heat load forecast that is relevant for the trading decisions in the day-ahead
electricity market. Every day at 10:00 a forecast is produced for each hour of the following day.

The analysis in this paper is based on seven years of data for the total hourly heat load of Aarhus,
Denmark. The years 2009, 2010, 2012, 2013, 2014, 2015, and 2016 were used. Unfortunately, heat load
data from 2011 has not been available to us. We denote the heat load in hour t by Pt.

2.1. Weather Data

The heat demand depends strongly on the weather. Hourly outdoor temperature, wind speed,
and solar irradiation for the seven years were obtained from [14]. Weather data from the geographical
point N 56◦2′42.24′′, E 9◦59′59.95′′ in the southern part of Aarhus was used. Weather forecasts of the
outdoor temperature, wind speed, and solar irradiation were provided by the Danish Meteorological
Institute (DMI) and used to test the performance of the heat load forecasts as realistically as
possible. These weather forecasts were based on the HIRLAM (High Resolution Limited Area Model),
a numerical weather prediction system developed by a consortium of European meteorological
institutes with the purpose of providing state-of-the-art short-range weather predictions [15], for
numerical weather prediction, had a forecast horizon of up to 54 h, and were disseminated four times
a day [15]. We denote the outdoor temperature, wind speed, and solar irradiance by Tout

t , vwind
t and

Isun
t , respectively.

2.2. Calendar Data

The heat demand has a strong social component that depends on human behavior. The social
component is part of the reason for the daily and weekly patterns in the heat load. Different load
profiles on weekdays and weekends can also be explained by consumer behavior. In order to allow the
forecast models to account for load variations that are tied to specific days, seasons, and times of day,
certain calendar data were included as input variables. Specifically, the hour of the day, the day of
the week, the weekend, and the month of the year were used as input. How the calendar data was
encoded and included in the models is described in Section 2.4.1.

2.3. Holiday Data

In addition to generic calendar data, we also used more specific local data about special days that
may influence the heat consumption pattern. The district heating system of Aarhus, Denmark, served
as our case study. Therefore, we used data about Danish national holidays, observances, and local
school holidays. National holidays and observances were sourced from [16]. National holidays include
New Year’s Day, Christmas Day, Easter Day, etc. and constitute 11 days per year. Observances include,
e.g., Christmas Eve and Constitution Day and amount to six days per year. Information about the
municipal school holidays was collected from local schools in the Aarhus area and amounts to 96 days
per year on average. Note that all national holidays are also school holidays. It is clear that this kind
of information is highly local and that gathering such data, compared to the generic calendar data,
is more difficult. The following analysis will illuminate whether including this data significantly
improves heat load forecasts, or if more easily available data types are sufficient.
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2.4. Data Exploration

Figure 2 shows the average hourly heat load for the example year of 2010. Notice how much
the heat load varies over the year both in magnitude and in variance. The zoomed inset in the plot
shows the heat load variations over a week in March. A clear daily pattern can be observed, with a
sharp morning peak between 7:00 and 8:00 on weekday mornings. The morning peak is a well-known
phenomenon in the district heating community and is caused by many people showering around the
same time every morning. On weekends, morning peaks can be observed later in the morning and
tend to be less sharp compared to weekdays. From the inset, it is clear that the daily load pattern varies
substantially within just one week.

Figure 2. Time series for the hourly heat load in the year 2010. The inset shows a zoom of a week in March.

The heat demand has peaks in its autocorrelation function at 24 h, 48 h, 72 h, and so on. This is
due to the strong daily pattern. There is also a notable peak at 168 h (one week). In order to capture this
behavior, lagged values of the heat load were used as input variables in the modeling. Specifically, we
included the heat load lagged with 24 h, 48 h, and 168 h. Looking at Figure 1, we see that the forecast
horizon varies between 15 h and 38 h. The heat load in the first hour of the day can be forecasted
with the shortest horizon, and the last hour of each day is forecasted with the longest horizon. When
forecasting hours with a forecast horizon of 24 h or less, the heat load lagged 24 h can be used. When
forecasting hours with a longer horizon than 24 h, the heat load lagged with 48 h must be used instead.
A power spectrum analysis confirmed strong peaks at frequencies 1/12 h−1 and 1/24 h−1, but 12 h is
shorter than the shortest forecast horizon and was thus discarded. The two lags that best captured the
daily and weekly pattern of the heat load were included. We denote the lagged heat load by Pt−24,
Pt−48, and Pt−168, respectively.

The most important weather variable when modeling district heating loads is the outdoor
temperature, because there is a strong negative correlation between the heat demand and the outdoor
temperature. Depending on the specific district heating system, solar irradiation and wind speed
can also be significant predictors for the heat load [2]. Due to the thermal mass of the buildings
in a district heating system, there is a certain inertia in the heat load when changes in the weather
occur. On the individual building level, this inertia is handled in great detail in the civil engineering
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literature [17]. Since we were forecasting the heat load of an entire city, we took a more simplified
approach. In the Aarhus district heating system, the heat load is most strongly correlated with the
outdoor temperature lagged by 4 h, compared to other time lags of the temperature. The heat load
also correlates most strongly with the solar irradiation lagged by 4 h. There seemed to be no benefit in
lagging the wind speed. Only including two specific lags, is of course a simplification of the dynamics
of the system, but the results of including them were significantly better than just using simultaneous
(lag 0 h) weather variables. Summing up, the following five weather variables were included in the
modeling: Tout

t , vwind
t , Isun

t , Tout
t−4, and Isun

t−4.
Outdoor temperature and, as a consequence, the heat load varies substantially from year to

year [18]. The mean annual temperatures in our dataset spanned a range of 2.5 ◦C. Compared to the
mean load of the whole dataset (excluding 2016), the annual mean heat load was 15% higher in the
coldest year and 11% lower in the warmest year.

2.4.1. Data Scenarios and Pre-Processing

In order to evaluate the effect of including the various types of input data for forecasting heat
load, three different data scenarios have been defined. We call these scenarios: “Only Weather Data,”
“Weather and Calendar,” and “Weather, Calendar, and Holidays”. Table 1 details the input data used
in each scenario.

Table 1. Input variables used in the three data scenarios (in bold).

Only Weather Data Weather and Calendar Weather, Calendar and Holidays

Lagged heat load Pt−24 or Pt−48 X X X
Pt−168 X X X

Weather data

Tout
t X X X

vwind
t X X X
Isun
t X X X

Tout
t−4 X X X

Isun
t−4 X X X

Calendar data

Hour of day X X
Day of week X X

Weekend X X
Month of year X X

Holiday data
National holiday X

Observance X
School holiday X

To achieve the best performance of the models, the input data were scaled and encoded as follows.
All the continuous variables (lagged heat load and weather) were standardized to have mean 0 and
standard deviation 1. The calendar data and holiday data were included as so-called dummy variables.
Dummy variables are a way to represent categorical variables as binary variables. For instance, whether
or not a given hour falls on a school holiday can be encoded as a binary variable (0 or 1). The day of
week can be encoded as six binary variables: one variable indicating if it is Monday, one indicating if it
Tuesday, etc. Only six variables are needed to encode seven days, because if it is not any of the days
from Monday to Saturday, then it must be Sunday. Using similar dummy variables all the calendar
and holiday data was included. Encoding categorical data as dummy variables is a standard machine
learning method [19].

2.5. Machine Learning Models

We benchmarked and compared three different machine learning models that have all previously
been proven adequate for heating load forecasting [7,8]: ordinary least squares regression,
multilayer perceptron, and support vector regression.
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2.5.1. OLS—Ordinary Least Squares Regression

Ordinary least squares regression is a simple model type in which the output is modeled with
the hyperplane that minimizes the squared residuals between the target and the output of the model.
Sometimes referred to as multiple linear regression, it is a popular model due to its simplicity,
computational speed, and the fact that results can be easily interpreted. Because of its linear structure,
the OLS model underperforms when modeling nonlinear input–output relationships.

2.5.2. MLP—Multilayer Perceptron

A multilayer perceptron is a simple kind of neural network. Neural networks have been applied
to problems in many fields, including heat load forecasting, due to their ability to capture complicated
relationships between input and output [7,9,11]. A multilayer perceptron has at least one hidden layer
between the input and output layers of the model and a nonlinear activation function allows the model
to capture nonlinear relationships between input and output. A good coverage of neural network
models and the multilayer perceptron can be found in [20]. We used a multilayer perceptron with
one hidden layer and the rectifier activation function: f (x) = max(0, x). We have experimented with
adding more hidden layers, but the increase in the model accuracy was not large enough to justify the
growth in model complexity and the risk of overfitting.

Besides the simple multilayer perceptron, we have experimented with a more advanced type of
neural network. Recurrent neural networks with long short-term memory (LSTM) units [21] were
implemented in an attempt to simplify the feature selection and leave it to the model to discover
relevant lags of heat load and weather data. Our initial LSTM networks yielded results comparable to
the simpler models included in this work, but their performance tended to be inconsistent. The benefit
of simplified feature selection may also be outweighed by a more complicated model selection and
training procedure. The LSTM modeling for heat load forecasting requires more work and will be left
for future work.

2.5.3. SVR—Support Vector Regression

Support vector regression is the application of support vector machine models to regression
problems and was first introduced in [22]. Support vector regression has a computational advantage
in very high dimensional feature spaces. The model only depends on a subset of input data, because it
minimizes a cost function that is insensitive to points within a certain distance from the prediction.
The cost function is less sensitive to small errors and less sensitive to very large errors and outliers,
compared to the quadratic cost function minimized in the ordinary least squares regression. To avoid
overfitting, the model is governed by a regularization parameter C, that ensures that the parameters of
the model do not grow uncontrollably. The smaller the value of C, the harder large model parameters
are penalized. Support vector regression is explained in great detail in [19,20]. By employing the
so-called “kernel trick”, support vector regression can handle nonlinear input–output relationships.
A very popular kernel function is the radial basis function kernel (RBF), which has been proven
effective in this application as well. The RBF kernel is governed by a kernel parameter γ. The greater
the value of γ, the more prone the model is to overfitting, but if γ is chosen too small, the model may
be underfitting and fail to capture actual input–output relationships.

Summing up, the three machine learning models OLS, MLP, and SVR were chosen because
they have all been successfully applied to heat load forecasting in the past. Using well-established
algorithms allows us to focus on the main research question: whether conventional heat load forecasts
can be improved by adding new types of data. Each of the models have advantages and disadvantages.
The advantage of the OLS model is that it is computationally cheap, and its estimated parameters carry
a physical interpretation. The disadvantage is that the model is linear and fails to capture nonlinearities
in input–output relationships. The advantage of the MLP model is that it is capable of capturing very
complex relationships between input and output. A disadvantage of neural network models, such as
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MLP, is the risk of overfitting and that they require careful tuning of several hyperparameters. Finally,
the SVR model has the advantage of being robust to outliers and that the final model depends only on
a subset of the training data. The SVR model, however, is sensitive to the scaling of the input data and
the correct tuning of regularization and kernel parameters.

2.6. Model Selection and Testing

A good forecast model is one that performs well on previously unseen data. This is the generalization
ability of the model. In order to accurately measure the generalization performance of the models, we
divided the full dataset (seven years of hourly data) into a training and validation set and a test set.
All model selection and training was performed on the years from 2009 to 2015 (2011 not included).
This is the training and validation set. The entire year of 2016 was used as a blind test set to estimate
the generalization performance of the forecasts.

The three models were chosen and their hyperparameters tuned based on sixfold cross-validation
on the years 2009, 2010, 2012, 2013, 2014, and 2015. Using six folds ensured that each fold contained an
entire year and thus represented the full annual variation of the heat load. In the cross-validation, the
different models and data scenarios were scored according to the hourly root mean square error (RMSE)

RMSE =

√
1
N ∑

t
(P̂t − Pt)2 (1)

where P̂t is the forecasted heat load for hour t, and N is the number of hours.
The OLS model does not have any hyperparameters to tune, but a model with a nonzero constant

term was chosen. In the MLP model, we tuned the number of neurons in the hidden layer using
a grid search on the cross-validation scores. A MLP model with one hidden layer consisting of
110 hidden neurons was chosen, and the L2 regularization parameter α was set to 0.1. In the SVR
model, the best choices for the regularization parameter and the kernel parameter were found to be
C = 4.3 and γ = 0.2. All modeling has been performed in Python 2.7 using the scikit-learn framework
(version 0.19.0) [23].

All results presented in the following section were produced using the blind test year 2016.
This year was not used for any of the training, data exploration, or model selection. In the Results
section, we employ two other forecast error metrics, in addition to the RMSE. The mean absolute error
(MAE) is also an absolute error metric (here in units of MW), but it is less sensitive to large errors,
compared to the RMSE. The MAE is defined as

MAE =
1
N ∑

t

∣∣P̂t − Pt
∣∣ . (2)

Finally, we use the relative error metric mean absolute percentage error (MAPE) to facilitate easier
comparison between different district heating systems. The MAPE is defined as

MAPE =
1
N ∑

t

∣∣∣∣
P̂t − Pt

Pt

∣∣∣∣ . (3)

3. Results

The heat load in a district heating system has been forecasted using three different machine
learning models, described in the previous section: OLS, MLP, and SVR. The performance of these
models have been tested by letting them produce a forecast for the following day using the input data
available each day at 10:00 a.m.The models have been trained exclusively on data prior to the test year
2016 to be able to accurately gauge their generalization performance. Figure 3 shows an example of
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the forecasts produced for 4 May. Only the heat load up to the time of the forecast was used as input to
produce the forecast. Real weather forecasts were used as weather inputs for 4 May, as opposed to
the historical weather data used for training. It is clear how the three forecast models produce similar,
yet distinct forecasts. On 4 May, the MLP model appears to produce the best forecast, especially in
the morning.

Figure 4 summarizes the performance of the three models in the three different data scenarios.
The top panel shows the forecast performance that could be achieved if weather forecasts were 100%
accurate, simulated by using historical weather data. The bottom panel shows the performance using
real weather forecasts. Comparing the three data scenarios, we see the benefit of including different
data types in the modeling. In the first scenario, only lagged heat load and weather data are used
as input. In the second scenario, generic calendar data is included as well, and in the third scenario,
local observances, national holidays, and school holidays are also included as inputs to the model.
Including calendar data significantly improves performance, compared to only using weather data.
Extending the input data with holiday data as well results in an additional, but small improvement
compared to using generic calendar data only. Obtaining the local holiday data can be laborious or
impossible, so it is positive to see generic calendar data yielding comparable results. It is much easier
to apply these models to a wide range of district heating systems around the world if it can be done
without collecting local holiday data.

Figure 3. Example forecasts for 4 May 2016. The forecasts were produced on 3 May at 10:00 and based
on real weather forecasts, calendar, and holiday data.

Figure 4 allows for comparison of the performance of the three machine learning models as well.
The OLS model stands out by performing significantly worse than the other two models in all scenarios.
The OLS model has a root mean square error of 38.9 MW, compared to 31.1 MW and 29.3 MW for
the other two models when using real weather forecasts, calendar, and holiday data (bottom panel).
The poor performance of the OLS model can be attributed to its linear structure. The relationship
between the outdoor temperature and the heat load in a temperate climate is nonlinear. This causes the
linear model to perform poorly during summer by undershooting the heat load and overestimating its
variance. The two nonlinear models, MLP and SVR, perform similarly in these scenarios. The SVR
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model has the smallest error, and the focus in the rest of this paper will be on the SVR model using
weather, calendar, and holiday data.

Figure 4. Root mean square error of the three forecast models OLS, MLP, and SVR on the year 2016.
The top panel (a) shows the error using historical weather data to simulate 100% accurate weather
forecasts. The bottom panel (b) shows the error using real weather forecasts.

3.1. The Value of Improving Weather Forecasts

Figure 4 has two panels. The top panel shows the forecast errors that could be achieved if
weather forecasts predicted the measured weather completely accurately. This has been simulated
by allowing the models to use actual measured weather data, instead of weather forecasts as input
when producing the load forecast. The top panel reflects the scenario in the which future weather is
known. The bottom panel shows the results in the case where real forecast data has been used instead.
This is the actual forecast performance that can be achieved in an operational situation, given the
current quality of weather forecasts. Having access to weather forecasts without prediction errors
could, in a perfect world, reduce the error from 29.3 MW to 25.2 MW in the forecasts from the best
model. While an error reduction of 4.1 MW is a start, perfecting the weather forecast only shaves 14%
off the error. The remainder of the load forecast error has other causes than weather forecast errors, a
result that was also found in [24], where ensemble weather predictions were used to quantify heat
load forecasting uncertainty.

The OLS model using only weather data and lagged heat load does not perform notably different
on historical weather data compared to real weather forecasts. This can be explained by the OLS model
attributing greater weight to the lagged heat load compared to the weather, because the relationship
between the heat load and the weather is nonlinear.
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The forecast performance, shown in the top of Figure 4, is similar to the performance that was
achieved during training and cross-validation. This indicates that the models have not been overfitted
and generalize well to out-of-sample predictions.

It is worth pointing out that the performance of all these models, even the OLS model using
only weather data, exceeds the performance of the commercial forecasting system that is currently in
operation in the Aarhus district heating system. This commercial forecasting system had an RMSE of
41.9 MW in year of 2016 on the same forecast horizons. In relative terms, the SVR model has a MAPE
of 6.4% versus 8.3% for the commercial system. The models presented here perform better than all
other forecast models that have been used in the Aarhus district heating system.

3.2. Seasonal Performance Variations

The heat load varies significantly over the year, both in magnitude and in variance, as exemplified
in Figure 2. It can be a challenge for a single model to adequately forecast both winter and summer
heat loads. Therefore, it is relevant to further investigate the model performance throughout the year.
The forecast error of the best model, SVR using weather, calendar, and holiday data, is illustrated in
Figure 5. Three different error metrics are shown: on the left axes, the RMSE (blue) and MAE (yellow)
are shown in MW; on the right axes, the MAPE (red) is shown in percent. The horizontal axes show
the hour of day for the forecasted hour, and each subplot depicts a month in the year. This makes
it possible to see if it is harder to forecast the morning peak and if the forecast horizon impacts the
accuracy. Keep in mind that Hour 1 has the shortest forecast horizon (15 h), and Hour 24 has the
longest horizon (38 h), since the forecasts are produced at 10:00 a.m. the previous day.

Inspecting Figure 5, it is clear that the absolute error measures RMSE and MAE are largest in
winter and smallest in summer. This is a reflection of the annual heat load profile and the large load
with large variance during winter. In late fall and winter, the RMSE can be above 50 MW in some
hours, whereas it can be below 10 MW in some hours in July. The relative error metric MAPE behaves
in the opposite way. The relative error is smaller in the winter months and larger in summer months,
but it stays between 2.5% and 10.5%. This is a consequence of the annual load variations being larger
than the annual variations in the absolute error.

There is no clear pattern in the way the error changes during the day. The model does not seem to
perform worse between 7:00 and 8:00 in the morning, where the morning peak falls. November and
May are exceptions to this rule. In many applications, the error of a forecast model increases with the
forecast horizon (here the hour of day). We do not observe a general increasing trend in the error with
the hour of day. This indicates that the weather forecasts that are used as inputs to create the forecast
are not significantly worse at the longest horizon compared to the shortest horizon. It may also be
due to weather forecasting accuracy having a minor impact on the heat load forecasting error, as we
saw from Figure 4. If we were to increase the forecast horizon further, the forecast error would most
likely increase.

The forecast error varies significantly over the year, but aggregated error metrics such as RMSE,
MAE, or MAPE do not tell the full story. Maximum errors can be relevant for unit commitment in the
production planning and for evaluating risk regarding trading in the electricity market. Figure 6 shows
histograms for the hourly error for each month of the blind test year 2016. The 10% and 90% quantiles
have been indicated in each plot. It is clear that the width of the error distribution varies substantially
from month to month. During the summer, the forecast error is quite confined, but the distribution
widens in late fall and becomes widest in December.

In Table 2, a summary of the error distribution is shown. The 99% and 1% quantiles of the error
distribution are indications of the maximum errors that can be expected. Ninety-eight percent of the
forecasted hours have forecast errors between the 1% and the 99% quantile. The best month is July
with 98% of the errors falling between −16.0 and 25.8 MW. The worst month is December, where
there is a 1% risk of the forecast overshooting by more than 115.0 MW and a 1% risk of the forecast
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being more than 96.7 MW too low. These extreme errors can approach 20% of the mean heat load in
December.

Figure 5. Performance of the SVR model on the year 2016, using real weather forecasts, calendar, and
holiday data. Three different error metrics are shown for each month of the year. The forecast error
varies with the time of day, shown on the horizontal axes. RMSE (blue) and MAE (yellow) are shown
units of MW on the left axes. MAPE (red) is shown in percent on the right axes.
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Figure 6. Histograms for the forecast error of the SVR model on the year 2016 using real weather forecasts,
calendar, and holiday data. The distribution of the forecast error is depicted for each month in the
year along with the 10% and 90% quantiles. The number of bins was chosen using Scott’s rule [25]
within each month. A positive error indicates that the forecast was too high, a negative error that it
was too low.

From the histograms in Figure 6, it is also clear that the error distributions are not completely
symmetric around 0. In January, for instance, the distribution is shifted slightly to the positive, and
in April it is shifted to the negative side. The forecast appears to be biased differently in different
months. The mean error for each month (ME) is shown in Table 2. The bias can be as large as 20.5 MW,
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with November being the worst month. September performs the best with a mean error of merely
0.3 MW. Varying monthly biases could be remedied by training separate models for each month.
However, the focus in this paper is to investigate the effects of including holiday data to model human
behavior, and training monthly forecast models would obscure the effects of using holiday data. There
is also the possibility that the weather forecasts perform differently at different times of year.

Table 2. Summary of the hourly forecast error for each month for the SVR model using real weather
forecasts, calendar, and holiday data. Histograms of the forecast error appear in Figure 6. The months
with the worst performance are indicated in red, the best in green. The quantiles are evaluated in pairs,
so the widest symmetric quantile interval is considered the worst.

RMSE ME Error Quantiles (MW)
(MW) (MW) 10% 90% 1% 99%

January 41.2 18.7 –24.0 64.1 –66.8 117.6
February 31.8 –2.2 –42.8 36.6 –91.6 61.3
March 36.9 2.0 –43.7 48.8 –80.4 89.3
April 34.2 –11.7 –52.9 27.1 –93.6 64.8
May 18.2 4.3 –14.7 25.6 –33.6 64.3
June 15.8 –3.3 –19.3 12.8 –45.3 34.0
July 10.6 5.0 -7.0 17.2 –16.0 25.8
August 14.2 6.9 –8.2 21.6 –20.1 41.6
September 14.3 0.3 –17.9 17.6 –35.0 33.3
October 25.6 4.8 –26.0 37.8 –43.5 70.0
November 38.1 20.5 –20.0 61.5 –59.1 98.1
December 43.1 12.5 –38.4 58.2 –96.7 115.0

In conclusion, there are significant seasonal variations in the performance of the best heat load
forecast. The absolute errors are largest in winter and smallest in summer, with December being the
hardest month to forecast and July being the easiest.

3.3. The Value of Calendar and Holiday Data

The goal of this analysis is to gauge the potential of including local holiday data in heat load
forecasts in order to better capture the consumer behavior. The reduction in the annual error was
very small when comparing models with only generic calendar data to models including local holiday
data. This was clear from Figure 4b. It is well known among district heating operators that heat load
forecasts tend to perform poorly on special occasions, such as Christmas or New Year’s Eve. These
special days are rare, so the performance on those specific days has little impact on the average annual
performance (Figure 4b). Improved performance on special days is valuable to production planners,
and whether including local holiday data can improve forecast performance on specific days is worth
investigating in more detail.

Figure 7 shows the performance of the SVR model in the three data scenarios on different sets of
days during the year. “Holidays” refer to all days that are observances, national holidays, or school
holidays. “Weekdays” include all weekdays that are not also in holidays, and “weekends” include
all weekend days not included in holidays. In 2016, there were 201 weekdays, 65 weekend days,
and 100 holidays.

There is significant benefit in including generic calendar data in the forecast models for all day
types. On weekdays, there is no performance improvement to gain by including local holiday data.
The forecast error on weekends can be reduced by 0.5 MW. Not surprisingly, the greatest performance
increase can be observed on holidays. The holiday error decreases by 1.3 MW when augmenting the
modeling with local holiday data. The holiday error is generally smaller than the error for the other
day types. This is due to the holidays being dominated by the schools’ summer holidays, and the error
is generally smaller during the summer. Summing up, including local holiday data only improves
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the forecasts slightly on average. The largest improvement is seen on holidays where the error can be
reduced by 5%, compared to only using generic calendar data.

Figure 7. Forecast performance of the SVR model on the year 2016 using real weather forecasts,
calendar, and holiday data. The second and third group of bins refer to weekdays and weekends that
are not also included in holidays. Holidays refer to all days that are observances, national holidays,
or school holidays (see Table 1).

4. Conclusions

We have tested heat load forecasts with horizons from 15 h to 38 h, relevant for district heating
production planning considering the day-ahead electricity market. The work was based on seven
years of heat load and weather data for the large district heating system of Aarhus, Denmark. In order
to measure the forecast performance that can realistically be experienced in actual operation, we used
blind testing on a whole year with real weather forecasts.

Three machine learning models have been tested: an ordinary least squares model, a multilayer
perceptron, and a support vector regression model. The SVR model performed best, beating the OLS
model by a large margin and the MLP model by a small margin. All the models were trained on
lagged heat load data and weather data. The forecast performance could be significantly improved by
including generic calendar data, such as month, weekday, and hour of day. A smaller improvement of
the forecasts could be gained by supplying the models with local holiday data including observances,
national holidays, and school holidays. This improvement was most significant on holidays and
weekends. Local holiday data can be difficult and time-consuming to obtain, but merely including
lagged heat load, weather, and generic calendar data can provide a good overall forecast performance.

The SVR model using weather, calendar, and holiday data had the best performance. The root
mean square error was 29.3 MW, and the mean absolute percentage error was 6.4%. This forecast
model beat all other models that we have seen for the Aarhus system. The commercial forecast system,
currently in operation in the Aarhus district heating system, had an RMSE of 41.9 MW, and a MAPE of
8.3% on the test year.

Including local holiday data showed only minor overall improvements in forecast performance,
and including new data types in forecast models requires a careful evaluation of the trade-off between
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forecast accuracy and reliability of the data source. In live operational forecast systems, reliability
is valued highly, and inputting data into a simpler model may work to make a more robust system.
More features are thus not always an advantage, if the improvement in accuracy is insufficient to
justify the added implementation and maintenance cost.

Initial experiments using long short-term memory networks have not shown notable improvement
over the results attainable with the SVR model. However, future works should explore this type of
model further, as it has the potential to simplify the feature selection procedure and make it easier to
transfer these results to a wide range of district heating systems around the world.
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Abbreviations

The following abbreviations are used in this manuscript:
Pt Heat load in hour t (MW)
Pt−l Heat load lagged by l hours (MW)
Tout

t Outdoor temperature in hour t (◦C)
vwind

t Wind speed in hour t (m/s)
Isun
t Solar irradiation in hour t (W/m2)

Tout
t−l Outdoor temperature lagged by l hours (◦C)

Isun
t−l Solar irradiation lagged by l hours (W/m2)

P̂t Heat load forecasted for hour t (MW)
α L2 regularization parameter of the MLP model
C Regularization parameter of the SVR model
γ RBF kernel parameter of the SVR model
RMSE Root mean square error (MW)
MAE Mean absolute error (MW)
MAPE Mean absolute percentage error (%)
ME Mean error (MW)
OLS Ordinary least squares regression model
MLP Multilayer perceptron model
SVR Support vector regression model
RBF Radial basis function kernel
LSTM Long short-term memory network model
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Chapter 5

Seasonal production planning

5.1 Motivation

The previous two chapters were focused on the short-term operation of district
heating systems, and it is not without reason that the 1-48 h horizon has received
a lot of attention in the research. On the short term, it is possible to make
accurate predictions that can directly benefit operators, production planners
and traders. Seasonal production planning, with a horizon of several months is
an entirely different game. Due to larger uncertainties, the value of traditional
production planning models dwindles on longer time horizons (Dotzauer, 2003).
In the present study, I handle the uncertainties in a seasonal production planning
problem by using an extensive amount of weather data.

Compared to electric load, the load in district heating systems varies sub-
stantially between summer and winter. The seasonal load variations are so
large that some heat production units can become superfluous during summer
operations in large district heating systems. Shutting down a production unit
over the summer has significant economic potential, but the decision is not
without risk. If a unit is shut down too early, the system may run into capacity
problems, whereas a late shutdown can be costly if it displaces heat from cheaper
production units. The optimal shutdown date in the spring and start-up date
in the fall vary significantly from year to year and depend on complex weather
patterns. Rare weather events, such as an unusually cold spring, can impact a
shutdown decision with severe economic risk. Good estimates of this planning
risk requires large amounts of weather data, and this study demonstrates that
it can be quite costly to make seasonal planning decisions based on only a few
years of data.

The main part of this chapter is an article that was published in the Elsevier
journal Applied Energy. The article demonstrates the benefit of using large
amounts of weather data when making seasonal planning decisions in energy
systems.

5.2 Methods

The core of the study is a simulation model that estimates the heat production
cost given a certain heat load and estimates the heat load given weather data.
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5. Seasonal production planning

Based on this simulation model, I proceeded in two parts. First, the variability
of the timing of the shutdown and start-up were characterized. Then I developed
and benchmarked decision rules that can help production planners salvage most
of the potential savings in performing summer shutdown.

Figure 5.1: Data flow in the weather-based heat production simulation.

Heat production simulation

The data flow in the simulation is illustrated in the flowchart in Figure 5.1. In
the first step, a model was constructed to calculate the heat load given the
weather. Since the purpose of this model was simulation and not forecasting,
simplicity was valued highly. My heat load model exploits the well-known hockey
stick shape of the heat load plotted against the outside temperature (Frederiksen
and Werner, 2013). Daily average values of the heat load were modeled from
daily average temperature and an intraday load profile was applied depending on
season and whether it was a weekday or weekend. The model is a generalization
of piecewise linear degree-day-dependent models and reads:

P (Tout) = a

[
(Tout − T0)

1

2
erfc

(
Tout − T0√

2σ

)

− σ√
2π

exp

(
−(Tout − T0)2

2σ2

)]
+ P0 . (5.1)

Here P is the heat load and Tout the outside temperature. a, T0, σ and P0 are
parameters in the model. The model was derived under the assumption that
the outside temperature, at which the model goes from linear to constant, is
normally distributed with mean T0 and variance σ2. This model better captures
the hockey stick shape of the heat load versus the outside temperature, compared
to the piecewise linear models that are often employed for heat load modeling
(Dotzauer, 2002; Frederiksen and Werner, 2013).
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5.2. Methods

The next step in the simulation (see Figure 5.1) was to create production
plans given a certain heat load. An optimal planning scheme was used to
decide which units to run on what capacity in order to cover the heat demand.
The optimal production plan was found by solving a mixed integer linear
programming problem constrained by the energy balance in the system. Since
no heat storage was included in the simulation, this effectively reduced to a
simple merit order calculation. Two different production plans were laid: one
with and one without the plant scheduled for summer-shutdown.

The cost estimates for the production simulation models were based on the
productions system of our study case, the Aarhus district heating system. By
calculating the production cost with and without the shutdown unit I found the
total heat production cost for all possible shutdown and start-up dates. This
was the final step of Figure 5.1.

As illustrated on Figure 5.2 the constitution of the production system and
the cost of the various production units resulted in a cost cross-over in the heat
load. Below the cross-over it was cheaper to shut down the plant, and above
it was cheaper to keep the plant running. Shutdown decisions would be easy
to make, if the heat load only crossed the cross-over line in one point in the
spring and one point in the fall. Notice also the differences between the heat
load in 2015 and 2016. The complicated behavior of the heat load around the
cost cross-over warrants further studies into optimal shutdown decisions.
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Figure 5.2: The hourly heat load for Aarhus in 2015 and 2016. Above the red line, it
is cheaper to have all production units available. Below the red line, it is cheaper to
shut down a large CHP plant.
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5. Seasonal production planning

Characterization of optimal shutdown

With the production simulation in place, it was possible to begin to answer
a first important research question. How much do the cost-optimal shutdown
and start-up dates change from year to year, depending on seasonal weather
patterns? In addition to the location of the optimum, I also characterized
the depth and width of the cost function around the minimum. The depth of
the minimum reflects the potential economic savings of performing accurate
summer-shutdown. The width indicates how difficult it would be for production
planners to realize those savings.

Decision rules

In order to be able to realize the potential of summer-shutdown, it is not enough
to know the past and to know what could have been salvaged given perfect
knowledge of the past, present and future. Production planners, who wish to
switch between summer and winter operations, need decision rules to tell them
the best time to perform shutdown in the spring and start-up in the fall.

In the final part of the study, I developed and benchmarked three different
decision rules. The first rule simply shut down the plant on a fixed date every
year. The second rule used information about the heat load up to the time of
the decision to facilitate more accurate shutdown, but at the cost of shortening
the planning horizon. The third rule augmented the second rule with a load
forecast 15 days ahead in order to improve the shutdown accuracy further.

All the rules were tested and benchmarked through careful cross-validation,
ensuring that the performance was never evaluated on the same data that was
used to estimate parameters of the rules.

5.3 Main findings

Seasonal production planning is non-trivial, and a planning decision such as the
summer shutdown of a large CHP plant requires careful analysis. The present
study has found that the optimal dates for shutdown and start-up of a plant vary
substantially from year to year. The start-up date that is optimal one year may
lead to capacity problems in other years. Rare weather events that may only
occur once every decade can potentially be very costly. It is therefore crucial
to include as much weather data as possible in analyses of seasonal production
planning decisions, to estimate the economic risk as accurately as possible.

When it comes to decision-making and estimating the savings that production
planners could salvage under realistic planning condition, I have investigated
decision rules with different planning horizons. Production planners, who need
to plan very far ahead can salvage most of the benefit of summer shutdown
by using a fixed date rule. Production planners that operate in more agile
environments and are able to make decisions with shorter planning horizons can
optimize the shutdown accuracy further and salvage an additional few percent
of the potential savings.
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5.3. Main findings

The benchmarking of the decision rules showed that using only a few years
of data to calibrate the rules could lead to costly surprises, again affirming the
need for large amounts of weather data in seasonal production planning.
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H I G H L I G H T S

• In the study-case, the economic potential for summer-shutdown is 6.3 million €/yr.

• Optimal shutdown and start-up dates are characterized for 38 historical years.

• A fixed date rule achieves 90.7% of the potential and allows long-term planning.

• A load based rule achieves 95.8% but does not allow planning ahead.

• Using 15-day ahead forecast data increases the economic gain to 96.5% on average.

A R T I C L E I N F O
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Heat load forecasting

A B S T R A C T

Seasonal load variations in district heating systems are so large that some production units become superfluous
during summer operations. There is great economic potential in shutting down these units during summer. The
economic benefit of summer shutdown is highly dependent on the timing of the shutdown decision. The optimal
shutdown and start-up dates depend on complex weather patterns and vary significantly from year to year. This
study introduces three classes of decision rules to help production planners perform economically optimal
summer shutdown: a fixed date rule, a heat load based rule and a load based rule augmented with weather
forecasts. These decision rules are tested using 38 years of hourly weather data to simulate the heat load in
Aarhus, Denmark. The large amount of weather data allows for the creation of highly robust decision rules that
account for rare, but costly weather conditions. A fixed date rule allows for planning very far ahead and can reap
90.7% of the potential economic benefit of summer shutdown. A heat load based decision rule can salvage 95.8%
of the potential shutdown savings at the cost of shorter planning horizons. Augmenting the load based decision
rule with 15 day weather forecasts can boost the performance to 96.5%.

1. Introduction

The daily heat load in a district heating system varies by as much as
a factor of 8 between summer and winter in a northern European cli-
mate. In continental climates, seasonal load variations are presumably
even greater. In district heating systems with several production units,
the seasonal load variations make some production units superfluous
during summer.

Economically optimal production of heat often follows a simple
merit order in which cheaper production units are given priority over
more expensive ones. However, many cogeneration plants have a sub-
stantial minimum load. This means that if such a plant is kept in op-
eration, typically to ensure low-cost security of supply, it may displace

production from a cheaper alternative. Therefore, it can be economic-
ally beneficial to completely shut down a plant during the summer
period when the demand can be safely met by lower cost units.
However, the challenge in performing summer shutdown of such sea-
sonally superfluous production units lies in the timing. As an example,
an early warm spring may be interrupted by a sudden cold spell, where
the cost of emergency backup reserves, e.g. oil boilers, outweighs the
economic benefit of an early shutdown of one of the main units.
Similarly, a late start-up in fall may also require the use of costly
emergency reserves if the beginning of winter is not correctly antici-
pated. This means that the economically optimal shutdown and start-up
dates depend on complex weather patterns that vary substantially from
year to year. Therefore, good decision rules are necessary to help
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production planners perform optimal summer shutdown.
The economic potential in performing summer shutdowns of su-

perfluous plants in large district heating systems is significant. In this
paper, we use the large district heating system of Aarhus, Denmark, as a
case to present decision rules that can reap almost all the benefit of
shutting down a large CHP plant. This amounts to annual savings of
6.1 million €, which corresponds to about 5% of the total operational
heat production cost. Environmental benefits are also significant in
cases where a fossil fuel plant is shut down and the next plant in the
merit order has lower carbon emissions. The economic potential is clear
from the district heating perspective, but summer shutdown is eco-
nomical from a system perspective as well. Combined heat and power
plants (CHP) are under increasing economic pressure in many countries
due to larger penetrations of renewable energy reducing electricity
prices. This is especially true in summer when the heat demand is low.
The overall profitability of a plant can be improved by shutting it down
during the summer.

Cost-optimal operation and production planning of cogeneration
systems have been studied extensively in the past. Many studies apply
linear programming models (LP) [1] or mixed integer linear program-
ming models (MILP) [2,3] to optimize the unit commitment and load
dispatch in cogeneration systems. While these studies present theore-
tically optimal production plans, they do so under the assumption of
known electricity prices and perfect load forecasts. In an actual plan-
ning situation, there will be uncertainties associated with the future
heat load and electricity prices. Smart metering data are used in [4] to
optimize the operation of a small district heating system with genetic
optimization algorithms. Sensitivity analysis [4] and Monte Carlo si-
mulations [5] are used to evaluate the effect of uncertain parameter
estimates. Other studies account for uncertain forecasts by creating
artificial price forecasts and validating the results against the assump-
tion of perfect forecasts [6]. In [7], the authors explicitly model the
uncertainties and design operational strategies based on information
gap decision theory. A natural way to handle optimization under un-
certainty is stochastic programming. It is used in e.g. [8] to optimize the
operation of a district heating system with a strong coupling to the
electricity sector through cogeneration, heat pumps and electric boilers.

None of these studies account for long production planning horizons
of a month or longer. Production planning with horizons up to a month
was considered in [9], and the author concluded that it is very difficult
to use traditional optimization models to make relevant production
plans on horizons as long as a month. In [10], a framework is in-
troduced for modeling the planning under uncertainty on multiple time
scales, the longest being more than a year. The formulation of the
framework is concluded in a second paper [11], in which decision

theory is used to evaluate long-term cogeneration planning decisions.
Optimal design of cogeneration systems has been studied ex-

tensively using MILP and mixed integer nonlinear programming
models. Small systems, such as a single CHP unit at a building complex,
are sized in [12,13] using MILP modeling. Larger systems have been
sized in [14] with a special emphasis on legal constraints. Finally, some
studies include optimization of the district heating grid in the system
design [15,1]. In an entirely different approach, the study in [16]
evaluates optimal energy sources from the viewpoint of different sta-
keholders in the construction of a distributed energy system.

In this work, we use 38 years of weather data to quantify the un-
certainty in a specific shutdown decision, which is the optimal summer
shutdown of the large CHP plant at Studstrup, from which the city of
Aarhus, Denmark, gets most of its heat. For this case, we benchmark the
performance of three classes of shutdown decision rules. The first class
of rules uses fixed dates, shutting down and starting up the plant on the
same date every year. This class of rules has the advantage of allowing
for very long planning horizons. However, it does not reap the full
benefit of summer shutdown, because it is too inflexible. The second
class of rules uses information about the heat load up to the point of
shutdown. This class of rules performs better, but it comes at the cost of
shortening the planning horizon. The third class of rules augments the
load based rule with heat load forecasts up to 15 days ahead in an at-
tempt to improve the accuracy of the shutdown even further.

The decision rules are designed to be directly applicable by system
operators, as opposed to outputs of large scale MILP optimizations.
MILP optimizations of the production may result in summer shutdown
of certain units if start-up costs are properly accounted for. However,
these optimization studies do not provide a guide to decision makers
that can help with timing the decision accurately. By focusing on a
single decision and creating concrete decision rules, the results of this
work can be directly implemented by production planners. Although
weather based modeling is not new to load modeling in district heating,
see e.g. [17–21], the magnitude of our data foundation is un-
precedented. With 38 years of weather data, we are able to capture
effects of rare, but costly weather phenomena. Weather based modeling
on this scale has previously been applied to highly renewable electricity
systems to characterize transmission needs [22,23], storage [24,25] and
export schemes [26].

The novelty of this work can be summarized as follows. To the best
of our knowledge, we are the first to use weather based heat load
modeling with such a large quantity of data. The many years of weather
data allow us to capture complex patterns in the heat load to make
robust decision rules. This procedure accounts for rare weather phe-
nomena that can potentially be very costly if they are ignored. Because

Nomenclature

σ standard deviation in heat load model [°C]
τ1, τ2, τ3 load thresholds for load based decision rules [MWh/h]
θt

i indicator function for the availability of unit i
a slope in heat load model [MWh/h/°C]
ci operational production cost per unit heat for production

unit i [€/MWh]
C t( )fall start-up total operational production cost in the fall given tstart-up

[Cfall
no shutdown]

Cfall
no shutdown total operational production cost in the fall if shutdown

is not performed [€]
C t( )spring shutdown total operational production cost in the spring given
tshutdown [Cspring

no shutdown]
Cspring

no shutdown total operational production cost in the spring if shut-
down is not performed [€]

ct
tot total operational heat production cost in hour t [€/h]

h forecast horizon for load based decision rules with forecast

[h]
′p T( )0 probability density function for the threshold temperature

in heat load model
Ptot total heat load of the city [MWh/h]
Pt

i heat production from unit i in time step t [MWh/h]
P0 base heat load in heat load model [MWh/h]
Pi

max maximum heat output from unit i [MWh/h]
Pi

min minimum heat output from unit i [MWh/h]
T0 threshold temperature in heat load model [°C]
T T T, ,1 2 3 smoothing time scales for load based decision rules [h]
Tanchor anchoring time scale for load based decision rules [h]
tfixed plant shutdown/start-up time decided by the fixed date

rule
Tout outdoor temperature [°C]
tshutdown plant shutdown time
tshutdown

opt optimal plant shutdown time
tstart-up plant start-up time
tstart-up

opt optimal plant start-up time
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of the high number of years, the analysis is able to capture rare varia-
tions in the weather that occur, e.g. once per decade, and even 100-year
events have a good chance to be included. Secondly, this work focuses
on the consequences of a single biannual decision and provides simple
decision rules that can help production planners maximize the eco-
nomic benefit by making the right decision. Our decision rules are ea-
sily implemented and rely exclusively on information that is available
at the time of decision making. While based on a local case, our method
and decision rules can be transferred to other locations.

The remainder of the paper is structured as follows. Section 2 de-
scribes the data foundation, the cost modeling, the heat load modeling
and the decision rules. The results are presented in Section 3. Here the
economic potential of summer shutdown is quantified and the decision
rules are benchmarked. Finally, the paper is concluded in Section 4.

2. Methodology and data

In the following sections our methods and data foundation are de-
scribed. First, we present the data foundation in Section 2.1. Section 2.2
details how the heat production cost is calculated with and without the
unit that is shut down for summer. The modeling procedure, used to
simulate the heat load based on weather data, is described in Section
2.3. Finally, in Section 2.4 we develop the shutdown decision rules and
describe how they are benchmarked.

2.1. Heat production and weather data

The district heating system in Aarhus, Denmark has been used as a
case in this study. Heat production data from three years, 2014–2016
has been used to fit and validate a heat load model. The model was
fitted to measurements of the ambient air temperature from a weather
station owned by the district heating company in Aarhus. The weather
station is located at the heat exchanger station Brabrand Syd, and
hourly measurements of the outdoor temperature in 2014–2016 were
used. Hourly heat load was simulated by applying the heat load model
to 38 years of weather data from NCEP CFSR [27]. The CFSR data set
spans the entire globe with a spatial resolution of about 40 km and
hourly time resolution. We have used data from a point in the southern
part of Aarhus (N56°2′42.24″, E9°59′59.95″) and bias-corrected it with
respect to the measurements from the Brabrand Syd weather station.

Medium-range weather forecasts for Aarhus for the spring of 2017
have been provided by the Danish Meteorological Institute (DMI). The
forecasts have a horizon of 15 days and were produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF) [28]. The
forecast data were used to create a synthetic forecast model to explore
the value of augmenting decision rules with weather forecast data.

2.2. Heat production cost

In Danish district heating systems, such as the one in Aarhus, the
electricity and the heating side of a cogeneration system can be con-
sidered as two separate businesses. The heating side is non-profit by
law, whereas the electricity side can be a privately owned for-profit
company. The production cost is split between the electricity side and
the heating side according to contracts that are typically negotiated
from year to year and are based on average annual revenues from
electricity sales. This cost splitting is regulated by law. Using the ne-
gotiated effective heat production cost, we can model the heat pro-
duction cost in Aarhus, to a good approximation, without explicitly
modeling the electricity side.

The total cost of producing heat can be divided into fixed cost and
operational cost. The fixed cost is independent of the operation of the
system and includes investment cost and certain maintenance cost. The
operational cost, typically proportional to the produced heat, depends
on fuel prices, taxes and tariff and on the cost splitting negotiated with
the electricity side. The total operational production cost can be opti-
mized by changing the system operation, whereas the total fixed cost is
largely unaffected. Therefore, only the operational cost is considered in
the remainder of this analysis.

Production units may have a cost associated with start-up and
shutdown. When performing time coupled MILP optimization of pro-
duction systems with many units, start-up and shutdown cost can be
important. Including start-up and shutdown cost can help prevent in-
stabilities in the model, where plants start up and shut down un-
reasonably often. If there are many small plants in the system, start-up
and shutdown cost may also constitute a significant cost component.
However, the composition of the Aarhus district heating system ensures
that the smaller cheap units are always running and that the daily load
fluctuations are accommodated by one large plant. This means that it is
very rarely beneficial for units to perform start-up or shutdown.
Shutdown and start-up of the large CHP plant only occur once a year in
this operational scheme. Altogether, this makes the start-up and shut-
down cost negligible compared to the annual savings potential of per-
forming summer shutdown (about 6 million €).

In a large district heating system, the total operational production
cost depends on which units are producing the heat, because the var-
ious production units have different production cost. Given a heat de-
mand, we calculate total operational production cost by solving a mixed
integer linear programming (MILP) problem. We let ci be the opera-
tional production cost in €/MWh and Pt

i be the heat production in
MWh/h for unit i in hour t. θt

i is a binary indicator function that is 1
when the unit is running and 0 when the unit is not running.

The cost-optimal production plan for a given hour is then found by
solving the problem:

Table 1
Input parameters estimated for the Aarhus district heating production system. Pmin and Pmax are the minimum and maximum output of the production units when they are running. c is the
operational heat production cost per unit heat. The production cost for the Studstrup CHP plant varies depending on the heat load of the plant. It is highest for low outputs and approaches
the low value for high outputs.

Unit Pmin [MWh/h] Pmax [MWh/h] c [€/MWh] Description

O + VE 5 10 27 Industrial waste heat from Nordalim and Jysk Miljørens
RS 5 24 15 Waste incineration in Skanderborg, Renosyd
O1 + 2 5 37 13 Waste incineration plant in Lisbjerg, unit 1 and 2
O4 5 42 13 Waste incineration plant in Lisbjerg, unit 4
BKVV 5 80 39 Straw CHP plant in Lisbjerg
BKVV BP 5 30 46 Bypass operation of BKVV
O1 + 2 BP 5 6 49 Bypass operation of O1 + 2
O4 BP 5 8 49 Bypass operation of O4
CHP 36 540 43–91 Wood pellets CHP plant in Studstrup
Other 5 515 82 Various oil boilers, electric boiler in Studstrup
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Here, ct
tot is the total operational heat production cost in €/h in hour

t, and Pt
tot is the total heat load. The heat load is the total heat con-

sumption plus the heat that is lost in the system. The parameters for
estimating the optimal heat production cost for the Aarhus district
heating production system are shown in Table 1. Bypass operation of
the waste incineration plant and the straw CHP plant in Lisbjerg are
treated as separate production units when determining the cost. The
bypass production costs are calculated based on an average day-ahead
electricity price. The production cost of the CHP plant at Studstrup
varies depending on the heat load. The cost is lower at higher loads and
is always below 50 €/MWh when the load is above 200 MWh/h.

The results of cost-optimal heat production can be summarized by
the hourly cost plotted against the production as seen in Fig. 1. The
production cost with the Studstrup CHP plant available is shown in
blue, and the cost with the plant shut down is shown in green. The
green cost curve has been calculated by solving (1) through a range of
heat loads, Ptot, under the constraint that =θ 0CHP . Similarly, the blue
curve has been calculated under the constraint that =θ 1CHP . It is clear
that there is a crossover point when producing about 270 MWh/h at
9700 €/h. Above this heat load, it is economically favorable to have the
Studstrup CHP plant available and producing. Below this load, it is
cheaper to produce the heat without the Studstrup CHP plant. Thus, it
may be favorable to shut down the plant entirely during a period in
summer, since the heat load in Aarhus in the summer can be as low as
100 MWh/h.

Notice that the green line ends at 641 MWh/h. This is the −N 1 re-
dundant capacity of the production system without the Studstrup CHP
plant, i.e. the production capacity in the unfortunate case that the
second largest production unit fails. The second largest production unit
is the straw fired CHP plant in Lisbjerg (BKVV1 + BKVV BP in Table 1).

2.3. Heat load model

In order to investigate the optimal summer shutdown of the CHP
plant over many years, we have constructed a model for the total heat
load Ptot as a function of the outdoor temperature. Daily average values
of the heat load are shown as a function of daily average temperature in
Fig. 2. The hockey stick shape of heat load plotted against temperature
is well known in the district heating literature [29]. Below 15 °C, the
heat load decreases linearly with the outdoor temperature. Above this
point, the demand is constant to a good approximation. The behavior
can be explained by the fact that below a certain temperature the heat
demand is dominated by space heating, and the heat loss from buildings
depends linearly on the ambient air temperature. Above a certain
temperature, the heat load is dominated by hot water consumption
which does not depend much on the weather. Sometimes, this re-
lationship is modeled using a piecewise linear model [20], and some-
times using the popular degree day method [29]. We have chosen a
slightly more advanced model that captures the gradual transition be-
tween these two regimes (linearly decreasing and constant). Our model,
derived in the appendix, has the following functional form:
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⎣⎢
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⎝
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2
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2

.tot
out out 0

out 0 out 0
2

2 0

(2)

Tout is the outdoor temperature. erfc is the complementary error
function. a T σ, ,0 and P0 are parameters in the model. Estimates of the

model parameters and their physical interpretations can be found in the
appendix. In the limit where σ goes to zero, this model reduces to a
piecewise linear model with slope a for <T Tout 0 and constant at P0 for

⩾T Tout 0.
The red curve in Fig. 2 shows the model fitted on production data

from 2014 and 2015 and temperature data from AffaldVarme Aarhus’
weather station at Brabrand Syd. The model has been fitted using the
feasible generalized least squares technique to account for hetero-
skedasticity [30].

Heat consumption varies during the day according to a character-
istic daily profile [31]. This profile is characterized by a morning peak,
due to many people taking hot showers in the morning around the same
time. However, the intra-day heat load profile is significantly different
in the weekend compared to the work days, and it also varies with the
season. For the modeling in this paper, we have used 8 different profiles
shown in Fig. 3. The daily average heat load, predicted using the model
(2), has been converted to hourly time series by multiplication with the
heat demand profiles shown in Fig. 3. The profiles were estimated from
the measured heat load in 2014 and 2015. They were calculated as the
mean relative deviation from the daily average production given the
hour, season and whether it was a work day or weekend.

The heat load model, converting ambient air temperature from
NCEP CFSR to hourly heat load, was validated on data from 2016. It
yielded a mean error of 0.4 MWh/h, a root mean square error of
53 MWh/h and a mean absolute percentage error of 10.7%. The dis-
tribution of the heat load was captured well, and both mean and
standard deviation of the modeled load was close to that of the mea-
sured load. It is possible to achieve higher accuracy with more elaborate
time series models [21,32] or machine learning models [33,34], but for
the present application simplicity was valued highly, since the focus
was on long-term simulation and not short-term prediction.

Applying the heat load model to 38 years of weather data from
NCEP CFSR, we created 38 years of synthetic heat load data. This is the
foundation of the cost estimates in the remainder of the paper.

2.4. Choosing the shutdown and start-up dates

As we saw on Fig. 1, it is cheaper to produce heat without the CHP
plant when the heat demand is sufficiently low. It is therefore natural to
consider shutting down the plant for summer at some point during
spring and starting it up again in the fall when the heat demand rises

Fig. 1. The total operational heat production cost per hour as a function of the hourly
heat production. The blue line shows the cost when the Studstrup CHP plant is available.
The green line shows the cost when the plant is shut down. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)1 From Danish: Biomassefyret KraftVarmeVærk. Literal translation: Biomass CHP plant.
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again. There are potentially large savings in performing such a shut
down, but they are sensitive to the shutdown date and the start-up date.
In the following analysis we consider the shutdown in the spring and
the start-up in the fall separately. We define spring as the time of year
before July 17th and fall as the time after. It is assumed that it is always
cheapest to have the plant shut down in mid-July, and this is well
justified as the heat load of Aarhus is usually well below 200 MWh/h in
July.

Let C t( )spring shutdown be the total operational cost of producing heat
for Aarhus during the spring when shutting down the CHP plant at the
time tshutdown. C t( )spring shutdown is measured in units of Cspring

no shutdown, the
total operational production cost if the CHP plant is not shut down at

all. Completely analogously, we denote the total operational cost of
producing heat in the fall by C t( )fall start-up when starting up the CHP
plant at the time tstart-up. The optimal shutdown and start-up times we
denote tshutdown

opt and tstart-up
opt . These are the shutdown and start-up times

that minimize the production cost in the respective season. Or formally:

=t C targmin ( ),
t

shutdown
opt

spring shutdown
shutdown (3)

=t C targmin ( ).
t

start-up
opt

fall start-up
start-up (4)

This is illustrated for a representative year in Fig. 4. The gray curves
show C t( )spring shutdown and C t( )fall start-up . The optimal dates to shut down
and start up the plant are shown as yellow diamonds. In this example
case, the total production cost during spring can be reduced to about
95% of the production cost of not shutting down the CHP at all. Here
the full potential spring savings are about 5% of the total production
cost in the reference scenario. The dark blue bar marks the date interval
in which the CHP can be shut down while still realizing 90% of the
potential savings. The red bar marks the interval in which it is not
possible to shut down the CHP without compromising the −N 1 re-
dundant capacity specification. This means that if the CHP is shut down
before this date and the second largest production unit fails, it will be
impossible to meet the heat demand.

2.4.1. Scoring the shutdown and start-up dates
When testing the performance of decision rules for choosing the

shutdown and start-up date, we used a simple scoring system. A shut-
down date was scored based on how much of the potential shutdown
savings were realized by shutting down the plant on a given date.
Mathematically, the score is defined as:

=
−
−

t
C t
C t

score( )
1 ( )
1 ( )

,shutdown
spring shutdown

spring shutdown
opt (5)

=
−
−

t
C t
C t

score( )
1 ( )
1 ( )

.start-up
fall start-up

fall start-up
opt

(6)

If a shutdown date scored 100%, it indicated that the full potential
shutdown savings for the spring had been realized. In the Aarhus
system, the potential annual savings are typically around 2.5 million €
in the spring plus around 3.8 million € in the fall, if shutdown and start-
up are performed on the optimal dates. In relative terms, typical savings
amount to about 2% of the total annual operational cost in the spring
and 3% in the fall.

2.4.2. Three classes of decision rules
In this study, we benchmarked the performance of three different

classes of decision rules that can help decision makers shut down and
start up superfluous production units as close to the optimal dates as
possible.

2.4.2.1. Fixed date rule. The first rule shuts down and starts up the
plant on the same date every year. The fixed date was chosen as the
median of the optimal dates in a training set. We have experimented
with using the mean of the optimal dates, but the median performed
significantly better.

2.4.2.2. Load based rule. From Fig. 1 we recall the crossover heat load
at which it becomes cheaper to produce the heat without the CHP plant.
Bearing this in mind, it is expected that more accurate shutdown and
start-up can be achieved by using load based rules. Intuitively, it makes
sense to shut down the plant once the total heat load of the system Ptot,
averaged over a given period T falls below a certain threshold level τ .
Unfortunately, such a simple rule has proven to perform poorly in some
years, so we have chosen a slightly more complicated class of load
based rules. The idea is the same, but we demand the load averaged on

Fig. 2. Daily average heat load versus daily average ambient air temperature for 2014
and 2015 in Aarhus. The red line shows a fit of the model (Eq. (2)). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 3. Average intra-day profiles for the heat demand. The profiles are estimated from
the heat demand of Aarhus in 2014 and 2015. Work days are Monday to Friday, weekends
are Saturday and Sunday. For the purpose of the demand profiles the seasons are defined
as winter: December to February, spring: March to May, summer: June to August and fall:
September to November.
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two different time scales T1 and T2 must cross the thresholds τ1 and τ2.
Formally, the rule shuts down the plant in the spring the first time step t
in which all of these three conditions are met:
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(7)

The last condition anchors the shutdown date to the date chosen by
the fixed date rule. This is a safety precaution that ensures that the load
based rule does not shut down the plant more than Tanchor periods (ty-
pically 2 weeks), before the fixed date rule would shut down the plant.
The rule is not very sensitive to the choice of Tanchor as long as it is not
too small. The averaging time spans: T1 and T2 are tuning parameters of
the rule and are fixed by the user. The thresholds τ1 and τ2 are de-
termined by training the rule on a set of years. In the training, the
thresholds are determined by minimizing the sum of squared distances
to the optimal shutdown times. Averaging the heat load over two dif-
ferent time scales in (7) makes the rule more robust. Fluctuations in the
heat load occur both on a diurnal time scale due to consumer behavior
and a synoptic time scale due to changes in the weather. The double
averaging of the heat load allows the rule to react to changes on dif-
ferent time scales and makes it robust to fluctuations on just one time
scale.

Completely analogously, the load based rule for deciding to start up
the plant in the fall is defined as follows. In the fall (after July 17th), the
plant is started up again in the first time step t that fulfils all of these
three conditions:
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(8)

Again, T1, T2 and Tanchor are tuning parameters, and the thresholds τ1
and τ2 are determined through least squares training.

The best tuning parameters have been found through a grid search
and 7-fold cross-validation on the 35 years 1979–2013. For the spring
shutdown rule we found =T 2 h1 and =T 504 h2 and for the fall start-up

rule we found =T 2 h1 and =T 3 h2 . Notice that there is a great differ-
ence in the optimal parameters to use. This can be attributed to the fact
that the rule only relies on information about the heat load prior to the
decision time. Therefore, the spring and fall decisions are fundamen-
tally different in nature.

2.4.2.3. Load based rule with 15 day forecast. The load based decision
rule described above relies exclusively on the heat load prior to the time
of the decision. Using weather forecasts to predict the heat load up to
15 days ahead may improve this class of decision rules. A load based
decision rule augmented with weather forecasts 15 days ahead can be
formulated as follows. The plant is shut down the first time step t when
the load based conditions (7) are true and an additional forecast based
condition is true:
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′= + −
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t
3
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3

3 (9)

Here, h is the forecast horizon of 360 h (15 days). Similarly, in the fall,
the plant is started up when all the start-up conditions in (8) are met
and the forecast based condition
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is met. The averaging periods T1, T2 and T3 are chosen through tuning,
and the best parameters have been found to be =T 336 h3 in the spring
and =T 24 h3 in the fall.T1 and T2 were chosen as before. The thresholds
τ1, τ2 and τ3 were again determined through least squares training by
minimizing the squared distance to the optimal shutdown/start-up
date.

2.4.3. Simulated weather forecasts
Since actual weather forecasts for 38 years have not been available

to us, we have simulated weather forecasts by adding artificial forecast
errors to the temperature data. Based on 15 day ensemble forecasts of
the ambient temperature in Aarhus we have built a model for the daily
forecast error. The error at forecast horizons from 1 to 15 days can be
approximated well by a 15 dimensional multivariate normal distribu-
tion. This modeling procedure preserves the variance of the forecast
error on different horizons and captures the covariance structure of the
error by design. Simulated forecast errors were added to the tempera-
ture data, and used when training and testing the decision rules aug-
mented with forecast data.

Fig. 4. Example year 2002. Total operational production cost over the season relative to the reference cost of not shutting down the CHP plant at all. The seasonal cost is shown as a
function of the shutdown and start-up dates respectively. On the left: Cspring versus tshutdown. On the right Cfall versus tstart-up. The optimum is indicated with a diamond. The light blue

interval marks the ranges of dates within which at least 80% of the potential savings can be realized. The dark blue interval shows the interval for at least 90% savings. The red interval
indicates the dates for which the CHP has to be running, in order to maintain the −N 1 redundant capacity. This is one example year, similar figures for all 38 years are summarized in
Fig. 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3. Results and discussion

Inspecting Fig. 4, it is clear that for this example year the cost-op-
timal decision would be to shut down the CHP plant on May 6 and start
it up again on October 6. However, shutting down the plant in the
16 day window between April 29 and May 15 would still reap 90% of
the potential benefit of the shutdown in the spring. If we are satisfied
with realizing 80% of the benefit of the shutdown, the possible shut-
down dates constitute an interval of almost 4 weeks. However, caution
must be observed. By shutting down before April 6 (red interval), we

would be gambling with the security of supply. In this interval, there is
not enough production capacity if the second largest production unit
fails.

3.1. Realizing the potential of summer shutdown

The example year shown in Fig. 4 is modeled on weather data from
2002. A similar curve for the cost versus shutdown/start-up date has
been calculated for all the 38 years in the data set. While the overall
shape of the curves is similar from year to year, both the location and

Fig. 5. Optimal shutdown and start-up dates for all years. On the top: Optimal dates to shut down the CHP plant in the spring are shown as yellow diamonds. On the bottom: Optimal
dates to restart the plant in the fall. The light and dark blue bars indicate the time intervals within which a shutdown/start-up can realize 80% or 90% of the total economic benefit of
shutting down the plant. The red bars indicate periods in which the plant must be running, to ensure −N 1 redundant capacity in the system. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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the depth of the minimum vary substantially. The depth of the
minimum indicates the potential savings from summer shutdown. The
variation in the location of the minimum reflects the challenge of
shutting down and starting up the plant at the optimal times.

In the spring, the average savings that can be achieved from optimal
shutdown is 3.5% of the total spring production cost without shutdown.
It varies between 1.6% and 5.3%. In the fall, the average savings
amount to 8.6% and varies between 5.2% and 15.4%. The apparent
difference between spring and fall is due to the fact that both of the
highest load months, January and February, are situated in the spring
period. In absolute terms, this means that there is an annual savings
potential of 6.3 million € on average for the case of Aarhus. However, in
some years it may be as low as 4.5 million € or as high as 7.6 million €.

Cost curves similar to Fig. 4, for all the 38 years, have been sum-
marized in Fig. 5. The optimal shutdown and start-up dates are in-
dicated for each year. Intervals in which a shutdown or start-up would
reap 80% or 90% of the potential savings are shown as light and dark
blue bars. For each year, the red bar indicates the time of year in which
a shutdown of the CHP would be unsafe from a capacity perspective.

The optimal shutdown date in the spring varies significantly from
year to year. The median shutdown date is on May 13, but varies be-
tween April 23 and June 1. In the fall, the median start-up date is
October 11, but varies in the range September 30 to November 13.
While the optimal shutdown and start-up times and vary over a range of
about 6 weeks, there is an overlap of the 80% intervals for most of the
years. This is especially true for the start-up in the fall. It is therefore
possible to select a fixed start-up date in the fall which, for all years,
reaps at least 80% of the potential shutdown savings over the fall
period. Shutdown in the spring is slightly more difficult, but there are
still fixed shutdown dates that reap at least 80% of the benefit in most
years. Great care must be taken when choosing a fixed shutdown or
start-up date, since dates that are optimal in some years fall within the
unsafe (red) period in other years.

3.2. Fixed date shutdown/start-up

A good choice of date, for the fixed date decision rule is the median
of the optimal dates in the training set. We score the performance of the
decision rules based on the percentage of the potential summer shut-
down savings that are realized when using the rule. In the process of

selecting and validating the decision rules, we have used 7-fold cross-
validation on the 35 years 1979–2013. The years 2014–2016 were
withheld for a final blind test. In Fig. 6, the red bars show the validation
scores using the fixed date rule. On average, the fixed date rule was able
to realize 86.3% of the potential savings in the spring and 93.8% of the
potential savings in the fall. The rule performs well for most years, but
there are a few outliers. Most notable is the shutdown in the spring of
1987, in which less than half of the potential shutdown savings were
realized. This is the weakness of the fixed date rule. The performance is
usually good, but there is a risk of foregoing large saving in some years.
The fact that deciding the shutdown in the spring is more difficult than
deciding the start-up in the fall was anticipated from Fig. 5.

The performance of the fixed date rule is decent, and it has the
advantage of allowing for planning very far ahead. This is a major
advantage in large production systems where the planning of shutting
down plants for maintenance must often be scheduled and coordinated
far in advance. While the fixed date rule performs reasonably well,
there is room for improvement, and salvaging a few more percentage
points can be justified when the total potential savings are 6.3 million €
per year.

3.3. Load based shutdown/start-up

In the hopes of improving on the performance of the fixed date rule,
we have introduced a class of load based rules. This class of rules, de-
scribed in Section 2.4.2, uses information about the heat load up to the
point of the decision to shut down or start up the plant. The yellow2

bars in Fig. 6 show the performance of the load based rule in the cross-
validation. The average performance is improved to 93.4% in the spring
compared to 86.3% from using the fixed date rule. In the fall, we see an
improvement to 97.4% from 93.8% with the fixed date rule. In certain
years, such as 1987, 1995 and 1996, we see very drastic improvements
of 40 percentage points or more in the spring. All in all, there is sig-
nificant economic potential in switching from the fixed date rule to a
load based rule. However, it comes at the cost of decreasing the plan-
ning horizon, since the load based decision rule uses data up to the
point of the shutdown/start-up decision.

Fig. 6. Scoring of the three decision rules in
the cross-validation on the years 1979–2013.
A score of 100% indicates that the decision
rule was able to realize the full economic
potential of performing summer shutdown in
the respective season. On the very right a
summary of all the scores is shown. Scores
for the blind test years 2014, 2015 and 2016
are shown in Table 2.

2 For interpretation of color in Fig. 6, the reader is referred to the web version of this
article.
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3.4. Load based shutdown/start-up with forecast

Despite the load based decision rule outperforming the fixed date
rule by a decent margin, there is still a small room for improvement. An
improvement of 1 percentage point corresponds to more than 60,000 €
in annual savings on average, so there is an incentive to pursue the last
few points up to 100%. Therefore, we augment the load based decision
rule with weather forecasts up to 15 days ahead. Utilizing forecasts to
supplement the decision with information about the future has the
potential to improve the performance of the rules. However, there is a
risk that the forecast uncertainty is so large that the decision making
does not improve significantly.

The red bars in Fig. 6 show the scores of the load based rule aug-
mented with weather forecasts. Across the whole cross-validation, the
forecast augmented rule performs very similarly to the load based rule.
There are a few years in which the spring shutdown is improved by
more than 15 percentage points e.g. 1999, 2003 and 2011. Augmenting
the load based rule results in an average improvement of 1.9 percentage
points to 95.3% in the spring and a small drop in performance from
97.4% to 97.3% in the fall. Overall, there is a small performance im-
provement to gain by augmenting the load based forecast rule with
weather forecast information.

When benchmarking the three decision rules, we applied 7-fold
cross-validation to the years 1979–2013. Three test years, 2014–2016,
were withheld during the specification and tuning of the rules. The
results of training the rules on the cross-validation period and testing
them on the test period are shown in Table 2 along with a summary of
the cross-validation. The test set was made quite small, so as to utilize
the data as well as possible for the tuning and cross-validation. This has
the downside that the test performance is relatively volatile. The cross-
validation results on the other hand are very stable. The performance
on the test years show that although a rule performs well overall, there
may be outliers. The fixed date rule performed extremely well in 2014
while the load based rule was less impressive. However, we saw the
same general trend in the test and training scores as we saw in the cross-
validation. It is harder to achieve good performance in the spring
shutdown than in the fall start-up.

3.5. Rare weather events

Using as many as 38 years of weather data has the benefit that it is
easier to catch rare weather events in the modeling. In this context, rare
weather events cause the optimal start-up or shutdown date to be
unusually early or unusually late. A good example is the optimal start-

up date in the fall of 2005. The bottom of Fig. 5 shows that the optimal
start-up date fell on November 13 in 2005. This is an unusually late
start-up date. The date is an outlier by the Tukey method [35], and it is
more than 2 standard deviations above the mean of the optimal dates.
The start-up date fell late in 2005 due an unusually warm October
followed by a sudden drop in the outdoor temperature in the middle of
November. Despite the uncommon weather pattern in the fall of 2005,
the start-up rules performed decently in the cross-validation. The fixed
date rule achieved a score of 92.1% and the load based rule could
salvage 94.9% of the potential fall savings.

Another benefit of using many years of weather data is that the
robustness of the decision rules can be gauged more realistically.
Inspecting the top part of Fig. 6, we can imagine a decision maker in
1986 using data from 1980–1986 to decide on a shutdown rule. This
decision maker, might have chosen to use the fixed date rule to shut-
down the plant in spring, since its performance seemed comparable to
the load based rules. The following year, 1987 the fixed date rule
performed poorly and the decision maker did not foresee this, because
only data from the early 1980s had been used. Events where the fixed
date shutdown rule has scored below 75% have occurred only four
times in the 38 year period, and only the year 1987 has performed
below 50%. These events are so rare that there is a large chance to miss
them if only 5 or 10 years of data are used when designing the decision
rules.

4. Conclusion

We have shown how production cost of district heating can be
significantly reduced by performing summer shutdown of superfluous
production units. This kind of shutdown can be performed in any dis-
trict heating system with multiple production units. Using Aarhus,
Denmark as a case, we have shown that the economic potential of
shutting down a large CHP plant to be around 6.3 million € each year.
This amounts to about 5% of the annual operational production cost.

The economic benefit of the summer shutdown is highly dependent
on the timing of the shutdown and start-up of the plant. 38 years of
weather data has been used to build robust decision rules to help pro-
duction planners shut down the plant in the most optimal way.

A production planner who needs to plan very far ahead can benefit
from using a fixed date rule. The fixed date rule shuts down and starts
up the plant on the same dates every year. This rule is capable of
reaping most of the potential savings of summer shutdown (90.7%).
Production planners operating in a more agile setting with shorter
planning horizons can benefit from using one of the load based decision
rules. The summer shutdown savings can be increased by using these
rules (95.8%), but it comes at the cost of short planning horizons.
Finally, it was shown that load based decision rules can be improved a
little by augmenting them with mid-range weather forecast. This de-
cision rule is capable of reaping 96.5% of the total annual benefit of
performing summer shutdown.

The decision rules presented in this work either have infinite
planning horizons (fixed date rule) or no planning horizon (load based
rules). There is a trade-off between the planning horizon and the per-
formance of the rules. In the current paper, we have focused on im-
proving the performance of the rule by using forecasts. Instead,
medium-range weather forecasts can be used to extend the planning
horizon. Continued research into the topic should explore this trade-off.

When using such a large amount of weather data, shifts in the
Earth’s climate may begin to have an effect. Future studies should at-
tempt to quantify how climate change will affect operational decisions
in district heating systems.

Seasonal heat storage could function as a supplement to summer
shutdown of seasonally superfluous production units. Weather depen-
dent storage operation is crucial in district heating systems with large
solar heating production capacity and seasonal storage. The metho-
dology presented in this paper can be applied to create operational

Table 2
Summary benchmarking of the three decision rules. A score of 100% indicates that the
full savings potential has been realized for the respective season. The blind test was
performed by training the rules on the years 1979–2013 and testing on 2014–2016. The
validation score comes from 7-fold cross-validation on the years 1979–2013. In par-
entheses we indicate 1 standard deviation on the mean values for test, training and cross-
validation.

Spring shutdown score [%] Fall start-up score [%]

Decision rule
type

Fixed
date

Load
based

Load
based w.
forecast

Fixed date Load
based

Load
based w.
forecast

Test year 2014 99.0 80.5 97.6 88.0 98.8 98.8
Test year 2015 71.6 71.1 94.3 97.1 95.1 95.1
Test year 2016 88.3 88.5 91.9 93.0 96.1 96.1

Mean test score
( σ1 )

86.3
(11.2)

80.1
(7.1)

94.6 (2.4) 92.7 (3.7) 96.7
(1.7)

96.7 (1.6)

Mean training
score ( σ1 )

86.9
(12.0)

93.8
(6.6)

96.2 (4.3) 94.4 (4.4) 97.4
(3.2)

97.1 (3.4)

Mean
validation
score ( σ1 )

86.3
(12.6)

93.4
(6.7)

95.3 (6.0) 93.8 (4.1) 97.4
(3.1)

97.3 (3.3)
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decision rules for optimal operation of seasonal heat storage facilities
using large amount of weather data.

The decision rules presented here can be adopted by district heating
operators and trained on measured load data. If several years of load
data are not available, a simple weather based heat load model can be
used to train the rules.
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Appendix A

The model for the heat load of a city as a function of the outdoor temperature in Eq. (2) is derived in this appendix.
The hockey stick shape of the heat load versus temperature (see Fig. 2) is well known in district heating literature [29]. Below a threshold

temperature, ′T0, the heat load, P, decreases linearly with the temperature, Tout. In this regime, the heat load is dominated by space heating, and heat
losses from buildings are linear with the outdoor temperature to a good approximation. Above the threshold temperature, the heat load is constant,
P0, mainly due to hot water consumption. For a single building, a piecewise linear function is a good approximation to the heat load:

′ = ⎧
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− ′ + < ′
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P T T
a T T P T T
P T T

( ; )
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0 out 0 (11)

Here a is the slope of the linear part of the function. The threshold temperature, ′T0, varies from building to building depending on specific in-
stallations and the behavior of the residents. However, in a city with a large number of buildings, we can assume that it is normally distributed
according to the central limit theorem. If the threshold temperature, ′T0, is normally distributed with mean value T0 and variance σ2 its probability
density function, p, reads:
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In order to find a functional form for the heat load of an entire city, Ptot, we integrate the heat load of the individual buildings with the probability
density function:
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Here, erfc is the complementary error function. This model recreates the hockey stick shape that can be seen in heat load data aggregated on the
city level e.g. in Fig. 2. In the limit →σ 0, where all heat consumers are alike, the model reduces to (11). Furthermore, (14) behaves asymptotically
like (11) when ≪T Tout 0 and when ≫T Tout 0.

The parameters of the model have been fitted on daily heat load and daily average temperatures for Aarhus in 2014 and 2015 using the technique
of feasible generalized least squares. The parameters were estimated to:

= − ° = ° = = °a T P σ38.3 MWh/h/ C, 14.6 C, 122 MWh/h and 2.67 C.0 0
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Chapter 6

Production system planning

6.1 Motivation

The three previous chapters have been focused on district heating production sys-
tems and their optimal operation. Operational uncertainty has been quantified
with respect to short-term and seasonal production planning as well as system
operation. In this chapter, I move on from the current heat production system
and begin to quantify the uncertainty related to planning of future district heat-
ing systems. The topic of my last research paper is the cost-optimal capacity
allocation and technology choices for district heating production systems.

Investments in energy production capacity carry significant risk. Changing
energy demands and changing prices on electricity, fuels and technologies all
affect the economy of heat production units. Given increasing efforts to reduce
carbon emissions globally, energy system planners need to account for possible
bans on fossil fuels. In the following article, I investigate how sensitive a cost-
optimal heat production system is to changing investment cost, fuel cost and
electricity prices in a transition towards fossil free heat production.

Another effect of the global push to reduce carbon emissions is a rapid
increase in wind power generation in the North European electricity systems
(Jones et al., 2018). Current pricing structures result in very low, even negative,
electricity prices when the market is periodically flooded with cheap wind power.
As we move towards higher wind penetrations in the electricity system, this
kind of price volatility is likely to increase (Woo et al., 2011). In addition to the
sensitivity to electricity pricing levels, I therefore examine the impact of wind
power dominated electricity pricing on the optimal production system.

Summing up, my last research article characterizes how cost-optimal heat
production systems change when transitioning away from fossil fuels, under
different electricity pricing schemes. Furthermore, it is quantified how sensitive
the cost-optimal system is to changes in investment cost, fuel cost and electricity
prices.

6.2 Methods

Since planning of district heating systems often takes place on an urban level,
the modeling was focused on the local city-wide heat production system. District
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6. Production system planning

heating production systems are typically coupled to a larger electricity system,
so electricity prices and demands for electricity and heat were treated as external
boundary conditions imposed on the district heating system.

Capacity optimization

The optimal capacity allocation in the Aarhus district heating system was found
by solving a large linear optimization problem. The total annual investment
and operational costs were minimized with respect to system operation and
installation of production and storage capacities. The study included only
well-established technologies, and a range of heat only boilers, CHP units,
power-to-heat technologies and heat storages were available for installation in
the system.

The capacity allocation and system operation was posed as a linear program-
ming problem, optimizing an entire year’s operation with hourly time resolution.
The heat load was sourced from the Aarhus district heating system, and elec-
tricity prices and demand from the local transmission system operator. A large
number of constraints ensured physically correct behavior of the CHP units
and heat storages and the model was validated by reproducing the production
system operation of Aarhus in the year 2015.

Electricity pricing schemes

Three different electricity pricing schemes and their effects on the optimal heat
production system were studied in the paper: Historical, wind dominated and
and demand dominated electricity pricing. The historical pricing scheme was
identical to the electricity prices in the West Danish day-ahead market DK1 in
2015. Figure 6.1 shows the price in the historical pricing scheme in orange.

A possible future, in which wind power generation has a greater influence on
electricity prices, was investigated in a wind dominated pricing scheme, plotted
in green. In this pricing scheme the hour with the highest wind power generation
was assigned the lowest electricity price. The top right scatter plot in Figure 6.1
illustrates this procedure. By sorting the historical electricity price in order
to make the negative correlation between price and wind power generation as
strong as possible, I preserved the full distribution of the electricity price over
the year. This facilitated a fair comparison between the different electricity
pricing schemes.

The same methodology was applied to create a demand dominated pricing
scheme, plotted in blue. In this pricing scheme, the electricity price correlated
strongly with the electricity demand. This was intended to simulate a future
with larger amounts of dispatchable power generation compared to variable
renewable energy sources such as wind or solar power generation.

Sensitivity analysis

In optimization studies of energy systems, sensitivity analyses are often limited
or completely omitted (Lindenberger et al., 2000; Münster et al., 2012; Ortiga
et al., 2013; Buoro et al., 2014). This may be due to high computational costs
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Figure 6.1: Three different electricity pricing schemes with hourly electricity prices
based on the West Danish day-ahead market DK1 in 2015.

of running the optimizations, but it is problematic since sensitivity studies
provide valuable information about the robustness of the results with respect
to changing model parameters. Decision makers in charge of planning future
energy production systems are faced with large uncertainties on fundamental
cost assumptions which propagate into uncertainty on the optimal planning
decision.

In the present study, these uncertainties were quantified through an extensive
multivariate sensitivity analysis. It was investigated how variations in investment
cost, fuel cost and electricity prices affected the optimal capacity allocation in a
large district heating system.

One-at-a-time sensitivity analyses, in which one input parameter is varied
while the others are fixed, can be overly optimistic because they do not adequately
explore the input space and fail to account for interactions between inputs
(Czitrom, 1999). I therefore employ a more sophisticated type of multivariate
sensitivity analysis based on the experimental design Latin hyper cube sampling.
This type of sampling varies parameters simultaneously while ensuring that the
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samples are representative of the full multivariate variability (McKay et al.,
1979).

The sensitivity analysis in this study consisted of 200 different sensitivity
scenarios, including many different combinations of rising and falling electricity
prices and fuel and investment costs for individual technologies.

6.3 Main findings

The cost-optimizations in this study did not account for local taxes or regulations,
but the results can serve as a guiding point for energy planners and lawmakers.
Going forward, a city-wide district heating system coupled to a regional or
national electricity system can benefit from installing a substantial amount of
large-scale heat pumps supplemented by large heat storages. If fossil fuels are
allowed in the future, coal fired CHP seems to play a significant role alongside
heat pumps in cost-optimal heat production systems. However, the exact
capacity mix between coal CHP and heat pumps is highly sensitive to changes
in investment cost, fuel prices and electricity prices.

If fossil free heat production is desired, the total heat demand can be met
by heat pumps, if the storage capacity is approximately doubled. Going fossil
free does increase the total system cost slightly, but it significantly reduces the
uncertainties in the capacity allocation. The uncertainty on the total system
cost, however, is increased when going fossil free, as the cost of heat becomes
more dependent on the electricity prices.

The optimal technology choices are highly stable under changing cost as-
sumptions: coal CHP, heat pumps and heat storage pits in a fossil fuels scenario;
heat pumps and pit storages in a fossil free scenario.

A wind dominated electricity pricing scheme will increase the optimal heat
pump capacity and reduce the total heating system cost. This is because this
pricing scheme generally has lower electricity prices in the winter when the heat
load is high. A demand dominated pricing scheme will also increase the need
for heat pumps, but it may increase the system price.
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Abstract

Goals to reduce carbon emissions and changing electricity prices due to increasing penetrations of wind power generation
affect the planning and operation of district heating production systems. Through extensive multivariate sensitivity
analysis, this study estimates the robustness of future cost-optimal heat production systems under changing electricity
prices, fuel cost and investment cost. Optimal production capacities are installed choosing from a range of well-established
production and storage technologies including boilers, combined heat and power (CHP) units, power-to-heat technologies
and heat storages. The optimal heat production system is characterized in three different electricity pricing scenarios:
Historical, wind power dominated and demand dominated. Coal CHP, large heat pumps and heat storages dominate the
optimal system if fossil fuels are allowed. Heat pumps and storages take over if fossil fuels are excluded. The capacity
allocation between CHP and heat pumps is highly dependent on cost assumptions in the fossil fuel scenario, but the
optimal capacities become much more robust if fossil fuels are not included. System cost becomes less robust in a fossil
free scenario. If the electricity pricing is dominated by wind power generation or by the electricity demand, heat pumps
become more favorable compared to cogeneration units. The need for heat storage more than doubles, if fossil fuels are
not included, as the heating system becomes more closely coupled to the electricity system.

Keywords: District heating, Energy production, Optimization, Cost sensitivity, Fossil free

1. Introduction

District heating systems are facing a new reality on
multiple fronts. Ambitious global efforts to decrease car-
bon emissions call for the transformation of heat produc-
tion systems away from fossil fuels and towards fossil free
alternatives. In modern district heating systems combined
heat and power (CHP) plants form the backbone of the
production system and usually provide a majority of the
heat. Coal and gas fuelled CHP is cheaper than biomass
based CHP but problematic from a carbon emissions per-
spective. At the same time, electricity systems are quickly
adopting large amounts of wind power generation, which
reduces the economic feasibility of CHP generation by pe-
riodically lowering electricity prices [1, 2]. Power-to-heat
technologies benefit from this development, especially in
combination with heat storage technologies.

In this study, we explore how the cost-optimal composi-
tions of a city-wide heat production system changes when
moving into a fossil-free future. The effect of electricity
pricing dominated by wind generation or by electricity de-
mand is investigated, and the results are corroborated by
extensive sensitivity analysis. We use the district heating
system of Aarhus, Denmark as a study case, providing the
heat load and the validation scenario.

District energy systems are often planned and oper-
ated on a city level. Therefore, it makes sense to model
the district heating production system coupled to a larger
electricity system. Taking the city’s point of view in the

modeling allows us to give recommendations for energy
planners under different external conditions, such as the
state of the regional or national electricity system.

In [3], Lund et al. compared two different approaches
to energy system modeling: simulation and optimization.
Simulation studies simulate and envisage the behavior of
the system under a set of operating conditions defined by
the user. Scenario based modeling, e.g. in EnergyPLAN,
is an example of simulation studies. In optimization stud-
ies, the values of a number of decision variables are com-
puted to minimize a certain objective function subject to
constraints. A common example is allocation of produc-
tion capacities in order to minimize system cost. Both
modeling paradigms have their merits, and in this study
we combine the two in orders to find cost-optimal sys-
tem configurations in different scenarios. These scenarios
include: allowing fossil fuels, excluding fossil fuels, histor-
ical electricity pricing, wind dominated electricity pricing
and demand dominated electricity pricing. Combining the
two approaches, we provide recommendations that are rel-
evant to decision makers under different planning condi-
tions. We indicate the robustness of the recommendations
under changing cost assumptions by means of thorough
sensitivity analysis.

Capacity optimization studies in district energy sys-
tems are plentiful in the literature. Our system optimiza-
tion includes well-established technologies such as different
boilers, CHP units, electric boilers, heat pumps and heat
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storages. Operations and capacities of CHP units have
been optimized in [4, 5] using fossil fuels and in [6, 7] us-
ing biomass. The economic feasibility of large heat pumps
for district heating systems have been investigated care-
fully in [8], taking day-to-day operational uncertainty into
account through stochastic programming. The benefit of
long-term heat storage in district heating systems has been
studied in [9] and heat storage tanks have been compared
to using the building mass for heat storage in [10].

Energy systems, in which it is important to model sys-
tem nonlinearities, possibly making the objective function
non-convex can be optimized using global optimization ap-
proaches such as genetic algorithms [7, 11, 12]. However,
these approaches can be slow and run the risk of not find-
ing the global minimum. In [9] the capacity and opera-
tion of CHP plants are optimized as mixed integer non-
linear programming (MINLP) problems, and the authors
highlight some of the potential pitfalls of non-convex op-
timization. In cases where the energy system behavior
can be reasonably linearized, the optimization speed can
be decreased. Not surprisingly, mixed integer linear pro-
gramming (MILP) [13, 14] and linear programming (LP)
[15, 16] models are widespread in production capacity opti-
mization and operational optimization. A thorough review
of optimization studies in trigeneration systems (electric-
ity, heating, cooling) can be found in [17].

In this study, we pose capacity and operational op-
timization as an LP problem and validate the resulting
system operation against actual operational data for the
city of Aarhus using a methodology similar to [18]. Even
large LP problems with hundreds of thousands of variables
and millions of constraints can be solved deterministically
in relatively short time, assuming they are feasible and
bounded. This property allows us to perform extensive
sensitivity analysis of the cost assumptions of the model.
In many optimization studies, model runs are very com-
putationally expensive, which can severely limit the feasi-
bility of large sensitivity analyses. In [16] the sensitivity
analysis is limited to varying the fuel prices and CO2 prices
up and down by 50 %. Most studies that do include sen-
sitivity analysis of the model assumptions, only vary the
input parameters one at the time [7, 11, 13]. One-at-a-
time sensitivity analysis has the disadvantage, that it only
explores a very small part of the possible input space and
fails to account for interactions between input parameters
[19]. In this study, we perform an extensive multivariate
sensitivity analysis including 200 points. These points are
sampled using an experimental design called Latin hyper-
cube sampling (LHS) [20] in order to better capture to full
variability of the cost-parameters of the model and thor-
oughly test the robustness of the results with respect to
changes in electricity prices, fuel cost and investment cost.

A number of studies explore the effects of changing
electricity prices on the economy of CHP units [12] or en-
tire district energy systems [8, 18]. As in [13], we model
the district heating system as a price-taker, that does not
affect the electricity prices. We employ a novel way of con-

structing electricity price scenarios based on historical day-
ahead prices, that preserves the distribution of the prices,
but changes the autocorrelations. This methodology al-
lows us to construct wind dominated electricity prices or
demand dominated electricity prices, and facilitates fair
comparison between these scenarios.

Some capacity optimization studies include local reg-
ulatory constraints [7, 21]. Regulations, tariffs and taxa-
tions are left out of our modeling, except for a possible ban
on fossil fuels. In this way, our results represent taxation-
neutral economically optimal energy systems, which can
serve as a guiding point for energy planners and lawmak-
ers.

Summing up, we demonstrate the robustness of eco-
nomically optimal heat production systems under chang-
ing cost assumptions in the transition away from fossil
fuels. In addition, the effects of changing influences in the
electricity market are explored using a new methodology
which allows for fair comparison between pricing scenarios,
because it preserves the electricity price distribution.

The rest of the paper is structured as follows. In Sec-
tion 2 the system model is described and validated, and
the electricity pricing scenarios and sensitivity analysis are
outlined. The results are presented in Section 3, and the
paper is concluded in Section 4. Finally, in the Appendix
the full mathematical formulation of the model can be
found.

2. Methodology

This section describes how we have modeled the energy
production system of a city with district heating coupled to
a larger electricity transmission area. In Figure 1, the con-
ceptual overview of the modeled energy system is sketched.
The focus in this work is the optimal capacity configura-
tion of a such a city, with regards to CHP production, heat
only boilers, power-to-heat technologies and heat storages.
The system operation and production capacity installation
is co-optimized as described in Section 2.1. In Section 2.1.1
the optimization model is validated against the actual en-
ergy system operation of the city of Aarhus in 2015 and
in Section 2.2 the various production and storage tech-
nologies in the capacity optimization are described. The
implementation of the electricity market and three differ-
ent electricity pricing schemes is covered in Section 2.3.
Finally, Section 2.4 describes an extensive cost sensitivity
analysis that qualifies the robustness of the final results.

2.1. Production system optimization
The modeling in this study is based on the city of

Aarhus in Denmark. Aarhus is a city of about 340,000 peo-
ple and almost all buildings in the city are heated through
an extensive district heating system. The basis of this
model is the hourly heat load of Aarhus from 2015.

The core of the work is a linear programming (LP)
optimization problem, in which the heat and electricity
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Figure 1: Conceptual overview of the energy system model. Arrows
indicate directed energy flows.

production are co-optimized with heat storage operation
and the installation of different types of heat and electric-
ity production capacity. The total production system cost
is minimized, including investment cost, operational and
maintenance cost and fuel cost on all production units.

The full optimization problem, is formulated in the ap-
pendix, where the objective function (1) is minimized un-
der the constraints (2-14). The system cost is minimized
under a number of constraints. Energy balance constraints
ensure that the total heat demand of the city is met in each
hour and that the total electrical load is met as well. A
number of capacity constraints ensure that all production
units operate within their capacity. Finally, cogeneration
production units are imposed with further constraints, de-
pending on whether they are extraction-condensing plants
or back-pressure plants with bypass.

The formulation of the capacity optimization as an LP
problem means that well-established very fast techniques
can be used to solve the problem in relatively short time.
A scenario can be optimized in less than 10 minutes on a
regular laptop as of 2018, which allows for extensive sen-
sitivity analysis of the problem. The whole model has
been implemented in Python for Power System Analysis
(PyPSA) [22] and solved with the commercial Gurobi Op-
timizer [23].

We optimize the operation of the production and stor-
age units on an hourly timescale throughout a full year.
By using a full year, the system is operated through a rep-
resentative range of the heat and electricity load. This is
especially important for the heat load, as it varies by more
than a factor of 8 over the course of a year [24].

2.1.1. Model validation
In order to validate the operational part of the opti-

mization model, we reconstruct the operation of the Aarhus
heat production system in 2015. In this operational opti-
mization, we lock the capacities of each unit to the actual
production capacity of the system. We cannot disclose
the full technical specification of the Aarhus production
plants, but we can summarize the most important aspects.
In 2015, the base heat load was provided by 94.5 MW of
waste incineration CHP, with the capability to boost the
heat production to 112 MW by bypassing the turbines. A
wood chips boiler of 24 MW supplemented the waste incin-
eration as base load. A large coal CHP plant was in charge
of maintaining the load balance in the system, and had a
heat production capacity of 968 MW and an electrical pro-
duction capacity of 707 MW. A number of peak-load oil
boilers, with a total capacity of 435 MW were available in
case of extremely cold weather or fallouts of other produc-
tion units. Finally, a heat storage tank capable of storing
2,000 MWh was available.

When comparing the optimization results to the actual
operation of the system, it is important to bear in mind
that the optimization is based on the 2015 day-ahead elec-
tricity prices and operates with perfect foresight. This po-
tentially makes the storage operation more optimal than
what can be achieved by actual system operators.

On Figure 2, we see a comparison of the duration curves
of the production and storage units in the Aarhus sys-
tem of 2015. There is a good correspondence between the
simulated and realized duration curves both in shape and
magnitude. There are some smaller discrepancies, most
notably in the operation of the oil boilers and the storage
operation. The oil boilers are not used at all in the simula-
tion, but in reality some oil was used. This is because the
CHP plant fell out for a small period during 2015, and the
excess load had to be covered with oil boilers. The differ-
ence in the shape of the storage operation, is due to tighter
constraints on the storage heat uptake and dispatch in the
simulation, compared to reality. It was necessary to use
tighter constraints in the optimization to compensate for
the perfect foresight.

A summary of the total annual heat output for each of
the units can be found in Table 1. The waste incineration
delivered 6 % more heat in the simulation than in reality.
The waste incineration is the cheapest unit and the sim-
ulation does not account for revision periods in which a
unit is taken out for repairs and maintenance. This ex-
plains the excess production from waste in the simulation
compared to reality. Likewise, the wood chips boiler also
delivered more heat in the optimization compared to real-
ity. This is because the wood chips boiler in reality was
shut down during the summer in order to avoid competing
with the waste incineration. The summed storage uptake
and dispatch in the simulation are very similar to reality.
The storage operation in reality was not cyclical, which
explains the apparently positive net heat output from the
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Figure 2: Duration curves for the heat output of the main production and storage units in the Aarhus heat production system of 2015. On
the left, the actual operation of the units is shown; on the right are the results of the operational optimization.

storages.

Table 1: Comparison between the actual and simulated operation
the Aarhus heat production system as of 2015. For each major pro-
duction unit, the total annual heat production is shown. The heat
storage dispatch is shown with a positive sign and storage uptake is
shown with a negative sign.

Total heat output in 2015
Actual [GWh] Simulated [GWh]

Coal CHP plant 2.11 × 103 2.12 × 103

Waste incineration 785 836
Wood chips boiler 183 206
Oil boilers 72.5 0.00
Heat storage dispatch 241 241
Heat storage uptake −240 −246

We cannot disclose the total electricity production in
Aarhus, because it would be easy to reconstruct which
plants delivered how much electricity. But, we have made
the comparison between the actual and simulated electric-
ity production and there is a difference of less than 1 %
[25].

All in all, we cannot expect perfect correspondence be-
tween the actual operation and the optimized operation,
since the actual operation is decided by production plan-
ners without perfect knowledge of the system, and because
revision periods and accidental fallouts are not included
in the simulation. However, the correspondence is good
enough that the operation of production units and stor-
ages can be considered realistic, also when we move on to
capacity optimizations.

2.2. Heat production and storage technologies
The technologies we have chosen to include in the ca-

pacity optimization are all well-established technologies,

that have been implemented in district heating systems be-
fore. The production units can be divided into three types:
Heat only boilers, CHP plants and power-to-heat technolo-
gies. Geothermal production technologies have not been
included since their feasibility and cost are highly location
dependent. Solar thermal technologies have not been in-
cluded due to their high cost and negative synergies with
waste incineration [26]. The financial and technical data
about the heat production technologies included in the ca-
pacity optimization are summarized in Table 2.

Heat only boilers (Table 2a) are generally cheap and
produce heat for the heating system by burning fuel. From
an exergetic perspective, boilers are not ideal as they con-
vert high exergy fuel into low exergy heat. We implement
three common boiler types in the capacity optimization:
Wood chips boilers, gas boilers and oil boilers. While wood
chips boilers are preferable due to lower carbon emmisions,
the investment cost is significantly higher compared to gas
and oil boilers. We have omitted wood pellet and straw
boilers, as they are generally not economically competitive
on a large scale due to the higher fuel cost [26].

As heat production units, CHP plants (Table 2b) are
much more expensive than boilers, but they have the ad-
vantage that they deliver both heating and electricity. This
is beneficial from and exergy perspective. Even in a fu-
ture with large amounts of cheap wind power, the elec-
tricity system is likely to need dispatchable backup power,
e.g. from CHP plants [30]. Our capacity optimization im-
plements six different CHP technologies. Coal and wood
pellets plants are both extraction-condensing CHP plants
fired by pulverized fuel. The modeling includes three dif-
ferent gas fired plants: gas engines, simple cycle turbines
and combined cycle turbines. Finally, a straw fired back-
pressure CHP plant has been implemented, inspired by
the newly opened (2017) straw fired plant in the Aarhus
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Table 2: Financial and technical data for the energy production and storage technologies in the simulation based on [26, 27]. Fuel costs are
sourced from [28] and missing parameters have been estimated based on the Aarhus heat production system. Efficiencies are given in terms
of the lower calorific value of the fuel. All financial data for CHP technologies are in terms of electricity production and capacity. CapEx
denotes the investment cost per unit capacity, OpEx denotes operation and maintenance cost and are split into a fixed annual part and a
variable part depending on the operation. ηboiler is the efficiency of the boilers, and ηel is the electrical efficiency of the CHP plants. α
denotes the power-to-heat ratio of CHP plants in back-pressure operation and ζ is the specific electrical power loss [29]. For power-to-heat
technologies, ηboiler or COP is the ratio of produced heat to consumed electricity. For the heat storage units, ηstand is the fraction of the
energy content that is lost through standing heat losses in each time step.

(a) Boiler technologies (fuel based).

Boiler type Fuel cost CapEx OpExfixed OpExvariable Lifetime ηboiler

[e/MWhfuel] [Me/MWheat] [ke/MWheat/yr] [e/MWhheat] [yr] [-]

Wood chips 24 0.8 0 5.4 20 1.08
Gas 20 0.06 2 1.1 25 1.03
Oil 46 0.06 2 0.26 25 0.94

(b) CHP technologies.

CHP type Fuel cost CapEx OpExfixed OpExvariable Lifetime ηel ζ α
[e/MWhfuel] [Me/MWel] [ke/MWel/yr] [e/MWhel] [yr] [-] [-] [-]

Straw 21 4.0 40 6.4 25 0.29 0.15 0.48
Wood pellets 25 2.0 57 2.0 40 0.46 0.15 0.75
Gas (simple cycle) 19 0.60 20 4.5 25 0.39 0.15 0.95
Gas (combined cycle) 19 0.90 30 4.5 25 0.55 0.15 1.7
Gas engines 19 1.0 10 5.4 25 0.44 0.15 0.9
Coal 9.2 1.9 32 3.0 40 0.46 0.15 0.75

(c) Power-to-heat technologies.

Power-to-heat type CapEx OpExfixed OpExvariable Lifetime ηboiler/COP
[Me/MWheat] [ke/MWheat/yr] [e/MWhheat] [yr] [-]

Electric boilers 0.07 1.1 0.5 20 0.98
Compression heat pumps 0.7 2.0 2 25 3.5

(d) Heat storage technologies.

Heat storage type CapEx Storage capacity Lifetime ηstand

[e/m3] [MWhheat/m
3] [yr] [-]

Storage tanks 210 0.07 20 1.4 × 10−3

Storage pits 35 0.07 20 1.4 × 10−3
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district heating system.
Power-to-heat technologies (Table 2c) have increasing

potential in district heating applications as electricity mar-
kets are periodically flooded with large amounts of cheap
wind power [8]. The capacity optimization includes simple
electric boilers and compression heat pumps. Large-scale
heat pumps for district heating have already been imple-
mented in district heating systems (e.g. in Stockholm)
[31], and we assume a low-temperature heat source such
as seawater and a conservative coefficient of performance
(COP) of 3.5. Depending on the temperature of the heat
source and the district heating supply temperature, the
COP can be significantly higher [27].

Finally, two different heat storage technologies (Ta-
ble 2d) have been implemented: heat storage tanks and
seasonal pit storages. Heat storage tanks are already com-
mon in many district heating systems around the world, in-
cluding the one in Aarhus. Pit storages are gaining ground
and two examples of large heat storage pits are located
in Marstal (75 × 103 m3) and Dronninglund (60 × 103 m3)
[32] in Denmark, and they are significantly cheaper than
storage tanks for large storage volumes.

Besides delivering heat for room heating and hot water
consumptions, the district heating system of Aarhus and
many other large district heating systems serve another
crucial societal function. Municipal waste is incinerated
and the excess heat is used for district heating and elec-
tricity generation. The waste incineration needs of a city
like Aarhus are unlikely to change significantly in the com-
ing years, so the actual 2015 waste incineration capacity
was therefore included in all the simulations with fixed
capacity and optimized operation.

2.3. Electricity pricing schemes
In the modeling, the West Danish electricity market

(DK1) has been implemented with historical day-ahead
prices for 2015. The market is implemented in the model
as a simple generator with practically unlimited produc-
tion capacity, capable of delivering electricity at the spot
price in the relevant time step. Effectively, this lets local
CHP units deliver electricity when their production price
is below the spot price and it allows power-to-heat tech-
nologies to use electricity at market price. See Figure 1.

Besides the 2015 electricity pricing (Historical electric-
ity pricing), we have constructed two artificial pricing sce-
narios. In a market with abundant amounts of electricity,
the supply side will dominate. In the current and future
North European energy system, the market will periodi-
cally be dominated by large amounts of wind power [33].
Prices will go down when wind power is abundant, and
when the wind settles down, prices go up. We call this
scenario the Wind dominated electricity pricing. In the
other extreme, if the energy system is not dominated by
variable renewable energy sources, and the electricity de-
mand is primarily covered by dispatchable generation with
a less volatile price, the electricity price will be dominated
by the demand. In hours with high demand, prices go up

and vice versa. We call this scenario the Demand domi-
nated electricity pricing.

In the capacity optimization, we implement the wind
and demand dominated pricing scenarios based on the his-
torical 2015 electricity price, wind power production and
electricity demand. All the data has been sourced from the
local transmission system operator (TSO) Energinet [34].
We employ a methodology that preserves all moments of
the distribution of the electricity price time series. In this
way, there is the same mean, variance, skewness etc., but
the autocorrelation is lost. A wind dominated price time
series is obtained by sorting the original price such that
the highest price is relocated to the hour with the lowest
wind power production, the second highest price is relo-
cated to the second lowest wind hour and so on. This
process preserves the total value in the electricity market
and facilitates fair comparison between the different pric-
ing scenarios. In the historical pricing scenario, the Pear-
son correlation coefficient between the day-ahead electric-
ity price and the wind power production was −0.40. In
the wind dominated scenario it is −0.91.

The same methodology is used to create a demand
dominated pricing scheme. This time, the electricity prices
are relocated such that the highest price falls in the hour
with highest demand. The correlation between demand
and price goes from 0.57 in the historical scenario to 0.95
in the demand dominated scenario.

2.4. Sensitivity analysis
Large scale modeling studies are haunted by the fact

that they require many different input parameters to de-
fine the model. These parametes may be difficult to accu-
rately estimate or may be subject to change. It is therefore
crucial to perform sensitivity analysis to investigate how
robust the final results are to changes in input parameters.
It is a well known problem in numerical modeling that hy-
pervolumes grow exponentially with the dimensionality of
input spaces. This is known as the curse of dimensional-
ity, and it means that exhaustive searches through input
spaces very quickly become infeasible as the number of in-
put parameters grow, especially if model evaluations are
time-costly. One technique to deal with this problem is
Latin hypercube sampling (LHS), which is a random mul-
tivariate sampling method that ensures that the samples
are representative of the real variability of the variables
[20].

In this study, the sensitivity analysis is focused on the
cost assumptions. We have run the system capacity op-
timization with 200 different perturbations of the CapEx
and fuel cost assumptions shown in Table 2 as well as the
mean electricity price1. The 200 points were generated us-
ing Latin hyper cube sampling to ensure a representative

1In the sensitivity analysis, the entire electricity price time series
was scaled up or down with the same factor, drawn from the Latin
hypercube sample.
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sample of the input space. The LHS points were trans-
formed via the inverse cumulative distribution to be nor-
mally distributed around the initial value (Table 2), with a
standard deviation of 10 % of the initial value. This leaves
about 5 % chance of the value being perturbed by more
than 20 %.

This methodology ensures that we investigate a rep-
resentative sample of the many combinations of changes
in cost assumptions. It is very important to be thorough
in this kind of analysis as a rise in coal prices combined
with a drop in electricity prices may yield very different
results from a rise in both or from a drop in the cost of
e.g. biomass.

We do not perform sensitivity analysis on the technical
parameters, as most technical changes can be reduced to
equivalent changes in cost assumptions.

3. Results

In this section we present the cost-optimal heat pro-
duction capacities for the case of Aarhus embedded in the
West Danish electricity market DK1. In the base scenario,
all the production and storage technologies from Table 2
have been included. This case is compared to a fossil free
scenario, in which all fossil fuel technologies are excluded
from the capacity optimization.

Figure 3a shows optimal heat production and storage
capacities for the base scenario, and the fossil free sce-
nario is shown below in Figure 3b. The orange bars depict
the optimal capacities obtained using the historical day-
ahead electricity prices from 2015. This is the historical
electricity pricing scheme. A first look at Figure 3 reveals
that only a few technologies are assigned nonzero capac-
ities in the cost optimization. The waste incineration is
not a part of the capacity optimization, but its operation
is optimized. Waste incineration aside, the heat demand is
covered by a combination of coal fired CHP and compres-
sion heat pumps in the fossil fuel scenario. In the fossil
free scenario, the entire heat demand is covered by heat
pumps supplemented by waste incineration. Pit heat stor-
age is the only storage technology that is utilized, which is
not surprising given its low costs. Heat storage tanks may
still have a place in district heating production systems,
especially in places where pit storages are infeasible due
to space, temperature or pumping requirements. There
are two main differences between the production system
configuration in the fossil fuel scenario and the fossil free
scenario. The first is that the coal CHP capacity is re-
placed, almost one to one with heat production capacity
from heat pumps. The second is that the optimal amount
of heat storage doubles.

The total annual cost of the production system of the
city includes investment cost, operation and maintenance
cost, fuel cost and the cost of electricity for heat pumps,
minus the value of generated electricity. We compare the
total annual system cost to a reference system, consisting
of the actual installed production capacities in Aarhus in

2015 (see Section 2.1.1), using optimized operation, the
historical electricity pricing and the financial and technical
data from Table 2. The difference in annual system cost
between the reference and the capacity optimized system
is shown in Table 3. Negative values indicate that the
capacity optimized system is cheaper.

In the first row of Table 3 we see that the capacity opti-
mized fossil fuel system reduces the cost of the production
system by 8.4 million e every year, a cost reduction of
about 12 %. It is possible to construct a fossil free produc-
tion system that is cheaper than the reference, in this case
only 5.3 million e per year cheaper. The cost difference
of about 3 million e between the fossil fuel and fossil free
scenario can be attributed to the very low fuel price of
coal.

It is important to note that the capacity optimized sce-
narios do not include redundancy or extra capacity for ex-
ceptionally cold years. The cost comparison in Table 3
should therefore not be interpreted a savings potential by
transforming the energy system, but rather serve as a con-
sistent cost comparison between the capacity optimized
scenarios.

Table 3: Difference in the total annual Aarhus production system
cost compared to the 2015 reference scenario. The cost differences
are shown plus-minus an error of 1σ. Negative values indicate lower
than reference system cost.

Electricity System cost difference [Me /yr]
pricing scheme Fossil fuels includes Fossil free

Historical −8.4 ± 3.8 −5.3 ± 5.1
Wind dominated −11.1 ± 3.1 −9.7 ± 4.6
Demand dominated −6.7 ± 3.9 −5.0 ± 5.0

3.1. The effect of the electricity pricing
As the wind power generation capacity in Northern Eu-

rope is expanding, it is likely that electricity prices in the
future will become more strongly anticorrelated with the
wind power production. In this study, we analyze how the
heat production system is affected by a wind dominated
electricity pricing scheme. An alternative scenario is also
explored in which the electricity prices are dominated by
the electricity demand instead of the wind power genera-
tion. The optimal heat production and storage capacities
for these two electricity pricing schemes are shown as green
and blue bars in Figure 3.

Wind power generation in Northern Europe has a pos-
itive seasonal correlation with the heat demand in district
heating systems, because average winds tend to be higher
in winter when it is also cold. This effect shifts the optimal
heat production capacities toward larger shares of power-
to-heat technologies and lower shares of CHP. Electricity
becoming cheaper in the winter when the heat demand is
high negatively impacts the economy of CHP units, while
it benefits power-to-heat technologies. In the fossil fuel
scenario, the optimal coal CHP capacity is almost halved
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(a) Fossil fuels scenario.
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(b) Fossil free scenario.

Figure 3: Optimal heat production capacity under three different electricity pricing schemes: Historical, wind dominated and demand
dominated. In the top figure, all technologies are allowed in the optimization. In the bottom figure, only fossil free technologies are included.
Error bars based on the sensitivity analysis are shown in black. The waste incineration capacity was fixed in the optimization.
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while the heat pump capacity is more than doubled. In
the fossil free scenario, the optimal heat pump capacity is
also increased, but not as dramatically. The optimal heat
storage capacity is increased regardless of whether or not
fossil fuels are included.

The effect of implementing a demand dominated elec-
tricity pricing scheme depends on whether or not fossil fu-
els are allowed. If fossil fuel technologies are included, the
demand dominated electricity price reduces the optimal
coal CHP capacity and increases the heat pump capacity.
The effect is similar to the effect of a wind dominated pric-
ing scheme, although not as strong. The main difference
is that in the demand dominated pricing scheme the stor-
age need falls significantly instead of rising. In the fossil
free scenario, the picture is different. The need for heat
pumps increases significantly and so does the need for heat
storage, although not as much as in the wind dominated
scheme.

All in all, a future in which electricity prices are domi-
nated by wind power production or by electricity demand
is likely to increase value of heat pumps in the energy
system at the expense of CHP units. Wind dominated
electricity prices are also likely to increase the benefit of
heat storages.

3.2. Cost sensitivity analysis
In order to assess the robustness of the optimal capac-

ity configurations and system cost, a thorough sensitivity
analysis has been performed. Using Latin hypercube sam-
pling, we have run the system optimization in 200 per-
turbations of the initial values of fuel cost, investment
cost and electricity price. The optimal capacities resulting
from these cost-perturbed scenarios, can be seen on the
radar charts in Figure 4. All CHP and boiler technologies
have been aggregated to Fuel based production capacity
and shown on the top axis. Each cost-perturbed scenario
is shown as a triangle, plotted with an alpha transparency
value, so 10 lines on top of each other appear as the full
color. The initial unperturbed scenario is plotted as a red
triangle corresponding to the orange bars in Figure 3. No-
tice that the scale is logarithmic and that production ca-
pacity is shown in units of MW, whereas storage capacity
is shown in units of MWh.

The spread of the 200 triangles is an indication of the
cost-based uncertainty in the optimal production and stor-
age capacities. The wider the spread is, the larger the un-
certainty is. Conversely, smaller spread indicates that the
optimal configuration is robust to changes in investment,
fuel and electricity costs. It is clear that the capacities
in the fossil free scenario on the bottom are significantly
more robust to changing costs than the fossil fuel scenario
on the top.

It should be noted that 200 cost-perturbed scenarios
have been solved for each of the other electricity pricing
schemes, yielding very similar results. None of the cost-
perturbations found it feasible to install capacities of dif-

ferent technologies than the ones that were assigned in
Figure 3.

3.2.1. Clustering in the optimal production system
Focusing on the top part of Figure 4, it appears that

the capacities resulting from the different cost perturba-
tions fall in different categories. Three clusters have been
identified, when inspecting the data. Using the k-means
clustering algorithm [35], we have assigned each result-
ing capacity configuration to one of the three clusters and
colored them accordingly: green, blue and orange. An im-
plementation of the algorithm from the Python framework
scikit-learn (version 0.19.0) [36] was used.

Most of the perturbed cost-scenarios fall into the green
cluster like the unperturbed scenario. The green main
cluster consists of scenarios in which both heat pumps and
coal CHP are installed in the production system in some
mix. There is quite a bit of spread in this cluster and
the heat pumps are installed with between 91 MW and
400 MW capacity, whereas the coal CHP is installed with
between 345 MW and 1,080 MW. The anticorrelation be-
tween the power-to-heat capacity and the fuel based capac-
ity can be observed from the crossover of the lines between
the two vertices. The error bars assigned to the capacities
in Figure 3a represent ±1σ where σ is the standard devi-
ation of the capacity within the green main cluster.

The blue and the orange clusters in the top of Figure 4
represent two opposite outcomes. The orange cluster con-
tains all the scenarios in which the entire heat supply is
covered by fuel based production: coal CHP and a little
waste incineration. This group of scenarios is character-
ized by higher storage requirements and is mostly a result
of the cost perturbations with significantly rising electric-
ity prices.

The blue cluster is the opposite situation. In this group
of cost scenarios, the city’s heat demand is fully covered by
power-to-heat technologies supplemented by a small base
load of waste incineration. The storage needs in this clus-
ter correspond to the high end of the storage capacity in
the main green cluster.

Moving to the fossil free scenario on the bottom of Fig-
ure 4, all the cost perturbations fall into the same cluster:
the blue cluster where power-to-heat technologies domi-
nate the picture. The spread of the capacities in this clus-
ter is quite narrow, as is also reflected by the error bars in
Figure 3b.

Table 3 shows the reduction in system cost compared
to the 2015 reference system. The cost are shown with
an uncertainty of ±1σ, estimated within the main clus-
ter. It is clear that going fossil free, the cost reductions
are generally smaller and slightly more uncertain. The
magnitude of the uncertainty makes it possible, that there
may not be a cost reduction compared to the reference,
especially in the demand dominated and in the historical
electricity pricing scheme. The largest and most certain
cost reduction would appear in the wind dominated elec-
tricity pricing scenario with fossil fuels allowed. The wider
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Figure 4: Radar charts of the optimal heat production capacities in 200 cost-perturbed sensitivity scenarios using the historical electricity
pricing scheme. Fuel based capacity includes all boiler and CHP technologies, also waste incineration, which is not subject to the capacity
optimization. In the top figure, all technologies are allowed; in the bottom figure, fossil fuel technologies, i.e. coal, oil and gas, are excluded.
The unperturbed scenarios from Figure 3 (orange bars) are shown in red. The green, blue and orange triangles represent different clusters
of the sensitivity scenarios. The scale is logarithmic, except the center, which represents 0. Production capacities are shown in units of MW
and storage capacities are shown in units of MWh.
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Figure 5: Ranking of fossil free production system alternatives, in case the first priority becomes infeasible. Each consecutive priority scenario
is constructed by excluding the preferred production technology from the previous priority scenario. (a) shows the optimal heat production
capacities and (b) shows the heat storage capacities. In (c) we display the additional annual system cost compared to the reference production
system of 2015.

spread in the system cost in the fossil free scenarios, may
be due to these scenarios being more vulnerable to rising
electricity prices.

Summing up, when moving from away from fossil fuels,
three different possible capacity configurations reduce to
one and the spread of the optimal capacities narrows sig-
nificantly. Heat pumps combined with storage and waste
incineration remain as a highly robust choice for the future
heat supply of the city.

3.3. Alternative paths to fossil free production
Since only very few technologies were installed in the

optimal heat production systems, even under significant
perturbations to the cost assumptions, we were interested
in delving into different alternatives, in case the first choice
of compression heat pumps became infeasible. There may
be political roadblocks such as taxation of heat pumps or
technical obstacles such as limited heat sources or weak
electric grids, that make it infeasible to supply a whole
city with heat from heat pumps. In order to find the sec-
ond priority, in case heat pumps become infeasible we have
optimized the production capacities and operation of a fos-
sil free system excluding the heat pumps. Figure 5 shows
the result of this analysis. The green bars show priority
no. 1 and correspond to the orange bars in Figure 3b.
This is the preferred fossil free scenarios, dominated by

compression heat pumps and with 8,322 MWh storage ca-
pacity. Excluding heat pumps from this scenario, brings
us to priority no. 2.

In the second priority fossil free scenario, the heat pumps
are replaced by a very large amount of electric boilers, and
a very large amount of heat storage. The production sys-
tem cost jumps significantly to be more than 20 million e
more expensive per year compared to the reference system
cost. This power-to-heat scenario, may be infeasible, due
the large areas needed for heat storage and the extreme
number of electric boilers, putting a very high load on the
local electric grid.

Excluding all power-to-heat technologies from the pro-
duction capacity optimization brings us to priority no. 3.
This is the first time we see biomass technologies enter
the picture. In the third priority scenario, the heat for
the city is provided primarily from straw CHP plants sup-
plemented by a small amount of wood chips boilers and
the waste incineration base load. This is a fossil free sce-
nario that does not put a large strain on the electric grid
and includes some dispatchable electricity generation. The
necessary heat storage in this scenario drops to a more rea-
sonable level, although still higher than in the first priority
scenario. However, the cost of this system is even higher
and about 150 % of the cost of the reference system.

If straw CHP is not feasible on the scale needed for
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priority no. 3, wood chips boilers completely take over
the heat supply. In the fourth priority scenario, the heat
is generated mostly from heat only technologies and the
heat storage needs are higher than in the third priority.
The total system cost in this case is more than 50 million e
higher each year compared to the reference system.

Finally, if wood chips boilers are excluded from the
optimization, the entire heat demand can be covered by
wood pellets CHP plants in priority no. 5. While being
able to serve as dispatchable backup for the electricity sys-
tem, this would be an extremely expensive district heating
production system. The system cost in this final scenario
is now more than double the cost of the reference system.
Note again that the system cost discussed here is not di-
rectly comparable to the cost of the present day Aarhus
district heating system; rather, it is the cost of building
a new system from scratch and operating it. The current
system was built over many years, and transforming exist-
ing coal CHP plants into biomass CHP plants is cheaper
than building entirely new plants.

It is clear that there are other ways to construct a fossil
free district heating production system than by installing
very large heat pumps and energy storage. However, all
of these pathways require larger amounts of heat storage
and increase the production system cost significantly.

4. Conclusion and outlook

In this work, we have studied the cost-optimal produc-
tion capacities in a city wide district heating system cou-
pled to a larger electricity system. Using well-established
technologies, i.e. heat only boilers, CHP units, power-to-
heat technologies and heat storages, the optimal heat pro-
duction has been characterized in a transition away from
fossil fuels. The effects of electricity prices dominated by
wind power production or by electricity demand have been
investigated, and the uncertainty of the results have been
estimated through extensive sensitivity analyses.

If we allow fossil fuels, the cost-optimal system will
consist of a combination of coal CHP, heat pumps and
heat storages. Going fossil free, heat pumps take over the
heat supply, and the necessary storage capacity more than
doubles, while the total system cost only increases slightly.

The optimal choice of technologies is highly stable un-
der changing cost assumptions. But if fossil fuels are al-
lowed, the optimal capacities of coal CHP and heat pumps
are very uncertain. The need for heat pumps becomes sig-
nificantly more certain if fossil fuels are banned. The total
system cost, however, becomes more uncertain in the fossil
free scenario, as it is more sensitive to changing electricity
prices. A cost-optimal fossil free district heating system is
thus more robust in its capacity allocation, but less robust
in its cost.

There are other paths to fossil free district heating pro-
duction, i.e. electric boilers or biomass, but these solutions
all require larger heat storages and are significantly more
costly.

Our study case, the Aarhus district heating system is
going to change over the next 15 years, because key plants
in the production system are at the end of their lifetime.
This is an opportunity to rethink the production system,
and our analysis indicates that regardless of a ban on fossil
fuels, investing in large-scale heat pumps and heat storages
is desirable, if taxes and regulations allow it.

Finally, the choice of technologies in this study was
somewhat conservative, and only well-established dispatch-
able technologies were included. Future studies should in-
clude solar heating technologies, which may alter the sys-
tem dynamics due to the seasonal and weather-dependent
production patterns. New types of combined heat and
electricity storages, e.g. the rock cavern storage described
in [37], are emerging. Including combined heat and elec-
tricity storage technologies in the future may enhance the
synergies between the electricity and heating sector in the
transition away from fossil fuels.
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Appendix

The optimal operation and production capacities are
found by solving a joint optimization problem. We pose
the problem as a linear programming problem (LP) and
minimize the total annual investment and operational cost.
The objective function of the optimization problem reads:

min
P̄ el

u ,P̄heat
u ,H̄s,

P el
u,t,P

heat
u,t ,

hs,t,fs,t

( ∑

u∈prod. units
celu P̄

el
u + cheatu P̄ heat

u

+
∑

s∈storages
cstors H̄s

+
N∑

t=1

∆t

[ ∑

u∈prod. units
oelu,tP

el
u,t + oheatu,t P

heat
u,t

+
∑

s∈storages
odisps,t hs,t + oupts,t fs,t

])
.

(1)

Here c denote annualized2 capital cost per MW produc-
tion capacity P̄ or per MWh heat storage capacity H̄. The

2The capital cost was annualized using a discount rate of 4% and
the lifetime listed in Table 2.
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capital cost includes the nominal investment (CapEx) and
fixed operation and maintenance cost (OpExfixed). oelu,t
and oheatu,t denote the marginal cost of electricity and heat
production from unit u in hour t. The marginal cost in-
cludes fuel cost and variable operation and maintenance
cost (OpExvariable). The optimization runs over an entire
year, so the total number of time steps N is 8760 and the
length of the time step ∆t is 1 h. The rate of production
of heat and electricity from unit u in hour t are denoted
P heat
u,t and P el

u,t, and the rate of dispatch and uptake of heat
from heat storage s we denote hs,t and fs,t, respectively.
Finally, odisps,t and oupts,t are the marginal costs of dispatching
from and storing heat in storage s.

Constraints
The cost-optimization is imposed with a number of

constraint, so the correct physical behavior of the system
is captured.

Energy balance. The total electricity and heat load of the
system must be met in all time steps t:

∑

u∈prod. units
P el
u,t = P el

tot,t , (2)

∑

u∈prod. units
P heat
u,t = P heat

tot,t . (3)

P el
tot,t includes the total consumption in the local elec-

tricity market and any electricity consumed by power-to-
heat technologies (see Figure 1). P heat

tot,t includes the total
heat consumption in the city, as well as losses in heat stor-
ages and in the distribution system.

Production capacity constraints. Heat and electricity pro-
duction are constrained by the production capacity for all
units u:

0 ≤ P el
u,t ≤ P̄ el

u , (4)

0 ≤ P heat
u,t ≤ P̄ heat

u . (5)

Storage constraints. The energy content in the storage
Hs,t is limited by the storage capacity:

0 ≤ Hs,t ≤ H̄s. (6)

In any time step t the storage level Hs,t is governed by
the dispatch and uptake of heat as well as the standing
loss in the storage:

Hs,t = ηstands Hs,t−1 + (fs,t − hs,t) ∆t . (7)

ηstands is the standing heat loss factor. We also require
cyclical storage operation, in order to avoid just depleting
the storage in the end of the optimization period:

Hs,t=1 = Hs,t=N . (8)

We assume uptake and dispatch cost for the storages
odisps,t and oupts,t to be 0.77e/MWh, in order to counter ex-
cessive use of storages due to perfect foresight in the model.
Except for the reproduction of the 2015 heat production,
we have left the storage uptake and dispatch fs,t and hs,t
unconstrained, as it depends on the installed pumping ca-
pacities. We have afterwards checked that the storage op-
eration was sensible.

Cogeneration constraints. Our modeling includes two dif-
ferent types of CHP plants: An extraction-condensing plant
(Type I) and a back-pressure plant with bypass (Type II).
We adopt the notation from [29] and denote the power-to-
heat ratio in back-pressure operation by αu. The specific
electrical power loss, denoted by ζu, is the extra heat that
can be produced by reducing the electricity production by
1 unit while injecting the same amount of fuel [29].

Type I. For extraction-condensing plants, the electricity
and heat production capacity are constrained by:

P̄ heat
u =

1

αu + ζu
P̄ el
u . (9)

Extraction-condensing plants are capable of running in
condensing mode, where only electricity is produced. In a
power versus heat diagram, the feasible operational area
is below the top iso-fuel line

P el
u,t ≤ −ζuP heat

u,t + P̄ el
u , (10)

and above the back-pressure line

P el
u,t ≥ αuP

heat
u,t . (11)

This is illustrated in Figure 6.

Type II. The other CHP type in the model is a back-
pressure plant with bypass. This type of plant can bypass
the steam turbine and boost the heat production by reduc-
ing the electricity production. It is assumed that 1 extra
unit of heat can be produced for each unit of electricity
not produced in bypass operation [27]. The total heat and
electricity production capacities are thus constrained by:

P̄ heat
u =

(
1 +

1

αu

)
P̄ el
u . (12)

The feasible operational area for back-pressure plants with
bypass in the power versus heat diagram is below the back-
pressure line:

P el
u,t ≤ αuP

heat
u,t , (13)

and below the bypass line

P el
u,t ≤ P̄ heat

u − P heat
u,t . (14)

In this work we have modeled coal, wood pellets, gas en-
gines and combined cycle gas CHPs as extraction-condensing
Type I plants. Simple cycle gas, straw and waste inciner-
ation CHPs have been modeled as back-pressure Type II
plants.
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Fuel consumption
The fuel consumption of boilers and CHP plants is gov-

erned by the efficiencies. For boilers, the fuel consumption
for heat production is

P fuel
u,t =

1

ηboileru

P heat
u,t . (15)

For CHP plants, the total fuel consumption for both heat
and electricity consumption is

P fuel
u,t =

1

ηelu

(
P el
u,t + ζuP

heat
u,t

)
, (16)

where ηelu is the electrical efficiency of the plant.

Pheat
u, t

Pel u,
t

Pel
u

Pheat
u

back-
pressu
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e
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Figure 6: Feasible output of heat and electricity for the two
CHP types included in the optimization. Type I is an extraction-
condensing plant. Type II is a back-pressure plant with bypass.

Nomenclature

N number of time steps in the optimization
∆t length of time steps in the optimization [h]
σ standard deviation
s index for storage units
t index for hourly time steps
u index for production units
celu annualized capital cost per MW electricity produc-

tion capacity [e/MW]
cheatu annualized capital cost per MW heat production

capacity [e/MW]
cstors annualized capital cost per MWh heat storage ca-

pacity [e/MWh]

odisps,t marginal cost of dispatching heat from storage s in
hour t [e/MWh]

oelu,t marginal cost of electricity from unit u in hour t
[e/MWh]

oheatu,t marginal cost of heat from unit u in hour t [e/MWh]

oupts,t marginal cost of storing heat in storage s in hour
t [e/MWh]

P el
u,t electricity production rate from unit u in hour t

[MW]
P heat
u,t heat production rate from unit u in hour t [MW]
hs,t heat dispatch rate from storage s in hour t [MW]
fs,t heat uptake rate in storage s in hour t [MW]
P̄ el
u electricity production capacity of unit u [MW]
P̄ heat
u heat production capacity of unit u [MW]
H̄s heat storage capacity of unit s [MWh]
P fuel
u,t fuel consumption rate of unit u in hour t [MW]

P el
tot,t total electricity load on the system in hour t [MW]

P heat
tot,t total heat load on the system in hour t [MW]
Hs,t heat content in storage s in hour t [MWh]
αu power-to-heat ratio of CHP unit u in back-pressure

operation
ζu specific electrical power loss for CHP unit u
ηboileru efficiency of boiler unit u
ηelu electrical efficiency of CHP unit u
ηstands standing heat loss factor for storage s
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Chapter 7

Conclusion

I set out to explore economic and operational risk for planning and operation of
district heating systems. Throughout the project, the focus has moved from
short-term, over medium-term to long-term production planning. The gained
insight has been used to provide tools to help production planners manage risk
and make the best decisions in the face of uncertainty.

The weather is one of the most important sources of uncertainty affecting
district heating production planning. Short-term production planning and
system operation relies on heat load forecasts that use weather forecasts as input.
I demonstrated how weather-based forecast uncertainty could be estimated, by
introducing ensemble weather predictions into the field of heat load forecasting.
The result was a probabilistic load forecast, allowing decision makers to play it
safe when the forecast was less certain, and to push the system when the forecast
uncertainty was small. As a first application case, I used the information about
the time-dependent forecast uncertainties to reduce supply temperatures in the
grid slightly, while maintaining security of supply.

Consumer behavior is another source of uncertainty affecting short-term
heat load forecasts. The heat load on special occasions such as New Year’s Eve
is notoriously difficult to forecast accurately, because of the human component.
I have augmented state-of-the-art heat load forecasts with data about local
holidays, to better capture the effect of changing consumer behavior and improve
forecast accuracy. The effects were small overall, but forecast performance
improved somewhat on holidays and special occasions.

Moving on to medium-term or seasonal production planning, I quantified
the economic risk related to the decision of shutting down production units over
the summer. In a large district heating system, performing summer shutdown
can have significant economic potential, but it is critical that the shutdown is
timed accurately. Using an extensive weather dataset, I characterized optimal
timing of these decisions with respect to seasonal weather patterns that vary
greatly from year to year. I developed a set of decision rules for production
planners and showed that they were capable of realizing most of the economic
benefit from summer shutdown.

Finally, I turned to long-term production planning and investment decisions
regarding future district heating systems. I assessed how uncertainties from
variations in electricity prices, fuel prices and investment costs affected a cost-
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7. Conclusion

optimal district heating production system. Installing only well-established
production and storage technologies, large heat pumps and heat storages came
to dominate the optimal system. If fossil fuels were allowed, coal CHP also
had a role to play, but the ratio of coal CHP capacity to heat pump capacity
was highly uncertain. It was found that banning heat production from fossil
fuels would increase the system cost slightly, but it would drastically reduce the
uncertainty on the optimal technology choice and capacity allocation.

The aim of this project was to provide insights about risk assessment in
district heating that were scientifically sound, but with a short path to convert
those insights to operational risk management tools for production planners.
Two successful examples can be highlighted. The decision rules for the summer
shutdown of a large CHP unit are ready for use in the Aarhus district heating
system. Furthermore, the rules are straight-forward to adapt for application
in other district heat systems. Likewise, the models developed for heat load
forecasting in Chapter 4, are the foundation of a live forecasting system that is
now in operation in the Aarhus district heating system. Without much overhead,
this forecasting system can also be deployed to other district heating systems
around the world.
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