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Abstract

Software for mission-critical systems is sometimes analysed using formal
specification to increase the chances of the system behaving as intended.
When sufficient insights into the system have been obtained from the for-
mal analysis, the formal specification is realised in the form of a software
implementation. One way to realise the system’s software is by automatically
generating it from the formal specification – a technique referred to as code
generation. However, in general it is difficult to make guarantees about the
correctness of the generated code – especially while requiring automation of
the steps involved in realising the formal specification. This PhD dissertation
investigates ways to improve the automation of the steps involved in realising
and validating a system based on a formal specification. The approach aims
to develop properly designed software tools which support the integration of
formal methods tools into the software development life cycle, and which
leverage the formal specification in the subsequent validation of the system.
The tools developed use a new code generation infrastructure that has been
built as part of this PhD project and implemented in the Overture tool –
a formal methods tool that supports the Vienna Development Method. The
development of the code generation infrastructure has involved the re-design
of the software architecture of Overture. The new architecture brings forth
the reuse and extensibility features of Overture to take into account the needs
and requirements of software extensions targeting Overture. The tools devel-
oped in this PhD project have successfully supported three case studies from
externally funded projects. The feedback received from the case study work
has further helped improve the code generation infrastructure and the tools
built using it.
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Resumé

Software til mission kritiske systemer analyseres nogle gange ved brug af
formel specifikation for at øge chancerne for at systemet fungerer efter hen-
sigten. Når den nødvendige indsigt i systemet er opnået via den formelle ana-
lyse, så realiseres den formelle specifikation i form af en software-implemente-
ring. En måde at realise systemets software på er ved automatisk at generere
denne ud fra den formelle specifikation – en teknik som kaldes kodegenere-
ring. Generelt set er det dog udfordrende at kunne stille garanti for korrekthe-
den af den genererede kode – særligt hvis der også kræves automatisering af
de trin der er involveret i at realisere den formelle specifikation. Denne ph.d.-
afhandling undersøger måder hvorpå automatiseringen af de trin der er in-
volveret i at realisere og validere et system, baseret på en formel specifikation,
kan forbedres. Tilgangen har til formål at udvikle vel-designede software-
værktøjer som: understøtter integrationen af værktøjer til formelle metoder
ind i livscyklussen for softwareudvikling, samt gøre nytte af den formelle
specifikation i den efterfølgende validering af systemet. De udviklede værk-
tøjer anvender en ny kodegenererings-infrastruktur, der er blevet udviklet i
dette ph.d.-projekt, og implementeret i Overture – et værktøj som understøtter
den formelle udviklingsmetode, Vienna Development Method. Udviklingen
af kodegenererings-infrastrukturen har involveret et redesign af Overtures
softwarearkitektur. Denne nye arkitektur fremmer genanvendelsen og udvid-
barheden af Overture for at imødekomme de behov og krav som stilles til
software-udvidelser til dette værktøj. Værktøjerne, udviklet i dette ph.d.-pro-
jekt, er blevet anvendt i forbindelse med tre casestudies fra eksternt finan-
sierede projekter. Feedbacken fra dette casestudy-arbejde har yderligere bi-
draget til forbedringen af kodegenererings-infrastrukturen og de værktøjer,
der er udviklet ved brugen af denne.
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1
Introduction

“Program testing can be used to show the presence of bugs, but
never to show their absence! “

–Edsger W. Dijkstra, Notes On Structured Programming, April, 1970

1.1 Context

According to Dijkstra’s statement, traditional approaches to software devel-
opment alone are not sufficient to guarantee that a software system will be-
have as intended. Although Dijkstra’s statement dates back to 1970, it still
remains true as of today. In software development it is common to anticipate
the presence of “bugs” when the software is released. For systems where
problems with the software do not impose a significant risk to the user, it
might be acceptable to simply correct a problem once it has been identified,
and release a new version of the software. For some systems this might be the
most viable approach to developing software.

For another type of system called mission-critical systems, system failure
may have fatal consequences, and correction of problems, once they have
been identified, might not be an option. More specifically, a mission-critical
system is a type of system whose failure may lead to loss of human lives or
huge financial costs. Examples of such systems range from everyday objects
such as smartphones and modern televisions to safety critical systems such as
cars and aeroplanes. Common to many of these systems is that they rely on
software to make central control decisions. Naturally, this makes the success
of these systems dependent on the correct functioning of the software that
controls them.

Mission-critical systems must be carefully analysed and developed in or-
der to obtain a high degree of confidence in the correct functioning of these

3



4 1 Introduction

systems. One way to develop mission-critical systems is by use of formal
methods – a set of mathematically-based techniques that can be employed
to analyse the system under development. This approach to system devel-
opment is motivated by the expectation that mathematical analysis supports
the development of robust systems that function correctly. Several examples
exist that document the successful application of formal methods in industrial
projects [86].

Eventually the system is realised using concrete implementation tech-
nologies. This process involves translation of formal specification into hard-
ware and software that, when put together, form the system realisation or
some part of it. This PhD project is mostly concerned with formal specifi-
cations that are used to model behaviour of software systems, and the dis-
sertation therefore refrains from describing formal methods used to analyse
hardware systems.

This dissertation provides insight into the research conducted during a
PhD project on system realisation in the context of formal model develop-
ment. Input for the research is based on literature survey and by working
on externally funded projects. The PhD project takes a starting point in the
challenges of transitioning from system analysis to the implementation phase,
where the formal specification is realised. Software development practices
that are gaining ground are studied in order to reflect on ways to improve
traditional formal model development. The research conducted during the
PhD project is focused on better leverage of insights obtained during system
analysis in the subsequent phases of system development.

Following this section, the central subject development of software sys-
tems using formal modelling is described in section 1.2. Next, the motivation
underlying the PhD project is described in section 1.3. This is followed by
a description of the research method employed in the project in section 1.4.
Subsequently, the research objectives are described in section 1.5. Next, the
criteria used to evaluate the results produced during the project are presented
in section 1.6. An overview of the publications produced during the PhD is
given in section 1.7, and finally a reading guide for this dissertation completes
this chapter in section 1.8.

1.2 Development of Software Systems using Formal Modelling

Formal methods serve different purposes and assume various levels of rigour.
Heavy-weight formal methods are concerned with formal verification of sys-
tem properties, for example, by formal proof. Light-weight formal methods,
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on the other hand, are often used for informal validation, for example, by
animation of the system specification. Although light-weight analysis such
as animation does not serve as a proof of correctness, it might still help the
developer to obtain the necessary insights into the system under development.

A formal specification can be realised through refinement [85], which
is a step-wise process of translating a formal specification into code using
semantics-preserving rules. Alternatively, a formal specification may be re-
alised using code generation. The idea is for the generated code to be a
single-step refinement of the formal specification through code generation
translation rules. Code generation is used to (1) reduce the effort needed to
realise the system through tool automation and (2) avoid introducing prob-
lems in the implementation due to manual translation of formal specification
into code. Despite the advantages achieved via tool automation it is generally
difficult to make guarantees about the correctness of the generated code. This
is especially a problem in mission-critical system development, where system
failure may have severe consequences.

The remainder of this section gives examples of formal methods that take
different approaches to system realisation in formal model development. The
Vienna Development Method (VDM) [10, 53, 54, 32] and the Java Modeling
Language (JML) [13, 67] constitute examples of formal methods, which have
been used in this PhD project to study the development of mission-critical
systems. VDM has been used to analyse systems during the early phases of
development and study challenges inherent to realising a formal specifica-
tion. Additionally, JML has been used to bridge the gap between an abstract
system specification and the implementation of it. To consider system reali-
sation in formal modelling in breadth the B-Method [1] – a refinement-based
formal method – is presented in section 1.2.1. VDM and JML are described
in section 1.2.2 and section 1.2.3.

1.2.1 The B-Method

The B-Method is based on B – a formal method that uses abstract machine
notation to describe software systems. One of the goals of B is to support the
correct implementation of a formal specification through proof-based refine-
ment. In consequence, B operates at a lower level of abstraction compared
to (say) VDM. The final refinement of a B specification, expressed using a
subset of B called B0, can be automatically translated into code [12]. B is
tool supported by the Atelier B tool [14].
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Event-B [2] is a formal method derived from B, which uses a simpler no-
tation. Whereas B is concerned with the correct construction of software, the
purpose of Event-B is to model the entire system (the software, the hardware
and the environment) [49]. Event-B is tool supported by the Rodin tool [3].

1.2.2 VDM

VDM is one of the most mature formal methods with a long history of devel-
oping computer-based systems. The development of VDM was originally car-
ried out at IBM in Vienna in the 1970s to support the development of a com-
piler for PL/1 [45]. Specifications written in VDM can be analysed by formal
proof [9] or informal animation [66]. VDM is a Design-by-Contract (DbC)
language that uses contract-based concepts such as invariants and pre- and
post conditions to specify system behaviour [72]. A VDM specification can
be validated against these “contracts” by animation of the VDM specification.
VDM is tool supported by the Overture tool [62], VDMTools [35], VDMJ [7]
and ViennaTalk [76]. A VDM specification can be realised through refine-
ment or by direct translation into code using the code generation features of
VDMTools, Overture or ViennaTalk. Related work on code generation for
VDM is described in section 3.6.

1.2.2.1 The VDM Dialects
VDM has evolved into the three dialects VDM-SL [5], VDM++ [34], and
VDM-RT [66]. VDM-SL is an ISO standardised sequential specification lan-
guage that supports description of data and functionality. As an informative
annex to the standard, modules have been added to the language to support
organisation of data and functionality that can be imported or exported be-
tween modules. Every type in VDM-SL is passed by value, i.e. as a deep
copy, when the value is passed as an argument, returned as a result or appear
on the right-hand-side of an assignment. In consequence, aliasing can never
occur in a VDM-SL specification.

VDM++ adds object-orientation and concurrency to VDM. Object val-
ues have reference semantics, i.e. they are passed as shallow copies, and
therefore aliasing can occur. Access to shared resources is specified using per-
mission predicates and mutex constraints. A permission predicate specifies a
guard condition that must hold for an operation to be executed, while a false
guard condition blocks the calling thread. Permission predicates may refer
to instance variables or special self-contained variables called history coun-
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ters, which record the number of times each operation has been requested,
activated or completed.

VDM-RT further extends VDM++ with support for modelling of real-
time and distributed hardware architectures. System architecture is modelled
in the system class using special class constructs for Central Processing
Units (CPUs) and buses. An object deployed on one CPU can invoke a func-
tion or operation on an object deployed on a different CPU, which causes data
to be transmitted across the connecting bus. Deployable objects are stored
using public static instance variables in the system class. In addition
to the user-defined CPUs there exists a special virtual CPU, which by de-
fault runs infinitely fast without affecting system time. Objects that are not
deployed to one of the user-defined CPUs get deployed on the virtual CPU.
The virtual CPU is typically used for objects that represent elements that
are external to the system such as the environment. Every CPU is connected
to the virtual CPU via the virtual bus. The VDM-RT interpreter maintains
a global notion of time that can be referred to using the time keyword.
System time increases by a default number of nanoseconds when VDM con-
structs are executed. This default increase in time can be overruled using the
duration and cycles statements, which allow time delays to be specified
as an absolute time measure or relative to the CPU.

1.2.2.2 Analysis Techniques for VDM
Various techniques exist to support the analysis of VDM specifications. VD-
MUnit is a unit testing library that supports regression testing of VDM++ and
VDM-RT specifications in a way similar to that of JUnit [58]. The VDMUnit
library provides different classes to support writing of test suites, which can
be executed using the VDM interpreter.

Proof obligation analysis complements static analysis for situations where
it cannot be statically determined whether the VDM specification suffers from
inconsistencies that may lead to runtime errors [35]. The potential presence
of such inconsistencies entails the generation of proof obligations – predi-
cates that must be proven to hold in order to ensure that the specification is
internally consistent.

In VDM test automation can be achieved using combinatorial testing [63,
64]. This technique is used to identify problems related to the contracts of
a VDM specification such as a missing pre condition. Combinatorial testing
uses a trace definition, which is a kind of pattern, to describe test collections.
The combinatorial test generator expands the trace definition into tests that
are executed independently of one another against the VDM specification.
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VDM offers several constructs to define traces. The let binding intro-
duces trace variables but does not contribute additional tests per se. The bar
operator (“|”) expands to all alternatives for the tests of its child nodes.
The let be st binding produces a test for each binding introduced by
this construct. The non-deterministic choice operator (“||”) expands to all
possible orderings of the tests of its child nodes. The repetition operator (e.g.
op(x){1,2}) is used to repeat tests a specified number of times. Terms
separated by “;” expand to the sequencing of the terms.

At the end of the expansion every test is a list of variable assignments
and operation or function calls. A test that does not violate any constraints
is considered a PASS. A test that violates a constraint directly when an op-
eration is called from the test (i.e. from the outermost level) is considered
INCONCLUSIVE, since the test generation may be at fault. For other situa-
tions the violation of a constraint is considered a FAIL.

Combined execution of VDM and Java is enabled via Overture’s Java
bridge [73]. This feature allows functions and operations, defined using the
is not yet specified construct, to be executed in an external envi-
ronment. Whenever the Overture interpreter encounters this construct it tries
to find and execute the corresponding Java method, which must be named
according to a certain convention. When a VDM function or operation is
invoked via the Java bridge, the arguments are passed as Value instances
to the corresponding method on the Java side. The Value classes form part
of a runtime library that provides Java-based implementations of VDM val-
ues. Similarly, a value returned to the interpreter must also be represented
as a Value instance. The Java bridge can, for example, be used to build a
User Interface (UI) on top of a VDM specification in order to visualise the
specification to a stakeholder who does not understand VDM.

1.2.3 JML

JML is a DbC language that is used for detailed specification of Java classes
and interfaces. In JML DbC elements are written as specialised source code
comments that are added to the Java program. Therefore, JML has the advan-
tage that the Java program can be executed without the overhead of checking
the JML contracts, if desired. JML provides several constructs to support
contract-based specification. For example, in JML pre- and post conditions
are specified using the requires and ensures keywords, respectively.
Furthermore, a method that is marked as pure is not allowed to have write
effects. Such methods can be used in JML specifications.
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VDM and JML are both DbC languages with the difference that they
operate at different levels of abstraction: VDM is used for abstract system
specification, whereas JML is used for specification at the implementation
level. Therefore, these technologies can be regarded as complementary. JML
annotated Java programs can be analysed statically or dynamically using tools
such as OpenJML [15]. In this PhD project the OpenJML runtime assertion
checker has been used to check the specification of Java programs by exe-
cution of JML annotations. An overview of different JML tools is provided
in [13].

1.3 Motivation

The importance of robust tool support and automation in formal model de-
velopment is recognised by practitioners and researchers of the community.
The survey in [86, section 5.2] conducted by Woodcock et al. draws the con-
clusion that “it appears almost inconceivable that an industrial application
would now proceed without tools”. The survey further states that existing
tool support is generally not considered “to be rugged enough for wide-scale
application”.

In [60, section 2] Knight et al. emphasise the need for better integration
of formal methods tools into the software development life cycle. The au-
thors state that this is necessary in order for formal methods to contribute to
cost-effective development of high-quality software. The need for better tool
integration is further supported by Wassyng et al. in [83, section 6.1]. The
authors formulate general high-level requirements to support development
of safety-critical systems. In particular the authors vision that tools should
form a comprehensive and integrated tool suite that “shall provide automated
support for all phases of the software development lifecycle”.

Improved integration of formal methods into the software development
life cycle can be achieved using techniques that support transfer of knowledge
and insights between the different phases of software development. Code
generation is an example of one such technique, which has the potential to
improve development productivity in formal model development [86, section
3.2]. Improvements in productivity due to use of code generation is further
demonstrated by Banci et al. in [6, section 6]. The authors report experiences
from the automotive industry on the combined use of Model-Based Develop-
ment (MBD) and code generation. This approach is regarded by the authors
to be effective due to the short time it takes to produce a working prototype.
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The main motivation of this PhD project is the desire to enhance tech-
niques and tool support used to realise formal specifications. Achieving this
requires a deep understanding of the challenges that need to be overcome in
order to ensure better transfer of knowledge and insights between the different
phases of the software development life cycle.

1.4 Research Method

The research conducted in this PhD project is driven by challenges related
to realisation of formal specifications. Identification of these challenges was
done through literature survey and by analysing case studies that use formal
specification.

When a challenge of interest was identified existing literature on the topic
was studied to look for similar challenges and solutions. The existing lit-
erature served as input to develop new solutions tailored to conform to the
concrete challenge at hand.

Based on the literature study, a solution was designed and developed. All
the contributions resulting from the PhD project involve the development of
tool support that either re-develops a part of the Overture tool (see chapter 2)
or extends it in some way. The author of this PhD dissertation is a mem-
ber of the Software Engineering Group at Aarhus University. This research
group has a tradition of using formal methods and developing formal methods
tools, and the research method reflects this approach. Once a solution was
developed, it was applied to case studies to demonstrate that the solution
contributes to addressing the challenge of interest.

Application of the proposed solutions resulted in feedback, which gave
rise to additional changes and improvements to the proposed solutions. Once
a solution was considered a complete piece of work, the findings and results
were reported in the form of publications and submitted to either workshops,
conferences or journals. The process of disseminating the findings and results
helped reflect on the work, make the contributions available for others to use,
and identify new areas of research.

1.5 Research Objectives

The main objective of this PhD project is to advance the state of the art of
system realisation in formal model development. This objective is driven by
the challenges inherent to realising formal specifications.
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Although code generation has the potential to reduce the efforts needed
to realise a formal specification, this approach also comes with certain lim-
itations: Several target languages, implementation technologies and devel-
opment environments exist, which are resource-demanding to provide code
generation support for. This PhD project investigates how code generators
can be designed to better meet the different needs and requirements of the
steps (analysis, design, implementation, validation etc.) involved in realising
a formal specification. Furthermore, the code generated version of the system
cannot always be guaranteed to be a correct implementation of the formal
specification. Naturally, this reduces the value of code generation as a way to
realise a formal specification. To address this, this PhD project explores ways
to increase the confidence in the correctness of the code generated version of
the system.

The hypothesis of this PhD is that:

The automation of the steps involved in realising and validating a system
based on a formal specification can be improved through use of properly
designed tool support that seeks to (1) improve the integration of formal
methods tools into the software development life cycle and (2) leverage the
system properties described by the formal specification.

1.6 Evaluation Criteria

The criteria listed below will be used to evaluate the research contributions
of this PhD project. The first three criteria, Tool automation, System valida-
tion and Tool integration reflect the need of the formal methods community
as described in section 1.3. In particular, the System validation criterion is
concerned with the leverage of the formal specification in the validation of
the system realisation. The last criterion, Extensibility, is important to sup-
port developers of formal methods tools and languages in contributing new
functionality.

Tool automation: The possibilities of automating the development efforts
involved in realising a formal specification shall be studied, and tools
must be developed to support this.
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System validation: Techniques for validating the system realisation shall be
investigated to help ensure that the final version of the system meets the
desired system properties, described by the formal specification.

Tool integration: The possibilities of integrating different tools shall be ex-
amined. The purpose of this is to take advantage of the functionality that
the different tools have to offer and support their integration into the
software development life cycle.

Extensibility: The extensibility and reuse of formal methods tools shall be
analysed in order to facilitate the development of new tools that support
system realisation in formal model development.

1.7 Published Work

This section lists the publications produced during the PhD project. Sec-
tion 1.7.1 lists the publications that form the foundation of the PhD and which
are included in the dissertation. Section 1.7.2 lists the publications that have
not been included in the dissertation due to space limitations.

1.7.1 Publications Selected for Inclusion

The publications listed below are available in part II.

[P18] Luı́s Diogo Couto, Peter Gorm Larsen, Miran Hasanagić, Georgios
Kanakis, Kenneth Lausdahl and Peter W. V. Tran-Jørgensen. Towards
Enabling Overture as a Platform for Formal Notation IDEs. 2nd Work-
shop on Formal-IDE (F-IDE), June, 2015.

[P22] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen, Joey W. Coleman and
Kenneth Lausdahl. Migrating to an Extensible Architecture for Abstract
Syntax Trees. 12th Working IEEE / IFIP Conference on Software Archi-
tecture (WICSA 2015), May, 2015.

[P24] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen and Kenneth Laus-
dahl. Principles for Reuse in Formal Language Tools. 31st Annual ACM
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1.8 Outline and Reading Guide

This dissertation is divided into two parts: Part I presents the PhD project and
provides a summary of the conducted research and resulting contributions.
Part II contains the publications that the contributions in part I are based on.

Throughout part I the contributions are presented in a frame to stand out
in the text and subsequently these contributions are referred to by their ID,
e.g. [C2]. Publications that are selected for inclusion are prefixed with “P”
for easy identification, e.g. [P81].

Part I is structured as follows: This introductory chapter is followed by
chapter 2, which presents Overture and describes the architectural enhance-
ments contributed to this tool. This chapter is based on [P18, P22, P24]. Chap-
ter 3 describes several code generation features developed using the archi-
tectural enhancements made to Overture. Additionally, this chapter presents
projects that use the code generation infrastructure of Overture to contribute
new code generation features. This chapter is based on [P55, P21, P20]. Chap-
ter 4 explains how the properties of a formal specification support validation
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of the system realisation. This chapter is based on [P81, P80]. In particu-
lar, chapter 4 presents rules and tool support that enable fully automated
translation of VDM constraints to JML. This contribution is considered the
most significant scientific result of this PhD. Chapter 5 describes how the
tool features presented in chapter 3 and chapter 4 have been employed in
externally funded projects that involve realisation of formal specifications.
Finally, Chapter 6 concludes part I, evaluates the contributions and discusses
future work.

Part II contains the papers selected for inclusion, which have been written
by the author of this dissertation in collaboration with others. Each chap-
ter contains a single publication, which is first presented using its biblio-
graphic entry and subsequently the publication is presented in its submitted
or published form.





2
The Overture Platform

Cost-effective use of formal methods in software development is dependent
on robust tools that support all phases of the software development life cy-
cle. The efforts needed to develop these tools can be reduced by creating
an extensible platform that facilitates tool development. In this chapter the
architecture of formal methods tools is studied with a particular focus on
the Overture platform and the architectural changes made to it. Chapter 3
describes how these architectural changes have enabled the development of
a new code generation infrastructure for Overture.

2.1 Introduction

Tool support for formal methods is often developed on top of a platform
to take advantage of the functionality that the platform has to offer [P18].
Throughout this dissertation a platform is regarded as a framework that facil-
itates the development of Integrated Development Environments (IDEs). An
IDE is therefore regarded as an instantiation of the platform that it is based on.
The Overture tool is an example of an IDE that builds on top of the Overture
platform. This platform has supported the contributions developed over the
course of this PhD.

This chapter considers the Overture platform from an extensibility per-
spective and presents different contributions that support reuse in formal meth-
ods tools. These contributions cover a number of architectural changes made
to the Overture platform that affect the internal representation of the VDM
specification – referred to as the Abstract Syntax Tree (AST). Although the
contributions presented in this chapter have been implemented in the Overture
platform, the results are general enough to be applicable to other platforms or
tools as well.

This section is followed by a description of the architecture of the Over-
ture platform in section 2.2. Next, the architecture of the Overture AST is

17
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studied from an extensibility perspective in section 2.3. Finally, the expe-
riences gained from using the Overture AST have been distilled into a set
of principles for reuse in formal methods tools, which are described in sec-
tion 2.4.

2.2 The Architecture of the Overture Platform

The Overture platform was originally developed to support the Overture tool,
but has evolved to become a generic platform for construction of formal
methods IDEs [P18]. The architecture of the Overture platform is visualised
using a Unified Modeling Language (UML) package diagram in fig. 3.4. As
shown in this figure, the Overture platform consists of two main parts – the
Overture language core and the Overture Eclipse extensions.

The Overture tool consists of a set of plugins that are based on Eclipse [82].
These plugins analyse a VDM specification using elements of the language
core and provide user interaction via the elements of the Eclipse extensions.

Overture Language Core

Analysis

ASTParser Eclipse RCP

Builders

UI ElementsProject Elements

Overture Eclipse Extensions

Overture Platform

Figure 2.1: The architecture of the Overture Platform.

2.2.1 The Overture Language Core

The Overture language core encapsulates all the language related components
to decouple language processing from the UI. The AST is the central com-
ponent of the language core – every tool feature interacts with it in some
way. The parser is responsible for instantiating the AST from model sources,
containing concrete syntax. Afterwards, the AST is subjected to different
analyses such as type checking and evaluation.
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The AST, including tree-walkers, are generated from an AST specifi-
cation, using a tool called AstCreator. The design of the AST produced by
AstCreator, including the principles for reuse that this tool supports, are de-
scribed in section 2.3.2 and section 2.4, respectively. The tree-walkers gener-
ated by AstCreator are based on the visitor pattern [39] and can be sub-classed
to implement specific kinds of analyses. To name a few examples, the VDM
type checker and interpreter are implemented in this way. One of the key
features of the language core is that it enables language extensions via the
extensible design of the AST, as described in section 2.3.

2.2.2 The Overture Eclipse Extensions

The Overture Eclipse extensions provide a set of elements for building UIs
using the Eclipse Rich Client Platform (RCP) – a generic framework for
building rich client applications based on a dynamic plugin model called
OSGi [4]. The Eclipse extensions simplify access to the Eclipse RCP to facili-
tate the development of formal methods tools. The Eclipse extensions consist
of UI elements such as editors and launch configurations; project elements
used to manage and represent the model sources and; builders that construct
and maintain the AST from the model sources.

2.2.3 Instantiating the Overture Platform

In addition to the Overture tool, other tools have been built using the Overture
platform. These tools demonstrate different examples of how the extensibility
features of the language core and the Eclipse extensions can be used.

The Crescendo tool [36], developed as part of the EU FP7 DESTECS
project, supports collaborative modelling and simulation of Cyber-Physical
Systems (CPSs). In this tool, the computer-based part of the system (the
discrete-event model) is described using VDM-RT and the physical dynamics
(the continuous-time model) are expressed using differential equations. The
co-simulation engine coordinates the execution of the discrete-event and the
continuous-time models, which are simulated using their respective simula-
tors. The discrete-event simulator extends the VDM interpreter [66] from the
language core to support (1) simulation of the VDM model until a given time-
bound is reached and (2) sharing of variables between the discrete-event and
continuous-time models. The Crescendo tool mostly uses ordinary Eclipse
extension points (builders, debug UI etc.), but it also uses the Overture Eclipse
extensions to implement e.g. editors and debugging.
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The Symphony tool [16], developed as part of the EU FP7 COMPASS
project, supports the COMPASS Modelling Language (CML) [84] which
combines VDM with Communicating Sequential Processes (CSP) [43]. This
tool makes heavy use of the extensibility features of the language core. The
concrete syntax of CML differs from that of VDM due to the CSP constructs.
This necessitated the development of a CML parser from scratch, which con-
structs an AST that is compliant with that of the Overture language core.
The Symphony tool does, however, achieve a significant degree of reuse for
the type checker and proof obligation generator [19]. One thing worth noting
about the CML AST is that it consists of both VDM constructs (from the
language core) and CML constructs, which have been added using the exten-
sibility features described below. Together the VDM and CSP constructs form
hybrid trees, which can be processed using extended visitors as described
in section 2.3.

Contribution 1. An extensible platform for development of tool support
for formal methods.

2.3 Migrating the AST to an Extensible Architecture

In order to use the Overture platform for language experiments the architec-
ture of the language core had to be made more extensible. In consequence,
the architecture of the AST was migrated from its original encapsulated ar-
chitecture to an extensible one. The extensible architecture has supported
the development of language extensions in several projects (see chapter 3) –
most notably the COMPASS project where it was used to develop CML and
the Symphony tool. Migrating to the extensible architecture has, however,
introduced a loss in performance. For example, for the Overture interpreter
the performance loss is estimated to be approximately 10%. Considering
the advantages gained in terms of extensibility this trade-off is, neverthe-
less, considered acceptable. The complete performance analysis is available
in [P22].

2.3.1 The Encapsulated Architecture

The encapsulated AST, shown in fig. 2.2, is based on that of VDMJ, which
is designed with tool performance in mind. It consists of hand-written nodes
which follow a cohesive Object-Oriented (OO) design, where tool features
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are implemented as methods inside the node classes: the typeCheckmethod
performs semantic validation of a node, the eval method evaluates a node
etc. A tool feature, such as the type checking, is performed by invoking the
corresponding method on a node. As an example, fig. 2.3 shows the process
of type checking an expression. This process starts by the TypeChecker
invoking the typeCheckmethod on the expression, which responds by type
checking its child node(s).

Statement

+typeCheck():Type
+eval():Value

TypeChecker

+typeCheck()

Node

TypeChecker

Exp

+typeCheck():Type
+eval():Value

AST

Figure 2.2: Static view of the encapsulated architecture.

:SubExp:Exp:TypeChecker

expType
subExpType

typeCheck()
typeCheck()

Figure 2.3: Dynamic view of the encapsulated architecture.

The main problem with this design, from an extensibility point of view,
is that adding a new tool feature implies changing the AST. Modifications
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made to the AST to support one feature may therefore introduce problems
in another feature, or conflicts in the AST implementation, due to different
feature needs. Naturally, this opposes the goal of having an extensible plat-
form. For example, adding a new code generation feature to the encapsulated
AST, following the standard conventions, means implementing a codegen
method in each node class.

2.3.2 The Extensible Architecture

To promote the extensibility of the language core the analysis functionality
had to be separated from the AST [P22]. This was achieved by use of the vis-
itor pattern. The AstCreator tool was developed to support generation of the
AST, including generic base visitors, from an AST specification. To support
the application of visitors to the AST, all nodes are equipped with apply
methods. Furthermore, the generated base visitors contain a case method for
each type of node, which is invoked upon node visitation. A tool component
that needs to interact with the tree, such as the type checker, can extend one
of the generated base visitors and implement the different case methods.

The structure of the extensible AST is shown using the UML package
diagram in fig. 2.4, where the content of the AST package is generated from
the AST specification using AstCreator. The process of type checking an
expression under the extensible architecture is shown in fig. 2.5. Note that
the application of the TypeCheckerVisitor to a node is followed by the
invocation of a matching case method.

A: Class

Analysis

+caseExp(n:Node):A
...

AST

Statement
TypeCheckerVisitor

+caseExp(n:Node):Type
...

Node

+apply(an:Analysis):A
...

Exp

TypeChecker

          «bind»
          A->Type

Figure 2.4: Static view of the extensible architecture.
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subExp:SubExptc:TypeCheckerVisitorexp:Exp:TypeCheckerFacade

 expType
expType

subExpType

subExpType

 caseSubExp(subExp)

apply(tc)
caseExp(exp)

apply(tc)

Figure 2.5: Dynamic view of the extensible architecture.

AstCreator allows existing ASTs to be extended with new nodes and
fields without affecting the nodes and visitors of the base language. Based on
a specification of the extension, AstCreator generates new nodes, extended
nodes and extension-aware visitors. The AST extension depends on the base
AST through inheritance.

To support the application of extension-aware visitors to an AST, the
apply method of the extension nodes detects whether a visitor originates
from the base or the extended AST. When an extension-aware visitor is ap-
plied to an extension node the corresponding case method is invoked in ac-
cordance with normal visitor dispatching. However, when a base visitor is
applied to an extension node the closest matching default case method is
invoked. Essentially, this allows a language extension to use the function-
ality already developed for the base language, if desired. The application of a
visitor to an extension node is shown in fig. 2.6.

Contribution 2. An extensible AST architecture to facilitate the devel-
opment of language extensions.
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:BaseVisitor:ExtendedVisitor

interaction frame

[v instanceof
 ExtendedVisitor]

[else]

eExp:ExtendedExp

type

type

type

defaultExp(eExp)

type

caseExtendedExp(eExp)

apply(v)

Figure 2.6: Visitor dispatching for an extended AST.

2.4 Principles for Reuse

The experiences of the COMPASS project have been distilled into a set of
principles or guidelines that serve to promote reuse and extensibility for for-
mal methods tools [P24]. These principles are supported by the AstCreator
tool. The principles are described below.

Principle 1: Specification-driven ASTs. The AST is a central component
that every tool feature interacts with. A language building tool should there-
fore provide a convenient way to maintain and extend the structure of the
AST, including the different types of nodes and their individual design. A
specification-driven approach focuses on the design of the AST rather than
the implementation of it. This approach promotes reuse of the AST design,
which in principle can be implemented in different programming languages.
This principle is commonly supported by language building tools such as
parser generators, which support implementation of the AST design through
code generation to various programming languages.

Principle 2: Contract-based AST analysis. Any analysis that can be ap-
plied to the AST should conform to a contract (or interface) that is (1) pa-
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rameterisable in terms of input and output and (2) leaves the implementer
of the contract with the freedom to decide how the AST is traversed. A
contract-based approach promotes reuse by ensuring that analyses can be
used together, e.g. one analysis can extend another analysis. This principle is
also key to enable support for processing of hybrid trees – ASTs that consist
of nodes from both the base language and the language extension. In an OO
setting, abstract classes and interfaces are usually a suitable way to define a
contract. Furthermore, an OO feature such as inheritance can be advantageous
in achieving the reuse and extensibility required from a contract. Similar
to what is done for the AST, the contract should be derived from the AST
specification.

Principle 3: Hybrid trees support. A language extension either adds new
nodes, new syntactic categories or additional fields to nodes already defined
by the base language. The extension should be specification-driven in accor-
dance with the first principle. An extension consists solely of new elements
that reuse the artefacts defined by the base language – without any modifi-
cations. In particular, if new fields are added to a node already defined by
the language, a new node is created that extends the existing node. In an OO
setting this can be achieved by making the extension node a subclass of the
existing node. Together the base and the extension specifications define nodes
that can be used to construct hybrid trees.

Principle 4: Base/extended analysis compatibility. In addition to the AST
itself, extending a language involves extending the analyses of the base lan-
guage. In accordance with the first and second principle, an extended analysis
should conform to a contract derived from the base and extension specifica-
tions. An extended analysis should be able to reuse a base analysis without
having to modify it. Base and extended analyses must also be compatible
in order for them to support processing of hybrid trees. The extended con-
tract must therefore be compatible with the contract that the base analysis
conforms to. Furthermore, it should be possible for an extended analysis to
redefine the behaviour of a base analysis, whenever reuse is not desired. In an
OO setting this is commonly achieved using method overriding.

Contribution 3. A set of principles for reuse in formal methods tools,
supported by the AstCreator tool.





3
Code Generation

The efforts needed to realise a formal specification can potentially be reduced
by deriving the implementation automatically from the formal specification
via code generation. This chapter presents contributions in the area of code
generation that have been developed using the extensibility features of the
Overture language core, introduced in chapter 2. Chapter 4 describes how
these code generation contributions have been extended to support validation
of the generated code against the VDM specification.

3.1 Introduction

It is beneficial to support a wide variety of implementation technologies but
challenging to do so with individual code generators for each of them. One
way to improve on this situation is by taking advantage of a framework-based
approach in order to facilitate the construction of code generators.

This chapter presents a platform-based approach to developing code gen-
eration support for formal notations. The Code Generation Platform (CGP)
uses the elements of the Overture language core to support the construction
of code generators for VDM. Although the CGP is part of the Overture tool,
other code generation tools may benefit from the proposed platform architec-
ture as well. The CGP has supported the development of several code genera-
tors for VDM. This chapter studies two of them in detail, namely, Overture’s
Java code generator and Overture’s Isabelle theory generator. Other active
projects that use the CGP are mentioned in section 3.6.

The remainder of this chapter is organised as follows: The architecture of
the CGP is presented in section 3.2. Next, the Java code generator, including
an extension that provides code generation support for the distributed aspects
of VDM-RT, are described in section 3.3. Following that, extensions for build
and test automation for the Java code generator are presented in section 3.4.
Next, the experiences gained from developing Overture’s Isabelle theory gen-
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erator are reported in section 3.5. Finally, related work on code generation for
VDM is studied in section 3.6.

3.2 A Platform for Building Code Generators for VDM

The CGP provides a framework for building code generators for VDM [P55].
As shown in fig. 3.1, the CGP constructs an Intermediate Representation (IR)
of the generated code from the VDM AST and passes the IR to the code
generator, which translates it into target language code.

Generated Code

VDM
AST

Target 
Language

Generation

Runtime
Library

CGP

Transformation
Series

Code Generator

IR
IR

Constructor IR'

Figure 3.1: The architecture of the CGP.

In the initial version of the IR every IR node corresponds to an equivalent
language construct in VDM, e.g. a statement or an expression. Subsequently,
the IR is subjected to a series of behaviour-preserving transformations to
replace IR nodes that are non-trivial to code generate with other IR constructs
that are easier to code generate. The transformation series is configured by the
code generator to conform to the peculiarities of a particular target language.
When the IR has been completely transformed, i.e. it has reached a form suit-
able for code generation, it is passed to the code generator, which translates
it into target language code.

The difficulty in implementing a code generator depends on the differ-
ences between the source and the target language. These difference are often
present when the source and the target languages adhere to different language
paradigms. For example, VDM contains both functional and imperative lan-
guage constructs. Therefore, when VDM is translated to (say) an imperative
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language, there often is no single target language construct that can be used
to represent a functional VDM construct. Source language constructs that
are non-trivial to code generate must therefore be represented using multi-
ple target language constructs. Similar challenges are faced when translating
between other language paradigms.

The idea is for the transformations to bring the IR to a form where all
the IR constructs have a mapping to a construct in the target language. Since
transformations operate directly on the IR, which is independent of any target
language, code generators can use and share the same transformations.

The IR is constructed with the AstCreator tool from the Overture lan-
guage core (see section 2.2.1). AstCreator takes an IR specification as input
and generates IR nodes and visitors. These nodes form the IR, and the visi-
tors are used to implement transformations. One of the advantages of using
AstCreator is that code generators can contribute additional IR nodes without
modifying the base IR. Furthermore, since AstCreator implements the prin-
ciples for reuse, described in section 2.4, the CGP supports construction and
processing of hybrid trees, i.e. ASTs that consist of base and extension nodes.

The CGP provides a code emission framework, based on the Apache Ve-
locity template engine [38], to facilitate the mapping of IR nodes into target
language code. Furthermore, some code generators may use a runtime library
to support the generated code. The runtime library may, for example, provide
target language implementations of VDM operators or types. Although the
runtime library is optional, and not a part of the CGP, it is shown in fig. 3.1
to clarify the concept of a runtime library.

Contribution 4. A Code Generation Platform for developing code
generators for VDM.

3.3 Translating VDM to Java

Overture has a VDM-to-Java code generator that targets Java 7 [P55], which
is an imperative OO language.1 The Java code generator is developed using
the CGP and uses several transformations to bring the IR to a form that is
easier to translate into Java code.

1 Language constructs to support the functional programming style have been added to
Java 8, but the Java code generator does not rely on those.
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To support the generated code, the Java code generator uses a runtime
library, which provides Java implementations for some of the VDM types
and operators. Sets, sequences and maps are represented using the VDMSet,
VDMSeq and VDMMap collection classes. The Tuple class is used to repre-
sent and construct arbitrary tuple types and so on.

3.3.1 Use of Transformations

The Java code generator uses transformations to re-write functional con-
structs using imperative ones. To demonstrate this, consider the VDM func-
tion f in listing 3.1. This function uses a set comprehension to construct a
new set from the elements of s for which pred(x) holds.�

f : set of nat -> set of nat
f (xs) == {x | x in set xs & pred(x)};
� �

Listing 3.1: Example of a VDM function that uses a set comprehension.

Java does not support set comprehensions natively. To address this, the
Java code generator uses a transformation to rewrite set comprehensions to an
imperative form. Hence, when the transformed version of the IR reaches the
Java code generator it only contains constructs that can be translated directly
to Java. The code generated version of f is shown in listing 3.2.

public static VDMSet f(final VDMSet xs) {
VDMSet setCompResult_1 = SetUtil.set();
VDMSet set_1 = Utils.copy(xs);
for (Iterator iterator_1 = set_1.iterator(); iterator_1.

hasNext();) {
Number x = ((Number) iterator_1.next());
if (pred(x)) {
setCompResult_1.add(x);

}
}
return Utils.copy(setCompResult_1);

}

Listing 3.2: The code generated version of the VDM function in listing 3.1.

Transformations are widely used by the Java code generator to support the
translation from VDM to Java. Other examples of language features that are
translated using transformations include pattern matching and union types,
which Java does not support. Many of the transformations that initially were
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developed to support the Java code generator – such as the set comprehension
transformation described above – have later supported the development of
other code generators (see section 3.6).

3.3.2 Translation of Value Types

In Java every user-defined type is a class, hence based on reference seman-
tics [48]. The semantics of a VDM value type can, however, be emulated in
Java by representing the type as a class and then deep copying the object
instances when an object is passed as an argument, appears on the right-
hand-side of an assignment, or is returned as a result. To demonstrate this
behaviour, consider the operation op in listing 3.3, which assumes the exis-
tence of a record definition of a two-dimensional vector Vector2D. In this
listing two vectors v1 and v2 are created with v2 being a copy of v1. Since
records are value types the assignment to v1.x has no effect on v2, and
therefore the operation returns 1.�

op : () ==> nat
op () == (
dcl v1 : Vector2D := mk_Vector2D(1,2);
dcl v2 : Vector2D := v1; -- Copy the record value
v1.x := 2;
return v2.x;)
� �

Listing 3.3: Example of use of value types in VDM.

Every code generated record definition is represented using a class that
implements a Record interface, which further extends a ValueType inter-
face. These interfaces are both defined in the Java code generator’s runtime
library. The ValueType interface defines the signature of a copy method,
which takes no arguments, and returns a deep copy of the ValueType
object. A code generated record definition implements this copy method
and an additional equals method – the latter is used to compare records
based on their structure. The code generated version of the VDM operation
in listing 3.3 is shown in listing 3.4. In particular note that v2 is initialised to
be a copy of v2.

The Utils.copy method, used to copy v1 in listing 3.4, checks if the
argument being passed is a ValueType in which case it returns a copy of the
argument. The copy of the argument is created by invoking the copy method
on the ValueType object, i.e. v1.copy(). Use of the Utils.copy
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public static Number op() {
Vector2D v1 = new Vector2D(1L, 2L);
Vector2D v2 = Utils.copy(v1);
v1.x = 2L;
return v2.x;

}

Listing 3.4: Emulation of value types in the generated code.

method to copy ValueType objects allows the runtime library to guard
against the attempt to invoke the copymethod on a null pointer. When null
is passed to Utils.copy, this method simply returns null.

3.3.3 The Concurrency Extension

In [59] we extend the Java code generator to support code generation of
concurrent VDM++ specifications. The concurrency extension adds addi-
tional functionality to the Java code generator’s runtime library to represent
and manage the concurrency constructs of VDM++ in a Java context. As an
example, the Sentinel class is used in the generated code to control the
execution of instance methods in accordance with the permission predicates,
and manage history counters.

VDM++ and Java use different means to express concurrency and there-
fore the Java code generator uses transformations to aid the translation. As an
example, the concurrency extension uses a transformation to rewrite mutex
constraints using permission predicates. This transformation takes advan-
tage of the fact that the constraint mutex(op1,...,opn) is semantically
equivalent to having n permission predicates where the ith permission predi-
cate is formulated as shown in listing 3.5.�

per opi => #active(op1) +...+ #active(opi-1) +
#active(opi+1) +...+ #active(opn) = 0
� �

Listing 3.5: Permission predicate for opi.

Contribution 5. A VDM-to-Java code generator supporting a large
subset of VDM.
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3.3.4 The VDM-RT-to-Java Code Generator Extension

In [41] we extend the VDM++-to-Java code generator to support the dis-
tributed aspects of VDM-RT (see section 1.2.2.1). In particular, this extension
supports code generation of VDM-RT objects that communicate between
connected CPUs.

3.3.4.1 Java RMI
The code generator uses Java Remote Method Invocation (RMI) [40] to aid
the translation from VDM-RT to Java. Java RMI is a middleware technology
that enables communication between objects operating under different ad-
dress spaces. This technology is used to achieve transparent communication
between distributed objects, which is similar to how remote communica-
tion works in VDM-RT. More specifically, the code generator is extended
to produce additional boilerplate code that enables communication between
distributed objects.

For a system that uses Java RMI, Java Virtual Machines (JVMs) store and
obtain references for remote objects via the RMI registry. In order to pass a
distributed object by reference the corresponding class must subclass Java’s
UnicastRemoteObject and implement a remote contract that specifies
which methods may be invoked from a remote JVM. The implementation
of a class used to create Java RMI remote objects is shown in fig. 3.2 (i.e.
UserClass).

«interface»
Remote

java.rmi

UserClass

method1()
method2()
...

«interface»
RemoteContract

method1()
method2()
...

UnicastRemoteObject

Figure 3.2: Defining remote communication using Java RMI.

3.3.4.2 Translating VDM-RT to Java
In VDM-RT an operation of an object deployed on one CPU may be invoked
from a different CPU. Therefore, the generated code represents each VDM
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class as a Java class that subclasses UnicastRemoteObject and imple-
ments a remote contract. The remote contract contains the signatures of the
public methods of the code generated version of the VDM class since these
are the only methods that may be invoked by a remote client.

The system class is analysed statically in order to determine the ar-
chitecture of the distributed system (how CPUs are connected) and the de-
ployment of objects. The code generator determines which objects are local
and remote with respect to a given CPU, since this influences the generated
Java RMI code. An object that is deployed to a CPU is considered local
with respect to this CPU. A remote object is an object that is deployed to
a connected CPU. The code generator determines, for each VDM-RT object
o in the system class S, whether S‘o is a local or remote object with respect
to a given CPU. Based on this, each CPU is represented using a JVM that,
in addition to the generated user classes, has its own version of the code
generated system class. Each field reference S.o (corresponding to S‘o)
in this class is set by the generated Java RMI code according to whether the
object is a local or remote object.

Unlike VDM-RT, middleware technologies distinguish between the types
used to represent local and remote objects. Therefore, a transformation re-
places local class types with their equivalent remote contract type. This trans-
formation is sound since the VDM-RT extension of the code generator en-
sures that every class implements a remote contract. In particular, this trans-
formation enables remote objects to be passed as arguments and returned
as results. Based on fig. 3.2, this means replacing all occurrences of type
UserClass with type RemoteContract. In addition, the IR was ex-
tended with new nodes used to represent generic concepts related to dis-
tributed object communication such as remote registries and remote contracts.
This extension was enabled using the extensibility features of AstCreator and
the principles for reuse described in section 2.4. Templates were added for
the new nodes to support the generation of Java RMI code.

3.3.4.3 Initialising and Executing the System
Before the code generated version of the system can start executing, each
JVM performs the initialisation algorithm visualised in fig. 3.3. First, each
JVM registers its own local objects in the RMI registry, and waits until ev-
ery distributed object, specified in the system class, has been registered.
Next, each JVM acquires the references for all its remote objects via the
RMI registry and proceeds by submitting a special synchronisation token to
the RMI registry. This token is used to indicate to the other JVMs that the
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submitter of the token has finished initialising. Each JVM then waits until
the other JVMs have submitted their synchronisation token, and finally the
system starts executing.

Begin
execution Wait Register synchronisation

token

Obtain remote
object referencesWaitRegister local

objects

[else]

[All synchronisation
 tokens registered]

[else]

[All objects
registered]

Figure 3.3: Initialisation algorithm used by every JVM.

The virtual CPU that executes the entry point of the VDM-RT specifi-
cation is not represented in the generated code since it is mostly used to
store objects used to represent the environment. Instead, the entry point of
the system is executed on one of the JVMs used to represent a user-defined
CPU. As a consequence, the VDM-RT specification cannot use objects that
are deployed on the virtual CPU. This is not considered a significant limita-
tion since these objects can be moved to a user-defined CPU in the model. To
enable code generation of the VDM-RT specification, the entry point must
therefore only access objects that are accessible from the CPU that executes
the entry point.

Contribution 6. Extension of Overture’s VDM-to-Java code generator
to support the distributed aspects of VDM-RT.

3.4 Integrating Real System Components in MBD

As motivated by the case study work (see chapter 5), this section presents
an extension of the Java code generator that enables automated realisation
and validation of VDM specifications [P21]. This extension supports reali-
sation of modelling setups that include real system components – a concept
referred to as the delegate – as well as testing of the generated code using
code generated VDMUnit tests (see section 1.2.2.2).
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3.4.1 Build and Test Automation Technologies

Support for build and test automation has been achieved by integrating the
Java code generator with Maven – a well-established build automation system
for managing and building Java-based projects [70]. This extension allows
the code generation features of the Java code generator to be exposed via a
Maven plugin. Maven offers several features such as execution of unit tests
and dependency management. Furthermore, Maven uses plugins to execute
build tasks and supports development of custom plugins to intercept and
control the build process.

The Maven integration also involved adding two additional transforma-
tions to the Java code generator’s transformation series (see section 3.2): The
first transformation enables code generation of modelling setups that inte-
grate real system components in the simulation. The second transformation
translates VDMUnit tests (see section 1.2.2.2) to JUnit4 tests, which are used
to validate the system realisation. Both the delegate and the test generation
features are implemented using the CGP, described in section 3.2.

Using the Maven plugin, the part of the system that is modelled in VDM
can be implemented using code generation and integrated with the other
system components in order to form the final version of the system. Sub-
sequently, the code generated VDMUnit tests can be executed to validate the
final version of the system.

3.4.2 The Delegate and Test Generation Features

The delegate and test generation features enable a certain style of develop-
ment, which is presented below. As shown in fig. 3.4, system development
is centred around the VDM Model, which interacts with the External
Component via the Bridge. The VDM Model is validated using VDM
Tests, which are written using VDMUnit. The Java code generator is in-
voked via the Maven plugin to produce the Code Generated System,
which is integrated with the External Component using the Delegate
mechanism. Furthermore, the VDM Tests are translated to JUnit4-based
System Tests and used to validate the system realisation. The integration
of the system components, as well as the test execution, is fully automated,
and follows the Maven build cycle.



3.4 Integrating Real System Components in MBD 37

Code Generate

Overture

System realisation

Code Generate

Delegate

Bridge

External Component

Code Generated System

VDM Tests VDM Model

System Tests

Figure 3.4: Overview of the delegate and test generation features.

3.4.3 Using an External Component in VDM

A VDM specification interacts with an external component via operations
or functions that use the Java bridge (section 1.2.2.2). To demonstrate this
consider the Java bridge operation in listing 3.6 which takes an argument i
of type I as input, and produces a result of type R.�

class Bridge
operations
op : I ==> R
op (i) == is not yet specified;
end Bridge
� �

Listing 3.6: VDM operation that uses the Java bridge.

The integration of the VDM specification and the external component
is enabled by Overture’s Value runtime library (see section 1.2.2.2). List-
ing 3.7 shows a conceptual implementation of the Java bridge operation from
listing 3.6. The implementation first converts the input paramters to a format
that can be processed by the ExternalComponent. The converted input
is then processed using the ExternalComponent, and the result of that is
converted to a Value that is returned to the interpreter.
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import org.overture.interpreter.values.Value;

class Bridge {
public Value op(Value i) {

I convInput = convert(i);
R res = ExternalComponent.op(convInput);
Value convRes = convert(res);
return convRes;

}
}

Listing 3.7: Java bridge implementation of the VDM operation in
listing 3.6.

3.4.4 Using the Delegate

The Value runtime library enables interaction between the VDM model and
the external component, but it also introduces a significant overhead due to
all of its dependencies and the conversion operations that are needed (see
listing 3.7). When the VDM model is realised, the dependency on the Value
runtime library should be removed to eliminate this extra overhead. This is
achieved using the delegate.

In order to use the delegate feature, each VDM class (or module) that
uses the Java bridge must have a corresponding Java class that acts as a del-
egate. This delegate class is implemented by the user, and must include one
method for each VDM operation in the VDM class that uses the Java bridge.
Furthermore, each bridge-delegate pair must be configured using Maven - an
example of this is shown in listing 3.8. In this listing, Bridge is the name of
the VDM class that uses the Java bridge, and Delegate is the fully qualified
name of the associated Java class that implements the delegate. Furthermore,
to translate VDMUnit tests to JUnit4 tests, the genJUnit4Tests parame-
ter must be set to true, as shown in listing 3.8. This listing only shows the
part of the Java code generator’s configuration that is directly related to the
delegate and test generation features. A complete tutorial that demonstrates
how these features can be used is available via [25].

During the code generation process, the delegate transformation replaces
the body of each operation in the IR that uses the bridge with direct calls to the
corresponding delegate method. As a result, the Bridge class in listing 3.6
is generated to the code shown in listing 3.9. In this listing, I and R are the
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<configuration>
...
<delegates>
<property>
<name>Bridge</name>
<value>Delegate</value>

</property>
</delegates>
<genJUnit4Tests>true</genJUnit4Tests>

</configuration>

Listing 3.8: Configuration of the Java code generator Maven plugin.

code generated versions of the input and result types of the VDM operation
that they originate from.

To enable the integration of the Bridge and the Delegate, the latter
must conform to the interface of the Bridge. Essentially this means that
each method in the Delegate must have the same signature as the as-
sociated method in the code generated version of the Bridge. Therefore,
knowledge of how the Java code generator represents the different VDM
types in the generated code is needed. The mapping between VDM and Java
types, used by the Java code generator, is described in [65].

class Bridge {
...
public R op(I i) {

return Delegate.op(i);
}

}

Listing 3.9: Code generated version of the VDM operation in listing 3.6.

An example of a simple implementation of the Delegate is shown
in listing 3.10. In this listing, the Delegate simply relays the call to the
ExternalComponent. Although this achieves the primary purpose of the
Delegate, i.e. to integrate the ExternalComponent into the gener-
ated code, the implementation of the Delegate may also perform other
tasks such as accessing state or converting between code generated and user-
defined types.

The application of the delegate transformation removes all the boiler-plate
code that originally was added to enable co-execution of VDM and Java (see
listing 3.7) and inserts direct invocations to the Delegate (see listing 3.9).
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class Delegate {
...
public R op(I i) {

return ExternalComponent.op(i);
}

}

Listing 3.10: Implementation of the Delegate.

This completely removes the dependency on the Value runtime library. The
implementation of the delegate may, however, still introduce some overhead
if it needs to convert between code generated types and types used by the
external component.

Contribution 7. Tool support for automated realisation and validation of
models that integrate real system components.

3.5 The Isabelle Theory Generator

The applications of the CGP presented so far focus on generating code to-
wards a system realisation. This section presents a CGP-based code genera-
tor [P20] that targets an embedding of VDM in Isabelle – a framework for
creating and working with logical formalisms [75]. In Isabelle definitions
are grouped using theories. Furthermore, an embedding is a set of Isabelle
theories that formalise the semantics of some language. The aim of convert-
ing a VDM specification into code of the VDM embedding is to unlock the
verification features of Isabelle in a VDM/Overture setting.

The Isabelle theory generator takes as input a VDM specification, in-
cluding the proof obligations generated by Overture, and generates a set of
theories and proof goals, which can be analysed using Isabelle. In particu-
lar this allows Isabelle to be used to discharge proof obligations, which is
something that Overture cannot currently do.

Almost every VDM construct exists in the VDM embedding. Therefore,
most of the nodes in the initial version of the IR can be translated directly into
Isabelle code. Furthermore, the syntax used by the VDM embedding closely
resembles that of VDM with the following exceptions: All constructs in the
VDM embedding are enclosed by " to mark them as user-defined Isabelle
code. Variable names are enclosed by ˆ to mark them as model variables.
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Types are prefixed by @ to mark them as model types and finally, string
literals are enclosed by ’’. To exemplify this, different VDM constructs are
compared to their counterpart in the Isabelle embedding in table 3.1. To trans-
late VDM constructs that exist in the Isabelle embedding, a code mapping is
specified using a template.

VDM Isabelle embedding
x "ˆxˆ"
int "@int"
f(1) "f(1)"
"foo" "’’foo’’"
if b then s1 else s2 "if ˆbˆ then ˆs1ˆ else ˆs2ˆ"

Table 3.1: VDM constructs and their counterpart in the Isabelle embedding.

There are two differences between VDM and the Isabelle embedding
that are best addressed using transformations. First, Isabelle does not allow
forward referencing of definitions (use of a definition before it is declared),
which VDM does. To address this, a transformation is used to order defini-
tions according to their dependency relations. The transformation processes
the definitions of the IR module (the top-level node), constructs a depen-
dency graph based on the definitions, and computes a topological sort of the
graph [17].

Secondly, Isabelle requires mutually recursive functions and operations
to be explicitly grouped. In the embedding this is handled by enclosing these
definitions using the keywords begin mutrec and end mutrec. VDM,
on the other hand, does not require such explicit grouping. To address this dif-
ference, a transformation computes a dependency graph for functions and op-
erations and applies an algorithm to find strongly connected components [52].
To support this transformation and facilitate the translation of mutually recur-
sive functions and operations, the IR was extended with a node to represent
a group of mutually recursive definitions. This IR extension was made using
the extensibility features of AstCreator.

Contribution 8. A code generator for translating VDM-SL specifications
into theories of a VDM-SL Isabelle embedding.

In addition to the CGP-based translation, there exists an earlier version
of the theory generator, which is based on a manual implementation [37] that
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does not use the CGP. For the rest of the section, the manual implemen-
tation of the theory generator is referred to as the original translation. The
original translation was developed to support an Isabelle embedding of CML
(see section 2.2.3), but this section only focuses on the VDM subset that it
supports. To assess what was gained by using the CGP, the source code for
both the original and the CGP-based translations were compared in terms of
code volume, measured in Lines of Code (LoC). Although LoC does not truly
reflect development efforts, it gives an idea of what can be gained by using a
platform-based approach.

The measurements for the original and CGP-based translations are sum-
marised in table 3.2. The measurements do not cover implementation compo-
nents of the original translation used to translate constructs that are exclusive
to CML, i.e. not included in VDM. The measurements are divided into three
groups: Data refers to code that implements the intermediate data represen-
tation between the source and target languages. Process refers to code that
processes or analyses the intermediate data representation and finally, Syntax
refers to code that defines target language code.

Manual [LoC] CGP [LoC] ∆LoCabs [LoC] ∆LoCrel

Data 981 27 954 97.25%
Process 2427 538 1889 77.83%
Syntax 1395 86 1309 93.84%

Total 4803 651 4152 86.45%

Table 3.2: Volume comparison of the two theory generators measured in LoC.

The absolute and relative differences in LoC are computed as ∆LoCabs =
Manual−CGP and ∆LoCrel = LoCabs/Manual. In total the CGP-based
translation reduces the volume by 86.45% compared to the original trans-
lation. The largest reduction of 97.25% is measured for Data. The reason
for this reduction is that the CGP-based translation reuses the IR and only
needs to specify the IR extension, whereas the original translation uses a
hand-written data structure. The reduction of 77.83% for Process is due to
most of the machinery used to construct and process the IR is being handled
by the CGP (applying transformations). Finally, the reduction of 93.84% for
Syntax is because the CGP uses a template-based approach for specification
of code mappings.
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The take-away message is that tasks common to most code generators can
be handled by the platform. As demonstrated in this section, this approach has
potential to reduce development efforts when building code generators.

3.6 Related Work on Code Generation for VDM

VDMTools has supported code generation from VDM to Java and C++ since
the nineties and in 1999 the Java code generator was extended to support code
generation of concurrent VDM++ specifications [78]. VDMTools is a closed-
source project2 and there is no scientific literature available to document how
these code generation features are designed.

In 2011 Maimaiti made the first attempt to introduce a VDM++-to-Java
code generator in Overture [68]. This code generator was limited in terms of
the number of supported VDM constructs and it never reached the necessary
maturity to be included in a release. Maimaiti’s code generator was based on
the encapsulated version of the VDM AST (see section 2.3.1) which was not
designed to support feature extensions such as a code generation.

In 2013, after the introduction of Overture’s extensible VDM AST (see
chapter 2), a new attempt was made to introduce a VDM-to-Java code gen-
erator. In 2014 the first version of the Java code generator was released with
version 2.1.0 of the Overture tool. At the time of this publication, this Java
code generator is under active maintenance and development. There are some
significant differences between Overture’s Java code generator and that of
VDMTools that are worth mentioning. First, Overture’s Java code generator
contains support for build and test automation. As described in section 3.4,
this is achieved by exposing the Java code generator as a Maven plugin.
Secondly, Overture’s Java code generator can be configured to translate in-
variants, type constraints and pre- and post conditions in VDM-SL to JML
annotations that are added to the generated code (see section 4.2). Finally,
Overture’s Java code generator also supports code generation of traces for
the VDM-SL dialect (see section 4.3).

Code generation for Overture is an active area of research. As of 2016, a
VDM-RT-to-C code generator is under development as part of the INTO-CPS
project [33] – a continuation of the DESTECS project (see section 2.2.3). The
VDM-RT-to-C code generator was made available in version 2.3.6 releases
of Overture and it is the first C code generation feature developed for VDM.
Overture also has a prototype VDM++-to-C++ code generator, which has not

2 There are, however, plans to make VDMTools open-source in 2016.
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yet reached the maturity to be released with the tool [P55]. Both the VDM-to-
Java, the VDM-RT-to-C and the VDM++-to-C++ code generators use many
of the same transformations (without modifying them) to change the IR into
a form that is easier to translate into code. It is the similarities between Java,
C and C++ that enable reuse of transformations. For example, Java, C and
C++ do not currently support pattern matching or collection comprehensions
natively, and the code generators must therefore replace these constructs with
other constructs that are easier to translate into code. This is achieved using
transformations.

As of June, 2016, two Master’s thesis projects about VDM code gener-
ation were completed. In [44] Holst et al. present their work on a VDM++-
to-TypeScript code generator that is developed using the CGP. TypeScript
is a multi-paradigm scripting language based on JavaScript that supports
language features such as object-orientation, dynamic and static typing, and
higher-order functions. Some of the functional constructs of VDM++ can
therefore be represented directly using TypeScript code. A more detailed
comparison of Overture’s Java code generator and the TypeScript code gen-
erator is provided in [44, section 6.2.3]. In [28] Diswal presents his work
on a CGP-based VDM-SL-to-C# code generator, which uses Microsoft Code
Contracts [79, chapter 15] to represent VDM’s invariants, type constraints,
and pre and post conditions in the generated code. Diswal’s code genera-
tor can therefore be seen as a .NET-based version of Overture’s Java code
generator. Microsoft Code Contracts is comparable to JML, although the
semantics of the contract-based elements, as defined by these technologies,
differ significantly.

In 2016, a VDM-SL-to-Smalltalk code generator was added to Vien-
naTalk [77]. ViennaTalk’s Smalltalk code generator supports a large subset
of VDM-SL, including full support for pattern matching. This code genera-
tor works by constructing a VDM AST from which it emits Smalltalk code
directly. This approach is different from that of a CGP-based code generator,
which generates code from an IR using a code emission framework. The
design rationale of the Smalltalk code generator is to make the generated code
as natural as possible. The Smalltalk code generator uses a special invariant
method to implement checking of state invariants. This method is invoked
on an object when the instance variables of the object change. Support for
checking of type invariants and pre- and post conditions is currently limited.



4
Contract-based Validation

The contract-based elements of a formal specification describe properties
desired by the final version of the system. This chapter presents contributions
that extend some of the code generation features in chapter 3 to leverage these
contract-based elements to validate the implementation of the formal speci-
fication. Chapter 5 describes how the contributions presented in chapters 2
through 4 have supported the case study work of this PhD.

4.1 Introduction

VDM uses pre- and post conditions to specify intended behaviour, and in-
variants to constrain data. These constraints, or contracts, support system
analysis, and describe desired system properties. Contract-based specification
supports reasoning about the system under development and validation of
the system’s behaviour against its contracts. For example, when the VDM
specification is analysed by animation, the VDM interpreter checks that the
contracts are met, and reports errors if violations occur.

This chapter describes how the constraints defined by a VDM-SL spec-
ification can be used to validate the corresponding implementation. This is
achieved by translating these constraints into JML annotations that can be
used to check the generated Java program for correctness (see section 1.2.3).
The translation of the different VDM constructs are presented as a set of rules.
These rules are implemented as an extension of the VDM-to-Java code gen-
erator [C5] to make this approach fully automated. It is further demonstrated
how the generated JML annotations can be exercised exhaustively using code
generated VDM-SL traces.

This chapter is structured as follows: First the rules for translating VDM
constraints to JML annotations are described in section 4.2. Finally, an ap-
proach to enhancing test automation for VDM specifications using JML-
based code generation is proposed in section 4.3.

45
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4.2 Automated Translation of VDM to JML annotated Java

In [P81] we present the rules used to translate VDM constraints to JML
annotations. The translation rules, including the extension of the Java code
generator, form the most significant scientific contribution of this PhD. The
complete definition of the translation is not included in this summary due to
space limitations. The purpose of this section is instead to clarify the main
ideas of the translation, and provide the information needed to understand
the remainder of this summary. This section therefore only covers a subset of
the translation rules, in particular those related to checking of pre conditions
and some of the VDM types. Details related to checking of post conditions,
state invariants, atomic execution etc. have been omitted from this section.
The extension of the Java code generator, referred to as the JML translator,
produces a JML annotated Java program that can be checked for correctness
using JML tools.

The JML annotated Java programs produced by the JML translator can be
executed using the OpenJML runtime assertion checker (see section 1.2.3).
This is the only runtime assertion checker that we are aware of that cur-
rently supports both Java 7 and the JML subset produced by Overture’s JML
translator.

4.2.1 The ATM Model

Throughout this section the translation will be demonstrated using a small
case study model of an Automated Teller Machine (ATM). Excerpts from
the model are shown in listing 4.1. The ATM model uses a state component
to manage information about customer accounts. In particular, the system
stores information about debit cards that are considered valid (validCards),
the accounts these cards are associated with, and the debit card that is cur-
rently inserted into the ATM (currentCard), if any. The pinOk flag indi-
cates whether a valid PIN code has been entered, for the credit card currently
inserted into the ATM. Finally, the model defines several operations for ac-
tivities such as money withdrawal and depositing – most of which have been
omitted from listing 4.1.

4.2.2 Translating VDM-SL Contracts to JML

Using the ATM model, each translation rule, included in this section, is demon-
strated by example, and afterwards the rule is generalised, and presented
using a grey “rule” box. The idea of the “rule” box is to emphasise and
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�
module ATM
definitions
state St of
validCards : set of Card
currentCard : [Card]
pinOk : bool
accounts : map AccountId to Account
...

operations
...
Withdraw : AccountId * Amount ==> real
Withdraw (id, amount) == ...
end
� �

Listing 4.1: Excerpts from the ATM model.

summarise a point made previously. The rules are presented as they appear
in [P81] with the exact same rule number.

Pre- and post conditions are specified using pre and post clauses for
the function or operation they guard. From these clauses, function definitions
are derived for the pre- and post conditions. The details of these derived func-
tions are described in the VDM-SL ISO standard [5]. The derived function
definitions are not a visible part of the model, but used internally by the
interpreter, to check the consistency of the model. As an example, consider
the Withdraw operation in listing 4.2.�

Withdraw : AccountId * Amount ==> real
Withdraw (id, amount) ==
let newBalance = accounts(id).balance - amount
in (
accounts(id).balance := newBalance;
return newBalance;

)
pre
currentCard in set validCards and pinOk and
currentCard in set accounts(id).cards and
id in set dom accounts
� �

Listing 4.2: Operation for money withdrawal, guarded by a pre condition.
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In order to withdraw money from an account, the credit card inserted
into the ATM must be valid, a correct PIN code must be provided, and the
associated bank account must exist. This requirement is expressed using the
pre condition in listing 4.2 from which the function definition in listing 4.3
is derived. The purpose of listing 4.3 is to clarify the relationship between
the pre clause and its derived function definition, shown in this listing. The
pre Withdraw function is an internal definition, and not a visible part of
the model. This function receives all the input parameters of the Withdraw
operation, including a copy of the state component, and performs the pre
condition check.�

pre_Withdraw: AccountId*Amount*St +> bool
pre_Withdraw (id, amount, St) ==
St.currentCard in set St.validCards and St.pinOk and
St.currentCard in set St.accounts(id).cards and
id in set dom St.accounts
� �

Listing 4.3: Derived pre condition function for the Withdraw operation.

The Withdraw operation and the pre Withdraw function are repre-
sented using methods with the same name in the generated code. Since the
pre Withdraw method originates from a function, which cannot access
state directly, this method is declared static and marked using JML’s
pure modifier. In general this applies to all function definitions whether they
are explicitly defined, or derived from pre- or post conditions or invariants.

2. Translation of functions
Any function – whether it is defined by the user or derived, e.g. from a pre
or post condition clause – code generates to a static Java method that
gets annotated with the pure modifier.

In order to ensure that the pre condition of the Withdraw operation is
met, the pre Withdraw method is invoked from the requires clause of
the Withdrawmethod as shown in listing 4.4. The pre Withdrawmethod
receives all the input parameters of the Withdraw method, including a copy
of the state component, since the pre condition method is allowed to reason
about module state.
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//@ requires pre_Withdraw(id,amount,St);
public static Number Withdraw(final Number id, final Number

amount) {...}

Listing 4.4: Code generated version of the Withdraw operation.

3. Translating the pre condition of an operation

Let op be a method code generated from a VDM-SL user-defined operation
and let the signature of op be:
static R op(I1 i1,...,In in)
Then op has a code generated pre condition method pre op that is pure
and which in addition to the parameters of op also takes the state compo-
nent s as an argument, i.e.
/*@ pure @*/ static boolean
pre op(I1 i1,...,In in,S s)
To ensure that the pre condition check gets performed, we annotate op with
the following requires annotation:
//@ requires pre op(i1,...,in,s);

Rule 3 assumes the existence of the state component of the module en-
closing the pre condition function. For situations where the state component
is not defined, this rule is changed such that the pre condition method does
not include the state parameter s.

4.2.3 Checking VDM-SL Types using JML

The JML translator uses JML annotations to check the constraints imposed by
VDM types in the generated code. This is achieved using a function Is(v,T)
that takes as input a Java value v and a VDM type T and produces a predicate
that checks whether v represents a value of type T. The purpose of this func-
tion is to produce a check that when added to the generated code checks that
a Java value or object reference remains consistent with the VDM type that it
originates from.

Is(v,T) is defined as a recursive function over the different classes of
VDM types. This function defines 19 cases, and hence introduces the same
number of rules. The complete definition of Is(v,T) is given in [P81]. An-
other aspect of checking VDM type constraints across the translation is where
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in the generated code the type checks must be added. A detailed description
of how the JML translator handles this is provided in [P81, section 6.1].

In the most simple case Is(v,T) is used to check constraints imposed
by VDM’s basic types. This is necessary, since VDM has a more fine-grained
representation of numbers using rational and natural numbers, reals and inte-
gers. Java, on other hand, only uses a single data type to represent integers.
Therefore, whenever the ATM model uses a positive integer to represent an
amount of money, using VDM’s nat1 type, the generated code must ensure
that the corresponding Java value meets this type constraint. As an exam-
ple, consider the VDM fragment in listing 4.5, which inserts an amount of
money, required to be a positive integer, into some account. If this constraint
is violated Overture will report a runtime error.�

let amount : nat1 = expense - profit in
Withdraw(accId, amount);
� �

Listing 4.5: Explicit type annotation used to ensure that a valid amount is
being withdrawn.

The generated code, shown in listing 4.6, checks this constraint using the
Utils.is nat1 method available via the Java code generator’s runtime
library. This method is invoked from a JML assertion to ensure that amount
is a positive integer.

Number amount = expense.longValue() - profit.longValue();
//@ assert Utils.is_nat1(amount);
return Withdraw(accId, amount);

Listing 4.6: JML used to check that a valid amount is being withdrawn.

11. Checking of the nat1 type

Let v be a value or object reference in the generated code that originates
from a variable or pattern of type nat1 and further define
Is(v,nat1) = Utils.is nat1(v).
To ensure that v represents a value of type nat1, generate a JML check to
ensure that Is(v, nat1) holds.

Checking of basic types is similar in all cases, and these types constitute
the base cases of Is(v,T). The JML annotations used to check collection-
based, user-defined and union types, for example, are more complicated. To
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demonstrate this, consider the named invariant type Amount in listing 4.7.
For this particular example, it is said that Amount is based on the domain
type nat1. In addition, since the ATM cannot dispense amounts larger than
2000, values of this type are constrained accordingly using an invariant.�

types
Amount = nat1
inv a == a < 2000;

operations
Withdraw : AccountId * Amount ==> real
Withdraw (id, amount) == ...
� �

Listing 4.7: Money to be withdrawn modelled as a named invariant type.

From the named invariant type, a function is derived, which is used to
check the consistency of values of type Amount. This is similar to how
functions are derived from pre and post clauses, except that the invariant
function only takes a single argument – the value that is validated against the
invariant predicate. The code generated version of the invariant function is
shown in listing 4.8.

...
/*@ pure @*/
public static Boolean inv_ATM_Amount(final Object check_a){
Number a = ((Number) check_a);
return a.longValue() < 2000L;

}

Listing 4.8: The invariant method for Amount.

As shown in listing 4.9, on entering the Withdraw method, a JML as-
sertion is used to check that the amount, passed as input to this method, is
consistent with the VDM type Amount. The JML assertion first checks that
amount is a valid domain type value, and secondly it checks that the invari-
ant predicate is met. Essentially, this corresponds to checking that amount
is a positive integer (left part of the conjunction) that is less than 2000 (right
part of the conjunction).

It is important to note that meeting the invariant predicate does not imply
being a valid domain type value, and vice versa. For example, -1 meets the
invariant predicate since it is smaller than 2000, but it is not of type nat1, i.e.
a legal domain value. Conversely, 2001 is of type nat1 but it does not meet
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public static Number Withdraw(final Number id, final Number
amount){

...
//@ assert Utils.is_nat1(amount) && inv_ATM_Amount(amount);
...
}

Listing 4.9: JML used to check that amount is consistent with the VDM
type Amount.

the invariant predicate. Since the invariant function and method assume that
the input is a legal domain type value, the generated JML assertion must first
and foremost ensure that amount is a positive integer. If that condition is
met, it is checked that amount meets the invariant predicate. Since the JML
assertion in listing 4.9 is evaluated using short-circuit or McCarthy seman-
tics [71], the invariant method is only invoked if amount represents a legal
domain value. Therefore, it is safe to cast the input argument of the invariant
method, before performing the invariant check, as shown in listing 4.8.

16. Checking of named invariant types

Let v be a value or object reference in the generated code that originates
from a variable or pattern of the VDM named invariant type T based on
the domain type D and constrained by invariant predicate e(p), i.e. T is
defined as
types
T = D
inv p == e(p)
Then T has an invariant method, responsible for running the code generated
version of the e(p) check, with a signature defined as:
public static boolean inv T(Object o)
Further define Is(v,T) = Is(v,D) && inv T(v).
To ensure that v represents a value of type T, generate a JML check to
ensure that Is(v,T) holds.

The invariant method inv T in rule 16 uses Java’s Object class to
represent the type of its input parameter. This allows the invariant method
to take any Java type as input. The type of the parameter could in principle
be represented using a smaller type, for example using the code generated
version of the domain type of T. However, this would in some situations lead
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to type casting in the generated JML annotations that invoke the invariant
method. In particular for situations where the value passed to the invariant
method is masked as a union type. Instead, the task of narrowing the type of
the input parameter is handled by the invariant method.

Contribution 9. Automated translation of VDM-SL to JML annotated
Java.

4.3 Enhancing Test Automation for VDM Models

This section demonstrates how a code generated version of a VDM-SL model,
produced using the JML translator, can be tested using combinatorial testing.
This is achieved by code generating a trace and executing it against the JML
annotated Java program, generated from the VDM-SL model, as described
in [P80]. The trace must be executed using a JML tool in order to enable
checking of the generated JML constraints.

Later in section 5.4 it is demonstrated how code generated traces have
been used to analyse the properties of an algorithm used to obfuscate IDs of
retailers. This section focuses on describing how the trace is code generated,
i.e. how the different trace operators are represented in the generated code,
and how the code generated version of the trace can be executed. The aim of
using code generated traces is twofold: First, it allows one to obtain a higher
degree of confidence in the correctness of the generated code. Secondly, it has
the potential to allow a larger number of tests to be executed faster since the
tests are executed as compiled code rather than using a VDM interpreter. The
latter is expected to be particularly beneficial for traces that expand to large
test sets. Such test sets may be impossible or intractable to execute using an
interpreter due to a large memory consumption or execution time.

Internally, Overture uses an AST to represent a trace. This AST consists
of nodes that constitute the different trace constructs such as let bindings,
and calls to functions and operations. This trace, or AST, describes a pat-
tern that Overture expands into a collection of tests that are executed against
the VDM specification. The idea of this work is to take advantage of code
generation and use compiled code to perform the expansion and execution.

Similar to Overture, the JML translator represents the trace as an AST
that is built using nodes from the Java code generator’s runtime library. Most
of these nodes represent the different trace operators (see section 1.2.2.2).
In VDM the | operator and let be st binding are both represented using
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the Alternative trace node. The || operator is represented using the
Concurrent trace node. The repetition operator is represented using the
Repeat trace node. The Sequence trace node expands to the sequencing
of all the tests of its child nodes. The Statement trace node expands to a
single test, i.e. the invocation of the Call statement that it is associated with.
The Call statement represents the invocation of some function or operation.
Objects of this class constitute the leaves of the trace AST.

When a trace is code generated the JML translator produces code that
when executed constructs the trace AST, expands it, and executes the gener-
ated tests. To demonstrate the complete process of expanding and executing a
code generated trace consider the trace in listing 4.10. The non-deterministic
choice between op1(x) and op2(x) expands to two tests, i.e. op1(x);
op2(x) and op2(x); op1(x). Repeating op3(x) up to two times fur-
ther produces two tests, namely, op3(x) and op3(x); op3(x). Finally,
the trace produces tests for each binding of x leading to a total of eight tests
as shown in listing 4.11.�

let x in set {1,2} in (
||(op1(x),op2(x)) | op3(x){1,2}

)
� �
Listing 4.10: Example of a trace.

�
x = 1; op1(x); op2(x); /* Test 1 */
x = 1; op2(x); op1(x); /* Test 2 */
x = 1; op3(x); /* Test 3 */
x = 1; op3(x); op3(x); /* Test 4 */
x = 2; op1(x); op2(x); /* Test 5 */
x = 2; op2(x); op1(x); /* Test 6 */
x = 2; op3(x); /* Test 7 */
x = 2; op3(x); op3(x); /* Test 8 */
� �

Listing 4.11: The tests generated from the trace in listing 4.10.

When a trace AST has been constructed it forms a tree of objects from
which the tests will be derived. The runtime representation of the trace in
listing 4.10 is shown using the UML object diagram in fig. 4.1. The execu-
tion of the trace is handled entirely by the runtime library, as visualised in
fig. 4.2. Initially the execTests method is invoked to expand and execute
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the trace. This method is passed four arguments, i.e. ast, module, store
and testAcc. The first argument, ast, is a representation of the trace
AST such as that shown in fig. 4.1. module is the code generated version
of the module enclosing the trace. store is used to manage and reset the
system’s state between each test run in order to allow tests to be executed
independently of one another. testAcc is used to record or accumulate
test results. For each test that is executed the testAcc is notified using
the registerTest method. This call has been omitted from fig. 4.2 for
simplicity. Test accumulators are implemented using the strategy pattern [39],
which allows test results to be accumulated in different ways. For example,
one strategy may write the results to a file, while another strategy may print
the results directly to a console.

Before the tests are executed the module class, enclosing the code gener-
ated trace, is registered in the store, as shown in fig. 4.2. If more modules
exist, these are also registered in the store as they might have their state
changed during test execution. After the store has been configured, the tests
are obtained from the trace AST, using the getTests method. This method
returns a TestSequence that contains the trace tests. Afterwards, the tests
are executed, one by one, and the system’s state is reset between each test
run.

traceAst:Sequence

let:Alternative

:Sequence

|:Alternative

||:Concurrent

:Statement

op1(x):Call

:Statement

op2(x):Call

{1,2}:Repetition
from=1
to=2

:Statement

op3(x):Call

2
:TraceVar

Figure 4.1: A code generated trace shown using a UML object diagram.
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The leaves of the trace AST – the Call statement objects – are all im-
plemented and instantiated using anonymous classes based on the abstract
Call statement class. These anonymous classes are implemented by the code
generator according to the particular VDM function or operation call that
the Call statement represents. The interface of the Call statement node,
shown in fig. 4.3, defines three methods: The isTypeCorrect method
determines whether the arguments passed to the Call statement meet the
type constraints of the formal parameters of the VDM function or operation
that they originate from. The isTypeCorrect method returns true by
default, which corresponds to the situation where it can be guaranteed us-
ing static analysis that the Call statement is type correct for all tests. For
such situations the implementation of the isTypeCorrect method can
be omitted by the code generator. If the Call statement is not considered
type correct, i.e. the isTypeCorrectmethod returns false, then the cur-
rent test is registered as INCONCLUSIVE. The implementation of the Call

loop

[tests.hasNext()]

ast:TraceNode

test:TestSequence

TraceNodeUser

reset(store)

register(store,module)

execute(test)

«create»
tests

getTests()

test

next()

execTests(ast,module,store,testAcc)

Figure 4.2: Execution of a code generated trace.
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statement for the op3(x) call from listing 4.10 is shown in listing 4.12. For
this example, it is assumed that op3 defines a single input parameter that
is a natural number (of type nat). As shown in listing 4.12, this argument
is accessed from a scope surrounding the isTypeCorrect method, and
validated using a JML assertion. Note that the isTypeCorrect method
assumes that the JML annotations are compiled using Java assertions, which
is possible using OpenJML. Therefore, if the compiled code is executed using
the OpenJML runtime assertion checker with Java assertions enabled, a JML
violation will produce an AssertionError.

In general a Call statement is type correct if all the input arguments
a1,...,an represent values that meet the constraints imposed by the types
of the formal parameters T1,...,Tn of the VDM function or operation
that the Call statement represents. That is, for a Call statement to be type
correct Is(a1,T1) && ... && Is(an,Tn) must hold. This condition
is checked using JML as shown in listing 4.12.

If a Call statement is considered type correct the runtime library pro-
ceeds by checking that the pre condition is met. This check is performed
using the meetsPreCond method. This method returns true by default,
which corresponds to the situation where the pre condition is either omitted
or can be guaranteed to be true for all tests. Listing 4.12 shows how the
meetsPreCond method is implemented for op3. If the pre condition is
met, the runtime library proceeds by executing the Call statement, using
the execute method, and returning the result to the runtime library. The
execute method is responsible for invoking the code generated version of
the function or operation that the Call statement is associated with. How-
ever, if the pre condition is not met the test is considered INCONCLUSIVE.
The implementation of the executemethod for op3 is shown in listing 4.12.

Call

isTypeCorrect() : Boolean
meetsPreCond() : Boolean
execute() : Object

Figure 4.3: The interface of the Call statement.

Contribution 10. Enhanced test automation for VDM models.
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Call callStm_3 = new Call() {
public Boolean isTypeCorrect() {
try {

//@ assert Utils.is_nat(x);
} catch (AssertionError e) {

return false;
}
return true;

}
public Boolean meetsPreCond() {
return pre_op3(x);

}
public Object execute() {
return op3(x);

}
public String toString() {
return "op3(" + Utils.toString(x) + ")";

}
};

Listing 4.12: Implementation of the Call statement for op3.



5
Case Studies

Tool support for formal methods must be properly integrated into the soft-
ware development life cycle to support cost-effective development of high-
quality software. This chapter describes how the contributions presented in
the previous chapters have supported three case studies. Chapter 6 evaluates
the contributions produced during the PhD, concludes the dissertation, and
presents future work.

5.1 Introduction

The contributions presented in the previous chapters have been used in three
case studies to develop systems of a mission-critical nature. The feedback
received from the case study work has helped improve the existing contribu-
tions and introduce new ones. As an example, the build and test automation
features [C7] originate from the unforeseen needs encountered during the
case study work.

The first case study, presented in this chapter, concerns the development
of Functional Mock-up Interface (FMI) [26] support for Overture. Essen-
tially, this feature enables co-execution of VDM and other formalisms that
can be exported in Functional Mock-up Units (FMUs). The second case study
uses the delegate and test generation features [C7] to develop a system that
supports farmers in optimising harvest operations using simulation-based pre-
dictions. The last case study uses the JML generator [C9] and code generated
traces [C10] to validate the properties of an algorithm used to obfuscate
Financial Accounting District (FAD) codes, which are six digit numbers used
to identify branches of a retailer. In particular, this case study investigates the
performance that is gained by using code generated traces.

This chapter is organised as follows: The experiences gained from de-
veloping FMI support for Overture are reported in section 5.2. Next, the
development of the harvest planning system using the delegate and test gen-
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eration features is described in section 5.3. Finally, the performance of code
generated traces is analysed using the FAD code case study in section 5.4.

5.2 The FMU Orchestration Engine Rule Checker

In the INTO-CPS project (see section 3.6) a number of simulators, supporting
different formalisms, are being extended with functionality to export models
in FMUs. FMUs implement the interface requirements described in the FMI
standard, which enable sub-systems, modelled using different formalisms, to
communicate in a co-simulation. For example, a CPS may be analysed using
several models that use heterogeneous formalisms to model different parts of
the system. If these constituent models are exported in FMUs, via different
tools, then the FMUs can in principle interact in a co-simulation. It is the
responsibility of the orchestration engine to coordinate the execution of the
individual FMUs and handle the communication between them.

5.2.1 The Rule Checker Model

The case study described in this section [42] uses MBD to develop a com-
ponent of a co-simulation orchestration engine called the rule checker. This
component is used to perform a static validation of the information that will
be exchanged between FMUs. FMUs communicate by means of scalar vari-
ables, which are characterised by their causality (e.g. input or output), vari-
ability (e.g. discrete or continuous), type and initial value. As an example, a
FMU may use a scalar variable to represent a sensor reading that serves as
input to other FMUs.

Initially it was attempted to implement the rule checker directly in Java.
However, the interface requirements, described in the FMI standard, are based
on tables and natural language descriptions that gave rise to discussions about
the scalar variable semantics. This led us to believe that the development
of the rule checker was well-suited to be addressed using formal analysis.
The purpose of the analysis was to improve our understanding of the FMI
standard, as well as to identify the parts of the standard that are relevant
to the rule checker. This case study therefore demonstrates traditional us-
age of formal analysis to address the ambiguity of an informal specification,
which potentially would lead to problems in the implementation. The rule
checker is specified using VDM-SL, which is well-suited for analysing the
interface constraints by animation, and implemented using the Java code
generator [C5].
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The rule checker model is used to determine whether a scalar variable is
valid, and reports a meaningful error message if it is not. The scalar variables
are validated once by the orchestration engine before the co-simulation is
started. If there are multiple problems with a scalar variable, the rule checker
will report the problem that is considered most severe. For example, the
rule checker will first and foremost require that a scalar variable of contin-
uous variability is of type real. In the VDM model, the scalar variable is
represented using the record type, SV, shown in listing 5.1.�

SV ::
causality : [Causality]
variability : [Variability]
initial : [Initial]
type : Type;
� �
Listing 5.1: A scalar variable represented using a record type.

The rule check is performed for each FMU that participates in the co-
simulation. As a first step, the rule checker provides default values for the
scalar variable properties that have been legally left undefined. Afterwards,
the rule checker validates the scalar variables against the FMI standard using
a function called Validate. If a scalar variable is valid, this function returns
true. Otherwise, the function returns false and produces an error message
that describes why the scalar variable is invalid.

5.2.2 Realising the Rule Checker

When a formal specification, such as the rule checker model, is implemented
using code generation, the generated code will typically constitute one of
several components that altogether form the system realisation. The gener-
ated code will therefore need to interact with other system components. In
this case study, the RuleChecker is, for example, a sub-system of the
OrchestrationEngine as shown in fig. 5.1.

From a general perspective, the generated code may need to be integrated
with other system components such as user interfaces, hardware, third-party
libraries or other dependencies. Seamless realisation of a formal specification
therefore requires tools that support the build environments that integrate all
the system components. The experiences gained from developing the rule
checker therefore inspired us to extend the Java code generator with build
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Figure 5.1: Overview of the FMI case study.

automation as described in section 3.4. In this way Maven can be used to
integrate all the system components when the system is realised.

The code generated version of the rule checker is validated with manually
implemented tests. These tests help ensure that the rule checker responds as
expected and reports appropriate error messages for invalid scalar variables.
It is worth noting that the formalisation of the static semantics of scalar
variables helped us identify an inconsistency in the FMUs generated by the
commercial modelling tool, Dymola 2015 [30]. The problem was encoun-
tered when we tried to execute a co-simulation where one of the connected
FMUs was exported using Dymola 2015. More specifically, our orchestration
engine rule checker reported an error for one of the scalar variables, defined
in the model description of this FMU. The scalar variable, causing the error,
was defined as an output variable (the causality) of fixed variability. However,
according to the FMI standard, version 2.0, this is not a legal combination of
variability/causality.

Contribution 11. A Functional Mock-up Unit orchestration engine rule
checker specified in VDM-SL and translated to Java using the VDM-to-
Java code generator.

5.3 The Harvest Planning System

The delegate and test generation features have been developed to support
an externally funded project on harvest optimisation in the area of precision
agriculture [23, P21]. One of the goals of this project is to develop a har-
vest planning system that helps farmers optimise harvest operations using
simulation-based predictions.



5.3 The Harvest Planning System 63

The part of the system that is used to simulate the harvest operation is
partly modelled in VDM and realised using Overture’s Java code generator.
The code generated version of the harvest simulator is one of several system
components that form an offline planning tool, which enables farmers to make
predictions about harvest operations. The project also aims to develop tools
that address other aspects of harvest optimisation. However, the remainder of
this dissertation only concerns the development of the offline planning tool,
especially the MBD aspects.

5.3.1 The Harvest Simulator Model

A domain model [31] that describes the relationships between the domain
elements of the harvest planning system is shown in fig. 5.2. For a given
field, and a selection of resources (harvesters, grain carts and a storage facil-
ity), the systems simulates the harvest according to the chosen optimisation
algorithms [11, 51, 74]. The field is divided into work rows and headland
segments, where the latter surround the field and allow the vehicles to ma-
noeuvre during the harvest. Based on the user’s configuration, the harvest
simulator calculates instructions that describe the actions taken by the vehi-
cles during the harvest simulation. These instructions constitute a plan for
how the harvest may be performed in a realistic setting, and – when executed
– the instructions provide an estimate of the time the harvest will take.

Figure 5.2: Harvest planning system domain model.

The plan produced by the harvest simulator may be inspected using a
visualiser as illustrated in fig. 5.3. For the scenario visualised in this figure,
the system has a harvester, a grain cart, and a storage facility available. Fur-
thermore, for this scenario, the system is configured to perform unloading
and harvesting concurrently – an optimisation algorithm referred to as “on-
the-go” unloading. Due to this choice of optimisation algorithm, the harvester
and grain cart are driving side-by-side in adjacent rows, while the unload is
being performed. The grain cart thus becomes responsible for transferring the
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yield to the storage facility, shown at the left of fig. 5.3. Alternatively, unload-
ing can, for example, be performed using the “static unloading” optimisation
algorithm. When this optimisation algorithm is used the harvester and grain
cart perform unloading at a designated unload point – without moving.

Figure 5.3: Visualisation of a harvest plan.

5.3.2 Employing the Delegate

The model used to analyse the harvest operation exists in two versions: The
first version [23] is specified solely using VDM, while the new version [P21]
uses the Java bridge to analyse the field representation. The Java bridge was
introduced to address some of the performance issues with the first version
of the model. In that version of the model the data structures and algorithms
used to analyse the field are based on non-standard designs that do not scale
well in terms of field size. This makes it either impractical or impossible to
use the first version of the model to analyse realistic-sized fields: In [P21]
we report that for a relatively large field, consisting of 16 work rows and 2
headlands, the old versions of the model and the system realisation did not
complete the simulation within eight hours. For comparison, the new ver-
sion of the system, performs the simulation in approximately 183.8 seconds
(≈ 3 minutes) using the model and in approximately 1.0 seconds using the
system realisation. A more detailed analysis and discussion of the system’s
performance is provided in [P21].

The new version of the system uses a Java-based graph representation of
the field. In that way the field can be analysed using standard algorithms, im-
plemented using well-established libraries. More specifically, the new version
of the model uses the Java bridge and the JGraphT library [52] to handle the
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field representation. As shown in fig. 5.4, the graph representation of the field
therefore constitutes the external component of the harvest planning system.
The JGraphT library provides implementations of some of the common al-
gorithms used to analyse the field. As an example, to find the shortest path
between two points in the field, the new version of the model uses Dijkstra’s
algorithm [27]. The shortest path algorithm can, for example, be used to com-
pute the route a grain cart must take in order to service a harvester that needs
to unload at a designated unload point.

Figure 5.4: Integration of the external component of the harvest planning sys-
tem. System, Field and bridge FieldGraph are defined using VDM,
whereas FieldGraph is implemented in Java.

Every operation in the bridge FieldGraph that uses the Java bridge
is defined using the is not yet specified statement to indicate that
the operation is executed in an external environment. As an example, the
shortestPath operation, shown in listing 5.2, takes as input the IDs of
two points or vertices in the field, and returns the shortest path between them.
In the model, the path is represented as a sequence of pairs, where each pair
consists of an edge ID and the direction (<Standard> or <Reverse>)
in which the edge must be traversed. The introduction of the Field class,
in-between the System and the bridge FieldGraph, allows additional
processing of the data returned by the bridge FieldGraph to be per-
formed, if needed.

In the new version the model the shortest path algorithm is implemented
in the FieldGraph, i.e. the external component. Whenever the System
needs to determine the shortest path between two vertices, it invokes the
shortestPath operation on the Field. The Field then relays the invo-
cation forward to the bridge FieldGraph, which uses the FieldGraph
to compute the shortest path. This scenario is visualised in fig. 5.5.

The model is primarily tested using the visualiser and the VDMUnit
framework (see section 1.2.2.2). The visualiser has been used to identify
potential problems with the optimisation algorithms, while they were being
developed. VDMUnit has been used to test small parts of the system and to
write integration tests that perform complete simulations, and make assertions
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�
class Field
operations
public shortestPath : int * int ==> seq of (int * Global‘

Direction)
shortestPath (pFromV,pToV) ==
bridge_FieldGraph‘shortestPath(pFromV, pToV);

...
end Field

class bridge_FieldGraph
operations
public static shortestPath : int * int ==> seq of (int *

Global‘Direction)
shortestPath (pFromV,pToV) ==
is not yet specified

...
end bridge_FieldGraph
� �
Listing 5.2: Example of a field operation that uses the Java bridge.

:System :FieldGraphbridge_FieldGraph:Field

result

shortestPath(from,to)

result
result

shortestPath(from,to)
shortestPath(from,to)

Figure 5.5: The model computes the shortest path using a Java-based external
component (highlighted in the figure).

about the simulation outcome. These tests enable regression testing of the
system as new functionality is being developed.

5.3.3 Realising the Harvest Planning System

When the system is realised, the Java code generator is invoked via its Maven
plugin to translate the VDM model and the VDMUnit tests into code and
JUnit4 tests. Next, the generated code is validated using the JUnit4 tests to
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obtain increased confidence in the correctness of the system realisation. If
the system passes the JUnit4 tests, Maven continues by integrating the code
generated version of model with the remaining system components in order
to construct the final version of the offline planning system. The build process
is fully automated and handled entirely by Maven.

Figure 5.6 shows how the code generated version of the VDM model –
the HarvestSimulator highlighted in the figure – is integrated with the
remaining system components. Essentially, the offline planning tool adds a
UI on top of the HarvestSimulator that allows the user to configure
the harvest operation by defining the boundaries of the field, and selecting
resources and optimisation algorithms. Furthermore, the offline planning tool
uses a FieldPartitioningTool, implemented using MATLAB [69], to
convert the Field into a graph representation that can be processed by the
HarvestSimulator. Finally, the offline planning tool uses the visualiser
to enable inspection of the harvest plan, once it has been calculated.

OptimisationAlgorithm

Field

HarvestResource

FieldPartitioningTool

LogHarvestSimulator

MatlabRuntime

UI

OfflinePlanningTool

Figure 5.6: The structure of the offline planning tool.

Once the Java code generator has been configured, the delegate and test
generation features enable fully automated system realisation and validation
of VDM models that integrate real system components. Hence, the harvest
simulator model and the system realisation can both be developed using the
development practices of Continuous Integration (CI) [29]. That is, for every
change made to the model, the harvest simulator is code generated and tested
using the generated JUnit4 tests. The build and test process is handled by a
Jenkins [50] integration server. This helps to ensure that the system works as
intended and avoids problems caused by developers that lack the discipline
to run the tests.

Contribution 12. A harvest planning system developed using the dele-
gate and test generation features.
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5.4 FAD Code Obfuscation

Code generated VDM traces have potential to allow a larger number of tests
to be executed since the tests are run as compiled code rather than being inter-
preted. This section presents excerpts from the case study described in [P80].
The goal of this case study is to analyse the properties of an algorithm used
to obfuscate FAD codes as well as to study the performance of code gener-
ated traces. The investigation therefore compares the execution times of code
generated traces to those obtained by executing the same trace using Overture
and VDMJ.

One of the interesting aspects of the FAD code case study is that the
analysis of the algorithm involves generating and executing one million trace
tests from a VDM-SL model, which code generated traces enabled us to do.
However, concurrently with our work, the trace expansion algorithm used by
VDMJ was significantly improved, which allows traces to be executed much
more efficiently. VDMJ is the only VDM interpreter that currently supports
this expansion algorithm.

This case study investigates a scenario from the industry where a cus-
tomer asked to consider a way to obfuscate FAD codes such that the generated
codes (1) were still six digit numbers (2) remain unique per branch, and (3)
the entire 0-999999 range was still available. Although this is the same as
creating a permutation on the list of all the FAD codes and using it as a
look-up table, the obfuscation had to be done using a lightweight calculation.
Based on this, the designers of the algorithm thought that the obfuscation
could be defined by means of an injective mapping of the digits 0-9 onto
themselves, but without any digit mapping to itself. The idea was to use
this mapping to transform the individual digits of a FAD code. Although it
was believed that this would meet the requirements of the algorithm, it was
decided to analyse this approach using a VDM-SL model. Relevant parts of
the FAD code model are shown in listing 5.3. The VDM-SL model defines
an arbitrary digit mapping that is used to obfuscate FAD codes using the
convert function. The AllDifferent trace is used to check that the set
of obfuscated FAD codes meets the requirements when the injective map is
applied to every possible FAD code.

Although the trace in listing 5.3 has no combination of cases it still pro-
duces one million tests when SIZE – the number of FAD code digits – is set
to six. A test passes if the digit map DM1 invariant holds, and when the map
is applied to a FAD code, the obfuscated FAD code must be a different value,
as required by the convert post condition.
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�
values
SIZE = 6; -- FAD code size
MAX = 10 ** SIZE - 1; -- The highest FAD code
DM1 : DigitMap = -- Arbitrary digit mapping
{ 1 |-> 9, 2 |-> 8, 3 |-> 7, 4 |-> 6, 5 |-> 0,
6 |-> 4, 7 |-> 3, 8 |-> 2, 9 |-> 1, 0 |-> 5 };

types
DigitMap = inmap nat to nat
inv m ==

let digits = {0, ..., 9} in
dom m = digits and rng m = digits
and forall c in set dom m & m(c) <> c;

FAD = nat
inv f == f <= MAX

functions
convert: FAD * DigitMap -> FAD
convert(fad, dm) ==

let digits = digitsOf(fad) in
valOf([ dm(digits(i)) | i in set inds digits ])

post RESULT <> fad;
traces
AllDifferent:

let fad in set {0, ..., MAX} in
convert(fad, DM1);
� �

Listing 5.3: Excerpts from the FAD code model.

5.4.1 Performance Results

To study the performance gained by code generation, the trace in listing 5.3,
was executed for different FAD code sizes (by changing the SIZE value)
using code generated traces, Overture and VDMJ. After each execution time
had been measured the scenario was repeated to confirm that the tool did not
suffer from memory starvation, as this would produce a misleading execution
time. A complete description of how the experiment was carried out is pro-
vided in [P80]. Some of the details have been omitted from this section due
to space limitations.

The execution times, for the different VDM tools and FAD code sizes,
are listed in table 5.1 and visualised using a logarithmic plot in fig. 5.7. The
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Table 5.1: Execution times from the FAD code analysis.

Size VDMJ-3.1.1 Overture-2.3.2 extension Code Generated
[ms] [ms] [ms]

1 46 124 211
2 465 621 633
3 2,139 3,288 3,217
4 8,692 9,068 29,032
5 35,610 57,999 279,401
6 379,635 failed 2,953,318

1 2 3 4 5 6

102

103

104

105

106

FAD code size

Time [ms]

VDMJ-3.1.1
Overture-2.3.2 extension

Code Generated

Figure 5.7: Logarithmic data plot visualising the execution times in table 5.1.

one scenario that did not complete, due to the tool running out of memory, is
specified as “failed” in table 5.1.

5.4.2 Discussion of the Performance Results

As shown in table 5.1, Overture ran out of memory and failed to expand
the one million tests that are produced for six digit FAD codes. The code
generated version of the trace, on the other hand, was capable of executing
all one million tests in over 2, 900 s, or 49.22 minutes. When comparing the
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execution times of code generated traces to those obtained using Overture,
the results show that Overture executes the tests faster for FAD codes that
consist of five digits or less. The reduced memory consumption is therefore
the only advantage that is currently gained by running the code generated ver-
sion of the trace. Naturally, this does meet the expectation that the compiled
version of the trace would run faster. Comparing the execution times of code
generated traces to those obtained using Overture provides a fair indication
of the performance gain since both tools use the same algorithm to expand
the trace.

VDMJ is the fastest tool to execute the one million tests. It achieves this in
over 379 s, or 6.33 minutes. Unlike Overture, VDMJ manages to execute the
one million tests because it uses an algorithm that is more memory efficient.
This algorithm was released with the newest version of VDMJ (version 3.1.1),
concurrent with our work. Older releases of VDMJ use an algorithm similar
to that used by Overture.

For the reasons given in section 4.2, the code generated traces were exe-
cuted using the OpenJML runtime assertion checker, version 0.6.3. To inves-
tigate the performance overhead introduced by OpenJML, the code generated
version of the trace was compiled and executed as a plain Java program, i.e.
without using the OpenJML compiler and runtime assertion checker. When
the trace is executed in this way none of the JML annotations are checked at
runtime. The point of doing this is to completely remove any overhead caused
by OpenJML. The execution of the trace as a plain Java program only takes
33.94 seconds. If the expansion algorithm used by the code generator was
changed to that used by VDMJ the execution time would mostly likely be
significantly reduced. This is expected since the current results indicate that
VDMJ scales better than Overture when the number of tests increases.

As another experiment, all the JML annotations were removed from the
generated code. Afterwards the annotation-free code was compiled using
OpenJML and the trace was executed using the OpenJML runtime assertion
checker. The purpose of this is to remove the overhead directly associated
with checking the JML annotations, while focusing solely on the overhead
caused by OpenJML. It is worth noting that even though the JML annotations
are removed, OpenJML still guards against variables and fields that hold the
value null, which is not allowed by default. When the JML annotations are
removed from the generated code the OpenJML runtime assertion checker
executes the one million tests in 11.15 minutes. This is surprising as one
would expect the execution time to approach that obtained by running the
code generated version of the trace as a plain Java program (33.94 seconds).
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These experiments lead to believe that the disappointing performance results
are heavily influenced by the OpenJML tools.

The conclusion drawn in [P80] states that two things must be changed
to improve the performance of code generated traces. First, the expansion
algorithm used by the code generator must be replaced by that used by VDMJ,
which is available as open-source. Secondly, the technology used to validate
the generated code against the VDM constraints must be changed to one
that performs better. Section 6.5.3 provides a more detailed discussion of the
future plans for the trace code generator.

Contribution 13. Performance analysis of code generated traces exe-
cuted using OpenJML.
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Conclusion

This chapter concludes the dissertation and outlines future work. The re-
search contributions presented in chapters 2 through 5 are evaluated to assess
whether the research objectives, described in chapter 1, have been achieved.

6.1 Introduction

This dissertation presents a number of contributions that enhance system real-
isation in formal model development. The contributions take a starting point
in the challenges of realising a formal specification and develop tool support
to achieve integration of formal methods tools into the different phases of the
software development life cycle. The tools have supported three case studies
from externally funded projects. The feedback received from the case study
work has helped to improve these tools and develop new ones.

This chapter summarises and evaluates the research contributions, pro-
duced over the course of this PhD, against the research criteria described
in section 1.6. Based on the evaluation, the hypothesis is revisited to assess
whether the research objectives have been achieved, and future plans for
improving the research contributions are also discussed.

Following this section, an overview of the different contributions is pro-
vided in section 6.2. Subsequently, the contributions are evaluated in sec-
tion 6.3. Next, it is discussed to what extent the objectives of the PhD have
been achieved in section 6.4, and finally future plans are presented in sec-
tion 6.5.

6.2 Research Contributions

The contributions produced over the course of this PhD are grouped into the
four main areas The Overture Platform, Code Generation, Contract-based

73



74 6 Conclusion

Validation and Case Studies each of which corresponds to a chapter with the
same name.

The contributions are shown organised into these four categories in fig. 6.1.
This figure further shows how the different contributions relate and contribute
to one another (as indicated by the arrows). All contributions contribute either
directly or indirectly to Overture, which is why [C1] is highlighted in fig. 6.1.
Based on the four categories, a summary of the contributions is provided
below.

[C1]
Overture

[C4]
CGP

[C8]
Isabelle theory generator

[C11]
FMU Orchestration Engine

[C12]
Harvest Planning System

[C3]
ASTCreator

[C2]
Extensible VDM AST

[C5]
VDM-to-Java

[C9]
VDM-to-JML translator

[C6]
VDM-RT-to-Java extension

[C10]
Test automation

[C7]
Build automation

[C13]
Performance Analysis

Contributes to

The Overture Platform

Code Generation

Contract-based Validation

Case Studies

Figure 6.1: Overview of the contributions.

6.2.1 The Overture Platform

Chapter 2 presents three contributions that cover architectural changes that
promote extensibility and reuse for formal methods tools. The first contri-
bution is the Overture platform, which supports the development of formal
methods IDEs [C1]. The development of the Overture platform has involved
re-designing Overture’s AST in order to improve the extensibility and reuse
of the underlying formal language [C2]. The re-design of the AST has en-
abled the development of CML and the Symphony tool in the COMPASS
project. The experiences gained from using the extensible AST in this project
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have been distilled into a set of principles for reuse in formal methods tools,
supported by AstCreator [C3]. The architectural changes made to the Over-
ture platform have enabled the development of the remaining contributions
produced during this PhD.

6.2.2 Code Generation

Chapter 3 presents five contributions that add code generation features to
Overture. Common to all the code generators developed in connection with
this PhD is that they use the CGP – an infrastructure for developing code gen-
erators for VDM [C4]. The CGP provides a framework (based on AstCreator)
that offers functionality commonly used by code generators. Experiences
show that this approach has the potential to reduce the efforts needed to
develop new code generation features (see section 3.5).

Overture’s Java code generator is the largest code generator project de-
veloped so far that uses the CGP [C5], although several other projects are
currently under development (see section 3.6). The Java code generator forms
the basis for other code generation related projects. For example, the VDM-
RT-to-Java code generator extension adds support for the distributed aspects
of VDM-RT [C6].

Motivated by the case study work (see chapter 5), the Java code generator
was extended with functionality to enable automated realisation of a VDM
specification and testing of its associated realisation. This was achieved by
integrating the Java code generator into the Maven build automation system
using a Maven plugin. The Java code generator Maven plugin was further
enhanced to support code generation of VDM specifications that include real
system components – a technique referred to as the delegate [C7].

The development of the Isabelle theory generator [C8] demonstrates other
usages of the CGP. Whereas other projects that use the CGP focus on code
generation towards a system realisation, the Isabelle theory generator is used
to export VDM specifications to Isabelle to take advantage of the function-
ality that this tool has to offer. Exporting VDM specifications to Isabelle has
been used to discharge proof obligations – something that cannot currently
be done using Overture alone.

6.2.3 Contract-based Validation

Chapter 4 presents two large contributions that build on top of the Java code
generator. Rules for translating VDM contracts to JML annotations were pro-
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posed with the purpose to bridge the gap between an abstract specification,
specified using VDM, and its Java implementation [C9]. This is considered
the most significant scientific result of this PhD. In addition, tool support
was developed as an extension of the Java code generator to automate the
translation from VDM to JML. The JML translator produces a JML anno-
tated Java program that can be validated using JML tools. To enhance test
automation for VDM specifications, the Java code generator was extended
to support code generation of traces in order to exercise the generated JML
annotations [C10]. This approach therefore leverages the contracts of the
VDM specification to enable combinatorial testing of code generated VDM
specifications.

6.2.4 Case Studies

Chapter 5 presents three case study contributions. In the FMU orchestration
engine case study from the INTO-CPS project, a rule checker was devel-
oped to validate the data exchanged between the FMUs interacting in a co-
simulation [C11]. In the attempt to understand the FMI standard, the rules
for data exchange between the FMUs were specified using VDM-SL, and
implemented via code generation. To integrate the code generated version of
the rule checker and the orchestration engine, the Java code generator was
extended with Maven support.

The harvest planning system is the most ambitious case study developed
using the tools produced during this PhD [C12]. This system is developed to
assist farmers in optimising harvest operations using simulation-based predic-
tions. The first version of the model was specified solely using VDM, which
led to performance issues with the system. This was partly because the data
structures and algorithms used to analyse the field did not scale well in terms
of field size. To address these performance issues, the model was updated to
represent the field as a graph and use well-established Java libraries, based on
standard algorithms, to analyse the field. This resulted in a setup consisting
of both model and real system components. The delegate and test generation
features were used to produce the system realisation and the tests used to
validate the generated code. This approach enabled the practice of CI to be
applied to the model as well as the generated code.

In the last case study, the performance of code generated traces, executed
using OpenJML, was studied. Code generated traces enabled us to analyse
the properties of an algorithm used to obfuscate FAD codes by execution of
one million tests, derived from a trace. We did not manage to execute all one
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million tests using Overture because this tool ran out of memory during the
expansion process. However, recent advances in trace expansion techniques,
implemented by VDMJ, allow traces to be executed more efficiently than
using other approaches. Since code generated traces are executed as compiled
code rather than using a VDM interpreter, they were expected to run signifi-
cantly faster. However, this expectation was not met, and there are indications
that the poor performance results are related to OpenJML (see section 5.4.2).
In section 6.5.3 future plans for how to improve the performance of code
generated traces are discussed.

6.3 Evaluation of the Contributions

In this section the contributions are evaluated using the criteria described
in section 1.6. The assessment is illustrated in fig. 6.2. Each of the individual
evaluation criteria is represented using a spider chart to visualise the informal
assessment. The evaluation of the contributions is a subjective assessment
performed by the author of this dissertation. The spider charts show to what
extent the criteria are fulfilled – the closer the scale is to the edge of the spider
web, the better the contribution is considered to be. Figure 6.2e overlays
fig. 6.2a, fig. 6.2b, fig. 6.2c and fig. 6.2d to provide an overall assessment
for all criteria. The fulfilment of the individual criteria is discussed below.

6.3.1 Tool automation

Most of the contributions enhance tool automation in formal model devel-
opment. The VDM-RT-to-Java code generator [C6] adds support for the dis-
tributed aspects of VDM-RT, but the tool support for this particular contribu-
tion lacks maturity and is still under development. The development of FMI
support for Overture allows VDM specifications to be exported in FMUs
that can participate in FMI-based co-simulation [C11]. The feedback from
the harvest planning system case study [C12] gave rise to the development
of the delegate [C7] and test generation features. The extensible AST [C2]
is regarded as a design that is suitable for AST generation but it does not
contribute tool automation per se. Although the extensible AST is tightly
connected with the AstCreator tool [C3], the latter is a separate contribution.
The automation contributed by the tools produced as part of this PhD project,
as illustrated in fig. 6.2a, therefore leads to the belief that this criterion is
fulfilled to a high degree.
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Figure 6.2: Assessment of the contributions based on the evaluation criteria.

6.3.2 System validation

Overture is a formal modelling tool that includes several features for sys-
tem validation [C1]. The Isabelle theory generator can be used to translate
a VDM-SL specification and the associated proof obligations into Isabelle
theories [C8]. In that way Overture can benefit from the verification features
of Isabelle. In relation to the case study work, the orchestration engine rule
checker [C11] supports system validation through co-simulation.

Improving the Java code generator in the context of build automation
partly involved developing support for code generating VDMUnit tests to
JUnit4 to achieve full reuse of the model tests. The code generated tests can
subsequently be executed via the Maven build automation system [C7]. The
JML translator enables validation of the code generated version of the system
against the JML annotations derived from the formal specification [C9]. Code
generated traces further allow the generated JML annotations to be exercised
exhaustively [C10]. Finally, in the case study work it was shown how code
generated traces can be used to analyse a system using combinatorial test-
ing [C13]. The development of these contributions, especially those covered
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by chapter 4, therefore leads to the belief that this criterion is fulfilled to an
acceptable degree.

6.3.3 Tool integration

The Overture platform promotes tool integration via its plugin-based archi-
tecture [C1]. Furthermore, the extensibility features of the AST [C2] and
AstCreator [C3] enable integration of other formal languages.

The CGP [C4] supports integration with other technologies through code
generation. The Java code generator [C5], the VDM-RT extension [C6] and
the Isabelle theory generator [C8] all use the CGP for this purpose. Similarly,
the JML translator [C9] and the trace code generator [C10] build on top of
the Java code generator in order to achieve integration with Java and JML.

The extension of the Java code generator to support Maven [C7] is con-
sidered the most significant contribution in terms of tool integration due to
the value it brings to the FMU orchestration engine and the harvest planning
system case studies. The integration with Maven was developed to (1) expose
existing code generation features via Maven and (2) add new functionality to
support CI and code generation of modelling setups that integrate real system
components. The inspiration for the Maven integration comes from the needs
identified during the case study work. The contributions have demonstrated
that they promote tool integration, and the corresponding criterion is therefore
considered fulfilled to a satisfactory degree.

6.3.4 Extensibility

The architecture of the Overture platform is plugin-based, which means that
new functionality can be added without changing existing components [C1].
Overture was used in the COMPASS and DESTECS projects to develop the
Symphony and Crescendo IDEs (see section 2.2.3). VDM language exten-
sions are enabled through the extensible AST [C2] supported by AstCre-
ator [C3]. In the COMPASS project CML was developed as an extension
of VDM using AstCreator.

The CGP [C4] uses AstCreator to generate the IR in order to take advan-
tage of the extensible AST design. The advantages of using the CGP were
demonstrated by analysing the Isabelle theory generator in terms of LoC.
The analysis showed that a framework-based approach has the potential to
significantly reduce the efforts needed to develop code generators.
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Transformations enable one to add new functionality to code generators.
The delegate concept and test generation features were both developed as
separate transformations that were added to the transformation series of the
Java code generator [C5]. The Java code generator is itself designed with
extensibility in mind – in particular to support the development of the JML
translator and the VDM-RT-to-Java code generator extension. The extensi-
bility of the remaining tool contributions [C6] through [C10] have not been
investigated. Most of the contributions covered by chapter 2 and chapter 3
have, however, demonstrated that they support the development of new tool
extensions, and the corresponding criterion is therefore considered fulfilled
to an acceptable degree.

6.4 Revisiting the Hypothesis

The hypothesis of this PhD, presented in section 1.5, stated that:

The automation of the steps involved in realising and validating a system
based on a formal specification can be improved through use of properly
designed tool support that seeks to (1) improve the integration of formal
methods tools into the software development life cycle and (2) leverage the
system properties described by the formal specification.

Based on the challenges inherent to realisation of formal specifications, a
number of contributions were presented with the purpose to enhance system
realisation in formal model development. The contributions to code genera-
tion and build automation specifically help improve the integration of tools
into the software development life cycle. Based on the feedback from the case
study work, the tool contributions were integrated into build environments to
support the automation of the steps involved in developing the FMU orches-
tration engine and the harvest planning system case studies. This approach
enables seamless integration of all the system components, including the code
that is generated from the formal specification, in order to construct the final
version of the system.

The contributions related to system validation leverage the properties de-
scribed by the formal specification to improve validation of the system reali-
sation. The contributions achieve this by allowing these properties to be used
to test the generated code – for example using combinatorial testing. In the
case study work, the possibility to use the model tests to validate the gener-
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ated code, was considered the most useful validation feature, contributed by
this PhD.

From a general perspective the hypothesis is difficult to validate in a PhD
project within a three-year period. In particular because the hypothesis only
has been tested using three main case studies, where the author of the dis-
sertation has been involved. It would have been a different situation had the
contributions been used by external practitioners who work under different
circumstances. However, under the circumstances that this PhD project has
been carried out, the evaluation of the contributions leads to the belief that
the hypothesis is valid. It is the hope that the results produced during this
PhD project will inspire other researchers and assist practitioners in the area
of formal modelling, and MBD development in general, in improving their
development practices.

6.5 Future Work

This section describes future directions for some of the contributions.

6.5.1 Re-designing Transformations

The IR used to represent the code generated version of the VDM specification
is independent of any target language. Transformations operate on the IR and
can therefore be reused among code generators. As mentioned in section 3.6,
the VDM-to-C code generator uses some of the transformations that initially
were developed to support the VDM-to-Java code generator. Although this
approach has potential to reduce development efforts when implementing
code generators, it is faced by several challenges.

One thing that challenges reuse of the transformations currently available
is that they generally try to solve too many problems at once. For example,
some transformations are too extensive in terms of the number of transformed
language constructs. Ideally a transformation should only treat a small prob-
lem, i.e. the transformation should be atomic. As an example, an atomic
transformation could transform implications on the form A ⇒ B into the
semantically equivalent expression ¬A ∨ B. This transformation could be
used to eliminate implications whenever this operator is not supported by the
target language – which is the case for languages such as Java and C.

Other challenges related to reuse of transformations are caused by trans-
formations making assumptions about the structure of the IR – for example
by assuming that certain language constructs will (or will not) exist in the IR.
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That is, when a transformation is applied to the IR the transformation some-
times assumes that other transformations have been applied to the IR pre-
viously. Currently there exists no good way to resolve dependencies among
transformations.

Naturally, it becomes increasingly difficult to reuse a transformation as
it makes more assumptions and becomes less atomic. This future work item
proposes re-designing transformations to make them atomic and to find a
better way to resolve dependencies among transformations.

6.5.2 Improving the Integration between Overture and Isabelle

The current version of the Isabelle theory generator [C8] produces a set of
theories and proof goals that can be analysed using Isabelle. Extending the
Isabelle embedding to cover VDM++ and VDM-RT, in addition to VDM-
SL, is among the improvements that are currently under development in the
INTO-CPS project [33].

One way to improve the integration between Overture and Isabelle is by
making the communication between the two tools transparent to the user.
This can be achieved by having Overture pass the theories and proof goals
to Isabelle, which communicates the proof results back to Overture. The idea
is to have Overture handle all user interaction and presentation of proof re-
sults. In addition to developing the communication between the two tools,
this work-flow involves translating the proof results back to VDM.

6.5.3 Improving the Performance of Code Generated Traces

The performance figures obtained by running the code generated traces are
disappointing, and there are things that indicate that the poor performance is
related to OpenJML (see section 5.4.2). It is therefore worthwhile considering
other ways to represent VDM constraints in the generated code. One way is
to use Java assertions – without relying on a particular DbC technology such
as OpenJML. However, it is not possible to directly use all the expressions
generated by the JML translator in Java assertions. As an example, some of
the generated JML annotations used to check VDM type constraints rely on
certain JML constructs that are not available in Java natively.

Many JML tools, including OpenJML, do not support current versions of
Java, which makes generating JML annotations less useful. However, it still
requires a significant amount of work to keep updating the JML tools as the
Java language and standard libraries evolve. Still, the fact that JML tools lack
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support for current versions of Java, makes it worthwhile considering use of
other DbC technologies.

Another technology related to JML is Microsoft Code Contracts [79,
chapter 15], which is used to express assumptions in .NET programs. Mi-
crosoft Code Contracts originates from Spec# – a language that extends C#
with contract-based elements and a convenient DbC notation. To support all
languages within the .NET framework, Code Contracts offers its features via
tools and library functionality. Naturally, this leads to program specifications
that are less concise than those written using a dedicated notation such as
Spec# or JML. The Code Contracts project has become open-source and
is being actively maintained, which makes it an appealing technology from
the perspective of this PhD. Therefore, it would be interesting to translate
VDM specifications to Code Contracts decorated C# programs and exercise
them using C# code generated traces – especially to compare the execution
times to those obtained using the trace code generator developed in this PhD
project [C10]. The development of a VDM-SL-to-C# code generator that uses
Code Contracts to represent invariants, type constraints, and pre- and post
conditions has been developed in connection with a Master’s thesis project
(see section 3.6). However, code generation support for traces is work in
progress for this code generator.

6.5.4 Updating the Harvest Planning System to Model Distribution

The current version of the harvest planning system [C12] assumes a global
view where every resource (vehicles, storage facility etc.) participating in
the harvest operation has access to global information about the field and
the other resources. A new version of the system will model the distributed
aspects of the system by taking into account that resources form constituent
systems that communicate with one another through a network in order to
establish a local view on how the harvest is progressing. In a realistic setting
several things can go wrong during a harvest. For example, vehicles may
break down and become unavailable, which necessitates re-planning.

So far the global view approach has been modelled using VDM++, and
code generated using the VDM-to-Java code generator [C5]. To model the
distributed aspects and move away from a global view, the model will be
updated to use VDM-RT, which gives rise to new challenges related to both
modelling and system realisation. The VDM-RT model can in principle be
code generated using the VDM-RT-to-Java code generator extension [C6],
although things such as deployment and testing of the system realisation also
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need to be taken into account. This may result in the development of new
code generation or build automation features.
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Abstract. In this paper we describe ongoing work on a code generation platform
that simplifies the construction of code generators for VDM in the Overture tool.
The platform represents the code generated model as an Intermediate Represen-
tation (IR) and assists a code generator in transforming the IR into a structure that
is easier to code generate. Since the IR is independent of any target language, a
code generator can choose the transformations it needs to obtain the IR it desires.
Based on the code generation platform a VDM++ to Java code generator has been
developed1, while early work is currently being made on a C++ code generator.
Implementing the Java and C++ code generators has provided useful feedback
for the architecture of the code generation platform. This has helped us to gen-
eralise the platform structure in order to make it a stronger foundation to use for
constructing code generators.

Keywords: VDM, code generation, language paradigms, intermediate represen-
tations, tree transformations, extensibility, Java, C++

1 Introduction

When resources have been invested into modelling a system it is desirable to code gen-
erate the software implementation or parts of it from the system model to reduce the
efforts needed to realise the system. Code generation therefore supports efficient transi-
tioning to the realisation phase. However, most importantly it minimises the chances of
introducing inconsistencies in the software implementation that makes it deviate from
the system specification due to manual translation of the model into code.

With the existence of many popular target languages it is common for code genera-
tors to provide support for multiple target languages in order to target a larger group of
users. This can, however, easily lead to duplication of efforts when implementing code
generators — especially if the target languages follow the same paradigms such that the
rules used to code generate a source language are the same.

Ideally it should be possible to reuse the transformations used to code generate con-
structs of a source language. As an example, consider the VDM set comprehension
{x|x in set S & pred(x)}, which constructs a new set from the elements of
S for which pred(x) is true. In imperative languages such as Java and C++ this lan-
guage construct is non-trivial to code generate since Java and C++ do not have similar
constructs included. The same functionality can be obtained in those languages, but it

1 The Java code generator is available in Overture releases 2.1.0 onwards
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requires use of multiple language constructs for iterating over a set, evaluating a predi-
cate on each set member, adding elements to a resulting set and so on.

The potential for different backends (a code generator that extends the code gen-
eration platform) to use the same transformations is particularly good when the target
languages belong to the same paradigm (e.g. they are object-oriented or functional in
style). In that case they will have many language constructs in common and thus face
many of the same challenges with respect to code generation. When the same transfor-
mation can be used by different backends to code generate a source language construct
it is beneficial to apply the transformation to the code generator input before it reaches
the backend in order to obtain a transformed structure that is easier for a backend to
code generate. The idea is therefore to structure a code generator such that it is possible
to select the transformations that will lead to a structure that requires the least effort for
a backend to code generate. In this paper we explore this approach to code generation in
order to reduce the efforts needed to implement code generation for multiple backends.

The paper is structured as follows. Section 2 describes how IRs support the imple-
mentation of code generators or backends. Section 3 explains how tree transformations
simplifies the implementation of backends. Section 4 provides an overview of the code
generation platform used for implementing the Java and C++ backends. Section 5 and
Section 6 describes challenges encountered for the implementation of the Java and C++
backends, respectively. Section 7 describes future plans for the code generation plat-
form. Section 8 describes related work and finally section 9 concludes our work.

2 Intermediate Representations

One approach adopted by compiler developers is to transform the Abstract Syntax Tree
(AST) specified in the source language into an IR that preserves the semantics of the
input and from which the backend generates code in the target language. The IR helps
managing the complexity of the compilation process by being independent of details
specific to the source language and the target language. An IR obtained from the VDM
AST serves a similar purpose by mitigating the complexity of generating code from a
VDM model. This would, for example, enable the code generator to unify VDM func-
tions and operations into the concept of a method as seen in a programming language
such as Java. Then the backend only needs to treat a single (language) construct without
having to distinguish between functions and operations.

Code generating a VDM construct is easier if equivalent or similar constructs ap-
pear in the target language. For example, a set comprehension in VDM is more likely to
have an equivalent construct in a functional programming language, which would sim-
plify the task of code generating it. However, for a target language that does not support
set comprehensions, code generating this construct is non-trivial. This is not surprising
since Java is an imperative language and a set comprehension is a functional concept.
Similarly, code generating the object-oriented concepts of VDM to a functional lan-
guage will require constructs to be code generated that are not naturally expressed in
terms of the target language. In general it is difficult to code generate across paradigms
since a construct with a strong relation to one paradigm will not be present in other
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paradigms thus requiring a strategy to translate that construct, which potentially needs
to make widespread changes to the IR.

In this work we address the challenges of code generating constructs where no ob-
vious mapping exist. We do this by translating the VDM AST into an IR to which a
series of transformations are applied. By transforming language constructs that are dif-
ficult to code generate into new (possibly larger) tree structures, based on concepts that
are easier to code generate, the implementation of a backend can be simplified. If the
backend provides support for code generating the replacement constructs used by the
transformations then it follows that the backend already supports code generation for
the complex construct. In that case the complexity of the code generation process is
comprehended entirely using tree transformations. The advantage of this approach is
that the transformations can be made such that they are independent of the target lan-
guage. This enables other backends to benefit from the same transformations when code
generation is implemented for other languages.

3 Tree transformations

In order to show the usefulness of applying transformations to the IR, before handing
it to the backend, we will consider a set comprehension as an example of a construct
to code generate. Since the set comprehension is a functional concept many target lan-
guages, such as those that are imperative in style, need to use several different constructs
to obtain the equivalent functionality.

3.1 Code generating the set comprehension

The VDM snippet in Listing 1 shows an example where a set comprehension is used
to construct a new set obtained by iterating over the set S and selecting the elements
for which pred(x) is true. Therefore collection comprehensions provide a convenient
notation to construct collections from other collections which would otherwise require
use of several different constructs in an imperative language such as Java.

1 public f : () -> set of nat
2 f () ==
3 let a = {x | x in set S & pred(x)}
4 in g(a,a);

Listing 1. Example of a set comprehension in VDM

Without using the set comprehension the equivalent functionality can be obtained
by rewriting the function in Listing 1 into a VDM operations that explicitly specifies
the semantics of the set comprehension using an imperative style of writing as shown
in Listing 2. Due to the expressiveness of the set comprehension Listing 1 obtains the
same functionality as that of Listing 2 using fewer lines of VDM. Although the func-
tion in Listing 1 and the operation in Listing 2 are semantically equivalent, the listings
represent different challenges for a code generator. The reason for this is that the two
VDM snippets use different constructs to obtain the same result.
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1 public op : () ==> set of nat
2 op () == (
3 dcl setCompResult : set of nat := {};
4 for all x in set S do
5 if pred(x) then
6 setCompResult := setCompResult union {x};
7 (dcl a : set of nat := setCompResult;
8 return g(a,a)));

Listing 2. Imperative specification of the VDM set comprehension in Listing 1

Therefore, the difficulty of code generating a VDM model depends on the style of
modelling and the target language. VDM is a multi-paradigm modelling language, us-
ing constructs of both the object-oriented and the functional paradigm, and therefore
backends will experience situations where a construct does not have a one-to-one map-
ping into the target language.

3.2 Transforming language constructs

One approach to simplifying code generation of a VDM model is to have the modeller
refine the model such that it uses constructs that are easier to code generate. However,
eliminating constructs that are problematic to a code generator using model rewriting,
limits the modeller to use only a subset of the source language. This also clutters the
model with details used to assist the backend in generating code from the model, thus
going against the point to have a model that abstracts away details that do not contribute
to obtaining the insight needed.

A more sophisticated approach is to have this kind of model refinement done at a
later stage to make it transparent to the modeller and avoid restricting modelling to only
a subset of the source language. This could be done by applying transformations to the
IR such that constructs that are problematic to code generate get replaced with other IR
constructs in order to obtain a simplified IR that is easier to code generate.

The use of transformations is part of a larger platform architecture that is used to
construct backends. In section 4 the architecture of this code generation platform is
detailed to make it clear how it facilitates the construction of code generators.

4 Architecture of the code generation platform

The code generation platform, shown in Figure 1, takes a VDM++ model as input and
use it to construct an IR that represents the generated code. After the IR has undergone
a transformation process it is input to a backend that translates it into source code in a
target language. To further detail the approach taken to construct code generators this
section describes the architecture of the code generation platform and how it interacts
with the backend of a target language.
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Fig. 1. An overview of the code generation platform architecture

4.1 The intermediate representation life cycle

The IR as first constructed from the VDM AST represents a slightly simplified and
extended version of the VDM model. For example, records in the IR are allowed to
have methods (unlike records in VDM). The purpose of this will become more clear
in subsection 5.1 where it is discussed how VDM records are code generated to Java.

The IR simplifies the tree structure by eliminating or rewriting use of certain op-
erators by replacing them with use of other operators. For example, writing a logical
implication on the form A ⇒ B where A and B are propositions, is convenient in a
mathematical language such as VDM, but since it is a derived and, not elementary op-
eration of boolean logic, this operator is rarely seen in a programming language. There-
fore the expression A ⇒ B is represented as ¬A ∨ B in the IR, which is semantically
equivalent.

Afterwards, code generation enters the transformation process where constructs that
are difficult to code generate (or even unsupported by the backend) are translated into
new tree structures that can be code generated. The IR before and after it has undergone
the transformation process is denoted IR and IR’ in Figure 1, respectively. Finally, the
simplified IR is input to the backend that translates it into a target language.

4.2 The design of the intermediate representation

The IR nodes are generated using the ASTCreator tool [1], which is a SableCC [9] in-
spired tool. As shown in Figure 2 the ASTCreator takes a description of the AST as
input and outputs nodes from which concrete ASTs can be constructed. The generated
AST structure uses bidirectional node relations which make it easier to search the tree
both upwards (e.g. finding the enclosing class of a node) and downwards (e.g. look-
ing up type information of child nodes). The nodes also have functionality for making
changes to the tree structure, which is needed when nodes must be replaced with new
tree structures during the transformation process.
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Fig. 2. The ASTCreator produces the IR nodes and visitors based on the IR description

The ASTCreator also produces functionality to traverse the AST. Tree walkers or
visitors are implemented using the visitor pattern and play an important role in the
current AST architecture used in the Overture tool where they, for example, are used to
implement the type checker and the interpreter [6]. Similarly, the IR Constructor
is a visitor that traverses the VDM AST and constructs the IR from it.

The ASTCreator is designed such that it allows optional AST extensions to comple-
ment an existing AST description and therefore it is possible to add new nodes to the IR.
This design benefits the extensibility of the code generation platform since extensions
to the IR can be made to support the implementation of additional transformations.

4.3 The backend

The final step of the code generation process translates IR constructs into source code
of the target language. When transformations have simplified the IR then ideally these
mappings should be trivial. The process of mapping IR constructs into source code of
the target language for the Java backend is done using the template based technology,
Apache Velocity [11]. Optionally, the generated code can make use of a runtime. As an
example, the Java backend includes a runtime to represent VDM types and implemen-
tation for some of the VDM operators such as the sequence modification.

5 Code generating Java from VDM++

Java has fewer language constructs than other object-oriented languages such as C# and
C++, which makes it simpler, but also less expressive as a language. Such languages are
difficult to code generate since fewer constructs in a target language implies less ways
to code generate a source language. This has led to some instructive experiences when
implementing the Java backend, some of which we will discuss in this section.

5.1 Code generating value semantics

In VDM records, tuples and collections have copy-by-value semantics (referred to as
“value semantics” throughout the remainder of the paper), which is the behaviour where
a variable is copied when it is passed as a parameter or appear on the right-hand-side
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of an assignment. This is also the semantics used for structs in programming languages
such as C++ and C#. In Java where there is no direct support for structs (or something
similar) the equivalent can be obtained by representing a value type using a class and
then have the instances explicitly copied as needed – normally by invoking a method
on the instance that does the copying. Therefore, code generating value types to Java
require careful attention. To demonstrate this, consider the VDM snippet in Listing 3,
where the record type Vector2D is used to represent two-dimensional vectors. In this
listing two vectors v1 and v2 are created with v2 being a copy of v1. Since records
have value semantics subsequent modifications to v1 have no effect on v2 and therefore
the operation would return 1.

1 public op : () ==> nat
2 op () == (
3 dcl v1 : Vector2D := mk_Vector2D(1,2);
4 dcl v2 : Vector2D := v1; -- Copy using value semantics
5 v1.x := 2;
6 return v2.x;)

Listing 3. Value semantics in VDM demonstrated using records

Had the vectors in Listing 3 been modelled using a class rather than a struct then
v2 and v1 would have been object references pointing to the same object. Therefore,
subsequent modifications to the underlying object using any of the two object references
would effect the same object and in that case the operation in Listing 3 would return 2.

5.2 Obtaining the effect of value semantics in Java

To obtain the effects of value semantics using a Java class one can provide a clone
method and invoke it on the instances when they need to be copied. Therefore, code
generating the VDM operation in Listing 3 yields the Java code shown in Listing 4.
Note, how the backend invokes the generated clone method in order to ensure that the
copy of v1 respects the rules of value semantics. Since the responsibility of the clone
method is to copy the fields of the associated class it must be generated specifically for
each record in the IR.

1 public Number op() {
2 Vector2D v1 = new Vector2D(1L, 2L);
3 Vector2D v2 = v1.clone();
4 v1.x = 2L;
5 return v2.x;}

Listing 4. Java code generated from Listing 3 demonstrating how the Java backend obtains the
effects of value semantics

A record in the IR can have methods (unlike records in VDM, which only have
fields) and therefore the clone method can be added as a child to the record node. Simi-
larly, the Java backend adds a method for record comparison based on structural equiva-
lence (field-wise comparison), a method for calculating the hash code of a record (such
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that it is suited for use in collections) and a method that computes the string represen-
tation of the record. Since these methods are added as extensions to records in the IR
they are specified solely using IR nodes.

5.3 Code generating functional concepts in Java

The approach of applying transformations to the IR has enabled the Java backend to
code generate complex constructs without being aware of their presence in the VDM
model. The reason for this is that these constructs are transformed into tree structures
composed of IR nodes that are simpler to code generate. In that sense code generating
the functional concepts required no extra effort for the implementation of the Java back-
end since code generation for the simpler constructs was already supported. The result
of code generating the set comprehension in Listing 1 is shown in Listing 5.

1 public static VDMSet f() {
2 VDMSet setCompResult_1 = SetUtil.set();
3 VDMSet set_1 = S.clone();
4 for (Iterator iterator_1 = set_1.iterator();
5 iterator_1.hasNext();) {
6 Number x = ((Number) iterator_1.next());
7 if (pred(x)) {
8 setCompResult_1 = SetUtil.union(
9 setCompResult_1, SetUtil.set(x));

10 }
11 }
12 VDMSet a = setCompResult_1;
13 return g(a, a);}

Listing 5. Java code generated from the VDM function in Listing 1

5.4 Iterating over collections

Iterating over collections in a target language is often done using library classes spe-
cific to that language. The Java backend does this using the java.util.Iterator
class, as shown in Listing 5, whereas the C++ backend uses the C++ standard library
iterators (std::iterator). Since transformations may produce new tree structures
that iterate over collections the code generation platform enables transformations to be
configured with language specific ways to iterate over collections. Iteration strategies,
as they are termed, have been added to the code generation platform as a result of the
feedback from implementing the C++ backend, and the Java backend has been updated
accordingly such that it also uses the iterator strategies.

Language iterators must implement a language iterator interface that requires im-
plementation of methods to

1. Initialize the iterator (or counter) used to perform the iteration
– e.g. Iterator iterator 1 = set 1.iterator();
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2. Build the expression used to determine whether there are more elements to process

– e.g. iterator 1.hasNext();

3. Increment the iterator (or counter) and read the next element

– e.g. Number x = ((Number) iterator 1.next());

The language iteration strategies allows incrementation of the iterator and reading
the next element (the third item) to be done in separate steps (increment the iterator and
then read the next element), but in Java and C++ it is common to do this in a single
step – at least when using the built-in iterator classes. Each method constructs a tree
to express the generated code related to that method using IR nodes. Since the trees
generated by these methods may want to represent types that are external to the code
generation platform the IR offers nodes to represent external constructs of the target
language. For example, in order to allow easier integration with a target language the
IR offers a construct to represent external types (e.g. the Iterator class in Java).

6 Code generating C++ from VDM++

The point of using a code generation platform is that backends of similar target lan-
guages can use the same functionality in order to reduce the efforts needed to implement
code generation. The implementation of a C++ backend has provided useful feedback
for the architecture of the code generation platform and given rise to some future plans
that will be covered in section 7. In this section we describe some of the interesting
challenges encountered for the implementation of the C++ backend and relates it to the
work on the Java backend described in section 5.

6.1 Code generating reference semantics

In VDM classes use reference semantics, and therefore two object references are con-
sidered equal if they point to the same object. The same applies for object references in
Java, but in C++ the objects must be referred to using pointers in order to obtain refer-
ence semantics. A C++ object allocated on the stack, on the other hand, uses structural
equivalence (field-wise comparison) to determine equality.

When an object must be shared among multiple methods it is common to put it
on the heap and access the object via a pointer or reference. In C++ memory that
is allocated on the heap must also be deallocated explicitly by the programmer since
C++ does not support garbage collection. In order to address this issue, the C++ back-
end implements an object reference using a shared pointer from the standard library
(i.e. std::shared ptr), which provides reference counting and automatic deletion
when no more references for the underlying object exist. In Java, garbage collection is
a language feature, and therefore the Java backend does not take memory deallocation
into account.
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6.2 Code generating functional concepts in C++

The C++ backend uses the same transformations as the Java backend to transform func-
tional VDM language constructs (collection comprehensions, quantified expressions
etc.) before they are code generated. Configuring the visitor that performs the transfor-
mations of the functional concepts with an iterator strategy and applying it to the set
comprehension in Listing 1 yields the generated C++ code shown in Listing 6. Since
the transformation takes care of expressing the algorithmic part of evaluating a set com-
prehension, and this can be reused directly by the C++ backend, the efforts needed for
code generating the set comprehension in Listing 1, is only a matter of providing the
iterator strategy – given that the simpler constructs can already be code generated by
the backend (e.g. the if-statement).

1 vdm::set<int> f() {
2 vdm::set<int> setCompResult_1 = vdm::set<int>::

from_list();
3 vdm::set<int> set_1 = S;
4 for (vdm::set<int>::iter iterator_1 = set_1->begin();

iterator_1 != set_1->end(); ){
5 int x = *iterator_1++;
6 if( pred(x) ){
7 setCompResult_1 = vdm::set<int>::set_union(

setCompResult_1, vdm::set<int>::from_list( x));
8 }
9 }

10 vdm::set<int> a = setCompResult_1;
11 return g(a,a);};

Listing 6. C++ code generated from the VDM set comprehension in Listing 1

6.3 Representing VDM records in C++

Record values in VDM are copied when assigned from, passed as argument (to a func-
tion or an operation), or returned as a value. This is also the behaviour for a class in
C++, and therefore this construct is used to represent a VDM record. However, for a
C++ class to create values from another class, the declaration of that class must be
visible to the compiler (such that the size of the value can be computed), otherwise
the class can only be pointed to (using a fixed size pointer). For example, consider a
class R1 that has a field of the class type R2. The declaration of R2 must appear before
the declaration of R1 otherwise the C++ compiler raises an error. A partial solution to
this, is to sort the dependencies using a topological sort. This does, however, require a
graph with no directed cycles. Another solution is to treat records as classes and use the
std::shared ptr type and generate additional code to obtain the effects of value
semantics as it was done by the Java backend described in subsection 5.2. Currently the
C++ backend uses the first approach where topologically sorted C++ classes are used
to represent VDM records.
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6.4 Representing VDM collections in C++

The C++ standard library include lists, sets and maps but it lacks some of the function-
ality needed to fully represent the VDM collections. Therefore, the C++ backend uses
a runtime that includes classes to represent the VDM collections (e.g. vdm::set) and
operations on them. For example, the set union operator is implemented as a method,
set union, and used, for example, in the transformation of a set comprehension as
shown in Listing 6. To code generate the includes needed in the generated code to access
the runtime, the C++ backend uses the external type construct of the IR.

To ensure that the value semantics for VDM collections are preserved, the runtime
collections overload the assignment operator and the copy constructor such that a col-
lection gets copied correctly when assigned from, passed to a method or returned as a
value. The advantage of this approach is that the C++ compiler becomes responsible for
generating the code that copies the collection object the places where it is needed. This
is different from the approach used by the Java backend, which needs to analyse the
IR in order to find out where the clone method needs to be invoked. However, since
Java classes use different semantics than C++ classes and Java does not allow operator
overloading nor does it use copy constructors, the approach used by the C++ backend
cannot be used.

7 Future plans

Looking forward, there are several immediate improvements that can be made to the
code generation platform, in terms of expanding the coverage of VDM and adding
support for additional target languages. There are also possibilities of looking into how
the extensibility and the reuse of transformations can be improved.

7.1 Adding support for new target languages

We may wish to generate code for different languages of different paradigms to further
validate the code generation platform architecture by implementing backends based on
target languages that are different from Java and C++. Since Java and C++ are both im-
perative languages that use object-oriented principles, the work presented in this paper
focuses on reusing the existing transformations. Adding support for a new language of
a different paradigm would provide feedback for the code generation platform, which
would lead to further improvements in terms of its extensibility.

7.2 Atomic transformations

One way to add support for new target languages is to continue expanding the code
generation platform, by adding transformations and altering the existing ones to facili-
tate the support for new target languages. However, there are issues with this approach:
the constant maintaining of existing functionality to support new target languages indi-
cates a poor platform extensibility. Instead it should be possible to extend the existing
functionality that the code generation platforms offers without affecting it.
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In order to address this issue, the code generation platform must be re-designed
with respect to the way transformations are applied. At the moment each transforma-
tion is large and extensive. For example, when transforming the functional elements in
preparation for Java code generation, all elements are removed in the same visitor. This
occurs at code level where all these transformations are implemented in one visitor.

To understand the consequences of this, consider the case where we wish to code
generate for a language JavaEQ that is like Java in every regards, except that it con-
tains support for existential quantifiers. In the current architecture this requires either
subclassing and overriding the methods in the Java visitor (which immediately locks
the new transformations in the Java hierarchy) or duplicating and changing code.

Therefore, we propose use of fine-grained atomic transformations that allow con-
structs in the IR to be transformed one at a time. These transformations would then
be grouped in libraries in terms of which types of constructs they replace rather than
which programming language they target. From here, we can define composite trans-
formations that support specific programming language as combinations of the atomic
transformations. For example, if we consider a transformation to be a relation from IR
to IR then we would say that JavaTrans = ExistsTrans ◦ SetCompTrans · · ·.

7.3 Extensibility of the code generation platform

Use of atomic transformations would also make it easier to maintain existing backends.
For example, Java supports lambda expressions as of the recent Java 8 release[5]. In
terms of atomic transformation, updating the Java backend to support Java 8 is as sim-
ple as removing the lambda expression transformation from the sequence of transfor-
mations. This would be significantly simpler (and shorter) than editing the visitor code
to remove the transformation. In addition, if this visitor is being used to code generate
for another language without lambda expressions, then the code must be split.

In order for this approach to be viable, the atomic transformations would have to re-
spect various properties. Namely any two atomic transformations should be compatible
with each other. This means that they alter independent parts of the tree while preserving
anything else. An initial approach to this might be to ensure that no two transformation
operate on the same node.

As certain transformations push the tree in a particular direction, other transfor-
mations no longer become available. This is acceptable since one is not interested in
combining transformations arbitrarily but rather do so always with the goal of getting
closer to a particular target language. There may also be issues with the order of the
transformations. Again, it is not essential that all transformation can be combined in
arbitrary ways. Only that there is one way to combine all the desired transformations.

There are some implementation challenges to the atomic transformation approach.
Particularly since multiple inheritance is not available in Java (the language in which
the transformations are implemented) and therefore the combination of multiple trans-
formations in a single visitor is non-trivial. Finally, there may also be performance
considerations when performing multiple small transformations versus a single larger
one.
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7.4 Code generating trace definitions

Overture supports automated test generation and execution of large collections of test
cases that are derived from a trace definition [7]. The trace definition uses a short-hand
notation and can be thought of as a regular expression that expands to test cases or
sequences of operation calls that match the pattern of the trace definition. When the
expansion process is complete the VDM interpreter executes the tests one by one and
optimises the process by filtering out tests based on the outcome of other tests (e.g. a
test will fail if it starts with a sequence of operation calls that it known to cause a test to
fail). In addition, Overture offers different techniques to make reduced sets of tests as
representative as possible – a technique known as shape reduction.

This future plan item aims to produce and execute code generated from a trace in
order to make test execution more efficient. This can be done by expanding the trace into
tests that are code generated and executed, instead of having them executed in the VDM
interpreter. However, for this to be of any value it should make up for the time spent
producing and executing the code generated tests. This approach would also allow use
of existing techniques available for test filtering and shape reduction. Another approach
is to code generate the trace directly such that when the generated code is executed it
will expand and execute all the tests matching the pattern of the trace. However, this
approach needs new ways to do test filtering and shape reduction, since it must be done
during execution of the code generated trace.

8 Related work

This section describes existing work on code generation for VDM and approaches to
constructing code generators for cases where expressing the source language in terms
of the target language is non-trivial.

8.1 VDM code generation

VDM code generation was developed for VDMTools [10] in the nineties with sup-
port for both Java and C++, and has primarily been used to code generate prototype
implementations rather than final production code. In the late nineties the Java code
generator was extended to support code generation for the concurrency mechanisms of
VDM++ [8]. Unfortunately, there is no scientific literature available to document the
approach used to construct the VDMTools code generation feature.

VDMTools supports code generation for a larger subset of VDM compared to the
current code generation platform described in this paper. However, VDMTools does,
for example, not support code generation for a functional concept such as a lambda ex-
pression, which is non-trivial to express in earlier versions of Java where this is not sup-
ported. Code generation of lambda expressions (for earlier versions of Java) is achieved
by the Java backend described in this paper by applying transformations to the IR.
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8.2 The DMS Software Reengineering Toolkit
The DMS Software Reengineering Toolkit is a commercial set of tools for program
analysis and transformations [3]. It contains tools for lexer and parser generation, func-
tionality to pretty print an AST and specify program transformations, termed “trans-
forms”, using source rewrite rules. Rules are written in the DMS’s Rule Specification
Language and typically have the form LHS→ RHS if condition. A rule is interpreted
such that when a part of the program matches LHS it gets replaced by RHS if the con-
dition is true. For example, a rule can be specified such that it replaces an assignment
statement on the form v = v+1 with the incrementation v++. To support the specifi-
cation of rules, patterns use language syntax categories (e.g. both LHS and RHS must
be of the statement syntax category) and it also allows use of metavariables to match
with variables and expressions in the source language.

Transforms and source rewrite rules work at the concrete syntax level and therefore
this approach differs from that used by the code generation platform described in sec-
tion 4. Here transformations are applied to the IR at the abstract syntax level using visi-
tors generated using the ASTCreator tool, where a case must be implemented to match
a constructs in the IR. For example, a case can be implemented to match a set compre-
hension but there are also cases that allows categories of IR nodes such as statements,
expressions and numeric binary expressions to be matched. Visitors have the potential
to make changes all over the IR including adding new types and definitions as done by
the Java backend during code generation of records as explained in subsection 5.2.

8.3 Code generating a logic language
Research has been done on translating logic languages such as Prolog [4] into impera-
tive languages. In logic languages programs are expressed as logical formulas or horn
clauses. Queries can be made about a program from which the interpreter will try to
construct a proof. An example of a Prolog to Java translator is found in Prolog Café [2].

In order to be able to execute a code generated Prolog program, there must exist a
runtime to support the generated code, and take over the role of the Prolog interpreter.
This runtime is therefore responsible for trying to construct a proof that meets a given
query. Since the Prolog interpreter is based on a highly efficient implementation and
makes use of sophisticated algorithms to implement the traversal of the search tree, the
implementation of such a runtime (or at least one that is efficient) is a complicated task.

The approach to use transformations to mitigate the complexity of code generating
a logic language to a language such as Java can be expected to be of limited value
compared to the case where code generation is more naturally done by expressing a
source language using an IR. The reasons for this is that most of the challenges of code
generating a logic language such as Prolog to Java involves the implementation of the
runtime that constructs the proof.

9 Conclusion

The code generation platform presented in this paper supports construction of different
backends and reduces the efforts needed to code generate a source language to multi-
ple target languages. It achieves this by representing the generated code as an IR and
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subjects it to a series of semantic preserving transformations in order to obtain a tree
structure that is easier for a backend to code generate. Since the IR is independent of
any source and target language backends facing similar challenges during the code gen-
eration process, can use the same transformations to simplify their implementation.

To validate the architecture of the code generation platform a VDM++ to Java back-
end has been developed for the Overture tool, and work is currently being made on a
VDM++ to C++ backend. Java and C++ are imperative languages and therefore both
backends can use the same transformations in order to obtain an IR that is easier to code
generate. To demonstrate this, it was shown how a set comprehension was transformed
into a larger tree structure based on IR constructs of an imperative nature.

Applying transformations to an IR has proven useful for implementing the Java
and C++ backends, but the the approach also supports code generation for other source
languages. Therefore we hope that the work presented in this paper will be useful for
others working with code generation.
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ABSTRACT
In Model-Based Development (MBD), system analysis is some-
times carried out through combined execution of model and real
system components. Tool support for seamless realisation of these
modelling setups is limited. To address this, we propose the del-
egate concept – when a model is realised via code generation, the
connection mechanisms between the model and the external com-
ponent are automatically replaced by the delegate that connects the
generated code to the external component. The delegate has been
developed as an extension of the code generator of the Overture
tool for the Vienna Development Method (VDM). This includes
integration with the Maven build system which unlocks automated
realisation and validation of the system. The delegate has been em-
ployed in a VDM project on harvest field planning where, for real-
istic fields, it has increased system performance by over 3000%.

CCS Concepts
•Computing methodologies → Modeling methodologies; Sim-
ulation tools; •Software and its engineering → Model-driven
software engineering; Software testing and debugging; Formal
methods;

Keywords
System realisation; Build automation; Code generation; Test au-
tomation; Continuous Integration; Formal methods

1. INTRODUCTION
In Model-Based Development (MBD), we sometimes find our-

selves in situations where development is carried out on both a
model and real system components. When executing simulations
of such setups, the model is executed together with the real system
components. This is similar to the concept of software-in-the-loop
modelling and simulation [33]. However, whereas software-in-the-
loop is normally used to test software within a simulated context,
our situation refers to active system development where certain
parts of the system are represented by models and certain parts are
already realised – we call the latter external components since they
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are either used as is, or developed using an implementation tech-
nology in parallel with the modelling activities.

When simulating models with external components, whenever
the simulation reaches a point where the functionality of the exter-
nal component is needed, the model invokes it through a connection
mechanism called the bridge. Subsequently, the external compo-
nent processes the result in order to continue with the simulation.

The problem we seek to address is a lack of support for auto-
mated realisation of models with external components. This lack
of automation is problematic because it limits the ability to per-
form automated analysis and validation of the model and its asso-
ciated realisation. When code generating the model to produce the
system realisation, the connection mechanism between the model
and the external component is lost and the generated code does not
function correctly. Manual integration of the external component
in the system realisation is possible, but this makes it challenging
to maintain both the model and the system realisation.

In this paper, we present an approach to a fully automated inte-
gration of external components with the realised system via code
generation [19]. This automation further extends to test generation
and execution, thus enabling automated analysis and validation of
model-based systems with external components. Our approach is
based on the concept of a delegate that replaces the software-in-
the-loop bridge and more directly connects the generated code to
the external component. Whenever the model makes a call across
the bridge, the generated code instead makes a call to the dele-
gate, which then processes the call by forwarding it to the external
component. This allows direct reuse and integration of the external
component in the realised system. In this way, it becomes possible
to carry out MBD to design and develop a system that integrates
external components and ensure that the external components can
still be used effectively in the system realisation.

The delegate mechanism can be fully automated in a way such
that code generation proceeds without user intervention. In this
manner, the practice of Continuous Integration (CI) can be applied
not only to the model itself but to the generated code as well. This
enables the generation and execution of tests as well as subsequent
validation of the generated code for every modification made to the
model. In addition, since code generation is performed every time a
change is made to the model, subtle errors in the system that occur
only when moving from model to code, can be detected sooner and
more easily.

The delegate mechanism has been successfully employed in the
MBD of a system for planning harvest operations in the field of pre-
cision agriculture. By using the delegate and a handwritten external
component we were able to greatly increase the performance of the
model and reduce simulation times by multiple orders of magni-
tude. In addition, the use of continuous integration, as enabled by
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the fully automated nature of the delegate, was essential in ensuring
deployment of the various system prototypes.

The remainder of this paper is structured as follows: section 2
presents background information necessary for this paper; in sec-
tion 3 we present our main contribution — the delegate mechanism
and its usage; section 4 presents the harvest planning system case
study; results for the application of the delegate to the case study
are reported in section 5 and discussed in section 6, together with a
more general discussion of the delegate; finally we describe related
work in section 7 and conclude in section 8.

2. BACKGROUND

2.1 The Overture Tool
Our approach is based on the Overture tool and the formal mod-

elling notations of the Vienna Development Method (VDM), one
of the most mature Formal Methods [18, 10]. VDM focuses on the
development and analysis of system models expressed in a formal
language. The formal language enables a wide range of analysis
of the model including testing and mathematical proof. A partic-
ularly noteworthy feature of VDM is its executable subset which
makes VDM models highly amenable to simulation and automated
execution to enable CI [31, chapter 7].

VDM contains three dialects: the most basic dialect (VDM-SL),
standardised by ISO [23] supports modelling of the functionality
of sequential systems. Additional dialects support object-oriented
modelling and concurrency (VDM++) [11], and real-time compu-
tations and distributed systems (VDM-RT) [28, 38, 37]. All these
dialects of VDM are supported by the Overture tool [22, 3, 32].

The Overture tool is structured around a common core, with var-
ious plug-ins providing different kinds of features including type
checking, model execution and proof obligation generation. Two
features worth noting for this paper are the VDMUnit library which
provides support for developing and executing unit tests of VDM
models, and the VDM-Java bridge [29] which enables VDM mod-
els to be combined with executable Java code.

The VDMUnit library enables unit testing of VDM models in a
way that is similar to the JUnit library [20]. VDMUnit provides
various classes and operations such as TestCase and Assert
which allow the user to write unit tests for VDM models. Tests can
be organised into suites which can be executed in a single execution
session by the Overture tool.

The Java bridge enables two different kinds of connections be-
tween VDM and Java. First, it allows VDM models to interact
with an external Java library. This corresponds to execution of the
external component we have described in section 1. The external
Java library feature allows VDM models to call functionality pro-
vided by Java jar files. This is achieved using the is not yet
specified statement or expression. When these are encoun-
tered, the Overture interpreter will automatically attempt to call
the respective functionality on the Java side, provided it is present
and named according to convention. Although the Java bridge is
normally used to call software functionality, it can also be used to
route calls to a piece of hardware in order to perform hardware-in-
the-loop simulation [15].

The other feature of the Java bridge is the ability to allow a Java
program to remote control a VDM model. This allows a Java pro-
gram to directly control and issue commands to the Overture inter-
preter by means of a RemoteControl Java interface. This fea-
ture is most commonly used for implementing user interfaces for
VDM models. However, it is not relevant to the delegate technique
and as such will not be discussed further. Further details about the
Java bridge including implementation details can be found in the

Overture manual [24, chapter 15].

2.2 Realisation of VDM Models
The delegate concept is implemented using Overture’s Code Gen-

eration Platform (CGP), which provides a framework for building
code generators for VDM [19, 36, 4]. We have used the features
of the CGP to extend Overture’s VDM-to-Java code generator with
functionality for code generating models that combine VDM with
executable code.

The CGP uses an Intermediate Representation (IR) to represent
the code generated version of the VDM model. In the initial version
of the IR each of the IR nodes correspond to a language construct in
VDM such as an expression or a statement. The IR is subjected to
a series of semantics-preserving transformations to replace IR con-
structs that are non-trivial to code generate with other IR constructs
that are easier to code generate. As an example, the Java code gen-
erator uses transformations to rewrite VDM language features such
as pattern matching and quantified expressions, which Java does
not support. When the IR reaches its final form, i.e. the IR is fully
transformed, the IR constructs are translated into concrete syntax
or code in the target language, which finalises the code generation
process.

Transformations provide a convenient way to access and manip-
ulate the IR before code is emitted. In particular, changing a code
generator’s transformations allows a code generator to be extended
with new functionality. The delegate principle and the JUnit4 [20]
test generation features are both implemented as transformations
that have been added to the Java code generator’s transformation
series.

The Java code generator uses a runtime library to implement
some of the VDM operators and types used in the generated Java
code. As an example, this library uses the VDMSet, VDMSeq and
VDMMap classes to represent sets, sequences and maps, respec-
tively. As we shall see in section 3, knowledge of the type map-
pings used by the Java code generator is needed in order to imple-
ment a delegate. The complete set of mappings are described in the
Overture tool’s user manual [25, section 11.5].

The Java code generator can be invoked as a Maven plugin, which
allows VDM models to be code generated using the Maven build
system [27]. Use of this Maven plugin enables VDM models to be
included in a development environment and used in a MBD fash-
ion. The delegate concept and JUnit4 test generation features are
included in the release of the Maven plugin and available for public
use. We use this plugin to realise our case study. In section 3 we
demonstrate how the Maven plugin works and provide references
for materials and examples that demonstrate how the plugin can be
employed in a development environment.

Extending the Java code generator Maven plugin with the del-
egate concept and the JUnit4 test generation features allows the
model tests to be used to automatically validate the code generated
version of the model which enables the principle of CI [8] – exe-
cuting tests every time changes to the model are committed to the
source control repository. This is one of the advantages of inte-
grating the Java code generator with the Maven build automation
system.

3. APPROACH
The delegate concept enables the code generated version of the

VDM model to be connected with the external component such that
the Java code generator can produce the final version of the system.
In this section we explain the structure of the delegate concept and
demonstrate usage of this feature.
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3.1 Overview of the Delegate Concept
The delegate concept is shown in fig. 1. In this figure the devel-

opment is based on a VDM Model, which is validated using VDM
Tests. In order to enable the VDM Tests to be translated to
JUnit4 tests the VDM Tests must be written using the VDMU-
nit test framework, as described in section 2. Combined execution
of the VDM Model and the External Component is enabled
through the Bridge.

Figure 1: Overview of the delegate concept and test generation
features.

From the VDM Model and the VDM Tests the code genera-
tor produces the Code Generated System and the System
Tests, respectively. In order to enable the integration of the Code
Generated Systemwith the External Component the del-
egate feature processes the IR, produced by the Java code genera-
tor, and replaces the bodies of the Bridge operations and func-
tions with direct invocations to the Delegate. This is explained
in more detail in section 3.3.

3.2 Using the Java Bridge
As explained in section 2 a bridge operation (or function) uses

the is not yet specified keyword to indicate that the op-
eration is executed in an external environment. To demonstrate
how the code generator treats these operations, consider the VDM
bridge operation op in listing 1, which maps the input type I to the
result type R.

1 class Bridge
2 operations
3 op : I ==> R
4 op (i) == is not yet specified;
5 end Bridge

Listing 1: An example of a VDM operation that uses the Java
bridge.

The Java bridge uses Overture’s Value runtime library to rep-
resent the input parameters and the result of the VDM operation.
This runtime library enables the VDM interpreter to invoke the Java
bridge method from a VDM environment. A conceptual implemen-

tation of the Java bridge operation in listing 1, is shown in listing 2.
This Java method first converts the input parameter to a format that
can be processed by the ExternalComponent (line 5). Then
it uses the ExternalComponent to process the converted input
(line 6), and finally the result is returned as a Value to the VDM
interpreter (line 8).

1 import org.overture.interpreter.values.
Value;

2
3 class Bridge {
4 public Value op(Value i) {
5 I conI = convert(i);
6 R res = ExternalComponent.op(conI);
7 Value convRes = convert(res);
8 return convRes;
9 }

10 }

Listing 2: Java bridge implementation of the VDM operation
in listing 1.

3.3 Setting up the Delegate
Although the Value runtime library enables VDM and Java to

be co-executed, it introduces a significant overhead due to all of
its dependencies and required conversion operations (see listing 2).
This overhead is not desired in the final version of the system, and
therefore the Java bridge, or the Value runtime library, must be
removed from the final version of the system. This is the responsi-
bility of the delegate.

Each operation that uses the Java bridge has a corresponding del-
egate method defined in the delegate class. To use the delegate
feature, the Java code generator plugin must be configured with
each of the bridge-delegate pairs. An example showing how to
use Maven to associate the VDM Bridge and Delegate class
is given in listing 3. In this listing Bridge is the name of the
VDM side of the bridge (a class or a module) and Delegate is
the fully qualified name of the corresponding Java delegate class.
The configuration further shows how to enable JUnit4 test genera-
tion by setting the genJUnit4Tests flag to true. This is the
only configuration that is needed in order to use the delegate con-
cept and the test generation features. When the configuration is
completed everything is fully automated, which is key for CI.

Note that listing 3 omits the remaining Java code generator plu-
gin configuration since the purpose of this paper is to show how to
enable the delegate and test generation features. Instead we provide
a complete example in [5] that documents and demonstrates how to
use these features.

1 <configuration>
2 ...
3 <delegates>
4 <property>
5 <name>Bridge</name>
6 <value>Delegate</value>
7 </property>
8 </delegates>
9 <genJUnit4Tests>true</genJUnit4Tests>

10 </configuration>

Listing 3: Configuration of the Bridge and the Delegate for
the Java code generator Maven plugin.
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As shown in listing 4 this configuration file enables the code gen-
erated version of the Bridge operation to relay the call to the cor-
responding method in the Delegate class. In listing 4 I and R
represent the code generated versions of the input type and the re-
sult type for the VDM operation in listing 1.

1 class Bridge {
2 ...
3 public R op(I i) {
4 return Delegate.op(i);
5 }
6 }

Listing 4: The code generated version of the VDM operation in
listing 1.

The implementation of the Delegate must conform to the in-
terface of the code generated Bridge class in order to enable their
integration. That is, each delegate method must have the same sig-
nature as the corresponding method in code generated version of
the Bridge. The signatures of the Bridge methods can be de-
termined using the mapping between the VDM types and the code
generated types described in section 2.2.

The user’s implementation of a delegate method normally in-
volves interaction with the ExternalComponent in some way.
In our conceptual example, the Delegate simply relays the call
to the ExternalComponent as shown in listing 5. However,
in a realistic scenario it might do other things such as converting
between code generated and user-defined types.

1 class Delegate {
2 ...
3 public R op(I i) {
4 return ExternalComponent.op(i);
5 }
6 }

Listing 5: The Delegate interacts with the
ExternalComponent.

Combining the Bridge together with the Delegate and the
ExternalComponent in this way results in the execution be-
haviour shown using the Unified Modeling Language (UML) se-
quence diagram in fig. 2. This diagram shows how the invocation to
the code generated Bridge gets relayed to the Delegate, which
is responsible for invoking the ExternalComponent. This ap-
proach has the advantage that it completely removes the Bridge
boiler-plate code from the final version of the system, and only in-
troduces a small overhead caused by the relayed invocation to the
ExternalComponent.

4. CASE STUDY
The delegate concept was developed in part to support the work

reported in this case study. This case study consists of a plan-
ning system for harvest operations, which has been developed using
MBD. The system consists of 4975 lines of VDM specification and
additionally 9361 lines of Java/Scala code, which have been used
to develop and integrate the external component and user interface.
This adds to a total of 14336 lines of specification and code (ex-
cluding the generated code). We provide only a brief high-level
description of the system and focus mostly on the technical aspects
that are relevant to motivating the need for the delegate concept and
to explain its value.

Figure 2: Delegate dispatching shown using a UML sequence
diagram.

The planning system takes as input a field specification and a set
of resources (harvesters, supporting grain carts and storage facil-
ity). The field is divided into parallel work rows and a surround-
ing area –the headlands – where vehicles typically manoeuvre (see
fig. 3). In the system, the field is modelled by a graph-like structure
consisting of the work rows, headlands segments and the connec-
tions between them. The resources are modelled by their relevant
parameters such as capacity and speed. Figure 4 shows a high level
overview of the system.

Figure 3: A field divided into 4 work rows and 2 headland laps.

Broadly speaking, the system works as follows: a field speci-
fication (already divided into rows) and a set of resources are fed
into the system. Then, according to whichever optimisation algo-
rithms [2, 16, 30] have been selected, instructions are calculated for
the harvesters and the grain carts so that the harvesters harvest the
field and the grain carts service the harvesters whenever they need
to unload.

After the harvest plan has been calculated, the system executes
a simulation of the harvest according to the plan, in order to assess
how much time the harvest takes and to help the user visualise the
harvest process. Figure 5 shows a sample harvest visualisation,
with the h1 and h2 dots indicating harvesters, the g1 and g2 dots
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Figure 4: A domain model of the harvest planning system illustrated using a UML class diagram.

indicating grain carts and the dot outside the field indicating the
storage facility. Harvested rows are painted red, unharvested rows
are painted green and the connections between rows are painted
yellow.

Figure 5: Harvest simulation visualisation.

One of the most important aspects of the model is how the field
is represented. Although the harvest takes place in physical space,
two-dimensional coordinate systems such as GPS are not partic-
ularly well-suited. This is because the harvesters and grain carts
are significantly constrained in the way they move. They may only
move along a row and they can only navigate from one row to an-
other at the headlands (at either end of a workrow). Due to the
restrictions on movement of the vehicles, a data structure such as a
graph (where edges correspond to rows and headland segments and
vertices connect them together) is more appropriate to represent the
field.

As part of model execution, certain operations on graphs are ex-
ecuted frequently. For example, consider the following scenario: a
harvester has become full and a grain cart needs to meet it at a des-
ignated unload point. It is necessary to compute the shortest path
for the grain cart to reach the unload point. Afterwards, it is neces-
sary to compute the shortest path from the unload point to the next
destination of the grain cart and so forth.

Because of the frequency of these kinds of graph operations, it is
important that the graph representing the field as well as the com-
monly used graph operations and the optimisation algorithms are
efficient. Although it is possible to model all of these directly in
VDM (indeed, this was attempted in the initial version of the model
– version m1), it is challenging to do so with high efficiency as that
is not a primary focus of the VDM languages and their associated
tools.

As such, it was eventually decided to move away from a pure
VDM approach and rely on Java and the JGraphT [17] library to
handle field representation and provide efficient implementations
of common graph operations such as shortest path, which is imple-
mented using Dijkstra’s algorithm [6].

The Java-based field representation is an external component that
connects to the system model via the Overture Java bridge. This
connection was made at the level of the Field class, as shown in
fig. 6. The Field class wraps all calls across the bridge so that,
from the perspective of the rest of the model, the Java implementa-
tion is invisible. An example call, for the shortest path operation, is
shown in listing 6.

Figure 6: The external component of the harvest planning sys-
tem.

1 class Field
2 operations
3 public shortestPath : int * int ==> seq
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of (int * Global‘Direction)
4 shortestPath (pFromV,pToV) ==
5 bridge_FieldGraph‘shortestPath(pFromV,

pToV);
6 ...
7 end Field
8
9 class bridge_FieldGraph

10 operations
11 public static shortestPath : int * int

==> seq of (int * Global‘Direction)
12 shortestPath (pFromV,pToV) ==
13 is not yet specified
14 ...
15 end bridge_FieldGraph

Listing 6: A Field class operation which is redirected to the
Java bridge.

The calls from listing 6 are visualised using a UML sequence
diagram in fig. 7. An operation for computing the shortest path is
initially invoked on the field class. This call is then routed via the
Java bridge to the Java-based field graph implementation.

By utilising the Java bridge, we were able to achieve an efficient
implementation of the field representation and associated common
graph operations (see section 5 for more). However, an important
part of the project was the realisation of the planning system. This
was done through the use of the code generator of Overture and the
delegate mechanism.

In this project, the realised system consists of an application that
enables users to select fields and resources, plan and simulate har-
vest operations and visualise the outcomes. The core of the system
(the data model and operation planning and simulation features) is
developed entirely via MBD. Once the code is generated, that code
is used and integrated directly with two other components in order
to produce the system realisation. One of the components is the
graph-based field representation that has already been discussed;
the other is a simple handwritten user interface module targeting
the generated code.

By utilising the delegate, we were able to automatically gener-
ate the core of the planning system as well as its tests. We were
also able to leverage the Maven build system and the Jenkins inte-
gration server to enable CI of not only the VDM model, but also
the realised system itself by generating the code from the model
and then integrating all components in order to build the system.
Figure 8 shows an example chart from the CI server that tracks the
duration of builds of the code generated system. As part of these
builds, the code generation plugin is invoked so that code is gen-
erated from the latest version of the model. In addition, the code
generated VDMUnit tests are executed to ensure that the core of
the system is working correctly. It is possible to see in the chart, a
build failure for build #56.

The application of CI to the project provided several other bene-
fits. The fact that we built the realised system so frequently made it
easy to detect problems with incorrectly specified or deployed de-
pendencies (build #56 is an example of this). We expect this will be
even more relevant when combining code generated from multiple
sources, which we did not do. In addition, system deployment was
easier since working builds were available at any time. Another ad-
vantage was the detection of subtle errors when developers lacked
the discipline or time to run the full test suites every time. In ad-
dition, the project-wide notification of test failures helped motivate

Figure 8: Sample chart from the CI server showing the build
trends for the realisation of the harvest planning system.

developers to improve their discipline. Finally, we were able to
detect subtle problems in the code generation plug-in when using
certain VDM idioms. Our setup also enabled us to quickly react
to these issues and deploy code generator fixes. Some of these are
expected benefits of applying CI but the salient point is that the
delegate concept enables the use of CI and, through that, the afore-
mentioned advantages.

Significant time and effort were spent setting up the CI infras-
tructure for the project, but maintenance costs have been low since
then. Although the CI server configuration can be complex, we be-
lieve it was time wisely spent since the benefits reaped are signifi-
cant. Furthermore, the integration between the Overture tools and
CI server is minimal, forcing us to carry out most of the CI work
with handwritten scripts. There is clear room for improvement here
and in the future it may be worthwhile to develop a VDM plug-in
for CI. On the other hand, the fact that it was possible for us to set
up the infrastructure without specialised tool support indicates that
it may be possible for other formal notations to attempt to imple-
ment similar setups with their existing tool kits.

5. RESULTS
In this section, we present test results for the harvest planning

case study described in section 4. These results seek to show-
case the differences in performance between the two versions of
the model — before and after the utilisation of the delegate — for
both model simulations and executions of the system realisation.1

These tests were carried out by applying the model to plan har-
vests for fields of increasing size. Table 1 shows the results for
model executions and table 2 shows the results for executing the
system realisation.

For both tables, column one describes the field in terms of the
number of rows and headland laps. In table 1 columns two and
three show the simulation times for both versions of the model
(Tm1 for the original model version and Tm2 for the version that
1Due to limitations with the original setup, we were unable to gen-
erate additional fields for testing and thus our results are somewhat
disperse in terms of field size. As the purpose of this paper is not
to provide a comprehensive set of results for field harvesting, but
rather to demonstrate the performance improvements of the dele-
gate, we feel the situation is acceptable.
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Figure 7: The shortest path operation and Java bridge call, shown using a UML sequence diagram.

Table 1: Model simulation results
Field Tm1 [s] Tm2 [s] Gain

3 rows, 1 headland 18.621 4.976 374%

4 rows, 2 headlands 82.103 7.641 1075%

16 rows, 2 headlands N/A (> 8H) 183.836 N/A

Table 2: System realisation execution results

Field Tr1 [s] Tr2 [s] Gain

3 rows, 1 headland 0.183 0.048 381%

4 rows, 2 headlands 3.18 0.091 3495%

16 rows, 2 headlands N/A (> 8H) 0.999 N/A

uses the delegate); finally, column four shows the gain in simula-
tion speed, calculated as Tm2/Tm1. Similarly, table 2 shows the
execution times for the system realisation, i.e. Tr1 and Tr2 denote
the execution times for the first and second version of the system
realisation. Likewise, the fourth column indicates the gain in sim-
ulation speed, calculated as Tr2/Tr1.

The first version of the system (both the model and the system
realisation) was not able to process the largest field. In our tests,
we allowed the simulation and system realisation to run overnight
and in both cases it was under 10% completion after running for
approximately 8 hours.

These tests were conducted on a Fujitsu LIFEBOOK U772 lap-
top with a 1.7GHz Intel Core i5 processor and 8Gb of memory
running a Linux OS. The model simulations were executed using
version 2.3.0 of Overture and the system realisation was executed
on a Java 7 JVM.

6. DISCUSSION
The main problem with the first version of the harvest planning

system is that the data structures and the algorithms used to process
the fields do not scale in terms of field size. This is reflected by
the time measurements Tm1 and Tr1 shown in table 1 and table 2.
The scalability issues make it impossible to use the first version
of the system to analyse fields of realistic sizes. The first version
of the model uses non-standard data structures and algorithms to
represent and analyse the field. In addition, the field analysis is
specified in VDM, which generally performs significantly worse

than executable code.
To circumvent these performance issues, the new version of the

system represents the field as a graph and uses well-established
libraries, based on standard algorithms, to analyse the field (see
section 4). Through use of the Java bridge all graph analysis is
performed in executable code, which improves the overall system
performance. Otherwise, the overall structure and execution flow
of the harvest planning system remains the same for both versions.

For the small-sized field (3 rows, 1 headland), the performance
gain for the new system is 374% for the model and 381% for the
system realisation. However, as the field size increases, the perfor-
mance gains increase more drastically. For the medium-sized field
(4 rows, 2 headlands) the gains increase to 1075% and 3495% for
the model and the system realisation, respectively. The gain is more
than three times higher for the system realisation, which is an in-
dication that the system realisation scales better than the model in
terms of resources needed to run a simulation.

This becomes more apparent when comparing the execution times
for the new model, Tm2, to the execution times for the new system
realisation, Tr2, for the medium-sized and large-sized fields. As
shown in table 1 and table 2, Tm2 increases more drastically (from
7.641 s to 183.836 s) than Tr2 (from 0.091 s to 0.999 s) as the
field becomes larger. In addition to the model being specified in an
interpreted language, the VDM interpreter also performs internal
consistency checks to ensure that the model has the desired prop-
erties. Naturally the number of consistency checks increases as the
field becomes larger. These checks are not performed by the sys-
tem realisation due to the extra performance overhead they would
introduce.

For the large-sized field (16 rows, 2 headlands) the first version
of the model and the system realisation do not complete the field
within eight hours. The new version of the model completes the
large-sized field in 183.836 seconds (≈ 3 minutes), whereas the
system realisation completes this field in 0.999 seconds. To sum-
marise, what the first version of the system did not achieve in more
than eight hours, the new version of the system achieves in less than
a second.

7. RELATED WORK
Several technologies exist for integrating models with external

components in the context of model analysis. All of these tech-
nologies would benefit from a delegate mechanism in order to au-
tomate the process of moving towards a full system realisation.
In [12] Fröhlich et al. propose a method for combining VDM spec-
ifications with C++ code. A more generic approach is employed
in VDMTools, which supports integration of external code using
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CORBA [35]. Their approach therefore enables integration with
any CORBA-supported programming language. In [13] Gallasch et
al. present Comms/CPN – a Standard ML framework that provides
an infrastructure for DESIGN/CPN to establish communication be-
tween Coloured Petri Net (CPN) models and external processes. A
similar technology is available in CPN Tools [39] – the successor of
DESIGN/CPN. Ladenberger et al. present B-Motion Studio, which
uses a graphical editor to create visualisations for Event-B mod-
els [21]. Their approach uses Event-B expressions to connect the
model with the visualisation.

Technologies that enable realisation and validation of models
that use real system components are more limited. We are not aware
of any technologies that support direct integration with a build au-
tomation system, which is an important part of our work. However,
some noteworthy attempts have been made to integrate MBD into
existing development environments.

TargetLink [7] is an automatic C code generator for Simulink/S-
tateflow [26], which uses Custom Code blocks to enable integra-
tion with code such as an external component. This is similar to
what can be achieved using Overture’s Java bridge. Automation
and process integration is enabled using the TargetLink Applica-
tion Programming Interface (API), which provides access to Tar-
getLink properties and settings. The individual stages of the build
process can be intercepted using “hook functions” and used to, for
example, integrate TargetLink into an existing development envi-
ronment. Our work takes a different approach to integrating code
generation into a development environment. First, the Java code
generator is implemented using the CGP, which makes it possible
to intercept and control the different phases of the code generation
process (see section 2.2). Secondly, the Java code generator is ex-
posed as a Maven plugin and therefore fully integrated with the
Maven build automation system. Finally, the Java code generator
plugin, including our work, is available as open-source software,
which enables a high degree of customisation.

Another technology related to TargetLink is MATLAB Coder [26],
which supports integration with legacy code as well as C and C++
code generation from MATLAB models. Embedded Coder can
be used together with MATLAB Coder to optimise the generated
code for embedded system development. To make system realisa-
tion as seamless as possible, Embedded Coder supports integration
with other popular Integrated Development Environments (IDEs)
such as Texas Instruments’ Code Composer Studio [34] and Vi-
sualDSP++ [1]. Our work is advantageous for IDEs that provide
integration support for Maven. Examples of such IDEs include
Eclipse [9] and IntelliJ [14].

8. CONCLUSION
We have presented a tool-supported methodology for automated

realisation and validation of systems that consist of both model
and real system components. Automated realisation is achieved
through the delegate concept, which supports seamless integration
of an external component in both a modelling and a system reali-
sation context. Automated validation is achieved through reuse of
model tests, which supports the development practices of CI, where
every change made to the model is automatically validated against
the model tests. We have implemented the delegate concept and
test generation features as an open-source extension to Overture’s
VDM-to-Java code generator Maven plugin. This approach enables
MBD using the Maven build system.

The delegate concept has been employed in a large VDM project
on developing a planning system for harvest operations. In the early
versions of this model all the harvest planning algorithms were
specified solely using VDM. This gave rise to performance issues

for harvest planning for realistic-sized fields, which necessitated a
major revisioning of the model. The new version of the model takes
advantage of the Java bridge and uses a graph library to compute
the harvester and grain cart routes. Use of the delegate concept and
the test generation features makes realisation and validation of the
system a seamless task.

As shown in section 6, increasing the field size significantly de-
grades the performance of the old version of the system. For the
large-sized field (16 rows, 2 headlands) the old version of the sys-
tem was not capable of completing the harvest simulation within
eight hours. The new version of the system, on the other hand,
completes the harvest simulation for the same field in less than a
second. This is achieved by encapsulating computationally inten-
sive functionality in an external component, and using the delegate
concept and test generation features to realise and validate the sys-
tem.

Several modelling and simulation technologies (such as those de-
scribed in section 7) provide support for integrating models with
external components. However, the tool support for realising these
models, while reusing the external component, is much more lim-
ited. We therefore believe that the delegate concept, presented in
this paper, can be valuable to any modelling and simulation tech-
nology which seeks to automate the realisation and validation for
these modelling setups.
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Abstract. Overture has a Code Generation Platform (CGP), designed with ex-
tensibility in mind but this extensibility has never been thoroughly tested before.
In this paper, we explore the extensibility of the Overture CGP by developing
code generation support targeting an Isabelle embedding of VDM. We compare
our solution to an existing hand-coded VDM to Isabelle translation based on di-
rect traversals of the VDM AST and show that using the CGP led to a decrease
in code volume of 86%. We also report various extensibility improvements that
have been incorporated into the CGP as part of our work.

Keywords: VDM, code generation, Isabelle, extensibility

1 Introduction

The Overture tool1 for VDM [6] has a Code Generation Platform (CGP) that was origi-
nally developed targeting the Java language but was designed with extensibility in mind.
The intent of the CGP is to make it easy to contribute new Code Generation (CG) sup-
port for new languages to Overture [12]. Currently, the CGP supports the original Java
code generation as well as an experimental generation of C++. The extensibility fea-
tures of the CGP have never been thoroughly tested since C++ generation is similar to
Java generation.

In this paper, we further explore the extensibility of the CGP by developing exper-
imental support for generation of Isabelle syntax, which differs from Java more signif-
icantly than C++ does. The reason for this is that Java and C++ are both imperative
OO languages and Isabelle is not. The process for developing this translation is also
generalised into a standard methodology for developing CGP extensions.

There are two reasons for choosing Isabelle: there is already a usable existing em-
bedding of VDM in Isabelle that we can reuse and a corresponding translation that runs
on Overture models [3]. This translation was handwritten and as such will provide a
good basis of comparison to see if it is really worthwhile to use the CGP. The compar-
ison shows that using the CGP leads to a code volume reduction of 86%.

The remainder of this paper is structured as follows: the code generation platform as
well as the existing Isabelle embedding and translation are described in section 2. The
steps taken by the developer to construct the new CG extension are described in sec-
tion 3. Relevant details of the Isabelle translation are discussed in section 4. The results

1 http://overturetool.org
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of the work in terms of the new Isabelle translation and extensibility improvements to
the CGP are reported in section 5 and evaluated in section 6. Finally, we discuss future
work in section 7 and conclude in section 8.

2 Background

2.1 Isabelle Embedding
This subsection presents the target language of the translation: an Isabelle embedding of
VDM. Isabelle [13] is a framework for implementing logical formalisms and the VDM
embedding being targeted is one such formalism. It was originally developed for the
COMPASS Modelling Language (CML) [15] in the COMPASS project [7] and is built
on an Isabelle mechanisation [8] of the UTP semantics used for CML [10].

CML is a combination of VDM and CSP [9]. In particular, the types, values, ex-
pressions and functions of CML are lifted from VDM. State is similar although it is
handled somewhat differently – state in CML is composed of multiple independent
variables much like VDM++ rather than a single record structure. Additionally, CML
does not support the let be st construct due to its non-deterministic nature. The
remaining differences between CML and VDM are related to the reactive and Object
Oriented (OO) features of the language. Neither are relevant for this translation.

The Isabelle embedding of CML/VDM is a deep embedding, which means that it
gives an explicit semantics to each construct of CML/VDM in Isabelle. In other words,
rather than translating from VDM to another formalism, each construct in VDM is
defined in the embedding and then given a semantics using formalisms available in
Isabelle – specifically, higher-order logic.

Furthermore, the parsing capabilities of Isabelle give significant flexibility when
defining the syntax of the VDM constructs in the embedding. The end result is that the
embedding has its own syntax which is quite similar to that of the VDM language itself.
The primary differences lie in separator characters such as " to distinguish between
Isabelle and VDM syntax, ˆ to identify VDM variables and @ to identify VDM types.

In addition to the syntactical similarities there is also a near one-to-one correspon-
dence between constructs in the source and target languages which facilitates the trans-
lation process. However, while CML has OO features the embedding does not support
OO so it is suitable for representing VDM-SL models only.

Finally, we briefly describe the manually written existing translation, based on the
visitor framework of the Abstract Syntax Tree (AST). The translation visitors traverse
the AST and produce an intermediate data structure used to store relevant translation
information for each node including its syntax and dependencies. Afterwards, the data
structure is used to generate the Isabelle syntax, either with direct conversion to strings
or with auxiliary methods and classes for the processing of more complex nodes. Fur-
ther details about the existing Isabelle translation as well as the embedding are available
in [7].

2.2 Code Generation Platform
The reason for using the CGP, and what makes it a viable solution for developing code
generators, is found in the way the CGP represents and works with the generated code.
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From the VDM AST the CGP constructs an Intermediate Representation (IR) of the
generated code, which forms a tree structure that is independent of any particular target
language.

Initially, each node in the IR has a one-to-one correspondence to a node in the
VDM AST. Subsequently, the IR is subjected to a series of transformations in order to
change the tree structure into a new form that is easier for a particular code generator to
produce code from. More specifically, each transformation represents a rewriting of the
IR with the purpose of changing the IR into a form where each node in the resulting tree
structure maps easily into the target language. One advantage of this approach is that
transformations operate directly on the IR, and therefore they can be shared among code
generators. As an example, the Java and C++ code generators use many of the same
transformations to eliminate functional-styled constructs in the IR such as quantified
expressions and collection comprehensions.

The IR is generated from an AST specification file using the AstCreator tool [1].
In addition to the IR nodes, the AstCreator also generates mechanisms to walk the
tree using visitors [5] as well as functionality to change the tree structure by allowing
parts of it to be replaced. Transformations are themselves implemented as extensions to
the visitors generated by the AstCreator. What characterises a transformation is that in
addition to traversing the tree structure, it also manipulates it.

After the IR has been fully transformed, it is handed over to a language-specific
backend generator in order to finalise the code generation process. The CGP provides
a framework for syntax generation that serves to facilitate production of code in the
target language. This framework is based on the Apache Velocity template engine and
used for mapping each node in the IR into concrete syntax [14]. This is handled by
the template manager, which associates each type of IR node to a template file, that
describes the code to be produced.

Code generators extending the CGP may need extra nodes in addition to those al-
ready defined by the platform. Therefore, the CGP allows new nodes to be added via
the AstCreator extension mechanism [4]. This mechanism allows the AstCreator to
produce nodes and visitors that allow construction and traversal of hybrid trees, .i.e.
tree structures composed of both IR nodes defined within the CGP and new nodes con-
tributed via an AST specification extension file. In addition to adding new nodes, the
CGP also allows existing IR nodes to be extended to include new fields. Finally, the
template manager can be redefined to support syntax generation of new nodes added by
the user.

3 Methodology

Based on the description of the CGP in subsection 2.2 we now outline the steps used to
develop the Isabelle syntax generator. These steps constitute a general methodology for
development of code generation support in Overture using the CGP. Others who want
to use the CGP to develop code generation support for another target language may
benefit from following these steps.

We start out by listing the steps to be carried out by the developer and afterwards
we elaborate on each of them.
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1. Set up the CGP extension
2. Add new nodes
3. Transform the IR
4. Generate syntax
5. Validate the translation

The first step in the process is only necessary once. The remaining steps are done
in an iterative manner. The approach is to start with a very small VDM example and go
through the steps until the example is completely translated. Afterwards, the example
should be expanded as little as possible and the steps repeated. This is done iteratively
until the new CGP extension is complete.

Step 1 - Set up the CGP extension: Broadly speaking, the setting up of the CGP
extension consists of subclassing the base code generator class – CodeGenBase –
that is the common extension point of the CGP. The base code generator is responsible
for driving the code generation and providing access to the IR and various settings. It
is also responsible for storing data used and generated throughout the code generation
process.

Next, it is necessary to construct a new template manager for the extension. This
can be done by subclassing the base template manager. This will provide access to the
basic CGP template structure which manages an initial collection of template locations.
If additional template locations are necessary, the template manager can be used to
configure them.

Finally, it is worth setting up a basic test infrastructure to drive the development
process. This test infrastructure is responsible for processing a VDM source, passing
the respective AST to the code generator and validating the translation outcome.

Step 2 - Add new nodes: If the target language construct being translated is sufficiently
different from those of the base IR, then it is likely that a code generator needs extra
nodes. If necessary, these can be provided by extending the IR as described in subsec-
tion 2.2. Once the extension is defined, the AstCreator tool must be invoked in order to
generate the extension nodes.

Step 3 - Transform the IR: Constructs that are not supported by the code generator need
to be transformed away, using either base IR nodes or extended nodes generated in the
previous step. This is done by implementing one or more necessary transformations. It
is recommended that transformations be as small as possible so that each transforma-
tion only changes the IR in terms of one concept such as removing comprehensions or
reordering definitions.

Step 4 - Generate syntax: Once the IR is in a form suitable for code generation, syntax
can be generated using the syntax generation framework of the CGP. This is done by
creating the Apache Velocity template files for each of the nodes that is to be translated
and updating the template manager accordingly.
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Step 5 - Validate the translation: Validation of the translation should be done by
means of the test infrastructure by comparing the translation output to a reference. Al-
ternatively, executable translated code may also be compiled and executed to ensure
it produces the right result. This test should then be stored to use as regression in the
continued development of the CGP extension.

4 Translations and Transformations

The Isabelle embedding we are targeting is very similar to VDM in the sense that most
constructs in VDM are present in the embedding. As such, the initial version of the
IR is already close to what is needed for generation – most nodes in the IR already
map directly to a construct in the target language. Therefore, there is a relatively small
number of operations that need to be performed over the tree.

The first set of operations is also the simplest and most common: direct syntax trans-
lations. These translations can be applied directly to the initial IR nodes that already
map directly to a construct in the embedding. A few of them are shown in Table 1.
These translations take advantage of the fact that the Isabelle embedding of VDM de-
fines its own syntax which is quite close to that of VDM. In general, the syntax is the
same as that of source VDM, except for the following:

– all constructs are delimited by " to identify them as user-defined syntax in Isabelle
– variables names are delimited by ˆ to mark them as model variables
– types are prefixed by @ to mark them as model types
– string literals are delimited by ’’

VDM Isabelle embedding
x "ˆxˆ"
int "@int"
f(1) "f(1)"
"foo" "’’foo’’"
if b then s1 else s2 "if ˆbˆ then ˆs1ˆ else ˆs2ˆ"

Table 1: VDM constructs and their Isabelle embedding counterparts.

To achieve these translations, all that is necessary is to specify the target syntax
in the Velocity templates and the CGP handles everything else. Most templates are
simple since most translations only need to add minor pieces of Isabelle syntax. A
few translations require some extra logic – for example, sequences of type char are
handled differently from all other sequences – and this is achieved through a handful of
auxiliary static methods callable from within the template engine.

The second set of operations consists of tree transformations, of which the first is
reordering of definitions. Isabelle does not allow forward referencing in its definitions
so any dependency of a definition must be processed before the definition itself. When
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generating syntax, the CGP processes definitions in the IR in the order in which they
appear so it is necessary to reorder the IR nodes according to their dependency relation.
For example, consider the VDM functions shown in Listing 1.1. The initial IR generated
for this example would have to be re-ordered as shown in Figure 1.

�
1 f : int -> int
2 f (x) == if x = 0 then 0 else g(x);
3
4 g : int -> int
5 g (x) == x/x;
� �

Listing 1.1: A simple forward dependency example.

Root

f g

Transformation

Root

g f

Fig. 1: Dependency sorting transformation.

Dependency sorting is implemented as a CGP transformation that takes an IR mod-
ule node (the top level element of the IR), constructs a dependency graph of its defini-
tions and then applies a topological sort algorithm [2].

The final operation over the IR is also related to dependency handling, specifically
the dependencies between mutually recursive functions. Isabelle can cope with mu-
tually recursive functions but these must be identified as such and grouped together
for processing.2 In order to provide grouping of mutually recursive functions, we con-
struct another transformation that constructs a dependency graph for the function defi-
nitions and afterwards applies an algorithm for computing strongly connected compo-
nents [11]. Thus, the VDM functions in Listing 1.2 would be transformed as shown in
Figure 2.

2 Although Isabelle supports them, the VDM embedding cannot currently cope with mutually
recursive functions. However, we have implemented the transformation nonetheless as it was
a good way to test the extensibility of the CGP.
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�
1 odd: nat -> bool
2 odd (x) == if x = 0
3 then false
4 else even(x-1);
5
6 even : nat -> bool
7 even (x) == if x = 0
8 then true
9 else odd(x-1);
� �

Listing 1.2: A simple example of mutual recursion.

Root

f g

Transformation

Root

MutRecGroup

f g

Fig. 2: Mutual recursion grouping transformation.

It is worth noting that the base IR module node does not support mutual recursion
groups. As such, we extended the IR to add a new field for it. The mutual recursion
transformation takes a base module node as its input and produces an extended module
node.

5 Results

5.1 New Isabelle Generation

This section presents the translation from VDM to Isabelle. The translation is demon-
strated by means of a complete example, shown in Listing 1.3. Much of the translation
is straightforward syntax conversion, however, the example demonstrates the two main
issues discussed in section 4: reordering definitions due to dependencies and grouping
mutually recursive functions.
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Functions g() and f() shown in lines 3-7 of the VDM model are translated to
functions f() and g() in the Isabelle embedding shown in lines 5-13. Note that the
two functions have changed to that f() comes before g() in the Isabelle source. This
is because f() is a dependency of g() and so must be processed first.

Functions odd() and even() shown in lines 9-17 of the VDM model are also
translated to functions in the Isabelle embedding, shown in lines 15-31. However, the
functions in the embedding are delimited by the begin mutrec and end mutrec
keywords which identify them as a block of mutually recursive functions. In Isabelle,
such functions must be delimited as they are processed together.

5.2 Code Generation Extensibility Improvements

In addition to constructing the new extension, a series of improvements to the extensi-
bility of the CGP were also carried out. The first set of extensibility improvements had
minor impact on the CGP and was related to changing the visibility of various classes
and class members. Prior to this work, we were uncertain of which parts of the CGP
needed to be exposed to extensions. While it would have been possible to simply expose
everything, that would make the CGP too complex to use. By carrying out this work we
were able to discover which features to expose and were able to safely keep the rest
encapsulated inside the CGP.

As an example of the above, the template manager has a field that defines the folder
structure used so store template files. This field was not visible to extensions and that
forced an extension to follow the same structure as the base CG with no ability to rede-
fine it. By making the field visible to subclasses, it became possible for each extension
to define its own template folder structure.

The second change to increase extensibility had greater impact on the design of
the CGP and was related to transformation application. Originally, the CGP was only
capable of transforming the internal part of a node. In other words, the root node of
the tree could not be changed. This was insufficient for our extension because it was
necessary to have a different class at the root of the tree. To address this, the CGP was
modified to support transformations that convert between different node types at the
root of the tree and thus it became possible to perform transformations between any
two arbitrary trees. This new kind of transformation was named total transformation
and the existing ones were preserved as partial transformations. One advantage of the
partial transformation is that it can rely on the root node of the tree to remain the
same and know what kind of node it is. This reduces the amount of conversions that
are required to perform the transformation. The total transformation is more powerful
but will always take as input and produce as output a generic tree node. The CGP was
enriched with functionality to help cope with this by converting between generic and
specific root nodes via the adapter pattern [5].

6 Evaluation

To assess the effectiveness of using the CGP for Isabelle translation, a simple compar-
ison of volume – measured in Lines of Code (LoC) – was performed between the two
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�
1 functions
2
3 g : nat -> nat
4 g (x) == f(x);
5
6 f : nat -> nat
7 f (x) == x;
8
9 odd: nat -> bool

10 odd (x) == if x = 0
11 then false
12 else even(x-1);
13
14 even : nat -> bool
15 even (x) == if x = 0
16 then true
17 else odd(x-1);
� �

(a) VDM model.

�
1 theory A
2 imports utp_cml
3 begin
4
5 cmlefun f
6 inp x :: "@nat"
7 out "@nat"
8 is "ˆxˆ"
9

10 cmlefun g
11 inp x :: "@nat"
12 out "@nat"
13 is "f(ˆxˆ)"
14
15 begin_mutrec
16
17 cmlefun odd
18 inp x :: "@nat"
19 out "@bool"
20 is "if (ˆxˆ = 0)
21 then false
22 else even((ˆxˆ - 1))"
23
24 cmlefun even
25 inp x :: "@nat"
26 out "@bool"
27 is "if (ˆxˆ = 0)
28 then true
29 else odd((ˆxˆ - 1))"
30
31 end_mutrec
32
33 end
� �

(b) Isabelle translation.

Listing 1.3: VDM model and respective Isabelle translation.

versions. LoC is an imperfect measure of volume and does not particularly capture ef-
fort or productivity. However, it can be effectively and accurately measured and does
provide a reasonable measure of the size of an implementation, which is sufficient for
our comparison.

Table 2 presents a summary of results. In this table, Manual refers to the origi-
nal visitor-based translation and CGP refers to the translation we have implemented.
The comparison does not consider components from the original translation that are re-
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sponsible for processing CML-exclusive elements that have no counterpart in VDM. To
facilitate comparison, we have broadly grouped the sources of both versions into three
groupings:

data Refers to classes implementing the intermediary data representation between source
and target syntax

process Refers to classes that are used to help process or analyse the intermediary
representation

syntax Refers to classes that provide or define the target syntax for final translation
printing

Manual CGP ∆LoCabs ∆LoCrel

data 981 27 954 97.25%
process 2427 538 1889 77.83%
syntax 1395 86 1309 93.84%

Total 4803 651 4152 86.45%

Table 2: Volume comparison between translation implementations measured in LoC.

Looking at the data in Table 2, it is clear that utilising the CGP allows for an imple-
mentation with much less volume – a reduction of 86%. There are gains in every group-
ing but the largest ones are in the internal representation – 97%. This is because the
Manual version utilises a handwritten data structure, whereas the CGP version reuses
the IR and the only code necessary is that for defining the necessary data extensions.
Likewise, most of the machinery for processing both the source language and the IR is
reused from the CGP. Particularly, the construction of the IR from the source AST is
handled entirely by the CGP. The syntax grouping is also much smaller in the CGP ver-
sion – a reduction of 93% –since it uses the template engine in the CGP which allows
for significantly more concise expression of syntax.

7 Future Work

In the future, there are two main avenues for improving this work: the translation itself
and the extensibility of the CGP. Beginning with the translation, the most immediate
improvement is to expand the coverage of VDM constructs. This is to some extent tied
to the support of the embedding but there is a significant number of supported con-
structs that are not translated. For most of these it is only a matter of adding the relevant
templates, although there is also the matter of making the dependency calculator more
generic, which should not present a problem.

On the topic of the embedding, it would be worthwhile to switch to a pure VDM
embedding. While the similarities between CML and VDM make the current embed-
ding suitable for an initial translation, it would be beneficial to migrate to a dedicated
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embedding for VDM that could be maintained and evolved separately as necessary.
Furthermore, the current embedding contains multiple definitions supporting the reac-
tive aspects of CML that are unnecessary from a VDM perspective. Finally, a dedicated
VDM embedding would allow for syntax that is even closer to that of VDM. Work is
already underway on adapting the CML embedding into a pure VDM one.

Returning to the translation, there is a potentially problematic issue in that it is only
possible to generate syntax for all definitions of the same kind together in one pass. This
is a problem when needing to print definitions of various kinds according to the order of
dependencies. The issue is related to the IR being structured as lists of definitions of the
same kind. It would need to be altered to support generic definition lists – for example,
type and function definitions would be stored in the same list.

In terms of translation, it would also be worthwhile to translate proof obligations
along with the model thus allowing them to be discharged in Isabelle. The proof obli-
gations are encoded as ASTs using only the expression subset of VDM. Therefore it
should be possible to translate them with the existing machinery and require only some
additional syntax to turn them into proof goals for Isabelle.

With regards to the CGP itself, the work presented in this paper has suggested two
improvements to be carried out. The first is an architectural refactoring of the CGP. At
the moment the CGP is directly tied to the Java code generator and that component must
be reused as part of reusing the CGP. While this does not limit the ability to construct
new extensions, it does expose a significant amount of Java-related functionality that
is not necessary. Therefore, it would be beneficial to refactor the code generator into
a core component that provides the CGP and a javacg component that provides code
generation to Java.

Another improvement is related to transformations of the IR. Currently, a new ex-
tension must provide all of its transformations and develop them from scratch. It stands
to reason that some translations are required for multiple extensions – for example, de-
pendency sorting may be needed in other target languages – so it would be beneficial to
reuse existing transformation. However, most transformations make assumptions about
the target language and the order in which transformations are applied. This makes it
quite challenging to reuse them since none of these assumptions hold in all situations.

8 Conclusion

This paper has presented a VDM to Isabelle translation using the code generation plat-
form of Overture. The initial results show that the translation can be written with a sig-
nificantly smaller amount of code (86%). Additionally, the use of the platform confers
various benefits such as improved maintainability of the intermediary data structure and
more easily adjustable syntax (via templates instead of Java strings). Also, any general
improvements made to the CGP will be propagated to the translation as well.

The successful development of the Isabelle translation stands as proof of the ex-
tensibility of the CGP. Some issues were identified and addressed in order to increase
extensibility. Specifically, a more generic transformation mechanism was implemented
with support for changing the root node of the tree.
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Our initial results show that it is quite worthwhile and beneficial to use the CGP for
syntactical translations. The work presented here not only validates the extensibility of
the CGP but it also provides a good basis for developing a complete VDM to Isabelle
translation.
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Abstract When a system specified using the Vienna De-
velopment Method (VDM) is realised using code genera-
tion, no guarantees are currently made about the correct-
ness of the generated code. In this paper we improve code
generation of VDM models by taking contract-based ele-
ments such as invariants and pre- and post conditions into
account during the code generation process. The contract-
based elements of the Vienna Development Method Specifi-
cation Language (VDM-SL) are translated into correspond-
ing constructs in the Java Modeling Language (JML) and
used to validate the generated code against the properties
of the VDM model. VDM-SL and JML are both Design-by-
Contract (DbC) languages, with the difference that VDM-SL
supports abstract modelling and system specification, while
JML is used for detailed specification of Java classes and in-
terfaces. We describe the semantic differences between the
contract-based elements of VDM-SL and JML and formu-
late the translation as a set of rules. We further demonstrate
how dynamic JML assertion checks can be used to ensure
the consistency of VDM’s subtypes when a model is code
generated. The translator is fully automated and produces
JML annotated Java programs that can be checked for cor-
rectness using JML tools.
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1 Introduction

Design-by-Contract (DbC) is an approach for designing soft-
ware based on concepts such as pre conditions, post con-
ditions and invariants [21]. These concepts are referred to
as “contracts”, in accordance with a conceptual metaphor
for the conditions and obligations of a business contract.
An example of a formal method that uses DbC elements is
the Vienna Development Method (VDM), which was orig-
inally developed at IBM in Vienna for the development of
their compiler for PL/1 [3,9,7]. One way to realise a VDM
specification in a programming language is through refine-
ment [30]. This is a stepwise process by which one can trans-
form a formal model into a program that can be verified to
semantically satisfy its contracts [12].

Another way to realise a VDM specification is using
code generation. The idea is for the generated code to be
a refinement of the specification, but which is not achieved
through step-wise refinement, but rather in one step through
code generation translation rules. Code generation aims to
reduce the resources needed to realise the model as well
as to avoid introducing problems in the implementation due
to manual translation of model into code. However, current
VDM code generators do not make any guarantees about the
correctness of the generated code, nor do they provide the
necessary means to help check that the code meets the spec-
ification. Naturally, this casts doubts on the value of code
generation as a way to realise a VDM model, since the goal
is to develop software that meets the specification.

In this paper we improve code generation of VDM mod-
els by allowing the generated code to be checked against
the system properties described by the VDM contracts. This
helps ensure that the generated code meets the VDM speci-
fication, and is achieved as described in this paper.

Some DbC technologies are tailored to specify detailed
designs of programming interfaces for a particular program-
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ming language [29]. An example of one such technology is
the Java Modeling Language (JML) [4] – a formal specifica-
tion language that uses DbC elements, written as specialized
comments, to specify the behaviour of Java classes and inter-
faces. JML annotations can be analysed statically or checked
dynamically using JML tools. Therefore, JML can be seen
as a technology that serves to bridge the gap between an ab-
stract system specification and its Java implementation.

In this paper we attempt to bridge this gap even further
by proposing a way to automatically translate a specifica-
tion written in the Vienna Development Method Specifica-
tion Language (VDM-SL) to a JML-annotated Java imple-
mentation. Current VDM code generators either ignore or
provide limited code generation support for the contract-
based elements and type constraints of VDM. Ideally we
should be able to preserve the contracts and type constraints
when the system specification is implemented, since: (1)
they serve to document the intention and properties of the
system and (2) they can be used to check the system reali-
sation for correctness. Ensuring that the contracts and type
constraints, as originally specified in VDM, hold for the
system implementation potentially requires a lot of extra
checks to be added to the code. Adding these checks to
the code manually, is tedious and prone to errors. Instead,
these checks could be generated automatically. Represent-
ing contracts and type constraints in JML also has the advan-
tage that these checks may be ignored by the Java compiler.
This allows the system realisation to be executed without
the overhead of checking the contracts and type constraints,
if desired.

The two main contributions resulting from our work are
(1) a collection of semantics-preserving rules for translating
a VDM-SL specification to a JML-annotated Java program
and (2) an implementation of these rules as an extension to
Overture’s [15,23] VDM-to-Java code generator [13]. The
full version of the translator will be available in Overture
version 2.3.2 onwards. Although the generated code, in prin-
ciple, can be checked for correctness using any JML tool,
we have mostly used the OpenJML [5] runtime assertion
checker to validate our work — in particular by generating
JML constructs supported by this tool.

The rules propose ways to translate the DbC elements of
VDM-SL to JML annotations; these annotations are added
to the Java code produced by Overture’s Java code gener-
ator. The rules cover checking of pre conditions, post con-
ditions and invariants, but the translator also produces JML
checks to ensure that no type constraints are violated across
the translation.

We present the rules one by one and demonstrate, using
a case study model of an Automated Teller Machine (ATM),
how the code generator extension translates a VDM-SL spec-
ification to JML annotated Java code.

Following this section, we describe DbC with VDM-SL
and JML in section 2. We continue by explaining how Over-
ture’s code generator translates VDM-SL models to Java
in section 3. Then we describe the rules used to translate a
VDM-SL specification to a JML annotated Java program in
sections 5 to 7. Finally we describe related work in section 8
and present future plans and conclude in section 9.

2 Design by contract with VDM-SL and JML

In this section we describe VDM-SL and JML. We cover dif-
ferent types and all the contract-based elements of VDM-SL,
focusing specifically on the VDM-10 release, which we are
targeting in our work. The JML constructs described in this
section cover those that are used to implement the transla-
tion rules.

2.1 VDM-SL

VDM-SL is an ISO standardised sequential modelling lan-
guage that supports description of data and functionality.
The ISO standard has later been informally extended with
modules to allow functionality to be imported and exported
between modules. A module may define a single state com-
ponent, which can be constrained by a state invariant. State
is modified by assigning a new value to a state designator,
which can be either a name, a field reference or a map or
sequence reference, as described in the VDM language ref-
erence manual [17].

Module state, if specified, implicitly defines a record
type, which is tagged with the state name and also defines
the type of the state component. The state type can be used
like any other record type explicitly defined by the modeller
– the difference being that the state invariant [2] constrains
the state type and thus every instance of this record type.

Data are defined by means of built-in basic types cov-
ering, for instance, numbers, booleans and characters. The
basic types can be used to form new structured data types us-
ing built-in type constructors that support creation of union
types, tuple types and record types. A type may also be de-
clared as optional, which adds nil as a special value. For
collections of values, VDM-SL supports sets, sequences and
maps. The built-in data types, type constructors and collec-
tions can be used to form named user defined types, which
can be constrained by invariants.

Subsequently we refer to these types as named invariant
types. As an example, Listing 1 shows the definition of the
named invariant type Amount, which is used to represent
an amount of money deposited or withdrawn by an account
holder. This type is defined based on natural numbers (ex-
cluding zero), i.e. the built-in basic type nat1 in VDM-SL.
For this particular example, we say that nat1 is the domain
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type of Amount. We further constrain Amount using an in-
variant, by requiring a value of this type to be less than 2000.�
1 types
2 Amount = nat1
3 inv a == a < 2000;
� �
Listing 1 Example of a VDM-SL named invariant type.

2.1.1 Functional descriptions

In VDM, functionality can be defined in terms of functions
and operations over data types with a traditional call-by-
value semantics. Functions are referentially transparent and
therefore they are not allowed to access or manipulate state
directly, whereas operations are. Therefore, a function can-
not call an operation.1 In addition to accessing module state,
operations may also use the dcl statement to declare lo-
cal state designators which can be assigned to. Subsequently
the term functional description will be used to refer to both
functions and operations.

Functional descriptions can be implicitly defined in terms
of pre- and post conditions, which specify the conditions
which must hold before and after invoking the functional de-
scription. Alternatively, a functional description can be ex-
plicitly defined by means of an algorithm.

The pre condition of a function can refer to all the ar-
guments of the function it guards. The same applies to the
post condition of a function, which can also refer to the re-
sult of the execution using the reserved word RESULT. In
Listing 2, f is a function from the input types I1 through
IN to the result type R. Throughout this section we use e
to represent an expression that ranges over variables, e.g.
e1(i1,...,in) in Listing 2 —the body of f— is an ex-
pression whose value is determined by the input passed to
f.

From the pre and post clauses of f function defini-
tions are derived for the pre- and post conditions. These
function definitions do not appear in the model, but they are
used internally by the Overture interpreter to check for con-
tract violations. However, to clarify, the pre- and post condi-
tion functions of f are shown in Listing 3. In this listing, +>
specifies that pre f and post f are total functions, unlike
partial functions, which use the -> type constructor.�
1 f:I1*...*IN -> R
2 f(i1,...,in) == e1(i1,...,in)

1 With the recent introduction of pure operations into VDM-10
(not to be confused with pure methods in JML) it has become possi-
ble to invoke operations, albeit pure ones, from a function. This fea-
ture was introduced to address issues with the object-oriented dialect
of VDM, called VDM++, but was made available in every VDM-10
dialect (including VDM-SL).

3 pre e2(i1,...,in)
4 post e3(i1,...,in,RESULT);
� �
Listing 2 User-defined VDM-SL function.

�
1 pre_f:I1*...*IN +> bool
2 pre_f(i1,...,in) == e2(i1,...,in)
3
4 post_f:I1*...*IN*R +> bool
5 post_f(i1,...,in,RESULT) ==
6 e3(i1,...,in,RESULT)
� �
Listing 3 Pre- and post condition functions for the function f shown
in Listing 2.

Similarly, the pre- and post condition functions of an op-
eration are also derived. A pre condition of an operation can
refer to the state, s, before executing the operation, whereas
the post condition of an operation can read both the before
and after states. State access is achieved by passing copies
of the state to the pre- and post condition functions. In List-
ing 4 op is a user-defined operation. The corresponding pre-
and post condition functions are shown in Listing 5 where
the parameters s˜ and s of post op refer to the state be-
fore and after execution of op. We further use S to denote
the record type used to represent the module’s state.�
1 op:I1*...*IN -> R
2 op(i1,...,in) == e1(i1,...,in)
3 pre e2(i1,...,in,s)
4 post e3(i1,...,in,RESULT,s˜,s);
� �
Listing 4 User-defined VDM-SL operation.

�
1 pre_op:I1*...*IN*S +> bool
2 pre_op(i1,...,in,s) == e2(i1,...,in,s)
3
4 post_op:I1*...*IN*R*S*S +> bool
5 post_op(i1,...,in,RESULT,s˜,s) ==
6 e3(i1,...,in,RESULT,s˜,s)
� �
Listing 5 Pre- and post condition functions for the operation op
shown in Listing 4.

The function descriptions in Listing 3 and Listing 5 as-
sume that the pre- and post conditions are defined (using the
pre and post clauses) and that the state of the module en-
closing the functional description exists. For the cases where
pre- and post conditions are not defined they can be thought
of as functions that yield true for every input. Further-
more, when no state component is defined, the pre- and post
condition functions simply omit the state parameters. Simi-
larly, when an operation does not return a result (it specifies
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void as the return type) the post condition function omits the
RESULT parameter.

For each type definition T constrained by an invariant
(such as that shown in Listing 1), a function is implicitly cre-
ated to represent the invariant – see Listing 6. The Overture
tool uses this function internally to check the consistency of
values of type T[18].�
1 inv_T : T +> bool
2 inv_T (t) == e(t);
� �
Listing 6 Invariant function for type definition T.

2.1.2 Atomic Execution

Multiple consecutive statements are sometimes needed to
update the state designators to make them consistent with
the state invariant. In such situations, multiple assignments
can be grouped in an atomic statement block as shown
in Listing 7.�
1 atomic
2 (
3 sd1 := exp1;
4 ...
5 sdn := expn
6 )
� �
Listing 7 The VDM atomic statement.

Given the types T1,...,Tn of the respective state designa-
tors sd1,...,sdn it is as if the atomic statement is evaluated
as shown in Listing 8:�
1 let t1 : T1 = exp1,
2 ...
3 tn : Tn = expn
4 in
5 (
6 -- Turn off invariants
7 sd1 := t1;
8 ...
9 sdn := tn;

10 -- Turn on invariants
11 -- Check invariants hold
12 );
� �

Listing 8 The execution semantics of the atomic statement.

Executing the atomic statement block is semantically
equivalent to first evaluating the right-hand sides, i.e. exp1,
...,expN, of all the assignments before turning off invari-
ant checks, and then binding the result to the corresponding
state designators. After all the assignments have been exe-
cuted, it must be ensured that all invariants hold.

There are three properties that follow from the evalua-
tion semantics of the atomic statement block that are worth
mentioning:

1. When evaluating the right-hand sides of the assignment
statements, potential contract violations will get reported.

2. Temporary identifiers, used to store the right-hand side
results, are explicitly typed and therefore violations of
named invariant types for these variables will get re-
ported. The explicit type annotations thus ensure that
the right-hand side of a state designator assignment is
checked to be consistent with the type of said state des-
ignator.

3. Assignment statements cannot see intermediate values
of state designators.

2.2 JML

Although JML [19] is designed to specify arbitary sequen-
tial Java programs, in this subsection we only describe the
features needed for the translation from VDM-SL.

A method specified with the pure modifier in JML is
not permitted to have write effects; such methods are al-
lowed to be used in specifications. Pure methods are used
to translate VDM-SL functions.

A class invariant in JML should hold whenever the non-
helper methods of that class are not being executed; thus in-
variants must hold in each method’s before and after states.
However, a method declared with the helper annotation
in a type T does not have its pre- and post conditions aug-
mented with T’s invariants. Helper methods (and construc-
tors) must either be pure or private [19], so that the invariant
will hold at the beginning and end of all client-visible meth-
ods [22]. The before and after states of non-helper methods
and constructors are said to be visible states; thus invariants
must hold in all visible states. JML distinguishes between
instance and static invariants. An instance invariant can refer
to the non-static (i.e., instance) fields of an object. A static
invariant cannot refer to an object’s non-static fields; thus
static invariants are often used to specify properties of static
fields.

An assertion can reference the invariant for an object ex-
plicity using a predicate of the form \invariant for(e),
which is equivalent to the invariant for e’s static type [19,
section 12.4.22].

In JML pre- and post conditions are written using the
keywords requires and ensures, respectively. In the
specification of a post condition, one writes \old(e) to
refer to the before state value of an expression e. For exam-
ple, an increment method that writes a field count could be
specified as follows.

1 //@ requires count < Integer.MAX_VALUE;
2 //@ modifies count;
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3 //@ ensures count == \old(count)+1;
4 void increment() { count++; }

Method post conditions may also use the keyword \result
to refer to the value returned by the method.

Specification expressions in JML can use Java expres-
sions that are pure (have no write effects), and also some
logical operators, such as implication ==>, and quantifiers
such as \forall and \exists.

In addition to method pre- and post conditions, one can
also write assertions anywhere a Java statement can appear,
using JML’s assert keyword. Such assertions must hold
whenever they are executed.

One way to specify the abstract state of a class is to use
JML’s ghost variables. Ghost variables are specification-
only variables and fields of objects that can only be used
in JML specifications and in JML set statements. A set
statement is an assignment statement whose target is a ghost
variable.

By default, JML variables and fields may not hold the
null value. However, should one wish to specify that all
fields of a class may hold null, then one can annotate the
class’s declaration with nullable by default.

3 The VDM-SL-to-Java code generator

The JML translator is implemented as an extension to Over-
ture’s VDM-SL-to-Java code generator, which provides code
generation support for the executable subset of VDM. Some
insights into how the Java code generator currently trans-
lates a VDM-SL model to Java is therefore needed in order
to understand how the JML translator works.

A module is represented using a final Java class with
a private constructor, since VDM-SL does not support
inheritance and a module cannot be instantiated. Due to the
latter, both operations and functions are code generated as
static Java methods.

Module state is represented using a static class field
in the module class to ensure that only a single state compo-
nent exists at any given time. The state component is repre-
sented using a record value, and as a consequence, an addi-
tional record type is generated to represent it.

Each variable in VDM-SL is passed by value, i.e. as a
deep copy, when it is passed as an argument, appears on the
right-hand side of an assignment or is returned as a result.
As a consequence, aliasing can never occur in a VDM-SL
model. Types are different in Java, where objects are mod-
ified via object references or pointers. Therefore different
object references can be used to modify the same object.
To avoid such aliasing in the generated code, data types are
code generated with functionality to support value type be-
haviour.

Every record definition code generates to a class defini-
tion with accessor methods for reading and manipulating the
fields. This class implements equals and copy methods
to support comparison based on structural equivalence and
deep copying, respectively. In this way the pass by value
semantics of VDM-SL can be preserved in the generated
code by invoking the copy method, which helps to prevent
aliasing. Similarly the equals method can be invoked to
compare code generated records based on structural equiva-
lence rather than comparing addresses of object references.
A record object can then be obtained by invoking the con-
structor of the record class or by invoking the copy method
of an existing record object.

Java does not support the definition of aliases of exist-
ing types, such as the Amount named invariant type in List-
ing 1. Therefore, the Java code generator chooses not to code
generate class definitions for these types. Instead, usage of
a named invariant type is replaced with its domain type (de-
scribed in subsection 2.1). Since the named invariant type is
an alias of an existing type this is fine, as long as we make
sure to check that the type invariant holds.

To assist the translation of VDM to Java, the existing
Java code generator uses a runtime library, which among
other things, includes Java implementations for some of the
different VDM types and operators. The Tuple class, for
example, is used to represent tuple types and enables con-
struction of tuple values. Sets, sequences and maps are rep-
resented using the VDMSet, VDMSeq and VDMMap classes,
which themselves are based on Java collections, and so on.

In addition to using the existing runtime library, the JML
translator also contributes a small runtime library to aid the
generation of JML checks. This runtime library, which we
subsequently refer to as V2J, is an extension of the existing
Java code generator runtime library. As we shall see in sub-
section 6.6, the V2J runtime is mostly used in the generated
JML checks to ensure that collections respect the VDM type
they originate from.

4 Case study

Throughout the paper we will demonstrate the translation
rules using a case study model of an ATM. The model con-
sists of a single module, ATM (shown in Listing 9), which
uses a state definition to record information about

– The debit cards considered valid by the system (valid-
Cards).

– The debit card currently inserted into the ATM, if any
(currentCard).

– If a valid PIN code has been entered (pinOk) for the
debit card currently inserted into the ATM and,

– all the bank accounts known to the system (accounts).
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For simplicity, Listing 9 omits invariants and type defi-
nitions and only shows the state definition and the signatures
for some of the operations. As we proceed, in section 5 and
section 6 we elaborate on the specifics of each definition and
demonstrate the translation to JML annotated Java.�
1 module ATM
2 definitions
3 state St of
4 validCards : set of Card
5 currentCard : [Card]
6 pinOk : bool
7 accounts : map AccountId to Account
8 ...
9 operations

10 GetStatus : () ==> bool * seq of char
11 GetStatus () == ...
12
13 OpenAccount : set of Card * AccountId ==> ()
14 OpenAccount (cards,id) == ...
15
16 AddCard : Card ==> ()
17 AddCard (c) == ...
18
19 RemoveCard : Card ==> ()
20 RemoveCard (c) == ...
21
22 InsertCard : Card ==>
23 <Accept>|<Busy>|<Reject>
24 InsertCard (c) == ...
25
26 EnterPin : Pin ==> ()
27 EnterPin (pin) == ...
28
29 ReturnCard : () ==> ()
30 ReturnCard () == ...
31
32 Withdraw : AccountId * Amount ==> real
33 Withdraw (id, amount) == ...
34
35 Deposit : AccountId * Amount ==> real
36 Deposit (id, amount) == ...
37 ...
38 end
� �

Listing 9 VDM-SL module representing an ATM.

5 Translating VDM-SL contracts to JML

In this section we present the rules used to translate the DbC
elements of VDM-SL to JML annotations that are added to
the generated Java code. For each of the elements, we de-
scribe, using the case study example, the approach used to
translate the element to JML. This is afterwards generalised
as a rule, which appears in a grey box.

5.1 Translating modules

Overture’s Java code generator may sometimes introduce
auxiliary variables that are initialised to null when it code
generates some of the constructs of VDM. To avoid getting
errors reported when checking the generated code with a
JML tool, we allow null as a legal value by default for
all references in the generated code.

1. Translating modules

Annotate every class output by the Java code generator
with the nullable by default modifier to allow all
references to use null as a legal value.

As a consequence we also have to guard against null
values for variables that originate from VDM variables or
patterns that do not allow nil.

5.2 Translating functional descriptions to JML

Recall that a VDM-SL function code generates to a static
Java method. In addition, a VDM-SL function does not have
side-effects and therefore the code generated version of the
method can be annotated as JML pure.

2. Translation of functions
Any function – whether it is defined by the user or derived,
e.g. from a pre or post condition clause – code gener-
ates to a static Java method that gets annotated with
the pure modifier.

Operations, on the other hand, can read and manipulate
the state of the enclosing module, or invoke other opera-
tions that may have side-effects. Therefore, the method that
the operation code generates to cannot be annotated as JML
pure.

When a VDM-SL definition (e.g. a functional descrip-
tion) is code generated to Java, the visibility of the corre-
sponding Java definition can, in principle, be set according
to whether the VDM-SL definition is exported (public) or
not (private). In the presentation of the translation rules
following this section, we omit explicit use of access speci-
fiers in the rule formulation as we do not consider it crucial
to our work.

5.3 Translating pre conditions to JML

In terms of semantics there is no difference between a pre
condition in VDM-SL and JML. There are, however, in-
teresting issues worth mentioning regarding how the JML
generator implements the translation. We start by covering
pre conditions of operations, and we end this subsection
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by describing how they differ from these of functions. As
an example of how a VDM-SL pre condition is translated,
consider the operation in Listing 10. This operation mod-
els money withdrawal from a bank account identified by the
parameter id.�
1 Withdraw : AccountId * Amount ==> real
2 Withdraw (id, amount) ==
3 let newBalance =
4 accounts(id).balance - amount
5 in
6 (
7 accounts(id).balance := newBalance;
8 return newBalance;
9 )

10 pre
11 currentCard in set validCards and pinOk and
12 currentCard in set accounts(id).cards and
13 id in set dom accounts
� �

Listing 10 VDM-SL operation for bank account withdrawal guarded
by a pre condition.

In order to withdraw money from the account, we re-
quire that a valid card has been inserted, the PIN code is ac-
cepted, and that the bank account exists. In Listing 10 this is
specified using a pre clause from which pre Withdraw
is derived. Although the definition of pre Withdraw is
not a visible part of the VDM-SL specification, it is shown
in Listing 11 to clarify the relationship between the pre
clause and the function derived from it.�
1 pre_Withdraw: AccountId*Amount*St +> bool
2 pre_Withdraw (id, amount, St) ==
3 St.currentCard in set St.validCards and
4 St.pinOk and
5 St.currentCard in set St.accounts(id).cards
6 and id in set dom St.accounts
� �
Listing 11 The signature of the pre condition function derived from
the Withdraw operation.

The Withdraw operation code generates to the Java
method shown in Listing 12. In addition, the pre condition
function pre Withdraw code generates to another method
with the same name (not shown in any listing) that is invoked
from the requires clause of the Withdraw method to
check if the pre condition is met. In addition to the input pa-
rameters of the Withdraw method, the pre Withdraw
method also gets passed the state St.

1 //@ requires pre_Withdraw(id,amount,St);
2 public static Number Withdraw(final Number

id, final Number amount) {...}

Listing 12 Code generated version of the Withdraw operation.

3. Translating the pre condition of an operation

Let op be a method code generated from a VDM-SL user-
defined operation and let the signature of op be:
static R op(I1 i1,...,In in)
Then op has a code generated pre condition method
pre op that is pure and which in addition to the param-
eters of op also takes the state component s as an argu-
ment, i.e.
/*@ pure @*/ static boolean
pre op(I1 i1,...,In in,S s)
To ensure that the pre condition check gets performed, we
annotate op with the following requires annotation:
//@ requires pre op(i1,...,in,s);

Rule 3 assumes the existence of a state component s. How-
ever, when the state of the module enclosing op is not de-
fined, rule 3 changes to not include the state parameter in the
definition of pre op.

The example above considers the case where the pre
condition is guarding an operation (i.e. Withdraw). As de-
scribed in section 2, a pre condition is defined differently for
a function than it is for an operation. In particular, the pre
condition of a function does not get passed the state, so nei-
ther does the code generated version of it. We also note that
the visibility of the pre condition function must be the same
as that of the functional description it guards. Otherwise
it cannot be invoked from the corresponding requires
clause.

4. Translating the pre condition of a function

Let f be a method code generated from a VDM-SL user-
defined function and let the signature of f be:
static R f(I1 i1,...,In in)
Then f has a code generated pre condition method pre f
that is pure and which accepts the same parameters as f,
i.e.
/*@ pure @*/ static boolean
pre f(I1 i1,...,In in)
To ensure that the pre condition check gets performed, we
annotate f with the following requires annotation:
//@ requires pre f(i1,...,in);

5.4 Translating post conditions to JML

Post conditions in VDM-SL and JML are semantically sim-
ilar, although VDM-SL represents the post condition func-
tion as a derived function definition (as it was done for pre
conditions). Post conditions (for operations) are, however,
represented a bit differently in a VDM model – the reason
being that a post condition is allowed to access the state be-
fore and after invocation of the operation it guards. There-
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fore, both the before and after states must be passed to the
post condition function.

Returning to the Withdraw operation, one could spec-
ify a post condition requiring that no more money than that
specified as amount be withdrawn from the account. This
requirement is specified as a post condition in Listing 13.�
1 Withdraw : AccountId * Amount ==> real
2 Withdraw (id, amount) ==
3 ...
4 post
5 let accountPre = accounts˜(id),
6 accountPost = accounts(id)
7 in
8 accountPre.balance =
9 accountPost.balance + amount and

10 accountPost.balance = RESULT;
� �
Listing 13 The Withdraw operation guarded by a post condition.

The JML generator produces a pure Java method to
represent the post condition function. This Java method is
invoked from the ensures clause to check that the post
condition holds. The invocation of the post condition method
of the Withdraw operation is shown in Listing 14.

1 //@ requires pre_Withdraw(id,amount,St);
2 //@ ensures post_Withdraw(id,amount,\result

,\old(St.copy()),St);
3 public static Number Withdraw(final Number

id, final Number amount) {...}

Listing 14 Code generated version of the Withdraw operation.

Note in particular how the before and after states are
passed to the post Widthdraw method. It follows from
the semantics of the ensures clause that the before state
of the method is referred to as \old (St). Furthermore, rea-
soning about before state is done using the JML \old ex-
pression and for the Withdraw operation the before state
is constructed as \old (St.copy()). Since St.copy()
is a deep copy of the state (as explained in section 3) the
evaluation inside the \old expression ensures that the re-
sult indeed is a representation of the before state.

Deep copying the state is needed since Java represents
every composite data type using a class. So without deep
copying the state, only the address of the before state object
reference gets copied. In effect, only a single object would
exist to represent the pre- and post states. This would never
work, since state changes made by the operation would af-
fect what was intended to be a representation of the before
state. Therefore, the state is deep copied to get a separate
object to represent the before state.

5. Translating the post condition of an operation

Let op be a method code generated from a VDM-SL user-
defined operation and let the signature of op be:
static R op(I1 i1,...,In in)
Then op has a code generated post condition method
post op that is pure and which in addition to the pa-
rameters of op, also takes the result as well as the before
and after states of op as arguments, i.e.
/*@ pure @*/ static boolean
post op(I1 i1,...,In in,

R RESULT,S s,S s)
To ensure that the post condition check gets performed we
annotate op with the following ensures annotation:
//@ ensures post op(i1,...,in,\result,
\old(s.copy(),s);

Similar to rule 3, rule 5 also assumes the state of the
module enclosing op to exist. If the state component is not
defined, rule 5 changes to not include the state parameters
in the definition of post op. Furthermore, if op does not
return a result (the return type is void), then the definition of
post op does not include the RESULT parameter.

The example above considers the post condition of an
operation (i.e. Withdraw). As described in section 2, the
post condition of a function is not allowed to access state.
Therefore, the code generated version of the post condition
function does not get passed the state.

6. Translating the post condition of a function

Let f be a method code generated from a VDM-SL user-
defined function and let the signature of f be:
static R f(I1 i1,...,In in)
Then f has a code generated post condition method
post f that is pure and which in addition to the param-
eters of f also takes the result of f as an argument, i.e.
/*@ pure @*/ static boolean
post f(I1 i1,...,In in,R RESULT)
To ensure that the post condition check gets performed we
annotate f with the following ensures annotation:
//@ ensures post f(i1,...,in,\result);

5.5 Translating record invariants to JML

A record can, like any other type definition in VDM-SL,
be constrained by an invariant. As an example, Listing 15
shows a record definition modelling a bank account.�
1 Account ::
2 cards : set of Card
3 balance : real
4 inv a == a.balance >= -1000;
� �
Listing 15 A VDM-SL record definition modelling a bank account.
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An Account comprises the available balance as well
as the debit cards associated with the account. We further
constrain an Account to not exceed a balance of -1000,
which is expressed using an invariant.

As described in section 3, a record definition code gen-
erates to a class that emulates the behaviour of a value type
using copy and equals methods.

Since a record invariant is required to hold for every
record value, or object instance in the generated code, we
represent it using an instance invariant in JML as
shown in Listing 16. In particular, note that the instance
invariant is formulated as an implication such that in-
variant violations do not get reported when invariant checks
are disabled. As we shall see in subsection 5.6 this has to do
with the way VDM-SL handles atomic execution.

1 //@ nullable_by_default
2 final public class Account implements Record
3 {
4 public VDMSet cards;
5 public Number balance;
6 //@ public instance invariant atm.ATM.

invChecksOn ==> inv_Account(cards,
balance);

7 ...
8 /*@ pure @*/
9 public boolean equals(final Object obj){..

.}
10 /*@ pure @*/
11 public atm.ATMtypes.Account copy(){...}
12 /*@ pure @*/
13 public VDMSet get_cards() {...}
14 public void set_cards(final VDMSet _cards)

{...}
15 /*@ pure @*/
16 public Number get_balance() {...}
17 public void set_balance(final Number

_balance){...}
18 /*@ pure @*/
19 /*@ helper @*/
20 public static Boolean inv_Account(final

VDMSet _cards, final Number _balance){
...}

21 }

Listing 16 The code generated version of the Account record
definition (omitting the bodies of the methods).

The code generated record Account defines an invari-
ant method that takes all the record fields of Account as
input and evaluates the invariant predicate. This method is
invoked directly from the JML invariant, as shown in List-
ing 16. The invariant method is annotated as a helper to
avoid the invariant check triggering another invariant check,
which eventually would cause a stack-overflow.

7. Translating a record invariant

Let R be a code generated record definition with fields
f1,...,fn of types F1,...,Fn, respectively, and let

R be constrained by an invariant. Then R has an invariant
method inv R which is annotated as a helper to allow
it to be invoked from the invariant clause of R. The invari-
ant method can also be annotated as pure since it origi-
nates from a function definition. The annotated signature
of inv R thus becomes:
/*@ pure @*/
/*@ helper @*/
boolean inv R(F1 f1,...,Fn fn)
Let further invChecksOn be a variable that is true if
invariant checking is enabled and false otherwise. To rep-
resent the record invariant of R we annotate R with the
invariant annotation:
/*@ public instance invariant
invChecksOn ==> inv R(f1,...,fn); @*/

As we shall later see in subsection 5.6, atomic execution
sometimes requires extra assertions to be inserted into the
generated code in order to guarantee that the record invariant
semantics of VDM-SL are preserved.

All the methods inside a record class – except for the
constructor and the “setter” methods – do not modify the
state of the record class and therefore they are marked as
pure. Updates to a record object in the generated code are
made using the “setter” methods of the generated record
class, or by using the record modification expression [17].
Use of “setter” methods instead of direct field access to ma-
nipulate the state of a record (which is how field access is
achieved in VDM-SL) forces the record object into a visible
state (as described in subsection 2.2) after it has been up-
dated, thus triggering the invariant check in accordance with
the VDM-SL semantics. For example, in VDM-SL we could
set the balance of an account as shown in Listing 17.�

acc.balance := newBalance;
� �
Listing 17 Updating the balance of an Account in VDM-SL.

This assignment generates to the Java code shown in List-
ing 18. Note that for this particular case there is no need
to generate any additional JML assertions since the state of
acc becomes visible after the call to set balance. This
causes the instance invariant check of the Account record
class to trigger.

acc.set_balance(newBalance);

Listing 18 Updating the balance of an Account in the generated
code.

5.6 Atomic Execution

There are situations where multiple assignment statements
in VDM-SL need to be evaluated atomically in order to avoid

142 13 Automated translation of VDM to JML annotated Java



10 Peter W. V. Tran-Jørgensen et al.

unintentional violation of a state invariant. In our example,
this is the case when the ATM returns the card to the owner,
which is done as the last step of a transaction. Returning
the debit card also requires us to invalidate the PIN code
currently entered. These two things have to be done atomi-
cally to avoid violating the state invariant of the ATM mod-
ule. Therefore the body of the ReturnCard operation is
executed inside an atomic statement block as shown in
Listing 19.�
1 ReturnCard : () ==> ()
2 ReturnCard () ==
3 atomic
4 (
5 currentCard := nil;
6 pinOk := false;
7 )
8 pre currentCard <> nil
9 post currentCard = nil and not pinOk;
� �
Listing 19 VDM-SL operation modelling removal of the debit card
from the ATM.

JML does not include a syntactic construct similar to that
of the atomic statement. Instead atomic execution must be
achieved using different means – for example by manipulat-
ing state directly using field access or helper methods.

To be consistent with regards to the way record state
is updated, and to reflect the way that VDM-SL handles
atomic execution, we believe a better approach is to use a
flag that indicates if invariant checks are enabled or not.
Since this flag should not affect the generated code, we make
it a ghost variable such that it is only visible at the speci-
fication level. Since this ghost variable must be accessible
everywhere in the translation, we make it a static field of the
class, as shown in Listing 20. The ghost variable must be
added to one of the generated Java classes since Java does
not really have global variables. Note that this flag does not
affect pre- and post conditions since these checks must al-
ways be evaluated.

1 /*@ public ghost static boolean invChecksOn
= true; @*/

Listing 20 Ghost variable used to control invariant checking.

The declaration of invChecksOn allows us to formu-
late invariants such that violations only get reported if in-
variant checking is enabled. An example of this is shown in
Listing 21 for the record state class of the ATM module.

1 //@ public instance invariant atm.ATM.
invChecksOn ==> inv_St(validCards,
currentCard,pinOk,accounts);

Listing 21 The invariant of the record state class.

The invChecksOn flag provides us with the means to
emulate the behaviour of atomic execution in a Java environ-
ment as shown in Listing 22. More specifically we use the
JML set statement to disable and enable invariant checking
before and after executing the body of the ReturnCard
method, respectively.

1 //@ requires pre_ReturnCard(St);
2 //@ ensures post_ReturnCard(\old(St.copy()),

St);
3 public static void ReturnCard() {
4 atm.ATMtypes.Card atomicTmp_1 = null;
5
6 //@ assert ((atomicTmp_1 == null) || Utils.

is_(atomicTmp_1,atm.ATMtypes.Card.class
));

7 Boolean atomicTmp_2 = false;
8 //@ assert Utils.is_bool(atomicTmp_2);
9 { /* Start of atomic statement */

10 //@ set invChecksOn = false;
11
12 //@ assert St != null;
13 St.set_currentCard(Utils.copy(atomicTmp_1

));
14
15 //@ assert St != null;
16 St.set_pinOk(atomicTmp_2);
17
18 //@ set invChecksOn = true;
19
20 //@ assert \invariant_for(St);
21 } /* End of atomic statement */
22 }

Listing 22 The code generated version of the ReturnCard
operation.

8. Enabling and disabling invariant checking

Declare in module M a globally accessible JML ghost
variable invChecksOn to control invariant checking:
/*@ public ghost static
boolean invChecksOn = true; @*/
Before executing the code generated atomic statement, in-
variant checking is disabled using the following JML set
statement:
//@ set M.invChecksOn = false;
After the code generated atomic block has finished exe-
cuting invariant checking is re-enabled using:
//@ set M.invChecksOn = true;

When all the statements have been executed it must be
ensured that no invariants have been violated. For the exam-
ple in Listing 22, the only thing that needs to be checked is
that the state component of the ATM class, i.e. St does not
violate its invariant. Finally, we ensure that the invariant of
St holds by asserting \invariant for(St).

The \invariant for construct is not currently sup-
ported by OpenJML, and therefore we also allow the invari-
ant check to be generated in a way that this tool supports.
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Throughout this paper we use the \invariant for con-
struct to explicitly check the invariant of a record whenever
needed. We choose to demonstrate our work using this ap-
proach as we believe it makes it easier to understand what
we are tying to achieve.

The JML generator keeps track of state designators of
records that potentially have been updated as part of execut-
ing the code generated atomic statement block. Immediately
after invariant checking is re-enabled, i.e. the code generated
atomic statement block has finished execution, it is checked
that no record violates its invariant.

9. Resuming invariant checking

Let d1,...,dn be state designators of records which
have been updated, or affected by an update, during execu-
tion of a code generated atomic statement block. Further
assume that d1,...,dn have been updated in the given
order, i.e. di was updated before di+1 and that di may
be of one of mi record types Di1,...,Dimi . Immedi-
ately after executing the code generated atomic statement
block, it is checked that d1,...,dn do not violate any
invariants using the following sequence of assert state-
ments:
//@ assert d1 instance of D11 ==>
\invariant for((D11) d1);

...
//@ assert d1 instance of D1m1 ==>
\invariant for((D1m1) d1);

...
//@ assert dn instance of Dn1 ==>
\invariant for((Dn1) dn);

...
//@ assert dn instance of Dnmn ==>
\invariant for((Dnmn) dn);

A state designator can be “masked” as a union type and
in such situations it cannot always be statically determined
what the runtime type of a state designator will be. To demon-
strate this, consider the record types R1 and R2 and a state
designator declared as dcl r : R1 | R2 := .... Fur-
ther assume that R1 and R2 code generate to classes R1c
and R2c. After updating r atomically in the generated code,
it is ensured that \invariant for((R1c) r) holds if
r is of type R1c, and similarly that the equivalent condition
is true if r is of type R2c. Since rule 9 has to take all pos-
sible types into account, the invariant checks are formulated
as implications.

Although the VDM type system allows state designators
to be “masked” as union types, most of the time it is pos-
sible to statically determine the runtime type of a state des-
ignator. For example, in Listing 22 no instanceof check
is needed since the static type of the state component is St.
This is an example where the JML generator simplifies the
check proposed by rule 9.

There are more aspects to rule 9 worth discussing – es-
pecially when state designators are based on arbitrarily com-
plex data structures such as nested records. This will be ad-
dressed in subsection 7.1.

5.7 Translating module state to JML

As described in subsection 2.1, a module state invariant con-
strains the record type used to represent the state component
of the enclosing module. Therefore, a module state invari-
ant can essentially be seen as a record invariant that can be
translated into JML annotated Java without introducing ad-
ditional translation rules. This subsection instead explains
how a VDM-SL state definition is translated into a form that
allows the rules related to record invariants to be applied (see
subsection 5.5).

In our example each account can be accessed from an
ATM using one of the debit cards associated with it. In ad-
dition to the bank accounts, the state of the ATM also keeps
track of: the debit cards that the systems considers valid,
the debit card which is currently inserted into the ATM, and
whether the PIN code entered by the user is valid. The state
as specified in VDM-SL is shown in Listing 23. Note that
this listing also includes the state initialisation and the in-
variant.�
1 state St of
2 validCards : set of Card
3 currentCard : [Card]
4 pinOk : bool
5 accounts : map AccountId to Account
6 init St == St = mk_St({},nil,false,{|->})
7 inv mk_St(v,c,p,a) ==
8 (p or c <> nil => c in set v)
9 and

10 forall id1, id2 in set dom a &
11 id1 <> id2 =>
12 a(id1).cards inter a(id2).cards = {}
13 end
14 ...
15 types
16 Card ::
17 id : nat
18 pin : Pin;
� �

Listing 23 State of the ATM module and the Card type definition.

The invariant requires that, at all times the following two
conditions must be met: a debit card must at most be asso-
ciated with a single account and secondly, for a PIN code
to be considered valid, the debit card currently inserted into
the ATM must itself be a valid debit card. Based on the state
definition, a record class gets generated which represents the
state type as shown in Listing 24.

1 final public class St implements Record {

144 13 Automated translation of VDM to JML annotated Java



12 Peter W. V. Tran-Jørgensen et al.

2 public VDMSet validCards;
3 public atm.ATMtypes.Card currentCard;
4 public Boolean pinOk;
5 public VDMMap accounts;
6
7 //@ public instance invariant atm.ATM.

invChecksOn ==> inv_St(validCards,
currentCard,pinOk,accounts);

8 /* Record methods omitted */
9 }

Listing 24 The record class used to represent the state type.

In addition, an instance of the record class gets created
to represent the state component as shown in Listing 25. The
state component is annotated with the spec public mod-
ifier so that it can be referred to from the requires and
ensures clauses of public methods. Also note that the
module is not constrained by an invariant. This is handled
entirely by the record invariant shown in Listing 24.

1 final public class ATM {
2 /* Fields omitted */
3
4 /*@ spec_public @*/
5 private static atm.ATMtypes.St St = new atm

.ATMtypes.St(SetUtil.set(),
6 null, false, MapUtil.map());
7 /* Module methods omitted */
8 }

Listing 25 The state component in the ATM module.

10. Translating the state component

Annotate state components of module classes with the
spec public modifier to ensure that the state compo-
nents can be referred to from the requires and
ensures clauses of public methods.

6 Checking VDM types using JML

In this section we describe how the translator uses JML to
check the consistency of VDM types when they are code
generated.

Throughout this section we construct a function called
Is(v,T) which takes as input a Java value v and a VDM
type T and produces a JML expression that can be used
to check whether v represents a value of type T. We use
Is(v,T) to check whether a Java value remains consistent
with the VDM type that it originates from. The check pro-
duced by Is(v,T) can be added to the generated Java code
to ensure that no type violations occur.

We cover the different classes of VDM types, one by
one, and explain, using our case study example, how JML
is used to check a Java value against the VDM type that it
originates from. Based on this we gradually extend the cov-
erage of Is(v,T) to include checking of more types, and

continue like this until we have covered all the VDM types
supported by the Java code generator. Finally, we summarise
and provide the complete definition of Is(v,T) (see Fig-
ure 1).

6.1 Where to generate dynamic type checks

Most of the types available in VDM are also present in Java
in some form or other. The VDM and Java type systems do,
however, have some differences that require us to generate
extra checks to ensure that a Java value remains consistent
with the VDM type that it originates from.

In addition to producing the JML expression needed to
check the consistency of a type, i.e. Is(v,T), we also need
to consider where to add the check to the generated code.
The description below summarises the VDM-SL constructs
that must be considered when adding these checks to the
generated Java code. We use the term parameter to refer to
an identifier that cannot change its value. A parameter can
be defined using a let construct, which is different from a
state designator or variable that can be locally defined us-
ing a dcl statement or globally using a state definition (see
section 2). The constructs to be considered are:

– return statement: If a function or operation returns a
value, as specified using the result type in the signature
of the enclosing function or operation, then it must be
checked whether the value returned violates the result
type.

– Parameters of functions and operations: The arguments
passed to a functional description, when invoked, are
mapped to the formal parameters of said functional de-
scription. Formal parameters are typed variables, thus
subject to type constraints. Upon entering a function or
operation, the value received by each formal parameter
must be checked against its type.

– State designators: After updating a local or global state
designator, the new value assigned must respect the type
of the state designator.

– Variable or parameter declaration: After initialising a vari-
able or parameter it must be checked against its declared
type.

– Value definition: An explicitly typed value definition must
specify a value consistent with its type.

All of the constructs in the list above – with the excep-
tion of the value definition – can be checked using a JML
assert statement. The reason for this is that the code gen-
erated versions of these constructs appear inside methods in
the generated code. Since a VDM value definition code gen-
erates to a public static final field (a constant) it is
checked using a static invariant.
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6.2 Translating basic types

In our example we may wish to check that the amount being
withdrawn from an account is valid – for example by requir-
ing that it is a natural number larger than zero, as shown in
Listing 26.�
1 let amount : nat1 = expense - profit
2 in
3 Withdraw(accId, amount);
� �
Listing 26 Use of explicit type annotation to ensure that a valid
amount is being withdrawn.

In the generated Java code, shown in Listing 27, this is
checked by analysing the value of the amount variable us-
ing the Utils.is nat1 method available from the Java
code generator runtime library. This method is invoked from
a JML annotation in order to check that amount is different
from null and that it represents an integer larger than zero.

1 Number amount =
2 expense.longValue() - profit.longValue();
3 //@ assert Utils.is_nat1(amount);
4 return Withdraw(accId, amount);

Listing 27 Use of JML to check that a valid amount is being
withdrawn.

11. Checking of the nat1 type

Let v be a value or object reference in the generated code
that originates from a variable or pattern of type nat1 and
further define Is(v,nat1) = Utils.is nat1(v).
To ensure that v represents a value of type nat1, generate
a JML check to ensure that Is(v, nat1) holds.

The approach used to check other basic types follow the
principles demonstrated using Listing 26 and Listing 27 –
the main difference being that each basic type uses a dedi-
cated method from the Java code generator runtime library.
Therefore, we omit the details of how other basic types of
VDM are checked using JML, and instead provide the com-
plete set of rules in Figure 1.

We note that a record type or a quote type can be checked
in a way similar to that of a basic type. The reason for this
is that the Java generator produces a Java class for each of
the record definitions and quote types in the VDM model.
Therefore, all there is to checking whether an object ref-
erence represents a given record or quote class is to check
whether the object reference is an instance of said class. The
rules for checking record and quote types are included in
Figure 1.

6.3 Translating optional types

To demonstrate how the JML generator handles optional
types consider the GetCurrentCardId operation in List-
ing 28. This operation returns the identification of the debit
card currently inserted into the machine, if any. Otherwise
the operation returns nil to indicate the absence of a debit
card. To allow null as a return value, the optional type op-
erator is used to specify the return type of the operation as
[nat].�
1 GetCurrentCardId : () ==> [nat]
2 GetCurrentCardId () ==
3 if currentCard <> nil then
4 return currentCard.id
5 else
6 return nil;
� �
Listing 28 Operation for getting the id of the debit card currently
inserted into the ATM.

Considering solely the signature of the code generated
version of this operation, shown in Listing 29, there is no
way to tell that the return type represents a [nat].

1 public static Number GetCurrentCardId(){...}

Listing 29 Signature of the code generated version of the
GetCurrentCardId operation.

The reason for this is that the Java code generator uses the
Number class (which is part of the Java standard library)
to represent all numeric VDM types. That the return type
of the operation is [nat] only becomes apparent when we
start using the corresponding method.

To demonstrate this, the Java fragment in Listing 30 uses
the result of invoking the GetCurrentCardId method to
initialise a variable named id. The initialisation of id is im-
mediately followed by a check that ensures that it represents
either null or a natural number. The approach of allowing
null values like this is the same for all optional types.

1 Number id = GetCurrentCardId();
2 //@ assert id == null || Utils.is_nat(id);

Listing 30 Use of the GetCurrentCardId method in the
generated code.

12. Checking of optional types

Let v be a value or object reference in the generated code
that originates from a variable or pattern of the VDM type
[T] and further define
Is(v,[T]) = (v == null || Is(v,T))
To ensure that v represents a value of type [T], generate
a JML check to ensure that Is(v,[T]) holds.
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6.4 Translating tuple types

In our case study example we use a tuple type to represent
the status of the ATM: the first field is a boolean flag that
indicates if the ATM is currently awaiting a debit card to
be inserted, and the second field is a human-readable de-
scription of the current state of the ATM, e.g. “transaction in
progress”. The signature of the operation that retrieves the
status of the ATM is shown in Listing 31. Note in particular
that the status returned is represented using the tuple type
bool * seq of char.�
1 GetStatus : () ==> bool * seq of char
2 GetStatus () == ...
� �
Listing 31 The signature of the GetStatus operation.

In the generated Java code, every tuple value is repre-
sented as an instance of the Tuple class available from the
Java code generator runtime library. Since the Tuple class
represents tuple values in general, each instance of this class
must be checked against the specific tuple type that it origi-
nates from.

After the status of the ATM has been retrieved using
the GetStatus method in the generated code, the status
is checked as shown in Listing 32. First it is checked that
status is a tuple of size two. Afterwards it is checked that
the first field is a boolean and that the second field is a
Java String (which represents the seq of char type).

1 Tuple status = GetStatus();
2 //@ assert (V2J.isTup(status,2) && Utils.

is_bool(V2J.field(status,0)) && Utils.
is_(V2J.field(status,1),String.class));

Listing 32 Checking the ATM status in the generated code.

13. Checking of tuple types

Let v be a value or object reference in the generated code
that originates from a variable or pattern of the VDM tuple
type T1*...*Tn and further define
Is(v,T1*...*Tn) = V2J.isTup(v,n) &&
Is(v,T1) &&...&& Is(v,Tn)
To ensure that v represents a value of type T1*...*Tn,
generate a JML check to ensure that Is(v,T1*...*Tn)
holds.

6.5 Translating union types

Attempting to insert a debit card into the ATM results in
the debit card being accepted, if no card is currently in-
serted and it is considered a valid card by the system. Oth-
erwise the card is rejected. Based on the outcome of this the

NotifyUser operation, shown in Listing 33, displays a
message to inform the card holder about the current status of
the session. This operation uses a union type, formed by the
three quote types <Accept>, <Busy> and <Reject>, to
represent one of three outcomes of the card holder attempt-
ing to insert a debit card into the ATM.�
1 NotifyUser : <Accept>|<Busy>|<Reject> ==> ()
2 NotifyUser (outcome) ==
3 if outcome = <Accept> then
4 Display("Card accepted")
5 elseif outcome = <Busy> then
6 ...
� �
Listing 33 Operation used to notify a ATM user.

The code generated version of the NotifyUser operation
is shown in Listing 34. Since the outcome parameter orig-
inates from the union type formed by the three quote types,
it must be checked that outcome equals one of the three
possible values. This check is performed immediately after
entering the NotifyUser method, as shown in Listing 34.

1 public static void NotifyUser(final Object
outcome) {

2 //@ assert (Utils.is_(outcome,atm.quotes.
AcceptQuote.class) || Utils.is_(outcome
,atm.quotes.BusyQuote.class) || Utils.
is_(outcome,atm.quotes.RejectQuote.
class));

3 if (Utils.equals(outcome, atm.quotes.
AcceptQuote.getInstance())) {

4 Display("Card accepted");
5 } else if (Utils.equals(outcome, atm.quotes

.BusyQuote.getInstance())){
6 ...
7 }

Listing 34 Code generated version of the NotifyUser operation.

14. Checking of union types

Let v be a value or object reference in the generated code
that originates from a variable or pattern of the VDM union
type T1|...|Tn and further define
Is(v,T1|...|Tn) = Is(v,T1) ||...||
Is(v,Tn)
To ensure that v represents a value of type T1|...|Tn,
generate a JML check to ensure that
Is(v,T1|...|Tn) holds.

6.6 Translating collections

In the generated code the VDMSet, VDMSeq and VDMMap
collection classes are used as raw types. Therefore the code
generator does not take advantage of Java generics to make
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compile-time guarantees about the types of the objects a col-
lection store. This approach has the advantage of making it
easier to store Java objects and values of different types in
the same collection without having to introduce additional
types. Although this allows the type system of VDM to be
represented in Java (which generally uses a stronger type
system than VDM) it has the disadvantage that no compile-
time guarantees can be made about the types of the objects
that a collection stores.

In the ATM example we use the TotalBalance func-
tion, shown Listing 35, to calculate the total balance avail-
able from a set of accounts.�
1 TotalBalance : set of Account -> real
2 TotalBalance (acs) ==
3 if acs = {} then
4 0
5 else
6 let a in set acs
7 in
8 a.balance + TotalBalance(acs \ {a});
� �
Listing 35 Operation that calculates the total balance available from a
set of accounts.

When the TotalBalance function is code generated
to JML annotated Java, the code generator adds JML asser-
tions to ensure that the set of accounts is consistent with the
collection type used in VDM. Since an Account record is
represented using a Java class with the same name, we have
to check that every element in the set is an instance of said
Java class. As shown in Listing 36, this is checked using a
quantified expression. This expressions uses a bound vari-
able i to iterate over all the accounts and check that each
element is an instance of the Account record class. Al-
though sets are unordered collections, the quantified expres-
sion takes advantage of VDMset being implemented as an
ordered collection. The formulation of the range expression
in the quantified expression further ensures that the assertion
can be checked using a tool such as the OpenJML runtime
assertion checker, i.e. the assertion is executable.

1 /*@ pure @*/
2 public static Number TotalBalance(final

VDMSet acs) {
3 //@ assert (V2J.isSet(acs) && (\forall int

i; 0 <= i && i < V2J.size(acs); Utils.
is_(V2J.get(acs,i),atm.ATMtypes.Account
.class)));

4 if (Utils.empty(acs)) {
5 Number ret_1 = 0L;
6
7 //@ assert Utils.is_real(ret_1);
8 return ret_1;
9 } else { ... /*Compute sum recursively */}

10 }

Listing 36 Code generated version of the TotalBalance operation.

15. Checking of sets

Let v be a value or object reference in the generated code
that originates from a variable or pattern of the VDM set
type set of T and further define
Is(v,set of T) = V2J.isSet(v) &&
(\forall int i; 0 <= i &&
i < V2J.size(v); Is(V2J.get(v,i),T))
To ensure that v represents a value of type set of T,
generate a JML check to ensure that Is(v,set of T)
holds.

The VDM sequence types seq and seq1 are checked
in a way similar to sets. The difference between checking
the seq and seq1 collection types is that the seq1 type
requires at least one element to be present in the sequence.
Checking a map, which like a set is an unordered collection,
takes advantage of VDMMap imposing an order on the do-
main and range values. The main difference between check-
ing a map and a set is that both the domain and range values
of a map have to be checked. Checking the injective map
type inmap is similar to checking a standard map, except
that the injectivity property must hold. We refrain from pro-
viding examples of how to check each of the collection types
in VDM since they are very similar to what has already been
shown. Instead we summarise the rules for checking all of
the collection types in Figure 1.

6.7 Translating named invariant types to JML

Since the Java code generator does not generate additional
class definitions for named invariant types, the invariant im-
posed on such a type cannot be expressed as a JML invariant.
This is only possible for a record since it translates to a class
definition.

Instead, we identify places in the generated code where
a named invariant type may be violated, as described in sub-
section 6.1, and check that the invariant holds. Also, it is
worth noting that a named invariant type, unlike a record
type, does not have an explicit type constructor. Therefore,
an expression can only violate a named invariant type if the
expression is explicitly declared to be of that type.

The ATM in our example is not capable of dispensing
cents and also imposes a limit on the amount of money that
can be withdrawn. Therefore, the amount of money can be
represented as a named invariant type. An attempt to with-
draw an amount of money that exceeds 2000 will yield a
runtime error. The named invariant type used to represent
the amount withdrawn from an account is shown together
with the Withdraw operation in Listing 37.�
1 types
2 Amount = nat1
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3 inv a == a < 2000;
4
5 operations
6 Withdraw : AccountId * Amount ==> real
7 Withdraw (id, amount) == ...
� �
Listing 37 The amount to withdraw modelled using a named invariant
type.

On entering the code generated version of the Withdraw
operation, shown in Listing 38, we assert that amountmeets
the named invariant type Amount.

1 ...
2 public static Number Withdraw(final Number

id, final Number amount){
3 ...
4 //@ assert (Utils.is_nat1(amount) &&

inv_ATM_Amount(amount));
5 ...
6 }

Listing 38 Checking a named invariant type of a operation parameter
in JML.

The assertion does two things: First it performs a dy-
namic type check to ensure that amount is a valid domain
type of Amount and secondly, it checks that the invariant
predicate holds. For the example in Listing 38 this means
checking that amount is of type nat1 and smaller than
2000. Note that meeting the invariant condition does not
imply compatibility with the domain type of the named in-
variant type and vice versa. For example, -1 is smaller than
2000 but it is not of type nat1. Likewise, 2001 is of type
nat1 but it exceeds 2000 so neither -1 nor 2001 are of type
Amount.

The code generated invariant method Amount is shown
in Listing 39. Since the named invariant type check, shown
in Listing 38, is evaluated from left to right using McCarthy
evaluation semantics, the invariant method is only invoked if
the value subject to checking is compatible with the domain
type of the named invariant type. Therefore, it is safe to nar-
row (or cast) the type the argument passed to the invariant
method before performing the invariant check.

1 /*@ pure @*/
2 /*@ helper @*/
3 public static Boolean inv_ATM_Amount(final

Object check_a) {
4 Number a = ((Number) check_a);
5 return a.longValue() < 2000L;
6 }

Listing 39 The code generated named invariant type method for
Amount.

16. Checking of named invariant types

Let v be a value or object reference in the generated code
that originates from a variable or pattern of the VDM
named invariant type T based on the domain type D and
constrained by invariant predicate e(p), i.e. T is defined
as
types
T = D
inv p == e(p)
Then T has an invariant method, responsible for running
the code generated version of the e(p) check, with a sig-
nature defined as:
public static boolean inv T(Object o)
Further define
Is(v,T) = Is(v,D) && inv T(v)
To ensure that v represents a value of type T, generate a
JML check to ensure that Is(v,T) holds.

Note that the invariant method inv T in rule 16 defines
the input parameter o to be of type Object, thus allowing
inv T to accept inputs of any type. Therefore, inv T must
narrow the type of the input parameter o before performing
the invariant check (see the example in Listing 39). This ap-
proach has the advantage that it allows simpler JML checks
since the argument type does not need to be narrowed before
the invariant method is invoked. Had the input parameter of
the invariant method been defined using the smallest possi-
ble type, then the argument type would need to be narrowed
for situations where the argument is masked as a union type.
Although this would complicate the JML checks, it would
have the advantage of allowing type narrowing to be re-
moved from the invariant methods.

7 Other aspects of VDM-SL affecting the JML
generation

There are other aspects of VDM-SL that further complicate
the generation of VDM-SL models to JML annotated Java.
In this section we use examples to demonstrate these issues
and explain how they may be overcome.

7.1 Complex state designators

State designators may be composite data structures such as
records with fields which themselves are records. Such a
data type forms complex state designators that when modi-
fied require careful handling during the translation process.
To demonstrate this, consider the three VDM-SL record def-
initions R1, R2 and R3 in Listing 40. Note in particular how
the invariants of R1 and R2 depend on the field of R3. This
transitive dependency complicates checking of invariants in
the generated code. To demonstrate this, the operation in
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Is(v,T) =





Utils.is bool(v) if T = bool

Utils.is nat(v) if T = nat

Utils.is nat1(v) if T = nat1

Utils.is int(v) if T = int

Utils.is rat(v) if T = rat

Utils.is real(v) if T = real

Utils.is char(v) if T = char

Utils.is token(v) if T = token

Utils.is (v,String.class) if T = seq of char

Utils.is (v,SCG.class)
if T is a record or quote type S that generates to

a Java class with the fully qualified name SCG

(v == null || Is(v,S)) if T = [S]

V2J.isTup(v,n) && Is(v,T1) &&...&& Is(v,Tn) if T = T1*...*Tn

Is(v,T1) ||...|| Is(v,Tn) if T = T1|...|Tn

V2J.isSet(v) && (\forall int i;

0 <= i && i < V2J.size(v); Is(V2J.get(v,i),S))
if T = set of S

V2J.isSeq(v) && (\forall int i;

0 <= i && i < V2J.size(v); Is(V2J.get(v,i),S))
if T = seq of S

V2J.isSeq1(v) && (\forall int i;

0 <= i && i < V2J.size(v); Is(V2J.get(v,i),S))
if T = seq1 of S

V2J.isMap(v) && (\forall int i;

0 <= i && i < V2J.size(v);

Is(V2J.getDom(v,i),D) && Is(V2J.getRng(v,i),R))

if T = map D to R

V2J.isInjMap(v) && (\forall int i;

0 <= i && i < V2J.size(v);

Is(V2J.getDom(v,i),D) && Is(V2J.getRng(v,i),R))

if T = inmap D to R

Is(v,D) && inv T(v)
if T is named invariant type with domain type D

and invariant method inv T

Fig. 1 Complete definition of Is(v,T).

Listing 40 instantiates R1 as r1 and modifies it to violate the
R1 invariant, which causes a runtime-error to be reported.�
1 types
2
3 R1 :: r2 : R2
4 inv r1 == r1.r2.r3.x <> -1;
5
6 R2 :: r3 : R3
7 inv r2 == r2.r3.x <> -2;
8
9 R3 :: x : int

10 inv r3 == r3.x <> -3;
11
12 operations
13
14 op: () ==> nat
15 op () ==
16 (

17 dcl r1 : R1 := mk_R1(mk_R2(mk_R3(5)));
18 r1.r2.r3.x := -1;
19 return 0;
20 )
� �

Listing 40 Record nesting in VDM-SL.

The operation op in Listing 40 generates to the method
in Listing 41. In the generated code r1, stateDes 1 and
stateDes 2 represent the three state designators r1, r2
and r3 from Listing 40 respectively. Note that in Listing 41
we have removed fully qualified names of record classes as
well as other JML checks, which are not related to the point
we want to make.

1 /* Type definitions omitted */ ...
2 public static Number op() {
3 R1 r1 = new R1(new R2(new R3(5L)));
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4
5 R2 stateDes_1 = r1.get_r2();
6 R3 stateDes_2 = stateDes_1.get_r3();
7 stateDes_2.set_x(-1L);
8
9 //@ assert \invariant_for(stateDes_1);

10 //@ assert \invariant_for(r1);
11
12 Number ret_1 = 0L;
13 return ret_1;
14 }

Listing 41 Code generated version of the operation from Listing 40.

Immediately after completing the state update, i.e. in-
voking stateDes 2.set x(-1L), the following things
happen:

1. The state of stateDes 2 becomes visible thus trigger-
ing the invariant check of stateDes 2.

2. The invariant check of stateDes 1 is run by asserting
\invariant for(stateDes 1) and finally,

3. the invariant check of r1 is run by asserting
\invariant for(r1) which causes the invariant of
r1 to be violated and a runtime-error to be reported.

Strictly speaking the objects pointed to by stateDes 1
and r are also in visible states after executing the update to
stateDes 2 and therefore the invariants of those objects
should also hold. In particular a state is visible for an object
o “when no constructor, destructor, non-static method in-
vocation with o as receiver, or static method invocation for
a method in o's class or some superclass of o's class is in
progress[19]”. So in theory the invariant checks should not
have to be run explicitly (step 2 and step 3). The reason that
the JML translator generates these checks anyway has to do
with the strategies JML tools use to check invariants.

Tools such as JML runtime checkers may assume no
problems with ownership aliasing to avoid having to keep
track of what objects and types are in visible states. Al-
though this reduces the overhead of checking invariants, it
also means that some invariant violations might go unno-
ticed. Alternatively, tools can check every applicable invari-
ant for classes and objects in visible states but this adds a
significant overhead to the program execution.

Since aliasing can never occur in VDM-SL, it becomes
simpler to keep track of what objects are in a visible state in
the generated code and thus generate JML checks that ex-
plicitly trigger the invariants checks. This has the advantage
that invariant violations do not go unnoticed even though a
JML tool adopts a more practical approach to checking in-
variants.

For the example in Listing 41, the important thing is to
ensure that the violation of the invariant of R1 gets reported
after executing the state update. This is done by asserting the
entire chain of state designators. The JML generator is able

to generate these checks since it keeps track of state desig-
nators of records that may have been affected by updates to
other state designators.

17. Checking transitive dependencies

Let dn be a state designator of a record in the gener-
ated code, which has been updated non-atomically, and
let dk,...,d1, for k = n-1, be state designators that
were affected by the update to dn. Further assume that di
may be of one of mi record types Di1,...,Dimi . Im-
mediately after executing the update to dn the state of dn
becomes visible. To ensure that the invariant check gets
triggered for all affected state designators, execute the fol-
lowing sequence of assertions:
//@ assert dk instance of Dk1 ==>
\invariant for((Dk1) dk);

...
//@ assert dk instance of Dkmk ==>
\invariant for((Dkmk) dk);

....
//@ assert d1 instance of D11 ==>
\invariant for((D11) d1);

...
//@ assert d1 instance of D1m1 ==>
\invariant for((D1m1) d1);

Note that the code in Listing 41 omits the instance
of checks, proposed by rule 17, since the types of the af-
fected state designators can be determined statically.

Regarding rule 9, similar issues with transitive depen-
dencies may occur in the generated code when dealing with
atomic execution. Recall that before executing the code gen-
erated atomic statement block, invariant checking is disabled.
Once the atomic execution has completed, invariant check-
ing is re-enabled, and therefore rule 9 must also take into
account all the state designators that were affected by the
atomic execution.

7.2 Recursive types

It is possible to formulate recursive types for which the gen-
erated JML checks can only perform limited type checking.
To demonstrate this, consider the recursive VDM type defi-
nition in Listing 42. For this example, S represents an infi-
nite number of types including nat1 as well as all possible
dimensions of sequences that store elements of type nat1,
i.e. seq of nat1, seq of seq of nat1 and so on.�
1 types
2 S = nat1 | seq of S;
� �
Listing 42 Example of recursive type definition in VDM.
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The issue with this kind of type definition is that Is(v,S)
in theory becomes an expression of infinite length. The JML
code generator stops generating type checks whenever it en-
counters type cycles. For the particular example in Listing 42
this means that a Java value or object reference v is only
considered to respect S if Utils.is nat1(v) holds.

This approach to checking types could be changed to
also take the depth of the recursion n into account, i.e. use
Is(v,T,n) to generate the type checks. The current ap-
proach used by the JML generator thus corresponds to gen-
erating checks using Is(v,T,1). Is(v,S,2) then gen-
erates checks for types nat1 and seq of nat, whereas
Is(v,S,3) additionally generates a check for the type
seq of seq of nat1.

8 Related work

In [28] Vilhena considers the possibilities for automatically
converting between VDM++ and JML and the approach is
demonstrated using a proof-of-concept implementation. That
work considers a bi-directional mapping, whereas we only
consider a one-way translation from executable VDM-SL to
JML annotated Java. The bi-directional mapping proposed
by Vilhena produces only the JML specification files and not
the Java sources, which is an essential part of our work. The
implementation of the bi-directional mapping was originally
targeting the Overture tool, but it never reached maturity to
be included in the release of the tool.

Rules for translating from a subset of VDM-SL to JML
are proposed by Jin et al. in [11]. Their approach also con-
siders implicit functional descriptions but it provides lim-
ited support for translation of record definitions and named
invariant types. In the early phases of the software devel-
opment process the authors propose to formulate require-
ments in natural language or using the Unified Modeling
Language (UML) [26] and then formalise them in VDM-SL
to eliminate ambiguity. Subsequently the authors manually
apply their rules to the VDM-SL specification to produce an
initial version of the software implementation. Their work
does, however, not take generation of the bodies of functions
and operations into account. Therefore, the authors only pro-
duce the method signatures for the Java methods when trans-
lating the functional descriptions of the VDM-SL model.

The translation rules proposed by Jin et al. have been
implemented as an Eclipse plugin by Zhou et al. in [32].
The plugin takes a VDM-SL specification as input, which is
type-checked using VDMTools [27], and outputs JML an-
notated Java classes that must be completed manually by
the developer.

Code generation from other formal notations or mod-
elling languages to JML annotated Java is also possible. As
an example, Rivera et al. present the EventB2Java tool [25]

– a code generator, which is capable of translating both ab-
stract and refinement Event-B [1] models into JML anno-
tated Java. EventB2Java has the advantage over other Event-
B code generators that it does not require user intervention
as part of the code generation process, which is similar to
our approach.

In [20] Lensink et al. present a prototype code generator
which translates a subset of the Prototype Verification Sys-
tem (PVS) [24] to an intermediate representation in Why [6]
suitable for program verification. Subsequently the Why rep-
resentation is translated to JML annotated Java. In their work
the authors focus on translating executable PVS constructs,
which is similar to what we do for VDM-SL. A key feature
of their code generator is that it, in addition to specification
code, also translates proven properties, which is outside the
scope of our work.

Hubbers et. al propose AutoJML [10] – a tool for trans-
lating UML state diagrams into JML annotated Java Card
code [31]. A state diagram describes a Java Card applet from
which AutoJML produces Java skeleton code annotated with
JML. In the generated code the different states are repre-
sented as constant values, and an additional Java field is
used to represent the current state of the applet. A JML
invariant is used to specify the valid state values for this
field, and a JML constraint is used to describe the valid
state transitions. This is comparable to the way we enable
and disable invariant checking, which we do by toggling the
invChecksOn ghost variable using set statements.

In [14] Klebanov proposes an approach similar to that
of Hubbers et al. Instead of using UML state diagrams, Kle-
banov uses automata-based programming to describe the be-
haviour of a smart card application, which is generated to
JML annotated Java Card code. Klebanov argues that use of
automata-based programming over UML state diagrams is a
better way to describe application-specific behaviour. A sim-
ilar argument can be made for VDM-SL, which is suitable
for capturing the dynamic aspects of a system.

9 Conclusion and future plans

In this paper we have demonstrated how VDM-SL models
can be translated to JML annotated Java programs that can
be checked for correctness using JML tools. The JML trans-
lator uses JML to represent the DbC elements of VDM-SL,
and generates checks that help ensure the consistency of
VDM-SL types across the translation.

The principles for pre- and post conditions in VDM-SL
and JML are similar although there are subtle semantic dif-
ferences between the two notations. These differences are
mostly caused by the fact that JML is built on top of Java,
where object types use reference semantics. VDM-SL, on
the other hand, solely uses value types. Therefore, it is nec-
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essary to employ deep cloning principles when representing
value types in JML annotated Java code.

Checking state and record invariants in the generated
code is complicated due to two reasons: First, atomic ex-
ecution in VDM requires a way to control when invariant
checking must be done. We achieve this by using a ghost
variable to indicate when invariant checking is enabled, and
update it before entering and leaving the atomic statement.
Secondly, we have demonstrated that transitive dependen-
cies between records sometimes require extra JML checks
to be generated to ensure that the invariant checks get trig-
gered when they should.

The differences between the type systems of VDM-SL
and Java further necessitate extra checks to be produced.
These checks are needed to ensure that the generated code
does not violate any of the constraints imposed by the types
in the VDM-SL model. Overture performs these dynamic
type checks internally, whereas they must be made explicit
in Java.

In the future we plan to use this work in the context of
test automation. In VDM it is possible to specify a trace def-
inition in a way similar to that of a regular expression. This
trace can then be expanded into a large collection of tests
that can be executed against the model. This is a useful way
to detect deficiencies in the model, such as missing pre con-
ditions, post conditions and invariants [16].

We plan to code generate the trace expansion such that
the generated tests can be executed against the code gener-
ated version of the model. The work presented in this paper
can then be used to detect contract or type violations and
give verdicts to the code generated trace tests. We believe
that this will be particularly advantageous for execution of
large collections of tests. We expect this approach to signifi-
cantly increase execution speed for test cases and also allow
more tests to be executed. In addition we plan to look into
JML generation for other VDM dialects such as VDM++
[8]. However, since VDM++ is object-oriented and supports
concurrency, we envisage that this will give rise to a com-
pletely new set of challenges not addressed by the work in
this paper.

We hope that our work will serve as inspiration for other
researchers who seek to bridge the gap between other for-
mal model-oriented specification notations and implemen-
tation technologies that support the DbC approach or differ
in terms of the types they support. We believe that the rules
proposed in this paper can be useful for others who want
to translate between specification languages such as ASM,
B and Z and implementation technologies such as Spec#,
Sparc-Ada and Eiffel.
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(2003). URL http://www.lri.fr/˜filliatr/ftp/
publis/why-tool.ps.gz

7. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools
and Techniques in Software Development, Second edn. Cam-
bridge University Press, The Edinburgh Building, Cambridge CB2
2RU, UK (2009). DOI 10.1017/CBO9780511626975. ISBN 0-
521-62348-0

8. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef,
M.: Validated Designs for Object–oriented Systems. Springer,
New York (2005). DOI 10.1007/b138800. URL http://
overturetool.org/publications/books/vdoos/

9. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development
Method. Wiley Encyclopedia of Computer Science and Engineer-
ing (2008). Edited by Benjamin Wah, John Wiley & Sons, Inc.

10. Hubbers, E., Oostdijk, M.: Generating JML specifications from
UML state diagrams. In: In Forum on Specification and Design
Languages FDL’03, pp. 263–273 (2003)

11. Jin, D., Yang, Z.: Strategies of Modeling from VDM-SL to JML.
Advanced Language Processing and Web Information Technol-
ogy, International Conference on 0, 320–323 (2008). DOI http:
//doi.ieeecomputersociety.org/10.1109/ALPIT.2008.25

12. Jones, C.B.: Software Development A Rigorous Approach.
Prentice-Hall International, Englewood Cliffs, New Jersey (1980)

13. Jørgensen, P.W.V., Couto, L.D., Larsen, M.: A Code Generation
Platform for VDM. In: The Overture 2014 workshop (2014)

14. Klebanov, A.: Automata-Based Programming Technology Exten-
sion for Generation of JML Annotated Java Card Code. pp. 41–44.
Proc. of the Spring/Summer Young Researchers’ Colloquium on
Software Engineering (2008)

15. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K.,
Verhoef, M.: The Overture Initiative – Integrating Tools for VDM.
SIGSOFT Softw. Eng. Notes 35(1), 1–6 (2010). DOI 10.1145/
1668862.1668864. URL http://doi.acm.org/10.1145/
1668862.1668864

16. Larsen, P.G., Lausdahl, K., Battle, N.: Combinatorial Testing for
VDM. In: Proceedings of the 2010 8th IEEE International Con-
ference on Software Engineering and Formal Methods, SEFM
’10, pp. 278–285. IEEE Computer Society, Washington, DC, USA
(2010). DOI 10.1109/SEFM.2010.32. URL http://dx.doi.
org/10.1109/SEFM.2010.32. ISBN 978-0-7695-4153-2

17. Larsen, P.G., Lausdahl, K., Battle, N.: The VDM-10 Language
Manual. Tech. Rep. TR-2010-06, The Overture Open Source Ini-
tiative (2010)

18. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter
Simulating A Distributed real time system using VDM. In: S. Qin,

153



Automated translation of VDM to JML annotated Java 21

Z. Qiu (eds.) Proceedings of the 13th international conference on
Formal methods and software engineering, Lecture Notes in Com-
puter Science, vol. 6991, pp. 179–194. Springer-Verlag, Berlin,
Heidelberg (2011). DOI 10.1007/978-3-642-24559-6\ 14. ISBN
978-3-642-24558-9

19. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.,
Kiniry, J.: JML Reference Manual, revision 2344 edn. (2013)

20. Lensink, L., Smetsers, S., van Eekelen, M.: Generating Verifiable
Java Code from Verified PVS Specifications. In: A. Goodloe,
S. Person (eds.) NASA Formal Methods, Lecture Notes in Com-
puter Science, vol. 7226, pp. 310–325. Springer Berlin Heidel-
berg (2012). DOI 10.1007/978-3-642-28891-3 30. URL http:
//dx.doi.org/10.1007/978-3-642-28891-3_30

21. Meyer, B.: Object-oriented Software Construction. Prentice-Hall
International (1988)

22. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular Invari-
ants for Layered Object Structures. Sci. Comput. Program. 62(3),
253–286 (2006). URL http://dx.doi.org/10.1016/j.
scico.2006.03.001

23. The Overture tool website. http://overturetool.org/
(2015)

24. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verifi-
cation System. In: D. Kapur (ed.) 11th International Conference
on Automated Deduction (CADE), Lecture Notes in Artificial In-
telligence, vol. 607, pp. 748–752. Springer-Verlag, Saratoga, NY
(1992)

25. Rivera, V., Cataño, N., Wahls, T., Rueda, C.: Code generation for
Event-B. International Journal on Software Tools for Technology
Transfer pp. 1–22 (2015)

26. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Lan-
guage Reference Manual, The (2nd Edition). Pearson Higher Ed-
ucation (2004)

27. SCSK: The VDMTools website. http://www.vdmtools.
jp/en/ (2015)

28. Vilhena, C.: Connecting between VDM++ and JML. Master’s the-
sis, Minho University with exchange to Engineering College of
Arhus (2008)

29. Wing, J.M.: Writing Larch interface language specifications.
ACM Trans. Progr. Lang. Syst. 9(1), 1–24 (1987). URL http:
//doi.acm.org/10.1145/9758.10500

30. Woodcock, J., Davies, J.: Using Z – Specification, Refinement,
and Proof. Prentice Hall International Series in Computer Science
(1996)

31. Zhen, Z.: Java Card Technology for Smart Cards. Prentice-Hall,
Boston (2000)

32. Zhou, J., Jin, D.: Research on modeling from VDM-SL to JML for
systematic software development. In: Control and Decision Con-
ference (CCDC), 2010 Chinese, pp. 2312–2317. IEEE, Xuzhou
(2010)

154 13 Automated translation of VDM to JML annotated Java



14
Using JML-based Code Generation to Enhance

Test Automation for VDM Models

This paper has been submitted to a peer-reviewed conference.

[P80] Peter W. V. Tran-Jørgensen, Peter Gorm Larsen and Nick Battle.
Using JML-based Code Generation to Enhance Test Automation
for VDM Models. Submitted to the 21st International Symposium
on Formal Methods (FM), November, 2016.

155



Using JML-based Code Generation to Enhance Test
Automation for VDM Models

Peter W. V. Tran-Jørgensen1, Peter Gorm Larsen1, and Nick Battle2

1 Aarhus University, Department of Engineering, Finlandsgade 22, 8200, Denmark
{pvj,pgl}@eng.au.dk

2 Fujitsu Services, Lovelace Road, Bracknell, Berkshire. RG12 8SN,UK
nick.battle@gmail.com

Abstract. The Vienna Development Method (VDM) uses contract-based ele-
ments such as invariants to constrain data, and pre- and post conditions to specify
intended behaviour. Data and behaviour can be validated against these contract-
based elements using test automation for VDM. This technique uses traces – a
kind of pattern – to specify test sets, which can be executed against the VDM
model. In this paper we demonstrate how traces can be code generated to Java
and used to test a version of the VDM model, implemented as a Java Modeling
Language (JML) annotated Java program. This approach has potential to allow
a larger number of tests to be executed since the tests are run as compiled code
rather than using a VDM interpreter. To study the performance of code gener-
ated traces, execution times are compared to those obtained using different VDM
interpreters.

1 Introduction

Inspired by TOBIAS [20, 21], the Vienna Development Method (VDM) [8, 12] has been
enhanced with combinatorial testing – a test automation feature that uses a pattern-
based notation to describe and execute test sets. In VDM, combinatorial testing is used
to validate data and behaviour against invariants and pre- and post conditions [16, 17].
The tests are generated from a pattern, referred to as a trace, which describes a finite
subset of all possible executions of a VDM model. Combinatorial testing for VDM is
supported for an executable subset of VDM by the Overture [18] and the VDMJ [1] in-
terpreters. However, execution of large combinatorial test sets can be slow and demand-
ing in terms of memory resources. To improve on this situation, this paper presents a
technique that allows traces to be executed as compiled code.

Using Overture’s [15, 5, 23] VDM-to-Java code generator [13, 26] a VDM-SL model
can be translated to a Java program, where the contract-based VDM elements are de-
scribed using Java Modeling Language (JML) constraints [19]. In this paper we extend
this code generator to support traces.3 When a code generated trace is executed, using a
JML tool, the trace tests are expanded and run against the code generated version of the
VDM specification. The verdict of each test is determined by checking the generated
code against the JML constraints. There are two benefits to this approach. First, it has

3 The trace code generator is included in the Overture tool.
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potential to support faster execution of larger test sets since the tests are executed as
compiled code rather than using a VDM interpreter. Secondly, it allows the trace to be
used to validate the generated code against the properties described by the VDM model.
In our work we use the OpenJML [3] runtime assertion checker to execute the code gen-
erated trace. The reason for this is that OpenJML is the only tool that we are aware of
that currently supports Java 7 as well as the subset of JML produced by Overture’s Java
code generator.

We have used code generated traces to analyse properties of an algorithm used to ob-
fuscate Financial Accounting District (FAD) codes, which are used to identify branches
of a retailer. The algorithm was modelled in VDM and validated using combinatorial
testing. One of the interesting aspects of this case study is that it involves the gener-
ation and execution of one million tests, which code generated traces enabled us to
execute. However, as we shall see, very recent advances in trace expansion techniques
allows traces to be executed much more efficiently. Currently VDMJ is the only VDM
interpreter that supports this expansion algorithm. To study the performance of code
generated traces we compare the execution times to those obtained using Overture and
VDMJ.

Combinatorial testing has been researched for several years [22] with most of the
work centred around tools that support combinatorial testing for different programming
languages [27]. At the level of specification languages it is worth comparing our work
to [7]. In their work, Dick et al. use a finite-state automaton approach to support test se-
quencing of implicit-style VDM models. However, since their technique uses symbolic
values, one needs to provide the means to select concrete ones.

Similar to VDM, TOBIAS supports test case generation from a pattern that de-
scribes a test set. The test cases generated by TOBIAS, can be output as sequences of
VDM operation calls or as JUnit [14] test cases. In particular, the latter can be used to
test a Java implementation against a JML specification. Although our work currently
only supports Java and JML, it also enables code generation of the VDM specification
in addition to the tests. Our technique may, however, be adopted to use other Design-
by-Contract (DbC) implementation technologies (section 6).

The test automation technique, presented in this paper, is also comparable to what
can be achieved using SAT solvers [2] since both techniques conduct an analysis for
a finite collection of cases. However, while SAT solvers are limited by the number
of values for each domain, our approach is guided by traces for the finite number of
combinations to be analysed. Similar to our approach the Spin model checker translates
a Promela model into an optimised C-program that performs exhaustive exploration of
the state space [10]. In order to avoid the state explosion problem that is inherent to
model checking, one needs to limit the size of the state space subject to exploration.
In VDM the state space is limited by the desired paths undertaken, which is expressed
using a trace.

The structure of the paper is as follows: After this introduction, combinatorial test-
ing for VDM is described in section 2. Next, our approach to code generating traces is
presented in section 3. Afterwards, the performance of code generated traces is studied
using an industrial case study in section 4. This is followed by a discussion of the per-
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formance results in section 5. Finally, this paper concludes and outlines future work in
section 6.

2 Background

2.1 VDM

VDM is one of the longest established formal methods for the development of computer-
based systems. In VDM data are defined by means of types built using constructors that
define records and collections such as sets, sequences and mappings from basic val-
ues such as booleans, characters and numbers. Data types can be further constrained
with type invariants and the overall system state can similarly have a state invariant
defined. Functionality is defined in terms of functions and operations over data types.
These can be defined implicitly by pre conditions and post conditions that characterise
their behaviour, or explicitly by means of specific algorithms. Function and operation
arguments are passed-by-value, which avoids the complexity of value aliasing.

Collectively, the state/type invariants and pre- and post conditions define “contracts”
that the specification must meet. A specification implicitly defines functions that repre-
sent each of its constraints. For example, a pre condition defines a total function which
has the same parameters as the function that it guards and a boolean result; the body of
the function is the pre condition expression. Similarly, a type definition with an invari-
ant implicitly defines a total function with parameters that match its value constructor
and a boolean result; the body of the function is the invariant expression.

As an informative annex to the VDM-SL ISO standard [11], a module-based exten-
sion has been added to the language. This extension enables structuring of a VDM-SL
model into a collection of modules with capabilities to import and export definitions
to/from other modules. A module may define a single state component which can be
constrained by an invariant.

2.2 Combinatorial testing of VDM models

Combinatorial tests are a form of animation that allow large numbers of tests to be gen-
erated using patterns. A combinatorial test generator expands these patterns, or traces,
by considering every possible combination of values that would match the pattern. Then
for each combination of values, the system is reset and an animation performed. It is not
unusual to generate hundreds of thousands of tests this way, which therefore explores
far more of the possible system states than ad-hoc animation testing.

Traces are closely related to normal VDM-SL expressions, but expand the “loose-
ness” to consider all possible results. For example, in a normal specification the expres-
sion let a in set S be st p(a) selects a value from the set S such that p is
true. If there are many such values in S, VDM does not define which one is selected,
only that the one selected meets p. In a trace, the same expression generates a new
test, with a new binding for a, for every value in S that meets p(a). Similarly, the
non-deterministic statement ||(op1(), op2(), op3()) usually means that the
three operations are called sequentially, but in an undefined order. When this appears in
a trace, it generates one test for every possible ordering of the calls.
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Futhermore, when a trace contains two or more clauses that would expand to multi-
ple tests, a test is generated for every combination of the expansions. For example, the
trace in listing 1.1 calls the operation op with every possible combination of a value
from the set A and a value from the set B.�
let a in set A in
let b in set B in
op(a, b);
� �

Listing 1.1. Example of trace in VDM.

At the end of the expansion, every generated test is an ordered sequence of variable
assignments and operation or function calls. So if A={1} and B={7,14}, the example
above would expand to a=1; b=7; op(a,b) and a=1; b=14; op(a,b). Each
test will then execute successfully if the sequence of operation calls do not violate any
constraints, either in the creation of the variable values or in the execution of the opera-
tions. A test which does not violate any constraints is considered a PASS. A test which
breaks a constraint is normally considered a FAIL, but tests which violate a constraint
directly when an operation is called from the test is considered INCONCLUSIVE. The
reason is that it is possible that the specification is correct but the test generation is at
fault. For example, the generation may produce test cases that violate the outermost
operation pre conditions.

2.3 Code generation for VDM-SL

The work presented in this paper is implemented as an extension of Overture’s VDM-
to-Java code generator. This code generator represents each VDM-SL module using a
final Java class that has a private constructor to protect against instantiation and
subclassing. The module class uses a static field to represent the state component (if
defined) and functions and operations are translated to static Java methods that are
added to the module class.

The generated Java code is supported by a small runtime library, which includes
Java implementations of some of the VDM types and operators. For example, sets, se-
quences and maps are implemented using the VDMSet, VDMSeq and VDMMap classes,
which are extensions of standard Java collections.

Overture’s Java code generator can translate pre- and post conditions and invari-
ants of VDM-SL specifications to JML annotations that are added to the generated
Java code [26]. JML is a DbC specification language, used for specification of Java
classes and interfaces. To demonstrate how the code generator uses JML, consider a
code generated method f, with input parameters i1,...,in, derived from a user-
defined VDM-SL function. Then f has a code generated static pre condition method
pre f with the same parameters as f. To indicate that pre f has no write-effects it is
marked with the JML pure modifier. In addition, f is annotated with the requires
pre f(i1,...,in) annotation to make pre f a pre condition of f. The generated
Java program can be validated against the JML annotations in order to ensure that the

159



Using JML-based Code Generation to Enhance Test Automation for VDM Models 5

generated code meets the properties described by the contracts of the VDM specifica-
tion.

The Java code generator also produces JML checks to ensure the consistency of
VDM types when they are translated to Java. This is achieved using a function Is(v,T)
which checks that a Java value or object reference v is consistent with the VDM type T
that it originates from. For example, consider a Java value or object reference v which
represents a VDM identifier that is either a natural number or a boolean value, i.e.
it is of type bool|nat. In the generated Java code Is(v,bool|nat) is a JML
predicate that is used to test whether v is either true, false or some positive in-
teger. For this simple example the JML annotation checks that Utils.is nat(v)
|| Utils.is bool(v) is true. More complex types, such as user-defined types
constrained by invariants or collection-based types, generate more complicated JML
checks. The full definition of Is(v,T) and a description of how this function is used
by the Java code generator, is described in detail in [26]. Some of the checks generated
by Is(v,T) uses functionality of the Java code generator’s runtime library, including
a small extension of it called V2J. For example, V2J has functionality to check if a
Java object represents an injective mapping or a non-empty sequence, which is used to
check type constraints in the generated code.

The trace code generator uses the JML annotations to detect contract and type vi-
olations in the generated code. This is used to determine the verdicts of the trace tests.
For example, if one of the tests violates a JML post condition then this test is consid-
ered a FAIL. As another example, a test that passes arguments to an operation that
do not match the operation signature – with respect to the VDM-SL specification – is
considered INCONCLUSIVE. This is detected using the JML predicates produced by
Is(v,T).

3 Code Generating Traces

Internally Overture represents a trace as an Abstract Syntax Tree (AST) composed of
nodes that correspond to the different kinds of trace constructs (e.g. a let bindings
or a non-deterministic statement). This AST represents a pattern that can be expanded
into a test set. The code generator takes a similar approach to representing traces by
constructing the trace AST using trace constructs or nodes available via the Java code
generator’s runtime library: the Alternative trace node is used to represent the tests
produced by the | trace operator or the let be st bindings. The let binding only
defines trace variables. The Concurrent trace node represents the || trace operator
and expands to all possible orderings of the tests of its child nodes. The Repeat trace
node is used to repeat tests a specified number of times according to some repetition
pattern, e.g. op(x){1,2}. The Sequence trace node expands to the sequencing of
the tests of its child nodes. The Statement trace node expands to a single test, which
is the invocation to a Call statement. The Call statement nodes constitute the leaves
of the trace AST.

In order to construct a code generated version of the trace, the code generator pro-
duces Java code that when executed builds a trace AST, composed of nodes from the
Java code generator’s runtime library. To demonstrate the process of code generat-
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ing a trace AST, consider the VDM-SL trace in listing 1.2. In this listing, the non-
deterministic choice between fun(x) and op1(x) produces two tests: fun(x);
op1(x) and op1(x); func(x). The repetition of op2(x) further produces two
tests: op2(x) and op2(x); op2(x). Since the repeated and concurrent trace oper-
ators are grouped as alternatives, and the tests are expanded for each bindings for x, the
total number of tests accumulates to eight. These tests are shown in listing 1.3.�
let x in set {1,2} in (
||(fun(x),op1(x)) | op2(x){1,2}

)
� �
Listing 1.2. Example of a trace specified using VDM-SL.

�
x = 1; fun(x); op1(x); /* Test 1 */
x = 1; op1(x); fun(x); /* Test 2 */
x = 1; op2(x); /* Test 3 */
x = 1; op2(x); op2(x); /* Test 4 */
x = 2; fun(x); op1(x); /* Test 5 */
...
x = 2; op2(x); op2(x); /* Test 8 */
� �

Listing 1.3. The tests generated from the trace in listing 1.2.

At runtime the code generated version of a trace is represented as an object tree
composed of the different trace nodes and trace variables used during the expansion
of the trace. For the trace in listing 1.2, the trace AST is visualised using the Unified
Modeling Language (UML) object diagram in fig. 1.

Expansion and execution of the trace is handled entirely by the runtime library, and
performed using the ExecTests method in the TraceNode class. The execution of
the trace tests is shown using a UML sequence diagram in fig. 2. In this figure ast
represents the trace AST, module is the code generated version of the module enclos-
ing the trace, testAcc is used to record the test results, and finally store is used
to manage system states between the different test runs. As described in section 2, the
system is reset between each test, i.e. the tests are executed independently. The code
generator uses the store to achieve this when executing the code generated version
of the trace. The test accumulator (testAcc in fig. 2) receives information about each
test that has been executed via the registerTestmethod. This method call has been
omitted from fig. 2 to keep the figure simple. A test accumulator is implemented as a
strategy [9], i.e. one test accumulator may print the test results directly to the console,
another test accumulator may write the results to the file system and so on.

As a first step of the test expansion and execution, the module class enclosing the
code generated trace, is registered in the store. In case there are other module classes
they are also registered in the store, since they might also have their state changed
during test execution. Subsequently the tests are derived by invoking the getTests
method on the root of the ast, which returns a TestSequence that contains the
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traceAst:Sequence

let:Alternative

:Sequence

|:Alternative

||:Concurrent

:Statement

fun(x):Call

:Statement

op1(x):Call

{1,2}:Repetition
from=1
to=2

:Statement

op2(x):Call

2
:TraceVar

Fig. 1. Runtime representation of a code generated trace, shown using a UML object diagram.

generated tests. Next, each test is executed and the store is reset to restore the system
state. This process continues until there are no more tests to be executed.

The Call statement is an abstract class defined by the runtime library. When a
trace is code generated, the produced code implements and instantiates the Call state-
ments as anonymous classes. As shown in fig. 3, the Call statement defines three
methods: The isTypeCorrect method is used to determine whether the input to the
Call statement matches the types of the formal parameters of the function or operation
that the Call statement originates from. If this method returns false the current test
is considered INCONCLUSIVE. Since the implementation of the isTypeCorrect
method depends on the signature of the function or operation that the Call statement
originates from, this method is implemented by the Java code generator when the trace
is code generated. The isTypeCorrect method returns true by default, which cor-
responds to the situation where the input to the Call statement can be guaranteed,
using static analysis, to be type correct. In this particular case the code generator does
not have to implement the isTypeCorrect method. To exemplify, the construction
and implementation of the Call statement object used to represent op2 is shown in
listing 1.4. Note that the code generated version of the argument x is accessed from a
scope enclosing the Call methods.

Call callStm_3 = new Call() {
public Boolean isTypeCorrect() {

try {
//@ assert Utils.is_nat(x);

} catch (AssertionError e) {
return false;

}
return true;
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}
public Boolean meetsPreCond() {

return pre_op2(x);
}
public Object execute() {

return op2(x);
}
public String toString() {

return "op2(" + Utils.toString(x) + ")";
}

};

Listing 1.4. Implementation of a Call statement.

loop

[tests.hasNext()]

ast:TraceNode

test:TestSequence

TraceNodeUser

reset(store)

register(store,module)

execute(test)

«create»
tests

getTests()

test

next()

execTests(ast,module,testAcc,store)

Fig. 2. Execution of a code generated trace, shown using a UML sequence diagram.

Call

isTypeCorrect() : Boolean
meetsPreCond() : Boolean
execute() : Object

Fig. 3. The interface of the Call statement node.
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For a Call statement to be type correct the input arguments a1,...,an must
match the types of the formal parameters, T1,...,Tn, of the function or operation
that the Call statement originates from. Using the function Is(v,T), described in
section 2, we require that Is(a1,T1) && ... && Is(an,Tn) holds in order for
the Call statement to be considered type correct. This check is code generated to a
JML assertion, which can be configured to produce an AssertionError that signals
that the Call statement is not type correct for the given arguments. As indicated by the
generated JML check in listing 1.4, it is assumed that the formal parameter of op2 is
of type nat.

If a test is considered type correct the runtime library will check that the pre con-
dition of the Call statement is met, which is checked using the meetsPreCond
method. The meetsPreCond method returns true by default, which corresponds
to the situation where no pre condition is defined. If either the isTypeCorrect
or meetsPreCond method yield false the test is INCONCLUSIVE. Otherwise the
runtime library proceeds by calling the execute method, which evaluates the Call
statement and returns the result to the runtime library. This method is abstract and im-
plemented by the code generator when the trace is code generated (see listing 1.4).

4 Case study

4.1 FAD codes

A FAD code is a six digit number, used to identify branches of a retailer. The customer
asked us to consider a scenario where FAD codes were obfuscated such that codes were
still six digits, still unique per branch, and the entire 0-999999 value range was still
available. This is equivalent to creating a permutation on the list of all possible FAD
codes. But the obfuscation of a FAD code also needed to be a lightweight calculation,
rather than a lookup in a large table, for example.

The design team thought that a permutation could be defined using an injective map
of the 0-9 digits onto themselves, but with no digit mapping to itself. If that map was
then used to transform the individual digits of a FAD code, then it was believed that the
overall set of FAD codes and their transformations would itself form an injective map,
defining a permutation. This is intuitively true, but it was not considered “obvious”.
To investigate whether it did meet the requirements, a VDM model was created that
defined FAD codes and the injective digit map. It was then stated that if the map was
applied to every possible FAD code, then the set of obfuscated FAD codes would meet
the requirements. Relevant excerpts from the VDM model are shown in listing 1.5.�
values
SIZE = 6; -- FAD code size
MAX = 10 ** SIZE - 1; -- The highest FAD code
DM1 : DigitMap = -- Arbitrary digit mapping
{ 1 |-> 9, 2 |-> 8, 3 |-> 7, 4 |-> 6, 5 |-> 0,
6 |-> 4, 7 |-> 3, 8 |-> 2, 9 |-> 1, 0 |-> 5 };

types
DigitMap = inmap nat to nat
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inv m ==
let digits = {0, ..., 9} in

dom m = digits and rng m = digits
and forall c in set dom m & m(c) <> c;

FAD = nat
inv f == f <= MAX

functions
convert: FAD * DigitMap -> FAD
convert(fad, dm) ==
let digits = digitsOf(fad) in

valOf([ dm(digits(i)) | i in set inds digits ])
post RESULT <> fad;

traces
AllDifferent:
let fad in set {0, ..., MAX} in

convert(fad, DM1);
� �
Listing 1.5. Excerpts from the FAD code VDM model

The trace in listing 1.5 has no combination of cases, but still generates one million
test cases when SIZE is set to six. The validity of each test is checked by the fact that
the digit map DM1 must meet its constraints, and when applied to every FAD code that
map must produce an obfuscated result which meets the convert post conditions –
that it is a different value.

One could write a trace which applied every possible injective map to the entire
set of FAD codes to test that every case produced a permutation. However, with one
million FAD codes per map, that would be intractable. This illustrates the point that
although trace expansion is useful, combinatorial explosions can easily limit the size of
the traces that are possible to execute. It also shows that performance gains achieved
by translation of the VDM source into another language may significantly increase the
scope of combinatorial testing that is possible.

4.2 Performance results

To analyse the performance gained by using code generated traces, the trace in list-
ing 1.5 was executed using different VDM tools, for FAD codes consisting of up to
six digits. These VDM tools exhibit different performance characteristics in terms of
execution time and memory consumption due to the way they expand the trace. The
memory consumption is an indication of how well a tool scales for large test collec-
tions. For example, when the memory consumption of a tool approaches the maximum
amount of memory available, the execution time will increase significantly. In the worst
case the tools run out of out of memory and crash.

Each tool was run twice for each FAD code size. The first run was used to mea-
sure the execution time. The second run was used to confirm that the tool did not suffer
from memory starvation, which would yield a misleading execution time. Checking
the memory consumption was performed using a separate run to avoid affecting the
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execution time. The execution times are those reported by the tools. The memory con-
sumption was analysed using the /usr/bin/time tool available on Ubuntu Gnome
15.10 (wily). This tool will report the maximum resident set size for a process, i.e. the
maximum amount of memory allocated by the process that is stored in RAM during
execution. This is not an accurate measure of the actual memory consumption but it
gives an idea of whether the VDM tools are suffering from memory starvation.

All the performance measurements have been performed on a Fujitsu LIFEBOOK
U772 laptop with a 1.7GHz Intel Core i5 processor and 8Gb of memory running a Linux
OS (Ubuntu Gnome). The VDM tools were executed on a 64-bit Java 7 virtual machine
with a maximum heap size of 5Gb.

The execution times for FAD codes of sizes one through six are shown in table 1 and
visualised using a logarithmic data plot in fig. 4. For the scenario that did not complete,
due to the VDM tool running out of memory during the trace expansion, the result is
specified as “failed”. For FAD codes of size six, the maximum resident set size for
VDMJ was measured to 2.17 Gb, for code generated traces it was 2.31 Gb, whereas no
measurement was made for Overture because this tool crashed. Based on the maximum
resident set sizes it can confirmed that the tools did not suffer from memory starvation
during the trace expansion and execution.

Table 1. Execution times for different VDM tools and FAD code sizes.

Size VDMJ-3.1.1 Overture-2.3.2 extension Code Generated
[ms] [ms] [ms]

1 46 124 211
2 465 621 633
3 2,139 3,288 3,217
4 8,692 9,068 29,032
5 35,610 57,999 279,401
6 379,635 failed 2,953,318

5 Discussion

This section discusses the performance results presented in section 4.2. As illustrated
using the plot in fig. 4, the execution times increase exponentially as more digits are
added to a FAD code. This is expected since adding more digits cause an exponential
increase in the number of generated tests.

Overture did not manage to run the one million tests generated for six digit FAD
codes because the tool ran out of memory. The code generated trace, on the other hand,
completed these tests in over 2, 900 s, or 49.22 minutes. What is surprising about the
results obtained using these two tools is that Overture expands and executes the tests
significantly faster than the code generated trace, for FAD code sizes smaller than six.
Therefore, the only performance gain of the code generated traces is the reduction in
memory needed to expand and execute the trace. This is surprising since traces that are
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1 2 3 4 5 6

102

103

104

105

106

FAD code size

Time [ms]

VDMJ-3.1.1
Overture-2.3.2 extension

Code Generated

Fig. 4. The execution times in table 1 visualised using a logarithmic data plot.

run as compiled code are, by intuition, expected to run faster. Comparing the execution
time of a code generated trace to that obtained using Overture provides a good indica-
tion of the performance that can be gained since these tools use the same algorithm to
expand the trace.

VDMJ completes all one million tests in over 379 s, or 6.33 minutes and is the
fastest tool to execute the tests. Compared to Overture, VDMJ manages to complete
the tests because it uses a more memory efficient algorithm to expand the trace. Older
releases of VDMJ use an algorithm similar to that of Overture. However, very recently,
VDMJ was released with a new expansion algorithm that addresses some of the perfor-
mance issues with the old expansion algorithm.

To study the performance overhead posed by OpenJML, we first tried to compile
and execute the code generated trace as a normal Java program – without using Open-
JML. This is similar to running the code generated trace without checking the generated
JML annotations. When this is done, even with the poor expansion algorithm, the one
million tests are expanded and executed in 33.94 seconds. If the expansion algorithm is
changed to that used by VDMJ, this will most likely be significantly lower. The reason
for this is that VDMJ seems to scale better than Overture for larger test sets, as indicated
by the execution times in table 1.

To further analyse the overhead of using OpenJML we tried to remove the JML an-
notations from the generated code and compile and execute the tests using the OpenJML
runtime assertion checker. The point of this is eliminate the overhead directly related
to checking the JML constraints and focus solely on the overhead posed by OpenJML.
Although this reduces the number of extra checks that are performed, OpenJML still
guards against variables and fields that hold the value null, as this is not allowed by
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default. When the JML annotations are removed, OpenJML expands and executes the
one million tests in 11.15 minutes. Ideally, the execution time should be close to that
obtained by running the code generated trace without the OpenJML runtime assertion
checker (33.94 seconds). This is an indication that OpenJML has a significant influence
on the rather disappointing performance results obtained using code generated traces.

To address the performance issues we believe that two things must be done. First,
the expansion algorithm must be updated to that used by VDMJ, which is available as
open-source. Secondly, we plan to look into other DbC technologies that can be used to
support our work (section 6).

6 Conclusion and future plans

In this paper we have shown how VDM traces can be code generated and used to test
the system realisation, or some part of it. Code generated traces have potential to allow
a larger number of tests to be executed since they are run as compiled code rather than
using a VDM interpreter. Our work is implemented as an extension of Overture’s Java
code generator, which translates a VDM-SL model to a Java program annotated with
JML derived from the VDM constraints. When the code generated trace is expanded
and executed, using a JML tool, the code generated version of the VDM specification
is validated against the JML annotations.

In the FAD code case study, code generated traces allow more memory efficient ex-
pansion and execution of traces, compared to using the Overture interpreter. However,
we still regard our current performance results as disappointing. Especially because
the FAD code trace executes much faster with VDMJ compared to the code generated
version of the trace. In order for code generated traces to execute faster than traces
interpreted using VDMJ, we believe that two things must be addressed. First, the algo-
rithm used for the expansion must be improved, for example, by using that of VDMJ.
Secondly, there are also indications that the performance issues are directly related to
the use of OpenJML.

Looking forward, we plan to investigate other technologies that can support our
work and help us achieve better performance results. One way to ensure that the con-
tracts and type constraints, as specified in VDM, hold across the translation, is by adding
extra Java checks to the generated code – without using a particular DbC technology.
Although this allows us to control exactly when these checks are triggered, the sepa-
ration between specification and code becomes less clean. One DbC technology that
is worth investigating, as an alternative to OpenJML, is the .NET-based technology,
Microsoft Code Contracts [25, chapter 15]. Compared to JML, which uses a dedicated
syntax for program specification, Code Contracts provides its features via libraries to
support all languages within the .NET framework. JML and Code Contracts share many
of the same concepts although their semantics sometimes differ. Changing our work to
use another DbC technology therefore requires new rules for representing VDM con-
straints in the generated code. However, due to the similarities between Java and C#, we
expect the approach used to code generate traces to be readily reusable. In a C++ con-
text another DbC technology that is worth investigating is the Contract++ library [4],
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which has been accepted into Boost [24]. On a longer term, contracts may also be a
native feature of C++17 [6].
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