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Abstract

We present a survey of the behavioral theory of the delimited-control op-
erators shift and reset. We first define a notion of contextual equivalence,
that we then aim to characterize with bisimilarities. We consider several
styles of bisimilarities, namely normal form, applicative, and environmen-
tal. Each style has its strengths and weaknesses, and we provide several
examples to allow comparisons between the different kinds of equivalence
proofs.
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1 Introduction

Control operators for delimited continuations [9, 11] provide elegant means for
expressing advanced control mechanisms [9, 15]. Moreover, they play a fun-
damental role in the semantics of computational effects [12], normalization by
evaluation [3] and as a crucial refinement of abortive control operators such
as callcc [11, 24]. Of special interest are control operators shift and reset [9]
due to their origins in continuation-passing style (CPS) and their connection
with computational monads [12]. The control delimiter reset delimits the cur-
rent continuation and the control operator shift abstracts the current delimited
continuation as a first class value that when resumed is composed with the
then-current continuation.

Because of the complex nature of control effects, it can be difficult to de-
termine if two programs that use shift and reset are equivalent (i.e., behave in
the same way) or not. Contextual equivalence [20] is widely considered as the
most natural equivalence on terms in languages similar to the λ-calculus. The
intuition behind this relation is that two programs are equivalent if replacing
one by the other in a bigger program does not change the behavior of this big-
ger program. The behavior of a program has to be made formal by defining the
observable actions we want to take into account for the calculus we consider.
It can be, e.g., inputs and outputs for communicating systems [23], memory
reads and writes, etc. For the plain λ-calculus [1], it is usually whether the
term terminates or not. The “bigger program” can be seen as a context (a term
with a hole), and therefore two terms t0 and t1 are contextually equivalent if we
cannot tell them apart when executed within any context C , i.e., if C [t0] and
C [t1] produce the same observable actions.

The latter quantification over contexts C makes context equivalence hard to
use in practice to prove that two given terms are equivalent. As a result, one
usually looks for more tractable alternatives to contextual equivalence, such as
bisimulations. A bisimulation relates two terms t0 and t1 by asking them to
mimic each other in a coinductive way, e.g., if t0 reduces to a term t′0, then
t1 has to reduce to a term t′1 so that t′0 and t′1 are still in the bisimulation,
and conversely for the reductions of t1. An equivalence on terms, called bisim-
ilarity can be derived from a notion of bisimulation: two terms are bisimilar if
there exists a bisimulation which relates them. Finding an appropriate notion of
bisimulation consists in finding the conditions on which two terms are related,
so that the resulting notion of bisimilarity is sound and complete w.r.t. con-
textual equivalence, (i.e., is included into and contains contextual equivalence,
respectively).

Different styles of bisimulations have been proposed for calculi similar to
the λ-calculus. For example, applicative bisimilarity [1] relates terms by re-
ducing them to values (if possible), and the resulting values have to be them-
selves applicative bisimilar when applied to an arbitrary argument. As we can
see, applicative bisimilarity still contains some quantification over arguments to
compare values, but is nevertheless easier to use than contextual equivalence
because of its coinductive nature, and also because we do not have to consider
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all forms of contexts. Applicative bisimilarity is usually sound and complete
w.r.t. contextual equivalence, at least for deterministic languages such as the
plain λ-calculus [1].

In contrast with applicative bisimilarity, normal form bisimilarity [18] does
not contain any quantification over arguments or contexts in its definition. The
principle is to reduce the compared terms to values (if possible), and then to
decompose the resulting values into sub-components that have to be themselves
bisimilar. Unlike applicative bisimilarity, normal form bisimilarity is usually
not complete, i.e., there exist contextually equivalent terms that are not normal
form bisimilar. But because of the lack of quantification over contexts, proving
that two terms are normal form bisimilar is usually quite simple.

Finally, environmental bisimilarity [22] is quite similar to applicative bisim-
ilarity, as it compares terms by reducing them to values, and then requires the
resulting values to be bisimilar when applied to some arguments. However, the
arguments are no longer arbitrary, but built using an environment, which rep-
resents the knowledge accumulated so far by an outside observer on the tested
terms. Like applicative bisimilarity, environmental bisimilarity is usually sound
and complete, but it also allows for up-to techniques (like normal form bisim-
ilarity) to simplify its equivalence proofs. In contrast, the definition of up-to
techniques for applicative bisimilarity remains an open problem.

In this article, we propose a survey of our previously published work [6, 5,
7] on the behavioral theory of a λ-calculus extended with the operators shift
and reset. We first define a notion of contextual equivalence, that we aim to
characterize with the three styles of bisimilarities discussed above. We provide
several examples to show how to prove that two terms are equivalent with each
bisimulation style.

Section 2 presents the syntax and semantics of the calculus λS with shift and
reset we use in this paper. In this section, we also remind the definition of CPS
equivalence, a CPS-based equivalence between terms, and discusse the definition
of a contextual equivalence for λS . We look for (at least sound) alternatives of
this contextual equivalence by considering several styles of bisimilarities: normal
form in Section 3, applicative in Section 4, and environmental in Section 5.
Section 6 concludes this paper. Section 3 summarizes results presented in [6],
Section 4 results in [5], and Section 5 results in [7].

2 The calculus λS

In this section, we present the syntax, reduction semantics, and contextual
equivalence for the language λS studied throughout this article.

2.1 Syntax

The language λS extends the call-by-value λ-calculus with the delimited-control
operators shift and reset [9]. We assume we have a set of term variables, ranged
over by x, y, z, and k. We use the metavariable k for term variables representing
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a continuation (e.g., when bound with a shift), while x, y, and z stand for any
values; we believe such distinction helps to understand examples and reduction
rules. The syntax of terms and values is given by the following grammars:

Terms: t ::= x | λx.t | t t | Sk.t | 〈t〉
Values: v ::= λx.t | x

The operator shift (Sk.t) is a capture operator, the extent of which is determined
by the delimiter reset (〈·〉). A λ-abstraction λx.t binds x in t and a shift
construct Sk.t binds k in t; terms are equated up to α-conversion of their bound
variables. The set of free variables of t is written fv(t); a term is closed if
fv(t) = ∅.

We distinguish several kinds of contexts, represented outside-in, as follows.

Pure contexts: E ::= � | v E | E t
Evaluation contexts: F ::= � | v F | F t | 〈F 〉
Contexts: C ::= � | λx.C | t C | C t | Sk.C | 〈C 〉

Regular contexts are ranged over by C . The pure evaluation contexts1 (abbrevi-
ated as pure contexts), ranged over by E , represent delimited continuations and
can be captured by the shift operator. The call-by-value evaluation contexts,
ranged over by F , represent arbitrary continuations and encode the chosen re-
duction strategy. Filling a context C (respectively E , F ) with a term t produces
a term, written C [t] (respectively E [t], F [t]); the free variables of t may be cap-
tured in the process. We extend the notion of free variables to contexts (with
fv(�) = ∅), and we say a context C (respectively E , F ) is closed if fv(C ) = ∅ (re-
spectively fv(E ) = ∅, fv(F ) = ∅). In any definitions or proofs, we say a variable
is fresh if it does not occur free in the terms or contexts under consideration.

2.2 Reduction Semantics

The call-by-value left-to-right reduction semantics of λS is defined as follows,
where t{v/x} is the usual capture-avoiding substitution of v for x in t:

(βv) F [(λx.t) v] →v F [t{v/x}]
(shift) F [〈E [Sk.t]〉] →v F [〈t{λx.〈E [x]〉/k}〉] with x /∈ fv(E )
(reset) F [〈v〉] →v F [v]

The term (λx.t) v is the usual call-by-value redex for β-reduction (rule (βv)).
The operator Sk.t captures its surrounding context E up to the dynamically
nearest enclosing reset, and substitutes λx.〈E [x]〉 for k in t (rule (shift)). If a
reset is enclosing a value, then it has no purpose as a delimiter for a potential
capture, and it can be safely removed (rule (reset)). All these reductions may oc-
cur within a metalevel context F . The chosen call-by-value evaluation strategy
is encoded in the grammar of the evaluation contexts. Furthermore, the reduc-
tion relation →v is compatible with evaluation contexts F , i.e., F [t] →v F [t′]
whenever t→v t

′.

1This terminology comes from Kameyama (e.g., in [17]).
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Example 2.1 (fixed-point combinators). We remind the definition of Tur-

ing’s and Curry’s fixed-point combinators. Let θ
def
= λxy.y (λz.x x y z) and

δx
def
= λy.x (λz.y y z); then Θ

def
= θ θ is Turing’s call-by-value fixed-point combina-

tor, and ∆
def
= λx.δxδx is Curry’s call-by-value fixed-point combinator. In [8], the

authors propose variants of these combinators using shift and reset. They write
Turing’s combinator as 〈θ Sk.k k〉 and Curry’s combinator as λx.〈δx Sk.k k〉. We
use the combinators and their delimited-control variants as examples throghout
the paper, and we study in particular the equivalences between them in Exam-
ple 3.3.

There exist terms which are not values and which cannot be reduced any
further; these are called stuck terms.

Definition 2.2. A term t is stuck if t is not a value and t 6→v.

For example, the term E [Sk.t] is stuck because there is no enclosing reset;
the capture of E by the shift operator cannot be triggered. In fact, stuck terms
are easy to characterize.

Proposition 2.3. A term t is stuck iff t = E [Sk.t′] for some E, k, and t′ or
t = F [x v] for some F , x, and v.

We call control stuck terms terms of the form E [Sk.t] and open stuck terms
the terms of the form F [x v].

Definition 2.4. A term t is a normal form, if t is a value or a stuck term.

We call redexes (ranged over by r) terms of the form (λx.t) v, 〈E [Sk.t]〉,
and 〈v〉. Thanks to the following unique-decomposition property, the reduction
relation →v is deterministic.

Proposition 2.5. For all terms t, either t is a normal form, or there exist a
unique redex r and a unique context F such that t = F [r].

Finally, we write →∗v for the transitive and reflexive closure of →v, and we
define the evaluation relation of λS as follows.

Definition 2.6. We write t ⇓v t′ if t→∗v t′ and t′ cannot reduce further.

The result of the evaluation of a term, if it exists, is a normal form. If a
term t admits an infinite reduction sequence, we say it diverges, written t ⇑v.

As an example of such a term, we use extensively Ω
def
=(λx.x x) (λx.x x).

In the rest of the paper, we use the following results on the reduction (or
evaluation) of terms. First, a control stuck term cannot be obtained from a
term of the form 〈t〉.

Proposition 2.7. If 〈t〉 ⇓v t′ then t′ is a value or an open stuck term of the
form 〈F [x v]〉. (If t is closed then t′ can only be a closed value.)
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(λx.t) v = t{v/x} βv

(λx.E [x]) t = E [t] if x /∈ fv(E ) βΩ

〈E [Sk.t]〉 = 〈t{λx.〈E [x]〉/k}〉 〈·〉S
〈(λx.t0) 〈t1〉〉 = (λx.〈t0〉) 〈t1〉 〈·〉lift

〈v〉 = v 〈·〉val
Sk.〈t〉 = Sk.t S〈·〉
λx.v x = v if x /∈ fv(v) ηv

Sk.k t = t if k /∈ fv(t) Selim

Figure 1: Kameyama and Hasegawa’s axiomatization of λS

2.3 The Original Reduction Semantics

Let us notice that the reduction semantics we have introduced does not require
terms to be evaluated within a top-level reset—a requirement that is commonly
relaxed in practical implementations of shift and reset [10, 12], but also in
some other studies of these operators [2, 16]. This is in contrast to the original
reduction semantics for shift and reset [4] that has been obtained from the 2-
layered continuation-passing-style (CPS) semantics [9], discussed in Section 2.4.
A consequence of the correspondence with the CPS-based semantics is that
terms in the original reduction semantics are treated as complete programs and
are decomposed into triples consisting of a subterm (a value or a redex), a
delimited context, and a meta-context (a list of delimited contexts), resembling
abstract machine configurations. Such a decomposition imposes the existence
of an implicit top-level reset, hard-wired in the decomposition, surrounding any
term to be evaluated.

The two semantics, therefore, differ in that in the original semantics there are
no stuck terms. However, it can be easily seen that operationally the difference
is not essential—they are equivalent when it comes to terms of the form 〈t〉. In
the rest of the article we call such terms delimited terms and we use the relaxed
semantics when analyzing their behaviour.

The top-level reset requirement, imposed by the original semantics, does
not lend itself naturally to the normal-form and applicative bismulation tech-
niques that we propose for the relaxed semantics in Sections 3 and 4. We show,
however, that the requirement can be successfully treated in the framework of
environmental bisimulations, presented in Section 5.

2.4 CPS Equivalence

The operators shift and reset have been originally defined by a translation into
continuation-passing style [9]. This CPS translation induces the following notion
of equivalence on λS terms:

Definition 2.8. Terms t and t′ are CPS equivalent if their CPS translations
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are βη-convertible.

For example, the reduction rules t→v t
′ given in Section 2.2 are sound w.r.t.

the CPS because CPS translating t and t′ yields βη-convertible terms in the λ-
calculus. The CPS equivalence has been characterized in terms of direct-style
equations by Kameyama and Hasegawa who developed a sound and complete
axiomatization of shift and reset [17]: two λS terms are CPS equivalent iff one
can derive their equality using the equations of Figure 1.

The axiomatization is a source of examples for the bisimulation techniques
that we study in Sections 3, 4 and 5, and it allows us to relate the notion of CPS
equivalence to the notions of contextual equivalence that we introduce in the
next section. In particular, we show that all but one axiom are validated by the
bisimilarities for the relaxed semantics, and that all the axioms are validated by
the environmental bisimilarity for the original semantics. The discriminating
axiom that confirms the discrepancy between the two semantics is Selim—the
only equation that hinges on the existence of the top-level reset.

2.5 Contextual Equivalence

In this section, we discuss the possible definitions of a Morris-style contextual
equivalence for the calculus λS . As usual, the idea is to express that two terms
are equivalent iff they cannot be distinguished when put in an arbitrary context.
The question is then what kind of behavior we want to observe. In λS , the
evaluation of closed terms generates not only values, but also control stuck
terms. Taking this into account, we obtain the following definition of contextual
equivalence.

Definition 2.9. Let t0, t1 be closed terms. We write t0 C t1 if for all closed C ,

• C [t0] ⇓v v0 iff C [t1] ⇓v v1;

• C [t0] ⇓v t′0, where t′0 is control stuck, iff C [t1] ⇓v t′1, with t′1 control stuck
as well.

The relation C is defined on closed terms, but can be extended to open terms
using closing substitutions: we say σ closes t if it maps the free variables of t
to closed values. The open extension of a relation, written R◦, is defined as
follows.

Definition 2.10. Let R be a relation on closed terms, and t0 and t1 be open
terms. We write t0 R◦ t1 if for every substitution σ which closes t0 and t1,
t0σ R t1σ holds.

The relation C is not suitable for the original semantics, because they dis-
tinguish terms that should be equated according to Kameyama and Hasegawa’s
axiomatization. Indeed, according to these relations, Sk.k v (where k /∈ fv(v))
cannot be related to v (axiom Selim in Figure 1), because a stuck term cannot
be related to a value. In the next section, we discuss a definition of contextual
equivalence for the original semantics.
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2.6 Contextual Equivalence for the Original Semantics

To reflect the fact that in the original semantics terms are evaluated within an
enclosing reset, the contextual equivalence we consider for the original semantics
tests terms in contexts of the form 〈C 〉 only. Because delimited terms cannot
reduce to stuck terms (Proposition 2.7), the only possible observable action is
evaluation to values. We therefore define contextual equivalence for delimited
terms as follows.

Definition 2.11. Let t0, t1 be closed terms. We write t0 P t1 if for all closed
C , 〈C [t0]〉 ⇓v v0 iff 〈C [t1]〉 ⇓v v1.

The relation P is defined on all (closed) terms, not just delimited ones. The
resulting relation is less discriminative than C, because P uses contexts of a
particular form, while C tests with all contexts.

Proposition 2.12. We have C ⊆ P.

As a result, any equivalence between terms we prove for the relaxed semantics
also holds in the original semantics, and any bisimilarity sound w.r.t. C (like
the bisimilarities we define in Sections 3, 4, and 5.1) is also sound w.r.t. P.
However, to reach completeness, we have to design a bisimilarity suitable for
delimited terms (see Section 5.2).

The inclusion of Proposition 2.12 is strict; in particular, P verifies the axiom
Selim, while C does not. In fact, we prove in Section 5.2 that P contains the
CPS equivalence ≡. The reverse inclusion does not hold (for P as well as for C):
there exists contextually equivalent terms that are not CPS equivalent.

Proposition 2.13. 1. We have Ω P ΩΩ (respectively Ω C ΩΩ), but Ω 6≡ ΩΩ.

2. We have Θ P ∆ (respectively Θ C ∆), but Θ 6≡ ∆.

The contextual equivalences C and P put all diverging terms in one equiv-
alence class, while CPS equivalence is more discriminating. Furthermore, as
is usual with equational theories for λ-calculi, CPS equivalence is not strong
enough to equate Turing’s and Curry’s (call-by-value) fixed-point combinators.

As explained in the introduction, contextual equivalence is difficult to prove
in practice for two given terms because of the quantification over contexts. We
look for a suitable replacement (that is, an equivalence that is at least sound
w.r.t. C or P) by studying different styles of bisimulation in the next sections.

3 Normal Form Bisimilarity

Normal form bisimilarity [18] equates (open) terms by reducing them to normal
form, and then requiring the sub-terms of these normal forms to be bisimi-
lar. Unlike applicative and environmental bisimilarities (studied in the next
sections), normal form bisimilarity usually does not contain a universal quan-
tification over testing terms or contexts in its definition, and is therefore easier
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Definition of ? on values:

x ? y
def
= x y λx.t ? y

def
= t{y/x}

Definition of RNFη on normal forms and contexts

E [x] R E ′[x] x fresh

E RNFη E ′
〈E [x]〉 R 〈E ′[x]〉 F [x] R F ′[x] x fresh

F [〈E 〉] RNFη F ′[〈E ′〉]

v0 ? x R v1 ? x x fresh

v0 RNFη v1

E0 RNFη E1 〈t0〉 R 〈t1〉
E0[Sk.t0] RNFη E1[Sk.t1]

F0 RNFη F1 v0 RNFη v1

F0[x v0] RNFη F1[x v1]

Figure 2: Definitions of the operator ? and the relation RNFη

to use than the former two. However, it is also usually not complete w.r.t.
contextual equivalence, meaning that there exist contextually equivalent terms
that are not normal form bisimilar. This section summarizes the results in [6].

3.1 Definition

In the λ-calculus [21, 18], the definition of normal form bisimilarity has to take
into account only values and open stuck terms. In λS with the relaxed semantics,
we have to relate also control stuck terms; we propose here a first way to deal
with these terms, that will be refined in the next subsection. Deconstructing
normal forms leads to comparing contexts as well as terms. Given a relation R
on terms, we define in Fig. 2 an extension of R to normal forms and contexts,
writtenRNFη, which relies on an application operator for values ?. The rationale
behind the definitions of ? and RNFη becomes clear when we explain our notion
of normal form bisimilarity, defined below.

Definition 3.1. A relation R on terms is a normal form simulation if t0 R t1
and t0 ⇓v t′0 implies t1 ⇓v t′1 and t′0 R

NFη t′1. A relation R is a normal form
bisimulation if both R and R−1 are normal form simulations. Normal form
bisimilarity, written N, is the largest normal form bisimulation.

In this section, we often drop the “normal form” attribute when it does not
cause confusion. Two terms t0 and t1 are bisimilar if their evaluations lead to
matching normal forms (e.g., if t0 evaluates to a control stuck term, then so
does t1) with bisimilar sub-components. We now detail the different cases.

Normal form bisimilarity does not distinguish between evaluation to a vari-
able and evaluation to a λ-abstraction. Instead, we relate terms evaluating to
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any values v0 and v1 by comparing v0 ? x and v1 ? x, where x is fresh. As
originally pointed out by Lassen [18], this is necessary for the bisimilarity to
be sound w.r.t. η-expansion; otherwise it would distinguish η-equivalent terms
such as λy.x y and x. Using ? instead of regular application avoids the intro-
duction of unnecessary β-redexes, which could reveal themselves problematic in
proofs.

For a control stuck term E0[Sk.t0] to be executed, it has to be plugged into
an evaluation context surrounded by a reset; by doing so, we obtain a term of
the form 〈t0{λx.〈E′0[x]〉/k}〉 for some context E′0. Notice that the resulting term
is within a reset; similarly, when comparing E0[Sk.t0] and E1[Sk.t1], we ask for
the shift bodies t0 and t1 to be related when surrounded by a reset. We also
compare E0 and E1, which amounts to executing E0[x] and E1[x] for a fresh x,
since the two contexts are pure. Comparing t′0 and t′1 without reset would be
too discriminating, as it would distinguish contextually equivalent terms such
as Sk.〈t〉 and Sk.t (axiom S〈·〉). Indeed, without reset, we would have to relate
〈t〉 and t, which are not equivalent in general (take t = Sk′.v for some v), while
Definition 3.1 requires 〈〈t〉〉 and 〈t〉 to be related (which holds for all t; see
Example 3.2).

The open stuck terms F0[x v0] and F1[x v1] are bisimilar if the values v0 and
v1 as well as the contexts F0 and F1 are related. We have to be careful when
defining bisimilarity on (possibly non pure) evaluation contexts. We cannot sim-
ply relate F0 and F1 by executing F0[y] and F1[y] for a fresh y. Such a definition
would equate the contexts � and 〈�〉, which in turn would relate the terms x v
and 〈x v〉, which are not contextually equivalent: they are distinguished by the
context (λx.�)λy.Sk.Ω. A context containing a reset enclosing the hole should
be related only to contexts with the same property. However, we do not want
to precisely count the number of delimiters around the hole; doing so would
distinguish 〈�〉 and 〈〈�〉〉, and therefore it would discriminate the contextually
equivalent terms 〈x v〉 and 〈〈x v〉〉. Hence, the definition of RNFη for contexts
(Fig. 2) checks that if one of the contexts contains a reset surrounding the hole,
then so does the other; then it compares the contexts beyond the first enclos-
ing delimiter by simply evaluating them using a fresh variable. As a result, it
rightfully distinguishes � and 〈�〉, but it relates 〈�〉 and 〈〈�〉〉.

We now give some examples to show how to prove equivalences using normal
form bisimulation.

Example 3.2 (double reset). We prove that 〈t〉 N 〈〈t〉〉 by showing that R
def
={(〈t〉, 〈〈t〉〉)}∪ N is a bisimulation. First, note that the case 〈t〉 ⇓v E [Sk.t′] is
not possible because of Proposition 2.7. Suppose 〈t〉 ⇓v v. we prove that 〈t〉 ⇓v v
iff 〈〈t〉〉 ⇓v v. If 〈t〉 ⇓v v, then 〈〈t〉〉 →∗v 〈v〉 →v v. Conversely, if 〈〈t〉〉 ⇓v v,
then 〈t〉 cannot diverge or cannot reduce to an open stuck term (otherwise, 〈〈t〉〉
would also diverge or reduce to an open stuck term). Hence, we have 〈t〉 ⇓v v′,
which entails 〈〈t〉〉 →∗v 〈v′〉 →v v

′, which in turn implies v = v′ because normal
forms are unique. Consequently, we have 〈t〉 ⇓v v iff 〈〈t〉〉 ⇓v v, and v NNFη v
holds.

If 〈t〉 ⇓v F [x v], then there exists F ′ such that t ⇓v F ′[x v] and F = 〈F ′〉.
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Therefore, we have 〈〈t〉〉 ⇓v 〈〈F ′[x v]〉〉. We have v NNFη v, and we have to
prove that 〈F ′〉 RNFη 〈〈F ′〉〉 to conclude. If F ′ is a pure context E , then we
have to prove 〈E [y]〉 R 〈E [y]〉 and y R 〈y〉 for a fresh y, which are both true
because N ⊆ R. If F ′ = F ′′[〈E 〉], then given a fresh y, we have to prove
〈F ′′[y]〉 R 〈〈F ′′[y]〉〉 (clear by the definition of R), and 〈E [y]〉 R 〈E [y]〉 (true
because N ⊆ R).

Similarly, it is easy to check that the evaluations of 〈〈t〉〉 are matched by 〈t〉.

Example 3.3 (fixed-point combinators). We study here the relationships be-
tween Turing’s and Curry’s fixed-point combinator and their respective variants
with delimited control [8] (see Example 2.1 for the definitions). First, we prove

that Turing’s combinator Θ is bisimilar to its variant ΘS
def
=〈θ Sk.k k〉. We build

the candidate relation R incrementally, starting from (Θ,ΘS). Evaluating these
two terms, we obtain

Θ ⇓v λy.y (λz.θ θ y z)
def
= v0, and

ΘS ⇓v λy.y (λz.(λx.〈θ x〉) (λx.〈θ x〉) y z) def
= v1.

We therefore extend R with (v0 ? y, v1 ? y), where y is fresh. These two new

terms are open stuck, so we add there decomposition to R. Let v′0
def
= λz.θ θ y z

and v′1
def
= λz.(λx.〈θ x〉) (λx.〈θ x〉) y z; then we add (v′0 ? z, v

′
1 ? z) and (z, z) for

a fresh z to R. Evaluating v′0 ? z and v′1 ? z, we obtain respectively y v′0 z and
y v′1 z; to relate these two open stuck terms, we just need to add (x z, x z) (for
a fresh x) to R, since we already have v′0 R

NFη v′1. The constructed relation R
we obtain is a normal form bisimulation.

In contrast, Curry’s combinator ∆ is not bisimilar to its delimited-control

variant ∆S
def
= λx.〈δx Sk.k k〉. Indeed, evaluating the bodies of the two values,

we obtain respectively x (λz.δx δx z) and 〈〈x (λz.(λy.〈δx y〉) (λy.〈δx y〉) z)〉〉, and
these open stuck terms are not bisimilar, because � is not related to 〈〈�〉〉 by
NNFη. In fact, ∆ and ∆S are distinguished by the context � λx.Sk.Ω. Finally,
we can prove that the two original combinators Θ and ∆ are bisimilar, using
the same bisimulation as in [18].

The bisimilarity N is sound w.r.t. contextual equivalence.

Theorem 3.4. We have N ⊆ C.

The following counter-example shows that the inclusion is in fact strict;
normal form bisimilarity is not complete.

Proposition 3.5. Let i
def
= λy.y. We have 〈〈x i〉 Sk.i〉 C◦ 〈〈x i〉 (〈x i〉 Sk.i)〉, but

〈〈x i〉 Sk.i〉 6N 〈〈x i〉 (〈x i〉 Sk.i)〉.

3.2 Proving the Axioms

We now show how the axioms can be proved using normal form bisimulation.
Because we work with the relaxed semantics in this section, we remind that the
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Selim axiom does not hold, as discussed in Section 2.5. The η-equivalence axiom
(ηv axiom) holds by definition of NNFη.

Proposition 3.6 (S〈·〉 axiom). We have Sk.〈t〉 N Sk.t.

Proof. We want to relate two stuck terms, so using normal form bisimulation, we
have to show 〈〈t〉〉 N 〈t〉 (proved in Example 3.2) and � NNFη � (a consequence
of the fact that N is reflexive).

Proposition 3.7 (〈·〉lift axiom). We have 〈(λx.t0) 〈t1〉〉 N (λx.〈t0〉) 〈t1〉.

Proof. We prove that R def
={(〈(λx.t0) 〈t1〉〉, (λx.〈t0〉) 〈t1〉)} ∪ {(t, t)} is a normal

form bisimulation. The terms 〈(λx.t0) 〈t1〉〉 and (λx.〈t0〉) 〈t1〉 reduces to a nor-
mal form iff 〈t1〉 reduces to a normal form, and according to Proposition 2.7,
we have two cases.

If 〈t1〉 ⇓v v, then 〈(λx.t0) 〈t1〉〉 →∗v 〈t0{v/x}〉 and (λx.〈t0〉)〈t1〉 →∗v 〈t0{v/x}〉.
Therefore, 〈(λx.t0) 〈t1〉〉 ⇓v t′′ iff (λx.〈t0〉) 〈t1〉 ⇓v t′′, and we have t′′ RNFη t′′,
as required.

If 〈t1〉 reduces to an open stuck term, then 〈t1〉 ⇓v 〈F [y v]〉 by Proposi-
tion 2.7. In this case, we have 〈(λx.t0) 〈t1〉〉 ⇓v 〈(λx.t0) 〈F [y v]〉〉 and also
(λx.〈t0〉) 〈t1〉 ⇓v (λx.〈t0〉) 〈F [y v]〉. We have 〈(λx.t0) 〈F 〉〉 RNFη (λx.〈t0〉) 〈F 〉
and v RNFη v by definition of R, as required.

Proposition 3.8 (βΩ axiom). If x /∈ fv(E ), then (λx.E [x]) t N E [t].

Proof. We prove that R def
={((λx.E [x]) t,E [t]), x /∈ fv(E )} ∪ {(t, t)} is a normal

form bisimulation. If (λx.E [x])t evaluates to some normal form, then t evaluates
to some normal form as well. We distinguish three cases. If t ⇓v v, then
(λx.E [x]) t →∗v E [v] (because x /∈ fv(E )), and E [t] →∗v E [v]. We obtain the
same term in both cases, and from there, it is easy to conclude.

If t ⇓v F [yv], then (λx.E [x])t ⇓v (λx.E [x])F [yv], and E [t] ⇓v E [F [xv]]. We
have to prove v RNFη v, which is obvious, and (λx.E [x])F RNFη E [F ]. Let z be
a fresh variable. If F is a pure context E ′, we have to prove (λx.E [x]) E ′[z] R
E [E ′[z]], which is clearly true. Otherwise F = F ′[〈E ′〉], and we have to prove
(λx.E [x])F ′[z] R E [F ′[z]], which is clearly true, and 〈E ′[z]〉 R 〈E ′[z]〉, which is
true as well because R contains the identity relation.

If t ⇓v E ′[Sk.t′], then we have (λx.E [x])t ⇓v (λx.E [x])E ′[Sk.t′], and E [t] ⇓v
E [E ′[Sk.t′]]. Let y be a fresh variable. We have to prove (λx.E [x]) E ′[y] R
E [E ′[y]], which is clearly true, and 〈t′〉 R 〈t′〉, which is true as well.

4 Applicative Bisimilarity

Applicative bisimilarity has been originally defined for the lazy λ-calculus [1].
The main idea is to reduce (closed) terms to values, and then compare the
resulting λ-abstractions by applying them to an arbitrary argument. In this
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(λx.t) v
τ−→ t{v/x}

(βv)
〈v〉 τ−→ v

(reset)
t0

τ−→ t′0

t0 t1
τ−→ t′0 t1

(leftτ )

t
τ−→ t′

v t
τ−→ v t′

(rightτ )
t
τ−→ t′

〈t〉 τ−→ 〈t′〉
(〈·〉τ )

t
�−→ t′

〈t〉 τ−→ t′
(〈·〉S)

λx.t
v−→ t{v/x}

(val)
x /∈ fv(E )

Sk.t E−→ 〈t{λx.〈E [x]〉/k}〉
(shift)

t0
E [� t1]−−−−−→ t′0

t0 t1
E−→ t′0

(leftS)
t

E [v �]−−−−→ t′

v t
E−→ t′

(rightS)

Figure 3: Labelled Transition System

section, we define a sound and complete applicative bisimilarity for the relaxed
semantics of λS . Our definition of applicative bisimilarity relies on a labelled
transition system, introduced first. We then define the relation itself, before
showing how it can be used on some examples. This section summarizes the
results in [5].

4.1 Labelled Transition System

One possible way to define an applicative bisimilarity is to rely on a labelled
transition system (LTS), where the possible interactions of a term with its envi-
ronment are encoded in the labels (see, e.g., [14, 13]). Using a LTS simplifies the
definition of the bisimilarity and makes easier to use some techniques in proofs,
such as diagram chasing. In Figure 3, we define a LTS t0

α−→ t1 with three
kinds of transitions, where we assume all the terms to be closed. An internal
action t

τ−→ t′ is an evolution from t to t′ without any help from the surrounding
context; it corresponds to a reduction step from t to t′. The transition v0

v1−→ t
expresses the fact that v0 needs to be applied to another value v1 to evolve,

reducing to t. Finally, the transition t
E−→ t′ means that t is control stuck, and

when t is put in a context E enclosed in a reset, the capture can be triggered,
the result of which being t′. We do not have a case for open stuck terms, because
we work with closed terms only.

Most rules for internal actions (Fig. 3) are straightforward; the rules (βv)
and (reset) mimic the corresponding reduction rules, and the compositional rules
(rightτ ), (leftτ ), and (〈·〉τ ) allow internal actions to happen within any evaluation
context. The rule (〈·〉S) for context capture is explained later. Rule (val) defines
the only possible transition for values. Note that while both rules (βv) and (val)
encode β-reduction, they are quite different in nature; in the former, the term
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(λx.t) v can evolve by itself, without any help from the surrounding context,
while the latter expresses the possibility for λx.t to evolve only if a value v is
provided by the environment.

The rules for context capture are built following the principles of comple-

mentary semantics developed in [19]. The label of the transition t
E−→ t′ contains

what the environment needs to provide (a context E , but also an enclosing reset,
left implicit) for the control stuck term t to reduce to t′. Hence, the transition

t
E−→ t′ means that we have 〈E [t]〉 τ−→ t′ by context capture. For example, in the

rule (shift), the result of the capture of E by Sk.t is 〈t{λx.〈E [x]〉/k}〉.
In rule (leftS), we want to know the result of the capture of E by the term

t0 t1, assuming t0 contains a shift ready to perform the capture. Under this
hypothesis, the capture of E by t0 t1 comes from the capture of E [� t1] by t0.
Therefore, as premise of the rule (leftS), we check that t0 is able to capture
E [� t1], and the result t′0 of this transition is exactly the result we want for the
capture of E by t0 t1. The rule (rightS) follows the same pattern. Finally, a
control stuck term t enclosed in a reset is able to perform an internal action (rule

(〈·〉S)); we obtain the result t′ of the transition 〈t〉 τ−→ t′ by letting t capture the

empty context, i.e., by considering the transition t
�−→ t′.

We now prove that the LTS corresponds to the reduction semantics →v and
exhibits the observable terms (values and control stuck terms) of the language.
The only difficulty is in the treatment of control stuck terms. The next lemma

explicit the correspondence between
E−→ and control stuck terms.

Lemma 4.1. If t
E−→ t′, then there exist E ′, k, and s such that t = E ′[Sk.s]

and t′ = 〈s{λx.〈E [E ′[x]]〉/k}〉.

The proof is direct by induction on t
E−→ t′. From this lemma, we can deduce

the correspondence between
τ−→ and →v, and between

α−→ (for α 6= τ) and the
observable actions of the language.

Proposition 4.2. The following hold:

• We have
τ−→=→v.

• If t
E−→ t′, then t is a stuck term, and 〈E [t]〉 τ−→ t′.

• If t
v−→ t′, then t is a value, and t v

τ−→ t′.

4.2 Applicative Bisimilarity

We now define the notion of applicative bisimilarity for λS . We write ⇒ for
the reflexive and transitive closure of

τ−→. We define the weak delay2 transition
α
=⇒ as ⇒ if α = τ and as ⇒ α−→ otherwise. The definition of the (weak delay)
bisimilarity is then straightforward.

2where internal steps are allowed before, but not after a visible action
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Definition 4.3. A relation R on closed terms is an applicative simulation if
t0 R t1 implies that for all t0

α−→ t′0, there exists t′1 such that t1
α
=⇒ t′1 and t′0 R t′1.

A relation R on closed terms is an applicative bisimulation if R and R−1 are
simulations. Applicative bisimilarity A is the largest applicative bisimulation.

In words, two terms are equivalent if any transition from one is matched by
a weak transition with the same label from the other. The relation A is sound
and complete w.r.t. contextual equivalence.

Theorem 4.4. We have A = C.

We give some examples showing how applicative bisimulation can be used
to prove the equivalence of terms.

Example 4.5 (double reset). We show that 〈〈t〉〉 A 〈t〉 holds by proving that R
def
={(〈t〉, 〈〈t〉〉)}∪{(t, t)} is a big-step applicative bisimulation. If 〈t〉 and/or 〈〈t〉〉
is open, then 〈t〉σ = 〈tσ〉 (and similarly with 〈〈t〉〉), for all closing substitution
σ, so we still have terms in R. With closed terms, the only possible (big-step)

transition is 〈t〉 v
=⇒ t′, which means 〈t〉 ⇓v v′

v−→ t′. But we have proved in

Example 3.2 that 〈t〉 ⇓v v′ iff 〈〈t〉〉 ⇓v v′. Consequently, we have 〈t〉 v
=⇒ t′

iff 〈〈t〉〉 v
=⇒ t′, and we have t′ R t′, as wished. The proof is shorter than in

Example 3.2 because we do not have to consider open stuck terms.

Example 4.6 (Turing’s combinator). We now consider Turing’s combinator

Θ and its variant ΘS
def
=〈θ Sk.k k〉. The two terms can perform the following

transitions.

Θ
v

=⇒ v (λz.θ θ v z)

ΘS
v

=⇒ v (λz.(λx.〈θ x〉) (λx.〈θ x〉) v z).

Assuming v = λx.t, we have to study the behaviour of t{(λz.θ θ v z)/x}, and
t{(λz.(λx.〈θ x〉) (λx.〈θ x〉) v z)/x}. A way to proceed is by case analysis on t,
the interesting case being t = F [x v′]. The resulting applicative bisimulation
one can write to relate Θ and ΘS is much more complex than the normal form
bisimulation of Example 3.3.

4.3 Proving the Axioms

As with normal form bisimulation (Section 3.2), we show how to prove Kameyama
and Hasegawa’s axioms (Section 2.4) except for Selim using applicative bisimu-
lation. In the following propositions, we assume the terms to be closed, since
the proofs for open terms can be deduce directly from the results with closed
terms.

Proposition 4.7 (ηv axiom). If x /∈ fv(v), then λx.v x A v.

Proof. We prove that R def
={(λx.(λy.t)x | λy.t), x /∈ fv(t)}∪ A is a bisimulation.

To this end, we have to check that λx.(λy.t)x
v0−→ (λy.t)v0 is matched by λy.t

v0−→
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t{v0/y}, i.e., that (λy.t) v0 R t{v0/y} holds for all v0. We have (λy.t) v0
τ−→

t{v0/y}, and because
τ−→ ⊆ A ⊆ R, we have the required result.

Proposition 4.8 (S〈·〉 axiom). We have Sk.〈t〉 A Sk.t.

Proof. We have Sk.〈t〉 E−→ 〈〈t{λx.〈E [x]〉/k}〉〉 and Sk.t E−→ 〈t{λx.〈E [x]〉/k}〉
for all E . We obtain terms of the form 〈〈t′〉〉 and 〈t′〉, and we have proved in
Example 4.5 that 〈〈t′〉〉 A 〈t′〉 holds.

Proposition 4.9 (〈·〉lift axiom). We have 〈(λx.t0) 〈t1〉〉 A (λx.〈t0〉) 〈t1〉.

Proof. A transition 〈(λx.t0) 〈t1〉〉
α
=⇒ t′ (with α 6= τ) is possible only if 〈t1〉 eval-

uates to some value v (evaluation to a control stuck terms is not possible ac-

cording to Proposition 2.7). In this case, we have 〈(λx.t0) 〈t1〉〉
τ
=⇒ 〈(λx.t0) v〉 τ−→

〈t0{v/x}〉 and (λx.〈t0〉)〈t1〉
τ
=⇒ 〈t0{v/x}〉. Therefore, we have 〈(λx.t0) 〈t1〉〉

α
=⇒ t′

(with α 6= τ) iff (λx.〈t0〉) 〈t1〉
α
=⇒ t′. From there, it is easy to conclude.

Proposition 4.10 (βΩ axiom). If x /∈ fv(E ), then (λx.E [x]) t A E [t].

Sketch. We first give some intuitions on why the proof of this result is harder
with applicative bisimulation than with normal form bisimulation. The difficult
case is when t in the initial terms (λx.E [x]) t and E [t] is a control stuck term
E0[Sk.t′]. Then we have the following transitions.

(λx.E [x]) t
E1−−→ 〈t′{λy.〈E1[(λx.E [x]) E0[y]]〉/k}〉

E [t]
E1−−→ 〈t′{λy.〈E1[E [E0[y]]]〉/k}〉

We obtain terms of the form 〈t′〉σ and 〈t′〉σ′ (where σ and σ′ are the above
substitutions). We now have to consider the transitions from these terms, and
the interesting case is when 〈t′〉 = F [k v].

〈t′〉σ τ−→ Fσ[〈E1[(λx.E [x]) E0[vσ]]〉] def= t0

〈t′〉σ′ τ−→ Fσ′[〈E1[E [E0[vσ′]]]〉] def= t1

We obtain terms that are similar to the initial terms (λx.E [x])t and E [t], except
for the extra contexts F and E1, and the substitutions σ and σ′. Again, the
interesting cases are when E0[v] is either a control stuck term, or a term of the
form F ′[k v′]. Looking at these cases, we see that the bisimulation we have to
define has to relate terms similar to t0 and t1, except with an arbitrary number
of contexts F ′ and substitutions similar to σ and σ′.

5 Environmental Bisimilarity

Like applicative bisimilarity, environmental bisimilarity reduces closed terms to
normal forms, which are then compared using some particular contexts (e.g.,
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Term generating closure

t R t′

t Ṙ t′
x Ṙ x

t Ṙ t′

λx.t Ṙ λx.t′
t0 Ṙ t′0 t1 Ṙ t′1

t0 t1 Ṙ t′0 t
′
1

t Ṙ t′

Sk.t Ṙ Sk.t′
t Ṙ t′

〈t〉 Ṙ 〈t′〉

Context generating closure

� R̈ �

F0 R̈ F1 v0 Ṙ v1

v0 F0 R̈ v1 F1

F0 R̈ F1 t0 Ṙ t1

F0 t0 R̈ F1 t1

F0 R̈ F1

〈F0〉 R̈ 〈F1〉

Figure 4: Term and context generating closures

λ-abstractions are tested by passing them arguments). However, the testing con-
texts are not arbitrary, but built built from an environment, which represents
the knowledge built so far by an outside observer. We give first the definition of
environmental bisimilarity for the relaxed semantics. We then discuss a defini-
tion of environmental bisimilarity which we can prove complete for the original
semantics. This section summarizes the results in [7].

5.1 Definition for the Relaxed Semantics

Environmental bisimulations use an environment E to accumulate knowledge
about two tested terms. For the λ-calculus [22], E records the values (v0, v1)
the tested terms reduce to, if they exist. We can then compare v0 and v1 at any
time by passing them arguments built from E . With the relaxed semantics of
λS , control stuck terms are also normal forms. To handle these, we allow envi-
ronments to contain pairs of control stuck terms, and we test them by building
pure contexts from E . To build these testing arguments from E , we define in
Figure 4 two closures that generate respectively terms and evaluation contexts.
Given a relation R on terms, we write Ṙ for the term generating closure and R̈
for the context generating closure. Even if R is defined only on closed terms,
Ṙ and R̈ are defined on open terms and open contexts, respectively. In this
section, we consider the restrictions of Ṙ and R̈ to respectively closed terms
and closed contexts unless stated otherwise.

Formally, an environment E is a relation on normal forms which relates values
with values and control stuck terms with control stuck terms; e.g., we define
the identity environment I as {(t, t) | t is a normal form}. An environmental
relation X is a set of environments E , and triples (E , t0, t1), where t0 and t1
are closed. We write t0 XE t1 as a shorthand for (E , t0, t1) ∈ X ; roughly, it
means that we test t0 and t1 with the knowledge E . We define environmental
bisimulation as follows.

Definition 5.1. A relation X is an environmental bisimulation if

1. t0 XE t1 implies:
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(a) if t0 →v t
′
0, then there exists t′1 such that t1 →∗v t′1 and t′0 XE t′1;

(b) if t0 is a normal form, then there exists a normal form t′1 of the same
kind as t0 such that t1 →∗v t′1 and E ∪ {(t0, t′1)} ∈ X ;

(c) the converse of the above conditions on t1;

2. E ∈ X implies:

(a) if λx.t0 E λx.t1 and v0 Ė v1, then t0{v0/x} XE t1{v1/x};
(b) if E0[Sk.t0] E E1[Sk.t1] and E ′0 Ë E ′1, then 〈t0{λx.〈E ′0[E0[x]]〉/k}〉 XE
〈t1{λx.〈E ′1[E1[x]]〉/k}〉 for a fresh x.

Environmental bisimilarity, written ≈, is the largest environmental bisimu-
lation. To prove that two terms t0 and t1 are equivalent, we want to relate them
without any predefined knowledge, i.e., we want to prove that t0 ≈∅ t1 holds;
we also write E for ≈∅. The relation E will be the candidate to characterize
contextual equivalence.

The first part of the definition makes the bisimulation game explicit for t0
and t1, while the second part focuses on environments E . If t0 is a normal
form, then t1 has to evaluate to a normal form of the same kind, and we ex-
tend the environment with the newly acquired knowledge. We then compare
values in E (clause (2a)) by applying them to arguments built from E , as in
the λ-calculus [22]. Similarly, we test stuck terms in E by putting them within
contexts 〈E ′0〉, 〈E ′1〉 built from E (clause (2b)) to trigger the capture. This is
similar to the way we test values and stuck terms with applicative bisimilarity
(Section 4), except that applicative bisimilarity tests both values or stuck terms
with the same argument or context. Using different entities (as in Definition 5.1)
makes bisimulation proofs harder, but it simplifies the proof of congruence of
the environmental bisimilarity.

The relation we obtain is sound and complete w.r.t. contextual equivalence.

Theorem 5.2. We have E = C.

We now give some examples showing how the notion of environmental bisim-
ulation can be used.

Example 5.3 (double reset). We have 〈〈t〉〉 E 〈t〉, because the relation

{(∅, 〈〈t〉〉, 〈t〉)} ∪ {(E , t, t) | E ⊆ I} ∪ {E | E ⊆ I}

is a big-step environmental bisimulation. Indeed, we know that 〈〈t〉〉 ⇓v v iff
〈t〉 ⇓v v, so we have to consider environments E of the form (v, v). Then, testing
these E suppose to take λx.t E λx.t and some arguments v0 Ė v1, and relate
t{v0/x} with t{v1/x}. Since the terms related by E are the same, we have in
fact v0 = v1, so we have to relate t{v0/x} with itself, hence the second set in
the definition of the bisimulation.
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Example 5.4 (Turing’s combinator). Proving that Turing’s combinator Θ is

bisimilar to its variant ΘS
def
=〈θ Sk.k k〉 using the basic definition of environmen-

tal bisimulation is harder than with applicative bisimulation (Example 4.6). We
remind that

Θ ⇓v λy.y (λz.θ θ y z)
def
= v0, and

ΘS ⇓v λy.y (λz.(λx.〈θ x〉) (λx.〈θ x〉) y z) def
= v1.

Therefore, we have to put (v0, v1) in an environment E . When we then test
v0 and v1, we use arguments v′0 and v′1 such that v′0 Ė v′1, and we compare
v′0 (λz.θ θ v′0 z) with v′1 (λz.(λx.〈θ x〉) (λx.〈θ x〉) v′1 z). Because we have two
different terms v′0 and v′1, we can no longer do a case analysis as suggested in
Example 4.6. To conclude with environmental bisimulation, we need bisimula-
tion up to context (see [7]).

5.2 Environmental Relations for the Original Semantics

The bisimilarities introduced so far are sound and complete w.r.t. the contextual
equivalence C of the relaxed semantics, but only sound w.r.t. the contextual
equivalence P of the original semantics (cf. Proposition 2.12). We now propose a
definition of environmental bisimulation adapted to delimited terms (but defined
on all terms, like P). Because control stuck terms cannot be obtained from the
evaluation of a delimited term, environments E henceforth relate only values.
Similarly, we write R v for the restriction of a relation R on terms to pairs of
closed values.

Definition 5.5. A relation X is a delimited environmental bisimulation if

1. if t0 XE t1 and t0 and t1 are not both delimited terms, then for all closed
E0, E1 such that E0 Ë E1, we have 〈E0[t0]〉 XE 〈E1[t1]〉;

2. p0 XE p1 implies

(a) if p0 →v p
′
0, then there exists p′1 such that p1 →∗v p′1 and p′0 XE p′1;

(b) if p0 →v v0, then there exists v1 such that p1 →∗v v1, and {(v0, v1)}∪
E ∈ X ;

(c) the converse of the above conditions on p1;

3. for all E ∈ X , if λx.t0 E λx.t1 and v0 Ė v1, then t0{v0/x} XE t1{v1/x}.

Delimited environmental bisimilarity, written ', is the largest delimited en-
vironmental bisimulation. As before, the relation '∅, also written F, is candi-
date to characterize P.

Clauses (2) and (3) of Definition 5.5 deal with delimited terms and envi-
ronments in a classical way (as in plain λ-calculus). The problematic case is
when relating terms t0 and t1 that are not both delimited terms (clause (1)).
Indeed, one of them may be control stuck, and therefore we have to test them
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within some contexts 〈E0〉, 〈E1〉 (built from E) to potentially trigger a capture
that otherwise would not happen. We cannot require both terms to be control
stuck, as in clause (2b) of Definition 5.1, because a control stuck term can be
equivalent to a term free from control effect. E.g., we will see that v F Sk.k v,
provided that k /∈ fv(v).

The next proposition shows that E is more discriminative than F.

Proposition 5.6. We have E ⊆ F.

A consequence of Proposition 5.6 is that we can use Definition 5.1 as a proof
technique for F. E.g., we have directly 〈(λx.t0) 〈t1〉〉 F (λx.〈t0〉) 〈t1〉, because
〈(λx.t0) 〈t1〉〉 E (λx.〈t0〉) 〈t1〉. The bisimilarity we obtain is sound and complete
w.r.t. P.

Theorem 5.7. We have F = P.

5.3 Examples

We illustrate the differences between E and F, by giving some examples of terms
related by F, but not by E. First, note that F relates non-terminating terms
with stuck non-terminating terms.

Proposition 5.8. We have Ω F Sk.Ω.

The relation {(∅,Ω,Sk.Ω), (∅, 〈E [Ω]〉, 〈E [Sk.Ω]〉), (∅, 〈E [Ω]〉, 〈Ω〉)} is a delim-
ited bisimulation. Proposition 5.8 does not hold with E because Ω is not stuck.

As wished, F satisfies the only axiom of [17] not satisfied by E.

Proposition 5.9. If k /∈ fv(t), then t F◦ Sk.k t.

Consequently, F◦ is complete w.r.t. ≡.

Corollary 5.10. We have ≡ ⊆ F◦.

As a result, we can use ≡ (restricted to closed terms) as a proof technique
for F. E.g., the following equivalence can be derived from the axioms [17].

Proposition 5.11. If k /∈ fv(t1), then (λx.Sk.t0) t1 F Sk.((λx.t0) t1).

This equivalence does not hold with E, because the term on the right is
stuck, but the term on the left may not evaluate to a stuck term (if t1 does not
terminate).

6 Conclusion

In our study of the behavioral theory of a calculus with shift and reset, we
consider two semantics: the original one, where terms are executed within an
outermost reset, and the relaxed one, where this requirement is lifted. For
each, we define a contextual equivalence (respectively P and C), that we try to

19



� ≡ N A E F
relaxed semantics: C ( = = )
original semantics: P ( ( ( ( =

Figure 5: Relationships between the equivalences of λS (e.g., N ( C)

characterize with different kinds of bisimilarities (normal form N, applicative
A, and environmental E, F). We also compare our relations to CPS equiva-
lence ≡, a relation which equates terms with βη-equivalent CPS translations.
The relationship between all these relations is summarized in Figure 5.

When comparing term equivalence proofs, we can see that each bisimulation
style has its strengths and weaknesses. Normal form bisimulation arguably
leads to the simplest proofs of equivalence on average, as it does not contain
any quantification over arguments or testing contexts in its definition. For
example, the βΩ axiom can be easily proved using normal form bisimulation
(Proposition 3.8); the proof with applicative bisimulation is much more complex
(Proposition 4.10), and we do not know how to prove it with environmental
bisimulation.

However, normal form bisimulation cannot be used to prove all equivalences,
since its corresponding bisimilarity is not complete. It can be too discriminating
to relate very simple terms, like those in Proposition 3.5. Besides, normal form
bisimulation operates on open terms by definition, which requires to consider an
extra normal form (open stuck terms) in the bisimulation proofs. Applicative
and environmental bisimulations do not have these issues: their corresponding
bisimilarities are complete, and they operate on closed terms. As a result, the
proof that 〈〈t〉〉 is equivalent to 〈t〉 is shorter with applicative bisimulation than
with normal form bisimulation (compare Example 3.2 and Example 4.5). This
is also true, e.g., for the 〈·〉lift axiom (compare Proposition 3.7 and 4.9).

To summarize, to prove that two given terms are equivalent, we would sug-
gest to first try to use normal form bisimulation, and if it fails, try applicative
bisimulation, and next, environmental bisimulation. This strategy holds for the
relaxed as well as the original semantics, except if one wants to relate, e.g., a
control stuck term with a value (like with the Selim axiom): it is possible only
with the environmental bisimulation for the original semantics.
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[6] Dariusz Biernacki and Serguëı Lenglet. Normal form bisimulations for
delimited-control operators. In Tom Schrijvers and Peter Thiemann, edi-
tors, FLOPS’12, number 7294 in LNCS, pages 47–61, Kobe, Japan, May
2012. Springer-Verlag. 2, 8
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