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Abstract

A computation in the continuation monad returns a final result given a
continuation, ie. it is a function with type (X → R) → R. If we in-
stead return the intermediate result at X then our computation is called
a selection function. Selection functions appear in diverse areas of math-
ematics and computer science (especially game theory, proof theory and
topology) but the existing literature does not heavily emphasise the fact
that the selection monad is a CPS translation. In particular it has so
far gone unnoticed that the selection monad has a call/cc-like operator
with interesting similarities and differences to the usual call/cc, which we
explore experimentally using Haskell.

Selection functions can be used whenever we find the intermediate
result more interesting than the final result. For example a SAT solver
computes an assignment to a boolean function, and then its continuation
decides whether it is a satisfying assignment, and we find the assignment
itself more interesting than the fact that it is or is not satisfying. In game
theory we find the move chosen by a player more interesting than the
outcome that results from that move. The author and collaborators are
developing a theory of games in which selection functions are viewed as
generalised notions of rationality, used to model players. By realising that
strategic contexts in game theory are examples of continuations we can
see that classical game theory narrowly misses being in CPS, and that a
small change of viewpoint yields a theory of games that is better behaved,
and especially more compositional.
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1 Introduction

A selection function is a type-2 function ε : JX where

JX = (X → R)→ X

We can view the input k : X → R to such a function in several ways: as a
generalised predicate, as the context of a decision, or as a continuation. These
are emphasised respectively in topology [4], game theory [5] and proof theory
[7]. The earliest selection functions considered were computable instances of
Hilbert’s ε-operator (X → B) → X, which witness a computational form of
topological compactness. An operation ⊗ : JX×J Y →J (X×Y ), which is
the (left-leaning) monoidal product of the strong monad J , witnesses the fact
that the product of two compact spaces is compact. Remarkably this extends to
countable products, leading to the derivation of ‘seemingly impossible functional
programs’ [3] that search set-theoretically infinite but topologically compact
types such as N→ B (the Cantor space) in a finite amount of time.

It was noticed by Paulo Oliva that the product of selection functions is equiv-
alent to Spector’s bar recursion [8], a notoriously obscure computational feature
used to realise the axiom of countable choice via a double negative translation
and Gödel’s Dialectica interpretation. Bar recursion is important in the proof
mining programme because it can be used to interpret proofs of classical analy-
sis (including differential equations and ergodic theory) [14], but the computer
programs arising from such proofs via bar recursion, while provably correct, are
not well suited to human understanding.

The next step made by Escardó and Oliva was the connection with game
theory, by realising that economic rationality is modelled by the selection func-
tion

arg max : (X → R)→ X

which finds a point maximising a real-valued function (say, on a finite set X). By
generalising selection functions by replacing the booleans with R or an arbitrary
type R, the product of selection functions is seen to correspond to an well-known
and intuitive algorithm in game theory known as backward induction [5]. Since
proof interpretations using bar recursion can be rewritten using the product of
selection functions, we therefore obtain a computational interpretation of proofs
in classical analysis that is amenable to human understanding via game theory
[16].

The relationship to the continuation monad is immediately obvious: the
Hilbert ε-operator is a refined form of the quantifier

∃ : (X → B)→ B

and the operator arg max is a refined form of

max : (X → R)→ R

These functions are both computations in the continuation monad

K X = (X → R)→ R
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Escardó and Oliva call any function with a type of this form a quantifier. More-
over the relationships

∃p = p(εp)

and
max p = p(arg max p)

define a monad morphism from the selection to the continuation monad. Thus
in proof theory the J-translation (or Peirce translation) [7] can be seen as a
refined form of the usual (generalised) double negative translation, and it would
be tempting to view the selection monad as a refinement of the continuation
monad. However things are not so clear, because call/cc of the selection monad
has a more specific type, and behaves differently.

In section 2 we will explain the (quite complex) bind operation of the selec-
tion monad using intuition from CPS, which previously has only been derived
in a purely formal way. In sections 3 and 4 we will discuss the call/cc-like oper-
ator that exists for the selection monad, and see its behaviour experimentally.
Finally in section 5 we will informally discuss ongoing work by the author and
others on applications of selection functions and CPS in game theory.

2 Two monads for CPS

We begin by recalling the usual intuition for the continuation monad, which
can be used to implement (delimited) continuations in a pure language such
as Haskell. We view all computation as being done relative to a continuation,
which takes the return value and chains it to the future of the computation.
Thus our computation has the shape1

· · · X R
k

We will call X the type of intermediate values, and R the type of final values.
The key idea of the continuation monad is that we always work relative to an
unknown continuation k, although we may fix the type R. (The ability to fix
R may have begun as a quirk due to Hindley-Milner typing, see [13], but it is
vital to many applications of selection functions.) We allow our functions to
have side-effects, modelled by functions X → MR for a suitable monad M . A
computation in the continuation monad is a function with type

K M
R = (X →MR)→MR

which computes a final result given a continuation.

1The diagrams in this paper are not intended to be formal, but rather as a possible aid to
intuition, which not every reader will find helpful. ‘Plain’ arrows are intended to live in the
Kleisli category of the base monad M , while arrows with quote marks around the name live
in the Kleisli category of either K M

R or J M
R .
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To embed a pure value x : X we simply view it as the intermediate value,
and apply the continuation to it immediately:

ηK M
R
x = λkX→MR.kx

For the bind, suppose we have a computation ϕ : K M
R X and a family of com-

putations F : X → K M
R Y . Equivalently, F is a computation X → Y , which we

can run by supplying it with a continuation from Y . We form a computation
that has the shape

· · · X Y R
“F” k

The key to understanding the bind of both the continuation and selection
monads is that we have two views of a computation like this: we can ei-
ther view the intermediate result as being at X or Y . The ‘external’ view
of ϕ >>=K M

R
F : K M

R Y is that it is a computation with the intermediate result
being at Y . Suppose we are running this computation, so we have a continua-
tion k : Y → MR. To find the final result we move to the other view, and run
the computation ϕ by building it a longer continuation k′ : X → MR. Given
an intermediate value x : X we can now find the final result k′x because we
have the continuation k from Y : it is k′x = Fxk. Therefore the bind operator
for the continuation monad is given by

ϕ >>=K M
R
F = λkY→MR.ϕλxX .Fxk

This intuition for the continuation monad transfers directly to the selection
monad. Whereas a computation in the continuation monad computes the final
result given a continuation, a computation in the selection monad computes the
intermediate result instead. Thus the selection monad is

J M
R X = (X →MR)→MX

First, suppose we want to embed a pure value x : X as the intermediate
result. Given a continuation k : X → MR, we ignore the continuation and
simply return x, embedded as a computation in M :

ηJ M
R
x = λkX→MR.ηMx

For the bind operator of the selection monad we must again move between
the two views of the computation

· · · X Y R
“F” k

Suppose we have a computation ε : J M
R X and a family of computations

F : X → J M
R Y . To run ε >>=J M

R
F : J M

R Y we are given a continuation
k : Y → MR, and we must return an intermediate result at Y . Our first task
is to find a way to turn an intermediate result at X into one at Y . Suppose
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we have an intermediate value x : X, so we have a computation Fx : J M
R Y

with intermediate value at Y . We can now run this computation with our con-
tinuation k, which yields an intermediate value at Y . Thus we have a function
f : X →MY given by

fx = Fxk

Now we can extend our continuation k with f to give a continuation k′ from X,
namely

k′x = fx >>=M k = Fxk >>=M k

By running the computation ε with this continuation, we obtain an interme-
diate result at X. Finally, we must apply the function f again to obtain an
intermediate result at Y , which is what we need. Written out explicitly, the
operator is

ε >>=J M
R
F = λkY→MR.(ελxX .Fxk >>=M k) >>=M λxX .Fxk

Obviously, the sheer complexity of this formula makes reasoning about pro-
grams in the selection monad very difficult. In practice, Haskell is a very useful
tool for qualitatively understanding the behaviour of such programs.

No published proof of the monad laws for the selection monad exists. The
original proof (in the absence of other side-effects) was generated by an equa-
tional reasoning tool written by Martin Escardó specifically for this purpose,
resulting in several pages of formal manipulations. For an arbitrary side-effects
the unit laws were checked by the author with several pages of equational rea-
soning, including use of functional extensionality (η-expansion). The associative
law seems to be impractical to check by hand, but the proof is found by Coq’s
tactic for intuitionistic logic. However previously the unit and bind operators
were considered purely formal objects (derived simply by proving them as theo-
rems of intuitionistic logic), and the intuitions developed in this section suggest
for the first time that it might be possible to find a human-readable proof, by
reducing to the monad laws for the continuation monad.

3 Call/cc for the selection monad

For building computations in the continuation monad we can use the call-with-
current-continuation operator. This has type

cc : ((X → K M
R Y )→ K M

R X)→ K M
R X

The input Φ to cc is called a continuation handler, which is a computation that
has access to the current continuation k : X → K M

R Y (we will use the letter k
to refer to an actual continuation, and k to refer to a continuation reified as a
computation in the continuation or selection monad). The current continuation
is just a computation X → Y in the continuation monad, and the purpose of ccΦ
is to call Φk where k is bound to the continuation of ccΦ. The implementation
of cc is given by

ccΦ = λkX→MR
1 .Φ(λxX , kY→MR

2 .k1x)k1
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Given our description it is quite easy to read this formula. The parameter given
to Φ should be the continuation k1 reified as a function X → KM

R Y . We have
exactly that: given an input, we make the computation which ignores its own
continuation and uses k1 instead.

Put another way, we want to build a computation k to which we can apply
Φ. Consider the diagram

· · · X Y R
“k” k2

k1

In this diagram, X is the intermediate type at the point in the handler at which
the current continuation is invoked, and Y is the intermediate result when the
handler ends. We do not have a pure function X → Y , but we can build a CPS
computation k : X → K M

R Y by short-cutting with the continuation k1, that is,

kx = λkY→MR
2 .k1x

However, the principal type of the term cc is the far more general

((A→ B → C)→ (A→ C)→ D)→ (A→ C)→ D

We obtain the specific type ((X → K M
R Y ) → K M

R X) → K M
R X by setting

A = X, B = Y →MR and C = D = MR. In order that our computations are
in the selection rather than the continuation monad, we instead set C = MR
and D = MX. This implies that Y = R, and so B = R → MR. Thus cc has
the type

((X →J M
R R)→J M

R X)→J M
R X

This is the call-with-current-continuation operator for the selection monad. It
is equal (as an untyped λ-term) to the ordinary call/cc, and the difference in
behaviour comes from the different bind operator with which it is composed.

If we draw a similar diagram we get

· · · X R R
“k” k2

id

k1

We have the continuation k1 which gives us a final result given an intermediate
result at X, which is also the point at which the continuation is invoked in
the handler. The computation k, given its continuation k2, should return the
intermediate result. However instead we simply return k1x, which is really the
final result, which we arranged to have the same type. That is, we are implicitly
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assuming that k2 is always the trivial continuation, even though it might not
be. We could change the type to

((X → K M
R R)→J M

R X)→J M
R X

to emphasise that k returns a final rather than an intermediate result, but that
only moves our dishonesty elsewhere because to actually invoke the current
continuation in the handler we would need an ‘invoke-continuation’ function
with type K M

R R→J M
R R, which treats its final result as intermediate.

In the next section we will see experimental results about the operational
behaviour of this function, including when the whole computation is run with
a nontrivial continuation.

4 Programming with selection call/cc

This section uses the author’s implementation of the selection monad trans-
former from [10], and assumes some familiarity with monad transformers and
the syntax of Haskell. As an example we will take the simple CPS Haskell
program

trace :: (MonadIO m) => String -> m ()

trace = liftIO . putStrLn

foo :: ContT r IO Int

foo = do trace "In foo"

n <- callCC $ \k -> do trace "In handler"

m <- k 0

trace "Still in handler"

return (m + 1)

trace "In continuation"

return (n + 1)

When run interactively we obtain

ghci> runContT foo return

In foo

In handler

In continuation

1

This program demonstrates an important fact about call/cc: once the con-
tinuation is run, control is never returned to the handler. Thus while the contin-
uation logically returns a value and we can bind it to a variable, any code after
the continuation is called is unreachable. This is in contrast to the selection
monad, which we will see next.

The same program written in the selection monad is
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bar :: SelT Int IO Int

bar = do trace "In bar"

n <- callCC’ $ \k -> do trace "In handler"

m <- k 0

trace "Still in handler"

return (m + 1)

trace "In continuation"

return (n + 1)

By running this program we can see the execution trace:

ghci> runSelT bar return

In bar

In handler

In continuation

Still in handler

In continuation

3

As can be seen, there is a coroutine-like dialogue between the handler and the
continuation, with data flowing back and forth.

Like in the continuation monad, the continuation can be called from arbi-
trarily far inside a call stack. In particular we can write a product of selection
functions that has access to its current continuation. For example, we can write
a SAT solver that calls the current continuation with a dummy input once per
iteration:

sat :: Int -> SelT Bool IO [Bool]

sat n = do bs <- callCC’ $ \k -> sequence $ replicate n $

do b <- SelT ($ True)

liftIO $ putStr $ "b = " ++ show b ++ ", "

k []

return b

trace $ "Continuation called with " ++ show bs

return bs

This program is based on the verbose SAT solver in [10], and is designed to
exhibit as many unexplained patterns as possible. Given a particular formula
like

f :: [Bool] -> IO Bool

f bs = return $ bs!!0 && not(bs!!1) && bs!!2

we can run it by

ghci> runSelT (sat 3) f

b = True, Continuation called with []

b = True, Continuation called with []

b = True, Continuation called with []
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Continuation called with [True,True,True]

b = False, Continuation called with []

Continuation called with [True,True,False]

b = False, Continuation called with []

b = True, Continuation called with []

Continuation called with [True,False,True]

b = True, Continuation called with []

Continuation called with [True,False,True]

b = True, Continuation called with []

b = True, Continuation called with []

b = True, Continuation called with []

Continuation called with [True,True,True]

b = False, Continuation called with []

Continuation called with [True,True,False]

b = False, Continuation called with []

b = True, Continuation called with []

Continuation called with [True,False,True]

b = True, Continuation called with []

Continuation called with [True,False,True]

[True,False,True]

(Note that each time the current continuation is called with the empty list it
also calls the formula f , but the expressions which index the empty list, which
would result in a runtime exception, are not evaluated due to the lazy seman-
tics of Haskell.) It is already an open question how to explain patterns such
as TTT, TTF, TFT, TFT, TTT, TTF, TFT, TFT resulting from the operational
behaviour of the product of selection functions. The positions of the empty list
in this trace only seem to deepen the mystery.

5 Strategic contexts are continuations

The author and collaborators are developing a theory of games based on se-
lection functions, which will be informally described in this section. In a com-
putable game theory, the computations done by players are naturally CPS com-
putations, in the sense that the computation divides into two parts: first the
player computes a move, and then the rules of the game (and the other players)
use the move to compute the outcome. However the player’s computation of
a move is done with knowledge of how that move will be used to compute an
outcome, which makes it a CPS computation. In classical game theory a player
may have a finite set of choices X, and each choice determines a real number
kx : R called a utility. A fundamental assumption of classical game theory is
that rational players act so as to maximise their utility. We can view the con-
tinuation of the player’s decision as k : X → R, and the computation done by
the player is arg max : JRX. One reason that this is interesting is that the
product of selection functions computes Nash equilibria of sequential games of
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perfect information, by implementing an algorithm known as backward induc-
tion [6]. Thus what was apparently a fact of applied mathematics, concerning
the behaviour of interacting rational agents, in fact arises very naturally in a
theoretical setting.

An immediate application of these ideas is that we can easily generalise
some concepts in classical game theory to arbitrary selection functions, which
allows us to work with players who are not classically rational without having
to build a new game theory from scratch. This is applied to ‘context-dependent
choice’ in voting games in [11], where it is shown that the fixpoint operator
fix : J P

XX models a ‘Keynes agent’ who would like to vote for the winner of
an election, or a so-called Keynes beauty contest. Similarly the operator that
selects non-fixpoints models a ‘punk’ who would like to vote for anybody but
the winner, which corresponds to a one-shot minority game [12]. In general,
a ‘context-dependent agent’ may have preferences not just over outcomes, but
over the ways in which those outcomes are achieved. This formally gives no new
expressive power because the type of outcomes could be extended to include all
relevant information, but selection games are more convenient, and in particular
seem to be more scalable. To give a silly example, a million dollars earned is not
equivalent to a million dollars stolen. To model such ‘social concerns’ classically,
an explicit conversion rate between morality and dollars must be given globally
and encoded into the outcome structure of the game. With selection functions
this can be done instead on a per-agent basis.

We conclude by giving several research directions currently being explored
by the author and several collaborators. In each of these, the slogan ‘strate-
gic contexts are continuations’ is an important part of the author’s intuitive
understanding.

• Most importantly, the author has recently developed a graphical calculus
for game theory by extending string diagrams for monoidal categories [17].
The semantics of these string diagrams uses CPS very heavily: a diagram
generally represents some group of interacting agents, which is equivalent
to a ‘generalised agent’ with preferences over both strategies and con-
tinuations from computations of strategies. The categorical composition
and tensor product (which are primitive forms of sequential and parallel
composition, respectively) are both defined using (delimited) continuation
transformers, and cannot be written in a direct style.

• The way in which this graphical calculus differs from the ones used in
quantum theory is the way in which backward-causality is treated. Game
theory contains a quite restricted form of backward-causality due to agents
reasoning about future events. An agent is graphically connected to a
relevant future value by a feedback-like operation. Intriguingly there is
an extremely close analogy with shift/reset operators [1] here: a deci-
sion made by an agent is like ‘shift’ (it captures a continuation), and the
point in the future at which a value is designated as the outcome for an
agent is like ‘reset’ (it delimits a continuation). In the graphical calculus
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these also appear strongly analogous to the unit and counit of a compact
structure in category theory, which correspond to pair-production and
pair-annihilation in quantum mechanics.

• The first two points relate to defining games and solution concepts, but not
to computing solutions in general. In this direction, the author has used
various monad transformer stacks with the selection monad at the top.
For sequential games of perfect information this can be done in generality
using the product of selection functions, but to extend to simultaneous
and other games must be done on a per-effect basis. The most progress
has been made for nondeterministic games, in which agents can make
nondeterministic choices between several moves. (True nondeterminism is
essentially unknown in economic game theory; for a use in game theory in
computer scientist see [15, chapter 9].) The idea is to define a new ‘sum
of selection functions’ operator

⊕ : J M
R X ×J M

R Y →J M
R (X × Y )

which is analogous to the product of selection functions, but for simul-
taneous games. Games with nondeterministic strategies are noticeably
better behaved than either pure or mixed strategies, with solution spaces
carrying more structure.

• For infinite games, and games with mixed strategies, things are more in-
teresting and difficult. The author is bringing together many ideas from
functional programming, topology and category theory to attack these
problems. One starting point is that probability distributions form a
monad [9, 2] which carries additional topological structure.
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